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Abstract—Service-oriented 5G mobile systems are commonly
believed to reshape the landscape of the Internet with ubiquitous
services and infrastructures. The micro-services architecture has
attracted significant interests from both academia and indus-
try, offering the capabilities of agile development and scale
capacity. The emerging mobile edge computing is able to firmly
maintain efficient resource utility of 5G systems, which can be
empowered by micro-services. However, such capabilities impose
significant challenges on micro-services system management.
Although substantial data are produced for system maintenance,
the interleaved temporal-spatial information has not been fully
exploited. Additionally, the flooding data impose heavy pressures
on automatic analysis tools. Automated digestion of data is
in an urgent need for system maintenance. In this paper, we
propose a new learning-based anomaly detection framework for
service-provision systems with micro-services architectures using
service execution logs (temporally) and query traces (spatially).
It includes two major parts: logging and tracing representation,
and two-stage identification via a sequential model and temporal-
spatial analysis. The experimental results show that the temporal-
spatial features can accurately capture the nature of operational
data. The proposed framework performs well on anomaly de-
tection, and helps gain in-depth insights of large-scale systems.

Index Terms—Service-oriented 5G systems, micro-services
management, log analysis, representation learning, anomaly de-
tection

I. INTRODUCTION

The fifth generation mobile system (5G) has drawn sub-
stantial attention, thanks to its better performance over the
fourth generation system (4G) for realizing the next gener-
ation of telecommunication systems [1]. The 5G system is
reasonably deemed as the versatile services enabled large-
scale architecture through ubiquitous infrastructures from the
service-oriented perspective [2], [3]. The service-oriented ar-
chitecture (SOA) helps decouple complex services into sep-
arated but intercommunicated components [4]. Recently, a
newly-architectural style, called micro-services architecture,
has gained large popularity, which makes use of lightweight
communication style to decouple closely related and over-
lapped services [5]. Even though the sceptics claimed that
the micro-services scheme only accounts for a sub-type of
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SOA with web service communication prototypes [6], it is no
doubt that systems, including 5G, substantially benefit from
shifting to micro-services [7], [8]. The improved traceability
and scalability enable micro-services to handle complicated,
decentralized and modular service platforms. However, scal-
able and lightly-coupled distributed systems largely increase
the difficulty and complexity of their monitoring, maintenance
and management, due to interleaved data and the ambiguous
communication processes [6]. Another problem is that the
inner mechanisms for most of the commercial off-the-shelf
platforms are black-box to users and administrators. Although
the open-source software prevails today, it is still not easy to
have a thorough knowledge of understanding these software.
Therefore, it requires well devised mechanisms integrated into
the system to well track the execution status, and well maintain
functionality and stability [9].

The purpose of this paper is for intelligent network manage-
ment [10], [11], [12], [13] of micro-services through learning
cognitive knowledge from enormous and multi-source net-
working data. Specifically, it is to identify suspicious events
based on the available execution status, such as service execu-
tion logs and service query traces, and to raise necessary alerts
to avoid catastrophic failures for a system. The idea consists
of two parts: using service execution logs to capture functional
behaviors in a temporal manner; using query traces to capture
systematic behaviors in a spatial manner. Combining them is
supposed to enable expected detection conduction, and our
experiment results well validate this hypothesis.

To meet the above requirements, the logging module has
become indispensable when developing a reliable and robust
system. It is because logging is able to probe record writers
inside the core functional components [14]. The writers always
gather designated elements and instantly store them in logs
to notify IT administrators on what is happening [15]. An
effective analysis of logs can reduce the difficulty of identi-
fying abnormal system behaviors [16]. The primary matter of
processing logs is to digest text formats written in a human
readable way. A simple case is shown in Table I, which is
a block of raw log examples collected from IBM BlueGeneL
[17]. One log entry corresponds to a low level event. Compared
to a high-level functionality response, like a user access query,
the low-level operation only involves fine-grained actions, thus
called meta-execution in this work. A method of better under-
standing a system is to mine the underlying patterns of chaotic
messages to group into structural templates. This method is
called template extraction; its details will be elucidated in
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TABLE I: Raw log message samples collected from BlueGene/L supercomputer

Log head entry Log message entry

2005-06-05-07.43.29.199690 R35-M0-N1-C:J02-U01 RAS KERNEL INFO instruction cache parity error corrected
2005-06-05-07.43.29.223683 R35-M1-N9-C:J03-U01 RAS KERNEL INFO instruction cache parity error corrected
2005-06-07-22.17.51.624699 R03-M0-N7-C:J02-U01 RAS KERNEL INFO instruction cache parity error corrected
2005-06-07-22.17.51.651067 R06-M1-NC-C:J11-U01 RAS KERNEL INFO generating core.53489
2005-06-07-22.17.51.677398 R06-M1-NC-C:J06-U01 RAS KERNEL INFO generating core.53489
2005-06-07-22.17.51.703324 R06-M1-NC-C:J02-U11 RAS KERNEL INFO disable store gathering..................0
2005-06-07-22.17.51.728819 R05-M0-N1-C:J17-U11 RAS KERNEL INFO CE sym 2, at 0x0b85ea80, mask 0x08
2005-06-07-22.17.51.754779 R05-M0-N1-C:J08-U11 RAS KERNEL INFO Node card is not fully functional
2005-06-07-22.17.51.784808 R05-M0-N1-C:J08-U01 RAS KERNEL INFO CE sym 21, at 0x110035e0, mask 0x80
2005-06-07-22.17.51.850973 R14-M1-NF-C:J03-U11 RAS KERNEL INFO CE sym 2, at 0x0b85ea80, mask 0x08

Section IV.
Only using meta-execution logs could lose system-scale

interaction information. This interaction in micro-services is
vital, since lightly-coupled services depend on their back-
end query responses. A distributed tracing mechanism is of
essence to keep track of the interaction behaviors [18]. It
indicates that the presence of hidden communication issues can
affect the interaction duration. The authors in [19] discussed
the fundamental design and deployment factors of distributed
tracing mechanisms, where this tracing mechanism should
impose less burden on the current system.

