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Abstract

This paper reports an experimental study of a vibro-impact self-propulsion technique applying for small-

bowel endoscopy by using a mesoscale capsule prototype, which is 56.9 mm in length and 19.4 mm in

diameter. Based on nonsmooth multibody dynamics, a mathematical model is developed for studying the

dynamical characteristics of the prototype. Numerical and experimental results are compared to validate

the efficacy of the proposed model as well as the feasibility of the technique under various frictional

environment. By using the model, we can reveal some hidden dynamics of the prototype and optimise

its progression speed and energy efficiency. Based on our calculations, by adopting this technique, the

standard-sized capsule, which is 26 mm in length and 11 mm in diameter, can achieve the maximum

average speeds of 8.49 mm/s for forward progression and 4.9 mm/s for backward progression, offering

the potential for a ‘live’ and controllable small-bowel examination.

Keywords: Capsule endoscopy, self-propulsion, nonsmooth dynamical system, vibro-impact,

experiment.

1. Introduction

Developing small-size robots for examining the surface lining of the small intestine [1–7] is a challenging

task, particularly for the design of propulsion mechanisms, see e.g. [8, 9]. The complexity in design is the

hurdle restricting the miniaturisation of the propulsion mechanisms into the dimension of the market-

leading capsule endoscope, i.e. 11 mm in diameter and 26 mm in length [10]. Researchers have developed

different propulsion methods, and among many of them, the self-propelled system driven by autogenous

interactive forces using magnetic actuation is a promising solution with growing interests in recent years,

see e.g. [11–14]. The driving principle of these systems is illustrated in Fig. 1, where the rectilinear motion

of the capsule systems can be obtained through overcoming external resistance described as dry friction

using a periodically driven internal mass interacting with the main body of the systems. The advantage

of this method is that no external moving components, such as clampers or fins, are required, so the

system can be encapsulated and move independently in a complex environment. In order to validate this

concept, an experimental investigation of a mesoscale prototype of the vibro-impact self-propelled capsule

system, which is 19.4 mm in diameter and 56.9 mm in length, moving on a synthetic small intestine is

presented in this paper. We will study the dynamics of the prototype, verify its modelling approach
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[15], and optimise the system in terms of its average progression velocity, power consumption and energy

efficiency.

Figure 1: (a) The two-mass system (adopted from [16]), and (b) the vibro-impact self-propelled capsule system (adopted
from [17]).

Vibro-impact driven machines are very popular in the past decade which have been used in many en-

gineering applications, such as impact-forming machine [18], ground moling [19–21], vibro-impact drilling

[22–25], energy harvesting [26], and pipeline robots [27, 28]. The performance of these machines could be

enhanced when their vibrational impacting motion is excited in resonance. For example, the best progres-

sion rate can be achieved by the high-frequency vibro-impact drilling [23] when its response is periodic,

and its resonant condition may change once the drilled formation varies [24]. The effect of inertial mass

and excitation frequency of a vibro-impact drifting system was investigated by Nguyen et al. [29] numer-

ically and experimentally. Both forward and backward motion of the system was observed at some range

of its mass ratio and excitation frequency. In [30], a new bidirectional drifting system with two-sided

impacts excited by a periodic pulsed force was studied, and the direction of the system can be controlled

by changing the direction of the excitation force. A challenging problem for these vibro-impact systems

is the control of their complex dynamics, particularly when grazing events are encountered. Pavlovskaia

et al. [31] studied the very rich dynamics of a one-degree-of-freedom oscillating system with one-sided

impact close to grazing. It was found that the evolution of its attractor was governed by a complex in-

terplay between smooth and nonsmooth bifurcations, and the interactions among a number of coexisting

orbits. Rich coexisting attractors were also observed in a two-degrees-of-freedom vibro-impact capsule

system [32] when it was operated in a complex frictional environment. Understanding of near-grazing

dynamics of vibro-impact systems is tricky, and special mathematical tools are required to gain an insight

