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‘I have yet to see any problem, however complicated, which, when you look at it in the 

right way, did not become still more complicated.’ 

writer Poul Anderson,   

quoted in ‘Infectious diseases of humans’ (Anderson and May, 1991) 
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Abstract 
 
 

Infectious diseases of livestock can cause substantial production losses and have 

detrimental impacts upon human health, and animal health and welfare. To limit the 

impact of diseases, understanding more about the dynamics of transmission can assist 

in the control and prevention of infectious disease. In particular, understanding infection 

transmission on networks, ‘network epidemiology’, offers a flexible approach, 

incorporating between-host heterogeneity in potentially infectious contacts drawn from 

empirical study of interactions among individual animals, or among farms. Trading 

animals and optimising productivity are vital to the commercial viability of farms, however 

they necessarily involve compromises in biosecurity, animal health, and welfare. Better 

understanding of the relationships among these multiple factors might facilitate the 

development of sustainable livestock industries that are more resilient to disease 

outbreaks. 

In this thesis I examine cattle interactions at two spatial scales, first at a national-level by 

studying the trading connections among farms, and then at a finer scale by analysing the 

social interactions among cattle. First, I introduce the concept of superspreaders, hosts 

that generate many more secondary infections than the rest of the population, and 

evaluate evidence for the notion that some farms might act as superspreaders of 

infection. I utilise the example of bovine tuberculosis (bTB) to illustrate this concept and 

find that farms might act as superspreaders in three main ways; first, via exceptional 

trading between farms, second, by factors that facilitate high within-herd transmission and 

trading of high-risk animals, and third, by harbouring undetected infection for long periods. 

I find mechanisms that align with all three processes in the cattle industry in Great Britain 

that might allow superspreader farms to contribute to the current bTB epidemic. 

At a national level, I describe cattle movements among farms over time, finding that some 

farms consistently act as ‘hubs’ in trading networks, functioning in a similar way to 

markets, in that they are highly connected to other farms by many direct trades. Utilising 

the temporal network measure of ‘contact chains’, I quantify the farms that represent 
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potential sources of infection (ingoing contact chains) and the potential farms that a farm 

might infect over 1 year periods. Farms divide into two groups: those with very few 

connections (less than 10 farms) that are relatively isolated from the network, and those 

with very many connections (more than 1000 farms) that are highly connected within the 

network. I find that a substantial number of farms have over 10,000 farms in both their 

ingoing and outgoing contact chains, such that, if infected, they might potentially act as 

superspreaders by being more at risk of both acquiring and spreading infection. 

Building on my previous analysis, I then characterise the ‘source farms’ in the ingoing 

contact chains, in terms of their location and bTB history. I find that after controlling for 

previously-established risk factors for bTB, having more source farms in areas of higher 

bTB risk in the ingoing contact chain increases the odds of a bTB incident on the root 

farm, whilst having more source farms in lower risk areas is associated with lower odds 

of a bTB incident on the root farm. 

At a finer scale of contacts among animals, I explore interactions among dairy cattle in 

multiple herds using automated proximity sensors and GPS devices. When aggregated 

over long periods, cattle interactions appear dense and unstructured, however finer time 

spatial and temporal perspectives revealed structure and variation in contacts. Herds in 

our study had variable grazing and housing access, allowing us to determine that cattle 

interact with more other cows, for longer time periods when they are in buildings 

compared to contacts at pasture. Cattle exhibited heterogeneity in their number and 

duration of contacts, and although the majority of cattle interacted more equally with other 

cows, a small proportion of cows in each group showed evidence of stronger social ties. 

Next, I consider associations between social interactions, production, and health. I review 

the existing literature on social parameters such as dominance rank and re-grouping of 

cattle, and find inconclusive outcomes regarding their impact on milk yield and somatic 

cell count, an indicator of udder health. I perform my own analysis to examine the 

relationship between the time cows spend with other cows, milk yield and somatic cell 

count, and do not find a statistically significant relationship. In considering social 

preference, cows that had experienced the same number of lactations were more likely 
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to interact, but cows spending more time with cows in the same lactation did not 

appreciably affect their milk yield or somatic cell count. 

Finally, I draw together the findings of this thesis and reflect on how the identification of 

higher-risk farms might be useful in the control of livestock infections, and specifically bTB 

in Great Britain. I conclude that network analysis is a valuable tool to study the interactions 

of cattle and cattle farms, identifying unique opportunities for targeted approaches to 

disease control. 
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Chapter 1: Introduction 

Infectious diseases 

Advances in scientific and medical knowledge over the 20th century and, in particular, the 

development and large-scale implementation of vaccination, has led to the global 

eradication of smallpox in humans (Henderson, 2011) and Rinderpest in cattle (Roeder, 

2011), and more general and dramatic reductions in human and animal mortality due to 

infectious disease (Anderson and May, 1992; Woods, 2011). Nevertheless, there are still 

many challenges in the control of infectious disease. Over 300 new communicable 

diseases of humans emerged between 1940 and 2004 (Jones et al., 2008) and in 2015, 

over 7 million people died of infectious diseases (Mathers et al., 2017). Globalisation 

means populations are exposed to a much wider range of pathogens and pandemics are 

more likely (Fauci, 2001). Animal and human health are closely linked; over 60% of newly 

emerging infectious diseases of people are caused by zoonotic pathogens (Jones et al., 

2008). Although most of these infections have their origins in infections of wild animal 

populations, (e.g. human immunodeficiency virus (HIV), Ebola), domestic species can 

often act as a maintenance reservoir for transmission between wild animals and humans, 

for example avian influenza, rabies, brucellosis (Kilpatrick et al., 2009), thus making the 

study of livestock infections integral to safeguarding public health of human and non-

human animals alike (Cleaveland et al., 2001). 

Rising human populations and concerns over food security have stimulated the 

intensification of agriculture (The Government Office for Science, 2011) and substantial 

increases in the growth rates of pigs and poultry and milk yields of dairy cattle have been 

achieved through genetic profiling and selective breeding (Pryce and Veerkamp, 2001). 

Herd sizes have increased in order to increase efficiency and take advantages of 

economies of scale, while producers are becoming more specialised towards specific 

production stages, e.g. breeders, fatteners, finishers (Morgan and Prakash, 2006). 

However, there are potential conflicts between animal health and welfare, and 

commercial efficiency (Dawkins, 2017). Larger herds are frequently identified as being at 
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higher risk of a disease incursion (Brooks Pollock and Keeling, 2009; Gardner et al., 2002) 

and increased trading of animals between more-specialised producers increases the risk 

of between-farm spread of infection (Gates, 2014; Robinson and Christley, 2007). 

Maximising productivity brings compromises in terms of reduced longevity, lameness, 

poor fertility, increased susceptibility to disease, and compromised welfare (Mench, 2002; 

Oltenacu and Broom, 2010) leading to increasing concern from consumers about animal 

welfare in intensive systems (Simm et al., 2001). Keeping animals at higher stocking 

densities and maximising their production has been facilitated by the non-therapeutic and 

therapeutic use of antimicrobials in livestock, and has most likely facilitated and even 

promoted the development of antimicrobial resistance (Gilchrist et al., 2007). 

Understanding the intertwined relationships of a changing livestock industry and the 

health and welfare of animals is crucial in order to maintain a sustainable, commercially-

viable livestock industry. 

Quantifying infections 

Since the emergence of germ theory, mathematicians and epidemiologists have sought 

to document and analyse the interactions between pathogens and host populations, 

starting with Daniel Bernoulli, who in 1760, successfully used mathematical methods to 

prove the efficacy of early forms of vaccination against smallpox (Bernoulli and Blower, 

2004). Mathematical models, as applied to infectious disease, are simple frameworks that 

provide basic rules governing the spread of infections. A founding principle of 

epidemiology, based on the mass-action theory, is that the rate of spread of an infection 

is proportional to the product of the density of susceptible individuals and the density of 

infected individuals (Anderson and May, 1992, 1979), and this is outlined in the differential 

equations used in compartmental models of disease transmission (Kermack and 

McKendrick, 1927; Fig. 1.1). Each compartment contains individuals in different states of 

infection, which classically includes susceptible individuals (S), infected individuals (I) and 

recovered individuals assumed to have some degree of immunity (R).  
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Figure 1.1. Schematic of a frequency dependent compartmental deterministic SIR model. The 

rate of change in each compartment is governed by their respective equations; where N is the 

number of individuals in the population, S is the number of susceptible individuals, I is the number 

of infected individuals, R is the number of recovered individuals, β is the transmission rate and γ is 

the removal rate. In this model 
1

γ
 is the mean length of the infectious period (Anderson and May, 

1992). 

 

Figure 1.2. Frequency of susceptible (black), infected (red) and recovered (blue) individuals over 

time from a simple SIR model simulation. Model was initiated with 1 infected and 99 

susceptible individuals in closed population and parameterised with β = 1, γ = 0.25. The 

shape created by the number of infected individuals generated also represents the 

epidemic curve. 
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When the density of susceptible individuals is above a critical threshold, an epidemic will 

occur, and when the density goes below that threshold, the epidemic will start to reduce 

and typically will die out, thus forming the classic ‘epidemic curve’ (Kermack and 

McKendrick, 1927; Fig. 1.2). From these models, we can estimate the basic reproduction 

ratio ‘R0’, the average number of secondary infections that would arise from a single 

infected host in a population of susceptible individuals (Anderson and May, 1992; 

Diekmann et al., 1990) 

𝑅0 =
𝛽

𝛾
 

If R0 is less than or equal to one, infection is unlikely to proliferate, however if each host 

generates more than one secondary infection (R0 > 1), the infection is likely to persist in 

the population, at least in the short-term (Keeling, 1997). The calculation of R0 allows the 

testing of control strategies, potentially by calculating the proportion of the population that 

would need to be vaccinated (Keeling, 1997), or the number of animals that might need 

to be culled to contain an epidemic (te Beest et al., 2011). 

Heterogeneity in R0 

R0 is a population average and whilst it provides good estimates of disease spread where 

infection parameters follow normal distributions, its utility is reduced when heterogeneity 

arises in contact rates, infectiousness or the length of the infectious period (VanderWaal 

and Ezenwa, 2016). The impact of contact heterogeneity is well-illustrated in the case-

studies of the first people infected with Severe Acute Respiratory Syndrome (SARS) in 

Canada in 2003, where the spread of infection differed markedly between Vancouver and 

Toronto due to the contact behaviour of the initial hosts in each region (Poutanen et al., 

2003). Initial estimates of R0 for SARS were overestimated as they were based on data 

collected in a hospital and a crowded apartment building, where contact rates were 

particularly high (Shen et al., 2004). Thankfully, the predictions of a large-scale pandemic 

were not realised and estimates for R0 in the general population were much lower. 

However, an important factor in the spread of SARS was the high number of infections 

generated by some individuals, when models allowed R0 to vary, epidemic predictions 

were much more accurate (Meyers et al., 2005). Individuals that generate 
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disproportionately large numbers of secondary cases than the majority of other infected 

individuals are termed ‘superspreaders’, and have been identified in many infectious 

diseases, including SARS (Lloyd-Smith et al., 2005; Stein, 2011). Infected individuals may 

act in this way via high contact rates, being infected for a long duration or by being highly 

infectious (Shen et al., 2004; Small et al., 2006). If the majority of individuals do not 

transmit infection to many others but some act as superspreaders, the likelihood of an 

epidemic occurring is decreased, as infection is more likely to die out if it encounters one 

of the more numerous poorly-connected individuals, however if a superspreader is 

infected in the initial stages, many hosts will be infected quickly and the resulting epidemic 

is likely to be larger overall (Lloyd-Smith et al., 2005). When superspreader dynamics 

exist, modelling has suggested that targeting control efforts towards those individuals with 

particularly high rates can be much more effective than population-wide control 

measures; and thus identifying them can be a key step in the control of some infections 

(Lloyd-Smith et al., 2005). 

Network epidemiology  

Using networks as a framework for understanding disease spread requires and allows 

incorporation of heterogeneity in contact structure (Bansal et al., 2007) and spatial 

aggregation of infection (Keeling, 1999). The study of networks is cross-disciplinary, with 

strong conceptual origins in the social sciences and underpinnings in mathematical graph 

theory. In the context of epidemiology, nodes in a network typically represent individual 

hosts, or groups of hosts (e.g. a farm or school) and edges represent a link between those 

nodes. In a contact network, edges represent a connection between nodes that has the 

potential to transmit infection, which should be distinguished from a transmission network, 

where edges represent the actual transmission of infection (Craft, 2015). Edges may be 

directed or undirected; directed edges are used to describe the movement of animals or 

people between locations, whereas undirected edges describe a mutual connection such 

as a contact or relationship (Fig. 1.3). Edges can be weighted, typically by the duration or 

frequency of the contact between nodes.  
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Figure 1.3. Elements of a network and examples of different network structure. Nodes are 

depicted as orange circles and edges as grey lines. a) shows an undirected network comprising 

three nodes connected by two edges of different weights, illustrated by the width of the edge. The 

degree of node 1 is 2. b) shows a directed network comprising three nodes with three directed 

edges, the in-degree of node 2 is 2 and the out-degree is 0. The three nodes form a triplet as they 

all have a mutual node. c) shows examples of simulated networks based on random (Erdӧs-

Rényi), small-world (Watts-Strogatz), and scale-free (Barabasi-Albert) algorithms implemented in 

the R package ‘igraph’ (Csardi and Nepusz, 2006) from left to right. 

The utility of integrating social relationships into the study of disease transmission was 

first demonstrated in 1985 where a study of sexual contacts and the occurrence of AIDS 

(acquired immune deficiency syndrome) demonstrated a likely infectious cause for the 

newly-emerged disease (Klovdahl, 1985). Networks are particularly useful in analysing 

sexually-transmitted infections due to the direct method of transmission and the 

heterogeneity between individuals in terms of contact rate (May and Anderson, 1987). It 

was quickly apparent that in addition to the characteristics of the host and pathogen, 
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described by R0, network structure could also influence the critical threshold over which 

an epidemic would occur (Keeling, 1999). 

Network analysis characterises the local and global structure of the network in many 

different aspects. ‘Clustering’ or ‘transitivity’ describes the number of completed triangles 

in the networks relative to the number of possible triangles (Silk et al., 2017a), more 

simply put, the friends of your friends are also your friends (Appendix B Table B1). 

Networks displaying a high level of clustering are considered to have ‘small world’ 

properties (Keeling and Eames, 2005) and the differences between transmission in a 

homogeneously mixing population and on a network are most keenly felt when these local 

connections are more numerous. In this type of network, for any given node, the pool of 

susceptible contacts is limited (due to more shared connections) and quickly becomes 

locally saturated with infected individuals. This limits the initial spread of the epidemic and 

ultimately, the final epidemic size (Keeling, 1999; Keeling and Eames, 2005). Where 

networks are less clustered and have many connections distributed among all nodes, 

each node has a more wide-ranging pool of susceptible neighbours. In this scenario, the 

effect of the network is reduced and simulated epidemics quickly spread through the 

population, thus behaving more similarly to those on random networks (Keeling and 

Eames, 2005).  

Degree and strength describe the number and combined weight of edges connected to a 

node respectively and are used to assess heterogeneity in contact rate between 

individuals. Networks with extreme heterogeneity in their degree distribution such as the 

internet and livestock movement networks, are termed ‘scale-free’ networks (Pastor-

Satorras and Vespignani, 2001). Nodes with very many more connections than the 

majority of other nodes are called ‘hubs’ and are able to function as superspreaders if 

they become infected, creating a steep epidemic curve (Keeling and Eames, 2005).  

Dynamic networks 

A classical assumption in network analysis, and an important distinction between 

networks and homogenous mixing theory, is that the edges are long standing. This is a 

valid assumption for many contact networks that describe social relationships. However, 

in network epidemiology, the permanence of the edge is most important relative to the 
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timescale of pathogen transmission (Cross et al., 2005). In a static representation, 

connections should be aggregated over a defined time period suitable for the pathogen 

being studied, and this is useful if edges change at a similar or slower rate than the spread 

of the pathogen (Cross et al., 2005; Kao et al., 2007). However if the network changes 

faster than the pathogen can spread, we may find that the resulting network is so dense 

that the transmission routes of the pathogen are effectively infinite. In this case the 

transmission of the pathogen might actually be estimated just as well by an assumption 

of homogenous mixing or a random network structure (Enright and Kao, 2018). In these 

cases, the use of dynamic networks is crucial, and the analysis of time-respecting paths 

can help us better understand the subtleties of networks at different temporal 

aggregations. 

Infectious diseases of livestock 

The study of animal populations has revealed heterogeneity in social contacts and trade 

networks (Craft, 2015), and the use of network analysis as a tool to study disease has 

become very popular in veterinary epidemiology (Martínez-López et al., 2009). Infections 

of livestock have been modelled at individual and herd level (Marcé et al., 2011; Volkova 

et al., 2010b). 

Most within-herd models assume homogenous mixing of animals, however the groupings 

that occur on most commercial cattle farms, e.g. separating calves from dams and 

separating male and female youngstock, break down such mixing assumptions. Some 

studies have included more-relevant divisions, models of bovine viral diarrhoea (BVD) 

and Mycobacterium avium subsp. paratuberculosis (MAP) transmission have 

incorporated the age and sex structure of cattle herds into compartmental frameworks 

due to the heterogeneity of transmission in both infections (Courcoul and Ezanno, 2010; 

Marcé et al., 2011). Turner et al. (2008) explicitly created a contact network 

parameterised with estimates from previous literature. They found that infections mainly 

transmitted by direct contact might more easily die out in sub-groups where there were 

fewer average contacts. Duncan et al. (2012) compared infection transmission between 

empirically-derived contact networks of two small beef herds (made up of dams and 

calves) and random networks of equal size and found that epidemics on the empirical 
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network occurred less often and when they did occur, fewer cattle were infected. Further 

studies showed that the differences encountered could be adjusted for by increasing the 

probability of infection in the observed networks (Duncan et al., 2014). However, it is not 

clear if the findings from extensive small beef herds can be extrapolated to other herd 

types and sizes.  

At a larger scale, networks have provided a useful framework for modelling between-farm 

transmission. Livestock movements have been characterized for sheep, pigs, cattle, 

poultry and fish in many countries with a view to inform control and surveillance policies 

(Green et al., 2009; Kiss et al., 2006; Lentz et al., 2016; Martin et al., 2011; VanderWaal 

et al., 2015). Modelling of livestock infections and control programs at this scale allows 

policymakers to compare and evaluate national strategies without great expense or 

compromises to animal welfare, and thereby to explore where limited resources might 

best be focussed.  

As a consequence of the bovine spongiform encephalopathy epidemic in the 1990s, it is 

mandatory for all bovines in the European Union to have individual information (date of 

birth, dam and sire, breed, etc.) and movements recorded on a unique passport. Cattle 

keepers are required to report movements between animal holdings, markets, 

slaughterhouses and shows to the relevant country authority. These data represent a 

valuable spatio-temporal, long-term, individual-level dataset that been used to simulate 

the transmission of foot and mouth disease (FMD), BVD, and bovine tuberculosis 

between farms (Ferguson et al., 2001a; Gates et al., 2014; Gilbert et al., 2005; Kao et al., 

2007; Keeling et al., 2001). 

In February 2001, FMD was confirmed in pigs in Great Britain, thereafter followed an 

epidemic which resulted in a national animal movement ban, the culling of over 6.9 million 

animals, and catastrophic impacts on the farming industry and the national economy 

(Thompson et al., 2002). Several groups of modellers developed complex simulation 

models in order to account for heterogeneity in spatial clustering of disease, and in the 

susceptibility and infectiousness of individual farms (Ferguson et al., 2001b, 2001a; 

Keeling et al., 2003, 2001; Morris et al., 2001). Among other control strategies, the models 

suggested rapid culling on premises adjoining infected premises would be influential in 
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halting the epidemic. Despite controversy on this policy (Mansley et al., 2011), further 

modelling after the event has still shown this policy to be successful in limiting epidemic 

size (Tildesley et al., 2009) and that this policy implemented earlier would likely have 

reduced the overall epidemic size (Keeling, 2005). Vaccination was not employed in the 

2001 epidemic due to concerns over the time to onset of immunity and the loss of national 

disease-free status (Keeling et al., 2003). However, subsequent modelling has suggested 

that even limited vaccination resources would be potentially useful in the event of future 

outbreaks, if more information on vaccine deployment logistics and efficacy can be 

collected (Bradbury et al., 2017; Tildesley et al., 2006). This catastrophic epidemic 

demonstrated the benefits and caveats of different model structures and the element of 

compromise which is inevitable and necessary in constructing models that describe 

complex infection dynamics (Kao, 2002; Keeling, 2005). 

The British cattle industry 

Trading of cattle between farms is seen by some as vital to the sustainability and 

profitability of the industry (Robinson and Christley, 2007). Nevertheless, trade of cattle 

between farms has been identified as a factor in the transmission of multiple endemic and 

non-endemic infections in cattle (Broughan et al., 2016a; Chase-Topping et al., 2007; 

Gates et al., 2014). Markets are a key feature of cattle trading in Great Britain, they 

facilitate the longer-range movements of animals and the dissemination of cattle to 

multiple premises (Robinson and Christley, 2007). Network analyses of cattle movements 

in Great Britain have shown that most farms have few direct connections, but that a few 

farms and most markets have very many connections (Christley et al., 2005b; Woolhouse 

et al., 2005). This reduces the local connectedness of the network and may increase the 

risk of larger epidemics (Keeling and Eames, 2005). 

Bovine tuberculosis in Great Britain 

Bovine tuberculosis (bTB) is a zoonotic, chronic respiratory disease of cattle caused by 

the bacterium Mycobacterium bovis. Although many wildlife and domestic species can be 

infected with M. bovis, badgers have been identified as a significant reservoir host of M. 

bovis (Krebs et al., 1997) and a contributor to infection in cattle (Donnelly et al., 2003; 

Woodroffe et al., 2006). The socio-economic impacts of the disease are large, with 
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disease management causing disruption and distress to the farming community and 

costing the UK taxpayer around £100 million annually (Department for Environment Food 

and Rural Affairs, 2013). bTB has been intimately related to the British cattle industry 

since the early 1900s. In 1934, approximately 40% of cattle were reported to have been 

infected with M. bovis (Krebs et al., 1997). A test and slaughter policy introduced in 1960 

dramatically reduced prevalence in cattle. Cattle testing, combined with the rise in 

pasteurisation of milk between 1920s to the 1950s (Atkins, 2000), meant zoonotic cases 

in humans decreased (Reynolds, 2006). The annual number of reactor cattle culled in 

Great Britain dropped from 23,000 in 1935 to less than 1000 in 1980 (Goodchild et al., 

2008). Between 1980 and 2010 though, incidence in cattle had risen in endemic areas 

and spread to areas in the North and West of England and through Wales (Animal and 

Plant Health Agency, 2014; Brunton et al., 2015; Fig. 1.4 and 1.5). Since 2010, up to data 

collected for 2017, incidence has become more stable overall, but with increases in bTB 

incidents on the edge of the endemic area (Fig. 1.5; APHA, 2018). 
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Figure 1.4. Changes in incidence and distribution of bovine tuberculosis (bTB) in Great Britain from 

1986 to 2012. (a) shows changes in incidence, which varies seasonally and demonstrates the 

interruption of bTB testing during the 2001 foot and mouth epidemic. (b) shows the increase in the 

geographical area affected by bTB from 1986 to 2010. Density of herds with officially tuberculosis 

free status withdrawn (OTF-W) status are demonstrated on a heat scale from blue (low incidence) 

to red (high incidence). Reproduced from the Bovine TB strategy review (Godfray et al., 2018).  
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Figure 1.5. Map illustrating the hexagonal areas to which endemic bTB (defined by the presence 

of three OTF-W incidents within 7 km) spread between 2001 and 2012. Rate of spread in km per 

year is calculated for the 2 year time period during which endemic bTB first passed through the 

hexagon. Reversion to non- endemic status may have occurred but was not calculated. Hexagons 

which were classed as endemic prior to 2001 are coloured yellow and are considered to be the 

‘core’ endemic area.’ Reproduced from Brunton et al. (2015). 
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Routine surveillance of M. bovis infection is required under European Union (EU) law and 

the main form of disease control in the United Kingdom is cattle testing using the Single 

Intradermal Cervical Comparative Tuberculin (SICCT) test and culling of individuals that 

return positive test results. Frequency of SICCT testing differs by region and country, 

based on local incidence and epidemiology. Scotland is classified as Officially 

Tuberculosis Free due to very low incidence of infection. Scottish farms are tested every 

four years, but some farms are exempt, based on the likelihood of detecting cases in 

slaughterhouse surveillance (Kao, 2011). Herds in Wales have been tested annually 

since 2011. England is divided into three risk areas, herds in the Low Risk Area (LRA) 

are tested every 4 years and herds in the High Risk Area and the Edge area are tested 

at least annually (see Appendix C, Fig. C1 for map). The specificity of the SICCT test is 

high, yet sensitivity is estimated to be low (Conlan et al., 2012; Nuñez-Garcia et al., 2018) 

and in some cases, e.g. chronic incidents, the more-sensitive gamma interferon (γ-IFN) 

test is used (de la Rua-Domenech et al., 2006; Nuñez-Garcia et al., 2018). Since 2006, 

cattle in England and Wales over 42 days old must test negative to a SICCT test before 

movement from herds in an area that is tested annually, or more frequently (Animal and 

Plant Health Agency, 2018). In order to increase the test sensitivity associated with the 

movement of animals, post-movement testing of animals moved from herds in annual (or 

more frequent) testing areas to the Low Risk Area of England was introduced in England 

in 2016 and in Wales in 2017. Pre- and post-movement testing had been in place in 

Scotland since 2005 (Animal and Plant Health Agency, 2018b). OTF status is suspended 

(OTF-S) if at least one animal tests positive, a ‘reactor’, or if an ‘inconclusive reactor’ 

returns a subsequent inconclusive test result. OTF status is withdrawn (OTF-W) if post-

mortem pathology characteristic of M. bovis is found, or if M. bovis is isolated by culture. 

A series of whole-herd tests are then scheduled (depending on the type of incident, risk 

area or region and herd history), which the herd must pass in order to have their OTF 

status reinstated. In general, no cattle movements on or off the farm are allowed during 

either type of incident (OTF-S and W), except movements off the farm directly to slaughter 

and some other exemptions under licences granted by the APHA. Post-mortem 

surveillance is performed at all GB slaughterhouses. If suspicious lesions are detected, 

in common with a SICCT test on farm, the OTF status of the source farm is suspended 
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(OTF-S) and a whole-herd test is triggered. OTF status is withdrawn (OTF-W) on isolation 

of M. bovis from the sample. 

Modelling bovine tuberculosis  

Since their implication as a reservoir host of M. bovis in the 1970s, the control of badger 

populations has been the focus of much attention. Working with limited knowledge, the 

modelling of bTB in badgers started with simple compartmental age-structured models of 

infection, which suggested that M. bovis was likely to persist in badger populations at a 

moderate prevalence (Anderson and Trewhella, 1985). As more information became 

available on badger ecology and infection, more complex spatial, stochastic models were 

developed, which showed no clear relationship between population reductions and 

prevalence of M. bovis infection (White and Harris, 1995). Comparisons between fertility 

control and lethal control considered that if culling caused the disruption of social groups, 

the success of lethal methods might be reduced (Swinton et al., 1997). It was clear that 

information to parameterise models was lacking (Smith, 2001), and in 1998, the 

Randomised Badger Culling Trial was set up to empirically assess the relative impacts of 

different approaches to badger culling on the local incidence of bTB in cattle; reactive 

culling, proactive culling (reduction of overall badger density in a specified area) or no 

culling of badgers (Donnelly et al., 2003). Reactive culling was stopped before the end of 

the trial due to a large increase in cattle bTB in treatment areas compared to no cull areas. 

By the end of the study, proactive badger culling reduced the risk of bTB in cattle in cull 

areas, but increased in surrounding areas. This finding was thought to be due to the 

perturbation of badger social groups creating increases in contact rate and subsequent 

rise in M. bovis infected badgers (Carter et al., 2007; McDonald et al., 2008). Overall, 

proactive culling areas were associated with a net increase in cattle bTB compared to 

areas where no culling was performed (Donnelly et al., 2003). 

Within-herd models of M. bovis infection in cattle have aimed to estimate the transmission 

rate between cattle, the duration of time between infection and infectiousness, the 

performance of the SICCT test (as no gold standard is available for comparison), the 

relative force of infection from wildlife, and the effectiveness of differing control measures 

(Álvarez et al., 2014). Typically models of within-herd transmission of bTB insert ‘Occult’ 
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and ‘Reactive’ states into the classic SI compartmental model framework to create a SORI 

models (Álvarez et al., 2014). There is no ‘Recovered’ compartment for M. bovis infection 

models as cattle testing positive to the infection are culled and thereby removed from the 

study system. These additional stages account for the variable incubation period of bTB 

where cattle are considered unreactive to currently available diagnostic tests (Occult) and 

the period of time for which cattle are likely to test positive on current diagnostic tests 

(Reactive). SORI models assume that during the O and R states the animal is not 

infectious to other cattle, however there are likely to be exceptions to this rule (Neill et al., 

1992), which are described in SOR models, where states O and R are considered 

infectious. 

Some models have acknowledged that differences in cattle herd types and sizes are likely 

to result in altered transmission dynamics. Conlan et al. (2012) ran SORI and SOR 

models with different herd sizes and found both showed substantial differences in basic 

reproduction ratios (SORI model: n = 30 R0 = 1.5, n = 400 R0 = 4.9) suggesting that there 

may be a trade-off between efficiencies associated with larger herds, and an increased 

risk of within-herd disease transmission. Higher transmission rates have been suggested 

for dairy herds due to more intensive management (Barlow et al., 1997). Studies 

distinguishing a difference between transmission in different herd types, or management, 

i.e. cattle at grazing or housed, found that transmission was five times lower between 

cattle outdoors than indoors in French herds (Bekara et al., 2014), and the cattle-to-cattle 

transmission rate was higher for dairy herds than beef herds in Spain (Álvarez et al., 

2012). As milk yields are driven higher (AHDB Dairy, 2019a), more cattle are being 

housed indoors to meet rising nutritional demands (Charlton et al., 2011), and this could 

have implications for within-herd incidence of bTB. In their review of within-herd 

transmission of bTB, Álvarez et al. (2014) note that more empirical contact data on cattle 

farms would be useful to better inform transmission models such as these. 

Single-host cattle and badger models have been developed into two-host models, which 

aim to understand transmission dynamics between the two species. A simple model by 

Cox et al. (2005) estimated the net R0 of the bTB epidemic at approximately 1.1. More 

complex models have suggested a similar value for within-species R0 as close to 1, and 
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suggested that cattle measures were essential in the elimination of this infection (Brooks 

Pollock and Wood, 2015). They suggest the risks posed from badgers may vary with 

differences in other risk factors on farms and highlight that reducing the transmission from 

badgers to cattle would most likely be more effective than reducing the prevalence of M. 

bovis infection in badgers (Brooks Pollock and Wood, 2015).  

It is clear from risk factor studies that bTB is a multifactorial disease; herd size, proximity 

to farm with a previous history of bTB, cattle movements were the most consistently 

identified risk factors in a review of herd-level risk factor studies (Skuce et al., 2012). The 

transmission of M. bovis in Great Britain occurs at multiple spatial scales; transmitted 

among cattle within a farm, between cattle and badgers and between contiguous farms 

at a local level, and among farms via cattle movements at a national level. Incorporating 

the interaction of infection at each of these scales makes the holistic modelling of the bTB 

epidemic very complex and computationally demanding. Brooks Pollock et al. (2014) 

constructed a dynamic stochastic model using approximate Bayesian computation that 

included within- and between-herd transmission of bTB based on national cattle 

movement and bTB testing data. Including the real animal movement network allowed 

farms to vary with respect to their contact rate with other farms and the mechanistic 

framework allowed the relative transmission pathways to be estimated. The model 

estimated that via their movements, some farms were responsible for many more 

infections than the majority of farms, acting effectively as ‘superspreader farms’, 

suggesting that if these farms could be identified, they might represent an opportunity for 

targeted surveillance and control strategies. 

Thesis outline 

The existence of farms clearly relies on their commercial viability, yet maximal productivity 

and efficiency can compromise biosecurity of farms and the health and welfare of animals. 

In this thesis, I examine features of the cattle industry at two spatial scales; between-farm 

trading networks and cattle-to-cattle interactions within farms and explore their 

relationship with animal disease, health, and welfare.  

First, in Chapter 2, I explore how the concept of superspreaders might be applied to 

livestock premises and the spread of infection between farms. I look at the components 
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of superspreading broken down into contact rate, infectiousness and duration of infection 

and discuss how these might contribute to a farm becoming a superspreader. I use bovine 

tuberculosis as the example to illustrate this concept. 

In Chapter 3, I describe and quantify the network of cattle movements within Great Britain 

over time from 2001 to 2015. Using network analysis techniques, I construct networks of 

farm to farm trades and identify that, similar to markets, some farms can also act as hubs 

in the static movement network by virtue of the number of cattle movements on and off 

their premises. I utilise the concept of contact chains to explore how connected farms are 

within the network and reveal that farms are quickly connected to thousands of others 

within short time periods. 

In Chapter 4, I test the hypothesis that the connections identified in contact chains are 

related to their risk of infection. Using the same approach as in Chapter 3, I calculate 

ingoing contact chains for all GB farms from 2012 to 2014, and additionally characterise 

the ‘source’ farms in the chain by individual farm bTB history and their bTB risk area for 

farms in England, or by country for farms in Scotland and Wales. I use a multivariable 

logistic regression model to evaluate the effect of the number and characteristics of 

source farms in ingoing contact chains on the odds of a bTB incident occurring on the 

root farm. 

In Chapter 5, I change to considering social networks of animals as opposed to trading 

networks of farms. I use network analysis as a tool to describe the social interactions of 

cattle on seven commercial dairy farms and combine the use of high-resolution proximity 

and GPS data of individual cattle. I compare the interactions of cattle in buildings and at 

pasture and examine individual variation in terms of the number and duration of their 

contacts. I also investigate how the network characteristics change when different 

temporal sections of the data are analysed. 

In Chapter 6, I investigate the relationship between cattle social interactions in terms of 

the time they spend with other cattle and milk yield and somatic cell counts, an indicator 

of udder health. I apply network analysis techniques to assess the extent of social 

preference in relation to characteristics of individual cattle. 
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Finally, in Chapter 7, my general discussion explores the themes of scale and temporal 

and spatial variation running through the thesis. I evaluate the usefulness of network 

analysis as a tool to describe infection transmission among cattle and among farms, and 

I show how my network analyses might be applied specifically to the challenge of bTB 

control in Great Britain, and more broadly to the management and control of other 

livestock diseases.   
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Chapter 2: Characterisation of potential superspreader 

farms for bovine tuberculosis 

 

This chapter has been submitted to Veterinary Research as: 

Fielding HR, McKinley TJ, Silk MJ, Delahay RJ, McDonald RA. Characterisation of 

potential superspreader farms for bovine tuberculosis.  

Abstract 

Variation in host attributes that influence their infectiousness and their contact behaviours 

can lead some individuals, known as ‘superspreaders’, to make disproportionate 

contributions to the spread of infections. Where heterogeneity exists in infection 

transmission, understanding the influence of individuals in an epidemic can be crucial in 

deciding where to direct surveillance and controls for greatest effect. In the epidemiology 

of bovine tuberculosis (bTB) in Great Britain, it has been suggested that a minority of 

farms, or herds, might act as superspreaders of Mycobacterium bovis, showing significant 

heterogeneity in their farm reproductive number - Rf. We identify characteristics of farms 

infected with M. bovis that potentially may lead to exceptional values in the three main 

components of Rf; contact rate, infectiousness, and duration of infectiousness, and 

thereby might characterise potential superspreader farms. Marked variation among farms 

in the scale of animal movements has been suggested as a driver of superspreading 

farms. We discuss this and consider the risk of those movements actually transmitting 

infection, governed by pathogen attributes, within-herd prevalence and characteristics of 

the animals being traded, which, in the case of bTB especially, may introduce further 

disparity in Rf. We emphasise the contributions of farm management and imperfect 

diagnostic testing to increased and persistent infectiousness, which may exacerbate the 

effects of other potential superspreader characteristics. Deployment of selective control 

methods on putative superspreader farms in Great Britain could yield the disproportionate 

disease control gains much needed in this costly epidemic.  
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Introduction 

In disease systems, superspreading individuals are defined by their tendency to generate 

many more secondary infections than other hosts (Lloyd-Smith et al., 2005) and thereby 

to exert a disproportionately strong influence on disease dynamics. Epidemics in 

populations with superspreaders tend to be larger and more ‘explosive’ when outbreaks 

occur, yet exhibit greater chances of infection dying out when the more numerous 

individuals with relatively low transmission rates are infected (Garske and Rhodes, 2008; 

Lloyd-Smith et al., 2005). As the heterogeneity of individual reproductive number (Ri – the 

number of secondary infections created from a single infected individual in a completely 

susceptible population) increases,  there is wider variation in potential epidemic size, but 

the usefulness of the population mean reproductive number (R0) decreases (Garske and 

Rhodes, 2008). Hence, epidemics have, for some diseases, been more effectively 

modelled by incorporating variation in Ri rather than assuming that the host population is 

homogeneous with regard to R0 (Lloyd-Smith et al., 2005; Stein, 2011).  

In the epidemiology of diseases of livestock, epidemics are often modelled using the farm 

as the epidemiological unit that acquires and spreads infection. The individual farm 

reproductive number, Rf, is thus defined as the number of secondary farms infected by a 

primary infected farm (Mardones et al., 2011) and seems to show the same variation as 

Ri, with a minority of farms making a disproportionate contribution to secondary cases 

(VanderWaal et al., 2015; Woolhouse et al., 2005), apparently driven primarily by their 

trading behaviour (Woolhouse et al., 2005). Rf has been calculated in epidemics of foot 

and mouth disease (FMD; Tildesley and Keeling, 2009), highly pathogenic avian influenza 

(HPAI; te Beest et al., 2011) and salmon infectious anaemia (Mardones et al., 2011). In 

FMD and HPAI models, a reduction in epidemic size was achieved by targeting control 

measures on farms with higher Rf, showing the importance and benefit of identifying and 

targeting superspreader farms. 

