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Oil spills of varying magnitude occur every year, each presenting a unique challenge to the local
ecosystem. The complex, changeable nature of oil makes standardised risk assessment difficult. Our
review of the state of science regarding oil’s unique complexity; biological impact of oil spills and use of
rapid assessment tools, including commercial toxicity kits and bioassays, allows us to explore the current
issues preventing effective, rapid risk assessment of oils. We found that despite the advantages to
monitoring programmes of using well validated standardised tests, which investigate impacts across
trophic levels at environmentally relevant concentrations, only a small percentage of the available tests
are specialised for use within the marine environment, or validated for the assessment of crude oil
toxicity. We discuss the use of rapid tests at low trophic levels in addition to relevant sublethal toxicity
assays to allow the characterisation of oil, dispersant and oil and dispersant mixture toxicity. We identify
novel, passive dosing techniques as a practical and reproducible means of improving the accuracy and
maintenance of nominal concentrations. Future work should explore the possibility of linking this tiered
testing system with ecosystem models to allow the prediction and risk assessment of the entire
ecosystem.

© 2019 Published by Elsevier Ltd.
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1. Introduction

Oil spills have the potential to cause immediate and widespread
toxicity to the environment (Brussaard et al., 2016). Despite the
significant reduction in the frequency and volume of oil spills from
oil tankers over the past 30 years, Cedre (Centre of Documentation,
Research and Experimentation on Accidental Water Pollution) re-
ported 60 oil and chemical spills worldwide, ranging from 10 to
over 100 tonnes, in 2016 alone (Cedre, 2016). In addition to these
mostly small-scale spills, major releases have happened throughout
the history of the oil industry. Such spills include the 1989 Exxon
Valdez oil tanker grounding, which released 41 million litres of
Alaska North Slope crude into the Prince William Sound, Alaska
USA (Paine et al., 1996), and the 2010 Macondo deep-sea well
blowout, commonly known as the Deepwater Horizon disaster,
which caused an estimated spill of 507 million litres of crude oil
into the Gulf of Mexico (U.S. District Court for the Eastern District of
Louisiana, 2010). Thewidespread contamination caused by oil spills
can have economic, environmental, public health and social and
community impacts. Such threats include damage to fishing and
tourism industries, endangering of species, and physical health
effects in humans (Li et al., 2016). Hence it is essential that adequate
methods are available to determine the potential toxicity of a spill
and to guide rapid response.

Oil spill responses depend on several factors, including the type
and volume of oil, location of the spill, weather, and sea state. For
example, a response to a spill in shallow waters, or near a coast line
would require a different spill response compared to a deep water
spill. Decision makers apply Net Environmental Benefit Analysis
(NEBA), or the newer term Spill Impact Mitigation Analysis (SIMA),
to weigh up the benefits of clean-up techniques against disadvan-
tages to environmental and social health to ensure minimal dam-
age is caused by a spill (IPECA, 2016).

Toxicity testing is required following a spill not only to assess
the risks associated with the spill but also to support decision
making and predict the future consequences of the event. In
addition, biological monitoring techniques are recommended to
monitor both the spill effects and the efficacy of spill clean-up
methods (Lee and Merlin, 1999; Redman and Parkerton, 2015).
Biomonitoring can be applied in-situ in a number of ways, from
whole organism and community evaluations to the use of
intracellular-effects assays which are sensitive to specific types of
pollutants (Wieczerzak et al., 2016). In the past, biological testing
has been expensive, time consuming, highly variable and not al-
ways comparable with chemical analysis due to the wide range of
methodologies and parameters available (Prasse et al., 2015; Snell
and Persoone, 1989). Now, high-throughput biological indicators
have been developed into cost effective commercial kits which
have been recommended for use within environmental manage-
ment programmes (Blaise et al., 2004).

A number of reviews and studies including Brack et al. (2016);
Brussaard et al. (2016); Whale et al. (2018) have highlighted the
need to identify relevant suites of bio-indicator species and intra-
cellular biomarkers to ensure hazard assessments are accurate for
future oil spill responses, especially in environments with multi-
stressors and complex mixtures. According to this literature, to
provide the best possible guidance for decision makers, biological
assessment methods should be highly characterised, and include
intracellular indicators of toxicity and genotoxicity for a number of
species across trophic levels (Blaise et al., 2004; Coelho et al., 2013;
Galloway et al., 2002). Accordingly, awide range of biological assays
and commercial tests have been ring-tested and validated for use in
the assessment of freshwater and effluent monitoring. Moser and
R€ombke (2009); Prasse et al. (2015); Wadhia and Thompson
(2007); Wieczerzak et al. (2016) have provided an overview of
many of the highly validated tests in the form of reviews and ring
tests. Despite this, there remains a lack of such tests that have been
specifically validated using crude oil, dispersants or the individual
chemicals found within them (Whale et al., 2018).

In this review we explore the significant progress that has been
made in meeting these criteria and review the current state of
science regarding the rapid assessment of biological effects
following an oil spill. We first highlight the challenges associated
with working with oil as a pollutant before discussing the most
relevant oil-related biological impacts and some of the universal
commercially available kits that may be appropriate for the rapid
assessment of oil spill toxicity. Next we discuss approaches and the
use of passive dosing (an alternative approach to oil dosing) in
laboratory exposure scenarios and show how these methods can be
supported by models to predict ecosystem damage, to improve the
applicability of oil toxicity studies. Finally, we comment on the
future work required to develop a state-of-the-art toolkit that will
enable rapid risk assessment following a spill, a vital tool not
currently available to decision makers.
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2. Toxicological effects of different oil components

2.1. Oil components

One of the issues with assessing oil toxicity is that crude oil is
not a single compound; it is a unique combination of thousands of
different compounds of different weights and structures (Beens
and Brinkman, 2000) some of which are illustrated by the exem-
plary crude oils in Fig. 1. All crude oils contain saturated hydro-
carbons, aromatic hydrocarbons, non-hydrocarbon molecular
structures containing sulphur (S), nitrogen (N) and oxygen (O) and
a proportion of trace metals. Crude oils vary in structure and
composition based on the ratio of the above compounds. The main
chemical groups associated with the toxicity of oil and their modes
of action are shown in Table 1.

2.2. Weathering

Another key challenge is that the properties of oil change
significantly following a release as the oil becomes a slick, spreads
and weathers against different climatic conditions (Fig. 2).
Weathering describes the process by which light, volatile
Fig. 1. Relative quantitative compositions of Endicott, Alaska North Slope and Louisiana Sw
polycyclic aromatic hydrocarbons (PAHs) and b) saturated hydrocarbons obtained using GCx
and Redman and Parkerton (2015).
compounds are evaporated into the air and/or dissolved into the
water column. The reduction of light compounds causes an increase
in the percentage of heavier compoundswithin the slick, increasing
viscosity and promoting the formation of an oil-water emulsion
which will thicken with increased wave action (Arey et al., 2007;
Fingas, 1995; Mackay and Matsugu, 1973).

Such physical changes are demonstrated by the example of
Deepwater Horizon, where the concentrations and compositions of
the petrochemicals reported varied significantly across depths and
were estimated to have persisted for up to a month (Reddy et al.,
2011). Understandably, the composition of polycyclic aromatic hy-
drocarbons (PAHs) in deep water (~1000e1200 m depth) was
significantly different to that of the surface, which had a higher
proportion of the more toxic low molecular weight PAH (C1eC3)
and BTEX (benzene, toluene, ethylbenzene, xylene) chemicals. In
addition, these high concentrations of C1eC3 PAHs (up to
100 mg L�1) are likely to have persisted in the water column for
longer than relatively insoluble PAHs and alkanes which were
transported to the sea surface or sea floor (Reddy et al., 2011;
Ryerson et al., 2011). Sammarco et al. (2013) measured 66 surface-
water sites betweenMay and November 2010 in the Gulf of Mexico,
finding high mean concentrations (202 mg L�1) of total petroleum
eet (Macondo) light crude oils illustrating some of the constituents and showing a)
GC-MS. This figure has been adapted from Overton et al. (2016); Redman et al. (2017a)



Table 1
Commonly observed toxicological effects of polycyclic aromatic hydrocarbons.