into this question. Jiang and Wiercigroch [33] extended the concept of discontinuity geometry of rigid

impact oscillators to a soft impact oscillator. Jiang et al. [34] studied grazing bifurcations of a rigid

and a soft impact oscillators by using a path-following method. Shan et al. [35] developed a high or-

der discontinuity mapping for analysing the near-grazing dynamics of a multi-degrees-of-freedom impact

oscillator. However, in the present work, our focus is not on the complex dynamics of the prototype

close to grazing, but on the feasibility study of the vibro-impact propulsion technique under different

frictional environments. Therefore, both our experiments and numerical simulations were carried out in

the parametric regime at which such a complexity was minimised. For a detailed bifurcation analysis of

the prototype, interested readers can refer to [36].

In recent years, vibro-impact driven robots have attracted great attention from the robotics com-

munity, see e.g. [37]. For example, Ivanov [38] studied an impact-driven capsule robot with a special

design of its forcing profile in order to gain a desired progression. Nunuparov et al. [39] developed a

capsule robot with an opposing spring driven by a periodic pulse-width force acting between the housing

and its internal body. In [12], Nagy et al. numerically studied the motion of a complex micro-robot

exhibiting impact and friction and compared with experimental observation. They found that the stic-
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tion and sliding of the robot were governed by excitation frequency and environmental friction, while

impacts around the resonant frequency of the robot did not contribute to its propulsion. In this paper,

we will consider three nonsmooth nonlinearities in our capsule system, i.e. friction, impact and square

wave excitation, both numerically and experimentally, and investigate the dynamical responses of this

system under variations of different control parameters (e.g. the frequency, amplitude and duty cycle

ratio of the square wave excitation) and environmental resistances. One of the notable differences be-

tween the micro-robot studied in [12] and the capsule system studied in this paper is that, the former is

operated in kilohertz and direct observation of the nonsmooth phenomena, such as impact and stick-slip

motion, at microscale is difficult, while the latter is controlled at a much lower frequency (≤ 20 Hz), so

the vibro-impact dynamics of the system can be easily studied. Hence, after an appropriate rescaling

through nondimensionalisation (e.g. [17]), the findings of this paper could provide a better insight for

this kind of robots under high frequency excitation, and the mesoscale prototype used in this paper can

be used to predict the dynamical responses of these robots.

One major obstacle of current capsule robots is their limited on-board power for propulsion which

restricts their efficiencies in motion control. The driving force provided by the miniature actuator is

insufficient to overcome the resistances in the small intestine. If the driving force is increased, the

limited on-board power cannot last for long operation. Therefore, a power utilisation strategy is vital for

prototype development and optimisation. In [13], a multi-coil inductive powering system was designed

for a vibratory driven capsule robot to address the power shortage issue, and a frictional reduction

approach by using a rotational vibratory motor for this robot was studied in [14]. Since only partial

power contributes to the progression of the robot, rotational vibration is not an efficient way of driving.

In [40], a capsule robot driven by a linear vibratory actuator was designed, and its frictional resistance

in the small intestine was studied [41, 42]. In order to enhance its progression, we introduce two-sided

constraints for the linear vibratory actuator which can generate notable impacts for capsule progression.

By utilising the resonance of the forward and backward constraints, our capsule could achieve its maximal

forward and backward progression speeds, respectively.

In [17], the dynamics of a vibro-impact capsule system with one-sided constraint under harmonic

excitation was studied numerically by using the modelling approach for nonsmooth dynamical systems.

It was found that the control parameters of the system for obtaining the best progression and the minimum

power consumption are different, and therefore, a trade-off between these performance indices is required.

An experimental verification of the vibro-impact capsule model was presented in [43] which shows a

good agreement with the numerical results studied in [17] for a broad range of control parameters.

