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ABSTRACT 8 

Most studies of the biological effects of future climatic changes rely on seasonally aggregated, 9 

coarse-resolution data. Such data mask spatial and temporal variability in microclimate driven 10 

by terrain, wind and vegetation and ultimately bear little resemblance to the conditions that 11 

organisms experience in the wild. Here, I present methods for providing fine‐grained, hourly 12 

and daily estimates of current and future temperature and soil moisture over decadal 13 

timescales.  Observed climate data and spatially-coherent probabilistic projections of daily 14 

future weather were disaggregated to hourly and used to drive empirically-calibrated physical 15 

models of thermal and hydrological microclimates. Mesoclimatic effects (cold-air drainage, 16 

coastal exposure and elevation) were determined from coarse resolution climate surfaces using 17 

thin-plate spline models with coastal exposure and elevation as predictors. Differences between 18 

micro- and mesoclimate temperatures were determined from terrain, vegetation and ground 19 

properties using energy balance equations. Soil moisture was computed in a thin upper layer 20 

and an underlying deeper layer, and the exchange of water between these layers was calculated 21 

using the Van Genuchten equation.  Code for processing the data and running the models is 22 

provided as a series of R packages. The methods were applied to the Lizard Peninsula, United 23 

Kingdom, to provide hourly estimates of temperature (100 m grid resolution over entire area, 24 
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one m for a selected area) for the periods 1983–2017 and 2041-2049. Results indicated that 25 

there is fine-resolution variability in climatic changes, driven primarily by interactions between 26 

landscape features and decadal trends in weather conditions. High-temporal resolution 27 

extremes in conditions under future climate change were predicted to be considerably less 28 

novel than the extremes estimated using seasonally aggregated variables. The study highlights 29 

the need to more accurately estimate the future climatic conditions experienced by organisms 30 

and equips biologists with the means to do so. 31 

 32 
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INTRODUCTION 35 

Most studies of climate biology are based on climatic conditions above ground level seasonally 36 

averaged across one km2 or more (Potter, Woods, & Pincebourde, 2013). However, such data 37 

fail to capture spatio-temporal variability in microclimate driven by terrain, wind and 38 

vegetation (Bennie, Wiltshire, Huntley, Hill, & Baxter, 2008; Zellweger et al. 2019) and 39 

ultimately bear little resemblance to the conditions that organisms experience in the wild 40 

(Bramer et al., 2018). This mismatch greatly hinders scientific understanding of the 41 

mechanisms explaining how organisms interact with their environment (Kearney & Porter, 42 

2009) and hampers efforts to address applied challenges such as predicting the ecological 43 

consequences of climate change (Potter et al., 2013; Suggitt et al., 2018). Spatial variability in 44 

microclimate greatly exceeds the magnitude of climate change expected in the coming century, 45 

and ignoring this variability leads to erroneous predictions of climate change impacts on 46 

species distributions (Lenoir, Hattab, & Pierre 2017; Gillingham, Huntley, Kunin, & Thomas, 47 

2012; Lembrechts et al., 2019), population dynamics (Bennie et al., 2013) and behaviour 48 

(Blackshaw & Blackshaw, 1994). Failing to account for temporal variability also hinders 49 

quantification of exposure to extreme conditions (Parmesan, Root, & Willig, 2000).  50 

 51 

To elucidate the mechanistic links between organisms and the climate they experience, and 52 

thus provide more robust predictions of biological responses to changing climate under novel 53 

conditions, estimates of climate at high spatial and temporal resolution are needed (e.g. Lenoir 54 

et al., 2017). For these reasons, there has been a concerted effort to develop efficient and 55 

accurate approaches to modelling microclimates, especially in the fields of agriculture and 56 

ecology (Bramer et al., 2018). Techniques range from interpolation of in‐situ measurements 57 

and statistical downscaling through to mechanistic models of physical processes underpinning 58 
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local climatic variation (Bramer et al., 2018; Lembrechts, Niljs, & Lenoir, 2019). Interpolation 59 

methods, while good at capturing temporal variation may fail to capture heterogeneity in 60 

microclimate where networks of measurements are sparse (Lembrechts et al., 2019). Statistical 61 

approaches (e.g. Aalto, Harrison, & Luoto, 2017), while excellent at capturing spatial 62 

microclimatic variation, may be poor at predicting conditions in novel circumstances (Evans, 63 