Chemical type Ring structure Commonly observed effects

BTEX

Benzene

Acute toxicity: Toluene LC50 ¼ 3.78 mg L�1 water flea Ceriodaphnia dubia to 133.4 mg L�1
fish Tilapia zillii (Austin and

Eadsforth, 2014); Ethylbenzene LC50¼ 2.2mg L�1 salmonid Oncorhynchus mykiss, 13mg L�1 water flea Ceriodaphnia dubia
(McGrath et al., 2018).
Narcosis (Duan et al., 2017).
Increased early life stage sensitivity (Devlin et al., 1982).
Oxidative stress responses (Duan et al., 2017; Neuparth et al., 2014; Otitoloju and Olagoke, 2011).

Napthalenes

Naphthalene

Acute toxicity: 1-ethylnaphthalene 48 h LC50 ¼ 0.295 mg L�1 glass shrimp Palaemonetes pugio (Unger et al., 2007); 2-
ethylnaphthalene 96 h LC50 ¼ 8.13 mg L�1 mussel Mytilus edulis (Bagchi et al., 1998).
Oxidative stress responses, ROS production, lipid peroxidation and membrane damage (Bagchi et al., 1998; Stohs et al.,
2002).

Phenanthrenes

Phenanthrene

Acute toxicity: Phenanthrene LC50 ¼ 0.334 mg L�1 zebra fish Danio rerio (Butler et al., 2016).
AHR- independent cardiotoxicity (Incardona et al., 2011).

4e6 ring PAHs

Pyrene

Chrysene

Fluoranthene

Perlyene

Bioaccumulation and bio-concentration within animal tissues (Bleeker and Verbruggen, 2009).
Carcinogenesis (Varjani and Upasani, 2017)
Cardiotoxicity via AHR receptor (Brette et al., 2017; Incardona et al., 2011, 2006).
Genotoxicity (El-Sheekh et al., 2000).
Nervous transmission inhibition (Akcha et al., 2000; Bocquen�e et al., 1995; Chambers et al., 1978; Cunha et al., 2005; Kang
and Fang, 1997; Mora et al., 1999)
Inhibition of hormone functions (Bolden et al., 2017; Vinggaard et al., 2000).
Oxidative stress responses and ROS production (Bucheli and Fent, 1995).
Cellular damage to gametes, reduced sperm motility and increased offspring vulnerability (Cajaraville et al., 1991; Jeong
and Cho, 2014).

Crude oil and complex
mixtures

Additive effects of those listed above (Landrum et al., 2003).
Increased metabolic rate (Lambert et al., 1982).
Organ damage (Khan and Ryan, 1991).
Teratogenic and early life stage inhibition (Lewis et al., 2008; Wessel et al., 2007).

K.A. Colvin et al. / Chemosphere 245 (2020) 1255854
hydrocarbons (C8eC40), but low mean concentrations of the total
PAHs (0.047 mg L�1). Their results showed PAH concentrations
were not consistent across groups; C1 phenanthrenes and anthra-
cenes appeared to be more persistent than most PAHs with a mean
concentration of 1.174 mg L�1 across sites while the concentrations
of other groups were measurable but significantly lower.
2.3. Complex mixtures

The turbulent chemical characteristics of oil spills caused by
weathering can result in the formation of complex, unresolved
mixtures, the toxicity of which remains unclear (Petersen et al.,
2017). Interacting chemical mixtures can cause toxicity through
the independent action of each chemical, or additive or synergistic
effects where the toxicity of a chemical combination is greater than
the sum of the combined chemicals (Duan et al., 2017). Mixtures of
PAHs are considered to have additive toxicity (Fent and B€atscher,
2000; Landrum et al., 2003). However, in the case of oil spill
toxicity testing, it is necessary to assess oil and dispersant toxicity
both individually and in combination to support this theory and
identify any chemical specific variation.

Oil and the emulsions it forms can have physiological effects.
Observed effects following physical oiling/smothering include lack
of mobility, inflammation, increased metabolic rate, and damage to
digestive organs in birds (Hartung and Hunt, 1966; Khan and Ryan,
1991; Lambert et al., 1982; Lee et al., 1985; Patton and Dieter, 1980).
Furthermore, teratogenic and early development stage effects have
been identified in birds (Grau et al., 1977), sea urchins (Pillai et al.,
2003), oyster larvae (Wessel et al., 2007) and marine worms (Lewis
and Galloway, 2008) following oil exposure. In marine worms
(Arenicola marina and Alitta virens), oil contamination reduces fer-
tilisation success and development rates which coincide with an
increase in developmental instability (Lewis et al., 2008).
2.4. Mitigation methods

To effectively manage spills, responses are tailored to each spill
scenario, considering the risk of both the spill and the mitigation
methods used. Mitigation methods should be considered to ensure
the response is not more harmful than the spill itself. Commonly
employed mitigation techniques include the direct capture of oil by
surface skimming; application of sorbent materials, including par-
ticles and gels; burning, and dispersal using chemical dispersing
agents (US EPA, 2017).

Dispersants accelerate oil degradation, often preventing or
reducing the amount of oil that reaches areas of high biodiversity
such as a coastline or coral reef. However, some studies which
investigated in-vitro toxicity of chemically-dispersed oil have sug-
gested the potential for human health effects. These studies
showed alterations in the gene expression of pathways associated



Fig. 2. Environmental processes that affect oil behaviour and weathering in open water and in ice. (This figure is adapted from IPIECAIOGP (2016) and National Research Council,
2014 where it is modified from Daling et al., 1990).
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with cancer and immune function in human lung epithelial cells
exposed to chemically enhanced water accommodated fractions
(CEWAFs; oil, water and dispersant mixtures) containing Corexit®
EC9500A or Corexit® EC9527 and Macondo crude oil compared to
Macondo crude oil water accommodated fractions (WAFs; oil water
mixtures) (Liu et al., 2017). Furthermore, some studies have shown
dispersants to have toxic effects individually while others have
shown organism sensitivity is increased by some oil dispersant
mixtures compared to when exposed to oil alone. For example, low
concentrations of dispersants can impact organism health and
behaviour; Negri et al. (2018) investigated the impact of dispersants
(Ardrox® 6120, Corexit™ 9500A, Slickgone LTSW, Slickgone NS,
Finisol® OSR 52 and SDS) on coral Acropora millepora over three
exposure periods (2, 6 and 24 h). The results showed coral larval
settlement was inhibited between 2 and 6 h with EC50s (the con-
centration at which 50% of the exposed population showed an ef-
fect) ranging from 2.6 mg L�1 to 11.1 mg L�1 suggesting that coral
larvae are more sensitive to dispersants than other coral life stages
(Negri et al., 2018). However, these results also suggest that the
dispersants are less toxic to corals exposed to light crude oil (Negri
et al., 2016).

Modern dispersing products follow an approval process, use less
toxic solvents and in some cases up to 100 fold less toxic than their
predecessors (Fingas and Advisory, 2002; MMO, 2011). However,
there is still uncertainty regarding the suitability of dispersants for
environmental use due to challenges associated with the quantifi-
cation of dispersant, dispersant and oil, and dispersant, oil and
environmental interaction toxicity (National Research Council,
1989; Rico-Martínez et al., 2013). In order to guide the best
choice of response, the more information that can be gleaned about
the nature of spilled oil and the susceptibility of the exposed
ecosystem, the better. Therefore, the effect of a spill should be
monitored throughout the spill, clean up and in subsequent years to
better aid future risk assessment and decision making.
3. Effect based tools and rapid assessment methods

Oil can cause both acute and chronic damage to organisms from
cellular to population level (Fig. 3). Hence biological testing
following a spill is recommended to monitor toxicity across levels
of biological organisation; provide operational guidance and to
quantify the success of the response and mitigation methods used
(Lee and Merlin, 1999). Post-spill monitoring strategies should
ideally assess a selection of species across trophic levels and life
history strategies to indicate damage across the ecosystem (Blaise
et al., 2004). The inclusion of commercially important species is
important to assess whether contamination is likely to exceed
regulatory limits for human consumption and to advise on fisheries
closures (Law et al., 2011).