The conducted bifurcation analysis indicates that the behaviour of the system is mainly periodic and

that a fine tuning of the control parameters, e.g. the stiffness of the constraint, the frequency and

amplitude of excitation, can significantly improve system’s performance. In this paper, we will study the

performance of the vibro-impact capsule system with two-sided constraints under the excitation of square

wave numerically and experimentally. In addition to the findings in [17, 43], the proposed vibro-impact

mechanism can give us more flexibility in the motion control of the capsule, and the study in this paper

will validate this concept in a more realistic environment, so provide a forward step towards prototype

miniaturisation.

The rest of the paper is organised as follows. In Section 2, experimental set-up of the capsule system

is presented. In Section 3, the mathematical model of the vibro-impact capsule system described using

nonsmooth multibody dynamics is introduced. Numerical simulations using the proposed mathematical

model are then compared with experimental results in Section 4. Finally, some conclusions are drawn in
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Section 5.

2. Experimental apparatus

2.1. Prototype

The mesoscale prototype of the capsule system is shown in Fig. 2, which is 19.4 mm in diameter and

56.9 mm in length. A solenoid was mounted inside the capsule with its coil fixed to the inner surface

of the capsule and a shaft acting as the inner mass. The shaft was connected to the coil by a helical

spring at one end, and on the other end of the shaft, a nylon nut and an iron washer were fixed. When

the coil was switched on, the shaft moved forward and compressed the helical spring. Forward impacts

occurred when the washer hit the forward constraint. When the coil was switched off and the shaft

returned back forced by the compressed spring. Backward impacts occurred when the nut hit the coil.

The capsule might move forward or backward when the interaction force between the capsule and the

shaft exceeded the environmental resistance. An accelerometer, 8640A50 manufactured by Kistler, and

a linear variable differential transformer (LVDT), AML/EU10+/-200mm-C0R-02-000 manufactured by

Applied Measurements, were used to measure the acceleration of the shaft and the displacement of the

capsule, respectively. The accelerometer was of high sensitivity to its acceleration, but of low sensitivity

to its base strain. To minimise the effect of the impact force on the accelerometer, a ground isolated

adhesive mounting base, 800M158 manufactured by Kistler, the black cuboid shown in Fig. 2(c), was used

to connect the accelerometer with the shaft. In addition, the measurement range of the accelerometer

was ±50 g with overload protection.

56.9

19.4

(in mm)

(b)

(a) c)(

Figure 2: (a) Exploded, (b) external and (c) internal views of the mesoscale capsule prototype [36]. A solenoid was mounted
inside the capsule with its coil fixed to the inner surface of the capsule. The shaft of the solenoid connects with a washer
via a nut, and the washer impacts with the forward and backward constraints when an excitation force is generated by the
coil. A permanent magnet was attached at the end of the shaft to enhance the excitation force, and a helical spring was
used to provide restoring force for the shaft. An accelerometer and a linear variable differential transformer were used to
measure the acceleration of the shaft and the displacement of the capsule, respectively.

2.2. Experimental setup

The schematics of the experimental set-up is shown in Fig. 3. A solenoid was controlled by a self-

assembled drive circuit, triggered by a pulse-width modulation (PWM) signal generated from a signal

generator (AFG-2105 manufactured by GW Instek). The acceleration of the shaft, the displacement of

the capsule, and the voltage of the solenoid were recorded by a National Instruments data acquisition

(DAQ) card, USB6210, and a graphic user interface (GUI) coded in LabView. The sampling rate of

the DAQ card was configured at 1 kHz, and the GUI sent commands (CMDs) to the signal generator

to vary the frequency and duty cycle ratio of the PWM signal. Fig. 3(b) details the drive circuit. A
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changeable DC power supply, 72-10495 manufactured by TENMA, was applied to power up the actuator.

A power MOSFET transistor, IRF520NPBF manufactured by Infineon Technologies, was used to provide

switching-on and -off actions based on the PWM signal. This transistor could only control the frequency

and duty cycle ratio of the voltage across the solenoid, and the amplitude of the solenoid voltage was

controlled manually by adjusting the changeable DC power supply.