The tracing mechanism is helpful on system management,
while the current works lack full exploitation of this mecha-
nism [16]. The lack of awareness of connection and coupling
status may give rise to inconsistency and instability. Combin-
ing the above two types of information (i.e., service execution
logs and query traces) can lead to a comprehensive and robust
anomaly detector. We presume that the input data show no
direct sign of errors and faults, for example, log severities
being info and warning. The failures may not occur instantly
but hide the symptoms in a number of service executions.
Therefore, we propose an anomaly detection framework from
front-end data collection, feature construction to back-end
outliers classification. The overview of this new framework is
presented in Section III. The main contributions of this paper
are summarized as follows:

• We propose a general-purpose anomaly detection frame-
work with two-stage validation targeting at micro-
services architectures, using temporal service execution
logs and spatial service query traces.

• An efficient and on-line template extraction method for
log messages written by natural languages is proposed
to obtain service execution behaviors, based on iterative
partitioning and segment adjustment.

• We propose a temporal data learning method with sequen-
tial deep learning model to predict the deviation between
normal expectations and real outputs with corresponding
anomaly degree calculation. This process forms the first
phase of the two-stage validation and manifests potential
abnormal candidates.

• We propose a temporal and spatial data learning method,
implementing behaviors and queries representative fea-
tures to unveil hidden systematic status. The fusion of
two representations is taken into effect at the following
anomaly detector based on a one-class classifier, which
is able to discover insights from empirical data. This

process forms the second phase and jointly determines
the abnormal tasks with anomaly candidates.

The rest of this paper is organized as follows: Section II
introduces related work. Section III describes the proposed
framework, followed by the template extraction in Section
IV, temporal log model in Section V, and temporal-spatial
joint analysis in Section VI. Section VII analyzes experimental
results, and Section VIII draws the conclusions.

II. RELATED WORK

In this section, the related work, including template extrac-
tion, document representation, tracing system, and learning
based log anomaly detection are reviewed.

A. Template Extraction

There have been numerous research efforts on log template
extraction. At an early stage, statistics-based methods are
of more interest. The authors in [20] made an effort to
template extraction based on word frequency, called Simple
Logfile Clustering Tool (SLCT). Basically, it endeavored to
scan the whole log data in limited times and to collect the
frequency of individual log words with their positions in a
template with a particular length. The SLCT sets a frequency
threshold to determine what words should be kept in that
particular position. Makanju et al. [21], [22] proposed an
iterative partitioning based algorithm, called Iterative Parti-
tioning Log Mining (IPLoM) tool, gaining efficient template
extraction. IPLoM consists of four steps: partitioning based
on log length; partitioning based on the least count of unique
items in one column; partitioning based on bijection pairing;
shrinking variable terms with asterisks. IPLoM is efficient
and its computation grows linearly with data size, however
the bijection partitioning gives rise to ambiguity about very
similar templates separation. To overcome these issues of
IPLoM and gain efficiency in on-line working, we propose
a segment-based recursive partitioning method in this work.
More relevant algorithms are introduced and evaluated in [23],
[24].

B. Document Representation

In document representation, the Latent Dirichlet Allocation
(LDA) [25] provides a classic probabilistic way to model
topics of text collections with mixtures. A numerical rep-
resentation of a topic could be explicitly computed by it.
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In essence, LDA remains as a hierarchical Bayesian model,
whose parameters are estimated based on variational and EM
methods. Recently, text representations have been improved
based on machine learning, especially promoted by neural
networks for word distributed representations (also called
word embedding and word2vec) [26], [27], [28]. An extensive
bonus of word embedding is that the representation of word
collections (phrases, sentences, paragraphs, and corpora) is
also stimulated by deep learning. The authors in [29] were
inspired by word embedding and offered a simple and effective
approach for training alongside word2vec to accomplish topic
modeling. The authors in [30] and [31] focused on convolu-
tional neural networks (CNN) to grasp a representation of a
sentence, meanwhile [32] and [33], leveraged recurrent neural
networks (RNN) to model word sequences. Other studies
reached the same achievement, e.g., [34] and [35] by adapting
deep variation inference into latent topic modeling.

C. Tracing System

A fundamental feature in this work is the tracing module in
the micro-services architecture. In early research, X-trace [18]
monitored general service protocols in a classical networking
or a software system. A Google team in [19] deployed a tracing
tool, Dapper, inserting lightweight probes in key service points
in a large-scale distributed system, e.g., searching service,
to collect and track a complete request tree. It shared the
concepts with X-trace and dedicated to low overhead, low-
level application transparency, easy deployment and scala-
bility. Other pragmatic efforts were designed based on the
Dapper tracing mechanism. For instance, the Jaeger tool [36]
open-sourced by the Uber Technologies and OpenZipkin[37]
originally developed by Twitter. All of them have gained
popularities and reputations in large-scale distributed micro-
services practices. As the counterpart in the OpenStack cloud
architecture, the Osprofiler [38] is specifically developed for
building a query tree. The built-in component manages to
construct service-point level calling relations for authentica-
tion, imaging, computing, networking and etc., instead of
programming level in python invocation.

D. Learning Based Log Anomaly Detection

For the anomalies detection in micro-services, Shilin el at.
[39] conducted a comprehensive empirical evaluation based
on several open-sourced log analysis toolkits, including super-
vised learning: logistic regression, decision tree, and support
vector machine (SVM); unsupervised learning: log clustering,
principal component analysis (PCA), and invariants mining.
These detection algorithms all conformed to four steps frame-
work, from log collection, log parsing, and feature extraction
to the final anomaly detection with two public datasets. Yu
el at. [40] aimed at building a tool called CloudSeer for
cloud computing platform monitoring. They took OpenStack
as the test platform. With assumed interleaved log sequences,
they tended to mine dependency relation in terms of time
and built an automaton machine, which shared conceptual
similarity with the finite state machine. On top of deep
learning, DeepLog [16] was proposed to fit a long term short

memory (LSTM) model in natural language-like sequential log
data. The perspective of log records from DeepLog is similar
to our proposal. Both of the frameworks endeavor to model
the hidden transactional patterns over abstract events that are
transferred from raw messages. Nevertheless, DeepLog as well
as CloudSeer merely processes pure text logs regardless of
informative service traces. In addition, the authors in [41]
attempted to interpret semantical implications from logging
sequences by “template2vec”, which focused on logging word
embeddings and finally was extended to a log event as “sen-
tence” embeddings. In our framework, we take task-bounded
semantics associated with particular tasks into consideration,
rather than plain logs. We further consider the text log features
and traces integrated information to gain deeper insight of
micro-services mechanisms.