Recent advances mean there are a wide range of such assays,
toxkits and bioassays available for rapid risk assessment. Extensive
research has been conducted to ring test and validate biomarkers
for use in effluent testing (Den Haan, 2011), the impact of pesticides
(Burga-Perez et al., 2013) and in conjunctionwith passive samplers
(Whale et al., 2018). However, only a small percentage are speci-
alised for use within the marine environment (summarised in
Table 2), particularly marine tropical environments, or are specif-
ically validated for assessing PAHs or oil related chemicals (Whale
et al., 2018; Wieczerzak et al., 2016). Therefore, it is challenging
to encompass all of the potential health implications of exposures
following a spill. Below, the impacts of oil and a selection of uni-
versal toxkits and biomarkers capable of assessing biological effects
which may be seen following a spill are discussed in order to
investigate the applicability and adaptability of such tests for rapid
oil spill hazard assessment.
3.1. Whole organism assays

Whole organism assays are a useful indicator of species



Fig. 3. Simplified schematic showing the potential impacts of oil exposure at each level of biological organisation.
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sensitivities to different chemical groups. Survival assays (48e96 h)
conducted with individual oil components have shown the LC50
(the concentration lethal to 50% of the exposed species) for toluene,
for example, to vary from 3.78 mg L�1 in water flea (Ceriodaphnia
dubia) to 133.4 mg L�1 in fish (Tilapia zillii) with the majority of
species, including salmon (Oncorhynchus kisutch)(Austin and
Eadsforth, 2014), fathead minnow (Pimephales promelas)(Devlin
et al., 1982), striped bass (Morone saxatilis) and shrimp (Crago
franciscorum)(Benville and Korn, 1977) exhibiting LC50 values less
than 30mg L�1 (McGrath et al., 2018). Conversely, LC50s range from
0.295 mg L�1 for glass shrimp (Palaemonetes pugio) exposed to 1-
ethylnaphthalene for 48 h (Unger et al., 2007) to 8.13 mg L�1 for
mussel (Mytilus edulis) exposed to 2-methylnaphthalene for 96 h
(Olsen et al., 2011). The toxicity of naphthalene is compound spe-
cific, for example zebrafish (Danio rerio) exposed to naphthalene for
120 h were less sensitive (LC50 6.309 mg L�1) compared to those
exposed to 1-methylnaphthalene under the same conditions (LC50
1.013 mg L�1) (Butler et al., 2016). Three ringed phenanthrene is
more acutely toxic than naphthalene, suggesting that toxicity in-
creases as solubility decreases. Zebrafish exposed to phenanthrene
and octohydrophenanthrene for 120 h were significantly more
sensitive (phenanthrene LC50 0.334 mg L�1, octohydrophena-
threne LC50 0.052 mg L�1) than those exposed to 1-
methylnaphthalene and naphthalene (Butler et al., 2016).

Furthermore, PAH toxicity is presents differently in organisms
depending on their ability to biotransform parent PAH compounds.
Organisms which are able to metabolise PAHs, such as fish, are
more at risk of PAH as they can form reactivemetabolites which can
cause extensive damage by bonding with cellular macromolecules
including DNA, RNA and proteins (Beyer et al., 2010). In animals
lacking a highly developed repair system such processes can
eventually result in mutagenesis, teratogenesis, and carcinogenesis
(Tuvikene, 1995). Species with low transformation capability such
as invertebrate filter feeders, in particular the blue mussel Mytilus
spp., results in the bioaccumulation and bioconcentration of PAH
compounds making them a useful indicator of environmental PAH
contamination through direct PAH measurement (Beyer et al.,
2010). On the other hand, fish and other vertebrates generally
accumulate low PAH levels but significantly increased PAH me-
tabolites (Budzinski et al., 2004). The measurement of PAH me-
tabolites in fish bile to quantify PAH exposure has been used and
reviewed extensively by Beyer et al. (2010) and Van der Oost et al.
(2003).

Whole organism assays are generally simple to perform, easily
standardised and well validated (Law et al., 2011). Species appli-
cable to rapid assessment, are often from low trophic levels such as
planktonic species. Such species can provide insight into the level of
exposure depending on their sensitivity although short term acute
tests have been criticised for their lack of ecological evidence due to
the challenge of linking individual effects to population and com-
munity effects (Forbes et al., 2006). Larger organisms can be used,
including fish species, however, they are less practical and their use
may present ethical issues. Survival assays can be conducted using
laboratory dosing of selected laboratory-prepared oil components
or can be conducted using field-collected water or sediment sam-
ples. For example, mysid shrimp (Americamysis bahia) and inland
silversides (Menidia beryllina) were used in the follow up to
Deepwater Horizon to assess the toxicity of field-collected water
samples. The samples represented the highest 5% of concentrations
compared to more than ten thousand samples collected from the
spill site between May and December 2010. Although, mysid
shrimp were more sensitive than inland silversides, minimal
toxicity was detected for either species prior to thewell closure and
decreased to no mortality following the well closure (Echols et al.,
2015). This finding is supported by Hemmer et al. (2011) who re-
ported the LC50 of mysid shrimp and inland silversides as
2.7 mg L�1 and 3.5 mg L�1, respectively, when exposed to Louisiana
Sweet Crude water accommodated fraction (WAF) mixtures, which



Table 2
Effect based tools and biomarkers applicable to marine toxicological assessment.

Product/Assay Name Endpoint type Indicator Mechanism Validation Validation
levela

Copepod acute
toxicity

Acute Toxicity/
Survival

Tisbe battagliai 48 h acute toxicity assay using copepods
Tisbe battagliai (Law et al., 2011).

Well validated and frequently used in
monitoring programmes. ISO 14669; ISO
16778; ISO 16778; Environment Agency/
SCA Blue Book 210.

3

Brine shrimp acute
toxicity

Acute Toxicity/
Survival

Artemia franciscana 24 h assay measuring LC50 in brine shrimp
Artemia franciscana. Sensitive to toxins
produced by freshwater and marine micro-
algae. Can be used in salinities of 10e35‰
(Walker, 2001).

Commercially available well validated test
which is used in routine monitoring (Rojo-
Nieto et al., 2012).

3

Marine rotifer acute
toxicity

Acute Toxicity/
Survival

Branchionus plictalis 24e48 h assay measuring LC50 in marine
rotifer Branchionus plictalis. Euryhaline
species so can be used in salinities 5
e35 ppt. (Snell and Persoone, 1989).

Commercially available well validated test
which is used in routine monitoring. ISO
19820.

3

Fish embryo larval
screen

Survival/
Teratogenicity

96 h whole organism assay identifying
embryo and larval mortality following egg
fertilisation. Heartrate, hatching, length/
growth rate and mortality are monitored
(Cunha et al., 2017)

Well validated and used in routine
monitoring however ideally requires
specialist lab with brood stock.

1

Embryo larvae screens Survival/
Teratogenicity

Oyster, Sea urchins,
Clams

24 h whole organism assay identifying
effective concentrations of toxicants to
embryo survival (Butler et al., 1992).

Well validated and frequently used in
monitoring programmes. ISO 17244; ICES
TIMES No.54; Environment Agency/SCA
Blue Book 209.

3

Echinoderm embryo
larval screens

Survival/
Teratogenicity

Echinoderm 96 h whole organism assay identifying
effective concentrations of toxicants to
echinoderm embryos (Rosen et al., 2005).

Well validated and commonly used in
toxicity testing. Method and timescales vary
depending on chronic or acute exposure.
ISO 17244; ICES TIMES No.54; Environment
Agency/SCA Blue Book 209.

2

Algal growth
inhibition test

Growth inhibition Unicellular marine or
freshwater algae

48e72 h acute toxicity assay assessing algal
growth (by biomass or growth rate) of
marine algae (Law et al., 2011).

Well validated and used in routine
monitoring. ISO 10253.

3

Microtox Growth inhibition Aliivibrio fischeri Measures changes in the light output of
Aliivibrio fischeri using a temperature
controlled photometric device within
30 min. Increase toxicity causes a decrease
in bacterial luminescence. (Halmi et al.,
2014).

Widely used in Ecotoxicological research
and hazard risk assessment. Uses licensed
strain and specialist equipment. ISO 11348.

3

Aliivibrio fischeri
growth inhibition
assay

Growth inhibition Aliivibrio fischeri Cost effective versions of the Aliivibrio
fischeri growth inhibition assay. Measures
changes in the light output of Aliivibrio
fischeri using a photospectrometer. Increase
toxicity causes a decrease in bacterial
luminescence. Time varies depending on
kit, 15e30 min (Examples include: Toxi-
Screening kit, BioTox Lumoplate, Biotox
LumoStix, LumisMini, LumisTox) (Parvez
et al., 2006).

Validation and sensitivity depends on the
kit, most are well validated but less
sensitive than Microtox. ISO 11348-3

2

Bioluminescent
nanopaper

Growth inhibition Aliivibrio fischeri 15 min growth inhibition assay assessed by
a reduction in bioluminescence. Aliivibrio
vibrio immobilised on nanocellulose-based
membrane device. Growth inhibition is
measured as luminescence decreases (Liu
et al., 2018).