Figure 3: (a) Schematics of the experimental setup and (b) the drive circuit of the solenoid. The solenoid was controlled
by a drive circuit triggered by a pulse-width modulation signal generated from a signal generator. The acceleration of
the shaft, the displacement of the capsule, and the voltage of the solenoid were recorded by a National Instruments data
acquisition card, and a graphic user interface (GUI) coded in LabView. A power MOSFET transistor, IRF520NPBF, was
used to provide switching-on and -off actions for the solenoid based on the pulse-width modulation (PWM) signal. This
transistor could only control the frequency and duty cycle ratio of the voltage across the solenoid, while the amplitude of
the solenoid voltage was controlled manually by adjusting the changeable DC power supply.

In order to investigate capsule’s dynamics under various friction environment, three contact cases as

shown in Fig. 4 are considered in this study, which are

• Case 1: the capsule moves on an aluminium bench;

• Case 2: the capsule moves on a cut-open synthetic small intestine;

• Case 3: the capsule moves in a complete synthetic small intestine being held by a polyvinyl chloride

tube.

It should be noted that since the accelerometer cannot fit into the tube, only the displacement of the

capsule was measured for Case 3.

2.3. Data processing

Since the progression velocity and the energy efficiency of the prototype are the main performance

indices to be evaluated, after each experimental run, a segment of measured data was used to calculate

the average progression velocity of the capsule and the average power consumption of the solenoid for the

time interval, t ∈ [N0T, N0T + NaT ], where T is the excitation period, and N0 and Na are the period

numbers. Here, the average progression velocity of the capsule, Vavg, was calculated as

Vavg =
Xl(N0T +NaT )−Xl(N0T )

NaT
, (1)

where Xl(t) represents LVDT’s measurement.

The voltage of the solenoid, Us, was recorded by the DAQ system, and the excitation force, Fexp, was

calculated as

Fexp = kiIs = ki
Us

Rs

, (2)
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Figure 4: Photographs of the prototype moving on (a) Case 1: an aluminium bench, (b) Case 2: a cut-open synthetic small
intestine, and (c) Case 3: a complete synthetic small intestine being held by a polyvinyl chloride tube.

where ki, Is and Rs are the force-current ratio, the current and the resistance of the solenoid, respectively.

Then the average power consumption of the solenoid, Pavg, was computed as

Pavg =
1

NaT

∫ N0T+NaT

N0T

U2
s

Rs

. (3)

Therefore, the average energy efficiency of the prototype, Eavg , was obtained as

Eavg = Vavg/Pavg. (4)

3. Mathematical modelling and parameter identification

3.1. Equations of motion

Mathematical model of the capsule prototype is presented in Fig. 5, where k1 represents the stiffness of

the physical spring connecting the shaft and the capsule, and c is the damping coefficient representing the

energy dissipation led by the relative velocity between the capsule and the shaft. The forward constraint

is modelled as a secondary spring with stiffness k2, and the backward constraint is modelled as a tertiary

spring with stiffness k3, providing forward and backward impacts, respectively. The pre-compressed

distance of the physical spring is defined as G1. The gap between the shaft and the forward constraint

is G2, and G3 represents the gap between the shaft and the backward constraint. Mc and Mm are the

masses of the capsule (including the mass of the LVDT rod) and the shaft (including the mass of the

accelerometer), respectively. Xc is the displacement of the capsule, and Xm is the displacement of the

shaft. The friction between the capsule and its supporting surface is modelled as the Coulomb friction

with the friction coefficient µ for all the three cases.

It can be seen from Fig. 5 that three nonsmooth nonlinearities are involved in the model, which are

the PWM excitation, impact and friction. The PWM excitation, Fe, is a switch-on and -off signal which

can be expressed as

Fe(t) =

{

Pd, t ∈ [NT, NT +DT ],

0, t ∈ (NT +DT, NT + T ),
(5)
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Figure 5: Schematic diagram of the capsule prototype.

where N is the period number, Pd, f = 1
T

and D ∈ (0, 1) are the amplitude, frequency and duty cycle

ratio of the PWM excitation, respectively.