2012). Mechanistic methods seek to capture the physical processes driving variation, typically 64 

by determining the effects of terrain and vegetation on energy and water fluxes and have been 65 

used to reliably capture both spatial and temporal variation (Kearney & Porter, 2017; Maclean, 66 

Mosedale, & Bennie, 2019). 67 

 68 

One of the earliest mechanistic models used in ecology (Porter, Mitchell, Beckman, & DeWitt, 69 

1973) has been generalised and incorporated into the R package ‘NicheMapR’ (Kearney & 70 

Porter, 2017). While tested across a broad range of environments in the context of relatively 71 

simple terrain (Kearney et al., 2014), it requires pre-adjustments of forcing data for important 72 

‘meso-climate’ effects such as elevation, wind sheltering and cold air drainage. It also requires 73 

the user to provide estimates of terrain and canopy shading variables. Extending the model of 74 

Bennie et al., (2008), Maclean, Suggitt, Wilson, Duffy, & Bennie, (2017) developed methods 75 

for applying these mesoclimate and terrain adjustments, released as an R package ‘microclima’ 76 

(Maclean et al., 2019). However, the ‘microclima’ models must be calibrated with local 77 

observations of temperature at the height of interest, whereas ‘NicheMapR’ computes local 78 

temperatures from first principles. Elements of both models have subsequently been combined 79 

into a single framework, enabling the computation of hourly, historical, terrain-corrected 80 

microclimate anywhere on Earth (Kearney, Gilligham, Bramer, Duffy, & Maclean, in press). 81 

Building on earlier development of high-resolution models of soil and surface water conditions 82 

(Maclean, Bennie, Scott, & Wilson, 2012), the capabilities of ‘microclima’ have since been 83 
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extended to enable estimation of soil water content using the package ‘ecohydrotools’ 84 

(Maclean & Mosedale, 2019). All of these models still require hourly or daily weather data to 85 

drive them and their application is limited to reconstructing historical microclimates. Never 86 

before have these models been used to derive future microclimatic conditions. 87 

 88 

While it is inherently impossible to predict the precise climate conditions experienced by an 89 

organism at some date and time in the distant future, reliable methods for generating synthetic 90 

time-series of hourly or daily weather, using weather generators, are increasingly available 91 

(Ailliot, Allard, Monbet, & Naveau, 2015; Wilks & Wilby, 1999). Such ‘weather generators’ 92 

are capable of reproducing a wide set of climate statistics over a range of temporal scales, from 93 

the high-frequency extremes, to the low-frequency interannual variability for future climate 94 

scenarios, as inferred from global climate models (Fatichi, Ivanov, & Caporali, 2011).  They 95 

thus have a great advantage over other downscaling methods of being able to produce 96 

projections on daily or sub-daily timescales. For the most part, such weather generators can be 97 

used for the simulation of weather data at a single site. While in theory it is possible to generate 98 

multiple synthetic series for multiple sites, in so doing the spatial coherency of the outputs is 99 

no longer maintained. This is of limited importance if climate at a given site is unaffected by 100 

surrounding conditions, but is of particular relevance in their application in hydrology where 101 

lateral flows are important. More recently, therefore, spatially coherent probabilistic estimates 102 

of daily weather have been simulated and are available as gridded datasets for specific regions 103 

(Met Office Hadley Centre 2018; Smith, Strong, & Rassoul-Agha, 2018). Nonetheless, the 104 

spatial resolution of such datasets is still relatively coarse (e.g. 12 km, Met Office Hadley 105 