Very recent and novel development,
comparable sensitivity to Microtox
however, much higher levels of inter-assay
variation. Further research will improve
sensitivity and reliability.

1

Multi- species
microbial toxicity
test

Growth inhibition
(community)

11 Bacteria, 1 yeast 24 h bioluminescence assay. 11 species of
naturally occurring bioluminescent
bacteria. Exposure to toxicants causes a
decrease in abundances within the bacterial
community. Luminescence is used as a
direct measure of toxicity. Microbial toxic
concentration (MTC) is a measure of
inhibition equivalent to an EC50 value.
MARA/LumiMARA (Gabrielson et al., 2003).

Commercially available routine laboratory
test with high sensitivity to crude oil. Gives
a holistic image of the impact to microbiota.
Has been tested in raw waters, industrial
effluents, sewage sludge and soil leachates.

3

Mutatox Genotoxicity Aliivibrio fischeri 24 h fluorescence assay. Uses a mutant
strain (Aliivibrio fischeri M169) which has a
gap in the regulatory system coding for the
lux genes. Light production is restored by a
low concentration of mutagens. Different
types of mutagens can be detected (base
substitution, insertions, deletions, DNA
synthesis inhibition or DNA damage)
(Klamer et al., 1997).

Well validated and sold as a commercial kit.
Similar sensitivity to highly validated Ames
test which uses freshwater bacteria
Salmonella typhimurium.

2

Neutral red retention Detoxification-
Lysosomal stability

Uses dye retention as an indicator of
lysosomal membrane stability. The less dye

3

(continued on next page)
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Table 2 (continued )

Product/Assay Name Endpoint type Indicator Mechanism Validation Validation
levela

retained, the more permeable and therefore
the more damaged the lysosomal
membrane. Determined by photometric
measurement (Borenfreund and Puerner,
1985).

Well validated, traditional biomarker assay.
Requires tissue or blood sample from living
organism.

EROD activity Detoxification Rainbow trout, dab,
zebra fish,

The measure of EROD, a P450
monooxygenase 1A (CYP1A) dependant
enzyme, activity in in-vitro cell lines. EROD
activity is measured using fluorescence to
indicate CYP1A induction which can be
indicative of carcinogenesis or cellular
toxicity. Uses rainbow trout cell lines
(Bartram et al., 2012).

Well validated and used in routine
monitoring. Less sensitive than other assays
but may be more environmentally relevant
as cells originate from an organism with
biotransformation capabilities (Brack et al.,
2016).

2

Alamar blue Cell viability Active ingredient resazurin permeates into
the cell, once in the cytoplasm the blue dye
(resazurin) is reduced to resorufin which is
red in colour. Healthy cells continually
reduce resazurin to resorufin resulting in
red fluorescent cells. Can be carried out
both in a tube or in microtiter plates
(Magnani and Bettini, 2000).

Well validated, commercial kit. Commonly
used in conjunction with whole in-vitro
assays to check cell viability. Requires tissue
or blood sample from living organism.

3

XenoScreen YES Endocrine
Disruption

Yeast Cell line Yeast estrogen screen identifies compounds
that interact with the human estrogen
receptor alpha (hERa). Estradiol equivalent
factors (EEQ) are calculated based on the
EC50 for the 17b-oestradiol (E2) positive
control (García-�Alvarez et al., 2014).
Cytotoxicity is identified by measuring
yeast growth in parallel with enzyme
activity (Purvis et al., 1991).

Routine laboratory test. Has been widely
applied to environmental samples. Less
sensitive than mammalian cell based
assays.

3

XenoScreen YAS Endocrine
Disruption

Yeast Cell line Yeast androgen screen identifies
compounds that interact with the human
androgen receptor (hAR).
Dihydrotestosterone (DHT) equivalent
factors (EEQ) are calculated based on the
EC50 for the DHT with Flutamide as a
positive control hAR-antagonistic (anti-
androgenic) can be assessed. Cytotoxicity is
identified by measuring yeast growth in
parallel with enzyme activity (Routledge
and Sumpter, 1996).

Routine laboratory test. Has been widely
applied to environmental samples. Less
sensitive than mammalian cell based
assays.

3

ELISA Assay
(Vitellogenin
induction)

Endocrine
Disruption

Available in a number
of cell lines including
rainbow trout, carp and
zebrafish

Enzyme linked immunosorbent assay
(ELISA) measuring vitellogenin expression.
Performed in a microtiter plate shows
expression as a colorimetric change. An
indicator of endocrine disruption in fish
species (Nilsen et al., 2004).

Highly validated, sold as commercial kit. 3

ELISA Assay (Estradiol) Endocrine
Disruption

Fish cell line ELISA measuring estradiol expression.
Performed in a microtiter plate shows
expression as a colorimetric change. An
indicator of endocrine disruption in fish
species (Choi et al., 2014).

Highly validated, sold as commercial kit. 2

AChE inhibition Neurotoxicity Enzyme inhibition Rapid colorimetric assay indicating
acetylcholinesterase activity, an enzyme
found in most organisms and directly
involved in nervous transmission. Requires
sample from organism e.g. mussel
haemolymph (Bocquen�e et al., 1995).

Well validated and used in routine
monitoring. Tissue or blood sample from
organism, some elements of sample and
test preparation are technically challenging.

2

Anti-oxidant enzyme
activity

Oxidative stress Superoxide dismutase
(SOD), catalase (CAT),
glutathione reductase
(GR) activity

Rapid colorimetric assay indicating anti-
oxidant enzyme activity. Requires sample
from organism e.g. mussel gill tissue (Cohen
et al., 1970; Owens and Belcher, 1965; Sun
and Zigman, 1978).

Well validated and frequently used in
ecotoxicology. Tissue or blood sample from
organism, some elements of sample and
test preparation are technically challenging.

2

a Validation: 3, well validated and sold as commercial kit, frequently used in monitoring; 2, used in some monitoring, less well validated; 1, used primarily for research
purposes, has potential to be used in monitoring with better validation.
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is significantly higher than the concentrations measured following
the Deepwater Horizon spill (OSAT, 2010). These data illustrate how
the results from laboratory exposures may be used in conjunction
with field acquired samples to assess risk.

Commercially applied assays range from primary producer, algal
growth inhibition (Skeletonema costatum), to acute toxicity assays
measuring the survival of primary consumers and pelagic
zooplankton for example, brine shrimp (Artemia franciscana), ma-
rine rotifer (Branchionus plictalis) (Kokkali and Van Delft, 2014;
Wadhia and Thompson, 2007) and copepod (Tisbe battagliai) (Law
et al., 2014). Species should be selected carefully based on the
environment being assessed; freshwater endpoint assays have
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previously been used as a proxy for marine environments when
marine data is unavailable. However, freshwater assays have been
found to be less sensitive than marine assays. This difference is
considered to be resultant of physiological differences caused by a
saline habitat (Young and Schmidt-Nielsen, 1985) which can
change the speciation and bioavailability of toxicants (Heugens
et al., 2001; Rocha et al., 2016; Rodrigues et al., 2014).

One limitation of commercially available survival assays is that
they are typically carried out in open multi-well plates, which
result in the loss of volatile compounds such as low molecular
weight PAHs and BTEX chemicals (Smith et al., 2013, 2010a).
Methods may be adapted to allow passive dosing in closed vials to
prevent the release of volatile organic compounds (VOCs)(e.g. Rojo-
Nieto et al., 2012) (see section ‘Current issues and recent advances’).

Whole organism survival assays are not always practical in rapid
assessment due to the animal husbandry and large systems
required. In order to overcome this, a number of embryo larval
acute toxicity tests have been developed as indicators of vertebrate
impacts. New, sub-lethal, embryo-larval assays based on wild type
or transgenic fish cell lines are being developed but are currently
time and sample intensive (Brack et al., 2016). Current screening
methods include freshwater species such as: transgenic cyp19a1b-
GFP zebrafish (Danio rerio) which causes brain tissue to fluoresce in
response to estrogens (Brion et al., 2012); spg1-gfpmedaka (Oryzias
latipes) which induces fluorescence in the kidneys in response to
androgens (S�ebillot et al., 2014), in turn acting as indicators of
endocrine disruption. The assessment of multiple other transgenic
indicators, including heat shock proteins and indicators of oxidative
stress, are reviewed in detail by Lee et al. (2015).