Whilst the impact of transmission heterogeneity has been evaluated for these highly-

transmissible diseases, its role in endemic infections has been less well developed, 

despite literature suggesting that superspreader farms may be important in their dynamics 

(Brooks Pollock et al., 2014) and that long incubation or periods of latency may allow 
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undetected infection to spread further between farms (Dubé et al., 2011). Brooks-Pollock 

et al. (2014) constructed a dynamic, stochastic, spatial model of bovine tuberculosis (bTB) 

in Britain, using farm movements from the Cattle Tracing System (CTS) and bTB testing 

results to fit the model. They suggested that just 10% of farms may be responsible for the 

majority of onward transmission to newly infected farms, implying that a disproportionate 

contribution from some superspreader farms may play an important role in this epidemic. 

BTB is caused by infection with Mycobacterium bovis and is an ongoing problem for the 

British cattle industry (Allen et al., 2018). Test and slaughter policies have, in the past, 

reduced incidence within cattle herds (Department for Environment Food and Rural 

Affairs, 2014), though since the 1980s increases in herd incidence have been 

accompanied by geographical spread from South-West England to areas in the North-

West and the midlands of England and South and West Wales (Brunton et al., 2015). 

Control of bTB costs UK taxpayers about £100 million annually and the financial and 

emotional impact on farmers is substantial (Department for Environment Food and Rural 

Affairs, 2013). In 2017, 43,564 bovids (Department for Environment Food and Rural 

Affairs, 2018) and 19,274 European badgers Meles meles (Department for Environment 

Food and Rural Affairs, 2017a), which can constitute a wildlife reservoir of the infection 

(Godfray et al., 2013), were culled as part of bTB control measures in England (Animal 

and Plant Health Agency, 2017). Cattle testing, predominantly using the Single 

Intradermal Cervical Comparative Tuberculin (SICCT) test, is currently mandatory on an 

annual basis in Wales and in the bTB High Risk Area (HRA) and Edge Area of England 

with some counties within the Edge area and potentially soon the HRA, subject to six-

monthly testing. Testing is required on a four-yearly basis in the Low Risk Area (LRA) of 

England and in Scotland, apart from some exempt farms in Scotland, where the country 

is classed as Officially Tuberculosis Free (OTF). A positive reaction to the SICCT test, or 

lesions consistent with bTB found at slaughter, triggers movement restrictions on the 

affected farm. Initially, their individual farm OTF status is suspended (OTF-S) and then 

withdrawn (OTF-W), upon detection of M. bovis in a culture sample. Brooks Pollock et al. 

(2014) suggest that the majority of new infections are caused firstly by movements, and 

secondly through the local environment. They report a skewed distribution such that a 
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small number of farms create a disproportionate number of cases, however, they do not 

elaborate further on what might characterise these particular farms.  

As bTB is a chronic, notifiable disease with mandatory control measures designed to find 

and eliminate disease, it might seem unusual to consider the existence of superspreader 

farms in this context. BTB superspreader farms are likely to present differently to 

superspreaders of more highly transmissible diseases and could transmit infections over 

long periods of time, in contrast to those which cause a steep rise in the epidemic curve. 

We should consider that we are not discussing commonalities but those circumstances 

that occur rarely, concern a small number of farms and that might manage to evade 

current control policies in the ways we will outline in this review. Much bTB research 

concerns herds that have had a bTB incident (and are therefore under movement 

restrictions), however we focus on those herds that may be infected with bTB but where 

infection has not been disclosed by testing and so are able to sell potentially infected 

cattle. The mechanisms by which farms might function as bTB superspreaders in terms 

of their infectiousness, are precisely the attributes which will make them difficult to 

identify.  

The transmission rate of an infection is governed by three components: contact rate, 

infectiousness, and duration of infectiousness (Fig. 2.1; VanderWaal and Ezenwa, 2016), 

offering a useful framework for discussion of how, by extreme traits in any or all of these 

three components, a superspreader might act. We first consider variation in contact rates 

among farms that arises from heterogeneity in the scale of cattle movements, both directly 

and as part of large and complex trading networks. Second, we study how the 

characteristics of M. bovis infection and of individual farms affect the risk of those 

movements transmitting infection, effectively governing the ‘infectiousness’ of farms. 

Third, we look at factors specific to bTB, such as imperfect diagnostic testing (de la Rua-

Domenech et al., 2006), the  common absence of clinical symptoms in infected animals 

in Great Britain (Neill et al., 2001), and environmental sources of infection, including 

wildlife, and how these might contribute disproportionately to the prolonged duration of 

bTB infection on some farms. We explore how their characteristics may differ from those 

of a ‘classic’ superspreader and suggest how this makes them problematic to identify. 
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Finally, we discuss what control options might be particularly appropriate for putative 

superspreader farms, within current bTB control policies in Great Britain. 

 

 

 

Figure 2.1. What makes a superspreader farm? Venn diagram showing factors involved in 

extreme components of Rf and the increasing risk of superspreading activity when these factors 

are combined. These factors are not mutually exclusive and interactions occur between these 

components, for example the product of infectiousness and contact rate are typically combined to 

describe the ‘transmission rate’ and factors affecting both infectiousness and the duration of 

infectiousness such as immunity and co-infection are common. 
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Herd contact rate 

The buying and selling of cattle and their movements among farms are the most obvious 

and comprehensively-recorded type of interaction among cattle herds, and constitute a 

major potential mechanism for pathogen transmission among farms (Gates, 2014). 

Heterogeneity in these movements (VanderWaal et al., 2015) is likely to be a driving force 

behind variation in Rf (Woolhouse et al., 2005) and quantification of this trait has been 

effective in identifying potential superspreaders. Whilst the definition of a superspreader 

is specifically related to a tendency to seed a disproportionate number of secondary 

infections, achieved in this scenario via selling livestock to an comparatively high number 

of farms; here we also discuss trading as having an impact on the potential for a 

superspreader farm to become infected, e.g. increased exposure to infection through 

purchasing livestock from multiple sources. This could enable a farm to either exert its 

superspreader effect via disproportionate outward connections or seed disproportionate 

numbers of secondary infections cumulatively by virtue of being infected or continually re-

infected for a long duration of time. Multiple analyses of farm trading networks have found 

a power-law distribution (Clauset et al., 2009) for in-degree (the number of farms animals 

are purchased from), out-degree (the number of farms animals are sold to), and overall 

degree (the sum of them both) in livestock movement networks, characterised by many 

premises with few contacts and a few premises with a disproportionately high number of 

contacts (Dutta et al., 2014; Mweu et al., 2013; Rautureau et al., 2011). These directed 

centrality measures can be used as proxies for a farm’s ability to acquire (in-degree) and 

transmit (out-degree) disease (Dubé et al., 2009). For example, the in-degree of a farm 

was found to relate to herd seroprevalence of bovine coronavirus in Sweden (Frössling 

et al., 2012), and bTB in East Africa (Sintayehu et al., 2017) and many studies have 

shown that individuals in highly connected positions in the contact network are more likely 

to be infected (Corner et al., 2003; Godfrey et al., 2009). However there have also been 

studies involving M. bovis which suggest the opposite effect (Drewe, 2010; Weber et al., 

2013b), revealing the complex nature of this particular infection. Second order 

connections (the contacts of contacts) should also be examined as they can influence the 

role an individual might play in disease spread; for instance in human sexual contact 

networks, the risk of acquiring human immunodeficiency virus infection was better 
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predicted by the behaviours of partners of partners than by the individual’s first order 

partners alone, and consequently was also preferable for estimating onward transmission 

(Ghani and Garnett, 2000). Eigenvector centrality, a measure that considers both direct 

and second order contacts, was helpful in determining how influential a farm might be in 

the spread or maintenance of a theoretical, highly infectious epidemic in Italian cattle 

movement networks (Natale et al., 2009). In a study of FMD outbreaks the reproduction 

number of second order contacts provided good predictions of epidemic size and, when 

combined with Rf, provided good estimation of heterogeneities in dynamics of FMD 

outbreaks (Tildesley and Keeling, 2009). Furthermore, Fu et al. (2015) found that 

combining global clustering and centrality metrics of simulated epidemics, with node 

centrality measures performed well in detecting superspreading nodes. The measures 

we have mentioned thus far however, only analyse static networks, which do not consider 

the temporal sequence of events. The analysis of dynamic networks is less well 

developed as it is methodologically and computationally more complex, however in some 

cases it is crucial to our understanding of how a pathogen might be transmitted through 

a network (Enright and Kao, 2018), allowing the possibility of transmission between nodes 

only when the links between them are present. The calculation of time-ordered paths or 

‘infection chains’ is one such technique applied in movement networks which respects 

temporal order and gives an indication of the influence of individual nodes. The ‘ingoing 

infection chain’ is the network of farms connected to a farm as a result of movements onto 

that farm (Nöremark et al., 2011), and represents the possible sources that may have 

contributed to acquiring infection during a specified period. Typically these chains are 

positively skewed with many farms having small contact chains but some having very 

extensive chains (Fielding et al., 2019; Nöremark et al., 2011), similar to the pattern found 

for direct contacts on static networks. These very extensive chains of farms aggregated 

over a period of 5 years have been associated with increased risk of M. bovis infection in 

French cattle herds (Palisson et al., 2016), showing that chain magnitude may be useful 

in the predicting which farms might be more at risk of infection (by their ingoing infection 

chain) and those that might be more able to spread chronic infections (via their outgoing 

contact chain). In choosing the time period over which to study the network, the 

independent timescales of the movement network and the pathogen should be 
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considered (Kao et al., 2007). If bTB spreads very slowly in comparison to a quickly 

evolving network, it may be that the contact networks we need to select become so 

saturated that they actually approximate towards homogenous mixing (Enright and Kao, 

2018), making it more difficult to identify potential superspreader farms. However, as 

advances in computational power and dynamic network theory are made, it may become 

more feasible to interrogate these large networks. For bTB, there is a significant amount 

of data available on testing results and cattle movements, however we are constrained 

by unknown pathogen characteristics such as incubation, infectious and latent periods. 

The use of approximate Bayesian computation techniques (Kosmala et al., 2016; 

McKinley et al., 2009) and dynamic network models (Silk et al., 2017b) are likely to be 

useful in tackling these modelling challenges. 

Herd infectiousness  

While the number of movements and trading partners will undoubtedly be a principal 

driver to increase the influence of certain premises, farm and pathogen factors govern 

whether those movements actually transmit infection, i.e. the infectiousness of the farm. 

For highly transmissible infections with high within-herd prevalence, it is more likely that 

any movement would transmit infection regardless of the farm characteristics, however, 

where the disease spreads slowly within a herd, as is typically the case with bTB, the risk 

of selling an infected animal is more variable and farm factors become more influential. 

We now discuss farm factors, such as disease prevalence, herd immunity, presence of 

multiple infections, and the type of animals being sold, that can all influence the chances 

of selling infected animals.  

Supershedders, highly infectious individuals releasing more infectious agents than others 

in their group (Chase-Topping et al., 2008), can increase herd prevalence. Their presence 

in the herd also reduces the efficacy of whole-herd control measures, due to 

heterogeneity generated in transmission rates (Lanzas et al., 2008). Supershedding can 

be driven by genotype, behaviour, signalment (age, sex, and breed; Craft, 2015), co-

infection (Lass et al., 2013), immunosuppression (Stein, 2011), enhanced susceptibility, 

or strain pathogenicity of the infecting agent (Matthews et al., 2009). Heterogeneity in 

bacterial shedding has been found in cattle infected with Escherichia coli O157 (Chase-
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Topping et al., 2008), Salmonella enterica (Lanzas et al., 2008), and Mycobacterium 

avium subspecies paratuberculosis (MAP; Pradhan et al., 2011). Supershedders of MAP, 

the causative agent of Johne’s disease in cattle, are suggested to cause passive 

infections in other cattle within the herd, which are then able to shed and spread the 

bacteria, but remain tissue culture negative (Pradhan et al., 2011). Stress from 

movements and from weaning has been implicated as a risk factor for supershedding of 

E. coli O157 (Chase-Topping et al., 2007). Supershedders of bTB have been identified in 

red deer and badgers (Santos et al., 2015; Wilkinson et al., 2000). In cattle, the most likely 

route to being a supershedder of bTB, i.e. an animal excreting more pathogen than others, 

would be one with late-stage undetected infection (Houlihan et al., 2008), which we 

discuss below when considering diagnostic tests. 

The risk of movements transmitting infection depends on the the type of animal being 

traded. Breeding cattle seem to be associated with a higher risk of various infections than 

other types of cattle. Gates et al. (2014) found that the purchase of cows that had calved 

made a disproportionate contribution to Bovine Viral Diarrhoea (BVD) infection risk on 

that farm. A risk factor analysis showed that the presence of supershedders of E. coli was 

more likely if the farm bought in female breeding cattle (Chase-Topping et al., 2007). In 

contrast, incidents of bTB were more likely if a herd purchased a bull (Griffin et al., 1993). 

The trading of male or female breeding cattle might present a relatively greater risk of 

infection transmission. 

At times, herd make-up and farm practices may interact to drive variation in herd 

infectiousness. Some fattening herds may be more at risk of higher infectiousness, and 

therefore be more likely act as superspreaders, by the nature of their practices. Those 

herds rearing animals to sell directly to slaughter do not pose a disease transmission risk, 

however it is commonplace in Great Britain for animals to be sold as ‘stores’ (animals 

reared for beef but not ready for slaughter) and passed between multiple farms (Robinson 

and Christley, 2007). This type of herd tend to house cattle from different farms (usually 

purchased via markets (Robinson and Christley, 2007). Mixing of cattle from many source 

farms can have physiological effects that may increase susceptibility to infections 

(Proudfoot et al., 2012). Combined with exposure to a wide range of pathogens, this can 
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often facilitate within-herd transmission of multiple infections (Griffin et al., 2010). 

Subsequently, co-infection can alter host immune responses and increase pathogen 

shedding (Lanzas et al., 2008), additionally increasing herd infectiousness. Vaccination, 

diagnostic testing, good management, and sourcing of animals from fewer, disease-free 

farms may all reduce this risk, however, for diseases such as bTB where vaccination is 

not available and tests have low sensitivity, these risks are more difficult to manage.  

A final farm-level characteristic that will influence both herd infectiousness and its duration 

is husbandry and hygiene. Farm conditions can potentially lower resistance to infection 

and hence increase herd infectiousness. Proudfoot et al. (2012) describe the direct impact 

of the physical environment on the individual (poor hygiene, exposure to multiple 

pathogens, injury) which increases the risk of disease. They also note the indirect impact 

of social stressors (overcrowding, mixing of groups, isolation) on host physiology 

(immunomodulation, low resilience, chronic inflammation), which can then increase risk 

of infection and disease progression. Winter housing of cattle can cause social stress due 

to mixing of groups and crowding and, where there is also poor ventilation, transmission 

of airborne pathogens can increase (Gorden and Plummer, 2010). Increased 

seroconversion of dairy cattle to bovine Herpesvirus 1 has been associated with winter 

housing (Woodbine et al., 2009) and there is some evidence for housing as a risk factor 

for bTB transmission (Vial et al., 2015). Although most bTB incidents now have very few 

reactors (Animal and Plant Health Agency, 2017), suggesting low within-herd 

transmission, the sharing of a confined, poorly ventilated environment by supershedders 

or many high-risk cattle and susceptibles may be sufficient to cause a superspreading 

event within a farm (Lloyd-Smith et al., 2005), and thus increase herd infectiousness.  

Duration of infectiousness 

Prolonged infectiousness of a herd, through misdiagnosis (of novel infections, or rare 

infections where more common infections are assumed at first), undetected infections (if 

asymptomatic; Drosten et al., 2003), or poor test sensitivity, can facilitate the spread of 

disease. In the case of bTB infection in Great Britain, most infections do not present with 

clinical signs and the variable sensitivity of routine SICCT testing can miss infected 
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animals. Combined, these factors can lead to farms being infectious for long periods of 

time, giving these farms more opportunity to sell on infected animals. 

The infectious period of livestock can be managed by treatment, vaccination, or culling 

(Thurmond, 2003). Decisions on whether and how to apply these control methods are 

generally based on results of diagnostic testing. However, tests for M. bovis often have 

low sensitivity, which can be markedly lower in certain circumstances, allowing some 

herds to have an extended infectious period and thereby be able to act as 

superspreaders.  

Co-infection with pathogens such as bacteria, helminths and viruses may alter the host 

response to infection and host infectiousness (Lass et al., 2013) but can also alter the 

non-specific immune responses measured by diagnostic tests. In cattle co-infected with 

liver fluke Fasciola hepatica and M. bovis, shifts in immunity from T-helper cell 1 to T-

helper cell 2 responses have been implicated in reducing the immune response to the 

tuberculins used in SICCT testing in England and Wales (Claridge et al., 2012). However, 

another study in Northern Ireland found no significant relationship between liver fluke and 

response to the SICCT test (Byrne et al., 2018), and therefore further research is 

warranted. MAP is a chronic enteric infection affecting many cattle in Great Britain (Animal 

and Plant Health Agency, 2015a). There have been several experimental studies 

indicating that co-infection with bacteria in the M. avium complex reduces the sensitivity 

of SICCT and gamma interferon (IFN-γ) testing, through cross reaction of antigens and 

an increase in response to the comparative avian tuberculin injection (Álvarez et al., 

2009). Evidence of further progression of M. bovis infection was found in cattle positive 

to both the M. bovis and M. avium purified protein derivative injected at SICCT testing 

than those with only an M. bovis reaction (Byrne et al., 2018). Questionnaire data 

suggested that dairy farms that had experienced MAP infection in the last 12 months were 

4.7 times more likely to have a bTB incident (Broughan et al., 2016b). Bovine Viral 

Diarrhoea Virus (BVD) is widespread in England and Wales (Charleston et al., 2001) and 

immunosuppression in acute viral infection leaves animals susceptible to concurrent 

infections. Animals infected with M. bovis and acute BVD infection showed suppression 

of IFN-γ production when stimulated with tuberculin (Charleston et al., 2001) that has 
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been associated with a particularly severe outbreak of bTB in a group of calves (Monies, 

2000). However, recent studies in Northern Ireland have found no positive association 

between BVD infection and bTB infection at an individual or herd level (Byrne et al., 2018, 

2017). In summary, co-infection with certain pathogens can lead to changes in the 

performance of diagnostic tests which reduce their chance of detecting or confirming 

infection, and subsequently may leave a reservoir of infection in the herd. Herds with high 

prevalences of these diseases have a higher chance of prolonged infectiousness 

increasing the risk of them becoming superspreader farms. 

Immune responses change during the course of disease progression and the host’s 

lifetime and diagnostic tests can therefore vary in their performance, depending on when 

the host is tested (Schukken et al., 2015). For some infections, longitudinal testing is 

required to increase test performance where single test results are not sufficiently robust 

(Schukken et al., 2015). As M. bovis infection in cattle progresses, the initial cell-mediated 

immune response wanes and some infected animals can become unresponsive or 

‘anergic’ to SICCT testing (Neill et al., 2001). Undetected by routine tests, these animals 

remain in the herd, and over time may develop severe lesions and the capacity to 

disseminate infection in the herd, acting as supershedders (Houlihan et al., 2008).  Annual 

SICCT testing in areas of higher bTB risk means that cattle should typically be detected 

before the natural cell-mediated response wanes, so the number of naturally-anergic 

cattle in Great Britain is likely to be low. However, their potential to persist undetected in 

an infectious state may be epidemiologically significant. In addition to the natural 

progression of infection, the sensitivity of the test may decrease over time due to repeated 

exposure to tuberculin (Coad et al., 2010), for instance in prolonged bTB incidents where 

herds are SICCT tested at 60 day intervals. Temporary anergy to the SICCT test can also 

develop in periods of stress, around parturition (Li, 2016), and when corticosteroids are 

administered (Phillips et al., 2002), allowing evasion of diagnosis if testing is performed 

at this time. Some animals not fully anergic may exhibit a partial cell-mediated response 

to the SICCT test and appear as inconclusive reactors (IRs). These animals are tested 

60 days later and if they test negative (as one would expect of the temporarily anergic 

animals) can remain in the herd. However, an Irish study found that IRs which retest 

negative after 60 days and remain in the herd have 12 times greater risk of testing positive 
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at the next routine SICCT test or at slaughter (Clegg et al., 2011). This suggests that they 

are false negatives at retesting, perhaps due to co-infection, anergy, or test sensitivity, 

and therefore pose a prolonged risk of infection spread within the herd. In England, as of 

2017, these animals must not be moved off the farm to reduce the chance of further 

disease transmission between-herds (Department for Environment Food and Rural 

Affairs, 2017b), however the risk of within-herd transmission remains. Prior to 2018, the 

SICCT test and the IFN-γ test were the only ante-mortem tests approved to diagnose bTB 

in British cattle, both detecting cell-mediated immunity, however changes to GB 

legislation now allows the exceptional use of a non-validated test, which detects 

antibodies to M. bovis, if they are present in these anergic animals (Animal and Plant 

Health Agency, 2018c). 

Although local transmission is not necessarily a superspreading trait in isolation, its 

combination with a high contact rate or high infectiousness may enable a superspreader 

farm to exist and focusing on single species or single transmission paths is unlikely to 

fully capture infection dynamics for diseases with more than one route of transmission or 

multiple hosts (Brooks Pollock et al., 2015). Farm-to-farm contact at boundaries, 

transmission from wildlife, fomites, and vectors are important sources of infection that can 

contribute to the persistence of infection on a farm (Sibley, 2010), in addition to livestock 

movements and undetected infections. Local farm density, proximity to an infected farm, 

and presence of biosecure boundaries have been used to estimate local disease spread 

in FMD epidemics (Keeling et al., 2001). Brennan et al. (2008) studied the contacts of 

cattle farms in North-West England in respect to contractors and companies, shared 

equipment, and employees. They found that the frequency of contacts in this network 

exhibited the same heterogeneity as found in animal movements. For bTB specifically, 

local spread between neighbouring cattle or wildlife is considered important (Brooks 

Pollock et al., 2014).  A study of M. bovis transmission in France, where the infection is 

rare, combined the cattle movement network with a ‘spatial neighbourhood’ based on 

geographic proximity of farms (Palisson et al., 2016).  They estimated that 73% of 

infection (the population attributable fraction) could be removed if local transmission was 

eliminated. Spatial clustering analysis of bTB data from England in 2005 showed only 

weak evidence for clustering of disease on a county level (Green and Cornell, 2005). 
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However, herd-level risk factor studies have found that risks of bTB are greater for farms 

whose neighbours have a history of bTB (Gardy et al., 2011). Badgers infected with M. 

bovis represent a potential source of transmission to cattle, most likely via indirect contact 

at latrines and via contamination of pasture and feed (Woodroffe et al., 2016). The 

persistence of infection in local badgers may therefore facilitate persistence in cattle, 

particularly where transmission occurs in both directions, thus creating a cycle of 

reinfection. In addition, the longer a pathogen is able to survive in the environment, the 

more opportunity there is for maintaining infection within the herd.  If present, M. bovis 

can survive in infected cattle faeces in slurry for up to 6 months (Scanlon and Quinn, 

2000) and on pasture for 1-6 months (depending on season; Williams and Hoy, 1930). 

The application of slurry from infected farms may present a risk of bTB persistence on 

infected farms, and could be a source of infection on uninfected farms through 

aerosolisation of bacteria when slurry is applied to nearby fields or use of slurry 

contractors where equipment is not disinfected between farms.  

 

Identification of superspreader farms and targeted control - where should we direct 

effort for most efficient and most effective controls? 

In addition to one of these extreme components of Rf, a superspreader must also be 

infected and have some contact with other hosts. For example, if infection is removed 

from a farm with a high contact rate, or if a highly infectious farm no longer contacts other 

farms (e.g. movement restrictions have been applied), they can no longer function as 

superspreader farms, however they might still be considered to hold superspreading 

potential. It might still be prudent to target these potential superspreader farms for 

additional surveillance if the uninfected farm is likely to become infected (i.e. large herd, 

higher-risk area or previous bTB history) or be harbouring undetected infection, or if the 

isolated farm is likely to make connections with other farms. Control measures should suit 

the specific characteristics of each farm and address the potentially transient nature of 

this phenomenon. The three components of Rf can combine to increase the risk of 

superspreading occuring (Fig. 2.1), and therefore increase the impact of an individual 

farm on disease dynamics.  In this section we look at which existing control measures 
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and which novel approaches might be used to target superspreader farms, should they 

be deemed influential in the dynamics of the bTB epidemic.  
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Figure 2.2. Schematic to highlight the potential for superspreader behaviour associated with farms 

in animal movement networks having high in-centrality and/or high out-centrality and how they 

might combine to result in high potential for a farm to act as a superspreader. Points represent 

farms and the shading density increases to represent more farms at an individual point. 

The identification of superspreaders can provide an opportunity to focus or intensify 

control measures such as treatments, vaccination, isolation, restrictions, to gain 

disproportionate benefits. Lloyd-Smith et al. (2005) calculated that where half of all control 

effort is focused on the 20% of population responsible for the majority of disease 

transmission, it is up to three times more effective than random control. Livestock markets 

and some farm premises have a high throughput of animals, termed ‘hubs’ in networks 
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analysis (Robinson and Christley, 2007), and are especially important in governing the 

size of epidemics of highly transmissible infections. Emergency disease control measures 

targeted at these hubs have been effective in limiting epidemic size in FMD and HPAI 

outbreaks (Green et al., 2006; Molia et al., 2016). Büttner et al. (2013) found in pig 

movement networks that a 75% reduction in giant component size in the network, which 

can be used as a proxy to measure the extent of epidemics, was achieved by removing 

the smallest proportion of farms (1.4%) when based on the number of farms to which they 

sold animals (out-degree). The second smallest proportion of farms (1.5%) to be removed 

was achieved by using the outgoing contact chain. Models based on disease transmission 

through cattle movement networks have shown that removal of the 20% of farms 

contributing most to R0 resulted in a 97-99% reduction of R0 (Volkova et al., 2010a). These 

studies have targeted the upper distribution of individual reproductive numbers or out-

degree to effectively reduce estimates of final epidemic size, showing that focusing 

resources on these relatively small but highly influential groups can be more effective 

than random population-wide control. 

Ideally livestock movement restrictions should facilitate a reduction in high-risk trading for 

an appropriate time period, whilst maintaining the ability to move low-risk stock onto and 

off the farm where necessary. More bespoke restrictions between trading partners are 

discussed by Gates and Woolhouse (2015), where farms with high in-degree (mixing of 

animals from multiple sources) are prevented from selling to farms with a high out-degree, 

thereby reducing the inherent risk associated with this behaviour. These trading 

restrictions decrease the likelihood of similar high-risk trade paths reconfiguring and allow 

the farm other outlets for trade to sustain their business. If farms are completely removed 

from a network, the farms connected to them tend to find new partners with which to trade 

(Brouwer et al., 2012). However, these may have a similar risk of disease transmission 

as the original partners, creating a new structure as risky as the old one (Brouwer et al., 

2012). For bTB control, movement restrictions are placed on the individual farm when a 

reactor is found, and are later lifted conditional on two consecutive clear SICCT tests.  

However, undetected infection on the farm (Conlan et al., 2012) may mean these 

restrictions are lifted prematurely. Extended movement restrictions on those farms with 

recurrent bTB incidents, high out-degree or an exceptionally large outgoing contact chain, 



53 
 

might provide an effective, risk-based addition to the current reactive approach. Limiting 

sales from high-risk farms to only approved finishing units (and to slaughter thereafter) or 

direct to slaughterhouses may be effective in limiting the spread of infection, as is 

currently allowed for some farms under bTB restrictions (Animal and Plant Health Agency, 

2014b). 

To discourage trading from higher to lower-risk farms, herds can be given a risk score 

based on various predictive measures. Farms in New Zealand have a designated bTB 

status score from 1 to 10, denoted by the number of years since the last bTB incident, 

that defaults to 10 if they have never had a bTB incident. Their score is, however, 

superceded by the lowest score of a farm with which they trade (Enticott, 2014), thereby 

encouraging farmers to trade with ‘less risky’ farms. In Britain, Adkin et al. (2015) 

developed a scoring system based on the previous bTB history of the farm, movements 

from higher risk areas, local bTB prevalence and herd size, to inform risk-based 

purchasing and give farmers the ability to make informed decisions. Although this specific 

risk-score has not yet been used in practice to any significant extent, the Cattle Health 

Certification Standards (CHeCS) scheme have launched a fee-driven, voluntary bTB 

accreditation-scheme based similarly on years free of bTB incidents, but not influenced 

by trading history. These schemes attempt to lower the risk of purchasing cattle, yet allow 

the farm as a business to continue. However, the success of such voluntary schemes is 

clearly dependent on industry uptake, which up to 2018 in Britain had been very low. 

Surveillance is crucial to controlling infection within and between-herds. Targeting existing 

surveillance efforts at farms with the potential to become superspreaders, by means of 

their high connectivity, could therefore potentially reduce their impact. Frӧssling et al. 

(2014) found that using in-degree and ingoing infection chains to target surveillance 

detected more positives than random approaches. For bTB, it is crucial improve detection 

of infected animals on potential superspreader farms. Increasing the frequency of routine 

testing on high-risk superspreader herds, reduces the time to detection and removal or 

treatment of animals, and so can reduce the duration and intensity of infectiousness at 

the farm scale. The sensitivity of routine testing can also be increased by using the severe 

interpretation of the SICCT test (decreasing the cut-off criteria which defines reactors), a 
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non-comparative cervical Single Intradermal Test (see (de la Rua-Domenech et al., 

2006), or the IFN-γ test. However, increased sensitivity is typically associated with a loss 

of specificity, which if applied across a very large population would lead to unacceptably 

high numbers of false positive reactors being culled and the imposition of unnecessary 

restrictions upon farm business. The IFN-γ test is used in addition to the SICCT when 

specific criteria are met and the test can be particularly useful in detecting bTB-positive 

animals that have become desensitised to the SICCT test as a result of repeated testing 

(Coad et al., 2010), those co-infected with other Mycobacterium spp., and animals in early 

stages of infection (de la Rua-Domenech et al., 2006). Use of more specific antigens such 

as ESAT-6/CFP10 in the IFN-γ test may offer additional diagnostic power in herds with 

animals vaccinated with Bacillus Calmette-Guerin (BCG; van Pinxteren et al., 2000) 

and/or known co-infection with other mycobacteria (Aagaard et al., 2010), although 

sensitivity is unknown in this latter group. Targeted use of more sensitive and less specific 

measures or combined testing protocols, on superspreader farms, or farms which hold 

potential to be superspreaders would minimise the impact on the wider industry whilst 

potentially maximising disease control benefits. 

Vaccination can be effective in limiting spread within a homogenous population. However, 

as heterogeneity of Ri increases, vaccine efficacy must be higher to achieve the same 

level of control (Lanzas et al., 2008). Therefore, preferential targeting of potential 

superspreader farms for vaccination might be better directed towards those farms which 

‘superspread’ via higher contact rates rather than higher infectiousness. In models where 

80% of individuals with high contact rates were vaccinated against influenza, there was 

a 91% disease reduction predicted for the whole population (Weycker et al., 2005). The 

use of BCG vaccination for control of bTB in cattle is currently prohibited under EU law 

(European Economic Community, 1977). Variable efficacies have been reported for the 

use of BCG vaccine in cattle (Waters et al., 2012) and its use in combination with the 

existing test and slaughter policy requires a test that differentiates infected from 

vaccinated animals (DIVA; Conlan et al., 2015). Although DIVA testing is being developed 

(Swift et al., 2016), there are concerns regarding low specificity (Conlan et al., 2015), 

economic viability, and the practicalities and regulation of field trials to prove reduction of 

transmission (Conlan et al., 2018). The use of vaccination against M. bovis in UK cattle 
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remains speculative, yet if it became available some superspreader farms may represent 

effective targets for vaccination to reduce disease spread. 

Conclusion 

There are mechanisms, within current farm practices and the current bTB controls, which 

could feasibly allow the existence of bTB superspreader farms. Farms with influential 

roles in cattle movement networks are able to sell animals to many different premises. 

The risk of these animals being infected might be increased by the trade of certain animals 

and where farm management favours within-herd spread. The opportunity to sell infected 

animals increases with the duration of infection on the farm and this can be increased by 

factors which impair the sensitivity of routine testing and continual reinfection from within 

the herd, or local sources. In a minority of cases, we expect that a high contact rate might 

be combined with high infectiousness to create a superspreader farm. The challenge will 

be to identify these disproportionately important farms in ‘real time’. Where the three 

aspects of superspreading vary over time, superspreading may be a transient 

phenomenon. It is important that the additional restrictions placed on these farms occur 

only while they are at a high risk of transmitting disease, and ideally in a way that 

minimises impact on individual farm businesses. We have given examples where some 

network characteristics might be used to identify potential superspreaders. However, 

determining the most salient measures appropriate to a chronic endemic disease, such 

as bTB, evaluation of their ability to predict future behaviour will require further analysis. 

It is probable that the operators of farms that may be exhibiting superspreader 

characteristics are unaware of their potential wider impact on bTB disease dynamics. 

Further research may reveal whether identification of these farms can encourage such 

farmers to adapt their practices and mitigate potential risks for the benefit of the majority. 

The categorization of some farms into this higher-risk bracket is intended to create an 

opportunity for greater resources to be directed at these farms. It is not intended to 

‘remove’ or ‘eliminate’ these farms (or their practices) as to do so could represent a gross 

misunderstanding of both disease dynamics and of the cattle industry, and may not 

deliver the desired results in the long term. The aim of identifying superspreaders is to 

better understand the mechanisms by which they might operate and to adapt control 
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methods to exploit their influential role in disease transmission, thereby enhancing control 

of the epidemic. 
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Chapter 3: Contact chains of cattle farms in Great Britain 

 

This chapter has been published in full as: 

Fielding HR, McKinley TJ, Silk MJ, et al. (2019) Contact chains of cattle farms in Great 

Britain. Royal Society Open Science 6:180719.  

Abstract 

Network analyses can assist in predicting the course of epidemics. Time-directed paths 

or ‘contact chains’ provide a measure of host-connectedness across specified time-

frames, and so represent potential pathways for spread of infections with different 

epidemiological characteristics. We analysed networks and contact chains of cattle farms 

in Great Britain using Cattle Tracing System data from 2001–2015. We focused on the 

potential for between-farm transmission of bovine tuberculosis, a chronic infection with 

potential for hidden spread through the network. Networks were characterised by scale-

free type properties, where individual farms were found to be influential ‘hubs’ in the 

network. We found a markedly bimodal distribution of farms with either small or very large 

ingoing and outgoing contact chains (ICCs and OCCs). As a result of their cattle 

purchases within 12 month periods, 47% of British farms were connected by ICCs to 

>1000 other farms and 16% were connected to >10,000 other farms. As a result of their 

cattle sales within 12 month periods, 66% of farms had OCCs that reached >1000 other 

farms and 15% reached >10,000 other farms. Over 19,000 farms had both ICCs and 

OCCs reaching >10,000 farms for two or more years. While farms with more contacts in 

their ICCs or OCCs might play an important role in disease spread, farms with extensive 

ICCs and OCCs might be particularly important by being at higher risk of both acquiring 

and disseminating infections. 
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Introduction 

Pathogen transmission among hosts may occur by a variety of routes, from different types 

of direct contact, to indirect contact via vectors, fomites and the environment (Warren et 

al., 1982). For livestock, animal movements between farms can be considered to form a 

directional link from the source to the destination farm, which may therefore indicate 

potential pathways for direct and indirect transmission of pathogens (Carrique-Mas et al., 

2008; Gates et al., 2014, 2013a; Gilbert et al., 2005). Conceiving of farms as nodes and 

animal movements as edges in network analyses has been well developed in theory 

(Keeling and Eames, 2005), and has been applied to networks of holdings in multiple 

livestock species (Dutta et al., 2014; Green et al., 2011; Lentz et al., 2016; Natale et al., 

2009; Nöremark et al., 2011; VanderWaal et al., 2015). Centrality measures can indicate 

the importance of a given farm within a trading network (Bell et al., 1999), and preferential 

protection, treatment or isolation of more central, or more influential, farms might enhance 

disease control measures (Natale et al., 2009; Rautureau et al., 2011; Volkova et al., 

2010a). Network measures such as a farm’s degree and strength (the number of other 

farms with which they trade and the number of animals traded, respectively) have been 

associated with infection risks (Christley et al., 2005a). 

In a structured population, the transmission of infection depends on the frequency and 

nature of interactions among individuals and groups. Cross et al. (2005) noted that for a 

fixed frequency of movements, an acute disease with a short infectious period 

encountering a sparse network will be unable to spread extensively before extinction. 