Centre 2018). 106 

 107 
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Here I demonstrate how spatially coherent probabilistic projections of future daily weather can 108 

be coupled to microclimate models to generate hourly simulations of future climate at very 109 

high spatial resolution. The approach is applied to the Lizard Peninsula, United Kingdom 110 

(100m grid resolution) and Caethillean Cove on the Lizard Peninsula (one m grid resolution), 111 

to provide hourly estimates of temperature and daily estimates of soil moisture for the period 112 

2041-2049. These are compared to historic data generated for the period 1983-2017.  113 

 114 

METHODS 115 

Climate data 116 

The coarse-resolution data sources used to drive the models over the period 1983-2017 are 117 

detailed in supporting information (Appendix S1). To drive the models over the period 2041-118 

2049, regional climate model projections produced as part of the UK Climate Projection 2018 119 

(UKCP18) project (Met Office Hadley Centre 2018; Murphy et al., 2018) were used. This 120 

dataset consists of 12 projections from the HadREM3-GA705 model for RCP8.5 scenario in 121 

which emissions are assumed to continue to rise throughout the 21st century. The data are 122 

provided as a 12 km gridded dataset of climate variables (maximum and minimum temperature, 123 

total incoming shortwave radiation, specific humidity, sea-level pressure and wind speed) at 124 

standard reference height (2 m).  Each projection is, in effect, a plausible example of daily 125 

weather under global warming. The datasets are spatially coherent and retain physical 126 

consistency between the different climate variables. Precipitation was retained as a daily 127 

variable. Methods used to disaggregate remaining climate variables, both observed to 128 

projected, to hourly are detailed in supporting information (Appendix S1). 129 

 130 
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At high temporal resolution, many of the differences in extreme values between historic and 131 

projected climate may be due to systematic differences in the datasets caused by scaling effects 132 

and methodological assumptions inherent in the HadREM3-GA705 model. To enable such 133 

biases to be corrected, each model projection also covers historic periods, enabling direct 134 

comparison with climate observations. The 12 climate projections for the period 2000 to 2010 135 

were thus downloaded, converted to hourly, and the frequency distribution of each climate 136 

variable compared to that of observed data. Both datasets were then ranked, and following 137 

exploratory analyses to establish the required sample size to adequately represent the frequency 138 

distribution of data, a series of 1200 equal-interval values, spanning the full range of values in 139 

both datasets, randomly selected. General Additive Models were then fitted to define 140 

mathematical relationships between observed and modelled data, and the same transformations 141 

then applied to the 2041-2049 datasets. Code for performing these adjustments and for deriving 142 

sea-surface temperature under future climate has been bundled into the R package 143 

‘UKCP18adjust’. The package is available on Github (ilyamaclean/UKCP18adjust). Further 144 

details are provided in supporting information (Appendix S1). 145 

 146 

Downscaling climate data 147 

Using the R package ‘microclima’ (Maclean et al., 2019), mesoclimate effects were determined 148 

by fitting thin-plate spline models to hourly differences between land and sea temperature data 149 

with elevation, coastal exposure upwind and mean coastal exposure in all directions included 150 

as covariates. The thin-plate models were then applied to derive land-sea temperature 151 

differentials for specific locations at high resolution by using higher-resolution versions of the 152 

same predictor variables.  153 

 154 
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Following Bennie et al., (2008) and Maclean et al., (2019), near ground-surface microclimate 155 

temperatures were modelled using an energy balance equation in which the difference between 156 

microclimate and mesoclimatic reference temperature at 2 m is modelled as a function of 157 

energy fluxes occurring at the surface: net radiation, latent heat, energy fluxes to/from the soil 158 

and a resistance to the loss of sensible heat. Assuming latent heat and soil fluxes are small and 159 

proportional to net radiation, the temperature difference is a linear function of net radiation, 160 

and the gradient of this relationship is a measure of the thermal coupling of the surface to the 161 

atmosphere. The gradient varies as a function of both the structure of the vegetation, the height 162 

above the ground for which microclimate temperature estimates are required, and wind speed, 163 

and was fitted using field calibration data. In the one m resolution model, the effects of canopy 164 

shading on radiation and vegetation on near-surface wind speeds were accounted for, by 165 

assuming variable surface roughness and computing the topographic shelter coefficient of Ryan 166 