Technical developments are focused on increasing throughput
in future assays (Pardo-Martin et al., 2010). In themeantimemarine
invertebrate embryo assays, including oysters, worms and sea ur-
chins, provide sensitive indicators of early life stage effects. For
example oyster (Crassostrea gigas) exposed to phenanthrene have
shown impact on development when exposed to concentrations of
0.02 mg L�1 while concentrations of 2.0 mg L�1 decreased develop-
ment, shell size and caused morphological defects to the mantle
and shell formation (Nogueira et al., 2017). These assays provide a
sensitive indicator of toxicity allowing the assessment of early life
stage sublethal and lethal endpoints through physiological and
biochemical means.
3.2. Single-celled organisms

Some dispersing products can inhibit the growth of oil
degrading microorganisms, preventing the microbial degradation
the dispersants are trying to promote (Rahsepar et al., 2016). Bac-
teria are effective indicators of BTEX and PAH metabolism and are
commonly used in toxicity testing (Close et al., 2012; King et al.,
1996). A number of bacterial tests have been validated for rapid
assessment of water quality. Two examples are: Aliivibrio fischeri
growth inhibition, a 15 min assay which uses the natural biolu-
minescent properties of the bacteria to show a population decrease
in response to toxicants and; the Microbial Assay for Risk Assess-
ment (MARA), a multi-species test with 11 species of bacteria and
one yeast that uses the same natural properties to indicate com-
munity damage. The most well validated version of the A. fischeri
growth inhibition test is Microtox™; a commercially available kit
sensitive to over 2700 chemical compounds and recommended for
toxicological assessment (Hsieh et al., 2004; Kralj et al., 2007; Van
der Grinten et al., 2010). However, the large initial investment and
bespoke equipment required make it difficult to apply to wide-
scale assessment (Liu et al., 2018). Conversely, the MARA in-
troduces the concept of investigating community effects. It is a cost
effective, simple test which is especially useful for toxicological
screening as it has potential to create unique fingerprints of toxicity
(Gabrielson et al., 2003).

Recent advances have investigated bioluminescent nanopaper,
A. fischeri immobilised on bacterial cellulose nanopaper, as a low
cost alternative for toxicological assessment. Early results show
comparable but lower sensitivity than Microtox™. Inter-assay
variances, likely caused by variations between batches of
A. fischeri or assay conditions (Liu et al., 2018), currently prevent
this method from being recommended for routine monitoring.
Further method development and validation of this simple, fast,
non-invasive and sensitive technique could make this a highly
applicable tool in future (Liu et al., 2018).
3.3. Sublethal assessment

Sublethal assays can provide an indication of the mode of action
of contaminants and the potential population and community ef-
fects (Martínez-G�omez et al., 2010). Knowing the mechanism of
toxicity is not a regulatory requirement, so long as an effect has
been shown. However, identifying the mechanism of toxicity may
help to identify the compound or mixture causing the toxicity
(Hylland et al., 2017). Sublethal assessment can be a useful tool to
indicate damage in samples with low chemical concentrations
(Brack et al., 2016). It is not the aim of this review to describe and
evaluate all of the available tests; this section will evaluate a se-
lection of sublethal endpoints, chosen based on the effects dis-
cussed below, which may be applicable to the rapid assessment of
oil spills as biomarkers of oil toxicity.
3.4. In-vivo versus in-vitro bioassays

There are significant differences between the response of cells
and enzymes in in-vitro test systems compared to in-vivo bioassays
(Martínez-G�omez et al., 2010). In-vivo bioassays typically use tissue
samples from organisms which have been exposed to a toxicant or
environmental stimulus and can be timely as animals must be
exposed prior to analysis. However, dosing and validating con-
centrations may be simpler to control during whole organism ex-
posures for in-vivo bioassays compared to off the shelf in-vitro assay
kits which typically use plastic well plates. For the most relevant
estimate of spill effects bioassays typically use marine species such
as mussels (Mytilus edulis), oysters (Crassostrea gigas), sea urchins
(Paracentrotus lividus) and polychaete worms (Arenicola marina).
The above are well validated for marine toxicological assessment
however, the selection of species can be adapted to the geograph-
ical location with the addition of highly characterised local species
(Martínez-G�omez et al., 2010). It is also possible to assess in-vivo
effects in a number of other species including fish (Budzinski et al.,
2004; Patel et al., 2006; Pollino and Holdway, 2002), however these
are less applicable to rapid assessment due to the additional chal-
lenge of maintaining populations within the laboratory and the
ethical implications associated with testing vertebrate species.

In-vitro kits are valuable in routine and rapid monitoring as they
do not require tissue samples; allowing faster throughput. The
applicability of some tests to routine monitoring is limited due to
the specialised facilities and costs associated with them. One
example of this are CALUX (Chemical Activated Luciferase Gene
Expression) assays, which are highly sensitive indicators of a
number of endpoints including PAH metabolites, endocrine
disruption, genotoxicity and oncogenesis (Martínez-G�omez et al.,
2010). CALUX are cell based assays based on human osteosar-
coma cells which have been geneticallymodified to fluorescewhich
require a commercial license, preventing their adoption into some
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monitoring programmes and limiting their applicability to marine
specific risk assessment (Brack et al., 2016). The following section
describes in-vivo bioassays which may be useful for the assessment
of oil spill toxicity.

4. Sublethal toxicity and biomarkers of exposure and effect

4.1. Cardiotoxicity

Recent advances regarding cardiac function in marine species
have focused on the mode of action and physiological impacts on
fish exposed to oil derived contaminants. Studies have shown
polycyclic aromatic hydrocarbons can cause cardiotoxicity in mul-
tiple ways. Certain 4-6 ringed compounds, such as benz(a)anthra-
cene and benzo(a)pyrene, activate the aryl hydrocarbon receptor
(AHR) which interferes with cardiomyocyte formation and can lead
to functional cardiac defects (Incardona et al., 2011, 2006). This
form of cardiotoxicity can be prevented by knock-down of AhR
genes (Tiem and Di Giulio, 2011). However, AhR-independent
mechanisms exist. For example, tricyclic PAH compounds, e.g.
phenanthrene, have been found to cause arrhythmia and reduce
cardiac cell contractility (Incardona et al., 2011). Previous work
found that crude oils disrupt excitation contraction (EC) coupling
pathways in fish cardiac cells (Brette et al., 2014) but further study
revealed that the excitable cell pathway disruption was caused by
phenanthrene at 0.9 mg L�1. Phenanthrene inhibited mineral
transport across cardiomyocyte membranes; these interruptions
disturb EC coupling leading to irregular cardiac contraction and
rhythm (Brette et al., 2017). The mechanisms by which hydrocar-
bons and crude oils cause both physical and functional deformities
in fish are described in detail by Incardona (2017) and Incardona
and Scholz (2016).

Cardiac function in fish embryos appears to be very sensitive to
PAH contamination. Embryonic pink salmon (Oncorhynchus gor-
buscha) and pacific herring (Clupea pallasii) exposed to 15 mg L�1

and 0.23 mg L�1 respectively showed reductions in juvenile growth
in salmon and juvenile cardiorespiratory function and cardiac
function in both species, despite few visibly malformed embryos.
When compared with concentrations recorded during the herring
spawning season in Prince William Sound, Alaska (following the
Exxon Valdez oil spill in 1989) 108/233 water samples (46%) may
have caused developmental cardiac defects, likely to reduce adult
fitness (Incardona et al., 2015).

Limited information is available regarding other species
although impacts have been observed in human studies investi-
gating the impact of combustion particles (airborne particulate
matter commonly containing PAHs, n-alkanes, hopanes and ster-
anes. Javed et al. (2019) found links between environmental PAH
exposure and cardiovascular disease in humans. In particular,
studies suggested benzo[a]pyrene interfered with AhR-dependant
mechanisms, and increased the heart to body ratios. Similarly to
fish, cardio-toxic effects in humans have also been identified
following exposure to pyrene, phenanthrene and benzo[e]pyrene
but less is known about the mode of action and its relation to AhR-
regulated gene expression (Holme et al., 2019).