However, a chronic disease in the same network might be able to persist and disseminate 

more widely, if it has a long infectious period, relative to the frequency of between-group 

interactions (Cross et al., 2005). Therefore, investigation of such networks requires 

consideration of the temporal aspects of infectiousness of the pathogen, relative to the 

frequency of movements (Vernon and Keeling, 2009). Static network analyses can be 

particularly useful in evaluating disease transmission where this period of risk is quantified 

on the same temporal scale as the network (Büttner et al., 2016a; Frössling et al., 2014; 

Kao et al., 2007). For example, in studying transmission of Foot and Mouth Disease 

(FMD), which has an incubation period of a few days (Orsel et al., 2009), networks 
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encompassing one week of movements are appropriate. Whereas for a chronic infection 

such as bovine tuberculosis (bTB), infection can be asymptomatic or latent for months to 

years (Pollock and Neill, 2002; Probst et al., 2011), and a longer-term perspective is 

required. In reality, the edge of a static network permanently depicts what is truly a 

transient event, persisting as long as infection does, either in the incoming animal, a 

contaminated environment, or via secondary infections in other livestock or wildlife. It has 

been shown, in networks constructed from movements of adult dairy cows, that analysis 

of groups of statically connected nodes consistently overestimated the epidemic size of 

highly transmissible diseases, whereas measures that took into account the temporal 

order of movements provided a lower and more realistic estimate (Dubé et al., 2008; 

Vidondo and Voelkl, 2018). The concept of contact or infection chains has been 

reasonably well-developed in the field of veterinary epidemiology (Melmer et al., 2018; 

Nöremark, 2010; Nöremark et al., 2011) and the wider literature contains many examples 

of essentially the same approach, such as: time-directed paths (Holme and Saramäki, 

2012), source counts (Riolo et al., 2001), accessible worlds (Webb, 2006), output 

domains (Dubé et al., 2008), and reachability (Dutta et al., 2014; Holme, 2005; Schärrer 

et al., 2015). All of these terms describe a temporally sequential network to identify the 

nodes that are accessible through edges to-or-from each index node within a selected 

time period. In this study, we have used the term contact chain for consistency with the 

current literature in our field. Ingoing contact chains (ICCs) identify the number of farms 

that could potentially transmit infection to the index farm over a defined period arising 

from the purchase and importation of animals. Outgoing contact chains (OCCs) quantify 

the number of ‘downstream’ farms that could potentially acquire infection from the index 

farm through its onward sale and export of animals. This structure of contacts may 

therefore help to predict the risk of the index farm acquiring and then passing on infection 

and to characterise patterns of risk across a national herd. Of course, not all movements 

result in the transmission of infection; at least one animal moved per edge must be 

infected and have the prospect of becoming infectious, to have a chance of infecting 

animals on other farms down the chain. Crucially, in our study we do not explicitly model 

transmission of infection and we use the term ‘contact’ chain, rather than ‘infection’ chain, 

representing only the potential for infection spread. For infections that can effectively be 
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clinically hidden, such as bTB, contact chains can provide a scale, extent and map of 

potential transmission routes, which may improve our understanding of epidemiology, 

beyond that available through studying direct contacts. In a five-year study of the French 

cattle movement network, where bTB is rare (relative to the UK), farms in the highest 

quartile of ICCs traded indirectly with up to 84% of farms in the network (Palisson et al., 

2016). It was shown that these farms in the highest quartile of ICCs were more likely to 

experience a bTB outbreak (Palisson et al., 2016), suggesting a link between the 

connectedness of farms through the purchase of animals and their risk of acquiring this 

chronic infection. Similarly, the magnitude of ICCs has been associated with the risk of 

acquiring an acute infection, bovine coronavirus, on Swedish cattle farms (Frössling et 

al., 2012). 

The cattle industry in Great Britain relies heavily on trade in animals among beef and 

dairy producers. Trading occurs privately, through a dealer or via livestock markets 

(Robinson and Christley, 2007) and each movement of a bovine animal is recorded by a 

national Cattle Tracing System. These records have been used to study both network 

structure and cattle demographics (Vernon, 2011); Green et al. (2006) analysed the initial 

spread of the FMD outbreak in 2001, before movement restrictions were implemented, 

revealing that livestock movements could result in widespread dissemination of the virus 

and that the timing of virus introduction affected epidemic spread through seasonal 

fluctuations in movements among farms. The susceptibility of a network to infection also 

depends on its overall connectivity (i.e. how many sections or components into which it 

is divided). Heterogeneity in British cattle movements is predicted to influence disease 

spread (Woolhouse et al., 2005) and so we have looked for known characteristics of farms 

that align with their trading behaviours. Production type and herd size have been found 

to be important in predicting movements among pig (Arruda et al., 2016; Lindstrom et al., 

2012) and cattle farms (Nöremark et al., 2011; VanderWaal et al., 2015) and has been 

associated with persistence of bTB (Brooks Pollock and Keeling, 2009). We predicted 

variation in network measures and contact chains, based on herd size, production type 

and location, and thereby we expect that they might have varying influences on potential 

transmission of infection. We utilise both static and temporally relevant network analyses 

in the context of a chronic livestock disease in Great Britain in order to provide insight into 
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the dynamics of cattle trading behaviour, investigate potential unobserved transmission 

routes and to characterise the important actors and practices within this network. We 

performed our network and contact chain analyses annually over an extended period to 

determine if changes within the British cattle industry have been reflected in the network 

structure or individual farm behaviour over time, and consequently if they might have the 

potential to affect disease transmission within the cattle population. 

Methods 

Population-level analysis  

The Cattle Tracing System (CTS) records all movements, births and deaths of British 

bovines. For our study, the Animal and Plant Health Agency provided a cleaned, 

processed version of CTS data (see Green and Kao, 2007) on the recorded movements 

of cattle between locations in Britain from 1st January 2001 (when recording became 

mandatory; Green and Kao, 2007) to 31 December 2015. Data consisted of 158 million 

individual animal movements between premises. We removed births (41 million) and 

deaths (42 million) from the dataset and aggregated individual animal movements into 

batch movements of animals moved between the same farms on the same day. We 

included only animal holdings (farms) in this study, omitting 34 million movements to 

slaughterhouses as they represent sinks in the network where no epidemiologically 

significant transmission could occur. Twenty-six million movements (35%) took place via 

markets or showgrounds; we classed these as transitory and linked them as single edges 

from source to ultimate destination, removing the transitory node. Although we 

acknowledge the well-documented risks of livestock mixing at showing events and 

markets (Gibbens et al., 2001), and a market’s role in concentrating and dispersing 

animals (Robinson and Christley, 2007), we considered premises that kept animals for 

longer than one day to be more relevant for transmission and persistence of slow-

spreading infections, such as M. bovis. By directly linking the source and ultimate 

destination, the flow of animals through these premises remains in the analysis, whilst 

allowing us to focus on the farm premises, upon which opportunities for transmission of 

infection were most prolonged. We took 12-month periods from 1st January to 31st 

December for each year between 2001 and 2015 and grouped batch movements into 
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single links between farms. These processes together left 9.5 million edges in the study 

network. Annual herd size was calculated as the mean of the daily number of animals on 

the farm over the same 12-month period. We used CTS data to define herd type for each 

year, defining it by the predominant classification (beef, dairy, or dual purpose) based on 

breed and then predominant sex within this classification. Suckler farms were defined by 

a majority of female beef animals, aiming to capture those herds where calves are reared 

by their dams before weaning (cow-calf systems). Dairy farms were defined by a female 

dairy majority, identifying herds producing milk commercially. Fattening units were 

defined by a male animal majority, identifying herds that did not breed cattle, but reared 

them for beef production. Any farms where the breed type or subsequent sex was not 

more than 50% were defined as mixed herds.  

Network analysis 

We constructed networks in which nodes were defined as unique animal holdings 

registered as keeping cattle, and directed edges were defined as a movement of one or 

more cattle between holdings. Directed edges were weighted by the number of animals 

moved to-or-from the same holdings during the network year, as we considered the 

number of animals to be proportional to the risk of a disease incursion, especially for a 

disease with low prevalence within herds (Volkova et al., 2010a). Only active holdings 

(those with a recorded movement, birth or death in the year of study) were included in 

each annual network. The network timeframe corresponded with previously defined 12-

month periods between 2001 and 2015. Using a full year avoided bias from seasonal 

variation of movements (Robinson and Christley, 2006), yet was sufficient for 

transmission of a chronic infection (Kao et al., 2007). In and out-degree, in and out-

strength, betweenness, edge density, degree assortativity, reciprocity, clustering 

coefficient, average path length, and the giant weakly and strongly connected 

components (GWCC and GSCC) were all calculated using the R (R Core Team Version 

3.5.3, 2019) package igraph (Csardi and Nepusz, 2006). Definitions of all network 

measures and accompanying functions are provided in Appendix B Table B1. We 

compared measures from the observed networks in each year to values calculated from 
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directed random networks of the same size and density, generated using the Erdös-Rènyi 

model (Erdös and Rényi, 1959; see Appendix A for further methods). 

Contact Chains 

We calculated ICCs and OCCs for one-year periods (starting and ending in January) from 

2001–2015 using the R package ‘EpiContactTrace’ (Nöremark and Widgren, 2014). 

Overall, the effect of seasonal variations in movement patterns (Robinson and Christley, 

2006) on our contact chains was likely to be minimal as we utilised a whole year of 

movements. However, should a farm have purchased a large group of animals in January 

every year and calculation of their chains began at the beginning of January, the chains 

would never have a chance to ‘build’, as the incoming movements to the farms from which 

they had purchased would not be included. Therefore this farm’s ‘true’ chain would only 

be apparent in a chain that started in a different starting month, e.g. December. Any such 

effect could result in underestimation of the magnitude of the chain for some farms. 

Therefore, we calculated ICCs and OCCs starting at consecutive monthly-intervals from 

January 2012 to December 2013, a total of 24 one-year periods (see Appendix B Fig. B1 

for schematic). We compared the results from the different starting months and then 

combined these 24 one-year periods to create a more robust summary of movements 

spanning 36 months (from the start of the earliest chain to the end of the latest), rather 

than a 12-month snapshot. We compared the mean, median and maximum number of 

farms from the combined 24 monthly-spaced chains and combined annually-spaced 

chains over the same time period (2012–2014) using Spearman’s rank analysis. 

Summary values from both methods were very similar (Appendix A), and so our 

subsequent analysis utilised the mean of the 24 monthly-spaced chains. For comparison 

of chains 2001–2015, we used annually-spaced chains to reduce computational load. We 

set thresholds on a logarithmic scale for the number of farms in chains to aid their 

description; 0-10 = very small, 11-100 = small, 101-1000 = intermediate, 1001-10,000 = 

large, >10,000 = very large. The maximum number of farms in a contact chain in any one 

year represents the greatest extent of the potential impact any one farm may have on the 

network in that year. Correlations between network measures were randomised to 

account for non-independence of network data. Temporal stability of measures was 
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assessed through ranking of nodes and calculating the standard deviation of mean rank 

over time (Wilson et al., 2013; Appendix A). 

To characterise those farms at high risk of acquiring infection (defined as farms with very 

large ICCs) or of spreading infection (defined as farms with very large OCCs), or those 

that might be at high risk acquiring and spreading infection (farms with very large ICCs 

and very large OCCs), we used a logistic regression with a binomial error structure. We 

performed the analysis using a threshold of 100, 1000 and 10,000 farms (see Appendix 

B Fig. B8 for ROC values and Table B3 for predicted probabilities). The highest ROC 

values were achieved using a threshold of 10,000 farms and so this was used for the final 

models. Herd type, size, and region have previously been associated with contact chains 

of cattle farms in Sweden and Uruguay (Nöremark et al., 2011; VanderWaal et al., 2015) 

and were therefore used in our logistic regression. We grouped Great Britain into ten 

regions for this analysis (Appendix B Fig. B10). We tested the full model using backwards 

stepwise selection based on Akaike’s Information Criterion (AIC; Burnham and Anderson, 

2003) but found in every case that the full models had the lowest AIC. We calculated odds 

ratios and confidence intervals and performed ROC curve analysis to estimate the model 

goodness of fit (Hosmer and Lemeshow, 2000). 

Results 

National herd characteristics 

The median number of cattle traded from a single farm to another over the 12-month 

period was two (interquartile range 1–4), and this remained similar across all years, apart 

from in 2001 when larger numbers of cattle were moved between farms (median = 3, 

interquartile range 1–8, max = 3990). Most cattle holdings (mean = 40,736, 56.8% of all 

farms) were characterised as suckler herds (Fig. 3.1). The total number of cattle holdings 

(number of nodes in the network for which we had sufficient information to classify the 

herd type) decreased by 20,840 during the study period, and this reduction was most 

evident amongst dairy herds (Fig. 3.1 and Table 3.1). Herd sizes increased over the study 

period; dairy herd size increased from a median of 166 in 2001 to 243 in 2015, while the 

numbers of animals in other herd types remained more stable (Appendix B Fig. B2).  
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Table 3.1. Global network analysis metrics for observed directed, weighted networks of cattle 

movements between animal holdings (farms) in Britain from 2001 to 2015. Data are from the Cattle 

Tracing System. 

Year 

Nodes 

(farms in 

network) 

Edges 

(movements 

of at least 

one animal 

between 

two farms) 

Active 

Farms 

(% of 

total 

farms) 

Edge 

density 

Reciprocity 

(0-1) 

Clustering 

coefficient 

(0-1) 

Average 

Path 

Length 

(no. of 

steps) 

2001 85410 444514 95.2 0.000061 0.0319 0.0035 6.54 

2002 82916 585262 93.4 0.000085 0.0351 0.0111 7.14 

2003 80428 694775 92.7 0.000107 0.0368 0.0138 6.45 

2004 79404 707915 92.7 0.000112 0.0397 0.0150 6.42 

2005 77800 674776 93.2 0.000111 0.0422 0.0144 6.54 

2006 76970 733241 93.7 0.000124 0.0382 0.0138 6.33 

2007 73380 622011 92.2 0.000116 0.0379 0.0139 6.49 

2008 72624 650563 93.0 0.000123 0.0353 0.0150 6.57 

2009 71485 668151 93.3 0.000131 0.0339 0.0146 6.41 

2010 70328 639541 93.1 0.000129 0.0342 0.0143 6.60 

2011 69649 647205 93.3 0.000133 0.0329 0.0144 6.67 

2012 67820 625378 92.9 0.000136 0.0315 0.0138 6.62 

2013 67171 616215 93.0 0.000137 0.0305 0.0134 6.97 

2014 66292 616627 93.0 0.000140 0.0303 0.0136 6.93 

2015 64624 619632 92.0 0.000148 0.0306 0.0132 6.89 

Mean 73753 636387 93.1 0.000120 0.0347 0.0132 6.64 
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Figure 3.1. Numbers of cattle moved between animal holdings (cattle farms) and the number of 

holdings, characterized by herd type, in Great Britain from 2001 to 2015. Data from the Cattle 

Tracing System. The numbers of cattle moved are shown with a dashed line and the numbers of 

holdings are shown with solid lines. 

The predominant between-herd flows of cattle were among suckler herds (12%), from 

suckler to fattening herds (9%), and from dairy to fattening herds (7%) (Fig. 3.2a). Suckler 

and dairy farms were the source for 23% and 18% of movements respectively between 

2012 and 2014, despite the number of dairy farms being approximately a quarter that of 
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suckler farms. Fattening farms received the most (21%) movements from other farms and 

dairy farms received the fewest (4%), of which most were from other dairy herds. 35% of 

movements were traded through markets, often from breeding herds (suckler and dairy) 

back to suckler herds or to fattening herds (Fig. 3.2b). The number of active farms (those 

with a birth, death or movement) stayed stable after 2001 (Table 3.1). ‘Isolated’, farms 

with a birth or death but not participating in the network make up 6.9% of farms (Table 

3.1). On average, 34.4% of dairy holdings purchased no cattle in any one year (95% 

confidence interval = 31.8-37.1%), followed by suckler farms at 27.0% (23.9-30.1%), 

mixed holdings at 22.5% (19.1%-25.7%) and fattening units had the lowest percentage 

of closed farms at 9.64% (7.5-11.8%). Farms that did not report any inward movements 

in a five-year period from 2011-2015, and so could be considered ‘closed’ within this time, 

made up 9.6% of herds in the network. This is a similar value to dairy, suckler and mixed 

herds at 10.1%, 10.5%, and 10.6%. We found 5.4% of herds categorised as fattening 

enterprises were ‘closed’ for that period, suggesting that these were not typical ‘fattening’ 

units and that more than one form of enterprise was present. 
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Figure 3.2. Relative importance of pathways for cattle movements in Great Britain from 1 January 2012 to 31 December 2014. 

Movements are shown as a percentage of 13 910 851 movements over this period. Black arrows represent movements weighted as a 

percentage of total movements recorded. Flows of less than 1% are marked by grey arrows. The number of farms in each herd type is 

the mean number of unique, registered cattle holdings over the years 2012–2014, also represented by the area of the circle for each 

type. Our analyses are based on the characterization of movements shown in (a) which represents cattle movements among cattle 

holdings (farms) and slaughterhouses, and where movements made through markets are included as direct farm-to-

farm/slaughterhouse movements. For comparison, in (b), markets are included explicitly as locations, to indicate the frequency of cattle 

movements via markets.



70 
 

Network analysis 

The number of edges (created when at least one animal is traded between two farms) 

in the cattle movement network was lowest in 2001, after which it stabilised to between 

60,000 and 70,000 between-herd links per annum (Table 3.1). In every year, all 

metrics of the observed network values lay outside the distribution of values from the 

random networks (Appendix B Table B2), showing that all of the observed networks 

differed from random in a range of key measures. The density of connections between 

farms in the network (edge density) increased by almost half over the study period 

(Table 3.1). Degree assortativity was more negative in all years in the observed 

network, when compared to random (Appendix B Table B2), meaning that farms with 

low degree were connected to those with high degree, and vice versa, indicating that 

some farms act as ‘hubs’ for movements. The reciprocity of edges was 3–4 orders of 

magnitude higher in the observed network than the random network (Appendix B 

Table B2), suggesting trading partners tend to reciprocate buying and selling cattle 

with one another. Clustering coefficients were higher, and average shortest paths were 

shorter, than in the random networks. GSCCs were smaller than in random networks, 

with the observed GSCCs containing fewer than half the number of farms of the 

random networks (Appendix B Table B2). Together, this suggests that the observed 

networks are modular, consisting of multiple smaller groups of well-connected farms, 

and therefore displaying small-world type properties. 

Farm measures of movements remained consistent when they were ranked by the 

number of farms with which they traded (degree), and the number of cattle moved 

(strength), between years (Appendix B Fig. B4). This applied to trade both in-to and 

out-from the farm. Ranks of more global measures of connectivity for each farm 

(contact chains and betweenness) were also consistent between years but showed 

more variation than local measures (degree and strength; Appendix B Fig. B4). These 

results indicate that individual farm movements tended to stay consistent over time. 

Observed degree was highly variable, compared to the random network (Appendix B 

Table B.2). In and out-degree of individual farms were positively skewed (skewness = 

17.5 and 3.07 respectively; Fig. 3.3). Degree had power law exponents suggesting 

that the network might be characterised as scale-free, with many farms trading cattle 

with only a few direct partners and a small number of farms trading with many direct 
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partners (Appendix B Table B4). The number of premises from which individual farms 

buy in cattle had much greater range (in-degree range = 0–4346) than the number of 

farms to which individual farms sell cattle (out-degree range = 0–305) (Fig. 3.4). The 

number of animals moved in-to and out-from individual farms also showed a positively-

skewed distribution and range that was more marked for the number of animals bought 

in (in strength skewness = 16.3, range = 0–15,359) than the number sold (out strength 

skewness = 8.67, range = 0–6,472; Fig. 3.4). These patterns for degree and strength 

were consistent across all years. Larger farms tended to trade with more other farms 

consistently among years, demonstrated by a positive relationship between herd size 

and degree (mean rs = 0.619, 95% confidence interval 0.603–0.634). Larger farms 

also traded more animals (mean rs = 0.679, 95% CI = 0.662–0.696). Herd size and 

out-degree and out-strength (mean out-degree rs =0.531, 95% CI = 0.501–0.562, SE 

= 0.014, mean out-strength rs =0.587, 95% CI = 0.550–0.624) were more strongly 

correlated than herd size and in-degree and strength (mean in-degree rs = 0.290, 95% 

CI = 0.280–0.300; mean in-strength rs = 0.283, 95% CI = 0.274–0.292). Differences 

between some herd types in the number of farms that were traded with, and number 

of animals traded, were clear. Median in-degree and in-strength were higher for 

fattening farms, and median out-degree and out-strength were higher for dairy farms 

(Fig. 3.4). 

Betweenness values were positively skewed (skewness = 29.2), with a large group of 

farms showing low betweenness scores and a smaller proportion of farms with very 

high betweenness scores, but no distinct differences between herd type (Appendix B 

Fig. B3). Mean betweenness was much larger in the observed network than in the 

randomised networks in all years but one, and median betweenness was much lower. 

This provides further evidence that some farms, not linked to a particular herd type, 

act as hubs within the network. 
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Figure 3.3. Distribution of in- and out-degree for all farms in the annual network in 2015. Points 

represent binned data. Degree is n+1, for depiction on a log axis; therefore farms with no 

connections, i.e. zero degree, are depicted as degree = 1. 
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Figure 3.4. The number of farms directly traded with (degree) and the number of animals 

traded (strength) in the annual network split by herd type for: (a) in-degree (number of farms 

cattle purchased from), (b) in-strength (number of animals purchased), (c) out-degree (number 

of farms cattle sold to), (d) and out-strength (number of animals sold). Combined data from 

network analyses from 2001 to 2015 are shown. Data are n+1, for depiction on a log axis, and 

include farms for which degree or strength were zero. Box plots show medians and interquartile 

ranges and the whiskers indicate the smallest or largest values no further than 1.5 times the 

interquartile ranges. Points outside this are outliers.  
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Contact chains 

Most farms had fewer than 100 farms in their ICC; however, up to 40% of holdings 

had large or very large ICCs over a one-year period, creating a strongly bimodal 

distribution (Fig. 3.5). The bi-modal distribution was also present for OCCs. The sizes 

of ICCs and OCCs for individual farms remained reasonably stable between all study 

years, though 2001 and 2002 have different characteristics (Fig. 3.6c and 3.6d). ICCs 

and OCCs were both positively skewed (skewness ingoing = 1.85, outgoing = 0.91). 

The maximum observed ICC of a single farm encompassed 86% of all British cattle 

holdings active in 2001 (n = 73,465 farms) and the maximum OCC occurred in 2004, 

encompassing 43% (n = 34,460 farms) of holdings. Across all years studied, 

approximately 50% of farms had very small ICCs, while 35-40% had large or very large 

ICCs (Fig. 3.5). More holdings in 2001 and 2002 have very small or small ICCs, than 

those from 2003 onwards (Fig. 3.6c). OCCs showed a different distribution; in most 

years, 50% of farms had very small to medium OCCs, and 50% had large or very large 

OCCs (Fig. 3.6d). More farms in 2001 and 2007 had large to very large OCCs, and in 

2002, fewer farms had small or very small OCCs compared to other years (Fig. 3.6d). 

Clear differences were evident between herd types (Fig. 3.6a and 3.6b) with over 50% 

of fattening units but only 25% of breeding and mixed herds having large to very large 

ICCs (Fig. 3.6a). Over 80% of dairy farms, 55% of suckler farms and fewer than 40% 

of fattening farms had large to very large OCCs (Fig. 3.6b).  
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Figure 3.5. Distribution of ingoing and outgoing contact chains with the number of farms in the 

chain for: ingoing contact chains (ICCs) and outgoing contact chains (OCCs), showing bimodal 

distribution for both types of contact chain. ICCs have more farms with fewer farms in their 

chains, whereas despite a lower mean and maximum number of farms, OCCs have more 

farms with very large chains. Data are n+1, for depiction on a log axis. Data include all active 

farms in Britain from 2001 to 2015. Error bars indicate the interquartile ranges.  
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Figure 3.6. Annual cumulative proportions of farms in Britain by the number of farms in their 

contact chains 2001–2015 and by herd type. Contact chains from 2001 to 2015 are included; 

therefore, some farms are represented multiple times for herd types. All years show a similar 

distribution shape; however, there appears to be some drift over time and marked deviations 

for 2001 and 2002, probably due to FMD movement restrictions, culling and restocking of herds 

in those years. Herd-type distributions have some similarities; however, fattening herds and 

dairy farms differ from other herd types for ICC and OCC, respectively. In (a,b), the colour of 

the line represents the herd type characterized by breed and sex CTS data, in (c,d), the colour 

of the line represents the year from 2001 to 2015. ICCs are shown in (a,c), OCCs are shown 

in (b,d). Data are n+1, for depiction on a log axis; therefore farms with chain length of zero, are 

depicted as chain length = 1.  
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There was a weak correlation between ICC and OCC (rs = 0.181, CI = 0.174–0.187, p 

<0.001, n = 76,031) for the mean values calculated from 24 monthly-spaced contact 

chains. This relationship was weaker when correlations of ICC and OCC were 

compared within all study years (mean rs = 0.0398, CI = 0.020-0.594, p <0.001 in all 

years, n = 15). Farms tended to cluster at small ICC and OCC, large ICC and OCC 

and small ICC but large OCC (Fig. 3.7a). Regardless of ICC magnitude, dairy farms 

tended to have many farms in their OCC (Fig. 3.7b). Suckler herds tended to have 

more chains with large ICC and large OCC (Fig. 3.7c). Fattening herds had generally 

high ICCs with clustering at the low and high end of OCCs (Fig. 3.7d) and mixed herds 

tended to cluster more with low ICC and OCC (Fig. 3.7e). There was a strong positive 

and consistent correlation between in-degree and annual ICC over all years from 

2001–2015 (mean rs = 0.869, CI 0,858-0.879, p <0.001 in all years). This was true to 

a lesser extent between OCC and out-degree (mean rs = 0.768, CI = 0.754-0.782, p 

<0.001 in all years). Over three-quarters of farms that sell animals to between 6 and 

10 farms in the study period had an OCC linking over 1,000 farms, and farms that 

purchased animals from the same number of farms had a median ICC with 6486 farms. 

Some farms, despite low in- or out-degree, nevertheless had many farms in their 

contact chains (Fig. 3.8). 

Logistic regression indicated that fattening farms were overall 9.5 (CI 8.7–10.5) times 

more likely to have very large ICCs (>10,000 farms in their ICC) than dairy farms 

(Table 3.2). There were also regional differences, where farms in the North of England 

were more likely to have very large ICCs (Table 3.2). Overall, dairy herds were more 

likely than any other herd type to have very large OCCs. However, with herd sizes 

above 500, mixed and suckler herds were more likely to have very large OCCs 

(Appendix B Fig. B7). Herds in the North of England and Scotland were much more 

likely to have very large OCCs than herds in the East of England (Table 3.2). Herds 

with over 500 cattle had an increased likelihood of very large ICCs and OCCs, 

especially in non-dairy holdings (Appendix B Fig. B7). Again, herds in the North of 

England and Scotland were at higher risk of having very large ICCs and OCCs (Table 

3.2). ROC curve analysis showed all models had acceptable to excellent goodness of 

fit (Appendix B Fig. B8).  
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Figure 3.7. Point density scatterplots to show relationship between mean ICC and mean OCC, 

where many farms lie in the top right of the plot. Data are split by herd type (a) all, (b) dairy, (c) 

suckler, (d) fat and (e) mixed farms with mean values of contact chains using combined data 

from 24 sequential chains 2012–2014, showing that the distribution of point-density changes 

with herd type. Point density is shown on a colour scale with lines smoothed by local polynomial 

regression fitting with a span of 0.6. Data are n+1, for depiction on log–log axes; therefore farms 

with chain length of zero are depicted as chain length = 1.  
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Figure 3.8. The relationship between degree and contact chains showing the increasing 

number of direct trading partners and increase in number of farms in contact chain. (a) In-

degree and ingoing contact chains and (b) out-degree and outgoing contact chains. Chain 

lengths are from 2001–2015 and are n+1, for depiction on a log axis. Box plots show medians 

and interquartile ranges and the whiskers indicate the smallest or largest values no further than 

1.5 times the interquartile ranges. Points outside this are outliers. 
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Table 3.2. Odds ratios and 95% confidence intervals for three logistic regression analyses to 

identify characteristics of farms with very large contact chains. The response variable is whether 

or not farms have (a) ICCs, (b) OCCs, and (c) ICCs and OCCs containing over 10 000 farms 

(values from combined 24 monthly-spaced chains). Herd size has been mean centred and is 

displayed for increments of 10 cattle (see Appendix B, Fig. B5–7 for further herd size analysis). 

Response 
variable 

Explanatory 
variable 

Levels 
Odds 
Ratio 

2.5% 
confidence 

limit 

97.5% 
confidence 

limit 

a) Ingoing 
contact chain 

>10,000 

  (Intercept) 0.151 0.131 0.172 

  
Herd size (per 10 
cattle) 

1.004 1.002 1.006 

Herd type 

Dairy Ref     
Fat 9.509 8.659 10.454 

Mixed 1.280 1.162 1.411 

Suckler 1.281 1.189 1.381 

Region 

East of England Ref    
East Midlands 1.187 1.036 1.362 

North East 1.517 1.302 1.769 

North West 1.463 1.288 1.665 

Scotland 0.767 0.677 0.872 

South East 0.297 0.251 0.350 

South West 0.577 0.509 0.656 

Wales 0.484 0.425 0.553 

West Midlands 1.073 0.942 1.225 

Yorkshire 1.532 1.344 1.748 

Herd type: Fat 
Herd size (per 10 
cattle) 

1.186 1.176 1.196 

Herd type: 
Mixed 

Herd size (per 10 
cattle) 

1.052 1.047 1.057 

Herd type: 
Suckler 

Herd size (per 10 
cattle) 

1.046 1.043 1.049 

b) Outgoing 
contact chain 

>10,000 

  (Intercept) 0.211 0.161 0.272 

  
Herd size (per 10 
cattle) 

1.010 1.008 1.012 

Herd type 

Dairy Ref    
Suckler 0.093 0.087 0.100 

Mixed 0.112 0.101 0.123 

Fat 0.051 0.046 0.057 

Region 

East of England Ref     
East Midlands 1.526 1.153 2.047 

North East 11.584 8.817 15.442 

North West 18.075 14.009 23.716 

Scotland 15.212 11.815 19.923 
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Response 
variable 

Explanatory 
variable 

Levels 
Odds 
Ratio 

2.5% 
confidence 

limit 

97.5% 
confidence 

limit 

South East 0.961 0.713 1.308 

South West 2.534 1.963 3.326 

Wales 2.305 1.780 3.034 

West Midlands 1.878 1.439 2.489 

Yorkshire 3.646 2.796 4.828 

Herd type: Fat 
Herd size (per 10 
cattle) 

1.011 1.006 1.016 

Herd type: 
Mixed 

Herd size (per 10 
cattle) 

1.040 1.035 1.045 

Herd type: 
Suckler 

Herd size (per 10 
cattle) 

1.041 1.038 1.044 

c) Ingoing and 
outgoing contact 
chains >10,000 

  (Intercept) 0.025 0.016 0.036 

  
Herd size (per 10 
cattle) 

1.003 1.001 1.006 

Herd type 

Dairy Ref    
Fat 0.493 0.433 0.561 

Mixed 0.496 0.428 0.574 

Suckler 0.372 0.335 0.412 

Region 

East of England Ref     
East Midlands 1.153 0.739 1.853 

North East 8.152 5.463 12.674 

North West 10.429 7.163 15.909 

Scotland 6.360 4.371 9.696 

South East 0.383 0.215 0.678 

South West 2.263 1.545 3.468 

Wales 1.197 0.801 1.863 

West Midlands 2.156 1.447 3.347 

Yorkshire 3.358 2.265 5.195 

Herd type: Fat 
Herd size (per 10 
cattle) 

1.020 1.014 1.025 

Herd type: 
Mixed 

Herd size (per 10 
cattle) 

1.031 1.025 1.036 

Herd type: 
Suckler 

Herd size (per 10 
cattle) 

1.034 1.030 1.037 
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Discussion 

Epidemics can be difficult to control if underlying transmission dynamics are not fully 

understood, especially in large networks where potential transmission pathways can 

be extensive and convoluted. The 9.5 million edges and ~70,000 nodes included in 

this study show that the British cattle network is complex, and potential transmission 

pathways can be extensive. Quantifying the extent of these chains is an important step 

in trying to understand the potential transmission routes for infections. 

In respect of their contact chain distributions, British cattle holdings form two groups; 

those with very few (fewer than 10) contacts in their chains, and those with very many 

(more than 1000). Variation in this measure within a relatively short period could reflect 

important differences in a farm’s risk of acquiring and spreading infection, and key 

opportunities for action at ‘critical control points’ in the network. Previous studies have 

reported similarly skewed data in annual cattle farm contact chains in Sweden and 

Switzerland (Nöremark et al., 2011; Schärrer et al., 2015), and ICCs of pig farms in 

Germany (Büttner et al., 2013). In our study, contact chains of individual farms were 

stable over time, however larger chains showed some variation. 

Large herd sizes are commonly associated with increased risk of disease (Bessell et 

al., 2012) and this is often attributed to large numbers of animals being purchased 

(Brooks Pollock and Keeling, 2009), we found that although there is an overall positive 

relationship between herd size and the number of linked farms, numbers of animals 

traded and chain magnitude, these relationships varied among herd types. This 

suggests that there are other mechanisms, beyond more animals entering the herd, 

that contribute to the apparent increased risk of disease in large herds (Gardner et al., 

2002). Dairy, suckler and fattening herds have distinct patterns of degree and contact 

chains, indicating that they play different roles in the network. Through the purchase 

of animals from many other farms, fattening herds may be more susceptible to 

acquiring infection, while being less likely to pass on infection via movements as, 

clearly, many fattening cattle move straight to slaughter. Through selling animals to 

many different farms, dairy farms that become infected may be disproportionately 

influential for disease spread in the cattle network, offering a potential target for control 

measures (Büttner et al., 2013). In addition to the established role of markets as a 

‘mixing pot’ for highly-transmissible diseases while animals are on site, here we 
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emphasise their part in facilitating the dispersal of animals to many premises from one 

source farm, thereby potentially amplifying the spread of fast and slow-spreading 

diseases alike. In characterising farms into only four groups, we inevitably simplify the 

diversity of cattle farming operations in the British cattle industry. Fattening farms 

represent animals most likely intended for beef production, but we do not distinguish 

between premises rearing animals from calves to slaughter weight and cattle ‘dealers’ 

purchasing store cattle to sell onto other dealers, markets or farms. These differing 

businesses may have varying impacts on disease dynamics, where dealers may 

exhibit properties similar to markets, in acting to disperse animals to many farms. 

Farms in the South-East and East of England, where cattle densities are lower 

(Agriculture and Horticutural Development Board, 2017), may be less well-connected 

due to fewer chances to trade. Pre-movement bTB tests are not required for 

movement within the North of England and Scotland (Animal and Plant Health Agency, 

2015b) and this may be responsible for the higher connectivity of their farms.  

The cattle movement network in Britain displays scale-free properties, typical of those 

seen in movement networks in other countries. The number of cattle farms in Britain 

has decreased, driven largely by a reduction in numbers of smaller dairy farms and 

the formation of larger dairy herds (Fig. 3.1. and Appendix B Fig. B2). However, similar 

numbers of cattle were traded between fewer farms over the study period, resulting in 

a substantial increase in network density. Movement restrictions for 9 months of 2001, 

due to the FMD outbreak (Vernon and Keeling, 2012), account for low numbers of 

separate movements (edges), smaller GSCC, and low edge density that year 

(Appendix B Table B2). However, the restocking of farms from larger batches of 

animals after resumption of movements gave rise to the larger number of cattle moved 

that year (Vernon, 2011). Although it is well documented that the cessation of bTB 

testing during 2001 (Abernethy et al., 2013) contributed to the spread of bTB 

(Carrique-Mas et al., 2008; Gopal et al., 2006), the increased volume of animals 

moved could have made a significant contribution to the subsequent increase and 

spread of M. bovis infection. The number of animals in a batch is likely to affect the 

risk of farms acquiring or transmitting infection (Lentz et al., 2016), especially for 

pathogens with relatively low transmissibility such as bTB. Some studies have 

combined the number of animals traded with contact chains (Frössling et al., 2014; 

Schärrer et al., 2015), and this could be incorporated in further analyses.  
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The density and clustering of the network are mid-range compared with other livestock 

movement networks (Lentz et al., 2016; Mweu et al., 2013; Nöremark et al., 2011; 

VanderWaal et al., 2015), apart from an Italian network which had much lower 

clustering (Natale et al., 2009), suggesting British farms trade in small communities, 

and exhibit small-world properties. In the British network after 2004, clustering 

coefficients stayed stable and, after 2005, reciprocity decreased, suggesting that 

although the network becomes denser, it also becomes more dispersed, perhaps due 

to an increased propensity to travel further to trade cattle. The pattern of GSCC size 

in our results reflects that seen in previous studies (Christley et al., 2005b; Vernon and 

Keeling, 2012), and the reduction in size seen from 2004–2009 is continued in our 

analysis, which extends to 2015. Reduction of the size of such key components has 

previously been associated with reduced risk of epidemics (Volkova et al., 2010a).  

A small number of farms in our network act as hubs (nodes with many more direct 

trading partners than the majority). Whereas previously this network role was 

considered to be fulfilled predominantly by markets (Christley et al., 2005b), hub farms 

provide similar linkages in the network that might facilitate epidemic spread by creating 

potential transmission ‘shortcuts’ through the network (Shirley and Rushton, 2005). 

Negative degree assortativity, similar to Scandinavian networks, where direct sales 

between farms, rather than via markets, are the norm (Mweu et al., 2013; Nöremark 

et al., 2011), combined with highly skewed degree distribution makes this type of 

network highly receptive to control measures targeted at hubs, rather than random 

selection (Büttner et al., 2013). It may therefore be beneficial to apply control 

measures, which have previously been aimed solely at markets, to hub farms as well. 

Risk-based trading measures might employ a proxy value for ‘superspreader potential’ 

that used network measures, similar to an ‘infection potential’ value (Rossi et al., 

2017a), a probability of disease ratio (Frössling et al., 2014), or selecting a threshold 

for the most highly connected farms. This value would provide additional information 

on which farmers might base their buying decisions. However, it may be commercially 

harsh to rate farms in this way, as they have little control over this value beyond their 

direct purchases, and some farms even with very few direct trading partners are 

connected to very large contact chains (Fig. 3.8). 

We used contact chains as temporally relevant network characteristics by which to 

assess the potential for acquiring and /or transmitting a slow-spreading infection 
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arising from a farm’s trading network. There are numerous methods by which to 

achieve similar proxy measures from analysis of movement networks, such as those 

used by Frӧssling et al. (2014) and Büttner et al. (2016b). The algorithms used by 

Rossi et al. (2017a) and Konschake et al. (2013), allow a very fine scale of analysis, 

such that each node has its own infectious period and time of infection. We adopted a 

broader measure of contact chains, applied over an extended period of 15 years, to 

detect how variable farms may be in their network positions over time and in the 

context of infections with long incubation and infectious periods. 