III. AN OVERVIEW OF THE SYSTEM ARCHITECTURE

We firstly introduce our proposed detection framework for
the system with micro-services architectures, which include
two core aspects: individual service execution and services re-
mote query. The former refers to whether a local single service
can handle an incoming task properly within a reasonable time
scale. The latter refers to whether the global lightly-coupled
services as a whole can process a user request smoothly in
an acceptable time. The local and global functionalities can
be regarded as two-tier behavior features being encoded into
mathematical and learnable representations in a continuous
vector space. To achieve the primary goal of runtime anomaly
detection, this paper builds representation learning based pro-
cedures to capture temporal and spatial information. Fig. 1
illustrates the diagram of the proposed framework. The red
arrows are the data processing flows.

In detail, it is divided into two main steps: data represen-
tation learning and two-stage outliters identification. Firstly,
in data representation learning, temporal log sequences are
collected by the embedded logging module in the micro-
services architecture, and the hierarchical trace data sheets are
collected by tracing probes (the probes are deployed inside
the micro-services architecture). In addition, event templates
are extracted from logs, and in turn chaotic logs shall be
transferred into the template formation. Furthermore in rep-
resentation learning, the log template formation is mapped
into distributed vectors to collectively infer a “topic” vector
for a particular transaction. In the tracing module, the tracing
information is extracted from the trace data sheet which is
organized in hierarchy to expose request-response time. The
tracing information is a matrix, each entry of which indicates
a service duration queried from a front-end service to a certain
back-end service. Then, at the second anomaly detection step,
it consists of two stages for anomaly detection. Stage 1 focuses
on a temporal model which extracts execution sequential
patterns from temporal operation histories. This stage will give
out a collection of anomaly candidates by calculating anomaly
degrees. Stage 2 focuses on local and global information
joint detection through log representation features and tracing
representation features. This stage will also allow anomaly
candidates to assembly validate the existence of fault exam-
ples. The stage 2 will jointly make use of temporal and spatial
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Fig. 1: The proposed framework for runtime system anomaly detection in a Micro-services architecture

information by merging the two representation features and
the inputs into a detection model to learn an implicit normal
sample distribution, with which the detection model keeps the
capability of marking data out of the implicit distribution as
anomalies.

In this work, we focus on an OpenStack cloud platform
[42], which implements each service component, e.g., nova-
compute, neutron-networking, and keystone-authorization, by
RESTful API based on the micro-services architecture. Tem-
plates are extracted based on partitioning, and logs are vector-
ized by the word embedding. The tracing matrix is constructed
based on the OpenStack embedded tracing mechanism, ospro-
filer [38]. To model the temporal characteristics of sequential
execution log records, the neural networks based Long Short
Term Memory (LSTM) is applied to reveal temporal depen-
dencies. To jointly reveal temporal-spatial information, the
outliers classifier employs a one-class support vector machine
(SVM) as the anomaly detector.

IV. TEMPLATE PARSING AND EXTRACTION

Log preprocessing is the foundation of downstream tasks,
as raw log messages are unstructured, disordered and even
possibly corrupted [17]. The analysis of log data is inclined
to take numerical and categorical data as input, which also
requires raw log information being cleaned, ordered, and
normalized.

A log record1 consists of two parts: log head entry and log
message entry. For log head entry, there exit several segments,
e.g., time stamps, host names, and severity of events. The
specific settings depend on the operating system, but they will
keep consistent with the standard and unified format across
all the stored logs. In the meantime, log message entry is pre-
defined manually by developers, which may differ significantly
among systems, even inside one system.

The unstructured log message entry usually draws more
attention to administrators, which may contain abundant frag-
mented clues to system status at one particular time step. The
log message style can vary among systems or even inside

1Some may also consider “log record” as “log entry”, therefore the two
expressions will be used interchangeably.

one large-scale system. Because of the unstructured property
and trivial numerical variables, it is difficult to mine coarse-
grained and high-level interpretable systematic events. To form
comprehensive systematic states, the work aims at mining
compact, stable and interpretable message representations,
called message patterns and templates [22]. A common idea
is treating log message as two elements, constant expressions
and variable values, respectively. The constant expressions are
consistent repeating information body, which are usually fixed
in the system source code, e.g., message wrapped as constant
string-type in “print”-style functions. In contrast, the variable
values are reserved entries inside the “print” functions, varying
based on the incoming specific conditions, e.g., the integer
type replacement as ”%d”. Therefore, the main task becomes
to construct an abstraction in which the constant entries are
kept, and the variables are reduced into a substitution, such as
wild card “∗” with the corresponding numbers and positions.
The extracted message abstraction is called “template” or
“pattern”2.

Extraction examples based on Table I are illustrated in Table
II. From Table II, five templates are extracted, wherein three
of them remain the same as the raw log, and the rest two have
been reduced to a compact style. With such a compressed
format, the downstream task takes the extracted types as input
to enable deeper analysis. As aforementioned, the raw log
message refers to the unstructured part written in natural
language.

In [22], the authors proposed a successful log entry par-
titioning based method, called IPLoM to iteratively refine
abstract candidates and use invariant entry pair mapping to
obtain templates. The method proposed in this section is
inspired by the IPLoM. A drawback from [22] is that the
IPLoM assumes that the message contains stable structures of
words pairs. This assumption fails to hold if developers tend to
mark divisive executions with the same syntax and prefix. The
same syntax will appear in the IPLoM partitioning candidates,
entail pair mapping and eventually mislead the discriminator
to unify variant templates. IPLoM is at the risk of masking
key information. The proposed partitioning-based extraction

2In this work, the two terminologies are used interchangeably.
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TABLE II: Template/pattern examples

Raw log message part Extracted patterns

instruction cache parity error corrected instruction cache parity error corrected
CE sym 2, at 0x0b85ea80, mask 0x08 CE sym *, at *, mask *

generating core.53489 generating *
disable store gathering..................0 disable store gathering..................0
Node card is not fully functional Node card is not fully functional

in the section discards the intuitive mapping and recursively
partitions candidate sub-groups by the same mechanism as
the first partitioning trial. As the algorithm here targets at
the whole log data set, it is called the bulk-oriented recursive
partitioning algorithm.

A. Bulk Recursive Partitioning

Firstly, it is broadly accepted that the raw logs which entail
the identical templates would keep the same length, namely
entry count. Recall that the count relates to splitting a text
sentence by given separators, i.e., space. Thus, one reasonable
way to reduce entire raw log intersection chaos is to coarsely
segment the equal length raw logs as several sub groups. The
sub groups with the equal length help identify and locate stable
constants by columns alignment.