(1977). In the 100 m resolution model, radiation and wind speed were downscaled by 167 

accounting for the local terrain and by assuming a standard logarithmic wind-height profile for 168 

a grass surface (Allen, Pereira, Raes, & Smith 1998). Further methodological detail is provided 169 

in Maclean et al., (2019). To downscale precipitation, it was necessary to account for both 170 

elevation-driven variation in total rainfall, and for variation in the number of rainfall days. For 171 

historic data, and future projections, thin-plate spline models were fitted to these data with 172 

elevation as a covariate. The thin-plate models were then applied at 100 m resolution to derive 173 

downscaled estimates for the Lizard Peninsula. Further details are provided supporting 174 

information (Appendix S1). 175 

 176 

Soil moisture 177 
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Daily high-resolution soil moisture estimates were derived using the R package 178 

‘ecohydrotools’ (Maclean & Mosedale, 2019). This package implements a modified spatial 179 

version of the Mahrt & Pan, (1984) two-layer model of soil hydrology. In each delineated 180 

hydrological basin, fractional soil water content is computed in a thin upper layer for use in 181 

calculation of bare soil evaporation. Water storage is computed for an underlying deeper layer. 182 

Precipitation enters the top soil layer, but any precipitation that cannot infiltrate or re-evaporate 183 

is specified as runoff.   Evapotranspiration from vegetated portions of the surface was 184 

partitioned equally between both layers. Evapotranspiration was calculated using 185 

‘ecohydrotools’ in which daily evapotranspiration is calculated from hourly meteorological 186 

data using the FAO Penman-Monteith method (Allen et al., 1998). The input meteorological 187 

data were the downscaled, terrain adjusted values provided by ‘microclima’. Runoff rates were 188 

calculated using the curve number method (Mishra & Singh, 2013) whereby runoff is 189 

controlled by precipitation and by the soil infiltration capacity, itself dependent on soil 190 

properties, land cover and by the hydrological condition of the soil. Using ‘ecohydrotools’ the 191 

rate and direction of exchange of water between the soil layers is determined by hydraulic 192 

diffusivity and conductivity and by the difference in soil moisture between the two layers. 193 

Hydraulic diffusivity and conductivity are determined from antecedent soil moisture and five 194 

parameters describing the hydraulic properties of the soil (Table S1), using soil water retention 195 

equations described by Van Genuchten, (1980). Bare soil evaporation was confined to the top 196 

soil layer, whereas evapotranspiration from vegetation areas was equally apportioned between 197 

both layers. Within each time-step, soil and surface water were spatially distributed across the 198 

basin by the Bevan & Kirkby, (1979) topographic wetness index. Surplus surface water remains 199 

within the basin unless the basin volume is exceeded, in which case it is accrued to the adjoining 200 

basin at the pour point. Consequently, the model was run iteratively for each basin starting with 201 

the basin with the highest elevation pour point. 202 
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 203 

Application and validation of the model 204 

The models were applied at grid resolution of 100 m over the Lizard Peninsula (50°20N, 205 

5°100W) and at one metre resolution over part of the Lizard Peninsula in Caerthillean Cove 206 

(Fig. 1). Gridded temperature datasets were derived for 5 cm above ground level and across 207 

the entire Lizard provided as two datasets: one for open ground with no canopy shading, in 208 

which microclimate temperatures are influenced strongly by radiation and the second for closed 209 

canopy, in which microclimate temperatures are minimally influenced by radiation. In 210 