Although moving an infected animal into the herd presents the clearest risk of disease 

transmission, farms have other “connections”, including neighbouring farms and 

contacts via fomites, service providers and wildlife, any of which might be important 

for transmission of infections (Brennan et al., 2008; Dommergues et al., 2012; Rossi 

et al., 2017b). These connections often occur at a local scale and have varying 

importance depending on the pathogen of interest. Animal movements, however, can 

be implicated at all spatial scales, from the 43% of movements which occur within 

20km of the source farm to the substantial number of long-range movements 

documented in Britain (Mitchell et al., 2005). Animal movements between 

neighbouring farms are also likely due to be underestimated due to local practices 

(Skuce et al., 2012). Here we have focused on this movement of animals as a potential 

pathway for the transmission of chronic infections and suggest that due to the long 

timescale, infections transmitted via movements may be more extensive through the 

network than we expect and that investigations into direct contacts may not be 

sufficient to trace the source and reach of some infections. Thus more extensive 

contact chains may better guide us to some of the varied sources and transmission 

pathways of cattle infections.  

By examining networks of cattle movements, we observed two distinct patterns of 

interaction; many farms quickly became connected to a large proportion of the national 

network, yet some remained relatively isolated. We have shown marked variation 

between farms, not only in degree and betweenness but also in the more complex 

contact chains among British cattle farms, sustained over a period of 15 years that has 

been characterised by change in the industry and recovery from catastrophic disease 

outbreaks. Farms that exhibit extremes in ICCs and OCCs may be more likely to be 

infected and then more likely to act as superspreaders, via their outward trading 
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behaviour (Lloyd-Smith et al., 2005). The British networks’ scale-free type properties 

suggests the industry may benefit from targeted control of these influential nodes 

(Büttner et al., 2013). 

Risks associated with direct trading partners are relatively easy for farmers to 

consider. However, the chains to which they can become connected remain hidden, 

along with the potential risks of exposure to infection they bring. By increasing the 

number of their direct trading partners, farmers are likely to see large, and sometimes 

very large, increases in the number of farms in their contact chain. Chains can also 

quickly become large, even with very few direct contacts, perhaps leaving farmers who 

believe they trade ‘carefully’ with a false sense of security. Knowledge of contact 

chains, and the trading patterns and history of the farms from which they are buying, 

might better equip farmers to judge the exposure associated with their animal trading 

behaviour. Contact chains allow us to assess a farm’s role within the network and 

further investigation should explore their application to target certain farms, herd types, 

or practices for improved control of diseases.  
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Chapter 4: Effects of trading networks on the odds of bovine 

tuberculosis incidents on cattle farms in Great Britain 

This chapter is to be submitted to Royal Society Open Science as: 

Fielding HR, McKinley TJ, Silk MJ, Delahay RJ, McDonald RA. (in prep) Effects of 

trading networks on the odds of bovine tuberculosis incidents on cattle farms in Great 

Britain. 

Abstract 

The trading of animals between farms and via markets can provide a conduit for the 

spread of infections and so by studying trading networks we might better understand 

the dynamics of livestock diseases. We constructed ingoing contact chains of cattle 

farms in Great Britain that were temporally linked by their trading behaviour, to 

elucidate potential pathways for the transmission of infection and to evaluate their 

possible effect on the risk of a farm experiencing a bovine tuberculosis (bTB) incident. 

Our findings are consistent with variation in risk associated with region, herd size, 

disease risk area and history of previous bTB incidents on the root farm and nearby 

farms. However, we also identified effects of both direct and indirect trading patterns, 

such that connections to more farms in the England High Risk Area up to three 

movements away from the root farm increased the odds of a bTB incident, while 

connections with more farms in the England Low Risk Area up to eight movements 

away decreased the odds. Relative to many other risk factors for bTB, trading 

behaviours are arguably more amenable to change, and consideration of risks 

associated with indirect trading, as well as those of direct trading, might therefore 

represent an additional approach to bTB management in Great Britain.   
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Introduction 

Understanding pathways for the transmission of infections is fundamental to devising 

efficient control strategies for livestock diseases. These pathways exist at many 

scales, describing transmission among individuals (Lloyd-Smith et al., 2005), farms 

(Lentz et al., 2016) and countries (Nigsch et al., 2013). Trading connections among 

farms can generate vast networks of animal movements (Fielding et al., 2019) that 

have been implicated in disease transmission (Kao et al., 2007; Mekonnen et al., 

2019). Network epidemiology utilises these networks as a framework on which to 

model the spread of infection (Martínez-López et al., 2009), and measures describing 

the centrality of a farm in a trading network and the nature of its contact chains 

(assessing temporal connectedness) can be useful in assessing an individual farm’s 

risk of acquiring infection (Palisson et al., 2016). 

Mycobacterium bovis causes bovine tuberculosis (bTB) in cattle but can infect a wide 

range of mammalian species (Broughan et al., 2013). Despite intense study and 

significant resources invested in control measures, the infection remains endemic in 

large parts of Great Britain (Allen et al., 2018). Among other factors, wildlife reservoirs 

of infection and undetected infections and movements of cattle have been shown to 

contribute to disease persistence and spread. A dynamic transmission model using 

British cattle movement and bTB testing data from 1996–2011 predicted that 

movements alone accounted for 13% of bTB incidents, and played a further role in 

multifactorial bTB incidents (Brooks Pollock et al., 2014). Modelling by Green et al. 

(2008) suggested that in 2004, 16% of herd infections occurred as a result of cattle 

movements, and that local effects were more important. The effects of cattle 

movements on patterns of bTB incidence in Great Britain have varied across regions 

(Gilbert et al., 2005; Johnston et al., 2011) and over time as new policies have been 

implemented (Vernon and Keeling, 2012). However, in spite of the introduction of pre-

movement and, in some locations, post-movement testing for animals leaving high-

incidence areas (Animal and Plant Health Agency, 2018b; Gates et al., 2013b; Vernon 

and Keeling, 2012), studies using data from 2006 to 2013 still suggested that there 

was an increased risk of bTB incidents for Scottish herds that had purchased cattle 

from high-risk regions of England and Wales (Gates et al., 2013a, 2013b; Salvador et 

al., 2018).  
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When compared to other risk factors for bTB incidents, cattle movements represent 

an activity that might be more amenable to management, for example by the use of 

risk-based trading, regulation or legislation. While the role of direct cattle movements 

in the transmission of bTB in Great Britain has been well-documented, the risks 

associated with indirect movements arising from trade has not yet been quantified or 

explored in detail. Second order contacts (i.e. contacts of contacts) in livestock 

networks have been shown to improve estimates of simulated epidemic size in models 

of disease in the British cattle herd (Tildesley and Keeling, 2009) and, in Italy, have 

assessed the influence of individual farms in disease transmission (Natale et al., 

2009). In order to interrogate the network beyond first-order, direct contacts, data on 

the sequential purchases of cattle can be used to construct temporally explicit contact 

chains over a specified period. The ingoing contact chain (ICC) represents the source 

farms that may contribute infection to the root farm, while the outgoing contact chain 

represents those farms to which the root farm might transmit infection. The magnitude 

of ingoing contact chains has been associated with the risk of bTB in French cattle 

(Palisson et al., 2016) and was used to inform risk-based targeting of farms for 

surveillance of bovine coronavirus and bovine respiratory syncytial virus in Sweden 

(Frössling et al., 2012).  

We have previously constructed contact chains for all cattle herds in Great Britain and 

found that a large proportion of herds have remarkably extensive chains, extending to 

tens of thousands of other farms within 12-month periods (Fielding et al., 2019). In the 

present study we hypothesise that farms with larger numbers of farms in their ICCs 

are at greater risk of exposure and acquisition of infection. We predict that infection 

risks might therefore be greater for farms with ICCs that include more risky trading 

partners, such as those that have experienced a recent bTB incident or that are located 

in regions with high incidence rates. We also predict that the closer a farm is to the 

root farm, both in terms of geographical proximity and trading proximity, the more 

impact it will have on disease risk on the root farm. It has been established that risk 

factors are likely to vary across different geographical regions (Johnston et al., 2011; 

Skuce et al., 2012), therefore we performed multiple analyses using subsets of data 

from specific regions. Overall, our study aimed to assess the importance of new 

parameters from contact chains, based on trading networks, alongside established 

risk factors, on the risk of bTB incidents on cattle farms in Great Britain. 
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Methods 

Study farms and bTB data 

We obtained bTB surveillance and farm information data collated in the Cattle Tracing 

System (CTS) by the Animal and Plant Health Agency (APHA). Study farms were 

active premises (i.e. registered cattle holdings with a birth, death or movement) 

between 1st January 2012 and 31st December 2014 with full bTB testing and location 

data, resulting in a final dataset comprising 71,096 cattle farms. Annual herd size was 

derived from the mean daily number of cattle on the premises. We took the mean of 

these annual herd sizes across the three years of the study. Herd type was defined 

using CTS data, first by the predominant breed type (dairy, beef, or dual purpose) and 

then sex of animals on the farm (as outlined in Fielding et al., 2019). Farms were 

allocated to bTB risk areas for England based on the designated risk area of their 

county parish defined by APHA in 2015 (Animal and Plant Health Agency, 2017) 

(Appendix C methods and Appendix D Fig. D1). A farm was defined as having had a 

bTB incident if its Officially Tuberculosis Free (OTF) status was withdrawn (OTF-W) 

or suspended (OTF-S) on one or more days during the time period in question, i.e. for 

assessing previous bTB history this period was 2010–2014, and for our response 

variable it was 2015–2016. OTF status is suspended (OTF-S) if at least one animal 

tests positive (or returns two inconclusive test results) for M. bovis using either of the 

statutory live tests: the Single Intradermal Cervical Comparative Tuberculin (SICCT) 

test or the gamma interferon test, and is withdrawn (OTF-W) on finding post-mortem 

pathology characteristic of M. bovis, or isolation of the bacteria by culture. 

Networks 

A single directed network was calculated for each of the three study years, 

representing farms as ‘nodes’ and with farm-to-farm movements of at least one animal 

represented by ‘edges’, weighted by the number of animals traded between those 

farms in the study year (Appendix C methods). Betweenness centrality was calculated 

for each root farm in each network, providing a centrality measure of the importance 

of the farm in connecting together different parts of the network (Silk et al., 2017a). 

ICCs are comprised of farms linked by movements of animals onto farms in a 

chronological sequence, such than at least one animal from a movement could have 

potentially seeded an infection that could be passed on in a subsequent movement of 
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animals from that farm. Any farm that may have contributed to infection on the root 

farm (via movements) within the study period is included in the chain as a ‘source 

farm’. The ‘level’ for each source farm corresponds to the minimum number of 

movements away from the root farm at which they appear in the ingoing contact chain. 

To avoid any seasonal effect of starting the chain in a specific month, we calculated 

twenty-four ICCs at one month intervals, each spanning 12 months of movements. We 

then grouped the source farms from each of the twenty-four ICCs. Where farms 

appeared more than once in the chain in any one year, we included them at the closest 

(minimum) level to the root farm and removed other instances. Each chain was 

curtailed at 8 levels away from the root farm due to computational limitations (Appendix 

C methods).  

For each root farm, we quantified how many source farms from each region were at 

each level of the contact chain and how many source farms at each level experienced 

a bTB incident from 2010–2014. We used cumulative counts across the different 

levels, e.g. the number of source farms at level one, the sum of the number of source 

farms at levels one and two, etc., up to the eighth level. We recorded the mean 

distance between each root farm and all of their source farms at each level. To 

incorporate bTB risks from local farms, we calculated the proportion of farms that had 

experienced a bTB incident between 2010–2014, within a radius of 0–2 km, 0–4 km, 

0–6 km, 0–8 km, and 0–10 km of the root farm. Location was defined by the (x, y) co-

ordinates associated with a particular herd identity (County Parish Holding number) in 

the APHA data. We selected baseline variables for a regression model based on 

previously identified risk factors (Salvador et al., 2018; Skuce et al., 2012) listed in 

Table 4.1.  

We specified a multivariable regression model using a baseline set of variables (Table 

4.1), with the binary response of whether the root farm experienced a bTB incident in 

2015 or 2016, i.e. immediately after the period over which the ICCs had been 

calculated. Various risk factors could be specified at different lags (e.g. distances or 

levels of the network). However, the inclusion of multiple variables corresponding to a 

single risk factor specified at different lags results in high multicollinearity, and thus 

model instability. Instead, we chose a single representative variable within each set of 

lagged variables by adding each lagged variable in turn to this baseline model and 

choosing the one with the lowest value of Akaike’s Information Criterion (AIC) 
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(Burnham and Anderson, 2003). This avoided the inclusion of a large number of highly 

correlated variables and problems with inference caused by singularity errors in the 

design matrix, while preventing excessive model selection and therefore reducing bias 

in the estimated coefficients of the model (Harrell, 2001). As part of preliminary 

analyses, a number of methods were trialled, each providing similar results to our final 

choice of model and method (see Appendix C methods for further details). As an 

example of our chosen method, to select the most suitable lag for the risk of bTB from 

the local area, we ran five multivariable regression models including each distance 

with the baseline risk factors described above (Appendix D Fig. D2). The model with 

the lowest AIC included the proportion of farms with bTB during 2010–2014 within a 

radius of 8 km from the farm, and was therefore included in the final model. This 

process was repeated to select representative variables from two sets of contact chain 

variables; those we expected to be associated with increased or decreased risk of a 

bTB incident on the root farm (Appendix D Fig. D3). The final model included all 

baseline explanatory variables, the proportion of farms in a radius of 0–8 km with a 

recent bTB incident, and the selected representative source farm variables: the 

number of farms located in the England High Risk Area at levels 1–3, and the number 

of farms located in the England Low Risk Area at levels 1–8 of the ICC (Table 4.1). To 

capture potential differences in aetiology between different regions, we grouped our 

root farms by their region (Appendix D Fig. D1) and performed the same multivariable 

analysis, only removing region as an explanatory variable. 

To aid comparison of ORs between variables specified on different scales, we re-

scaled the coefficients for continuous variables such that each estimate corresponds 

to the OR for a variable changing from the 10th percentile to the 90th percentile of the 

observed data (Table 4.1 and Appendix D Table D2). To make it clear that these do 

not relate to a per-unit increase OR, we henceforth refer to them as standardised ORs 

(note that these are not standardised in the usual statistical sense (using standard 

deviations), which would not be sensible here due to high asymmetry in the 

distributions of some of the explanatory variables). Model performance was assessed 

(Appendix D Fig. D4) and we tested for overfitting of the final model using 

bootstrapping (Harrell, 2001). Given the size of the data set the model showed 

negligible evidence of any overfitting, so we chose to present the unadjusted results 

here. All analysis was performed using R (R Core Team Version 3.5.3, 2019); network 
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measures were calculated in ‘igraph’ (Csardi and Nepusz, 2006), contact chains were 

calculated using ‘EpiContactTrace’ (Nöremark and Widgren, 2014), and regression 

was performed using ‘lme4’ (Bates et al., 2015). 

Results 

The majority of source farms were located within the same bTB risk area or region as 

the root farm. However, the mean distance between root and source farms increased 

with the number of levels in the ICC (Appendix D Fig. D5) and an average root farm in 

the England Edge Area, England Low Risk Area or in Wales had about 20–25% of its 

source farms located in the England High Risk Area (Fig. 4.1). Also, 21% of root farms 

in Scotland had over 20% of source farms located in the England High Risk Area (Fig. 

4.1). Apart from Scotland, all regions had some farms that had almost all of their 

source farms located in other regions (Fig. 4.1). The maximum number of farms at 

each level increased up to level 3 and declined thereafter, likely demonstrating a 

saturation effect in the most extensive chains (i.e. more than 10,000), where farms 

connecting at “higher” levels in the chain had already been counted at “lower” levels, 

and therefore did not increase the total number of farms in these extreme chains. In 

contrast, the median number of farms increased at each level up to level 8, likely 

demonstrating an overall amplification effect where the presence of more farms at 

each level, generally allowed more farms to connect at the next.  
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Table 4.1. Effect sizes of explanatory variables on the odds of a bTB incident on the root farm 

in 2015–2016. Odds ratios (ORs) with 95% confidence intervals are from our multivariable 

logistic regression analysis using the full Great Britain dataset. ORs of continuous variables are 

standardised as the odds associated with the difference between the 10th and 90th percentiles 

of the raw data. Baseline variables are indicated by an asterisk (*). 

Region Parameter 
10th 

percentile 
(raw data) 

90th 
percentile 
(raw data) 

Odds 
ratio 

2.5% 
confidence 

limit 

97.5% 
confidence 

limit 

Great 
Britain 
(n = 
71096) 

*Root farm risk 
area/country 

Scotland     Baseline     

Wales - - 6.67 5.19 8.68 

England Low Risk Area - - 2.88 2.23 3.77 

England Edge Area - - 10.58 8.24 13.76 

England High Risk Area - - 8.94 6.90 11.75 

*Root farm herd type 

Mixed     Baseline     

Dairy - - 1.33 1.19 1.49 

Fat - - 0.90 0.80 1.02 

Suckler - - 1.07 0.97 1.19 

*Root farm bTB incident 2010-2014 (binary) - - 2.79 2.62 2.98 

*Cattle purchased by root farm - - 0.98 0.90 1.07 

*Mean number of 
farms in ICC 

1st quartile (0–1)     Baseline     

2nd quartile (2–662) - - 1.04 0.94 1.15 

3rd quartile (663–6280) - - 1.12 1.01 1.24 

4th quartile (6281–39676) - - 1.17 0.99 1.38 

*Cattle purchased direct from England High Risk Area - - 1.23 1.12 1.34 

*Root farm herd size 4 280 19.41 17.09 22.06 

*Mean number of cattle purchased annually 0 198 1.01 1.00 1.03 

*Root farm betweenness 0 304239 1.00 0.99 1.00 

Proportion of farms within 8km with bTB 2010-2014 0 0.54 7.36 6.51 8.33 

No. farms in England High Risk Area at levels 1-3 0 627 1.11 1.07 1.15 

No. farms in England Low Risk Area at levels 1-8 0 10144 0.69 0.58 0.83 
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Figure 4.1. Proportional contribution of each bovine tuberculosis risk region to the numbers of 

source farms comprising the ingoing contact chain of root farms in each of the disease risk 

regions in Great Britain. The majority of source farms are located within the root farm’s region, 

however in the England Edge Area, England Low Risk Area and Wales over 25% of source 

farms are from the England High Risk Area. Boxplots show the median, 25th and 75th 

percentiles, and the upper and lower whiskers extend to the largest or smallest value no further 

than 1.5 times the interquartile range, data beyond this range are plotted as outlying points. 
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In 2015–2016, 12.9% of root farms experienced a bTB incident, of which 78.5% were 

classified as OTF-W (Appendix D Table D1). Proportions of bTB incidents classified 

as OTF-W or OTF-S in the England High Risk Area and Wales mirrored those in GB 

as a whole, whereas in the England Edge Area the relative proportions of these 

classifications were more equal and in the England Low Risk Area and Scotland, there 

were more bTB incidents classed as OTF-S than OTF-W (Appendix D Table D1). 

Characteristics of the root farm and local bTB history were major risk factors 

associated with the likelihood of a bTB incident. Compared to farms in Scotland and 

the England Low Risk Area, root farms located in the England Edge Area or England 

High Risk Area, or in Wales, had greater odds of experiencing a bTB incident in 2015–

2016 (Fig. 4.2). Root farm herd size was a strong predictor of bTB incidents with the 

odds of larger herds (the 90th percentile) having a bTB incident in 2015–2016 being 

19.41 (95% CI = 17.09–22.06) times higher than for smaller herds (the 10th 

percentile—see Table 4.1). Root farms that had themselves experienced a bTB 

incident in the period 2010–2014 had 2.79 (2.62–2.98) times higher odds of 

experiencing another bTB incident in 2015–2016 (Table 4.1). Suckler, fat, and mixed 

herds had similar odds of a bTB incident, yet the odds of a dairy farm having a bTB 

incident in 2015–2016 were on average 1.33 (1.19–1.49) times higher than for a mixed 

farm (Table 4.1). Root farms with a higher proportion of farms within 8 km that had 

experienced a bTB incident (2010–2014) had 7.36 (6.51–8.33) times higher odds of 

experiencing an incident themselves (Table 4.1). 

In selecting our variables, model performance was better (i.e. a lower AIC) when we 

included the number of source farms in the England High Risk Area, than those in the 

England Edge Area, Wales or the number of source farms with a bTB incident in the 

last 5 years (Appendix D Fig. D3). A root farm with more farms in the England High 

Risk Area at levels 1–3 of their ICC had 1.11 (1.07–1.15) times higher odds of having 

a bTB incident (Table 4.1). We found that having more farms in lower-incidence areas 

at any level of the ICC was associated with a decreased risk of bTB incident on the 

root farm, specifically root farms had lower odds of a bTB incident in 2015–2016 (OR 

= 0.69, 0.58–0.83; Table 4.1) if they had more source farms located in the England 

Low Risk Area at levels 1–8 of their ICC. The odds of having a bTB incident were 1.23 

(1.12–1.34) times higher when purchasing cattle direct from the England High Risk 

Area compared to not purchasing cattle from the England High Risk Area (Fig. 4.2).  
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Figure 4.2. (overleaf) The effect of root farm characteristics on the odds of a bTB incident on 

the root farm in 2015–2016 in Great Britain and in the disease risk regions. Odds ratios of 

continuous variables are standardised as the odds associated with the difference between the 

10th and 90th percentiles of the raw data and are shown with 95% confidence intervals 

(whiskers). Variables include the number of farms from the England High Risk Area at levels 

1–3 and the number of farms from the England Low Risk Area at levels 1–8 in the ingoing 

contact chain of the root farm (ICC), connectivity of the farm within the trading network 

(betweenness), the number of farms in the ICC, and previously established bTB risk factors. 
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Our regional analyses showed broadly similar effect sizes to those obtained using the 

entire Great Britain dataset, however there were key differences in the effect sizes for 

bTB history on root farms and neighbouring farms (See Table 4.1, Appendix D Table 

D2, and Fig. 4.2 for analysis of all factors). In terms of network factors, having more 

farms in the ICC in the England Low Risk Area decreased the odds of a bTB incident 

more for root farms in the England Low Risk Area than for farms in the full Great Britain 

dataset. In terms of previously established risk factors, the odds of having a repeat 

bTB incident on root farms in the England Low Risk Area and in Scotland following an 

incident in the preceding 5-year period were over fifteen times greater than those for 

farms which experienced no bTB incident in that period. Similarly, the odds of bTB 

incidents on farms in the England Low Risk Area were almost five times greater if they 

had experienced a previous incident. For root farms in the England High Risk Area, 

England Edge Area and in Wales, a repeat incident had more than twice the odds of 

occurring than a first-time incident. Larger herds had at least thirteen times the odds 

of experiencing a bTB incident than smaller farms in all regions. Compared to other 

herd types, dairy farms still had increased odds of experiencing a bTB incident in 

2015–2016 in the England High Risk Area and England Edge Area. Local effects were 

strongest in Wales where the proportion of farms within 8 km with previous bTB 

incidents was associated with almost 8 times higher odds (Appendix D Table D2). The 

effect was lower for farms in the England Low Risk Area and Scotland, where very few 

farms had neighbouring farms with recent bTB incidents. 

Discussion 

After accounting for previously identified risk factors, we have revealed additional 

associations between bTB risk and the characteristics and bTB history of indirect 

trading partners in the extensive trading networks of British cattle farms. The odds of 

a bTB incident were increased where there were more farms from the England High 

Risk Area at levels 1–3 in the ICC, while having more farms located in the England 

Low Risk Area at any level in the ICC was associated with a decreased risk.  

Our study covers the period 2010–2016, four to ten years after the introduction of 

comprehensive pre-movement testing, and selective post-movement testing, and 

indicates that there remains an increased risk associated with direct and indirect 

trading from the England High Risk Area. While we found a weaker relationship 
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associated with direct purchases from the England High Risk Area than seen in 

previous studies based on data from 2008–2013 (Salvador et al., 2018), our results 

suggest that there is scope for further reductions in the risks of acquiring bTB through 

trading links. For herds with non-negligible levels of infection, the SICCT test has 

reasonable sensitivity when considered as a herd-level test (Christensen and Gardner, 

2000), however when used for pre- and post-movement testing on small batches of 

cattle (the median number of animals per trade between 2002 and 2015 was 2 with an 

interquartile range of 1–4; Fielding et al., 2019), its sensitivity is likely to be lower 

(Martin et al., 1992), resulting in frequent false negatives and the undesirable 

movement of truly-infected animals. Although farms tend to trade directly most often 

within their regions (Mitchell et al., 2005) and pre- and post-movement testing has 

been shown to deter movements between regions (Gates et al., 2013b), we show that 

extensive inter-regional connections are quickly formed in the contact chains of many 

farms. We observed that within a few movements, large areas of Great Britain might 

be traversed by cattle movements and that farms can be connected to many farms 

outside of their risk area or geographical region. While relatively few of these 

connections are likely to transmit infection, those that do may be effective in 

translocating disease into new areas (Gopal et al., 2006). The use of more sensitive 

diagnostics such as the gamma interferon assay (Nuñez-Garcia et al., 2018) in 

movement-associated testing might act both to further deter trading from regions of 

high to low risk, due to higher costs, and to reduce the occurrence of infected animals 

being traded. Risk-based trading protocols have been outlined elsewhere (Adkin et 

al., 2015), and quantify direct trading risk, but additionally including an estimate of the 

risk associated with indirect trading, using the locations and numbers of source farms 

might form a better understanding of the risk associated with each purchase. 

Results of the present study show that having more farms in the ICC was initially 

associated with increased risk, as observed in a similar study of cattle contact chains 

in France (Palisson et al., 2016). However, unlike the French study, the number of 

source farms was not associated with a large increase in the risk of experiencing a 

bTB incident, suggesting that trade in cattle might play a different role in predicting 

bTB incidents in the two countries. BTB prevalence is much lower in France and there 

is a comparatively lower force of infection from the local environment. This likely 

results in overall trading strategies being more important relative to the specific identity 
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of trading partners in the movement network. Our analysis in Britain showed that in 

terms of bTB incident risk, the location of source farms was more important than the 

total number of source farms. We predicted that trading with farms that had a history 

of bTB incidents would be a more accurate predictor of risk than trading with farms 

from the England High Risk Area, as reported by Green et al. (2008). However, we 

found that trading with farms in the England High Risk Area was more informative in 

predicting a subsequent bTB incident on the root farm. This may suggest that past 

bTB incidents do not fully describe bTB risk and that undisclosed infections in herds 

or environmental sources of infection present a risk that is captured by being in the 

England High Risk Area but not detected through routine testing (Conlan et al., 2012).  

Spatial proximity to farms with recent bTB incidents was associated with an increased 

odds of bTB incident on the root farm in the full GB model and regional models except 

for Scotland. We expected that farms closest (i.e. 0–2 km) to the root farm would have 

the strongest association with the odds of a bTB incident as this would encompass 

potential contacts of cattle on shared boundaries and the risks from infected local 

wildlife (Broughan et al., 2016b). However, the variable which best explained this risk 

was the proportion of farms with a bTB incident within a radius of 8 km. This could 

potentially be related to the additional effects of unrecorded local cattle movements, 

the spreading of infected slurry (Green et al., 2008), and movement of cattle among 

fragmented land parcels (Broughan et al., 2016b). That this proxy measure was still 

strongly associated with the odds of a bTB incident after accounting for other major 

factors suggests that some or all of these factors may be important drivers of local 

risk. 

Notwithstanding the low number of repeat bTB incidents in Scotland (n=21) and the 

England Low Risk Area (n=60) and broad confidence intervals of this variable, the 

association between previous incidents in the preceding 5 years (2010–2014) and the 

risk of a later incident in Scotland or in the England Low Risk Area was considerably 

greater than the association between prior history in the higher incidence areas of 

England and Wales and bTB incidents. As the environmental force of re-infection in 

non-endemic areas is likely to be low, this suggests that a small number of herds in 

Scotland and the England Low Risk Area may have had OTF status restored without 

having fully eliminated infection (Conlan et al., 2012), or alternatively, that there is a 

repeated external source of infection not accounted for in our study. For example, we 
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have not included cattle imports from outside GB, and may therefore have 

underestimated the risk of bTB on farms that import animals from Northern Ireland and 

the Republic of Ireland (Salvador et al., 2018), where infection is also endemic in cattle. 

An advantage of the regression framework employed in the present study is that it is 

more straightforward to fit these models to complex data than it would be to fit a fully 

mechanistic infectious disease model (Brooks Pollock et al., 2014; Conlan et al., 

2012). However, although we included approximations for risk based on region and 

local bTB occurrence, we were unable to fully disentangle the relationships between 

movements, regions and finer-scale spatial risk. It may be that the impact of the 

network dynamics are more evident if explicit trading paths are modelled, for example 

through the use of a compartmental network-based epidemic model (Brooks Pollock 

et al., 2014).  

The effect sizes of trading patterns in our study were relatively small compared to other 

risk factors such as herd size (Bessell et al., 2012; Brooks Pollock and Keeling, 2009) 

and prior bTB history which have been identified previously (Green et al., 2008; Orton 

et al., 2018; Palisson et al., 2016). Nevertheless, the major risk factors identified in this 

and previous studies tended to reflect the inherent characteristics of farms (i.e. 

location, bTB history of farm and neighbours), which are difficult, if not impossible to 

change. By contrast, trading behaviour might be more readily manipulated through 

regulation and incentivisation with support from industry and policy-makers. The 

present study reinforces the importance of direct trading links and highlights the 

additional risks associated with indirect trading links, revealed by a more thorough 

examination of the movement network, as necessary factors to consider in strategies 

to reduce bTB transmission in Great Britain. However, given the computational 

complexities of interrogating such a dense movement network in real-time, the next 

challenge will be in deciding how best these sources of risk might be integrated into 

current management policies. 
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Chapter 5: Spatio-temporal variation in social networks of 

commercial dairy cattle in Great Britain 

Abstract  

Acquiring infectious disease is a potential cost of group living and the nature of social 

relationships within groups can be important in facilitating or impeding the spread of 

pathogens. Networks constructed from contacts between hosts allow us to examine 

social relationships and how they might influence the spread of infections through 

groups. We collected high-resolution proximity and location data from nine groups of 

domestic cattle (mean group size = 85) in seven dairy herds employing a range of 

grazing and housing regimes. Networks were constructed from contacts aggregated 

by different temporal windows (2-hours, daily, entire study period) and grouped by 

farm area (Buildings, Pasture, and when cows were divided between the two). 

Networks of cattle contacts aggregated over the whole study were highly saturated, 

but dividing contacts by space and time revealed substantial variation in cattle 

interactions. Contact durations were longer in Buildings networks and cows housed in 

buildings contacted more other cows. Between-cow variation in terms of the numbers 

of cows they contacted and the frequency of their interactions was greater than 

random in Buildings and Pasture networks. A few cows in each group formed 

consistent strong relationships, though the majority of cattle did not. Counterintuitively, 

we found that milking time in some groups led to cows being in contact with fewer 

other cows. Cattle allowed free access to all farm areas spent most of the study period 

split between the buildings and pasture, and showed substantial variation in the 

number and duration of contacts at pasture. By analysing interactions in multiple 

commercial groups of cattle, we find that variations in management, e.g. grazing 

access, milking routine, can alter the social interactions of cattle, which might in turn 

enable better understanding of how infections are transmitted among dairy cattle and 

how transmission varies among herds. 
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Introduction 

Group living offers many fitness benefits to a species, however, a theoretical cost of 

group living is the general increase in the likelihood of exposure to infections (Kappeler 

et al., 2015). Host contact rate is a crucial component of the reproductive rate of an 

infection and modelling contact rate as random process can provide an effective 

framework to simulate the transmission of some infections (Anderson and May, 1992). 

Where contact rates vary between individuals and infection is directly transmitted, 

infections might alternatively be better predicted using networks as a framework to 

model the transmission of infections (Bansal et al., 2007; Craft, 2015). Including 

empirically-determined contact networks of beef cattle and horses in transmission 

models has produced lower estimates of epidemic size and duration when compared 

to epidemics based on homogenous mixing of contacts (Duncan et al., 2012; Milwid 

et al., 2019a), and incorporating heterogeneous contact structure into within-farm 

disease transmission models has enabled the dynamics of Mycobacterium avium 

subsp. paratuberculosis (Marcé et al., 2011) and bovine viral diarrhoea infections 

(Courcoul and Ezanno, 2010) to be more accurately described. Modelling variation in 

individual contacts showed Escherichia coli infections were less likely to persist in 

smaller groups of cattle (Turner et al., 2008). In extreme cases, individual 

heterogeneity can alter the flow of an infection such that epidemics might be less likely 

to occur, but cause more explosive outbreaks when they do occur (Lloyd-Smith et al., 

2005). Contact structures that create strong divisions between subgroups can reduce 

infection rates (Sumner et al., 2018) but can also lead to increased transmission within 

subgroups and ‘structural trapping’ of disease (Sah et al., 2017). In the interests of 

parsimony, many network studies consider contacts to be static through time, though 

in reality this assumption is often violated and the analysis of dynamic networks can 

be important predicting disease dynamics more accurately (Bansal et al., 2010; Silk et 

al., 2017b; Springer et al., 2017). For example, models incorporating temporal 

dynamics using hourly cattle-contact networks have suggested that including this fine-

scale temporal variation in contact networks can alter transmission dynamics, 

especially for infections with smaller reproductive ratios (Chen et al., 2014).   

Behavioural studies of contacts among free-ranging and feral cattle show they live in 

matriarchal dominance hierarchies with evidence of long-lasting social preferences 

and low immigration and emigration (Bouissou et al., 2001; Reinhardt and Reinhardt, 
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1981). Studies of cow-calf relationships in small, extensively-kept, beef herds show 

strong preferences for dams to spend time with their own calf (Duncan et al., 2012; 

Handcock et al., 2009; Swain and Bishop-Hurley, 2007). However, group structure 

within modern dairy herds is quite different; dams and calves are separated early in 

life and dairy cows on farms that calve all year round are typically moved through 

groups in a ‘cascade’ system, according to their production stage (e.g. lactating or 

dry), meaning frequent additions to and removals from groups. Dairy herds in the UK 

are becoming larger (AHDB Dairy, 2019b), which typically requires further divisions 

into groups, usually according to milk yield. The dynamic nature of these groups can 

disturb social hierarchies and precipitate agonistic interactions (Bøe and Færevik, 

2003), increase social stress (Proudfoot and Habing, 2015), and decrease milk 

production (Hasegawa et al., 1997). Typically, dairy herds in the UK graze outdoors 

from March to October and are housed in the winter, however, changes in the dairy 

industry such as the trend for higher milk yields have had impacts on herd 

management (Oltenacu and Broom, 2010). Metabolic demands of high-yielding cows 

are not always met on purely grass-based systems (Fike et al., 2010) and a 

subsequent rise in ‘zero-grazing’ herds means that more cattle are housed all year 

round so that they can consume a nutritionally complete ration (Haskell et al., 2006). 

This can impact upon individual behaviour; studies comparing the three main cow 

behaviours (feeding, ruminating and resting; Kilgour, 2012) on pasture and in housing 

show that cows tend to spend less time eating indoors, more time lying outdoors, and 

there is an increase in agonistic interactions indoors caused by competition for more 

focussed resources (Arnott et al., 2016). The ability of cattle to synchronise their 

behaviour, considered an indicator of positive welfare (Napolitano et al., 2009), has 

been shown to be more likely at pasture than in housing (Tuomisto et al., 2019). Social 

networks of dairy cattle have been described for cattle in housing (Foris et al., 2018; 

Gygax et al., 2010), in housing with limited pasture access (Boyland et al., 2016), and 

at pasture (de Freslon et al., 2019) using a range of methods including focal 

observations, video observation, proximity loggers and spatial positioning systems. 

Most studies on modern dairy herds show that they form a single, unstructured group, 

with some individual variation in sociability and some evidence for social preferences. 

Cows demonstrate very repeatable behaviour in the order that they enter the milking 

parlour (Beggs et al., 2018; Rathore, 1982), which is likely to be linked to social 

structure (Soffié et al., 1976; Wood, 1977), and changes to this order might also be an 
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indicator of poor health (Polikarpus et al., 2015), reinforcing the evidence for links 

between social behaviour and animal health. Contacts between cattle have been 

shown to vary in different spaces within housing and over time (Chen et al., 2015; 

Gygax et al., 2010), however no studies have divided contact networks spatially 

between pasture and when cattle are in buildings.  

To better understand patterns of social contacts among cattle on dairy farms, we 

recorded the interactions of nine groups of cows on seven commercial dairy farms in 

south-west England. We used automated proximity sensor technology to collect 

continuous high-resolution contact data and combined this with data from GPS 

devices to describe the cow’s location on the farm. Our herds represented a range of 

management practices in terms of their milking regimes, housing, grazing access, and 

group sizes, all of which might be expected to affect the social interactions between 

herd members. Here we describe the social networks of these herds at different spatial 

and temporal scales; comparing networks of cattle in buildings to networks at pasture 

and analysing contact frequencies at weekly (the whole study period), daily and 2-

hourly time aggregations. We predicted that interactions would differ among locations 

on the farm, with cattle more able to express social preferences at pasture, and more 

numerous contacts while in buildings. We focussed on network characteristics that 

might influence the transmission of pathogens: heterogeneity in contact rates and 

durations, the formation of sub-groups or ‘communities’, and the relative strength of 

connections within and between these communities. 