After grouping raw logs with the identical sentence length
(word count separated by space), the first partitioning is based
on the most stable entry position, which can be decided by the
count of unique words occurring in that particular position.
On top of the same sentence length, the group of messages
can be aligned and fitted in a symbolic “matrix”, each entry of
which is a discrete word. This “matrix” is reduced into a vector
with respect to column, by filling each place with the unique
word count in the corresponding column. The column of the
least one is chosen, where individual logs with the same entry
word will be moved into one sub-group. The above operation
is taken subsequently and recursively over the newly created
sub-groups until a limit is reached.

That is, for one sub-group, one symbolic “matrix” is also
temporally instantiated and compressed into one vector. At
this point, any column already being summed up to one will
be ignored to ensure that the partitioning effect will not be
taken repeatedly and unnecessarily over analyzed columns. A
threshold of the number of the processed columns is set to
terminate the recursion process. The threshold controls how
many seemingly constant words should remain to represent
the event and how much information should be exposed to
analyzers. The recursion process and threshold indicate the
balance between minimizing cardinality of template set and
maximizing the reserved information. The low threshold is
inclined to extend one type as broadly as possible, meanwhile
the high threshold tends to increase template diversity.

Once all the sub-groups become indivisible, the partitioning
phase comes to the end, and the final step results in generating
a template set or so-called template library, one template for
each sub-group. The first one message will then be examined
along with the unique word counts vector, and the words at any
position corresponding to non-one, will be directly substituted

by ∗, otherwise are kept. The template set storing all extracted
templates is the ultimate outcome of the recursive processing.

Algorithm 1: Bulk-oriented Recursive Partitioning Al-
gorithm
Data: Entire log message part, R
Parameter: Threshold, θ
Result: A template library, ζ
Initialize a set of candidate sets Ω;
for message l ∈ R do

ν = split(l), via pre-defined symbols;
L = len(ν), length of the list ν;
if L not match any set in Ω then

create a empty set SL in Ω;
append l in SL

else
append l in the matched SL

end
end
Initialize a group of partitioned sets G;
for candidate set SL ∈ Ω do

G = RECUR PARTITION(SL, θ);
end
Initialize a library of templates;
for one set ∈ G do

Replacing columns without count-1 unique terms
with ∗;
ζ appends the processed content;

end
return ζ;

The partitioning detail is presented in Algorithm 1. A pa-
rameter, θ is required to determine the remaining information
that is ready for downstream tasks or semantic analysis. The
function Recur Partition from Algorithm 2 takes as input
a group of candidate sets and recursively outputs partitioned
results. Afterwards, a template library, ζ is returned and each
entry of the library refers to one template.

B. Segmented Library Iteration

The bulk-oriented recursive partitioning algorithm will re-
turn satisfactory template library which is optimized against
the original messages. However, one crucial disadvantage is
the operation time consumption. Though there is a threshold
controlling the process depth, the chaotic and fragmented log
sequences will complicate the recursion process and largely
reduce the efficiency. For example, because the recurring
will only end until a threshold has been reached within
each partitioned block, if every single message is a block,
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Algorithm 2: Recursive Partitioning
Data: A set of logs
Parameter: log subset, INFO threshold
Result: A template set, inner set
Function
Recur_Partition(log subset, INFO threshold):
split set← log subset split by the column of the

least unique terms;
Initializing inner set to hold partitioned set;
for one block ∈ split set do

if Count 1 terms exceeds threshold then
append the block into inner set;
continue;

else
RECUR PARTITION(one block,
INFO threshold);

end
end
Return inner set;

End Function;

the computation of log sequence processing grows rapidly.
Another disadvantage is that bulk partitioning requires an off-
line environment feeding the entire log dataset, which may
compromise the log collection module and its efficiency.

Therefore, we propose a segmentation style log partitioning
and an aggregation scheme to increase utility. The segmenta-
tion and aggregation extend the off-line scheme to not only
on-line but also a parallel architecture, as the on-line scheme
iterates streaming data to complete the template library, and
the parallel architecture encourages local computing and low
communication overhead.

The downward closure property [43] is introduced, also
known as Apriori property, by which unstructured and natural
language-related log messages can be compressed to compact
text form. The downward closure property claims if a term
set is frequent, any subset should be at least as frequent as
this term set. The property makes it possible that the frequent
terms are obtained in segmentation, and the shared subsets are
extracted in aggregation. In the segmentation step, Algorithm
1 is only applied to a fraction of original logs, for example
1000 samples, which is determined by a split parameter. If
in an on-line manner, the fraction depends on the buffered
streaming events, pre-set by a buffer parameter. Apparently,
the outputs are locally optimal, since no global information
is considered. The intermediate template sets are stored as
inputs to the aggregation step. Subsequently, the aggregation
step takes as input the gathered intermediate templates to
apply Algorithm 1 again. At this point, the intermediate
templates are considered as “incomplete logs” and entail the
global information to approach more abstract forms. Details
are described in Algorithm 3.

In addition to directly applying Algorithm 1 in an on-line
scheme, it is also reasonable to consider that the constant terms
could exceed a fraction of variable terms in aggregation rather
than adhering to a fixed information threshold. A case is that

Algorithm 3: Segmentation and Aggregation
Data: Entire log message part, R
Parameter: Threshold, θ;

Log count in segments, Seg interval.
Result: A template library, ζ
Separating the data set sequentially by Seg interval.
Seg list = split(R);

Initializing a list, temporal lib list;
for block ∈ Seg list do

Applying Algorithm 1 to the block.
temporal lib = Algorithm 1(block);

Adding temporal lib into temporal lib list.
end
Applying Aggregation to temporal lib list.
ζ = Aggregation(temporal lib list);

return ζ;

the count of constants should not be less than a percentage
of the count of variables. The modification benefits relatively
long logs from the potential discovering of the templates with
the majority of variables. Obviously, it provides an interface
of some adjustments to flexibly tackle extreme conditions,
denoted as Aggregation in Algorithm 3. We refer to this
modification as elastic aggregation. The downward closure
property guarantees that log templates will gradually converge
to its optimal abstraction. It is because within a local part of
logs, variables, e.g., host names, are likely remain stable and
are therefore inseparable. Nevertheless, on a longer timescale,
the inseparable positions become chaotic and separable in
terms of unique counts. The segmentation focuses on small
fractions of data to relief computing pressure, meanwhile
aggregation gathers intermediate results from segmentation
to approximate optimal abstraction. The two steps manage
to avoid large time consumption while gaining theoretical
convergence.