Caerthillean Cove, spatial variation in canopy shading effects were estimated from aerial 211 

photographs and LiDAR data but, in the absence of an available time-series, were assumed to 212 

be time-invariant (see Maclean et al., 2019). Across the entire Lizard Peninsula, in the absence 213 

of available information, constant soil properties were assumed (Table S1). No adjustments 214 

were made for vegetation type in the calculation of evapotranspiration, and the bare soil 215 

fraction was assumed constant at 0.2, a value typical of the study region (Maclean et al., 2015). 216 

The provided soil moisture estimates are for 0 – 10 cm depth, obtained by averaging daily 217 

moisture across both soil layers.  218 

 219 

The temperature models were calibrated and tested by comparing model predictions with the 220 

observed data obtained from 56 iButton thermochrons deployed 5 cm above ground across 221 

study sites over the period March 2010 to December 2014 (see also Maclean et al., 2017; 2019). 222 

Half the data were used for calibration and the other half for validation. Data were partioned 223 

by time period and location to ensure validation data were independent of calibration data. The 224 

soil moisture models were tested by comparing model predictions to 10,000 field 225 

measurements of soil moisture obtained from 250 locations distributed widely across the study 226 
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site between April 2010 and March 2011 (see also Maclean et al., 2012). No calibration is 227 

necessary in the soil moisture model as estimates are derived entirely from first principles.  228 

(a) (b)  

 
 

 

Fig. 1. Study areas depicting the locations covered by the microclimate (a) and mesoclimate 229 
(b) models. Black squares indicate the locations of iButton temperature data loggers. 230 
 231 

Bioclimate variables 232 

To examine climatic changes, the 19 bioclimate variables available from Wordclim that are 233 

commonly used for species distribution modelling (Fick & Hijmans, 2017) were calculated 234 

(Table 1). Additionally, 11 climatic variables, recognised as being physiologically important 235 

for species, but not included in the Wordclim dataset (Gardner, Maclean, & Gaston, 2019) were 236 

computed (Table 1). Each variable was calculated for each year and each model run of future 237 

climate. Additionally, means over the periods 1983-2017 and 2041-2049 and decadal trends in 238 

each variable, derived using linear regression on annual values, were computed. Finally, to 239 

assess novelty in climate, a novelty index was computed separately for each grid cell, 240 

representing the proportional overlap in the frequency distributions of annual values in the 241 

historic period with those for all model runs in the future period (0 = complete overlap, 1 = no 242 

overlap).  243 

  244 
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Table 1. Bioclimate variables calculated to determine change.  245 

Variable Descriptor 

BIO1 Mean annual temperature (°C) 

BIO2 Mean diurnal range (°C) 

BIO3 Isothermality (BIO2 / BIO7) x 100 

BIO4 Temperature Seasonality (°C standard deviation *100) 

BIO5 Maximum temperature (°C) 

BIO6 Minimum temperature (°C) 

BIO7 Temperature annual range (°C, BIO5 – BIO6)  

BIO8 Mean temperature of wettest quarter (°C) 

BIO9 Mean temperature of driest quarter (°C) 

BIO10 Mean temperature of warmest quarter (°C) 

BIO11 Mean temperature of coldest quarter (°C) 

BIO12 Annual precipitation (mm) 

BIO13 Precipitation of wettest month (mm) 

BIO14 Precipitation of driest month (mm) 

BIO15 Precipitation Seasonality (mm coefficient of variation) 

BIO16 Precipitation of wettest quarter (mm) 

BIO17 Precipitation of driest quarter (mm) 

BIO18 Precipitation of warmest quarter (mm) 

BIO19 Precipitation of coldest quarter (mm) 

PHYS1    Mean fractional soil water content during growing season1 

PHYS2 Mean growing season1 temperature (°C) 

PHYS3 Total precipitation during growing season1 (mm) 

PHYS4 Length of growing season1 (days) 

PHYS5 Mean Jun-Aug fractional soil water content 

PHYS6 Frost hours  

PHYS7 Frost-free season length (days) 