Next, we define the interaction force acting on the inner mass (shaft) Mm as Fi, written as

Fi =















Fe − F1 − cVr − F3, Xr ≤ −G3,

Fe − F1 − cVr , −G3 ≤ Xr ≤ G2,

Fe − F1 − cVr − F2, Xr ≥ G2,

(6)

where Xr = Xm − Xc and Vr = Vm − Vc represent the relative displacement and velocity between the

inner mass and the capsule, respectively. F1 = k1(Xr +G1), F2 = k2(Xr −G2), and F3 = k3(Xr +G3)

represent the interaction forces for the physical spring, forward and backward impacts, respectively. Since

the contacting surfaces for both the aluminium and the small intestine were smooth and the instant speed

of the capsule was fast in experiments, the capsule dynamics due to low speed and the Stribeck effect are

neglected, and only the Coulomb friction is considered in the model. So,

Ff =















−sign(Vc)Pf , Vc 6= 0,

sign(Fi)Pf , Vc = 0, |Fi| ≥ Pf ,

Fi, Vc = 0, |Fi| ≤ Pf ,

(7)

where Pf = µ(Mm +Mc)g is the static friction of the prototype, and g is the gravitational acceleration.

Finally, the equations of motion of the capsule prototype can be written as

{

MmẌm = Fi,

McẌc = −Fi + Ff .
(8)

3.2. Parameter identification

The total weight of the shaft and the accelerometer provides the value of the inner mass Mm, while

the weight of the remaining parts, including the coil, the capsule shell and LVDT’s rod, gives the mass

of the capsule Mc. They were simply measured by weighting each element and kept constant throughout

the experiments. The coefficients, k1, k2, k3 and c, were identified by matching numerical simulation with

each experimental run, and then averaged for all experimental runs. Identification of friction coefficient

µ between the capsule and the supporting surface was carried out by lifting one side of the supporting

surface slowly until the stationary capsule started to move. So, the friction coefficient was determined by

the angle of the surface slope at that moment. Finally, the identified physical parameters of the capsule

prototype are given in Table 1.
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Table 1: Identified parameters of the capsule prototype.

Parameters Unit Case 1 Case 2 Case 3
ki mN/A 55 55 55
Rs Ω 0.72 0.72 0.72
Mc g 82.42 82.42 86.26
Mm g 15.2 15.2 9.77
µ − 0.3117 0.2771 0.2293
G1 mm 0 0 0
G2 mm 3.4 3.4 3.4
G3 mm 0 0 0
k1 kN/m 0.04 0.052 0.07
k2 kN/m 16.35 20.91 28
k3 kN/m 12.27 15.68 21
c Ns/m 0.53 0.87 0.99

4. Experimental and numerical results

In this section, experimental and numerical results are compared. Our numerical simulations were

carried out by using the first-order Euler method with a fixed time step of 1/104 of the excitation period,

as the Euler method can balance the computational accuracy and cost effectively. A condition loop was

implemented in the algorithm by monitoring the relative displacement and the gap between the shaft

and the capsule to switch between impact and non-impact cases.

4.1. Case 1: aluminium bench

Experimental and numerical results of average progression velocity of the capsule prototype by varying

the frequency, amplitude and duty cycle ratio of the PWM excitation for Case 1 when the prototype moves

on an aluminium bench are presented in Fig. 6. As can be seen from the figure, the numerical results

show a good agreement with the experimental results under a wide range of excitation parameters.

It can be observed from Fig. 6(a) that, the capsule has faster forward progression for the frequency

range f ∈ [14.5, 18] Hz. When the amplitude of excitation increases as shown in Fig. 6(b), the average

velocity decreases to −0.76 mm/s for Pd = 102.4 mN initially, which indicates a backward progression

of the capsule. As the amplitude increases further, the average velocity of the capsule increases to 5.29

mm/s. When the duty cycle ratio increases, the average progression velocity varies from −0.85 mm/s to

5.21 mm/s as shown in Fig. 6(c) at where the maximum velocity is achieved at D = 0.2.