V. TEMPORAL LOG FEATURES MODELING

This section presents the temporal model that learns sequen-
tial execution patterns from system operation history data in
Stage 1 of Anomaly Detection processing. The conjecture is
that there is a chance that faults incur disorder of logs and
infrequent system execution records. Other than solely inter-
preting the static information, the sequential model endeavors
to obtain dependency from dynamic context to predict regular
and expected behaviors. The discrepancy between predictions
and actual log symptoms implies hidden suspicious anomalies,
and even the erroneous marks. Accordingly, the core problem
is to setup a well-performed sequential model. The adopted
sequential model is one of the RNN models, i.e., LSTM [44].
Moreover, the model usually predicts the future operations by
giving out a ranking list that holds the probability for each
potential behavior. The real data may appear in several top
positions if no severe issue affects the running task. Simply
setting top-k occurring positions is straightforward, however
a soft and elastic score can be assigned as anomaly degrees
to reflect the seriousness. Lastly, the temporal model will
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output abnormal sample candidates for the double validation
jointly with the following outliers detector. The detail will be
elucidated below.

The RNN model prevails in sequential data analysis in deep
learning community [45] and can be visualized in Fig. 2,
where there are two diagrams illustrating the structures of the
basic forms of the RNN model, the unrolled architecture (left-
sided) and the rolled architecture (right-sided), respectively.
Theoretically, the processed sequences can be extended to
unlimited length with rolled loop, which recurrently takes
single entries as input. However, the input sequences are
truncated with fixed lengths either to adapt to realizable
model in physical machines or to grasp latent semantics by
considering task specialization, where the unrolled form RNN
takes into effect. In detail, xt, ot, and st denote the input data,
output data and hidden state, respectively. The input xt is the
log templates representation learned by word embedding [27]
similar to the transactional representation construction, which
will be presented in Section VI-A. The templates remain the
same order as the raw logs and the sequential data are turned
into a sequence of distributed vectors as the time series input
of the RNN. The outputs also construct a sequence that should
match a given sequence of labels to guide the neural networks
training direction. Generally, an input sequence and its labels
pair is called a training pair. A conventional way to accomplish
it is shifting an input sequence forward one time step to be its
output label.

As for the cell, it is the processing core of RNN which
transforms the input data into the implicit forms (hidden state
st) in a high-dimensional vector space, and is capable of
projecting the implicit forms into output representation. The
left red dotted rectangle covers the unrolled structure of the
RNN, and the right rectangle revealing one cell unit recurrently
wraps up the previous hidden state to merge into the current
processing.

Fig. 2: Visualization of Recurrent Neural Networks Structure

The formulation of the RNN can be defined as below:

st = fcell(xt), ot = fout(st) (1)

In Eq. (1), function fcell(xt) passes xt at step t to compress
into the hidden state st, and fout(st) transforms the hidden
state st into ot. In effect, fcell is chosen as a Hyperbolic
function tanh in original RNN, while in LSTM cell, the fcell
is divided as three processing gates: the input gate determines
how much input information should be received; the forget

gate determines how much history information should be omit-
ted; the output gate determines how much current information
should be outputted. The LSTM is formulated in the following:

fi = Gf (xt, st−1) (2)
it = Gi(xt, st−1) (3)
ot = Go(xt, st−1) (4)
ct = Cell(ct−1, xt, it, ft, st−1) (5)
ht = State(ot, ct) (6)

In Eqs. (2-4), the gate functions G are Sigmoid functions,
containing three groups of parameters for forget gate, in-
formation gate and output gate, respectively. Different from
the original RNN, LSTM has a cell state ct that helps store
sequence relations. Then, the outputs are obtained directly
from the output gate. Furthermore, for complex data structure,
standard LSTM models can be stacked to enhance the capacity
of capturing complex regularity. Considering the learning and
testing efficiency, two LSTM blocks are stacked and the
stacked entity is called a two-layer LSTM model. As such,
a two-layer LSTM model is employed to learn sequential
characteristics from a sequence of extracted templates in
normal tasks. A well trained LSTM model is then utilized to
compute the anomaly degree of one task sample. The idea is
that the LSTM model attempts to predict the future templates
that are compared with ground truth during the corresponding
task. The predicted results are in a list ranked with probability.
The comparison is to match the ground truth with the list
position and the anomaly degree is exponential to the matched
position.

list(m)
ot = SeqModel(o0:t−1) (7)

Poslt =

{
farg(list

(m)
ot , lt), if lt ∈ list(m)

ot

m+ 1, otherwise
(8)

Dgr = exp(Poslt −m) (9)

Eq. (7) formulates the sequential model and its top-m list
list

(m)
ot , where ot denotes the template at time step t, and

o0:t−1 denotes the previous templates as a time series from
step 0 to t− 1. In Eq. (8), if the template label lt belongs to
the list(m)

ot , the corresponding positioning Poslt is recorded by
an argument search function farg(·), otherwise, the positioning
is assigned by m+ 1. The positioning Poslt is subsequently
subtracted by m in an exponential expression in Eq. (9) to
compute how anomalous the template is at time t, which
is called anomaly degree. The calculated degree projects the
prediction ranking list into measurable values to reflect the
deviation between the expectations and the real task records.
Through the values, the anomaly candidates can be filtered out
based on applying a degree threshold.

VI. TEMPORAL AND SPATIAL FEATURE JOINT ANALYSIS

From this section, we target at the second stage in the two-
stage outliers identification, which combines and integrates
both log semantics and services correlations. This part serves
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as a complementary processing for abnormal samples filtering
in case that false alarms would happen in Stage 1, since
sequential logs might have slight turbulence in occurrence
order. The front-end of Stage 2 includes transactional topic
representation inferred from logs and tracing representation
inferred from services interactions. The back-end detector then
underlies the weakly supervised one-classification methods to
filter out outliers.

A. Transactional Topic Representation

This section is to discuss the semantic representation of
grouped logs, which are always entangled within a short pe-
riod. The semantic learning collects execution information and
will be the first half of the eventual transaction representation.

Though the preprocess mainly involves in individual log
record structures, the downstream tasks require deep analysis
and comprehensive explanation in higher hierarchy. In other
words, single individual log messages only record meta-
execution, i.e., add and delete, send and receive, etc. The issues
of meta-executions can express error or critical in log severity,
while no evident signs will probably be expressed in case of
system-level faults. For instance, the chaotic execution order
causes service failure. The semantic analysis is to observe and
discover hidden running patterns and make use of them to
diagnose root causes.