PHYS8 Hours with temperature >25°C 

PHYS9 Consecutive days when soil is water-logged 

PHYS10 Consecutive days with soil moisture at wilting point 

PHYS11 Growing degree-hours / 1000 
1Growing season defined as period where five day means of precipitation exceeds half the 246 

potential evapotranspiration and temperatures lie between 5°C and 35°C 247 

 248 

RESULTS 249 

The mesoclimate temperature model had a mean absolute error (MAE) of 0.97°C and root 250 

mean square error (RMSE) of 1.23°C. The microclimate temperature model had a MAE of 251 
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1.25°C and RMSE of 1.61°C. The soil moisture model predicted fractional soil moisture with 252 

a MAE of 0.013 and a RMSE of 0.020 (Fig. S5). 253 

 254 

Despite exhibiting moderate inter-annual variability, mean annual temperatures increased 255 

throughout the study period, exhibiting a 0.54 - 0.71°C decadal increase across the Lizard under 256 

closed canopy, a 0.52 - 0.74°C decadal increase under open canopy and a 0.34-0.72°C increase 257 

in Caerthillean Cove (Fig. 2, left). In comparison, macroclimate temperatures exhibited a 258 

decadal increase of 0.62°C. Conditions in 2041-2049 across the Lizard were almost entirely 259 

novel relative to the 1983-2017 baseline period (novelty index range closed canopy: 0.92 – 260 

0.98; open canopy: 0.91 – 0.99), though were predicted to be marginally less so in Caerthillean 261 

(novelty index range: 0.74 – 0.96; Fig. 3, right).  There was some evidence of acceleration in 262 

warming, predicted to be greatest at higher elevations and lowest on northeast-facing coastlines 263 

and in Caerthillean, under closed canopy (Fig 2, left; Fig 3, top). Temperature increases were 264 

generally predicted to be greatest during the warmest quarter of the year, exhibiting a 0.7 – 265 

0.9°C decadal increase under closed canopy, 0.6 – 0.9°C decadal increase under open canopy 266 

and 0.38°C - 1.1°C decadal increase in Caerthillean. In contrast, during the coldest quarter, 267 

temperatures were predicted to increase by 0.45 – 0.66°C per decade under closed canopy, by 268 

0.50 - 0.75°C per decade under open canopy and by 0.44 – 0.57°C per decade in Caerthillean 269 

(Figs S6-11).  270 

 271 

Maximum temperatures exhibited high inter-annual variability and changes in this varied 272 

widely across the study region, ranging from a 0.1°C per decade decrease on south-facing 273 

slopes in Caerthillean Cove to a 2.8°C increase under dense canopy in sheltered valleys (Fig 274 

3). Changes in minimum temperatures were predicted to be more consistent spatially, but 275 
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exhibited a high degree of inter-annual variability (Fig 2, middle). Decadal changes ranged 276 

only from 0.63°C to 0.96°C, and were also greatest under dense canopy in sheltered valleys 277 

(Fig 3). Compared to seasonal and annual temperatures, the novelty of conditions of minimum 278 

temperatures in 2041-2049 relative to 1983-2017 was generally lower (Figs S6-11). Index 279 

values ranged from 0.49 under open canopy at exposed sites in the south-east of the Lizard to 280 

0.74 in sheltered valleys of the north-west. The novelty of maximum temperatures varied 281 

greatly, with index values ranging from 0.2 in coastal regions of the north, to 0.98 under closed 282 

canopy in Caerthillean (Fig. 3).  283 

 284 

Mean annual precipitation was predicted to increase across the study region, though there was 285 

relatively high variance among model runs for future predictions (Figs. S6-8). Nevertheless, 286 

decadal changes were predicted to be in the order of 30 to 120 mm per decade and greatest in 287 

the relatively drier south-east coastal region of the Lizard (Figs. S9-11). Across the entire study 288 

region, the changes were predicted to be most pronounced during the driest month where 289 

precipitation was predicted to become almost twice as high (Fig. S6). There was a marked 290 

predicted decrease in the seasonality of precipitation, such that conditions in 2041-2049 relative 291 

to 1983-2017 were almost entirely novel (novelty index range: 0.92-0.97; Figs. S9-11).  Soil 292 

moisture exhibited high spatial and inter-annual variability, but little consistent trend through 293 

time (Fig 2, right, Figs. S6-8). Trend plots and maps depicting the 1983-2017 and 2041-2049 294 

means, decadal changes and novelty indices of every variable are provided in Supporting 295 

information (Appendix S2). 296 
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Mean temperature Maximum temperature Minimum temperature Frost hours Hours > 25°C Jun-Aug soil moisture 
Lizard (100% canopy cover) 