Two examples of time histories of capsule’s responses are presented in Fig. 7. In Fig. 7(a), it can be

observed that, only backward impacts between the shaft and the capsule occur, which lead to a backward

progression of the capsule. In Fig. 7(b), both forward and backward impacts are encountered, but the

forward impacts are much stronger than the backward ones, so the capsule has a forward progression

overall.

Multistability has been observed in the capsule prototype which is shown in the grey shadowed area

of Fig. 6(a), where the system has a period-1 forward motion coexisting with a period-1 motion with

no progression. We took a further investigation at this bistability by numerically plotting the basins

of attraction of the capsule prototype for f = 16 Hz in Fig. 8. As can be seen from the figure, green

and blue areas represent all the initial conditions of the prototype that converge to the period-1 forward

motion and the period-1 stationary motion, respectively. As the prototype may have two responsive

modes in this bistable region, the position feedback controller studied in [32] can be used to suppress this

phenomenon.
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Figure 6: Experimental and numerical average velocities of the capsule for Case 1 (aluminium bench) under the conditions
of (a) Pd = 183.3 mN, D = 0.5 and f ∈ [0.5, 20] Hz, (b) f = 9 Hz, D = 0.5 and Pd ∈ [20, 340] mN, and (c) Pd = 282.6 mN,
f = 9 Hz and D ∈ [0.05, 0.95]. Grey shadowed area indicates the bistability of the prototype at where two stable motions
(red dots: forward progression and black dots: sticking) coexist.
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Figure 8: Basins of attraction of the bistable (grey shadowed) area shown in Fig. 6, where Pd = 183.3 mN, D = 0.5 and
f = 16 Hz. Red dot with green basin represents the period-1 forward motion with forward and backward impacts, and
black dot with blue basin represents the period-1 stationary motion with no impact. Blue lines shown in the phase portraits
represent the forward and backward impact boundaries.

4.2. Case 2: cut-open small intestine

For Case 2 when the capsule moves on a cut-open small intestine, the comparison between experimental

and numerical results is presented in Fig. 9. As can be seen from Fig. 9(a), the average velocity of

progression increases as the excitation frequency increases when f ∈ [0.5, 18] Hz, and then decreases

when f ∈ (18, 20] Hz, under the condition of Pd = 290.3 mN and D = 0.5. The maximum average

velocities of forward and backward progression observed in experiments are 6.66 mm/s and −0.06 mm/s,

respectively. Fig. 9(b) shows how the excitation amplitude influences the performance of the capsule

under the condition of f = 18.5 Hz, D = 0.5 and Pd ∈ [20, 340] mN. It can be seen that there exists

an amplitude threshold for moving the capsule, which is about Pd = 213.9 mN in experiment, and

Pd = 261.1 mN in numerical simulation. In Fig. 9(c), it shows how the duty cycle ratio influences the

capsule under the condition of Pd = 275.8 mN, f = 18.5 Hz and D ∈ [0.05, 0.95]. There are some

differences between the experimental and numerical average velocities when D > 0.3, but their trends

are the same.

An interesting bifurcation phenomenon observed in experiments is shown in Fig. 10, where the motion

of the prototype changes from period-1 backward motion to period-2 forward motion, and then to period-

1 forward motion when the duty cycle ratio increases from 0.3 to 0.5. As can be seen from the figure,

when D = 0.3, there is no impact, so the capsule has very slow backward progression. When D = 0.4,

forward impacts emerge and the capsule starts to move forward. However, one forward impact happens

in every two periods, so the forward progression of the capsule is slow. Once D = 0.5, the response

of the capsule bifurcates from period-2 into period-1 motion with one impact per period of excitation.

Therefore, the forward progression of the capsule becomes faster.