A reasonable solution to high level events representation is
to gather a group of logs sequentially occurring in a time-
window and summarize its “topic” to a more compact and
expressive format. The expressive formats shall compactly
capture the corresponding systematic information and avoid
effect of absolute message volume. In this manner, several
fundamental factors should be taken into consideration. Firstly,
logs shall be converted into templates to indicate events
instead of unique individuals. The conversion depends on
the outputs of the template extraction method and informa-
tive templates prevents identical events divergence. Secondly,
the collected logs shall keep the original order since the
execution sequence is one of the dominant factors which
heavily influences decision. A widely accepted argument is
that the execution order entails essential work-flow, and its
disorder and incompleteness possibly imply an abnormal task.
Thirdly, the time-window shall be set properly and flexibly to
ensure covering the close related events and omitting the long-
standing disturbance issues, e.g., daemon procedures. Last but
not least, the expressive “topic” shall be capable of keeping
core content, compressing in a compact space and simplifying
subsequent numerical computation.

We employ the template library, transaction request infor-
mation and natural language analysis to address the previous
issues. As for the first two points, the issues are straightfor-
ward. All the raw messages are scanned line by line, each
of which is aligned with one example in the template library.
In practice, one way to reduce computation complexity is to
only consider examples with the same length. Afterwards, all
positions corresponding to asterisks would be masked to give
way to matching other positions. Once conversion is finished,
the whole data set becomes a sequence of meta-executions

excluding unstable variables. In terms of the time window,
a basic idea is to use a pre-defined fixed scale to separate
logs. However, the segments either may lose a significant
part of logs or cover irrelevant logs mistakenly. Therefore,
the logs of interest should be determined by request time
duration collected based on practical transaction time-stamps.
The runtime duration will be discussed later along with the
request tracing in Section VI-B.

To obtain densely distributed representation of transactions,
the document representation approach from natural language
processing is introduced [29]. Document distributed represen-
tation, called doc2vec, stems from word distributed represen-
tation [26], which is called word2vec. The word2vec succeeds
in not only capturing word-level semantic meaning, but also
adapting semantic transferring into word vector calculation.
As aforementioned in Section V, the word2vec is adopted to
vectorize log templates, which in turn serves as input entries
for the temporal model. Furthermore, the doc2vec inherits the
mechanism of word2vec to wrap up the whole paragraph or
document vector to entail a topic.

Generally, the word embedding learning refers to word2vec-
like algorithms, learning distributed representation of text
elements. Fig. 3a illustrates the fundamental concepts of
word2vec and the following doc2vec. To simplify the theory,
the Continuous Bag of Words (CBOW) in [26] is introduced.
The embedding learning attempts to converge each word
vector within a time window by aggregating the context
information and predicting the central word. At the beginning,
each word will be assigned with a randomly initialized vector.
Choosing a window size, e.g., win = 9, will constrain and
determine the scope and context of interest. As shown in
Fig. 3a, word5 takes the center position, hence being taken
as a prediction objective. The other 8 words make up the
context information, which are aggregated by summing or
averaging the vectors. The prediction is accomplished by
softmax function with the input vector www = (w1, w2, ..., wv),
where v is the size of the entire vocabulary. The window
will slide through the entire sentence to ensure learning every
word, and each moving step produces a training example. On
top of the CBOW paradigm, the doc2vec simply adds a fixed
extra vector docv into the training process. The basic idea
is very similar except that docv is chosen identically across
the sentence. Note that docv will not remain fixed in training
but will keep using the same vector instance across window
sliding.

In contrast to the intuitive and generic natural language
processing, our model utilizes doc2vec over log template
sentence-level rather than constant word-level. That is in the
log analysis, the analysis grain is log templates rather than
general language words. In essence, a language sentence can
be seen as a sequence of words. Similarly, it is reasonable
to imagine that a complete transaction or task is a sequence
of meta-executions, recorded by a sequence of logs that can
be substituted by intrinsic templates. Thus, in log analysis,
one template corresponds to one “word”, and one transaction
log collection corresponds to one “sentence”. Then, such a
“sentence” (an actual transaction or task) is fed into a doc2vec
model to learn its distributed vector representation. As can be
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Fig. 3: Illustration of embedding learning and task-level representation

seen from Fig. 3b, each template is embedded as a template
vector, and via doc2vec a sequence of log template is also
embedded as a transaction embedding vector.

B. Service Query Tracing

In this section, we will introduce the service tracing module
to extract routine and subroutine response duration to construct
the temporal information. Service tracing is of special interest
in large scale and distributed server clusters as well as the
micro-services architecture, which couple each other with a
communication mechanism, i.e., RESTful API. As a web-
search example described in [19], the basic front-end func-
tionality in distributed platforms heavily depend on frequent
service queries, whose responses normally consist of a stable
relation chain.

The targeted scenario is that user-oriented queries are sent
from the very first front-end to all computation provider back-
ends, which is inclined to form a spanning tree-like structure.
The motivation is that if a complete query path can be
well tracked, a malfunction action can be well identified and
located. The “Dapper” tool depicted in [19] provides a robust,
scalable and effective implementation as well as “Zipkin” in
[37], and “Osprofiler” in [38]. Practically, a tracing component
will insert a light weight collector into each service point, and
immediately return service activities to central monitor. The
light weight collectors should only cause negligible overhead
and be transparent to application developers [19]. Fig. 4
illustrates service query chain, a spanning tree structure.

From Fig. 4, users launch a service request through an
interface, the application entry. In the following, the request
is processed as several parts which are delivered to back-end
service point via service queries, as depicted by light blue
arrows. It is possible that the first tier receiving queries merely
conducts intermediate analysis so that the first tier queries
are mapped to the next service tier. Queries are eventually
disassembled to multiple primitive ones, sent to the last tier,
and the results are reversely responded to the application entry,
where all messages are assembled and replied to users. In this
case, there are three levels of service back-end points.

In the proposed framework, the tracing infrastructure is
utilized for structure-related information, because service re-
quests and back-end query durations implicitly reflect the

function integrity. With the assistance of a tracing module,
the whole query durations are stored to construct a service
query matrix to record one transaction inner component query
histories. Eq. 10 below shows a simple example of service
query matrix. Here, services are denoted as numbered columns
and rows. Columns are the query sender point and rows are the
receivers. Each entry indicates the response duration from col-
umn to row. For instance, Service Query Matrix(1, 2) = 0.4
means service 1 calling service 2 with the response duration
0.4 seconds. The matrix explicitly contains all the necessary
structural time information extracted from the tracing module,
and will combine its corresponding transaction “topic” vector
as the complete temporal-spatial representation.