      
Lizard (0% canopy cover) 

      
Caerthillean 

      
Fig. 2.  Trends in selected bioclimate variables. Black lines show the mean value across the study period and, in 2041-9 across model runs in 

each year. Grey shading in the 1983-2017 period represents ± 2 standard deviations in the spatial variability.  In the 2041-2049 period, semi-

transparent shading is used to depict ± 2 standard deviations in spatial variability of each model run and darker shading thus indicates greater 

overlap between model runs. More detailed variable descriptors are provided in Table 1. Trend plots for all variables are in supplementary 

results.  
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Mean 1983-2017 Mean 2041-2049 Decadal change Novelty 
Mean annual temperature: no canopy 

 
Minimum temperature: no canopy 

 
Maximum temperature: no canopy 

 
Minimum temperature: Caerthillean Cove 

 
Maximum temperature: Caerthillean Cove 

 
Mean Jun-Aug soil moisture 

 
 297 

Fig. 3.  Maps of selected bioclimate variables. Decadal changes were derived using linear 298 
regression on yearly values. Novelty represents the proportional overlap in the frequency 299 
distribution of annual values in 1983-2017 with that of annual values for each model run in 300 
2041-2049 (0 = complete overlap, 1 = no overlap). 301 

 302 
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DISCUSSION 303 

The purpose of this study was to demonstrate the potential to model future climatic conditions 304 

at high spatial and temporal resolution. While it is not possible to test how well the model 305 

performs under future conditions, the predictive capacity of the model was high, explaining 306 

over 90% of the variation in soil moisture and local temperature anomalies over the period in 307 

which validation was carried out. The performance of the microclimate models over historic 308 

periods is discussed in detail in Maclean et al., 2012; 2017; 2019 and discussion here is limited 309 

to its likely performance under future conditions, except to acknowledge the limitation imposed 310 

by assuming time-invariant canopy-cover and uniform soil properties. The dominant 311 

vegetation types are perennial grasses Ulex spp., which are not especially prone to seasonal 312 

changes. Nonetheless, dense stands of Salix capria, Prunus spinose and Rubis spp are present 313 

in valley bottoms, and failure to account for seasonal variation in cover remains a limitation of 314 

this study.  The assumption of spatially uniform soil properties, particularly soil depth, is also 315 

problematic, though somewhat offset by assuming a relatively deep underlying soil layer 316 

(Mahrt & Pan, 1984). Nevertheless, in areas with shallow soil, seasonal fluctuations in moisture 317 

are likely to be underestimated.  318 

 319 

The probabilistic regional projections used to drive the microclimate models are derived from 320 

climate models, which approximate the real climate system, and there are known systematic 321 

differences between climate model results and observations (Murphy et al., 2018). Of particular 322 

note, both solar radiation and the proportion of days with zero precipitation are underestimated 323 

substantially in the model projections. Some of the regional patterns caused by terrain and 324 

coastal effects are poorly represented. Although largely corrected by applying adjustments to 325 

the data, there remains the possibility that the modelled future changes in climate are partially 326 
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an artefact of biases in climate projections. Biases in extreme values are particularly 327 

problematic to correct (Christensen, Boberg, Christensen, & Lucas‐Picher, 2008), and 328 

estimates of maximum and minimum temperature changes should thus be treated with caution. 329 