Methods 

Deployments and farms 

Our herds were representative of small to average sized commercial dairy herds in the 

UK. We have anonymised farms and refer to them by a descriptive feature of the group 

(Table 5.1). On most farms (Night-housed, Strip-grazed, Free, Rotation 1a, Rotation 

1b, Rotation 2), we recorded contacts among cows that were kept in a milking group 

separate to other animals in the herd. However, cows in the largest herd were split 

into several groups and we recorded interactions among the dry cows (Dry) and 

among the low-yielding milking cows (Housed). No changes were made from the 

normal routine of the farms, therefore cows were added to and removed from groups 

during most deployments as they calved in or finished their lactations. In contrast, the 
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Stable group included all milking and dry cows and thus no changes occurred to the 

group composition during the study period. Grazing management was also varied and 

ranged between allocation of additional strips of grazing after each milking (Strip-

grazed), through grazing a different field or part of a field after each milking (Rotation 

1a, Rotation 1b, Rotation 2, Stable, Night-housed), to set stocking in one field (Dry) 

and free range of all fields on the farm (Free). Supplementary forage (e.g. silage, hay) 

was often replenished after milking times. 

In general, groups were kept out at pasture and brought into buildings only for milking, 

with four exceptions: 1) the Housed group were kept in cubicle housing during the 

study week due to insufficient grazing during a spell of hot weather, 2) the Night-

housed group were in cubicle housing at night, 3) the Rotation 1b group were allowed 

access to buildings at all times and were kept in for two nights and days in the middle 

of the study period due to inclement weather and 4) the Free group were allowed free 

access to pasture, cubicle housing, and the automated milking system (AMS) at all 

times during the study. Group location at pasture or in buildings was always governed 

by the farms, except in the case of the Free group, where cows had free access to all 

areas of the farm, and the Rotation 1b group where they had access to the daily 

selected pasture and housing. ‘Buildings’ networks for the Night-housed, Rotation 1b, 

Housed, and Free groups represent milking times and being housed in buildings, 

whereas ‘Buildings’ networks for the Strip-grazed, Rotation 1a, Rotation 2, and the 

Stable groups represent just milking times (Table 5.1). Cows not present for the entire 

study period or for which we had incomplete data were removed from our analyses. 

All fieldwork was approved by the University of Exeter College of Life and 

Environmental Sciences (Penryn Campus) ethics committee (eCORN000087 v4.6). 
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Table 5.1. Details of farm management and data collected from nine groups of cattle on seven Cornish dairy farms in Summer and Autumn 2018. 

Details include breed of cattle, grazing management, milking routine, group sizes, number of collars with GPS and proximity sensors that were 

deployed, and data quality. Details are omitted for two study groups removed from analyses due to data loss from more than 50% of cows.  

 

Deployment 
name 

Start 
month 

of 
study 

Breed of 
cattle 

Source of 
replacement 

cows 

Group 
monitored 

Calving 
system 

Cow access to farm 
locations 

Grazing 
type 

No. 
milkings 
per day 

No. cows in 
group Bulls 

in 
group 

Study 
Period 
(days) 

No. 
collars 

deployed 

No. cows 
with 

complete 
proximity 

data 

Percentage 
of the 

group with 
data 

Buildings Pasture Start End 

Night-
housed 

Oct-18 
Holstein 
Friesian 

Multiple 
source farms 

Milking 
All year 
round 

Milking 
and night 

Day 
Rotational 

grazing 
2 98 97 2 6.77 98 87 88.8 

Strip-grazed Aug-18 Ayrshire Home-bred Milking 
All year 
round 

Milking 
Day 
and 

night 

Strip 
grazing 

2 52 54 0 6.83 52 44 84.6 

Free Aug-18 
Holstein 
Friesian 

Home-bred Milking 
All year 
round 

Access at 
all times 

Access 
at all 
times 

Free roam 
of 

pastures 

Automated 
milking 
system 

60 60 0 6.85 60 50 83.3 

Rotation 1a Aug-18 
Holstein 
Friesian 
/ Jersey 

cross 

Home-bred 

Milking 

Autumn 
calving 

Milking 
Day 
and 

night 

Rotational 
grazing 

1 80 96 0 6.77 80 64 80.0 

Rotation 1b Oct-18 Milking 

Milking 
and 

access at 
all times 

Day 
and 

night 

Rotational 
grazing 

2 98 112 0 6.79 98 87 88.8 

Dry Sep-18 
Holstein 
Friesian 

Multiple 
source farms 

Dry 
All year 
round 

No access 
Day 
and 

night 

Set 
stocking 

0 33 32 0 6.76 37 22 59.5 

Housed Sep-18 Milking 
Day and 

night 
No 

access 
NA 2 111 106 1 6.76 111 100 90.1 

Rotation 2 Oct-18 
Holstein 
Friesian 

Home-bred Milking 
All year 
round 

Milking 
Day 
and 

night 

Rotational 
grazing 

2 175 181 0 7.04 177 95 53.7 

Stable Sep-18 Mixed 
Multiple 

source farms 
All cows 

Spring 
calving 

Milking 
Day 
and 

night 

Rotational 
grazing 

1 59 59 1 6.84 57 37 64.9 

  Mean: 85.1 88.6 0.4 6.8 85.6 65.1 77.1 
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Equipment 

Nylon cattle collars with a plastic clasp (Suevia Haiges, Germany) were fitted with a 

proximity device and a GPS receiver such that one device lay at either side of the 

animal’s neck. The GPS receivers (i-GotU GT-120 and GT-600 devices, Mobile Action 

Technology Inc., Taiwan) were configured to record fixes every ten minutes. The 

proximity device is based on a design by the OpenBeacon project 

(http://www.openbeacon.org/) and the SocioPatterns collaboration consortium 

(http://www.sociopatterns.org/) and has been used in contact studies of humans, 

horses, and dogs (Cattuto et al., 2010; Milwid et al., 2019a; Wilson-Aggarwal et al., 

2019). The Radio Frequency Identification Devices (RFID) exchange low-power radio 

packets in a peer-to-peer fashion, using the signal strength to estimate the distance 

between devices (Cattuto et al., 2010). Using previous studies in humans and our own 

validation analyses (see Appendix E Validation), it was determined that attenuation of 

less than -70dBm was an appropriate threshold to approximate contacts of cattle 

between 1 and 1.5m. This distance was deemed appropriate for detecting affiliative 

behaviour or potential transmission of pathogens that may be spread oro-nasally or by 

direct contact (Cattuto et al., 2010). Contacts are best recorded when the devices are 

face-to-face, therefore when cows were positioned in close proximity but with tags 

facing opposite or the same direction, observations in our validation analysis 

(Appendix E Validation) suggested that contacts might have been underestimated. 

Observations during validation analyses (Appendix E Validation) also suggested that 

there may be a possibility of more distant contacts being recorded when metal 

structures are around due to signal propagation, possibly leading to over-estimation 

of contacts in this environment. However, in the validation analysis, post-data 

processing removed this false positive from the data and therefore the cleaned data 

are likely to still provide a good approximation of contact patterns between cattle, as 

they have done in previous studies in similar indoor barn environments (Milwid et al., 

2019b). We selected a temporal threshold of 20 seconds to ensure contacts were not 

spurious, the contact was maintained as long as signal was sent or received every 20 

seconds, if no signal was sent or received, the contact ended. Contact durations are 

therefore measured in 20 second blocks (Cattuto et al., 2010). Some tags (n = 16) 

recorded abnormally high contacts during short timeframes (Appendix E Fig. E1), 

therefore we removed any tags that recorded more contacts than 95% of the total 

http://www.openbeacon.org/
http://www.sociopatterns.org/
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contacts recorded by all tags within a 30 minute time frame, as we considered them 

highly unlikely to be biologically feasible. Some tags recorded very low numbers of 

interactions, however the timing of the contacts consistently through the study was 

considered biologically plausible, so they remained in the analysis. 

Network and statistical analysis 

1. Do contact patterns vary through time and space? 

We calculated the mean frequency of contacts between all group members for each 

group for the whole study period, and at two-hourly and daily intervals. Contacts from 

the whole study period were aggregated to form the ‘Full networks’, where cows were 

represented as nodes and contacts were represented as undirected edges. Each 

combination of cow pairs is called a ‘dyad’. Edges were weighted by the total duration 

of contact between the two cows for the relevant time period, at an appropriate scale, 

e.g. minutes-per-day on Full networks.  

To detect differences in contacts when cows are in buildings or out at pasture, we 

approximated herd location based on GPS data. Areas of the farm were split into 

‘Buildings’, comprising any part of the farm where cattle would be collected together 

under cover, including the collecting yard, milking parlour, housing, loafing area, etc., 

and ‘Pasture’ that was in use during the study period (using open-source QGIS 

software; QGIS Development team, 2019). For each 30-minute window of the study 

period, we defined a cow’s location as where over 50% of GPS fixes were recorded. 

Herd location (Pasture or Buildings) was defined as the area containing over 75% of 

cows for the same 30 minute time window. Where less than 75% of the herd was in 

one location, we categorised this time as ‘Split’. We aggregated these 30-minute 

windows by their location to create three ‘Spatial networks’, termed the ‘Buildings 

network’, ‘Pasture network’ and ‘Split network’. We compared the relative proportion 

of time spent in each spatial location with the frequency of contacts that occurred in 

each location. We tested correlation between these networks using a quadratic 

assignment procedure from the R package ‘sna’ (Butts, 2016). Due to the high density 

of the Full and Spatial networks, with most cows in contact at some point during the 

study period, we assessed the networks based on stronger interactions by filtering out 

weaker edges. We removed edge weights below the 50th, 75th and 90th percentiles of 

edge weights in the unfiltered network, for example, F50 networks removed cow to 
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cow relationships that were in the lowest 50th percentile of time spent together (James 

et al., 2009). We also tested correlations between Full and Spatial networks at each 

of these filtered levels (F50, F75, F90). 

2. Do contact frequency and duration vary between cows? 

We assessed the centrality of cows within each farm by calculating node degree (the 

total number of in-contact cows) and strength (the total amount of time each cow has 

spent with any other cow) for each cow. Heterogeneity in contact rate between cows 

is well-known for affecting disease transmission (Lloyd-Smith et al., 2005), and can be 

assessed by the coefficient of variation as per the following equations; 

𝐶𝑉𝑑𝑒𝑔𝑟𝑒𝑒 =
𝜎𝑑𝑒𝑔𝑟𝑒𝑒

𝜇𝑑𝑒𝑔𝑟𝑒𝑒
  𝐶𝑉𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ =

𝜎𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ

𝜇𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ
   (1,2) 

where CV is the coefficient of variation, σ is the standard deviation, and μ is the mean 

of the degree and strength distributions respectively (May, 2006).  In general, higher 

CV values indicate increasing variation between values, therefore CVdegree that tends 

towards zero indicates a more homogenously mixing population (May, 2006). CVs 

were calculated for degree and strength on the Full network and Spatial networks. 

As network parameters are inherently inter-connected and thus violate the 

assumptions of independence required of conventional statistical techniques, we 

constructed null, randomised networks to test if values from the random networks were 

statistically significantly different from values calculated from our observed networks 

(Croft et al., 2011). The static networks were randomised by creating new Erdӧs-Rényi 

graphs (Erdös and Rényi, 1959) with the same number of edges and nodes as the 

original network. We then randomly allocated edge weights from the observed network 

to the new edges in the Erdӧs-Rényi network. Metrics were considered statistically 

significantly different from random if their values lay outside the upper and lower 95% 

bounds of 4999 randomised values, i.e. where P < 0.05 (two-tailed).  

3. Do cows exhibit social preferences and are they consistent over time? 

To see if cows preferentially spent more time with particular cows, we measured the 

coefficient of variation in contact times that each cow spent with other cows (CVcddyad) 

for each individual as per Equation 1 but using the distribution of contact durations for 

each dyad rather than the degree distribution. In order to randomise dyadic contact 
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durations rather than just the overall strength distribution per cow, we took the raw list 

of contacts (the edgelist) and randomly re-allocated contact durations among 

individual contacts to create a random edgelist. The random edgelist was then 

aggregated by summing the weights from individual contacts for each dyad. We then 

created a new unweighted Erdӧs-Rényi network with the same number of nodes and 

edges as the random edgelist. The aggregated edge weights from the random edgelist 

were then randomly allocated to new edges in the Erdӧs-Rényi network, thereby 

keeping the overall amount of time cattle spent together the same as the observed 

network, but changing how this was distributed between animals. We tested the 

hypothesis that the CVcddyad values of cows in observed networks were greater than 

the CVcddyad values of cows in randomised networks and calculated an empirical P 

value (two-tailed) as per the following equation: 

𝑃 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑉𝑐𝑑𝑑𝑦𝑎𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑≤ 𝐶𝑉𝑐𝑑𝑑𝑦𝑎𝑑 𝑟𝑎𝑛𝑑𝑜𝑚

𝑛
     (3) 

where n is the number of CVcddyad from random networks (4999) plus the observed 

CVcddyad as it might have feasibly come from a random distribution (Boyland et al., 

2016). For example, P = 0.025 suggests that the observed value is less than or equal 

to than the random value in 2.5% of randomisations. 

To assess the tendency of cows to repeatedly interact with the same cows over time, 

we measured variation in contact between each dyad over time. For each dyad, in 

each two-hour block of the study period, we attributed a 1 if there was contact and a 

0 if there was no contact during that time. For a random comparison, at this stage we 

randomly distributed the 1s and 0s among all dyads, and thereafter performed the 

same analysis on the observed and random two-hour blocks. We calculated the 

proportion of two-hour blocks in which cows interacted per 24 hours, e.g. 6/12 = 0.5. 

We then calculated the coefficient of variation of the proportions from each study day 

(CVproportion) for each dyad, where a low CVproportion would indicate little variation in the 

amount of time they spent together between each study day and a higher CVproportion 

would indicate cows spending increasingly varied amounts of time with each other. 

We removed dyads with no connections at all from the analysis to focus on the 

variation in contacts rather than non-contacts. We tested the hypothesis that the 

CVproportion of dyads in observed networks were more consistent, i.e. had less variation 
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between days, than the CVproportion of dyads in random networks and calculated P 

values (two-tailed) as per the following equation  

𝑃 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑉𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑≥ 𝐶𝑉𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑟𝑎𝑛𝑑𝑜𝑚

𝑛
   (4) 

where n is the number of CVproportion from random networks (4999) plus the observed 

CVproportion as it might have feasibly come from a random distribution. 

 

 

4. Do cow’s form discrete communities and are they consistent over time? 

We performed community detection on unfiltered, unweighted Full and Spatial 

(Buildings, Pasture and Split) networks using the fast greedy algorithm (Clauset et al., 

2004), as implemented in ‘igraph’ (Csardi and Nepusz, 2006). As the modularity value 

of a network is related to the number of nodes, and our networks are of different sizes, 

we used a relative measure, as outlined by Sah et. al (2017). We calculated the 

maximum modularity that could be achieved with a network of that size (Qmax; Sah et 

al., 2017) and the modularity of the observed network (Q), and then calculated the 

relative modularity (Qrel) as per the equation below. 

𝑄𝑟𝑒𝑙 =
𝑄

𝑄𝑚𝑎𝑥
       (5) 

Due to the high density of the Full and Spatial networks, we also performed the 

community detection and modularity analysis on these networks filtered by edge 

weights below the 50th (F50), 75th (F75), and 90th (F90) percentiles of contacts. 

To assess if the composition of communities were repeatable over time and in different 

locations, we extracted the raw contacts that occurred in each location (Buildings, 

Pasture, and Split). We then grouped contacts that occurred during a similar time 

period, divided by a change in location or a change from day (defined as 07:00–19:00) 

to night, into several ‘Temporal-Spatial’ networks termed ‘Temporal Pasture’, 

‘Temporal Buildings’ and ‘Temporal Split’ networks (Appendix E Fig. E2). If groups 

had less than three comparable networks for a certain category, they were removed 

from the analysis. For each time period we created a weighted network with 

aggregated contacts and calculated communities using the fast-greedy algorithm. For 
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each dyad in each network, we assigned 1 if both cows were in the same network and 

0 if they were in a different network. For a random comparison, at this point we 

randomly distributed the 1s and 0s among dyads (n = 4999) and then proceeded with 

the same analysis for randomised and observed data. We calculated the ‘repeatability’ 

(estimated from the variance component of a generalised linear mixed model using a 

binomial error structure in the package ‘rptR’ (Stoffel et al., 2017) to determine the 

stability of dyads being in the same community in multiple networks over time. 

Repeatability values can range from 0 indicating a lack of stability in community 

membership, to 1, indicating perfectly stable community membership.  

All data analysis and manipulation was performed in R (R Core Team Version 3.5.3, 

2019), unless otherwise stated. Networks were constructed and network measures 

(degree, strength, community detection and modularity) were calculated in the R 

package “igraph” (Csardi and Nepusz, 2006). 

Results 

We deployed collars on 11 groups of dairy cows over 8 farms. Group size ranged from 

33 to 177, and a total of 770 cattle were collared over all deployments. We removed 

deployments completely if we had full proximity data for less than 50% of cows, which 

resulted in the loss of two groups, mainly due to water-damaged proximity loggers. 

We retained 9 groups of dairy cows on 7 farms for analysis. Complete proximity data 

were available for a total of 585 cows on these farms and the number of animals in 

our networks ranged from 22 to 100 (mean = 65 cows, standard deviation (SD) = 28 

cows; Table 5.1). The mean duration of time cows spent in close proximity to other 

cows over all groups was 27 minutes per day (SD = 11 minutes, range among herds 

= 19–39 minutes). Average contact rate per dyad per hour over the study period 

among groups had a mean of 0.20 (SD = 0.07, range among herds = 0.13–0.32; Fig. 

5.1) with the Free group and the Stable group having the highest and lowest mean 

contact rates respectively. Edge densities of all Full networks were very high, although 

networks were never fully connected (mean among herds = 0.95, SD = 0.03, range = 

0.92–0.99). 
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Figure 5.1. (overleaf) Temporal variation in numbers of contacts recorded between cows in 

nine groups of dairy cattle on seven commercial farms. Contacts were recorded by RFID 

proximity loggers and contact frequency is averaged per hour per dyad (cow-cow pair) 

and aggregated into varying time periods; the whole study period (mean = 7 days; 

black solid line), daily (red circles and dashed lines), and 2-hourly (blue circles and 

dotted lines). Daily and 2-hourly values are selected from the middle four days of the 

study period for brevity. Milking regimes (light red shading) varied by group and timings 

plotted here are those reported by farmers. There is little variation day-to-day within a 

farm but strong within-day patterns are evident in most farms, typically with higher 

contacts in the day (yellow shading) compared to night (blue shading) and higher 

contacts around dawn and dusk, which frequently align with milking times.  
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1. Do contact patterns vary through time and space? 

Contact frequency in most groups varied substantially when contacts were aggregated 

into 2-hourly windows (Fig. 5.1), with higher numbers of contacts coinciding with 

management practices, e.g. milking, which tended to occur early morning and early 

evening, or feeding, which tended to occur after milking. Although cows were not 

specifically gathered for milking or feeding in the Free group, there were still increases 

in contacts around dawn and dusk. Patterns of contact frequencies typically followed 

24-hour (e.g. Fig. 5.1, Rotation 1a and 1b) or 12-hour cycles (e.g. Fig. 5.1, Strip-

grazed, Rotation 2, Stable), thus the number of contacts aggregated over 24-hour 

periods were consistent between days. Mean daily contact frequencies were similar 

to mean values calculated from contacts during the entire study period (Fig. 5.1). 

Contact frequencies over 2-hourly periods in the Housed and Stable groups showed 

much less temporal variation relative to all other groups (Fig. 5.1). In groups with 

access to pasture, contact rates were close to zero at some points in the study, more 

often during the night, whereas contact rates did not fall this low when groups were 

housed (Fig. 5.1). 

More contacts occurred in Buildings networks, compared to Pasture and Split 

networks, relative to the amount of time spent in these areas (Fig. 5.2). On average, 

cows had contacts of longer durations in Buildings than at Pasture (Fig. 5.3). For 

groups housed in buildings (Night-housed, Rotation 1b), and the Free and Rotation 2 

groups, most cows contacted almost all other cows in the Buildings networks, and 

contacted fewer cows in Pasture networks (Fig. 5.3). However, where cattle were only 

brought into buildings for milking, most cows contacted fewer cows in Buildings 

networks (Stable, Rotation 1a), or showed no difference in proportion of cows 

contacted (Strip-grazed) compared to Pasture networks. When cows had access to all 

areas of the farm, the group was most often split between buildings and grazing, 

suggesting that cows prioritised preference for a particular location over staying 

together in one group.   
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Figure 5.2. Relative amount of time and number of contacts recorded between cows in seven 

groups of dairy cattle divided by area of the farm. Pie charts show the relative proportion of time 

and number of contacts recorded by proximity loggers in Buildings (brown) and at Pasture 

(white). Herds are defined as ‘Split’ when less than 75% of cows are in either Buildings or 

Pasture (purple). Two study groups are not shown as they were at grazing or housed for the 

study duration. Most cattle only had access to buildings or pasture at specified times, however, 

the Free group was allowed access to all farm areas and elected to spend the majority of time 

split into two groups.  
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Figure 5.3. Distributions of time cows spent with other cows and number of cows contacted in 

nine groups of dairy cattle at pasture and in buildings. Plot a) shows the mean amount of time 

cows spent with other cows. Plot b) shows the proportion of cows in the group with which they 

came into contact during the whole study period (mean = 7 days). Values are calculated for 

Pasture networks (white) and Buildings networks (brown). Groups are ordered by ascending 

group size from left to right. Boxplots show the median, 25th and 75th percentiles of values and 

and the upper and lower whiskers extend to the largest or smallest value no further than 1.5 

times the interquartile range, data beyond this range are plotted as outlying points. On all 

comparable groups, less time is spent in social contact at pasture and on most farms fewer 

cows are contacted at pasture compared with buildings.  

 

Edge densities varied among Spatial networks, with Buildings networks (mean edge 

density among groups = 0.85, standard deviation = 0.20) and Pasture networks (mean 

= 0.82, SD = 0.17) more dense than the Split networks (mean = 0.73, SD = 0.20). In 

the quadratic assignment procedure analysis, Spatial networks per day were generally 

not correlated with each other (r = < 0.0000–0.0972, n = 14; Appendix E Table E1), 

except for the unfiltered Buildings and Split networks for the Strip-grazed group (r = 

0.3, P < 0.001, Appendix E Table E1). Filtering networks to retain only the strongest 

contacts did not noticeably affect correlation scores. 
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2. Do the number of contacts and contact duration vary between cows? 

Variation among cows in their number of contacts (CVdegree) and their total contact 

duration with other cows (CVstrength) was greater in the Full, Buildings, and Pasture 

networks than in randomised networks (Fig. 5.4). In all cases, there was more 

heterogeneity in strength than degree (Fig. 5.4), likely due to dense networks, limiting 

the extent of variation possible for degree. Greater between-cow variation was found 

in Pasture networks, and this was most marked in the Free group where CV values on 

Pasture networks were more than double those found in Buildings networks (Fig. 5.4). 

Groups which were in buildings for milking only had greater between-cow variation in 

Buildings networks compared to Pasture networks (CVdegree: Stable, Rotation 1a, 

CVstrength: Stable, Strip-grazed; Fig. 5.4). Differences in individual variation between 

farms did not seem to be associated with group size (Fig. 5.4). 

3. Do cows exhibit social preferences and are they consistent over time? 

Some cows in each group showed greater variation in the duration of time they spent 

with individual cows (CVcddyad), i.e. evidence for social preference, compared to cows 

in randomised networks (Fig. 5.5). The mean proportion of cows that exhibited greater 

variation than random and spent a substantial amount of time (over 21 minutes per 

day) in contact with their closest contact was 7.5% among groups (SD = 5.1%, range 

= 2.0–16.0%). The majority of cows in each deployment interacted more equably with 

all other individuals in the herd, akin to what might be expected at random (Fig. 5.5). 

A small proportion of dyads in each group (mean = 3.7%, SD = 1.5%, range = 2.1–

5.2%) spent more-consistent (P < 0.025) amounts of time together from day to day 

than would be expected if contacts re-assorted at random (Appendix E Fig. E3). On 

average these ‘consistent dyads’ spent a mean time of 30 minutes (SD = 11 minutes, 

interquartile range (IQR) = 25–38 minutes) together per 120-minute window, 

compared to a mean of 18 minutes (SD = 10 minutes, IQR = 12–25 minutes) in the 

rest of the dyads. Over all groups, 14 dyads were recorded spending a mean of over 

60 minutes with each other out of every 120 minutes during the study period.  
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Figure 5.4. Variation between cows in number and duration of contacts between cows in nine 

groups of dairy cattle compared to variation in random networks. a) Variation in number of other 

cows each cow contacted (Coefficient of Variation of degree = CVdegree) b) Variation in duration 

of contact (CVstrength) between-cows. Upwards-facing triangles indicate observed values above 

the upper 95% bound of random network values calculated for the whole study period (‘Full 

network’; red), and for contacts only on pasture (‘Pasture network’; white) and in buildings 

(‘Buildings network’; brown). Groups that stayed in a single area for the whole study period are 

coloured by that area. Groups are ordered by ascending group size from left to right. Boxplots 

represent the distribution of CV values calculated from randomised networks (n = 4999). 

Median, 25th and 75th percentiles of values are shown and the upper and lower whiskers 

extend to the largest or smallest value no further than 1.5 times the interquartile range, data 

beyond this range are not plotted. Variation in the strength of contacts was greater than the 

variation in number of contacts.  
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Figure 5.5. Social preference based on cow-cow interactions in nine groups of dairy cattle. 

Plots show the variation in time spent with other cows (CVcddyad), compared with the maximum 

time a cow spent with a single herd mate. Each cow is represented by a point, coloured by the 

P value for the coefficient of variation (CV) compared to CV values calculated on 4999 random 

networks (P values < 0.025 are shown as triangles and > 0.025 are shown as crosses). A small 

number of cows in each group show preference for spending more time with particular other 

cows, however, the variation in the interactions of most cows did not differ significantly from 

random. 
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4. Do cow’s form discrete communities and are they consistent over time? 

Community detection methods tend to work more effectively on sparse networks 

(Clauset et al., 2004) and thus only 2 or 3 communities were found in the denser, 

unfiltered, unweighted networks (Appendix E Fig. E4). These networks also tended to 

have very low relative modularity values (Qrel < 0.03, Appendix E Table E2 and Fig. 

E6). As networks were filtered and weaker edges were removed, more communities 

were detected. The largest numbers of communities (≥ 20) were found in F90 networks 

in the Strip-grazed Split network and the Free Pasture network (Appendix E Fig. E4), 

however the relative modularity between these communities did not differ from random 

(Appendix E Fig. E5).  

Split networks in the Stable (NF), Strip-grazed (F50), and Free (NF and F50) groups 

had relative modularity that was significantly greater than random (Appendix E Table 

E2 and Fig. E5). Otherwise, observed modularity was rarely statistically significantly 

greater than that of random networks (Appendix E Table E2 and Fig. E5) and the lack 

of a consistent pattern of significant results suggests the few cases where observed 

values differ statistically significantly from random could potentially be a type I error 

associated with multiple testing.  

Although the consistency of our observed communities was statistically significantly 

higher than expected at random, the absolute observed repeatability values were still 

very low, indicating that the communities we detected in the Temporal networks did 

not consistently contain the same cows (Fig. 5.6). However, the Temporal Pasture 

Day networks of the Stable group were much more consistent than any other 

categories (day R=0.22 cf. night R = 0.05; Fig. 5.6)  
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Figure 5.6. Consistency of community membership over time in contact networks of nine 

groups of dairy cattle. Several Temporal-Spatial networks were constructed for each group 

from the Temporal Pasture, Temporal Buildings and Temporal Split networks (between 

buildings and pasture) and divided into day (defined as 07:00–19:00) and night (see Fig. S2 for 

schematic). Categories (i.e. Split Night) were excluded if there were fewer than three 

comparable networks to define repeatability, therefore values for some networks are not 

present. Consistency of community membership was assessed by calculating the repeatability 

of cow-cow pairs being in the same community in sequential Temporal-Spatial networks. 

Repeatability values can lie between 0, indicating a lack of stability in community membership 

and 1, indicating perfectly stable community membership. Boxplots show the distribution of 

repeatability values from random networks and triangles and crosses represent observed 

repeatability values. Triangles indicate repeatability values that lie above 95% of random 

network values and crosses indicate repeatability values within 95% of random network values. 

Boxplots show the median, 25th and 75th percentiles of repeatability values calculated on 

randomised data (n = 4999) and the upper and lower whiskers extend to the largest or smallest 

value no further than 1.5 times the interquartile range, data beyond this range are not plotted. 

Groups are arranged by ascending group size. 
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Discussion 

Against a background of very dense, highly connected networks when viewed as a 

whole, our finer-scale spatio-temporal analyses show evidence of temporal variation 

in contact frequency, differing contact patterns between locations and evidence of 

stronger bonds between a small subset of animals.  

Contact durations were longer in Buildings compared to those at Pasture, reflecting 

the evident space restrictions in bringing cattle closer together. For most deployments, 

the proportion of the group contacted was also higher in buildings, suggesting that 

opportunities for infection transmission via close contact to most animals are likely to 

be increased when animals are housed indoors, at least in the types of housing that 

were used on our study farms. In contrast to the groups housed indoors, in three 

groups that were only in buildings for milking, the average number of individuals 

contacted during these times was less than seen at pasture. We suggest this is due 

to the milking routine on these farms; cattle are herded into a collecting yard, small 

groups of cattle come into the parlour and then after milking are allowed to walk back 

to pasture in their own time. Contrary to typical assumptions that milking time tightly 

groups animals together (Barlow et al., 1997; Bekara et al., 2014), we have found that 

it might actually represent a time where cattle are more clearly divided into separate 

groups, depending on the routine of the farm. Despite cows in the Free group not being 

gathered specifically for milking (as they used an automated milking system), we still 

saw peaks in the frequency of contacts around dawn and dusk which may reflect a 

historical pattern of milking or feeding around these times (as the farm introduced the 

automated milking system in the previous year) or could suggest that there are times 

of day, regardless of management, where cows are naturally more interactive (Stoye 

et al., 2012). The networks formed by the Strip-grazed group during the transition to 

milking (Split networks) and during milking (Buildings networks) showed more 

similarity than seen in other groups, which could show a tendency for these cows to 

travel from pasture into milking and from milking in a similar order, as well as actually 

going into the parlour in a similar order, as demonstrated in other studies (Beggs et 

al., 2018; Bouissou et al., 2001).  

We predicted that more communities might form and modularity might be higher at 

pasture, as cows would have the opportunity to space out. Indeed, when cattle were 
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at Pasture there were some two-hour periods with hardly any contacts at all, 

particularly at night, perhaps showing a preference for cattle to be further apart at times 

when there is less competition for resources. However, there was no appreciable 

difference between the number of communities formed, or the modularity of the 

Pasture networks, compared to the Buildings networks, with one exception. On the 

farm where cattle were free to roam in any fields they chose, there were many more 

communities detected and there was greater variation in the number and duration of 

contacts among individuals. The limitations of one field, or part of a field, available to 

strip-grazing and rotational-grazing herds mean that cattle tend remain as one unit, 

whereas the additional options available when cattle can access multiple fields 

evidently facilitates formation of sub-groups. 

Cattle are reported to form strong social bonds (Bouissou et al., 2001; Duncan et al., 

2012) and we found evidence of consistent and extended durations of close contact, 

but between only a small proportion of individuals in each group, suggesting a 

manifestation of social preference in these individuals. Overall, we found that most 

cattle in the sampled herds interacted with each other in a manner more similar to 

random assortment. Studies have shown early experiences of unstable social groups 

can increase resilience to social stressors (Bøe and Færevik, 2003), suggesting that 

dairy cattle might adapt to dynamic social groups by creating fewer strong social bonds 

than might be expected in a less managed environment (Bouissou et al., 2001; 

Mclennan, 2013).  

Contact structure among hosts can alter the transmission paths of infections (Bansal 

et al., 2007). Modelling studies have shown that modularity values of more than 0.45–

0.6 start to alter the transmission rates of some infections within and between groups 

(Rozins et al., 2018; Sah et al., 2017). Only highly filtered networks of the Free and 

Stable groups in the present study had modularity values different from random that 

might be substantial enough to impede disease spread, and it is more likely that the 

weak and temporally unstable community structure in our networks would facilitate, 

rather than slow down, the spread of highly-transmissible infections to a larger number 

of herd members. Again, the exception is the Free herd, in which spatial divisions by 

cattle choice are enabled; in this herd, for large proportions of the study period, the 

cows were split between the pasture and the buildings, which might impede the spread 

of disease between animals. The differences seen in this herd suggest that, where 
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choice is enabled by management, cattle may form social structures with divisions that 

hamper the spread of infections.  

Repeated close contact at daily or twice-daily milking with specific individuals or cows 

in dyads that consistently spend long periods of time together might preferentially 

create opportunities between these specific cows for transmission of pathogens that 

require prolonged close contact, e.g. Mycobacterium bovis (Corner et al., 2003; Weber 

et al., 2013a). Heterogeneity in contact rate and strength can affect the speed and 

extent to which an infection is transmitted through a population (May, 2006). Despite 

cows being grouped closely together at many points during the study period, the 

number of conspecifics each cow connected with was more heterogeneous than was 

found on random networks in all groups, even when contacts were aggregated over 

the whole study period, suggesting that incorporating the contact structure of cattle 

into modelling studies might be prudent, even at coarse temporal aggregations.  

When daily networks were calculated, contact frequency was similar between days for 

most groups; suggesting that when contacts are aggregated at this resolution, 

subtleties in cattle contacts might be missed, indeed in comparing simulation models 

on data aggregated into 12-hour time-steps, Duncan et al. (2014) found that infection 

transmission on empirical networks could easily be replicated by decreasing the 

transmission parameter in models based on corresponding random networks. When 

contacts from the present study were aggregated by shorter time periods (2 hours), 

variation in contact frequency was much more apparent. Modelling of disease 

transmission on high-temporal-resolution networks (Chen et al., 2014) has highlighted 

how aggregating contacts at the hourly or 2-hourly level might alter the predictions of 

epidemic spread for some pathogens compared to aggregating over longer time-

periods (Chen et al., 2014). The time-scale over which contacts are aggregated should 

also be guided by the biology of the pathogen of interest (Dawson et al., 2019); data 

aggregated over short time windows are more likely to be informative for modelling the 

transmission of infections with short infectious periods (Perkins et al., 2009) and 

smaller R0 (Chen et al., 2014). Yet for chronic infections with longer infectious periods, 

it is likely that incorporating such high resolution of contacts in transmission models 

will have less impact on transmission dynamics, while other networks parameters such 

as duration or strength of contacts may remain important (Read et al., 2008). 
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The proximity tags we used in this study most accurately record contacts when the 

devices fully face one another (Cattuto et al., 2010), therefore positioning of the 

sensors is challenging on large animals. As we were primarily interested in the 

transmission of infection via the oro-nasal route, it made practical sense to attach the 

tag to a neck collar, to which most cows in the study were already accustomed. We 

believe that due to the close proximity and mobility of the cattle, the number of contacts 

recorded provided a satisfactory representation of close contacts between cattle. 

However, contacts and, more likely contact durations, may have been underestimated 

when sensors were facing opposite directions. In indoor housing, where cows are 

frequently positioned with their heads side by side due to feeding along a barrier or 

lying in cubicles, this may have created a bias for contacts to be underestimated to a 

greater extent when groups were housed in buildings (Housed, Night-housed, Rotation 

1b), rather than only in buildings for milking. Therefore, true differences in the contact 

frequency and duration in Buildings compared to Pasture may be greater than we 

observed. There were some individuals in most groups that were in contact with only 

a few other herd-members and had very low contact durations, which may have been 

due to altered positioning of the tags on these animals. However, voluntary isolation 

of sick individuals (Proudfoot et al., 2014) and changes in behaviour due to illness 

(Polikarpus et al., 2015) have been reported in dairy cattle, therefore sickness during 

the study period may have also contributed to low levels of interaction detected in 

some individuals. 

The changing face of the dairy industry over recent years has resulted in many herds 

increasing in size and changes to how cattle are managed, with a trend towards more 

cattle being kept indoors for more of the year or, in some cases, entirely in indoor units. 

In these cases, the increased contact demonstrated in this study in buildings might 

impact upon the risk of transmission of infections (Arnott et al., 2016). In order to 

mitigate these effects, consideration might be given to housing design in order to allow 

enough space and spread out resources sufficiently that cattle are able to interact 

more freely whilst housed. Milking routine is often expected to increase contact 

between cattle, and thus increase the risk of disease transmission (Barlow et al., 1997; 

Bekara et al., 2014), however we find that this is not inevitable, and some milking 

protocols might reduce opportunities for disease transmission. Contrary to common 

thought regarding cow to cow interactions, and those demonstrated in beef herds 
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(Handcock et al., 2009), we found few social bonds in our sampled groups, perhaps 

exhibiting resilience to an unstable social structure. Whilst this response may reduce 

the impact of social stresses (Proudfoot and Habing, 2015), it is nevertheless likely 

that adapting to cope with an unstable social environment is less beneficial to cattle 

welfare than devising management strategies that might avoid social instability in the 

first place.  

The structure of dairy cow social networks has typically been described as a single, 

unstructured group; indeed our study networks are densely connected during weekly 

and daily aggregations. However, when the network is divided in space and time, there 

are differences in cattle interactions that are not apparent at larger scales. From 

studying multiple groups of cattle, we have found that differences in management, 

even between dairy herds within the same region and with broadly similar 

management objectives, can influence social structure which might have implications 

for the transmission of disease, and should be considered when parameterising 

mathematical and statistical models of disease spread. Future research could focus 

on expanding contact studies to include whole herds, rather than single management 

groups to explore how movement between groups might affect disease spread. 