Service Query Matrix=



0 2 0 0.1 0
0.4 0 0.3 0 0
0 0 0 0.78 1.7

1.5 0 0.9 0 0
0 1.1 0 0.33 0


(10)

C. Outliers Detector

Based on the behavior and query trace representation, the
two parts should be integrated as a synthesized feature vector.
The feature vector will be taken as input to an anomaly
detector. The analysis step serves as the last session of jointly
temporal and spatial detection at the Stage 2 of Anomaly De-
tection step. The joint detection process shall give the second
identification of abnormal task samples, complementing the
temporal model.

For representation integration, firstly the matrix should be
converted into a vector. In general, a matrix is flattened with
respect to column or row. That is, for row, placing all rows
elements in one single row but keeping their relative context
position. In our work, the service query matrix is flattened
across row and the dimension is dimquery = n × n, where
n denote the number of services. To keep the dimension
consistent through all data samples, the number is for the total
service. In one transaction, it is possible that not all services
are involved, where irrelevant columns and rows are set as 0.
Afterwards, to aggregate two parts, transaction “topic” vector
and service query vector can be concatenated seamlessly.
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Fig. 4: A user request from front-end to back-end path
Fig. 5: The OSVM is training samples against the origin

The concatenation results in a hybrid vector with dimension
dimconcat = dimquery + dimlog .

As for the anomaly detector, the basic idea is to absorb the
features of normal samples and clarify the normality boundary
in a feature space in training, and identify outliers in practice.
Here, in training, all input samples are assumed normal, and
for test samples, outliers will be considered as anomalies
against the normal sample distribution. One noteworthy issue
is to find a proper high-dimensional area to encompass the
training cluster. To this end, one-class classification (OCC)
[46] is investigated, which is prevalent in anomaly detection
sphere [46] [47]. When there is a newly incoming data point,
a classifier is able to identify whether it is belonging to the
training set. From the OCC algorithm, the one-class support
vector machine (OSVM) [48] [49] is of special interest.

The OSVM adopts the similar idea to standard support vec-
tor machine, by drawing an optimal boundary to separate two
categories. In OSVM, only one category is specified, therefore
the other one consists of the origin in the feature space.
Essentially, OSVM finds a least radius sphere in hyperplane to
encompass the training data, if kernel trick is used for linear
non-separable situation. As shown in Fig. 5, red circles denote
the training samples, which should be separated against the
origin. Note that the boundary drawn is not a strict sphere
in the 2D space, but remain spherical in a high dimensional
space. The OSVM is robust to noise in training dataset since it
mainly concentrates on flexible data distribution boundary, and
the training is effective and fast given a small size of dataset.
It is reasonable to consider the advantage of OSVM, provided
that collectible and deterministic fault samples in a complex
architecture. Therefore, we employ the OSVM algorithm as
the outliers classifier to fit in small size training data and detect
the abnormal tasks. Three blue-colored points are marked as
anomalous points due to their locations. The blue dash lines
denote the distance from boundary to outliers.

VII. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we will present our empirical experiments
of template extraction, the temporal log modeling, and the
integrated outliers detector with concatenated features. The
data processing machine is with 16-core Intel Xeon E5-2630
v3 CPU, 64GB memory, and Nvidia GTX 1080Ti GPU.

The data are collected from a public dataset and the dis-
tributed platform in our lab. The public dataset comes from the

BlueGene/L [17], a supercomputer developed by IBM Watson
Research Center. The BlueGene/L data will be utilized in
template extraction as there lacks high level transactional label
and essential service tracing records for the tracing matrix.
The OpenStack log data is collected from OpenStack services,
i.e., nova-computing, neutron-networking, and etc., deployed
in three physical computing nodes in our lab. One of the three
nodes plays the role of both the controller and compute node,
which enables keystone authentication service, glance image
service, nova-api daemon service, nova computing service and
neutron-networking service. The other two solely participate
in compute node with nova computing service and neutron
networking service. As described before, we make use of
Osprofiler, the OpenStack tracing module, to store hierarchical
request trace paths. For evaluating anomaly detection, we
collect 122 user transaction samples from virtual instance
creation and deletion. All data are labeled as 100 normal
samples, and 22 outliers. As for labeling, once a request is
sent into OpenStack, the trace module will start to construct a
request tree via inserted probes and assign a unique trace ID
to it. The corresponding logs can be directly located based on
the trace ID and starting time.

Table III depicts the summary of the volume of the two
datasets. BlueGene/L contains more than 4 million logs in to-
tal, two thirds of which stay with “info” and “warning” sever-
ity. Similarly, OpenStack has nearly 270 thousand records,
most of which have “info” and “warning” severity fields. These
“info” and “warning” records are important information in our
work. This is fairly reasonable, because we assume that if
“error” appears, it surely points to an anomaly, however if
only “info” and “warning” appear, abnormal events probably
are hidden under the seemingly healthy records.

Table IV describes the transaction sample dataset for the
two-stage anomaly detection. In total, 122 samples are col-
lected, 100 normal samples and 22 anomalies, through basic
virtual instance creation and deletion operations requested by
users. In abnormal conditions, interferences have been inserted
to make instance creation unsuccessful or long delay. Wherein,
unsuccessful creation is triggered by not enough user quote,
and the long delay is due to the broken physical network
links. Note that the inadequate quote is not a system anomaly,
but it still can be marked as failed requests with “info”
and “warning” records. The proposed model can successfully
identify the exceptions.
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TABLE III: Log datasets in experiments

Dataset BlueGene/L OpenStack

Volume

Total Total
4,747,963 269,169

Info/Warning Error Info/Warning Error
3,759,170 988,793 243,780 25,389

TABLE IV: Transactional data description

Log Volume 243,780

Sample Volume Total Normal Abnormal
122 100 22

Sample Type Total Creation Deletion
122 96 26

A. Evaluation of Template Extraction

In the beginning, we show the efficiency and analyze the
concrete outcomes of template extraction between IPLoM and
our method. Some evaluations have been done in [24] and [23].
We take advantage of the open-source material with default
settings for BlueGene/L logs and implement our own method.
The parameter settings are: the information threshold, θ, is
set as 0.5 to keep at least 50% terms; the log count in one
segment or buffered size in an on-line scheme, Seg interval,
is set as 10000 and 100000, respectively; furthermore, in the
long template adjustment, the exceeding percentage is set as
0.9. The results are shown in Table V. The rows represent
investigated algorithms including the original IPLoM and our
proposal with two aggregation strategies, fixed information
threshold and elastic aggregation, respectively. The columns
denote the segment setting, extracted accuracy and complete
time. In detail, the Segmented Iteration corresponds to the in-
tuitive fixed information threshold strategy, and the Elastic Ag-
gregation corresponds to the elastic aggregation modification.
In terms of the accuracy, the proposed method is competitive
and even performs slightly better than the original IPLoM. The
highest one is the elastic aggregation with accuracy 0.61. As
for the time cost, both of our proposals are nearly as twice as
faster than IPLoM.