Thus, the assessment of cardiotoxicity is likely to provide a
relevant, sensitive sublethal indicator in future monitoring pro-
grams. Recent work has focussed on the assessment of gene
expression related to cardiac function (specifically, Nkx2.5)
(Philibert et al., 2019), the electro-physical properties of the heart
and cardiomyocytes (Brette et al., 2017), and the implications for
heart development and physiology (Morris et al., 2018). Some of
these methods, e.g. the assessment of the electro-physical proper-
ties, are technically challenging. In-vitro methods of assessing
cardiotoxicity via AhR receptor assays such as the H4IIE-Luc have
also been used to assess the toxicity of hydrocarbon toxicity (e.g.
Hong et al., 2012 and Kim et al., 2019); the kits use of rat hepatoma
cells may limit their relevance to marine ecological assessment but
also provide an indication of mammalian effects. Therefore, it
seems the most appropriate method of assessing cardiotoxicity
resultant of PAHs may be the manual monitoring of heartrate and
heart physiology as described by Jung et al. (2013); Morris et al.
(2018) and Philibert et al. (2019). Such methods may provide
rapid sublethal assessment when used in conjunction with species
at low trophic levels.

4.2. Detoxification responses and membrane damage

There is a lack of literature investigating marine species and
intracellular indicators of BTEX and PAH toxicity (Duan et al. (2017).
However, existing studies have investigated disruption of stress
response pathways in a number of species. Agwuocha et al. (2013)
investigated the effects of a 30 day exposure of the clam Gafrarium
divaricatum to xylene (4.25 and 8.5 mg L�1). They reported a
reduction in cell membrane permeability across different tissues,
associated with the inhibition of acid phosphatase (ACP), alkaline
phosphatase (ALP) and ATPase enzyme activities; and an increase
in anaerobic metabolism, indicated by an increase in lactate de-
hydrogenase (LDH) activity. They interpreted this as a stress
response linked to shell closure, a common protective response in
bivalves. Interactions of PAHs with the photosynthetic apparatus
have also been attributed to interference with cell membrane
function and integrity in algae (Gilde and Pinckney, 2012). For
example, anthracene interferes with electron transfer (Aksmann
and Tukaj, 2008; Sikkema et al., 1995); such interactions may also
affect organelle and chloroplast morphology, organisation and
functionality (Wang and Zheng, 2008).

Dispersants have also been shown to affect detoxification pro-
cesses. Human liver and embryonic kidney derived cell line
(HepG2, ER-HEK293 and AR-HEK293) quantitative high throughput
screening assays showed Corexit® EC9500, JD 2000™, DISPERSIT
SPC 1000™, Sea Brat #4, Nokomis 3-AA, Nokomis 3-F4, ZI-400, and
SAF-RON GOLD cause cytotoxicity at concentrations between 10
and 1000 mg L�1 (Judson et al., 2010).

With regards to risk assessment, detoxification processes and
membrane damage can be identified in a number of ways, some of
which are described in Table 2. One commonly used indicator is
lysosomal damage. Lysosomes are organelles involved in nutrition,
tissue repair and the management of cellular components, and play
an important role in the sequestration and detoxification of con-
taminants. However, if overloaded, lysosomal damage occurs,
which can lead to cytotoxicity and tissue dysfunction (Moore et al.,
2006) which can be easily measured using Neutral red dye. The
neutral red retention assay is a miniaturised in-vivo assay which
allows rapid, high throughput colorimetric indication of lysosomal
health and damage caused by contaminant sequestration.

Detoxification process induction can also be identified in-vivo by
monitoring cytochrome P450 (CYP) 1A1 induction, proteins
involved in the metabolism of xenobiotics and endogenous com-
pounds including PAHs (Tompkins and Wallace, 2007). The
ethoxyresorufin-O-deethylase (EROD) assay (Burke and Mayer,
1974) indicates the reduction of 7-ethoxyresorufin (7-ER) to
resorufin, a reaction catalysed by CYP 1A1 that can be measured
fluorometrically (Rodrigues and Prough, 1991; Safe et al., 1989).
Cytochrome P450 activity is calculated as a proportion of the rate of
7-ER reduction (Petrulis et al., 2001). The assay provides a quanti-
fiable measure of EROD activity, and therefore detoxification
pathway induction, allowing comparison between exposed or-
ganisms. Detoxification is an important toxicological indicator, as if
protective detoxification and sequestration pathways become
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overrun genotoxic and cellular damage may occur. However, such
techniques are unlikely to be applicable to rapid assessment due to
the lack of in-vitro tests available and challenges associated with
maintaining animals within the laboratory.
4.3. Oxidative stress

Oxidative stress can result in toxic and/or mutagenic effects
following DNA base modifications, strand breaks, and the forma-
tion of lesions on the DNA of genes encoding antioxidant enzymes,
stress-response genes, and cytokines (Girard and Boiteux, 1997).
The regulatory mechanisms that control these responses are
complex, involving activation of transcription factors and signal
transduction pathways that are cell type and species specific. It is
not surprising therefore that the nature of the responses reported
are varied. For example, exposure of freshwater catfish (Clarias
gariepinus) to xylene, benzene and toluene for four days inhibited
the activity of catalase (CAT) in the liver and gills (Otitoloju and
Olagoke, 2011), whilst superoxide dismutase (SOD), a free-radical
scavenger, was induced in the muscle and liver of mudskipper at
84.9 mg L�1 after a 3 day exposure to p-xylene (Duan et al., 2017).
Glutathione-S-transferase (GST), an enzyme involved in oxy-radical
defence, was particularly sensitive, being significantly induced in
male amphipods (Gammarus locusta) exposed to 19e300 mg L�1 p-
xylene (Neuparth et al., 2014). Notwithstanding the induction of
defence mechanisms, oxidative damage at the cellular level (lipid
peroxidation) was identified in both fish (Clarias gariepinus) and
amphipods (Gammarus locusta) following exposure to xylene; fish
also showed sensitivity to benzene, toluene and crude oil
(Neuparth et al., 2014; Otitoloju and Olagoke, 2011).

Food contaminated by PAHs poses a significant risk to con-
sumers as some organisms concentrate contaminants within tis-
sues. PAH-contaminated feed led to oxidative stress responses,
elevated ROS production and induction of CYP1A in starfish (Aste-
rias rubens) (Bucheli and Fent, 1995). Vertebrates, such as fish, are
able to biotransform PAHs using cytochrome P450 dependant
monoxidase enzymeswhich oxidise the parent compound to create
polar metabolites, giving them a lower bio concentration factor
than invertebrates (Varanasi, 1989). Despite this, high molecular
weight hydrocarbons, such as benzo[a]pyrene, have been shown to
cause carcinogenesis through the formation of DNA adducts with
dihydrodiol epoxides which have not been detoxified in the
biotransformation process (Beiras, 2018).

Antioxidant enzyme activities allow the assessment of specific
ROS responses: superoxide dismutase (SOD) converts superoxide
(O2

�) into hydrogen peroxide (H2O2) (Otitoloju and Olagoke, 2011);
catalases (CATs) facilitate the reduction of H2O2 into water and
oxygen (Martínez-G�omez et al., 2006). Some enzymes directly
protect other intracellular functions: glutathione reductase (GR)
maintains the homeostasis of glutathione (GSH) and oxidised
glutathione (GSSG) enzymes involved in the metabolism of elec-
trophilic compounds in oxidative stress conditions (Winston and Di
Giulio, 1991).

It is possible to assess total antioxidant activity (excluding
glutathione) using a colorimetric ferric reducing antioxidant power
(FRAP) assay (Halliwell and Gutteridge, 2015). Total oxyradical
scavenging capacity is often recommended to allow a more robust
assessment of oxidative stress as anti-oxidant enzymes respond
differently to different chemicals (Martínez-G�omez et al., 2006).
However, in the case of oil spill assessment specific endpoints, used
in conjunctionwith total enzyme response, may act as a useful way
of fingerprinting the type of damage compounds could be causing.
There are numerous endpoints which could be considered as in-
dicators of oxidative following an oil exposure, which,
unfortunately, it is not possible to discuss in detail here. Each
endpoints relevance is species and location specific and so any
selection should be chosenwith these factors in mind. For example,
lipid peroxidation and (Ca2þ, Mg2þ)-ATPase activity significantly
increased in corals following exposure to oil and a bacterial con-
sortium (Fragoso Ados Santos et al., 2015); as the Ca2þ-ATPase
pump has been linked to membrane damage resultant in coral
bleaching (Sandeman, 2008, 2006) Ca2þ-ATPase may be more
appropriate to the assessment of oil spills impacting tropical
regions.
4.4. Genotoxicity

Genotoxicity has been identified following exposure to both oil
constituents alone and dispersants. Genotoxic damage is either
repaired by the cell or leads to apoptosis; uncontrolled DNA dam-
age can lead to cancer (Prasse et al., 2015). Which suggests the
assessment of genotoxicity may act as a precursor of carcinogen-
esis. PAHs commonly cause genotoxicity in plants and algae: El-
Sheekh et al. (2000) found that algae exhibit lower DNA, RNA and
protein content when exposed to hydrocarbon contamination. In
addition, a PAH mixture (fluoranthene, pyrene and benzo[a]pyr-
ene) supressed gene expression for photosynthetic pigments and
silica-associated proteins that prevent cell division in diatoms
(Bopp and Lettieri, 2007). Bagchi et al. (1998) hypothesise that
genotoxicity resultant of PAH contamination is due to DNA damage
caused by ROS formed during hydrocarbon degradation.