Recruiting larger groups might reveal stronger trends between social interactions and 

group size. So far, studies have focussed on contact networks as a means of mapping 

disease spread, however as diagnostic technologies, such as whole genome 

sequencing, develop and become more accessible, construction of transmission 

networks that combine sensor and molecular approaches during disease outbreaks is 

likely to substantially advance our understanding of pathogen and host relationships. 
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Chapter 6: Relationships between social interactions, 

production, and health in dairy cows 

Abstract 

The social environment experienced by livestock can have implications for their health, 

welfare and, subsequently, their productivity. Changes in the dairy industry, in order 

to maximise milk yields, have led to larger herd sizes and altered management of 

cows, which has impacted upon their social environment. Mixing of animals can lead 

to social instability of groups and expansion of herds can result in high stocking 

densities in housing. In this paper, we summarise existing studies assessing the 

relationship between social experiences (mixing of animals, dominance, grooming and 

different stocking densities) and production. We then directly investigated an 

association between social interactions and production indicators, using cattle 

proximity as a proxy for affiliative interactions between cows on three dairy farms over 

study periods of one week. In our review, studies of milk yield and dominance rank 

showed either no relationship or a positive correlation, to varying degrees of statistical 

significance. Mixing of animals had either no impact, or a negative association with 

milk yield, again to varying degrees of statistical significance. The mixed results we 

identified may be due to differences in study design, sample size, prior social 

experience of animals used in the studies, and the quality of analyses. Grooming was 

positively associated with milk production, and stocking density was not associated 

with milk yield, though fewer studies were identified. In our primary investigation, we 

did not detect biologically meaningful relationships between milk production or somatic 

cell count (an indicator of mastitis) and the total time a cow spent in social contact with 

other cows, or the mean time it spent with its four closest herd mates. Cows showed 

a preference for interacting more with cows that had experienced the same number of 

lactations, suggesting that grouping animals in terms of lactation number might 

encourage affiliative interactions. However, cows with more of their closest herd mates 

in the same lactation did not have demonstrably higher or lower milk yields. We 

suggest that further research on what constitutes a positive social environment for 

dairy cattle and how this could be promoted is warranted, thereby improving individual 

animal well-being and enabling a more robust assessment of the putative effects on 

production and health parameters.  
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Introduction 

The social environment of animals impacts upon their health and welfare (Mellor, 

2015). It has been shown that positive social experiences in livestock animals can 

reduce their stress (Laister et al., 2011; Takeda et al., 2003) and that calm animals 

have enhanced immunity (Dimitrov et al., 2005). Conversely, crowding, isolation, and 

social instability can precipitate stress and disease (Proudfoot and Habing, 2015; 

Proudfoot et al., 2012). Social stressors have been associated with reduced milk yield 

in cows, sheep and goats (Hasegawa et al., 1997; Miranda-de la Lama and Mattiello, 

2010; Sevi et al., 2001) and reduced weight gain in pigs (Hyun et al., 1998). By 

contrast, cows involved in more affiliative interactions have been shown to produce 

more milk (Sato et al., 1991), and calm sheep have been shown to produce better 

quality milk (Sart et al., 2004). Improving the social environment to encourage positive 

interactions and experiences, may therefore be able to improve health and welfare, 

and increase production. 

Grouping of cows by their stage of lactation allows more precise feeding to meet 

nutritional requirements (Sowerby and Polan, 1978), though moving animals between 

groups can be a source of social stress to dairy cows (Proudfoot and Habing, 2015). 

Industry-wide trends for larger herds (AHDB Dairy, 2019b) may exacerbate this 

problem as larger herds usually require more management groups and the 

subsequent increased movement of cows between groups can cause social instability. 

The trend towards higher milk yields (AHDB Dairy, 2019a; Pryce and Veerkamp, 2001) 

has resulted in the need for more intensive management of cattle, often indoors, to 

meet their nutritional demands (Charlton et al., 2011), which on some farms might lead 

to overstocking of animals (Krawczel et al., 2012) and concerns about a cow’s ability 

to perform natural behaviours (Arnott et al., 2016). By exploring the impacts these 

changes might have on the social behaviour of cows, we might be better able to 

understand how to ameliorate negative effects and enhance positive ones. 

Two important indicators of productivity and cow health are milk yield, and the somatic 

cell count in milk, which can be an indicator of infection in the mammary gland, should 

counts exceed 200,000 cells/ml (Dohoo and Leslie, 1991). These measures have 

been used to assess the impact of various social experiences of cattle and we provide 

a summary of the literature in Table 6.1. We can split these studies into two broad 
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categories; potentially negative experiences (e.g. mixing of cattle) that might be 

expected to reduce milk yield and increase somatic cell count, and potentially positive 

experiences (e.g. mutual grooming), the manifestation of which is thought to have 

positive effects on health and well-being, leading to animals being more able to reach 

their production potential. Regrouping of animals is a common management practice 

in modern dairy herds, however the introduction of new animals into a group has been 

associated with altered dominance hierarchies, exhibited by more aggressive 

interactions to re-establish the social order of the group (Raussi et al., 2005). The 

studies we identified that analysed the relationship between mixing animals between 

groups and milk production ranged from low quality (small sample size, no control 

group, no replicates and simple correlation analyses) to higher quality (larger sample 

size, multiple groups, control groups, replicates and analyses that control for 

confounding factors; Table 6.1). The negative association between regrouping and 

milk production has been identified in the short-term (1–5 days after regrouping; Brakel 

and Leis, 1976; Jezierski and Podluzny, 1984; von Keyserlingk et al., 2008) and 

longer-term (7–14 days after regrouping; Arave and Albright, 1976; Hasegawa et al., 

1997). However, other studies have failed to detect a statistically or biologically 

significant association between mixing groups and milk yield (Clark et al., 1977; Silva 

et al., 2013; Sowerby and Polan, 1978; Zwald and Shaver, 2012), including one study 

where specifically dominant individuals were selected to change groups (Collis et al., 

1979). Of the studies that included a control group (4 studies of 11), just one (Jezierski 

and Podluzny, 1984) detected a mean decrease in milk yield in the mixed group that 

was statistically different from the change seen in the control group. Larger studies (n 

> 500) did not detect a consistent, statistically or biologically significant relationship 

between moving cows among groups and milk yield. In replicating the mixing of 

animals between groups, Sowerby and Polan (1978) noticed that the response of cows 

to mixing changed over time and found that cows with a (pre-study) history of mixing 

exhibited a smaller change in milk yield than those that had no prior experience of 

group mixing. As most studies did not record this, differences in cows’ prior experience 

may have led to systematic bias in some studies, which could lead to the inconsistent 

study outcomes reported.  

Early ethological studies of cattle concentrated on assessing dominance hierarchies 

of herds by observing agonistic pairwise interactions or recording the outcomes of 
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‘tests’ (e.g. food competition) determined by the researcher and allocating to each 

individual a relative position in the group hierarchy; their ‘dominance value’ or ‘rank’. 

A higher dominance rank is thought to confer priority over resources, e.g. water and 

food (Andersson et al., 1984), and thereby might be expected to increase milk yield; 

submissive cows may experience stress from bearing the brunt of agonistic 

interactions and therefore result in a lower milk yield. Studies examining the 

relationship between dominance and production provide mixed results (Table 6.1). We 

identified four studies that found no correlation between social rank and milk 

production (Beilharz et al., 1966; Collis, 1976; Dickson et al., 1969; Jezierski and 

Podluzny, 1984; Soffié et al., 1976), but many other studies have identified a positive 

correlation between the two (Andersson et al., 1984; Arave and Albright, 1976; Barton 

et al., 1973; Brakel and Leis, 1976; Hussein et al., 2016; Sambraus, 1969; Sato et al., 

1991; Schein and Fohrman, 1955; Sottysiak and Nogalski, 2010). Of the five studies 

that demonstrated a statistically significant (P < 0.05) relationship between dominance 

rank and milk yield, there was moderate positive correlation with some variation in 

effect size (mean r = 0.41, standard deviation (SD) = 0.28). When cows were split into 

groups by their social status, e.g. dominant, subordinate, etc., groups of dominant 

cows and individual cows produced more milk than non-dominant cows (Andersson et 

al., 1984; Sottysiak and Nogalski, 2010). Many of these studies utilised correlation in 

analysing the relationship between milk yield and social metrics (Table 6.1), however 

they also demonstrated a covariance of both milk yield and dominance rank with age, 

body condition, and body weight. In the single analysis that used a multivariable 

framework, no relationship was detected between dominance rank and milk yield 

suggesting that confounding factors may have been influential in the mixed outcomes 

of these relatively simple analyses. 

Studies assessing the relationship between social factors and somatic cell count have 

also demonstrated mixed results. Dominance value was not correlated with somatic 

cell count in individual cows (Arave and Albright, 1976). The mixing of animals was 

associated with an increased bulk milk somatic cell count in one group, but had no 

control group with which to compare (Kay et al., 1977). Two larger studies (n = 103 

and 567) showed no difference in somatic cell count between control (stable groups) 

and treatment (new animals introduced) groups (Clark et al., 1977; Silva et al., 2013), 

suggesting there is more evidence for a lack of a relationship between these variables. 
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Historically, animal welfare principles were aimed at avoiding negative states, i.e. the 

freedom from fear, distress, hunger, etc., whereas more recently the focus has been 

drawn towards achieving positive welfare outcomes (Boissy et al., 2007; Mellor and 

Beausoleil, 2015), which is reflected in the relative higher numbers of early studies 

focusing on negative experiences or behaviours (e.g. mixing of animals, dominance) 

and the fewer studies assessing the impact of positive social experiences (e.g. mutual 

grooming) on production and health. Affiliative behaviours such as social licking in 

cattle, have been shown to calm the receiver (Laister et al., 2011) and be positively 

correlated with the milk yield of the cow receiving grooming (r = 0.65, P < 0.01, Sato 

et al., 1991; r = 0.21, P < 0.025, Wood, 1977). Cows involved in more grooming of 

other cows have been associated with higher milk yields in one study (r = 0.55, P < 

0.05, n = 20; Sato et al., 1991), yet a negligible relationship was found in a larger study 

(r = 0.098, P > 0.05, n = 104; Wood, 1977). Cows with the same lactation number that 

are home-bred have often been reared in the same cohort as calves and will have 

spent similar amounts of time together in the herd. By recording contacts among cattle 

in a commercial dairy herd, Boyland et al. (2016) found that cows preferred to interact 

more with cows that had the same number of lactation periods, a measure which is 

strongly correlated with the age of the cow, and is hereafter defined as ‘lactation 

number’. By recording grooming behaviour between a herd made up of twin cows 

grouped since they were 4–7 days old, Wood (1977) found that cows preferred 

grooming other cows in their own age group. These findings were thought most likely 

to be due to early bonding and increased familiarity between these cows. It has been 

shown that longer-term familiarity, such as cow’s being reared together as calves, was 

more closely related to affiliative interactions than more recent periods of time 

together, e.g. cow’s grouped together during their dry period (Gutmann et al., 2015). 

However, these studies have not explored the impact of being able to associate with 

more familiar conspecifics on their production.  

Contacts recorded by proximity devices worn on neck collars have been shown to be 

a biologically and statistically significant predictor of affiliative rather than agonistic 

interactions (Boyland et al., 2016), perhaps due to the positioning of the sensor in a 

region where grooming interactions typically occur (Tresoldi et al., 2015). Although 

proximity sensors lack the ability to discriminate the giver and receiver of an interaction 

(Foris et al., 2018), pairs of animals in close proximity were more likely to engage in 
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allogrooming than agonistic interactions (Tresoldi et al., 2015). We use cattle proximity 

as a proxy for a positive social interaction and continuously recorded interactions 

among dairy cows for one week in three herds in south-west England. Through 

network analyses, we also examine social preference in cows in terms of the number 

of lactations a cow has experienced, stage of lactation a cow is in, milk yield, and 

somatic cell count. We investigated the relationship between the social interactions of 

individuals and their productivity in terms of milk yield and somatic cell counts, whilst 

accounting for aspects of cow physiology and farm management factors, which we 

also expect to influence these responses. Management practices which promote a 

positive social environment might help to mitigate the negative effects of other 

practices required in modern dairy production, such as regrouping (Talebi et al., 2014), 

and the presence of familiar animals might reassure animals and allow freedom to 

exhibit natural behaviours (Patison et al., 2010). Better understanding of the social 

preferences of cows and possible associated benefits might encourage 

implementation of cattle management and grouping structures that create a more 

positive social environment and allow animals to achieve their production potential 

(Rault, 2012). 
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Table 6.1. Summary of studies examining the relationship between social parameters and production parameters (milk yield and somatic cell 

count) in dairy cattle. Studies are split into categories of social parameters (grooming, dominance rank, regrouping and stocking density) and 

summarised by parameters, sample size, study design, analysis and outcomes. Studies are published in English between 1955 and July 2019. 

Grey shading indicates a statistically significant relationship (P < 0.05). 

  Social parameter Production indicator Sample size Study design Outcome Method of analysis Author and year 

G
ro

o
m

in
g 

Number of other herd 
members  groomed 

Milk yield 1 group of 104 Observational No relationship (r = 0.117; P > 0.05) Spearman's rank 
correlation 

Wood, 1977 

Time spent grooming 
others 

No relationship (r = 0.098, P > 0.05) 

Number of herd 
members received 
grooming from 

Positive relationship (r = 0.212; P < 0.025) 

Time spent receiving 
grooming 

Positive relationship (r = 0.214, P < 0.025) 

Time spent receiving 
grooming 

Milk yield 1 group of 20 Observational Positive relationship (r = 0.65, P <0.01) Correlation Sato et al., 1991 

Time spent grooming 
others 

Positive relationship (r = 0.55, P < 0.05) 

D
o

m
in

an
ce

 r
an

k 

Dominance value Milk yield 1 group of 20 Observational Positive relationship (r = 0.88, P < 0.01) Correlation Sato et al., 1991  

Dominance rank Milk yield 1 group of 78 Observational Small positive effect (r = 0.25, P < 0.05) Correlation Schein and Fohrman, 
1955 

Dominance value Average milk 
production 

4 groups,  total cows = 
89 

Observational No relationship (t value = 1.85, P > 0.05) Multivariate regression  Beilharz et al., 1966 

Dominance value Daily and lactation 
milk yield 

27 groups, total cows 
= 1017 

Observational No relationship (r = 0.02 (daily), -0.02 
(lactation), no P value cited) 

Correlation Dickson et al., 1969 

Social rank Milk yield 6 herds, cows in each 
group = 6–49 

Observational Significantly correlated in 2 out of 6 herds 
(P values and r values not available) 

Correlation Sambraus, 1970 

Dominance (Schein-
Fohrman) rank 

Milk production 1 group of 53 Observational Positive correlation (r = 0.33, P > 0.05) Correlation Barton et al., 1973 

Dominance value Individual and group 
milk yield 

4 groups of 32, total 
cows = 128 

Experimental (1 control 
group, 3 replicates) 

No correlation between individual milk 
yield and dominance value. 

Correlation Jezierski and Podluzny, 
1984 

Dominance value Peak milk yield 1 group of 49 Observational Negative correlation (r = - 0.21, P > 0.05) Correlation Collis, 1976 
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  Social parameter Production indicator Sample size Study design Outcome Method of analysis Author and year 

Dominance value 
(calculated by food 
competition test) 

Milk production 1 group of 34 Experimental (no 
control group) 

'No correlation between milk production 
and dominance value.' 

Correlation Soffié et al., 1976 

Dominance rank Fat-corrected milk 
yield and water 
consumption 

1 group of 12 Experimental (no 
control group) 

Fat corrected milk yield and water 
consumption significantly higher in 
dominant cows (P<0.05), yet milk yield 
was not different between dominant and 
submissive cows. 

Least squares means Andersson et al., 1984 

Dominance rank Milk yield 1 group of 126 Observational The group of 3 dominant cows produced 
more milk 

Split cows in to groups 
by social status and 
recorded milk yield 

Sottysiak and Nogalski, 
2010 

Dominance value and 
stocking rate 

Milk production 1 group of 252 Observational Positive relationship between dominance 
value and milk yield at low and medium 
stocking rates (r = 0.42, 0.32; P < 0.05) 

Pearson's correlation Hussein et al., 2016 

Dominance value of 
cows mixed between 
groups 

Milk yield 2 groups of 24, total 
cows = 48 

Experimental (no 
control group, 4 
replicates) 

Positive effect in moved cows (r = 0.49, P 
< 0.05) and non-moved cows (r = 0.27, P < 
0.01) 

Correlation Brakel and Leis, 1976  

Dominance rank Milk yield 2 groups of 17, total 
cows = 34 

Experimental (no 
control group) 

Small positive effect (r = 0.16, P < 0.05) Correlation Arave and Albright, 
1976 Leukocytes in milk No relationship (r = 0.03, P > 0.05) 

R
e

gr
o

u
p

in
g 

Addition of new cows Milk yield 2 groups of 17, total 
cows = 34 

Experimental (no 
control group) 

5% decline in milk yield during second 
week after additions in both groups 

Method not stated Arave and Albright, 
1976 

Mixing of cows between 
groups 

Milk yield 2 groups of 24, total 
cows = 48 

Experimental (no 
control group, 4 
replicates) 

Milk yield depressed by 3% 1 day after 
cows mixed, then returned to normal 

Least squares means Brakel and Leis, 1976  

Addition of 2 dominant 
cows and 2 subordinate 
cows 

Bulk milk SCC 1 group of 32  Experimental (no 
control group, 1 
replication) 

Increase in BMSCC after mixing and 
return to pre-mixing levels 10 days later 

Change in response 
after intervention 

Kay et al., 1977  

Mixing of cows between 
groups 

Milk yield (5 day 
average) 

4 groups, total cows = 
103 

Experimental (1 control 
group) 

No change in pooled average milk yield 
before and after mixing 

Analysis of variance 
(ANOVA) 

Clark et al., 1977 

Moving increasing 
numbers of animals 
between groups 

Milk yield 7 herds each divided 
into ≥ 2 groups, total 
cows = 6731 

Experimental (no 
control group) 

Some farms showed small changes in milk 
yield, others large changes. Evidence of 
cows becoming more resilient to moves 
over time. 

Multivariate analysis Sowerby and Polan, 
1978 
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  Social parameter Production indicator Sample size Study design Outcome Method of analysis Author and year 

Dominant cows changing 
groups 

Average group milk 
yield 

2 groups of 15 and 2 
groups of 12, total 
cows = 54 

Experimental (no 
control group) 

No change in average milk yield ANOVA (Sheffé's 
method of multiple 
comparisons) 

Collis et al., 1979 

Changing groups Individual and group 
milk yield 

4 groups of 32, total 
cows = 128 

Experimental (1 control 
group) 

Mean decrease in milk yield of 4% after 
group mixing significantly different from 
the control group. 

Comparison of mean 
change in milk yield 
before and after 
intervention (method 
not stated) 

Jezierski and Podluzny, 
1984 

Individuals changing 
groups 

3 day moving average 
of milk yield 

2 groups of 51, total 
cows = 102 

Experimental (no 
control group) 

Moved animals had a 4.7% decrease in 
milk production 2 weeks after moving (P < 
0.01). Middle ranked cows (not moved) 
showed a decrease of 3.8% 

ANOVA Hasegawa et al., 1997  

Individuals introduced to 
established groups 

Average group milk 
yield 

4 groups of 11 and 3 
groups of 12, total 
cows = 80 

Experimental (no 
control group) 

Reduction in milk yield from 43.4 ± 
1.5 kg/d to 39.7 ± 1.5 kg (~ 8.5% 
reduction, P < 0.001) on day 1  

Change in mean milk 
yield after intervention 
(t-test) 

von Keyserlingk et al., 
2008 

Mixing of cows between 
groups 

Milk yield 2 herds each divided 
into 2 groups, total 
cows = 585 

Experimental (1 control 
group in each herd) 

Mixing showed no relationship with milk 
production 

Least squares means Zwald and Shaver, 2012 

Traditional flow of cows 
through groups (TRD) 
compared to all in all out 
system (AIAO) 

Monthly milk yield 
and SCC 

2 groups, TRD (n = 
308) and AIAO (n = 
259), total cows = 567 

Experimental (6 
replicates each in 
control and treatment 
groups) 

No difference in SCC or milk yield 
between stable (AIAO) groups and mixed 
(TRD) groups 

ANOVA Silva et al., 2013 

St
o

ck
in

g 
d

en
si

ty
 Increased stocking 

densities 
Average group milk 
yield 

4 groups , total cows = 
136 

Experimental (1 control 
group, 3 stocking 
densities) 

No difference between pens in milk yield Mixed effects 
regression model 

Krawczel et al., 2012 

Isolation and increased 
stocking density 

Milk yield 1 group of 17 Experimental (no 
control group, 1 
stocking density) 

Milk yield showed no relationship with 
stocking density or isolation 

Difference in 
unadjusted means 

Arave et al., 1974 
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Methods 

Farms and production data 

The milking groups of three commercial dairy herds (two Holstein-Friesian herds – 

‘HF1’ and ‘HF2’, and one Ayrshire herd – ‘Ayrshire’) were studied for one week 

between August and November 2018 (Table 6.2). All herds calved all year round, kept 

cows in separate milking and dry groups, and were milked twice daily. Animals in HF1 

were the low-yielding cows of that herd and were housed during the study period, due 

to lack of grazing in a bout of hot weather. Cows in HF2 and Ayrshire were grazed on 

a rotational grazing system where the paddock was changed after every milking. We 

obtained details of the last calving date, lactation number, recent milk yield and 

somatic cell count of all cows in HF1 and a subset of cows in Ayrshire and HF2 by 

kind permission of the farmers.  

Equipment and proximity data 

Nylon cattle collars with a plastic clasp (Suevia Haiges, Germany) were fitted with 

proximity devices based on a design by the OpenBeacon project 

(http://www.openbeacon.org/ and the SocioPatterns collaboration consortium 

(http://www.sociopatterns.org/). The devices use radio frequency identification 

detection (RFID) technology to exchange low-power radio packets in a peer-to-peer 

fashion, using the difference in signal strength as a proxy for distance between devices 

(Cattuto et al., 2010). We defined contacts based on a spatial threshold of 1–1.5m to 

capture close contacts, assessed by validation analyses (see Appendix E Validation 

and Chapter 5 Methods for further details). We only included contacts in our analysis 

that lasted over 20 seconds in duration, aiming to avoid detecting ‘walk-by’ type 

interactions and to record more significant behaviours such as allogrooming events, 

which are reported in observation studies to last around 38 seconds (means of 37 and 

39 seconds) (Sato, 1984; Tresoldi et al., 2015). Contacts are maintained as long as 

signals are transferred between devices at least once every 20 seconds, therefore 

contact time was measured in 20 second blocks. We removed contacts recorded 

during milking times reported by farmers, as these represent times when social 

grooming or affiliative behaviours were less likely to occur (Wood, 1977). 
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Social parameters 

We constructed networks based on contact data described above, where cows were 

nodes and the duration of contact between them over the study period formed the 

edge between them: if there was no contact then no edge was present. Assortativity 

measured the tendency of cows to interact more with similar cows based on a 

particular characteristic, with a value of +1 indicating preferential association between 

cows with similar characteristics, and -1 indicating preferential association between 

cows with different characteristics. We calculated the assortativity of cows (for which 

we had data) by stage of lactation and lactation number (Ayrshire: n = 44, HF1: n = 

71, HF2: n = 95), and somatic cell count and milk yield (Ayrshire: n = 39, HF1: n = 71, 

HF2: n = 87) in the R (R Core Team Version 3.5.3, 2019) package ‘igraph’ (Csardi and 

Nepusz, 2006). As the networks were densely connected, we calculated assortativity 

on networks filtered by edge weights to focus on the effect of increasingly ‘strong’ ties. 

We achieved this by removing edge weights (contact durations) below the 50th, 75th 

and 90th percentiles of edge weights to create F50, F75 and F90 networks 

respectively. We constructed null graphs with the same number of nodes and edges 

as the observed network where each edge has an equal, fixed probability of being 

present or absent based on the Erdӧs-Rényi model (Erdös and Rényi, 1959). We 

randomly allocated observed edge weights to the edges of the new random networks 

(n = 4999). We removed edges from random graphs below filtering thresholds (F50, 

F75, and F90) after constructing the randomised graphs from the original networks. 

Assortativity values of our observed networks were deemed to be statistically 

significantly different to those on random networks when the observed value lay 

outside 95% of randomised values. 

We calculated the mean association strength, i.e. the time each cow spent with all 

other cows in the network divided by the number of cows the cow could have contacted 

(n-1). Individuals that spend longer amounts of time in contact with other cows may be 

considered to be more gregarious animals, however the definition of social bonds is 

complex and this metric does not reveal whether this time is distributed equally among 

many herd mates, or whether an individual has just a few partners with which they 

spend a lot of time (Shultz and Dunbar, 2010). It has been estimated that cows might 
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be most comfortable with 2–4 individuals (Takeda et al., 2000); therefore, to estimate 

a cow’s tendency to form stronger social bonds, we took the mean of the time each 

cow spent with its longest 4 contacts (mean top 4 contacts) and in order to explore the 

effect of a cow spending time with more familiar cows, we recorded the number of top 

4 contacts with known lactation numbers that were in the same lactation as the 

selected cow. 

Statistical modelling 

We constructed two similar Bayesian mixed effects models with milk yield (measured 

by weight; Model 1) and somatic cell count (thousand cells per ml; Model 2) as 

response variables. Mean association strength, ‘mean top 4 contacts’, and the number 

of top 4 contacts in the same lactation were used as explanatory variables. In our 

models we accounted for individual physiology by including cow lactation number, 

stage of lactation, and somatic cell count (in Model 1 only) and milk yield (in Model 2 

only), as fixed effects. Farm was included as a random effect in both models to account 

for farm differences in nutrition, husbandry, and breed.  

Higher somatic cell counts are associated with a decreased milk yield (Hadrich et al., 

2018). In order to account for this relationship in our analysis, we used data where 

both variables were recorded from the nearest recording to the study period (HF1 = 7 

days after study period, HF2 = 1 day before study period, and Ayrshire = 11 days after 

study period; Table 6.1). To check if this single value for milk yield would approximate 

to milk yield over the study period, we additionally obtained daily milk yields during the 

study period for HF1, and milk yield and somatic cell count data from a second 

recording 16 days before the study period for the Ayrshire group. Mean daily milk yield 

in HF1 was highly correlated with the single milk recording value (r = 0.9, P < 0.001; 

Appendix F Fig. F1). For the Ayrshire group, the two values for milk yield and somatic 

cell count from milk recording days were moderately correlated (r = 0.59, P < 0.001 

and r = 0.67, P < 0.001 respectively; Appendix F Fig. F1). We also ran a model similar 

to Model 1 using HF1 average daily milk yields as a response variable instead of the 

single milk yield value, and outcomes were similar to those identified in Model 1. 

Lactation number represents the number of lactations a cow has had (and therefore 

correlates with age) and was classed as a categorical variable with the final level 

corresponding to lactation numbers of 5 or more. On our study farms, animals were 
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home-bred, and therefore lactation number might also be a proxy for time spent 

together as calves and time spent in the milking herd. Lactation number has a non-

linear relationship with milk yield, lowest in an heifer’s first lactation, rising in the 2nd 

and 3rd lactation and then decreasing as cows mature (Vijayakumar et al., 2017). 

Lactation number also mediates the relationships between stage of lactation and milk 

yield (cows in their 2nd and 3rd lactations tend to reach peak yield more quickly 

(Vijayakumar et al., 2017), and somatic cell count and milk yield (where higher milk 

losses occur in older cows (Hand et al., 2012). 

We quantified days in milk as the number of days between the most recent calving 

date and the milk recording date (when somatic cell count and milk yield were 

measured). Multiparous cows (2 or more lactations) with a similar number of days in 

milk are likely to have been re-introduced back into the milking group at a similar time 

and grouped together in the preceding dry period. The relationship between stage of 

lactation and milk yield is described by the lactation curve, the profile of which changes 

with lactation number. Therefore, because the lactation curve was not the same for all 

groups we could not describe this relationship with a single term and we grouped this 

variable into four stages of lactation; 1–70 days, 71–170 days, 171–270 days and 

>271 days in milk (Vijayakumar et al., 2017) to allow for variation in the relationship 

between groups.  

To acknowledge the mediating effects of lactation number, we ran Model 1 with an 

interaction term between lactation number and lactation stage, and an interaction 

between lactation number and somatic cell count. We tested Model 2 with an 

interaction between lactation number and milk yield. Including the interaction terms in 

either model did not appreciably alter model fit (measured by the leave one out cross 

validation method ‘LOOIC’; Vehtari et al., 2017) and did not alter the interpretation of 

our social variables, therefore we present the results of our models without interaction 

terms for ease of interpretation. Due to the predicted relationship between milk yield 

and somatic cell count, we ran Model 1 with and without somatic cell count, and Model 

2 with and without milk yield; in both cases outcomes were similar to our reported 

results. To reduce bias, we did not perform variable selection except for the interaction 

terms (e.g. Harrell, 2001). Regression parameters of fixed effects were given improper 

flat priors and random effects were given non-standardised half Student-t priors based 

on the standard deviation of the random effect with 3 degrees of freedom and a scale 
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parameter (Carpenter et al., 2017). Predictive posterior distributions showed good 

model fit (Appendix F Fig. F2 and F3) and good model convergence is demonstrated 

by Gelman-Rubin  values of 1.00 and large effective sample sizes (Appendix F 

Table F1). Effect sizes of continuous variables were scaled by the 10th and 90th 

percentiles of raw data so that they could be interpreted relative to the spread of raw 

data values (Fig. 6.2 and Appendix F Table F1). The effect size thus represents the 

change in the response variable associated in an increase in the explanatory variable 

from the 10th percentile of the data to the 90th percentile.  

All data analysis was performed in R (R Core Team Version 3.5.3, 2019), with models 

constructed in ‘brms’ (Bürkner, 2017) and networks constructed in ‘igraph’ (Csardi and 

Nepusz, 2006). All fieldwork was approved by the University of Exeter College of Life 

and Environmental Sciences (Penryn Campus) animal ethics committee (Reference 

eCORN000087 v4.6).  
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Table 6.2. Details of three study farms and study periods providing information on farm management, group size, data gathered and mean 

production indicators obtained from the nearest milk recording date to the study period. 

Group 
name 

Study 
dates 

Breed 
Group 

monitored 
Housing/ 
Grazing 

No. 
cows 

in 
group 

Study 
Period 
(days) 

Milk data 
recording 

date 

Complete 
proximity 
data and 

cow 
lactation 

info 

Complete 
milking 

and 
proximity 

data 

Mean no. 
minutes 
spent in 
contact 

with 
others 

(standard 
deviation 

SD) 

Mean 
no. 

minutes 
spent 
with 4 

top 
contacts 

(SD) 

Median 
no. 

cows in 
top 4 

contacts 
in same 
lactation 

Mean milk 
yield per 
day per 
cow kg 

(SD) 

Median 
SCC 

(inter-
quartile 
range) 

Mean 
days in 

milk 
(SD) 

Proportion 
(number) of 
cows SCC > 

200,000 cells/ml 

Ayrshire 
31/08/18- 
07/09/18 

Ayrshire Milking 
Strip 

grazing 
52 6.8 18/09/18 44 35 9.2 (4.4) 

37.6 
(18.9) 

1 21.3 (7.5) 
49 (27–

126) 
143 

(102) 
21% (n = 11) 

HF1 
04/09/18- 
11/09/18 

Holstein 
Friesian 

Milking - 
low yield 

group 

Indoor 
cubicles 

111 6.8 18/09/18 71 71 14.2 (6.3) 
74.6 

(31.9) 
1 21.0 (5.2) 

128 (93–
237) 

244 
(49) 

31% (n = 34) 

HF2 
26/10/18- 
02/11/18 

Holstein 
Friesian 

Milking 
Rotational 

grazing 
177 7.0 25/10/18 95 87 12.8 (7.1) 

62.8 
(33.2) 

1 31.0 (7.7) 
43 (27–

105) 
175 
(99) 

14% (n = 25) 
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Results 

After accounting for hardware and software performance, full proximity data (and 

lactation number and lactation stage data) were available for 85% (Ayrshire = 

44/52), 64% (HF1 = 71/111), and 54% (HF2 = 95/177) of animals in the study 

herds (Table 6.2) and were used in calculating network parameters. Milk yield 

and somatic cell count data were available for all 71 cows in HF1 and for only a 

subset of the Ayrshire herd (n = 39/44) and the HF2 herd (n = 87/95) and were 

used in our statistical models (total n = 197; Table 6.2). The mean contact time 

per pair of cows among all cows was 12.6 minutes over the whole study period 

(standard deviation (SD) = 6.6 minutes). The mean time spent with the top 4 

longest contacts among all cows was 62.0 minutes (SD = 33.0 minutes). Most 

cows (73.6%) had at least one cow in their top 4 contacts in the same lactation 

but only 2.0% of cows had all 4 top contacts in the same lactation (Table 6.2). 

There were similar numbers of cows in each lactation number (mean = 39 cows, 

SD = 5 cows) and the largest proportion of cows (40.1%) were between 171 and 

270 days in milk. The mean milk yield of all cows was 25.6kg per cow per day 

over 2 milkings (SD = 8.4kg). Somatic cell counts were low for most cows, but 

20% of cows had cell counts above 200,000 cells/ml, suggestive of mastitis 

(Dohoo and Leslie, 1991). 

Cows in all groups showed a tendency to associate preferentially with cows of 

the same lactation number on all filtered networks (Fig. 6.1). For other measures, 

assortativity was no different to that expected on random networks in all cases 

apart from on the F75 network for stage of lactation (Fig. 6.1), though due to the 

lack of other statistically significant effects in other herd’s networks for this 

variable, we expect this could be a Type I error due to multiple testing.  

We detected no statistically significant association between either mean 

association strength, spending longer times with certain cows and those cows 

being in the same lactation and either milk yield or somatic cell count (Fig. 6.2 

and Appendix F Table F1). There was a statistically significant relationship 

between lactation number and milk yield in Model 1, showing the lowest milk 

yields in first lactation heifers and higher milk yield thereafter (Fig. 6.2 and 

Appendix F Table F1). Higher milk yields were associated with cows in their 

second lactation or higher (Fig. 6.2). There was a positive relationship between 
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milk yield and lactation stage in the first 70 days of lactation in Model 1 and then 

this decreased through all subsequent stages of lactation, demonstrating the 

expected long tail of the lactation curve. In Model 1, there was no statistically 

significant association between somatic cell count and milk yield, or vice versa in 

Model 2 (Fig. 6.2 and Appendix F Table F1). Model 2 demonstrated increasing 

somatic cell count with the number of days in milk and a higher somatic cell count 

was associated with cows in their 5th or higher lactation (Fig. 6.2). 
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Figure 6.1. Assortativity values from observed and random networks of cattle from three 

study groups. Triangles represent observed assortativity values outwith 95% of random 

network values, crosses represent observed values within 95% of random network 

values, and boxplots represent the distribution of random values. Assortativity indicates 

the tendency of cows to interact preferentially, based on similarities in a) lactation number 

and b) stage of lactation (Ayrshire n = 44, HF1 n = 71, HF2 n = 95), and c) milk yield and 

d) somatic cell count (Ayrshire n = 39, HF1 n = 71, HF2 n = 87). Assortativity was 

calculated on undirected, weighted networks that were not-filtered (NT – brown), and 

networks with 50th (F50 – gold), 75th (F75 – light blue), and 90th (F90 – dark green) 

percentiles of edge weights removed. The dashed line at zero represents the assortativity 

value where interactions are unrelated to characteristics of each cow. Cows tend to 

interact preferentially with cows of a similar lactation number (a), but they did not tend to 

interact preferentially based on their stage of lactation (b), milk yield (c) or somatic cell 

count (d). 
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Figure 6.2. Effect sizes and 95% credible intervals from two Bayesian mixed effects 

models with the response variables of milk yield (a) and somatic cell count (b). Studies 

included 197 cattle from three Cornish dairy herds. Fixed effects in the models were mean 

association strength, mean time spent with 4 closest herd mates, number of 4 closest 

herd mates in the same lactation, lactation number, stage of lactation, and somatic cell 

count (only in Model 1) and milk yield (only in Model 2). Farm is included as a random 

effect in both models. Continuous variables are scaled to represent the effect size 

associated with a change in the explanatory variable from the 10th to the 90th percentile 

of the raw data. Points show effect sizes and whiskers represent 95% credible intervals 

(see Appendix F Table F1 for details).  
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Discussion 

This study has found that cows prefer to associate with cows in the same lactation 

number. Similar lactation number in the herds in this study, where animals are 

home-bred, is likely to mean that cows may have been reared as calves in the 

same cohort and entered the milking herd at a similar time. In contrast, the 

lactation stage of cows, represented shorter-term familiarity, i.e. being more 

recently in a group of dry cows together, did not affect which cows they spent 

time with. Therefore, we show that in multiple herds, given the opportunity, cows 

preferentially associate with animals with which they share longer-standing rather 

than more recent ties, adding to evidence that long-standing familiarity is 

important in the formation of social bonds (Boyland et al., 2016; Gutmann et al., 

2015; Reinhardt and Reinhardt, 1975). 

As we identified that cows preferred to interact with cows of the same lactation 

number, we assessed the relationship between having more cows of the same 

lactation number in their top four closest contacts and outcome variables, 

however there was no biologically or statistically significant association with either 

milk yield or somatic cell count of cows. Indeed, we found no biologically or 

statistically significant relationship between the social parameters we tested and 

milk yield or somatic cell count. There are several possible explanations for this 

outcome. First, there may not be a detectable effect of social experiences on the 

health and production of dairy cattle generally, or specifically in the herds 

sampled in this study; despite differences in their management, broadly speaking 

our study farms were similar in terms of well-managed, small to average-sized 

dairy herds within Cornwall. Second, the parameters we tested may have not 

captured social experiences that effectively represent positive interactions 

between cattle, or may not be those experiences that relate to productivity. If our 

proximity events, defined as contacts actually represented a mixture of positive 

and negative interactions, the resulting relationship with our response variables 

may have been balanced out. As the baseline milk yield of each cow is likely to 

influence the magnitude of the relationship with social parameters (Jezierski and 

Podluzny, 1984); cows already achieving close to their physiological potential 

may have less opportunity for further increases in production as a result of 

positive social experiences, yet more susceptible to decreases in yield due to 
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negative experiences. In contrast, a cow yielding less than their potential might 

benefit more from positive social interactions but be less vulnerable to the impacts 

of negative experiences.  