4.3. Case 3: complete small intestine

Experimental and numerical results for Case 3 when the prototype moves in a complete small intestine

are presented in Fig. 11. As shown in Fig. 11(a), the average progression velocity of the capsule varies

from −0.01 mm/s to 2.32 mm/s under the condition of Pd = 282.6 mN, D = 0.5 and f ∈ [0.5, 20] Hz.
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Figure 9: Experimental and numerical average velocities of the capsule for Case 2 (cut-open small intestine) under the
conditions of (a) Pd = 290.3 mN, D = 0.5 and f ∈ [0.5, 20] Hz, (b) f = 18.5 Hz, D = 0.5 and Pd ∈ [20, 340] mN, and (c)
Pd = 275.8 mN, f = 18.5 Hz and D ∈ [0.05, 0.95].

In Fig. 11(b), we can observe that the threshold amplitude is about 282.6 mN under the condition of

f = 17 Hz, D = 0.5 and Pd ∈ [20, 340] mN. By varying the duty cycle ratio as shown in Fig. 11(c), the

average progression velocity of the capsule can vary from −0.01 mm/s to 1.60 mm/s under the condition

of Pd = 282.6 mN, f = 15 Hz and D ∈ [0.05, 0.95].

Due to the size of the accelerometer which cannot fit into the complete small intestine, acceleration

of the inner mass for Case 3 was not measured and only the displacement of the prototype was recorded.

However, we can estimate the dynamics of the capsule from Case 1 when the prototype has similar

parameter configurations. An example of this investigation is presented in Fig. 12, where the experimental

result of Case 1 is compared with the one of Case 3. It can be inferred from the figure that the prototype

in Case 3 has both forward and backward impacts. Since the prototype in Case 1 has larger friction,

there are intervals that the capsule is stationary, and this helps the capsule to retain its position for a

more efficient forward progression. For Case 3, friction is smaller, and such a stationary interval does not

exist, so the prototype has forward and backward drifts only, leading to a slow and inefficient forward

progression.

4.4. Energy efficiency and optimisation

Experimental energy efficiencies calculated using Eq. (4) for these three cases are presented in Fig. 13.

As we can see from the figure, the energy efficiencies for these three cases have similar trends under the

variations of excitation frequency, amplitude and duty cycle ratio. The prototype has better efficiency

when it moves on the aluminium bench and the cut-open small intestine, and becomes bad when it
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Figure 10: Experimental time histories of the shaft acceleration (red lines) and the capsule displacement (blue lines) for
Case 2 (cut-open small intestine) recorded for Pd = 275.8 mN, f = 18.5 Hz, D = 0.3 (upper panel), D = 0.4 (middle panel)
and D = 0.5 (lower panel). It can be observed that the prototype bifurcates from a period-1 backward motion to a period-2
forward motion, and then to a period-1 forward motion when the duty cycle ratio increases.

moves in the complete small intestine. Based on these experimental data, the best operational control

parameters for forward progression are f ∈ [15, 20] Hz, Pd ∈ [250, 300] mN and D ∈ [0.2, 0.5].

Although the dimension of the mesoscale prototype studied in this paper is much larger than the

dimension of the standard-sized capsule endoscope [10] (11 mm in diameter and 26 mm in length),

our numerical simulations fit well with the experimental data, so validate the efficacy of the proposed

mathematical model in Eq. (8). Hence, if we scale down the capsule size to the standard one, our

proposed model in Eq. (8) can be used to predict the performance of the self-propelled capsule in standard

dimension. Next, we assume that a cylindrical iron shaft with 6 mm in diameter and 10 mm in length

is installed in the capsule for actuation, so the shaft weights about Mm = 2.12 g. The winding coil

may weight around 2 g approximately, and the capsule shell is about 4 g in weight, so Mc = 6 g for

the scaled-down capsule prototype. Finally, the rest of the anticipated parameters for the standard-sized

prototype are summarised in Table 2.