Genotoxicity following dispersant exposure has been identified
across trophic levels, e.g. dispersant S-25 at 5 and 50 mL L�1 caused
DNA fragmentation in mussel haemocytes (Martinovi�c et al., 2015)
while 0.005% oil and Corexit 9500 and 9527 dispersant CEWAF
exposure caused cytotoxic and genotoxic damage to sperm whale
skin fibroblasts (Wise et al., 2014). Similarly, phytoplankton com-
munities, terrestrial worm (Caenorhabditis elegans) and rainbow
trout (Oncorhynchus mykiss) were more sensitive when exposed to
dispersant and oil mixtures than oil alone (Ozhan and Bargu, 2014;
Polli et al., 2014; Ramachandran et al., 2004).

By using a selection of assays and endpoints it is possible to
identify the genotoxic potential of samples (Brack et al., 2016).
There are a number of genotoxicity assays available (see Table 2 and
Brack et al. (2016) for a more detailed review). However, some of
methods are technically challenging and time-consuming. Such
examples include the widely employed comet assay, which detects
and quantifies DNA strand breaks in individual cells (Singh et al.,
1988) and the micronucleus assay, which assesses micronuclei
formation containing part or whole chromosomes (Countryman
and Heddle, 1976).

Tests applicable to rapid risk assessment are generally bacteria
based, although few are marine specific. The umuC uses a fluores-
cence based bioreporter strain of Salmonella sp. to indicate the
upregulation of umuC operon, part of the SOS response (involving
multiple gene induction encoding proteins for DNA protection,
repair, replication, mutagenesis and metabolism (Janion, 2008) to
DNA damage, regulating DNA repair (Oda et al., 1985). However, the
umuC assay may not be the most effective indicator of marine
systems due to its use of halo-sensitive bacteria Salmonella sp.
(Podg�orska and We,grzyn, 2007). In this case Mutatox®, an assay
using a mutated dark strain of luminescent marine bacteria Aliivi-
brio fischeri, may be more applicable to marine rapid assessment.
Light production is restored by low concentrations of mutagens
allowing the sensitive assessment of genotoxicity. Mutatox® is well
validated having been used in a number of studies and has been
reported as having similar sensitivity to the popular Ames test, a
reverse mutation assay using freshwater bacterium Salmonella
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typhimurium (Podg�orska and We,grzyn, 2007). In addition, as
Mutatox® is available as a kit and uses a widely abundant marine
species it may be easily applicable to rapid risk assessment.
4.5. Endocrine disruption

Exposure to benz[a]anthracene, benzo[a]pyrene, fluoranthene,
and chrysene, has been shown to affect hormone function through
direct interaction and inhibition of androgen receptors (EC50’s
were 0.73, 0.98, 0.93e2.35 mg L�1 respectively) (Vinggaard et al.,
2000). Some PAH combinations and metabolites, including 2-
hydroxynaphthalene, 2-hydroxydibenzofuran, 2-hydroxyfluorene
and 1-hydroxypyrene, have been shown to activate aryl hydrocar-
bon responsive genes causing widespread anti-estrogenic effects
(Arcaro et al., 1999; Chaloupka et al., 1993; Schultz and Sinks, 2002).
Hormonal interactions may be linked to adverse effects of PAHs on
female reproductive function (Bolden et al., 2017). Exposure to
PAHs can also cause cellular reproductive damage; crude oil
exposure (WAFs prepared at 0.6, 6 and 40%) caused lysosomal
damage to mussel (Mytilus galloprovincialis) oocytes (Cajaraville
et al., 1991). Furthermore, Jeong and Cho (2014) showed oyster
(Crassostrea gigas) brood stocks contaminated by PAHs had reduced
fertilisation success and more vulnerable offspring resultant of
reduced sperm motility and larval development (Jeong and Cho,
2014) suggesting that PAH contamination may impact reproduc-
tion in a number of mollusc species.

Endocrine disruption to androgen and/or estrogen receptors has
been identified following PAH exposure in human osteosarcoma
cells, mice (Arcaro et al., 1999; Chaloupka et al., 1993) and following
PAH and dispersant exposure using in-vitro bioassays (Judson et al.,
2010; Schultz and Sinks, 2002). In-vitro endocrine disruption kits
have been shown to correlate well with in-vivo endocrine end-
points (Sonneveld et al., 2006). Such kits include the yeast estrogen
screen and yeast androgen screens (YES/YAS), described in Table 2.
YES and YAS are simple, cost effective, high throughput tools which
measure exposure to estrogenic and androgenic compounds. The
tests are highly validated and recommended for the assessment of
oil spills (Martínez-G�omez et al., 2010).

Yeast assays have been criticised for being less sensitive than
mammalian cell based assays (Leusch et al., 2014). However, inter-
specific differences have been identified in the estrogen receptor
subtypes of fish and humans (Cosnefroy et al., 2012; Ihara et al.,
2015) suggesting that, although more sensitive, human cell lines
may not be a reliable proxy of damage to marine species. Thus,
yeast based assays may provide a useful measure of toxicity until a
wide variety of marine specific indicators of toxicity are available. In
addition, it should be considered that endocrine disruptionmay not
cause permanent impacts and therefore may only provide insight
as to the health of the organism rather than long term effects.
Further work should be conducted to identify potential marine-
specific indicators of endocrine disruption and assess the applica-
bility of yeast based assays to marine studies before they are
incorporated into any marine monitoring program.

Not all biomarker species will be appropriate to rapid assess-
ment due to the extensive and often lengthy exposures required to
assess impacts at environmentally relevant concentrations. Further,
the endpoints considered by these rapid tests may not represent
the most sensitive targets for oil exposed intact animals as they
were not developed with crude oil contamination in mind. Future
studies should focus on collating baseline toxicity data, for both
individual hydrocarbons, oil as awhole and their metabolites, using
environmentally relevant and standardised conditions from a
number of species from different trophic levels which can be
compared against rapid assessment data. In addition, studies
should consider and aim to prevent variances or biases in sensi-
tivity which may occur resultant of species seasonality, age or sex
(Finch and Stubblefield, 2016; Harris et al., 2014; Tannenbaum et al.,
2019). The possibility of more marine and oil specific assays should
be investigated and developed to aid future assessment. Until then,
the potential for a selection of toxkits and biomarker species
appropriate for a rapid oil specific monitoring program should be
investigated.

5. Current issues and recent advances

5.1. Standardised dosing techniques

Laboratory toxicity testing is essential to our ability to make
decisions about oil spills. However, the complex physiochemical
properties of oil, for example its lack of solubility and high volatility,
and the changes which occur following dispersant application
make it difficult to reach andmaintain target concentrations within
test systems (Bragin et al., 2016). Variable study designs also limits
the comparability, reliability and applicability of a number of
studies to modelling which relies on the accuracy of defined con-
centrations (McGrath et al., 2018). The Chemical Response to Oil
Spills Environmental Research Forum (CROSERF) have developed
standardised methods for the creation of water accommodated
fractions (WAFs) and chemically enhanced water accommodated
fractions (CEWAFs) to minimise this variability in testing (Redman
and Parkerton, 2015). In addition, careful experimental designs
using closed systems have effectively minimised loss of volatile and
semi-volatile compounds (Mayer et al., 1999). However, these
methods may not be applicable to chronic exposures, which often
require additional culture medium to maintain test organisms
(Jensen et al., 2008).