Previous literature shows differing relationships between moving of cows 

between groups and production, however, few studies have considered the 

characteristics of the newly introduced cattle. Two studies specifically selected 

dominant cows to change groups but this did not seem to affect study outcomes 

(Collis et al., 1979; Kay et al., 1977). However, it has been suggested that the 

removal of cows thought to contribute positively to the group, e.g. ‘social 

groomers’ might be detrimental to overall herd milk yield (Wood, 1977) and that 

the magnitude of the impact of removing animals from the group may depend on 

the number of social interactions that cow has had (Jezierski and Podluzny, 

1984). Further studies might consider characterising the social nature of 

individuals e.g. as highly gregarious or less social, and experimentally removing 

both types of individual from the group, to see if this leads to a different magnitude 

of relationship with production. 

We have described the contrasting results of studies examining social behaviour 

in livestock and identified that prior social experiences of the animals involved in 

the studies, the method of analysis, and the production level of animals may have 

contributed to a lack of consistency in outcomes. Studies with large sample sizes, 

multivariable analyses and those that control for previous social experience of the 

animals involved are likely to be able to identify a more accurate estimation of the 

relationship between the social environment of cows and production parameters. 

We found that rather more studies focussed on negative social experiences, 

perhaps as the impacts of negative social environments may be more easily 

detected, e.g. feather pecking in hens, tail-biting in pigs, than impacts of a positive 

social environment (Ellen et al., 2014). However, we identified a preference for 

cows to interact with cows of a similar lactation number across all herds, providing 

further evidence for social preference in cattle and suggest that future research 

to optimise grouping strategies on commercial farms would be beneficial to cow 

welfare. 
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Chapter 7: Discussion 

Background 

The health of animal and human populations is closely linked. Epidemics in 

livestock can compromise human public health (zoonotic infections) and can be 

costly to national economies in terms of direct losses from livestock, livestock-

associated, and tourism industries (Thompson et al., 2002). However, aspects of 

commercial activity and maximising productivity can lead to compromises in 

terms of animal health and welfare (Dawkins, 2017) and, potentially, resilience to 

disease outbreaks. In this thesis, I have furthered understanding of how some 

factors that are driven by industry processes can affect the interactions among 

cattle farms and among cattle, and in turn, potentially affect the epidemiology of 

an endemic pathogen. At these different spatial scales, I have used network 

analysis as a tool to better understand potential pathways of disease transmission 

through cattle populations. In this discussion, I will review the key findings of this 

thesis, then discuss them in the context of the control of bTB in Great Britain. I 

then evaluate the utility of networks in the analysis of cattle epidemiology and 

make final conclusions. 

Key findings  

Heterogeneity in host contact rates can increase the extent and rate of spread of 

some epidemics (Lloyd-Smith et al., 2005). In Chapter 2, I applied this concept 

to the context of livestock infections and considered farms as the ‘host’, able to 

acquire and spread infection. Despite implications that superspreaders might be 

influential in the epidemiology of bovine tuberculosis in Great Britain (Brooks 

Pollock et al., 2014), so far, there had been no exploration of the characteristics 

these farms might exhibit or mechanisms by which they might operate, and thus 

I use bTB as an example throughout Chapter 2. I outlined three main 

components involved in superspreader characteristics, and identified ways in 

which a minority of farms might be able to spread infection to many other farms. 

First, I reviewed current literature studying heterogeneity in contacts between 

farms via animal trading and found evidence that it is common in livestock 

networks for a few farms or markets to account for very many trading connections 

(Dutta et al., 2014; Mweu et al., 2013; Rautureau et al., 2011; Woolhouse et al., 
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2005). Studies modelling the impact of control measures directed at these highly-

connected premises found them to be influential in reducing the extent and 

spread of simulated epidemics. This highlighted the importance of trading 

connections and led to investigations performed in Chapters 3 and 4. Second, I 

suggested that the infectiousness of the farm might be driven by the within-herd 

prevalence of a pathogen. Factors which facilitate spread of pathogens within a 

herd, such as high stocking densities, poor ventilation, and animals being housed 

indoors might increase the risk of a farm spreading infection, and are further 

explored in Chapter 5. Third, farms that are infected for long periods of time have 

greater opportunity for seeding new infections. I highlighted that the poor 

sensitivity of current bTB tests might enable infected farms to go undetected for 

long periods of time and suggest that on-farm factors such as 

immunosuppression and co-infection might further reduce the performance of 

diagnostic tests and further exacerbate this issue. 

After outlining the role of cattle movements in farms acting as superspreaders in 

Chapter 2, I performed a national-scale analysis of cattle movements in GB from 

2001 to 2015 in Chapter 3. Networks constructed from these movements were 

dense and showed scale-free properties. Although most farms were not directly 

connected to many others, I consistently identified farms that acted in a similar 

way to that of markets, as hubs in the network, connecting to many other farms 

and thereby potentially acting as superspreader farms, should they become 

infected. I quantified temporal pathways through the network, where linked farms 

represented potential sources of infection in ingoing contact chains, and farms 

potentially exposed to infection in outgoing contact chains. I found that whilst 

many farms were indirectly connected to only a few farms, many farms were 

connected to substantial numbers of other cattle farms via ingoing and outgoing 

contact chains. Contact chains scaled with herd size, and we found differences 

between herd types. Dairy farms were more likely to have more farms in their 

outgoing contact chains and fattening farms were more likely to have more farms 

in their ingoing contact chains. We found evidence for potential ‘superspreader 

activity’ in a smaller subset of farms that had numerous chains in their ingoing 

contact chains, suggesting they might be more exposed to infection, and more 
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farms in their outgoing contact chains, suggesting they might be more able to 

transmit infection and act as superspreaders if infected. 

To explore the implications of these indirect trading connections on disease 

spread, in Chapter 4, I characterised the farms in the ingoing contact chains, i.e. 

potential ‘source farms’, in terms of their individual recent bTB history and their 

country (Scotland and Wales) or bTB risk area (within England). I used a logistic 

regression model in a frequentist framework to evaluate the effect of being 

indirectly connected to more farms in total, or more farms located in areas of 

lower or higher bTB risk, on the odds of a bTB incident on the root farm. The 

model showed that although the number of farms in the ingoing contact chain 

was not associated with a change in the odds of a bTB incident, there were 

increased odds associated with trading indirectly with more farms from higher-

risk areas, and decreased odds associated with trading indirectly with more farms 

in lower-risk areas. These findings suggested that the large-scale connections 

detected in Chapter 3 were relevant in the transmission of a chronic disease. In 

assessing the impact of direct and indirect connections, I also estimated the 

effectiveness of bTB pre-and post-movement testing protocols that were in place 

during the study period and concluded that limitations of the performance of 

diagnostic tests or strategies used, meant that during the study period there were 

still risks of disease transmission associated with trading of animals from higher-

risk areas of England and Wales. This showed that the putative risks of trading 

infected animals that I identified in Chapter 1 were well-founded. In Chapter 2, I 

discussed that in addition to movements, farms might be able to seed new 

infections, or repeatedly sustain infections in neighbouring farms via local 

connections i.e. shared boundaries, wildlife, etc. (Brooks Pollock et al., 2014). 

Modelling in Chapter 4 demonstrated that local bTB incidents were a strong risk 

factor for subsequent bTB incidents nearby, highlighting the importance of this 

pathway in disease transmission. 

My review in Chapter 2 suggested that increased within-herd transmission might 

increase the risk of a farm transmitting infection to other farms. In order to better 

understand the interactions among cows within a herd, in Chapter 5 I deployed 

proximity loggers and GPS devices and recorded contacts among nine groups of 

dairy cattle on seven commercial farms that exhibited a range of management 
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types. I constructed multiple networks at differing temporal and spatial scales to 

assess how cattle interactions might be affected by their environment. We found 

that fully aggregated networks were dense, but on dividing into smaller time 

windows, that cattle had bursts of activity at certain times of day, typically 

associated with management practices. In looking at farms with cows outdoors 

and indoors, we could directly compare interactions in the two spaces; cows 

housed in buildings contacted more conspecifics, for longer durations, compared 

to cattle at pasture on the same farm. I found evidence for heterogeneity in 

contact rates between animals and identified that some individuals in each group 

showed evidence of social preference.  

Cattle farming is a commercial enterprise, and as such, farm management 

decisions are typically focussed on improving productivity of animals. In light of 

the changes in the dairy industry that were suggested in Chapter 3, where we 

found a trend for fewer, larger dairy herds, in Chapter 6, I explored the 

relationship between productivity and social interactions of cattle. Using a subset 

of the farms previously studied, for which we obtained production data, I 

evaluated what factors might drive the individual heterogeneity and social 

preference identified in Chapter 5. I tested if interactions were based on cow 

characteristics and found that cows that have had a similar number of lactations 

are more likely to spend time together. In Chapter 6, I synthesised previous 

literature on cow sociality and milk yield, and cow sociality and somatic cell count, 

and found that most studies considered social aspects of dominance, mixing 

between groups and social grooming, but found inconsistent outcomes. Using the 

contact data from Chapter 5, I constructed a Bayesian mixed effects model and 

investigated the effect of three social parameters; the amount of time spent with 

other cows, with the four closest contacts, and the number of the four closest 

contacts that were in the same lactation (measured with proximity sensors), on 

milk yield and somatic cell count. Indeed, the social parameters I tested did not 

have a significant relationship with milk production or somatic cell count. The 

mixed outcomes from these studies perhaps reflect the myriad of factors 

influencing production parameters of dairy cattle. 
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High-risk farms 

Network analyses offer an approach by which we can investigate disease spread 

and incorporate key processes such as heterogeneity in host contacts. 

Simulation studies allow us to explore how network structure can affect 

transmission of a pathogen, and thereby are also able to demonstrate the 

effectiveness of different control strategies. Modelling shows that the more effort 

that is targeted at individuals generating more infections, superspreaders, the 

lower the effective R0, and the greater the efficiency of control measures (Lloyd-

Smith et al., 2005). Between-farm transmission models have shown that removal 

of nodes from the network can have substantial impacts in reducing the final 

epidemic size (Volkova et al., 2010a). In this thesis, I have identified several farm 

characteristics which might make them particularly likely to spread onward 

infections, and thereby possible candidates for additional or novel control 

measures in order to limit the wider spread of infections. Here, I review the 

characteristics identified in this thesis and go on to suggest how control or 

prevention measures might be directed towards them for improved control of 

infection in the GB cattle herd. 

Highly-connected farms 

Analysis of networks in Chapter 3 indicated that some farms were directly 

connected via trades to many more farms, and my analysis of contact chains 

identified a subset of farms with large numbers of other farms in their outgoing 

and ingoing contact chains, suggesting that, if infected, they had the potential to 

act as superspreaders. These highly-connected farms might therefore represent 

suitable targets for control in outbreaks of infection. 

Targeting farms by the number of farms in their contact chain has been shown to 

be effective in surveillance strategies for moderately-contagious viruses 

(Frössling et al., 2012), and in predicting M. bovis infection in cattle (Palisson et 

al., 2016). However, analyses in Chapter 4 show that, in the case of bTB in GB, 

the number of farms in the ingoing contact chain is considerably less important 

than the risk area in which the source farms are located. Consequently, risk-

based control measures for bTB specifically might best be aimed at farms trading 

indirectly with more farms from high-risk areas. 
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Dairy herds 

Throughout the studies presented in this thesis, I have outlined the changing 

structure of the GB cattle industry and changes to the composition of herds. In 

Chapter 3, I identified a reduction in the number of cattle premises and an 

increase in dairy herd size from 2001 to 2015. This effect was predominantly 

driven by a loss of smaller dairy herds and expansion of pre-existing herds. In 

Chapter 3, I found that although dairy herds were fewer in number than beef 

suckler herds, due to the onwards sale of most male dairy calves, they 

contributed a disproportionate number of animals to the beef industry. Via these 

onward movements we also found that dairy farms were more likely to have more 

farms in their outgoing contact chains (Chapter 3). In Chapter 5, I identified an 

increased odds of bTB incident on dairy farms compared to other herd types, as 

is established in the pre-existing literature (Conlan and Wood, 2016; Downs et 

al., 2016). Through their highly-connected position in the network and increased 

risk of infection, we suggest that dairy herds might be likely to be potential 

superspreaders, and thus in Chapters 5 and 6 I performed a closer-analysis of 

within-herd dynamics on dairy farms with aims to better understand the impacts 

of these industry changes, at a herd and individual animal level. 

Large herds 

Larger herds are more likely to experience disease incursion (Brooks Pollock and 

Keeling, 2009), and in Chapter 4, my data supported previous evidence that herd 

size is strongly associated with bTB incidents in GB. Although it is clear that dairy 

herds are also more likely to be large herds, it can sometimes be difficult to 

disentangle these characteristics as risk factors for infection. The mechanisms 

that drive infections in larger herds are not yet fully explained (Gardner et al., 

2002), nevertheless a number of explanations have been hypothesised: first, that 

larger herds partake in a larger volume of movements, indeed in Chapter 3, I 

showed that the likelihood of a farm being connected to many others in contact 

chains was higher, yet not inevitable, for larger herds. This might be partly 

attributed to the expansion of many farms; herd expansion occurs very slowly if 

replacement animals are home bred over time, therefore expansion is most likely 

achieved through purchasing more animals, inherently increasing the number of 

purchased animals and thereby the risk of acquiring new infections (Faust et al., 
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2001). Second, it has been suggested that within-herd transmission rates are 

much higher in larger herds (Conlan et al., 2012). Third, that there is not 

necessarily an increased risk of infection per se, just that there is an increased 

likelihood of detecting infection, if present, in infected large herds (Jordan and 

McEwen, 1998). As more dairy cattle in GB now exist in larger herds, a trend 

which seems likely to increase, it will be important to quantify the mechanisms 

that drive this susceptibility to infection, in order to provide effective guidance on 

how to mitigate the risks where possible (Villarroel et al., 2007). In summary, for 

the control of bTB infection in particular, the outcomes of this thesis suggest that 

we might consider targeting farms highly-connected to many farms in high-risk 

areas via their ingoing contact chains, and large, dairy herds for more optimised 

control of infection. 

Targeted control strategies 

The scales at which I have looked at cattle networks also form a framework for 

how one might implement control strategies targeted at these ‘high-risk’ farms; 1) 

by reducing the within-herd prevalence of infection on farm, and 2) by reducing 

the spread of infection between farms. Some control measures have advantages 

in their wide applicable to all pathogens, e.g. movement restrictions, whereas 

others are limited in their control of specific pathogens, e.g. vaccination. 

Reducing within herd prevalence 

In order to reduce within-herd spread, better understanding of how infections 

spread at a cow-cow level is required (Álvarez et al., 2014). Our findings in 

Chapter 5 suggest that in future modelling, including a transmission or contact 

parameter based on herd type, or better still, based on housing and grazing 

regimes in within-herd transmission models, as has been done in some studies 

(Bekara et al., 2014) is appropriate and might result in more accurate predictions 

of infection transmission within cattle herds. The increased contacts in buildings 

compared to pasture suggest that this might contribute to within-herd 

transmission and might be particularly pertinent if dairy herds are increasingly 

being housed in indoor systems (Charlton and Rutter, 2017). With this in mind, 

whether cattle are kept indoors or outdoors, increasing available space might be 

beneficial in reducing disease transmission.  



163 
 
 

Brooks Pollock et al. (2014) found that targeting superspreader farms with more 

SICCT testing was largely ineffective, yet the use of a more sensitive, albeit less 

specific, test, e.g. γ-IFN testing, reduced the number of cattle reactors found over 

time. In using a test with lower specificity, a large number of uninfected animals 

would be culled and OTF status wrongly withdrawn from farms, yet fewer truly 

infected individuals remain. Targeting the more ‘risky’ farms that I have identified 

in this thesis with γ-IFN tests might reduce the prevalence of infection on farms, 

and also initiate movement restrictions on those farms wrongly missed by routine 

SICCT testing (Chapter 2; Conlan et al., 2012). 

Due to costs and logistics in deployment, vaccinating a small number of farms for 

greater effect might be particularly useful. As I considered in Chapter 2, the most 

likely candidate for vaccination against M. bovis is the BCG vaccine, however 

efficacy is limited and for vaccination to be beneficial at a herd-level, tests that 

are able to differentiate between infected and vaccinated animals (DIVA) are 

required to be highly specific (Conlan et al., 2015). 

Reducing high risk trading 

The implementation of movement restrictions has a cost. At a farm-level, having 

OTF status suspended or withdrawn and being unable to sell stock can mean 

extra feed costs and increased stocking densities (Bennett and Cooke, 2006). An 

increased density of animals on the farms can also negatively impact upon animal 

welfare and facilitate the transmission of infections, as discussed in Chapter 2 

and 6. Movement restrictions specifically targeted at specific ‘high-risk’ edges in 

the network are likely to be particularly effective in reducing spread along the 

network, but also limit the wider commercial impact on farms that have less 

influence on disease transmission (Enright and Meeks, 2015; Gates and 

Woolhouse, 2015). 

Testing requirements for movements of cattle between farms, are based primarily 

on the bTB risk area, in which the immediate source farm is located. However, 

analyses in Chapter 4 revealed that this direct trade does not fully account for 

the risk of a bTB incident, and that it might also be prudent to consider the risk 

regions of indirect trading connections, i.e. the locations of the source farms for 

the source farm. A recent study showed that the odds of an individual cow being 
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found as a reactor in a slaughterhouse were best characterised by the region 

where the animal had spent most of its life (McKinley et al., 2018), thus it seems 

that the zoning of England into risk areas captures the risk of disease well. Using 

the ingoing contact chains of farms or an assessment of where the animal has 

lived for most time to assess the risk associated with a particular farm or animal, 

might be useful to include in risk-based trading protocols in the future (Adkin et 

al., 2015). 

Ultimately, for farmers to assess indirect trading connections, there needs to be 

more communication and transparency around trading. The ibTB mapping tool, 

which shows the location and basic details of bTB incidents since 2015 (Animal 

and Plant Health Agency and Environmental Research Group Oxford, 2019) has 

substantially increased the ability of farmers to assess the risk of bTB from 

particular farms, however its full potential is likely to lie in integrating this 

information into auction markets. Information needs to be communicated clearly 

in real-time and be available at the point of sale. 

In Chapter 4, I show that large portions of GB are traversed in relatively few 

movements in some cases, therefore increasing barriers to trade between risk 

areas is likely to assist in fragmenting the cattle movement network. Post 

movement testing in Scotland has been an effective deterrent to cross-border 

trade of cattle, most likely due to increased costs and extra time spent testing 

animals (Gates et al., 2013b). Since our study period, the introduction of post-

movement testing for animals moved from high-risk areas might hopefully have 

had similar effects to reduce this inter-regional trade. 

The future of bTB control 

In studying bTB it is important to acknowledge that, although cattle-to-cattle 

transmission is likely to be responsible for the majority of new infections, M. bovis 

is a multi-host pathogen with a wildlife reservoir (Donnelly and Nouvellet, 2013). 

Modelling of control measures suggests that badger control will only have limited 

effects on overall bTB (Brooks Pollock et al., 2014). Industry-led culling of 

badgers is now widespread in the England High Risk and Edge areas, and 

tentative analysis from the first two years of culling suggests similar results to that 

found in the RBCT (Brunton et al., 2017). Further research is ongoing into how 
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badger vaccination might provide an opportunity for non-lethal control (Buddle et 

al., 2018), and in so doing guarding against detrimental effects of social 

perturbation (McDonald et al., 2008). 

The current political climate provides a period of uncertainty for the future of bTB 

control in Britain, as many laws governing bTB surveillance, diagnostic testing, 

and vaccination of cattle are mandated by the European Union. In theory, the 

separation of the UK from the EU would allow the UK and the devolved 

governments to change current policies, perhaps with the more widespread use 

of diagnostic phage (Swift et al., 2016), antibody testing (Waters et al., 2011) and 

cattle vaccination and DIVA testing. 

The utility of networks 

Simple mathematical models of transmission can use homogenous mixing 

assumptions to estimate the contact rate of a host population, or, as this thesis 

has shown, networks can provide an additional framework by which to 

understand disease spread (Craft, 2015). Networks are a versatile framework 

with many possible applications in a wide range of fields, yet, networks are not 

universally applicable. Network models compared to models of homogenous 

mixing have the most diverse outcomes where individual host contacts are 

heterogeneous and where infections are spatially aggregated (Keeling and 

Eames, 2005), thus making networks a particularly useful tool in these cases.  

In studying cattle networks in this thesis, I found that networks at the scales of 

farms and of animals, were, on initial inspection, densely connected. National-

level cattle movements formed a large network structure that was different to 

random networks in all aspects that were evaluated. It showed scale-free 

structure in that farms acted as hubs, and small-world clustering. Aiming to better 

comprehend this large structure I considered temporal pathways in the form of 

contact chains, which revealed that farms formed two broad groups in terms of 

being highly connected, or relatively isolated. As the chains built, and connections 

were added further from the root farm, connections to some source farms tended 

to be repeated, indicating that at these points the network neighbourhoods of 

these farms might be locally saturated, suggesting that the magnitude of the chain 

was comparable to a ‘local neighbourhood’ of each farm (Keeling, 1999). On a 
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smaller scale, within-farm cow-cow interactions were also dense if contacts were 

aggregated over the entire study period, yet temporally and spatially dividing the 

network revealed more subtle interactions between cattle. 

Many different methods have been used to analyse networks and I have 

demonstrated in this thesis that the methods chosen can be integral in shaping 

study outcomes (Dawson et al., 2019). At both scales, the measures by which I 

described the networks were, on the whole, different from random networks of 

the same size, thereby suggesting that using networks to study the interactions 

of cattle and cattle farms is worthwhile. 

Conclusion 

Maintaining a sustainable livestock industry in Britain is important for the 350,000 

people it employs (Office for National Statistics, 2018) and for consumers 

concerned with high standards of animal welfare and the regulated use of 

antimicrobials and hormones (Clark et al., 2016). Livestock epidemics can have 

impacts upon the wider agricultural industry and, in large-scale epidemics, on the 

national economy (Thompson et al., 2002). It is therefore in the common interest 

to find a balance between commercial gain and farm biosecurity. Constructing 

networks from farms and individual cattle gives us an invaluable tool with which 

to study the transmission and potential control of infections. In this thesis, I have 

shown, through static, temporal, and spatial network analysis, and statistical 

modelling, that networks can add to our understanding of the epidemiology of 

cattle in Great Britain and can help to inform risk-based strategies for control. 
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Appendix A (Chapter 3) 

Methods 

Network analysis 

We generated random networks using the Erdös-Renyi model (Erdös and Rényi, 

1959) to create 10 000 random networks per year (2001–2015). Edge weights 

from the observed network were randomly allocated to edges in the random 

networks for each respective year. We calculated the stability of the network 

position of individual farms across years using the methods of Wilson et al. 

(2013). For this analysis, we used nodes present in all years from 2001–2015, 

and within each year farms were ranked by the value of each network measure; 

in-degree, out-degree, in-strength, out-strength, and betweenness.  We 

compared the standard deviation (SD) of ranks to the SD of ranks following node-

based permutations (the swapping of attribute values between nodes of the 

network) of each yearly network, for each network measure. If the observed SD 

was lower than, and lay outside of the 95% confidence interval of, the SDs 

calculated from randomised networks, it was deemed to be repeatable through 

time.  We additionally calculated what aspects of network position (in-degree, out-

degree, in-strength, out-strength, and betweenness) correlated with mean herd 

size using Spearman’s rank correlation coefficients. To account for the non-

independence of network data, we calculated equivalent Spearman’s rank 

correlations following node-based permutations for each year. 

Contact chains 

Using the same method employed to assess the stability of network measures on 

individual farms, we ranked ICC and OCC over all study years.  In addition, using 

the same method used for correlations of mean herd size and network measures, 

we calculated the correlation of ICC with OCC, mean herd size with ICC and 

OCC, and node measures (in-degree, out-degree, in-strength, out-strength) with 

their corresponding ICC or OCC.  Spearman’s rho (rs) and p-values were 

obtained for each individual study year and rs is reported as a mean of all study 

years, with 95% confidence intervals. 
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Results 

Temporal variation in contact chains 

To investigate the variation in the contact chains of individual farms over time we 

performed additional analysis to assess our different methods. We compared the 

mean, median and maximum of the combined 24 monthly-spaced chains and the 

three combined annually-spaced chains (Appendix B Fig. B1) for years 2012 to 

2014 using Spearman’s rank analysis. The majority of farms showed little 

variation in the number of farms in their chains between different starting months 

of the 24 monthly-spaced chains. Farms with around 10 000 farms in their chain 

seem to exhibit a much larger degree of variation than those with chain lengths 

both below and above them (Appendix B Fig. B9).  We were concerned that 

seasonal fluctuations in movements would cause variation in the number of farms 

in a contact chain depending on the starting month of the chain. However, no 

consistent pattern was apparent by visual examination of monthly differences in 

the number of farms in contact chains from 2012-2014.  This suggests that the 

variation seen in farms with contact chains of around 10 000 is due to individual 

farm trading behaviour rather than population-level changes in movements.  

Overall, there was a strong correlation between the summary values (mean, 

median and maximum) of the 24 monthly-spaced chains and the 3 annually-

spaced chains (mean ICC: rs = 0.932 (95% confidence intervals (CI) 0.931–

0.0.933), mean OCC: rs = 0.909 (95% CI 0.908–0.910), median ICC: rs = 0.845 

(95% CI 0.843–0.847), median OCC: 0.846 (95% CI 0.843–0.848), maximum 

ICC: rs = 0.923 (95% CI 0.922–0.924), maximum OCC: rs = 0.874 (95% CI 

0.872–0.875); p < 0.001, n = 76,031).  
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Appendix B (Chapter 3) 

 

Figure B1. Schematic showing the two different time windows over which contact chains 

have been analysed and compared. All periods span 12 months. Teal-coloured bars 

show the 24 x monthly-spaced periods and red-coloured bars span the 3 x annually-

spaced periods from which movements are taken to calculate contact chain values.  
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Figure B2. Summary measures for average herd sizes (median of the daily number of 

cattle on the premises for each year) from 2001 to 2015 and for each herd type calculated 

from CTS data. Data are shown as boxplots with dots representing median values and 

whiskers representing 25th and 75th percentiles of the data, showing an increase in the 

size and variation of dairy herds and stability in the herd size of other herd types.  
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Figure B3. Individual node betweenness centrality calculated using inverted edge 

weights: a) histogram with count log transformed (n+1) to show peaked distribution of 

betweenness and zero-inflated distribution, b) boxplot by herd type for the 2015 network 

of cattle movements showing little difference between herd types. Tops and bottoms of 

the boxes represent the 75th and 25th percentiles of the data, the black centre lines are 

the medians, and the whiskers extend from their respective hinge to the smallest or largest 

value no further than 1.5 * interquartile range.  
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Figure B4. Observed standard deviation in farm ranks, when ranked by network measure 

over multiple years. Randomised standard deviation is from 1000 randomly generated 

Erdös-Renyi networks. For each metric, observed standard deviation is less than random, 

indicating that farms were more consistent over time in their network measures than if the 

network were randomised.  
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Figure B5. Predicted probabilities from logistic regressions using mean herd size and 

herd type as explanatory variables of farms with over 100 farms in their a) ICC, b) both 

ICC and OCC and c) OCC as the response variable. Shaded areas represent the 95% 

confidence intervals. Uses the mean value of 24 sequential monthly-spaced contact 

chains from 2012-2014 as the value for contact chains.  
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Figure B6. Predicted probabilities from logistic regressions using mean herd size and 

herd type as explanatory variables of farms with over 1000 farms in their a) ICC, b) both 

ICC and OCC and c) OCC as the response variable. Shaded areas represent the 95% 

confidence intervals. Uses the mean value of 24 sequential monthly-spaced contact 

chains from 2012-2014 as the value for contact chains.  



176 
 
 

Figure B7. Predicted probabilities from logistic regressions using mean herd size and 

herd type as explanatory variables of farms with over 10 000 farms in their a) ICC, b) both 

ICC and OCC and c) OCC as the response variable. Shaded areas represent the 95% 

confidence intervals. Uses the mean value of 24 sequential monthly-spaced contact 

chains from 2012-2014 as the value for contact chains.  
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Figure B8. Receiver Operating Characteristic (ROC) curves for logistic regression using 

farms with over and under 10 000 farms in their a) ICC, b) OCC and c) ICC and OCC as 

response variables. The area under the curve (AUC) indicates discriminatory power of 

each model (0.70-0.80 = adequate, 0.80-0.90 = excellent): 0.77, 0.87 and 0.81 

respectively.  
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Figure B9. Relationship between standard deviation and the mean of 24 monthly-spaced 

a) ICCs and b) OCCs of all active farms in GB over the period 1st January 2012 to 31st 

December 2013. Showing that variation between contact chains of individual farms 

increases as the mean contact chain increases, but then decreases for farms at the 

extreme right tail of the distribution with over 10 000 farms in their chain.  
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Figure B10. Map of Great Britain showing counties grouped into regions and countries 

used in our logistic regression analyses.
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Table B1. Glossary of network analytical terms and accompanying igraph functions. 

Network 

measure 

igraph function (R language) Description 

Shortest path - The path between two nodes that traverses the least 

number of edges in the network. 

Betweenness 

centrality 

estimate_betweenness()* A global measure of centrality indicating the number of 

times a node lies on the shortest-paths between all other 

nodes (Newman, 2015) in the network.  Note* In 

weighted networks, edge weights influence these shortest 

paths and betweenness values.  For disease transmission, 

edges with high weight (more animals moved) represent 

an increased risk of pathogen transfer (Natale et al., 

2011). However, the algorithm used to calculate 

weighted betweenness by igraph treats high weight as a 

cost to edge traversal, therefore, we calculated 

betweenness with inverted weights (1/weight) to 

represent this higher risk of transmission. 

Edge density edge_density() Defined as the ratio between the number of edges in the 

network and all possible edges giving a value for density 

that is relative to the number of nodes.  In general, a 

more dense network has more edges along which 

transmission can occur (Shirley and Rushton, 2005). 

Degree 

assortativity 

assortativity_degree() The extent to which nodes connect with those with a 

similar degree to them and gives an indication of the 

presence of hubs in the network, i.e. those nodes that 

connect to many more other nodes than the majority.  

Hubs facilitate rapid spread of infection to their 

connected nodes, temporarily increasing the speed of 

epidemic spread (Kiss et al., 2006a). 

Reciprocity reciprocity() Indicates the extent to which nodes reciprocally connect, 

by both buying and selling, to one another in a directed 

network. 

Clustering 

coefficient 

transitivity() The clustering co-efficient detects network clustering and 

shows the tendency for nodes to be connected to other 

nodes that are themselves directly connected.  

Average path 

length 

average.path.length() The average of all shortest paths in the connected 

network. It indicates in how many steps the GSCC can be 

traversed.  

Giant strongly-

connected 

component 

(GSCC) 

strong <-components(g, 

mode='strong') 

gscc <- 

max(strong$csize) 

 

The largest group of connected farms from which any 

node may reach any other node via directed links 

(Pastor-Satorras et al., 2015), and has been used to 

estimate the potential extent of an epidemic (Kiss et al., 

2006b).   

Small-world 

networks 

- Low density networks with high clustering exhibit small-

world type properties, which can increase disease 

transmission but may reduce the spatial extent of the 

epidemic (Christley et al., 2005).   

Scale-free 

networks 

- Small-world type networks with a power-law (Clauset et 

al., 2009) degree distribution are considered to be scale-

free. Specifically in scale-free networks disease spread 

can occur regardless of epidemic thresholds, which often 

govern the spread of disease in other network structures 

(Pastor-Satorras and Vespignani, 2001).  This can 

facilitate the transmission of infections with low 

reproductive rates, and therefore makes a population 

more susceptible to a greater range of pathogens. 
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Table B2. Observed network values for cattle movement networks in Great Britain 2001–2015. The p-values indicate the probability of the values 

calculated in the 10 000 Erdös-Renyi random networks being greater than the equivalent value calculated from the observed network. We applied a 

Bonferroni correction to α=0.05 to account for the fact that we tested the same network values over 15 years. Therefore, p-values are considered 

statistically significant when p<0.003 or p>0.997. 

  

Degree 
Assortativity 

Reciprocity 
Clustering 
coefficient 

GSCC (% of 
network) 

SD (in degree) 
SD (out 
degree) 

Median 
betweenness 

SD betweenness (inverted 
weights) 

Average Path 
Length 

O p O p O p O p O p O p O p O p O p 

2001 -0.0916 >0.9999 0.0319 <0.0001 0.0035 <0.0001 34.0 >0.9999 71.7 <0.0001 5.83 <0.0001 0.00 >0.9999 9202867 <0.0001 6.54 >0.9999 

2002 -0.0306 >0.9999 0.0351 <0.0001 0.0111 <0.0001 47.6 >0.9999 24.0 <0.0001 10.2 <0.0001 2.00 >0.9999 7228185 <0.0001 7.14 <0.0001 

2003 -0.0572 >0.9999 0.0368 <0.0001 0.0138 <0.0001 54.8 >0.9999 29.6 <0.0001 12.5 <0.0001 5.00 >0.9999 6046683 <0.0001 6.45 <0.0001 

2004 -0.0711 >0.9999 0.0397 <0.0001 0.0150 <0.0001 57.5 >0.9999 30.8 <0.0001 12.7 <0.0001 9.00 >0.9999 6384252 <0.0001 6.42 <0.0001 

2005 -0.0877 >0.9999 0.0422 <0.0001 0.0144 <0.0001 56.5 >0.9999 32.6 <0.0001 12.1 <0.0001 6.00 >0.9999 6439959 <0.0001 6.54 <0.0001 

2006 -0.0785 >0.9999 0.0382 <0.0001 0.0138 <0.0001 56.0 >0.9999 42.6 <0.0001 12.9 <0.0001 4.00 >0.9999 7726244 <0.0001 6.33 <0.0001 

2007 -0.0853 >0.9999 0.0379 <0.0001 0.0139 <0.0001 52.6 >0.9999 35.8 <0.0001 11.7 <0.0001 2.00 >0.9999 7108390 <0.0001 6.49 <0.0001 

2008 -0.0872 >0.9999 0.0353 <0.0001 0.0150 <0.0001 52.5 >0.9999 38.2 <0.0001 12.5 <0.0001 2.00 >0.9999 5940278 <0.0001 6.57 <0.0001 

2009 -0.0854 >0.9999 0.0339 <0.0001 0.0146 <0.0001 53.9 >0.9999 38.9 <0.0001 13.2 <0.0001 4.00 >0.9999 7127118 <0.0001 6.41 <0.0001 

2010 -0.0859 >0.9999 0.0342 <0.0001 0.0143 <0.0001 52.6 >0.9999 38.0 <0.0001 12.7 <0.0001 4.00 >0.9999 6082075 <0.0001 6.60 <0.0001 

2011 -0.0883 >0.9999 0.0329 <0.0001 0.0144 <0.0001 52.1 >0.9999 39.2 <0.0001 12.9 <0.0001 3.00 >0.9999 5407043 <0.0001 6.67 <0.0001 

2012 -0.0890 >0.9999 0.0315 <0.0001 0.0138 <0.0001 50.4 >0.9999 37.6 <0.0001 13.1 <0.0001 3.00 >0.9999 4746989 <0.0001 6.62 <0.0001 

2013 -0.0916 >0.9999 0.0305 <0.0001 0.0134 <0.0001 49.8 >0.9999 38.7 <0.0001 12.9 <0.0001 4.00 >0.9999 4557005 <0.0001 6.97 <0.0001 

2014 -0.0911 >0.9999 0.0303 <0.0001 0.0136 <0.0001 49.3 >0.9999 38.9 <0.0001 13.0 <0.0001 5.75 >0.9999 6587732 <0.0001 6.93 <0.0001 

2015 -0.0846 >0.9999 0.0306 <0.0001 0.0132 <0.0001 50.0 >0.9999 40.0 <0.0001 13.2 <0.0001 7.00 >0.9999 4934042 <0.0001 6.89 <0.0001 

  

White = Observed lower than random network Grey highlight = Observed higher than random network 

O = Observed, p = p-value of comparison between observed and random networks. 
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Table B3. Receiver operating characteristic values for logistic regression models using different 

thresholds as a response variable for the number of farms in a contact chain. 

ROC value Threshold number of farms in response variable 

Chain 100 1000 10000 

ICC 0.71 0.71 0.77 

OCC 0.75 0.76 0.87 

ICC and OCC 0.68 0.69 0.81 
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Table B4. Power-law exponents from the degree distribution in the observed networks from 

2001–2015. Test statistics are from a likelihood-ratio test performed to compare models that 

fitted the observed network to a power-law distribution with that from a log-normal distribution. 

In all years, apart from 2001 when trading patterns were grossly perturbed by movement 

restrictions during a foot and mouth disease epidemic, there was no evidence that either model 

fitted better. 