In addition, though the 12 realisations of climate projections cover a broad range of potential 330 

future climate pathways, some potential influences on future climate are not yet fully 331 

understood. It is possible, therefore, that real world future changes will lie outside the envelope 332 

of the estimates presented here. 333 

 334 

These limitations aside, the present study provides a promising means of deriving future 335 

climatic conditions at high spatial and temporal resolution. Many existing studies of climate 336 

change impacts neglect the most important biophysiological variables, which typically reflect 337 

proximal exposure to conditions that affect performance or the timing of climate events in 338 

relation to circannual rhythms (Gardner et al., 2019). Deriving these variables is only possible 339 

with high spatial and temporal resolution climate data (Gardner et al., 2019; Kearney & Porter, 340 

2009). Though coarse resolution climate data are assumed to be statistical meaningful 341 

predictors of biological responses through ‘mean field approximation’ (Bennie, Wilson, 342 

Maclean, & Suggitt, 2014), unquantified additional factors may partially drive the apparent 343 

relationship with climate (Dormann et al., 2012). The influence of these additional variables 344 

may vary in new locations or over new time periods and thus lead to unreliable predictions 345 

(Austin, 2002). Basing future predictions purely on changes to coarse resolution climate may 346 

therefore be problematic if the climatic component of the original correlation does not match 347 

physiologically relevant patterns of variation.  348 

 349 



19 
 

It should be acknowledged, however, that the approach presented here is only feasible over 350 

relatively small regions. Accurate representation of global or regional climate at high spatio-351 

temporal resolution is impractical, even with rapid advances in computer processing power and 352 

high resolution remote sensing data.  However, the methods presented in this manuscript 353 

potentially facilitate identification of the conditions under which mean field approximations 354 

break down, and the spatial scales at which this breakdown occurs. Such breakdowns are likely 355 

when mean climate conditions are not closely correlated with exposure to conditions that affect 356 

the performance and survival of organisms as may occur, for example, when microclimate 357 

heterogeneity is high (Suggitt et al., 2019) or when organisms exhibit thermoregulatory 358 

behaviour (Kearney, Shine & Porter, 2009). The methods presented thus strengthen the ability 359 

to provide general recommendations for the appropriate spatial and temporal scales at which 360 

best to model the responses of species to climate change, complementing recommendations in 361 

other studies (e.g. Lenoir et al., 2017).   362 

 363 

The results indicate that the degree of spatial covariance between extreme conditions measured 364 

using hourly data and those derived from seasonally aggregated data is relatively low, 365 

particularly at higher resolutions. In consequence, the extent to which low temporal resolution 366 

data adequately capture physiologically meaningful exposure to climatic conditions is 367 

questionable. For example, at fine resolution, maximum temperatures are influenced strongly 368 

by solar radiation and are hence highest on south-facing slopes, whereas mean summer 369 

temperatures follow a pattern that is largely altitude-dependent. The novelty of conditions is 370 

also lower for extreme conditions than it is for seasonal averages, implying that studies using 371 

seasonally aggregated data may over-estimate the impact of climate change. The degree of 372 

covariance may be much stronger over regional and global scales, where differences in 373 

temperature and evapotranspiration are primarily latitude dependent (Fick & Hijmans, 2017). 374 
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However, the fine-resolution spatial differences in climate predicted by this study, particularly 375 

in extreme conditions, are nearly as large as coarse-resolution differences over entire 376 

continents. Across the 4 Ha region Caerthillean Cove, for example, maximum temperatures 377 

varied by almost 20°C. Climate variables derived using coarse-resolution data may thus bear 378 

little resemblance to conditions experienced by organisms, which at worst may yield highly 379 

erroneous predictions, and at best, will greatly increase uncertainty (e.g. Suggitt et al., 2018; 380 

Lembrechts et al., 2019). 381 

 382 

It is hoped that this study encourages biologists to consider future climatic changes at finer 383 

spatial and temporal resolution, as in doing so they will make more robust predictions. I am 384 

confident that the approach proposed here can be applied to other locations and could improve 385 

understanding of biological responses to climate change. 386 
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