Passive dosing offers an alternative dosing method that can
buffer and therefore prevent compound loss in small, large, static
and flow through test systems. A simplified version of the dosing
system is shown in Fig. 4. Briefly, hydrophobic organic carbons
(HOCs) are partitioned from a high concentration methanol solu-
tion into a biocompatible polymer, most commonly silicone. When
the polymer is added to test media, the HOCs partition from the
polymer into the test media and form an equilibrium. Continued
partitioning compensates for compound losses and helps to
maintain HOC exposure concentrations (Smith et al., 2013, 2010a).

Passive dosing has been used successfully (±20% of nominal
concentration) in acute toxicity tests in closed vessels, most
commonly around 20 mL, with algae (Raphidocelis subcapitata and
Scenedesmus Vacuolatus) (Bandow et al., 2009; Bragin et al., 2016;
Mayer et al., 1999), water flea (Daphnia magna) (Smith et al., 2010b),
springtail arthropods (Folsomia candida) (Mayer and Holmstrup,
2008), and bacteria (Aliivibrio fischeri) (Brown et al., 2001). The
technique has also been used to dose test systems of various sizes
with flow through chambers, of 130e750 mL and dosing chambers
between 1 and 2 L, allowing the analysis of chronic exposures.
Chronic exposure studies include zebrafish (Danio rerio) (Butler
et al., 2013), shrimp (Americamysis bahia) (Knap et al., 2017) and
corals (Porites divaricata)(Renegar et al., 2017). Phenanthrene,
anthracene, fluoranthene, and pyrene have been dosed into open
polystyrene 24 well plates for in-vitro cell culture assays. However,
the use of an open test system was less successful than sealed
closed vials with an unacceptable (>20%) loss of more volatile
compounds such as naphthalene (Smith et al., 2013, 2010a). In
addition, the use of polystyrene vessels may have altered the
composition of the hydrocarbons due to interactions between oil
and plastics (Rochman et al., 2013). Thus, the use of more easily
sealed andmore inert materials should continue being explored for
lower molecular weight compounds.



Fig. 4. Diagram showing the passive dosing protocol adapted from Smith et al.
(2010b).
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The technique has been used most commonly with PAHs con-
taining 1e6 benzene rings e.g. toluene, 1-methylnapthalene,
phenanthrene, benzo[a]anthracene, benzo[a]pyrene and tri-
chlorobenzene (Bandow et al., 2009; Mayer et al., 1999; Smith et al.,
2010a). However, recent work by Bera et al. (2018) has shown
passive dosing yields comparable results to WAF preparations.
There are two main differences between WAF and passively dosed
systems: passively dosed systems limit exposure to oil droplets and
higher molecular weight molecules partition more slowly and take
longer to reach equilibrium. Thus, it is possible to reach test con-
centrations withWAFs faster thanwith passive dosing due to faster
dissolution of oil however, concentrations within passively dosed
systems are more stable as they prevent the formation of oil
droplets. As the composition, amount, and stability of oil droplets
are specific to the oil and dosing method used their presence can
confound toxicity studies both by directly oiling organisms and
complicating exposures through droplet dissolution (Bera et al.,
2018). Although it could be argued that mixtures containing
droplets may be more comparable to a spill scenario, greater sta-
bility within test concentrations is likely to improve the repro-
ducibility and consistency of oil toxicity testing. In addition, the use
of both methods in conjunction could enable the comparison of
toxicity of solubilised oil in comparison to oil at varied dissolved
phases.
Challenges exist with adapting current toxicity kits and

biomarker assays to allow passive dosing as most developments
have beenmade in closed test systems greater than 20mL, whereas
most toxicity assays are based on open well plate systems using
smaller volumes (>1 mL). Future work should focus on continuing
to validate the use of passive dosing with oil and miniaturising
passive dosing. Given the variability within exposures, toxicity
testing should continue to be supported by chemical analysis to
confirm exposure concentrations and stability for the length of the
test.

Studies supported with analytical chemistry which shows the
maintenance of exposure concentrations may allow the extrapo-
lation and comparison of studies to other species and chemicals
using the target lipid model (TLM). The TLM is a model that de-
scribes the relationship between PAH and species sensitivity as a
quantitative structure-activity relationship based on the assump-
tion that narcosis occurs in the lipids of organisms (Di Toro et al.,
2000). Previous work has observed that critical body burdens, the
relative toxicity to organisms, increases linearly with the lipid
concentrations within organisms (Van Wezef et al., 1995). The TLM
uses this relationship to extrapolate and compare species sensi-
tivities from different hydrocarbons against one another (McGrath
et al., 2018). In addition, the outputs can be used as inputs to other,
more detailed, risk based and ecosystem models.

5.2. Linking toxicity tests to ecosystem effects

Ecological risk assessment aims to quantify and predict the
likelihood of chemicals to have adverse effects on an ecosystem
(Forbes et al., 2008). In the case of oil spill risk assessment, this
means quantifying and predicting the damage an oil spill, and its
remediation, is likely to have on an environment. It is clear from the
above discussion and previous reviews (e.g. Blaise et al., 2004) that
the sensitivity of a single species can not represent an ecosystem.
However, an appropriate selection of bio-indicator species and
biomarkers may generate a more representative estimate of
ecosystem effects. In order to estimate risk, data must be extrap-
olated to predict impacts at population and community level.
Extrapolation from individual to population responses is chal-
lenging as the relationships and population dynamics are nonlinear
(Ferson et al., 1996).

A number of models have been developed to predict oils fates
following a spill, but few have investigated the ecological impact of
a spill (French-McCay, 2002). For example the Spill Impact Model
Application Package (SIMAP) is able to evaluate exposure consid-
ering oil and organism migration; impacts of spill mitigation
measures; short term acute toxicity; indirect effects of resource
destruction e.g. food source and habitats and population impacts
resultant of mortality and sublethal effects. However, the model is
limited as it is unable to quantify sub-lethal, chronic effects or
changes in ecosystem structure and behaviour resultant of
increased pressure on growth, survival, and reproductive stress
(French-McCay, 2004, 2002). The progress of environmental
models for oil spill risk assessment has been reviewed elsewhere (Li
et al., 2016; McGrath et al., 2018; Nelson and Grubesic, 2018).
Research should be directed to the collation of both whole organ-
ism and sublethal responses to oil and hydrocarbon contamination
enabling the improvement of such tools and, where possible, their
inclusion into a biological assessment toolkit allowing holistic risk
assessment.

6. Conclusions and future perspectives

It is clear from the preceding sections that the complex and
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variable nature of oil poses a unique challenge to risk assessment.
Our review of the state of science regarding oil’s unique
complexity; the challenges following a spill; biological impact of oil
spills, and use of rapid assessment tools, including commercial
toxkits and bioassays has highlighted current issues preventing
effective, rapid risk assessment of oils.

The use of a selection of bio-indicator species and biomarkers
covering a range of sensitivities and endpoints allows for the
measurement and characterisation of such toxicity, the spatial
extent of the spill and the estimation of the recovery time required
and/or the effectiveness of any remediation measures (Judson et al.,
2010; Martínez-G�omez et al., 2010). To be of use, methods should
be specifically tailored to take into account the hydrophobic and
volatile nature of oil. Passive dosing is a promising method for
circumventing some of this complexity, allowing for reproducible
and accurate validation of candidate bioassays. When used in tan-
dem with the target lipid model (TLM), which uses the inverse
relationship between LC50 and KOW to account for the varying
toxicity of individual PAHs (Di Toro et al., 2000), reliable data from
individual compounds may also allow for comparison across spe-
cies and trophic levels and the extrapolation of data to predict the
potential impacts of oil (McGrath et al., 2018). Furthermore, robust
standardised data provides validation for oil spill models allowing
the more effective estimation of oil toxicity across trophic levels.

Organismswithin the same trophic level can respond differently
to toxicants (Codina et al., 1993), organisms within different trophic
levels can exhibit varied responses (Okay et al., 2005; Ribo, 1997),
and organismal physiology varies, creating a complex problem
(Chapman, 2000). Suites of bioassays and biomarkers, such as those
described in Table 2, applied across a range of test species, can
encompass the range of sensitivities observed across ecosystems.
Bioassays should ideally be simple and carried out using environ-
mentally relevant concentrations, standardised dosing methods,
and supported with chemical characterisation of both the samples
and the oil. Assays applicable to passive dosing using closed test
systems are of particular interest for further development.
Remaining research gaps include the need for more marine test
species, and further development of sublethal effects based assays,
such as swimming speed and cardiotoxicity.
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