Based on the anticipated parameters of the scale-down capsule prototype, numerical predictions for

Case 3 under the variations of excitation frequency and duty cycle ratio calculated by using the mathe-

matical model in Eq. (8) are presented in Fig. 14. As shown in Fig. 14(a), the best energy efficiency for

forward progression is 19.78 mm/J when f = 33.5 Hz and D = 0.35, and the best energy efficiency of
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Figure 11: Experimental and numerical average velocities of the capsule for Case 3 (complete small intestine) under the
conditions of (a) Pd = 282.6 mN, D = 0.5 and f ∈ [0.5, 20] Hz, (b) f = 17 Hz, D = 0.5 and Pd ∈ [20, 340] mN, and (c)
Pd = 282.6 mN, f = 15 Hz and D ∈ [0.05, 0.95].
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Figure 12: Experimental time histories of shaft acceleration (red) and capsule displacement (blue) recorded for (upper
panel) Case 1: f = 16 Hz, Pd = 183.3 mN, and D = 0.5 on the aluminium bench and (lower panel) Case 3: f = 17 Hz,
Pd = 282.6 mN, and D = 0.5 in the complete small intestine.
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Figure 13: Energy efficiencies of the prototype under variations of (a) excitation frequency, (b) excitation amplitude and
(c) duty cycle ratio. Red squares, blue circles and green triangles represent the experiments carried out on the aluminium
bench (Case 1), the cut-open small intestine (Case 2) and the complete small intestine (Case 3).

Table 2: Anticipated parameters for the standard-sized prototype

Parameters Value Unit
Mc 6 g
Mm 2.12 g
µ 0.2293 −

G1 0 mm
G2 1 mm
G3 0 mm
k1 0.047 kN/m
k2 18.8 kN/m
k3 14.1 kN/m
c 0.33 Ns/m
Pd 70 mN

backward progression is -18.74 mm/J when f = 39 Hz and D = 0.1. In Fig. 14(b), the fastest forward

progression is recorded for f = 35 Hz and D = 0.375 producing an average velocity of 8.49 mm/s, and

the fastest backward progression is found at f = 38.5 Hz and D = 0.575 generating an average velocity

of -4.9 mm/s.
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Figure 14: Numerical predictions of (a) energy efficiencies and (b) average progression velocities at the amplitude of
excitation Pd = 70 mN under variations of excitation frequency and duty cycle ratio when the capsule moves in a complete
small intestine. Red and yellow crosses represent (a) the most efficient forward progression (at f = 33.5 Hz and D = 0.35)
and the most efficient backward progression (at f = 39 Hz and D = 0.1), and (b) the fastest forward (at f = 35 Hz and
D = 0.375) and backward (at f = 38.5 Hz and D = 0.575) progressions, respectively.

5. Conclusions

This paper carried out an experimental investigation by using a mesoscale prototype for proof-of-

concept of the self-propelled capsule endoscopy for small-bowel examination. A new mathematical model

of the prototype was developed to study the dynamical characteristics of the system. The performance

of the prototype was investigated both experimentally and numerically in terms of average progression

velocity and energy efficiency, under variations of excitation frequency, amplitude and duty cycle ratio.

Three different frictional scenarios, i.e. moving on an aluminium bench, on a cut-open small intestine

and in a complete small intestine, were tested to demonstrate the efficacy of the proposed self-propulsion

technique.

Our analysis shows that the environmental resistance between the capsule and the small intestine

plays an important role in capsule’s locomotion. In order to maintain capsule’s efficiency, friction should

be appropriate, and lower friction could cause capsule oscillate at its original position so degrading its

performance. Based on our optimisation for the standard-sized capsule prototype, the maximum average

velocity for forward progression is up to 8.49 mm/s, indicating that the capsule can travel through a 6

metre long small intestine in 12 minutes, offering the potential for a ‘live’ and controllable examination.
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Our future work will focus on prototype design and optimisation of the standard-sized capsule, closed-

loop control system design for capsule’s locomotion, and ex vivo test.
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