TABLE V: Template extraction results

Method Block Size Accuracy Time (s)

IPLoM 0.54 31.9

Segmented
Iteration

10000 0.57 16.44
100000 0.56 12.26

Elastic
Aggregation

10000 0.53 16.92
100000 0.61 12.38

B. Evaluation of Temporal Log Feature Model

After the data preparation step, the whole raw log mes-
sages are converted into their corresponding templates. Each
transactional logs block (logs in one task) is located by
request time stamps labeled in tracing modules. Within one
task, the sequential templates are pre-processed as sequences
samples for the input of the LSTM learning model. To be
more specific, the temporal model is comprised of a two-layer
bi-directional LSTM block with 512-sized hidden states and
256-sized input units. In the learning phase, all the normal
samples are utilized to train the baseline model associated
with two types of tasks, i.e., virtual instance creation and
deletion. The training accuracy and epochs are presented in
Fig. 6a, where the training accuracy promptly reaches nearly
1.0 within 500 epochs while the whole training continues with

3000 epochs. In the testing phase, normal tasks and abnormal
tasks are both fed into anomaly degree/score calculation with
the definition in Section V. The results are illustrated in Fig.
6b, Fig. 7a, and Fig. 7b. It is manifest that the abnormal task
samples attain above the anomaly degree of 5, nonetheless the
normal creation and deletion tasks are orders of magnitude
lower than that of anomalous ones, maintaining less than 0.1.
Particularly, the first anomaly reaches more than 300 because
the task suffers low term networking disconnection, while
others encounter short term task termination.

C. Evaluation of Temporal And Spatial Feature Joint Model
At Stage 2, the two modules of system information rep-

resentation are jointly taken into effect for global and in-
depth anomalies recognition. Similar to the temporal model
preprocessing, log templates are the abstract input data for
transactional interpretation. The doc2vec algorithm takes as
input the located normal transactional log blocks to train
the document representation with dimlog = 150. As for
tracing features, the tracing mechanism recognizes 20 ser-
vices in OpenStack, therefore one 20 × 20 trace matrix is
flattened as a dimquery = 400 vector. Concatenated with
document representation, the ultimate integrated vector is with
dimconcat = 550. A high dimensional space needs to be
visualized to verify its interpretability. To this end, the t-
SNE algorithm [50] is adopted to map high dimensional
representations into 2D space and properly visualize the space
structure. Fig. 8a illustrates all the samples with ground truth
labels distributed in 2D space. The cyan blue circles are normal
points, and the magenta circles refer to inserted abnormal
requests. Obviously, the combined features clearly reflect the
distinct cluster natures, which enables the following outliers
classifier.

By the OSVM method with radial basis function (RBF)
kernel, the detection results are visualized in Fig. 8b. In
training, we use 90 normal samples to train the boundary while
in evaluating, 10 normal samples and 22 abnormal samples are
tested. As shown in this figure, training with the normal data
marked as cyan has 0.91 training accuracy and all anomalies
are successfully identified, marked as magenta on the left.
Compared to Fig. 8a, several normal data are mistakenly
identified as anomalies. We conjecture that in high dimensional
training, these data are placed near the periphery of normal
distribution boundary, despite being distant from anomalies.
Without an elastic sphere boundary, possibly a small number
of normals are segregated out of the normal scope.

D. Discussion
The previous experiments clearly emphasize the effective-

ness of three essential components, template extraction, se-
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(a) The training accuracy and epochs (b) Anomaly degree bar chart of all abnormal tasks

Fig. 6: Anomaly degree bar chart of normal instance creation and deletion tasks
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Fig. 7: Anomaly degree bar chart of normal instance creation and deletion tasks

(a) Ground truth (b) Detection results

Fig. 8: Visualization of all samples with ground truths and detection results
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quential anomaly degree model, and temporal and spatial joint
anomaly detection. Each discrete module performs well in
efficiency, availability and interpretability. It is worth noting
that the complete framework presented in Fig. 1 smoothly
integrates all the three processing components instead of
being intuitively isolated. The templates closely underpin the
latter abstract event representation, and tracing data facilitates
spatial information analysis. The sequential degree calculation
captures the temporal execution patterns and produces high
degree suspicious task candidates, against which the results
of the outliers classifier are compared for double anomalies
validation. The two-stage anomaly validation makes use of
the most of stable temporal and spatial features collected from
the micro-services to avoid accidental mistakes due to single
decision-making.

VIII. CONCLUSION

The service-oriented 5G system dedicates to providing di-
verse and enormous services in a large range, which inevitably
requires a sustainable operation mechanism. Efficient and
reliable management for a large-scale micro-services archi-
tecture has become extremely significant. In this paper, we
have proposed a general-purpose anomaly detection frame-
work targeting at micro-services architectures, using temporal
service execution logs and spatial service query traces. The
framework is comprised of informative data representation,
temporal logs modeling and temporal-spatial joint analysis.
It works compatibly with but not limited in well-performed
LSTM model, doc2vec and tracing matrix, and unsupervised
outliers identification algorithms. Experimental results have
shown competitive effectiveness of the proposed scheme: the
template extraction achieves competitive accuracy and high
efficiency; the temporal model successfully acquires sequen-
tial patterns for anomaly degree computation; the integration
of the transactional representation and spatial service query
traces, segregates anomalies from normal points, visualizes the
distribution that data entail, and helps the outliers classifier
to highlight those anomalies. Our future work will root in
exploring an effective way to not only detect anomalies but
also localize and rank the root causes of faults.
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