Year 

Power-

law 

exponent 

R test statistic 

(log-likelihood 

ratio) 

One-sided 

P-value 

2001 3.14 4.9940 2.96E-07 

2002 3.00 0.0321 0.487 

2003 2.91 -0.7544 0.775 

2004 2.89 -0.5700 0.716 

2005 2.82 -0.2211 0.587 

2006 2.71 -0.7489 0.773 

2007 2.76 -0.1060 0.542 

2008 2.77 0.0019 0.499 

2009 2.77 0.4970 0.310 

2010 2.78 0.4315 0.333 

2011 2.75 -0.2503 0.599 

2012 2.81 -0.0519 0.521 

2013 2.78 -0.2134 0.584 

2014 2.80 0.0744 0.470 

2015 2.83 -0.2063 0.582 
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Appendix C (Chapter 4) 

Methods 

Regional definitions: England risk areas and Wales 

During the study period (2010–2016) there were multiple changes to bovine 

tuberculosis (bTB) surveillance policies in Great Britain. Up until the end of 2012, herds 

in England were tested every 1, 2, 3, or 4 years according to the classification of their 

parish (smaller geographical areas within counties). On 1st January 2013, three risk 

areas were implemented in England; the England High Risk Area, where infection is 

considered endemic in badgers and cattle, the England Low Risk Area, where there 

is low incidence, and the England Edge area, which encompassed regions deemed to 

be at highest risk of endemicity in the near future (Lawes et al., 2016; see Fig. S1 for 

map). In most cases, whole counties lie within a single risk area, however five counties 

(East Sussex, Oxfordshire, Warwickshire, Derbyshire and Cheshire) were divided 

between the England High Risk Area and the England Edge Area along parish 

boundaries. For the purposes of this study, we defined these risk areas at the parish-

level using reference data obtained from the APHA and as per the 2015 surveillance 

report by the APHA (Animal and Plant Health Agency, 2016). After the risk areas were 

implemented (2013 onwards), herds in the England High Risk Area and England Edge 

Area were tested at least annually and herds in the England Low Risk Area and 

Scotland were tested every four years, although in Scotland some farms were exempt 

from live animal testing according to risk-based analyses (Kao, 2011). Despite marked 

regional differences in herd incidence (and devolved bTB policy) within Wales, we 

elected to categorise the entire country as one risk area, since during the study period 

all Welsh regions were tested annually. 

Herd type definition 

Using Cattle Tracing System (CTS) data, suckler farms were defined by a majority of 

female beef animals, aiming to capture herds where calves are reared by their dams 

(cow-calf systems). Dairy farms were defined by a majority of female dairy cattle, 

identifying herds producing milk commercially. Fattening units were defined by a male 

animal majority, identifying herds that mainly reared cattle for beef production. Mixed 
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farms were those where no one breed type or sex constituted more than 50% of the 

herd.  

Constructing networks 

In constructing our networks, only farm to farm movements were analysed, omitting 

premises where animals resided for less than one day. Movements between farms via 

transitory locations, such as markets, were classed as a direct link with the transitory 

location excluded, as we considered short-term locations of minimal importance to the 

transmission of bTB (Skuce et al., 2011), in contrast to their importance in the spread 

of highly infectious diseases. Multiple animals moving to and from the same farms on 

the same day were aggregated to form a single directed connection.  

Constructing contact chains 

The ‘root farm’ is at the start of the chain. Any farms that have directly sold animals to 

the root farm in the previous year are considered to be at level one in the contact 

chain. Farms initiating previous movements onto level one farms (i.e. those made 

before the move to the root farm) are considered to be at the second level away from 

the root farm (i.e. two movements in a temporal sequence connect the root farm and 

a farm at the second level of the chain), farms initiating movements of cattle onto 

second level farms are considered to be at the third level, and so on. All movements 

creating connections up the chain precede the movement between the lower levels 

and thus maintain a possible infection pathway. The resulting chain is fully-connected 

by animals that have been on the same farm for at least one day and therefore have 

the potential to transmit infection between farms. Any farm in the ICC of a root farm is 

considered a ‘source farm’. We generated twenty-four ICCs for each active root farm 

using movements recorded during the study period. The twenty-four chains end 

sequentially one month apart and each include the previous 12 months of movements. 

We chose 12 month periods as a conservative estimate of how long a bTB infected 

farm may trade without being detected. We calculated the number of farms in each 

ICC (source farms) but encountered computational limitations in identifying farms at 

more than eight levels away in extremely large chains, and so each chain was curtailed 

at this point. We estimate approximately 28% of root farms had source farms above 

level 8, and these source farms were not included in the analysis. However, given that 
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the likely effect of farms diminishes at greater distances in the ICC and that farmers 

have less and less control over connections as the chain builds, we consider this is 

sufficient to capture the more important risk factors related to bTB transmission.  

Trialling of different analytical approaches 

Due to the complexity of including network parameters in statistical analysis and the 

number of variables that were included in the original model, I trialled a number of 

analytical approaches in terms of selecting variables for the multivariable analysis. 

Backwards and forwards AIC selection produced similar results, as did stepwise 

selection based on the Bayesian Information Criterion. We assessed models 

additionally with Bayesian model averaging and random forest analyses which also 

suggested similar variables were important in the full model. As each method showed 

very similar selection of major variables, this provided supportive evidence that the 

chosen method did not have a strong influence on our outcomes. Additionally, all 

methods struggled with multiple co-linear lagged variables for levels of the contact 

chains and prompted us to select the chosen method of selecting lagged variables as 

a more robust approach. 

Selecting contact chain variables 

Using the method described in the multivariable analysis section in Methods, we split 

the contact chain variables into two groups based on if we expected them to increase 

or decrease the odds of bTB on the root farm in the univariate analysis (Fig. S3). First, 

we ran the baseline model with each cumulative variable from both groups. We 

selected the variable from each group that was included the model with the lowest 

AIC. For the increased risk group this was the number of source farms in the England 

High Risk Area at levels 1–3 and for the protective group this was the number of source 

farms in Scotland at levels 1–8 (Fig. S3). Second, to determine if the selected variables 

had an impact on the AICs of one another, we ran a sensitivity analysis in which we 

repeated the previous steps by including each variable from each group (e.g. the 

protective group: number of farms in the England Low Risk Area at levels 1, 1–2, 1–

3, etc. up to levels 1–8 and the number of farms in Scotland at levels 1, 1–2, 1–3, etc. 

up to levels 1–8) with the baseline model, but also added the variable from the other 

group that was selected in the first stage (e.g. selected variable from the increased 
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risk group: the number of farms at levels 1–3 in the England high risk area). Initially, 

the variable in the model with the lowest AIC was the number of Scottish farms at 

levels 1–8 (Fig. S3, however, after adding in the ‘best’ variable from the increased risk 

group, and testing all variables from the protective group, the model with the lowest 

AIC became the number of farms at levels 1–8 in the Low Risk Area (Fig. S3). The 

best performing representative variable from the increased risk group (number of 

farms at levels 1–3 in the England high risk area) consistently had the lowest AICs 

with the either the number of farms in the England Low Risk Area or Scottish farms at 

levels 1–8 (Fig. S3). As the model containing both the number of farms in the England 

High Risk Area at levels 1–3 and the number of farms in the England Low Risk Area 

at levels 1–8, gave the lowest AIC, we selected the England Low Risk Area variable 

from the protective group. We also performed the above sensitivity analysis with and 

without the local risk factor (the proportion of farms with a bTB incident in 2010–2014 

at a radius of 0–8km from the root farm). AIC values were consistently higher, by a 

mean of 3.22% (standard deviation = 0.0465), when the local risk factor was not 

included, therefore it was included in the final model (Fig. S3). 
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Appendix D (Chapter 4) 

Figure D1. Map of Great Britain illustrating the regional areas used in this study: Scotland, 

Wales, England High Risk Area, England Low Risk Area and England Edge Area. Bovine 

tuberculosis risk areas of England were defined at parish level for our analyses, as defined by 

the Animal and Plant Health Agency bovine tuberculosis surveillance report 2015 (Animal and 

Plant Health Agency, 2016). Counties that were partly in the England High Risk Area and partly 

in the England Edge Area from 2013 to the study end (Cheshire, Derbyshire, Warwickshire, 

Oxfordshire, East Sussex) are coloured on the map as the England High Risk Area and 

denoted with a white asterisk.  
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Figure D2. Relative performance of test models to inform variable selection for inclusion in the 

final GB multivariable model. Variables tested are for the proportion of farms with a bTB incident 

2010–2014 at increasing distance from the root farm. AIC values are shown for the baseline 

model, without any local bTB variable, and the five competing multivariable logistic regression 

models which included the proportion of farms within 0–2 km, 0–4 km, 0–6 km, 0–8 km, and 

0–10 km of the root farm respectively. All models used the response variable of whether the 

root farm had a bTB incident 2015-2016 and all included the baseline explanatory variables: 

root farm risk area, root herd size,  root herd type, whether or not root farm had bTB incident 

2010-2014, root farm betweenness, the mean number of source farms in the ingoing contact 

chain (ICC), whether or not the farm purchased cattle, the mean number of cattle purchased 

annually, whether or not the farm purchased any animals from the England High Risk Area. 

The test model that included the proportion of farms within 8 km of the root farm with a bTB 

incident 2010–2014 had the lowest AIC value and was therefore included in our final 

multivariable model. 
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Figure D3. Relative performance of test models to inform variable selection for inclusion in the 

final GB multivariable model. Variable selection was based on the combination of parameters 

included in the model with the lowest AIC value. Each variable within a category (e.g. increased 

risk) was tested with the selected variable from the other category (e.g. decreased risk) and the 

baseline model. Additionally, all variables (from left to right on the x-axis) were run with (bottom 

row) and without (top row) the local bTB incident variable (0–8 km see Fig. S2) and models 

always performed better with this variable included. The optimum combination of variables 

defined by lowest AIC values included the number of farms in the England High Risk Area at 

levels 1-3 in the ICC (grey line with circles, bottom left panel) and the number of farms in the 

England Low Risk Area at levels 1-8 in the ICC (orange line with triangles, bottom right panel). 

All models include the baseline explanatory variables root farm risk area, herd size, herd type, 

bTB incident 2010-2014 (yes/no), betweenness, the mean number of source farms in the 

ingoing contact chain (ICC), purchase of cattle (yes/no), the mean number of cattle purchased 

annually, and purchase of any animals from the England High Risk Area (yes/no). 

 

  

Increased risk Decreased risk 
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Figure D4. Performance of final GB and regional multivariable models in predicting bTB 

incidents on root farms 2015–2016. Plots show model a) sensitivity, b) specificity, c) area under 

receiver operating characteristic curve, d) positive predictive value, e) negative predictive value, 

and f) accuracy. Models include the explanatory variables; root herd size, bTB incident 2010–

2014, herd type, betweenness, cattle purchased (yes/no), the number of source farms in the 

ICC, the proportion of farms within 8km of the root farm with bTB incident 2010–2014, cattle 

purchased from England High Risk Area (yes/no), number of farms in England High Risk Area 

at levels 1–3 of the contact chain, number of farms in the England Low Risk Area at levels 1–8 

of the contact chain, and root farm region (GB model only). We were unable to calculate a 

positive predictive value for the Scottish model as no bTB incidents were predicted to occur.  
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Figure D5. Mean distance (km) to the root farm from source farms at each level of the ingoing 

contact chain in a trading network of cattle farms in Great Britain 2012 to 2014. The box plots 

indicate the median and 25th and 75th percentiles, the upper and lower whiskers extend to the 

largest or smallest value no further than 1.5 times the interquartile range and data beyond this 

range are plotted as outlying points. 
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Table D1. Relative numbers of study farms with bovine tuberculosis (bTB) incidents during 

2015–2016. Incidents are classified as Officially Tuberculosis Free suspended (OTF-S) or 

withdrawn (OTF-W) and numbers of study farms with bTB incidents 2015–2016 that also had 

a bTB incident 2010–2014 in different regions and Great Britain as a whole are shown. 

Percentages shown are of those farms that experienced a bTB incident, not all study farms. 

*Five farms had unclassified bTB incidents, 4 in the England High Risk Area and 1 in the 

England Edge Area. 

  

Region 
Great Britain England High 

Risk Area 
England 

Edge Area 
England Low 

Risk Area 
Wales Scotland 

Number of root 
farms with OTF-S 
bTB incident 2015–
2016 

1234 (19.1%) 304 (42.3%) 181 (63.5%) 210 (12.4%) 53 (72.6%) 1982 (21.5%) 

Number of root 
farms with OTF-W 
bTB incident 2015–
2016 

5213 (80.8%) 413 (57.5%) 104 (36.5%) 1486 (87.6%) 20 (27.4%) 7236 (78.5%) 

Number of root 
farms with bTB 
incident (OTF-S or 
W) during 2015–
2016 and during 
2010–2014 

5092 (78.9%) 322 (44.8%) 60 (21.1%) 1229 (72.5%) 21 (28.8%) 6724 (72.9%) 

Total number of 
root farms with bTB 
incident (OTF-S or 
W) 2015–2016 

6451* 718* 285 1696 73 9223 
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Table D2. Effect sizes of explanatory variables on the odds of a bTB incident on the 

root farm in 2015–2016. Odds ratios (ORs) with 95% confidence intervals are from our 

multivariable logistic regression analysis using regional data from the England High 

Risk Area, the England Edge Area, the England Low Risk Area, Wales, and Scotland. 

ORs of continuous variables are standardised as the odds associated with the 

difference between the 10th and 90th percentiles of the raw data. 
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Parameter 

10th 
percentile 

(raw 
data) 

90th 
percentile 

(raw 
data) 

Odds 
ratio 

2.5% 
confidence 

limit 

97.5% 
confidence 

limit 
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A
re

a 
(n

 =
 2

1
8

9
2

) 

Root farm herd 
type 

Mixed     Baseline     

Dairy - - 1.34 1.17 1.55 

Fat - - 0.89 0.77 1.04 

Suckler - - 1.09 0.97 1.24 

Root farm bTB 2010-2014 - - 2.75 2.54 2.98 

Cattle purchased by root farm - - 0.97 0.83 1.13 

Mean number of 
farms in ICC 

1st quartile (0–1)     Baseline     

2nd quartile (2–421) - - 1.06 0.93 1.20 

3rd quartile (422–5601) - - 1.15 1.01 1.32 

4th quartile (5602–39676) - - 1.25 1.02 1.54 

Cattle purchased direct from England High Risk Area - - 1.21 1.00 1.47 

Root farm herd size 4 291 22.34 19.00 26.31 

Mean number of purchased cattle 0 201 1.00 0.97 1.03 

Root farm betweenness 0 277523 0.99 0.99 1.00 

Proportion of farms within 8km with bTB 2010-2014 0.26 0.59 3.03 2.74 3.35 

No. farms in England High Risk Area at levels 1-3 0 1181 1.21 1.11 1.33 

No. farms in England Low Risk Area at levels 1-8 0 8581 0.71 0.58 0.87 
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d
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Root farm herd 
type 

Mixed     Baseline     

Dairy - - 1.46 1.03 2.10 

Fat - - 1.00 0.69 1.47 

Suckler - - 1.30 0.95 1.81 

Root farm bTB 2010-2014 - - 2.33 1.91 2.82 

Cattle purchased by root farm - - 0.89 0.69 1.16 

Mean number of 
farms in ICC 

1st quartile (0–1)     Baseline     

2nd quartile (2–344) - - 1.20 0.87 1.67 

3rd quartile (345–6204) - - 1.35 0.93 1.95 

4th quartile (6205–37934) - - 1.19 0.66 2.12 

Cattle purchased direct from England High Risk Area - - 1.24 1.00 1.54 

Root farm herd size 3 257 16.23 11.11 23.96 

Mean number of purchased cattle 0 241 1.01 0.96 1.07 

Root farm betweenness 0 349309 1.00 0.99 1.00 

Proportion of farms within 8km with bTB 2010-2014 0.04 0.25 3.16 3 3.81 
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Parameter 

10th 
percentile 

(raw 
data) 

90th 
percentile 

(raw 
data) 

Odds 
ratio 

2.5% 
confidence 

limit 

97.5% 
confidence 

limit 

No. farms in England High Risk Area at levels 1-3 0 900 1.15 0.99 1.35 

No. farms in England Low Risk Area at levels 1-8 0 10715 0.76 0.43 1.36 

En
gl

an
d

 L
o

w
 R

is
k 

A
re

a 
(n

 =
 1

8
9

4
2

) 

Root farm herd 
type 

Mixed     Baseline     

Dairy - - 0.86 0.54 1.41 

Fat - - 0.81 0.49 1.36 

Suckler - - 0.80 0.53 1.24 

Root farm bTB 2010-2014 - - 4.57 3.25 6.35 

Cattle purchased by root farm - - 1.38 0.92 2.11 

Mean number of 
farms in ICC 

1st quartile (0–2)     Baseline     

2nd quartile (3–1522) - - 1.03 0.65 1.68 

3rd quartile (1523–8464) - - 1.42 0.84 2.44 

4th quartile (8465–39185) - - 2.54 1.10 5.79 

Cattle purchased direct from England High Risk Area - - 1.48 1.06 2.04 

Root farm herd size 3 255 14.29 8.52 24.38 

Mean number of purchased cattle 0 225 1.01 0.97 1.04 

Root farm betweenness 0 395549 1.00 0.99 1.00 

Proportion of farms within 8km with bTB 2010-2014 0 0.06 1.64 1.34 1.98 

No. farms in England High Risk Area at levels 1-3 0 494 1.18 1.08 1.28 

No. farms in England Low Risk Area at levels 1-8 0 11932 0.21 0.09 0.49 

W
al

es
 (

n
 =

 1
1

5
2

5
) 

Root farm herd 
type 

Mixed     Baseline     

Dairy - - 1.31 0.99 1.75 

Fat - - 0.97 0.70 1.35 

Suckler - - 1.00 0.77 1.31 

Root farm bTB 2010-2014 - - 2.60 2.27 2.99 

Cattle purchased by root farm - - 1.04 0.86 1.25 

Mean number of 
farms in ICC 

1st quartile (0–1)     Baseline     

2nd quartile (2–459) - - 0.92 0.74 1.15 

3rd quartile (460–4404) - - 0.95 0.75 1.20 

4th quartile (4405–33893) - - 0.86 0.60 1.24 

Cattle purchased direct from England High Risk Area - - 1.15 0.99 1.33 

Root farm herd size 5 219 14.65 11.12 19.39 

Mean number of purchased cattle 0 127 1.02 0.97 1.07 

Root farm betweenness 0 225091 1.00 0.99 1.01 

Proportion of farms within 8km with bTB 2010-2014 0.06 0.54 7.95 6.52 9.73 

No. farms in England High Risk Area at levels 1-3 0 317 1.04 0.95 1.13 

No. farms in England Low Risk Area at levels 1-8 0 7065 0.95 0.68 1.31 

Sc
o

tl
an

d
 (

n
 =

 1
1

7
7

7
) 

Root farm herd 
type 

Mixed     Baseline     

Dairy - - 0.53 0.16 2.13 

Fat - - 0.72 0.18 3.09 

Suckler - - 0.99 0.39 3.35 

Root farm bTB 2010-2014 - - 16.26 9.06 28.38 
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Parameter 

10th 
percentile 

(raw 
data) 

90th 
percentile 

(raw 
data) 

Odds 
ratio 

2.5% 
confidence 

limit 

97.5% 
confidence 

limit 

Cattle purchased by root farm - - 1.20 0.46 3.55 

Mean number of 
farms in ICC 

1st quartile (0–1)     Baseline     

2nd quartile (2–632) - - 0.98 0.37 3.10 

3rd quartile (633–6682) - - 1.15 0.39 3.90 

4th quartile (6683–36712) - - 1.58 0.31 8.33 

Cattle purchased direct from England High Risk Area - - 0.46 0.09 1.46 

Root farm herd size 4 364 13.64 4.69 42.68 

Mean number of purchased cattle 0 198 0.98 0.90 1.03 

Root farm betweenness 0 286021 1.00 0.99 1.00 

Proportion of farms within 8km with bTB 2010-2014 0 0.05 1.14 0.80 1.41 

No. farms in England High Risk Area at levels 1-3 0 21 1.04 1.02 1.05 

No. farms in England Low Risk Area at levels 1-8 0 10386 0.69 0.16 2.96 
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Appendix E (Chapter 5) 

Validation of proximity tags 

The proximity loggers used in Chapters 5 and 6 of this thesis have been previously 

validated on humans, and used in studies on humans, dogs, and horses (Cattuto et 

al., 2010; Milwid et al., 2019b; Wilson-Aggarwal et al., 2019). Their validation for our 

studies consisted of three approaches; two video analyses with cattle and one static 

analysis with posts.  

The static validation analysis was carried out by colleagues at the University of Exeter 

(Professor Darren Croft) and analysed by collaborators at the Institute for Scientific 

Interchange (ISI; Laura Ozella). Multiple tags were fixated to four wooden posts at 

different heights in a square pattern, posts were sequentially placed at increasing 

distances away from each other, with and without an obstruction between the tags. 

This allowed assessment of how tags interacted at different heights and orientations. 

The relative attenuations between all tags were measured and findings suggested that 

-70dbm was an appropriate threshold to measure contacts between 1 and 1.5m.  

The first video analysis recorded cattle feeding along a trough in a barn on one of our 

study farms, cattle were parallel to one another and this analysis suggested that in 

these circumstances, where tags were oriented in the same or opposite directions, 

interactions may not be recorded if the tags were not fully facing each other, as per 

the outlined function of the tags in Chapter 5 Methods.  

The second video analysis recorded three cows in differing positions in a yard, 

however unfortunately data were only successfully downloaded for the interactions of 

two cows. Interactions were recorded and compared to tag data. The attenuation of 

these recorded contacts was consistent with previous validation of attenuation in 

human validation studies, suggesting that the attenuation chosen (contacts less than 

-70dBm) was appropriate to use as a proxy for 1–1.5m contact between cattle. In this 

study, one contact was recorded when cattle were further away than we would expect 

a contact to be recorded between tags. Propagation of this signal was most likely due 

to the environment in which the analysis was carried out, with metal barriers 

surrounding all sides of the yard (see Photo E1). Although metal is likely to be 

commonly found inside farm buildings, this contact had an attenuation higher than the 
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threshold and would have been removed in data cleaning, demonstrating that the post-

data collection processing was effective in selecting appropriate contacts between 

cattle.  

Photo E1. 
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Figure E1. Example of the contacts recorded from two proximity tags (green and purple lines) 

recording very high numbers of contacts over a short time period compared to other tags in the 

same deployment (all other coloured lines). All data recorded by proximity tags (including the 

two shown) that recorded more contacts than 95% of the total contacts recorded by all tags 

within a 30 minute time frame were removed from the study. 
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Figure E2. Schematic showing grouping of contacts to construct Temporo-spatial networks 

(Temporal Pasture, Temporal Buildings, and Temporal Split networks) by different times of day 

(day or night) to analyse the repeatability of dyads being in the same community over time 

(examples from Strip-grazed and Dry groups). Each number represents a separate network 

formed from the contacts below it (represented by multiple overlapping points), the location is 

denoted by the y-axis and the colour represents the time of day (yellow = day, blue = night), 

where day is defined as 07:00–19:00. For example, the yellow ‘1’ in the top left of the plot 

represents the first Pasture, day network for the Strip-grazed group. We calculated 

communities in each of these networks, noted for each dyad if they were in the same 

community in each network and then tested the repeatability of dyads being in the same 

community across the sequential networks for each network category, (e.g. the pasture day 

category compared yellow 1, 2, 3, 4, 5, 6, 7 in the Pasture group – circled in yellow on 

schematic). As the Dry group stayed in one location for the majority of the study, the networks 

were only divided by time of day, not location.  
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Figure E3: Variation in the proportion of two-hour periods a dyad spent in contact over each 

24-hour period of the study period, compared to the mean proportion of two-hour periods they 

spent in contact. Each point represents a dyad and is coloured by the P value comparing it to 

a random distribution, with P < 0.025 as triangles and P > 0.025 as crosses. Dyads more 

consistent than random exhibit a range of mean contact times. 
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Figure E4. Community structure for unweighted, unfiltered Full networks and Spatial networks 

(Buildings, Pasture and Split) for all study groups (NF) and for those networks filtered by 

removing edge weights below the 50th (F50), 75th, (F75) and 90th percentile (F90) of unfiltered 

edge weights. a) shows the number of communities detected by the fast-greedy algorithm 

(calculated in ‘igraph’) and b) shows the proportion of the group in the largest detected 

community. Study groups are in order of ascending group size. 
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Figure E5. Relative modularity values for each deployment for Full and Spatial networks 

(Buildings, Pasture and Split). The modularity was calculated for each of these additionally on 

three filtered networks removing edge weights less than the 50th (F50), 75th, (F75) and 90th 

percentile (F90) of unfiltered edge weights. Up and down facing triangles facing triangles 

respectively represent values higher and lower than 95% random values, crosses represent 

non-significance.  
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Table E1. Correlation values for comparing Spatial networks from quadratic assignment 

procedure analysis. Analysis was performed on unfiltered networks and networks filtered by 

removing edge weights less than the 50th (F50), 75th, (F75) and 90th percentile (F90) of 

unfiltered edge weights. Grey shading indicates correlation scores significantly different from 

random (P < 0.05). 

Farm 
Metric 

Networks compared 

Pasture and Buildings Pasture and Split Buildings and Split 

Threshold NF F50 F75 F90 NF F50 F75 F90 NF F50 F75 F90 

Night-
housed 

P value 0.808 0.984 0.324 0.154 0.519 0.678 0.561 0.924 0.767 0.826 0.791 0.780 

R squared 0.0000 0.0000 0.0004 0.0007 0.0001 0.0001 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 

Strip-
grazed 

P value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

R squared 0.0972 0.0860 0.0574 0.0475 0.0942 0.0940 0.0649 0.0457 0.3096 0.2961 0.2289 0.1754 

Free 
P value 0.344 0.323 0.377 0.212 0.017 0.006 0.015 0.045 <0.01 <0.01 <0.01 0.005 

R squared 0.0013 0.0013 0.0009 0.0015 0.0092 0.0100 0.0081 0.0044 0.0580 0.0465 0.0268 0.0102 

Rotation 
1a 

P value <0.001 <0.001 0.002 0.041 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

R squared 0.0135 0.0154 0.0069 0.0020 0.0607 0.0549 0.0423 0.0169 0.0395 0.0374 0.0295 0.0355 

Rotation 
1b 

P value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

R squared 0.0640 0.0587 0.0397 0.0225 0.0589 0.0540 0.0430 0.0315 0.1012 0.0912 0.0746 0.0510 

Rotation 
2 

P value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.019 <0.001 <0.001 <0.001 <0.001 

R squared 0.0113 0.0110 0.0073 0.0028 0.0041 0.0040 0.0029 0.0018 0.0997 0.0935 0.0773 0.0560 

Stable 
P value 0.961 0.944 0.463 0.980 0.585 0.548 0.501 0.604 0.873 0.795 0.869 0.844 

R squared 0.0000 0.0000 0.0009 0.0000 0.0005 0.0006 0.0006 0.0003 0.0000 0.0001 0.0001 0.0001 

Grey shading indicates statistical significance of P < 0.05 
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Table E2. Relative modularity values for communities detected by the fast-greedy algorithm on binary (unweighted) Full networks and 

Spatial networks. To analyse stronger ties, we filtered the networks by removing edge weights below the 50th (F50), 75th (F75), and 90th 

(F90) percentiles. NF indicates the unfiltered network. Dark grey shading of the cell indicates the observed relative modularity was lower 

than 2.5% lowest values of relative modularity calculated on 4999 randomised networks, light grey shading indicates observed values were 

higher than 97.5% of values on random networks.  

  

Filter NF F50 F75 F90 NF F50 F75 F90 NF F50 F75 F90 NF F50 F75 F90 

Location Pasture Buildings Split All 

Night-
housed 

LCI 0.0699 0.2487 0.4281 0.6751 0.0096 0.1772 0.3447 0.6128 0.1551 0.3356 0.5567 0.7896 0.0071 0.1767 0.3455 0.6106 

UCI 0.0964 0.3119 0.5156 0.7492 0.0199 0.2307 0.4231 0.6948 0.2063 0.4147 0.6436 0.8455 0.0177 0.2306 0.4236 0.6920 

Qrel 0.0651 0.2505 0.4296 0.7041 0.0103 0.2627 0.3984 0.6134 0.1738 0.3668 0.5821 0.7846 -0.0111 0.2722 0.4183 0.5948 

Strip-
grazed 

LCI 0.0355 0.2517 0.4751 0.7294 0.0539 0.2676 0.4905 0.7331 0.0506 0.2768 0.4784 0.7336 0.0097 0.2379 0.4492 0.7150 

UCI 0.0599 0.3340 0.5782 0.8132 0.0825 0.3475 0.5939 0.8156 0.0786 0.3615 0.5820 0.8165 0.0335 0.3164 0.5542 0.7993 

Qrel 0.0231 0.2718 0.4561 0.7103 0.0501 0.2954 0.4285 0.6601 0.0636 0.3824 0.4978 0.3880 0.0130 0.2359 0.4579 0.6048 

Free 

LCI 0.2627 0.4816 0.6746 0.8677 0.0187 0.2278 0.4438 0.6988 -0.0203 0.2204 0.4259 0.6934 -0.0205 0.2176 0.4249 0.6898 

UCI 0.3438 0.5801 0.7610 0.9423 0.0379 0.3007 0.5440 0.7816 0.0199 0.2927 0.5256 0.7763 0.0055 0.2888 0.5259 0.7745 

Qrel 0.3155 0.5174 0.6451 0.7515 0.0085 0.2794 0.4320 0.6635 0.0204 0.2985 0.4497 0.6631 0.0056 0.2599 0.4787 0.6705 

Rotation 
1a 

LCI 0.0261 0.2152 0.4039 0.6710 0.0498 0.2339 0.4295 0.6901 0.0961 0.3055 0.4876 0.7511 0.0172 0.2104 0.3929 0.6653 

UCI 0.0404 0.2795 0.4987 0.7511 0.0699 0.2994 0.5249 0.7663 0.1389 0.3846 0.5817 0.8179 0.0316 0.2756 0.4877 0.7466 

Qrel 0.0122 0.2348 0.3705 0.6908 0.0635 0.3502 0.5264 0.7516 0.1055 0.3179 0.5134 0.7537 0.0063 0.2035 0.4115 0.6509 

Rotation 
1b 

LCI 0.0609 0.2330 0.3950 0.6609 -0.0115 0.1721 0.3392 0.6027 0.0363 0.2004 0.3644 0.6319 -0.0116 0.1699 0.3375 0.6051 

UCI 0.0803 0.2921 0.4803 0.7380 0.0024 0.2240 0.4168 0.6870 0.0489 0.2555 0.4462 0.7107 -0.0113 0.2233 0.4158 0.6898 

Qrel 0.0635 0.3050 0.4180 0.6683 -0.0094 0.2089 0.4103 0.6365 0.0297 0.2322 0.3598 0.6569 -0.0102 0.2238 0.3938 0.6021 

Rotation 
2 

LCI 0.0628 0.2168 0.3855 0.6544 0.0401 0.1956 0.3528 0.6197 0.0973 0.2727 0.4339 0.7028 0.0299 0.1824 0.3462 0.6037 

UCI 0.0837 0.2710 0.4701 0.7294 0.0524 0.2477 0.4328 0.7012 0.1360 0.3379 0.5191 0.7729 0.0400 0.2337 0.4236 0.6867 

Qrel 0.0648 0.2630 0.4005 0.6369 0.0250 0.2137 0.3732 0.5727 0.1321 0.2973 0.4373 0.6542 0.0167 0.2096 0.3843 0.5286 

Stable LCI 0.0259 0.2706 0.4829 0.7263 0.3459 0.6126 0.7558 0.8786 0.2982 0.5478 0.7405 0.8771 0.0166 0.2639 0.4765 0.7296 
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Filter NF F50 F75 F90 NF F50 F75 F90 NF F50 F75 F90 NF F50 F75 F90 

Location Pasture Buildings Split All 

UCI 0.0517 0.3597 0.5885 0.8245 0.4477 0.7145 0.8513 1.0000 0.3915 0.6558 0.8347 1.0000 0.0441 0.3508 0.5841 0.8238 

Qrel 0.0213 0.3350 0.5605 0.7702 0.3742 0.5731 0.7007 0.8721 0.4334 0.6128 0.8084 0.8853 0.0223 0.3545 0.5919 0.7837 

Dry 

LCI -0.0002 0.2831 0.5121 0.7132 – – – – – – – – -0.0023 0.2844 0.5134 0.7159 

UCI 0.0303 0.4056 0.6639 0.9158 – – – – – – – – 0.0303 0.4060 0.6643 0.9192 

Qrel 0.0119 0.2624 0.4324 0.8054 – – – – – – – – 0.0119 0.2624 0.4324 0.8054 

Housed 

LCI – – – – 0.0314 0.1789 0.3374 0.6004 – – – – 0.0315 0.1794 0.3368 0.6001 

UCI – – – – 0.0413 0.2280 0.4134 0.6823 – – – – 0.0416 0.2285 0.4121 0.6829 

Qrel – – – – 0.0120 0.1945 0.3521 0.5407 – – – – 0.0120 0.1945 0.3521 0.5407 

LCI = Lower bound of random networks (2.5%) UCI = Upper bound of random networks (97.5%) Qrel = relative modularity Observed < LCI Observed > UCI 
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Appendix F (Chapter 6) 

Figure F1. Relationships between estimates of milk yields and estimates of somatic cell 

counts (SCC) taken at different time points; a) shows the mean daily milk yield during the 

study period in relation to a single milk yield recorded 1 week after the study period (r = 

0.90, P < 0.001) in group HF1, showing that single values are highly correlated with mean 

values for milk yields on this farm. b) and c) show the relationship between milk yields (r 

= 0.59, P < 0.001) and SCCs (r = 0.67, P < 0.001) respectively, taken 16 days before and 

11 days after the study period (34 days apart). 
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Figure F2. Posterior predictive distributions (n = 50) from Model 1, a Bayesian mixed 

effects model with milk yield of cows as the response variable, showing good model fit. 
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Figure F3. Posterior predictive distributions (n = 50) from Model 2, a Bayesian mixed 

effects model with log somatic cell count of cows as the response variable, showing 

good model fit.  
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Table F1. (overleaf). Table of effect sizes and 95% credible intervals from two Bayesian 

mixed effects models with the response variables of a) milk yield (kg; Model 1) and b) 

somatic cell count (an indicator of udder health; Model 2) from 197 cattle from three 

Cornish dairy herds. Fixed effects include mean association strength, mean time spent 

with 4 closest herd mates, number of 4 closest herd mates in the same lactation, lactation 

number, stage of lactation, and somatic cell count (only in Model 1) and milk yield (only in 

Model 2). Farm is included as a random effect in both models. Continuous variables are 

scaled to represent the effect size associated with a change in the explanatory variable 

from the 10th to the 90th percentile of the raw data. Effective sample sizes and Gelman-

Rubin  values demonstrate good convergence of chains in both models.  
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Variable Effect type Estimate 

Lower 
95% 

credible 
interval 

Upper 
95% 

credible 
interval 

10th 
percentile 

of raw 
data 

90th 
percentile 

of raw 
data 

Effective 
sample 

size 
 

M
o

d
e

l 1
: 

R
e

sp
o

n
se

 v
ar

ia
b

le
 =

 m
ilk

 y
ie

ld
 p

e
r 

co
w

 p
er

 d
ay

 (
k

g)
 

Intercept   26.88 17.57 35.96 — — 2716 1.00 

Mean association 
strength 

Fixed, 
continuous 

-0.36 -3.87 3.16 5.61 21.55 
4121 1.00 

Mean top 4 contacts 
Fixed, 

continuous 
0.85 -2.92 4.57 27.38 108.22 

4265 1.00 

Number 
of top 4 
contacts 
in same 
lactation 

1 

Fixed, 
categorical 

0.71 -1.21 2.63 — — 4572 1.00 

2 -0.11 -2.41 2.24 — — 4533 1.00 

3 -1.34 -4.09 1.47 — — 4376 1.00 

4 -3.65 -9.59 2.20 — — 4995 1.00 

Number 
of days in 

milk 

71-170 

Fixed, 
categorical 

-2.53 -5.12 0.17 — — 4002 1.00 

171-270 -5.98 -8.51 -3.37 — — 3548 1.00 

271+ -13.11 -16.07 -10.22 — — 3547 1.00 

Lactation 
number 

2 

Fixed, 
categorical 

5.42 2.91 7.96 — — 3750 1.00 

3 3.82 1.26 6.41 — — 3223 1.00 

4 5.99 3.27 8.73 — — 3352 1.00 

5+ 6.54 4.06 9.03 — — 3464 1.00 

Somatic cell count 
Fixed, 

continuous 
-0.94 -3.10 1.22 19.00 334.39 

5909 1.00 

Farm 

Ayrshire 

Random 

-4.99 -13.55 3.64 — — 

2713 1.00 
HF1 -1.00 -9.30 7.57 — — 

HF2 6.23 -2.08 14.81 — — 

M
o

d
e

l 2
: 

R
e

sp
o

n
se

 v
ar

ia
b

le
 =

 L
o

g 
so

m
at

ic
 c

e
ll 

co
u

n
t 

(t
h

o
u

sa
n

d
 c

e
lls

 p
e

r 

m
l)

 

Intercept   3.58 1.42 5.40 — — 1544 1.00 

Mean association 
strength 

Fixed, 
continuous 

0.24 -0.41 0.90 5.61 21.55 
3720 1.00 

Mean top 4 contacts 
Fixed, 

continuous 
0.17 -0.53 0.87 27.38 108.22 

3274 1.00 

Number 
of top 4 
contacts 
in same 
lactation 

1   -0.05 -0.42 0.33 — — 4254 1.00 

2   -0.11 -0.56 0.34 — — 3846 1.00 

3   -0.04 -0.58 0.50 — — 4346 1.00 

4   -0.05 -1.14 1.05 — — 4479 1.00 

Number 
of days in 

milk 

71-170 

Fixed, 
categorical 

0.54 0.02 1.06 — — 3776 1.00 

171-270 0.90 0.40 1.41 — — 2884 1.00 

271+ 1.11 0.47 1.77 — — 2652 1.00 

Lactation 
number 

2 

Fixed, 
categorical 

-0.11 -0.62 0.41 — — 2855 1.00 

3 -0.11 -0.63 0.38 — — 2977 1.00 

4 0.04 -0.49 0.58 — — 2827 1.00 

5+ 0.51 0.02 0.99 — — 2694 1.00 

Milk yield per cow per 
day (kg) 

Fixed, 
continuous 

-0.29 -0.88 0.32 15.46 37.38 
3577 1.00 

Farm 

Ayrshire 

Random 

-0.06 -1.74 1.96 — — 

5280 1.00 HF1 0.37 -1.18 2.50 — — 

HF2 -0.12 -1.75 1.90 — — 
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