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Abstract

Superconductivity is a result of quantum coherence at macroscopic scales. Two
superconductors separated by a metallic or insulating weak link exhibit the AC
Josephson effect: the conversion of a DC voltage bias into an AC supercurrent.
This current may be used to activate mechanical oscillations in a suspended weak
link, acting as an electromechanical resonator. As the DC voltage bias condition
is remarkably difficult to achieve in experiments, here the experimentally relevant
purely DC current bias case is analyzed thoroughly. It shall be demonstrated that
the Josephson effect can be exploited to activate and detect mechanical oscilla-
tions, eliminating the need for AC bias conditions that are generally required for
nanoelectromechanical systems (NEMS). The coupling between the electronic and
mechanical degrees of freedom may be tuned by an external magnetic field, allowing
the exploration of the Josephson effect in two distinct coupling regimes. In the weak
coupling regime, Shapiro-like plateaus and mechanically induced hysteresis loops de-
velop in the junction’s current-voltage (I-V) characteristic which allow for precision
measurements of the resonator’s resonance frequency by simple DC voltage mea-
surements. In contrast, in the strong coupling regime there are sudden mechanically
induced transitions to a zero voltage state which will be explained by energy shar-
ing between the electronic and mechanical degrees of freedom. These transitions
are intimately linked to the mechanical damping of the resonator, and may be used
to determine the junction’s quality factor, again with only DC voltage measure-
ments. It is further revealed that these sudden transitions may be eliminated by
using a setup consisting of two suspended weak links connected in parallel forming
a superconducting quantum interference device (SQUID), and tuning the external
magnetic flux appropriately. Finally, the quantum nature of Josephson junctions
is explored more thoroughly by considering Bloch-like oscillations that develop in
the junction. These oscillations, when coupled to mechanical vibrations, generate
non-classical mechanical states that are intimately linked to the quantum dynamics
of the junction.
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1 Introduction

Superconductivity is a macroscopic quantum phenomenon in which an electrical
current flows without dissipation. Below a critical temperature, electrons bind to-
gether into so-called Cooper pairs due to an effective attractive interaction mediated
by phonons. These electron pairs form a macroscopic condensate characterized by a
finite energy gap in its quasiparticle energy spectrum. The Cooper pair condensate
can thus flow without producing dissipation, leading to a zero resistance supercur-
rent [1].

A mini energy gap may open in a normal metal’s density of states when it is
placed in close proximity to a superconductor. This proximity effect is due to elec-
trons in the normal metal picking up correlations from the superconductor, resulting
in a finite density of Cooper pairs inside the normal metal [2]. A supercurrent may
then flow between two superconductors separated by an insulating or metallic weak
link, via either direct tunneling of Cooper pairs or by the proximity effect in a
phenomenon known as the Josephson effect. Brian Josephson made this surprising
discovery in 1962 when he was a PhD student and he was subsequently awarded the
Nobel prize [3]. Josephson also predicted that if a DC voltage bias is maintained
across such a (Josephson) junction, the supercurrent alternates due to interference
between the macroscopic wave functions of the two superconductors. This AC super-
current was soon observed experimentally by coupling it to external AC radiation,
resulting in new constant voltage steps in the current-voltage (I-V) characteristic
when the frequencies of the supercurrent and external radiation match [4, 5].

The proportionality constant between the supercurrent frequency and the ap-
plied DC voltage is simply 2e/h, depending only on the elementary charge e and
Planck’s constant h. This exact conversion between frequency and voltage has a
profound impact in precision metrology, with the Josephson effect providing the in-
ternationally recognised definition of the volt [6]. The Josephson voltage standard
defines one volt as the voltage that produces a Josephson supercurrent of frequency
2e/h = 483597.84841698...GHz, with Hertz being defined by the caesium frequency
standard.

Recently the Josephson effect has been extended, both theoretically and ex-
perimentally, to the case in which the weak link itself acts as a mechanical res-
onator in attempts to excite, cool and quantum mechanically ‘squeeze’ vibrational
states [7–20]. Experimental signatures of the excitation of mechanical resonances
in vibrating weak links have been reported in atomic scale oscillators produced in
break junctions [16], in torsional resonators [18] and in suspended nanowires [20].
These early observations testify the potential of current experimental setups to fully
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explore novel electromechanical effects in the context of superconductivity, but these
are rather isolated, sample specific, measurements without a systematic exploration.

In contrast to these very few observations in superconducting setups, the inter-
play between electronic currents and vibrations has been explored extensively in the
context of quantum transport through non-superconducting nanoelectromechanical
systems (NEMS). The most striking manifestations of the excitation of mechan-
ical vibrations by the electronic currents through the NEMS are the appearance
of vibrational sidebands to the Coulomb-blockade peaks in the I-V characteristic,
accompanied by a dramatic suppression of current at low bias (Franck-Condon block-
ade) when the electromechanical coupling is strong enough [21–24]. The analogous
effects associated with the strong coupling regime in suspended Josephson junctions
have never been explored so far. Moreover, the theoretical analysis of the I-V char-
acteristic of suspended Josephson junctions has so far been limited to the voltage
bias case [11–13, 15]. While this is a convenient theoretical approach, it has seri-
ous limitations in addressing the response of experimental devices due to a major
constraint in the operation of Josephson junctions: their small impedance in com-
parison to that of the external circuit makes them invariably operate in the current
bias regime even if one attempts to maintain a fixed voltage bias across them [25].

Throughout this thesis, the electromechanical coupling in superconducting de-
vices will be explored extensively and, by means of numerical as well as analytical
investigations, it will be demonstrated that existing experimental setups can be used
to induce and detect high-frequency mechanical oscillations in suspended weak links
using purely DC current bias conditions.

The structure of the thesis is as follows. In chapters 2 and 3, we will briefly dis-
cuss the background theory of superconductivity and of the Josephson effect. Then,
in chapter 4, by exploiting a setup that allows one to tune the coupling strength
between electronic and mechanical degrees of freedom, the Josephson effect will be
explored in regimes that have not been studied before, revealing several new features
in the junction’s DC I-V characteristic. These features include mechanically-induced
Shapiro plateaus, a variety of new hysteretic behaviours, abrupt energy-induced
transitions to a zero voltage state and fractal-like structures. The predicted large
current range of the Shapiro plateau in particular should result in the relatively sim-
ple detection of vibrational effects and the possibility of new sensing and metrology
applications. This work has important consequences on the experimental research on
NEMS, as high frequency mechanical oscillations may be conveniently activated and
detected in a resonator without the need for any AC equipment. Direct experimen-
tal measurements of the systems DC I-V curve suffice to unveil all the fundamental
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properties of the resonator, including its resonance frequency and quality factor.
For many applications of the Josephson effect such as in magnetometers and

qubits, rather than using a single junction, two junctions are connected in parallel
forming a loop, producing a so-called superconducting quantum interference device
(SQUID) [26,27]. An external magnetic flux penetrating the loop can then be used
to controllably alter the supercurrent flowing through the device. In chapter 5 we
will analyze SQUIDs where both weak links are suspended and may be coupled to
mechanical oscillations independently, forming a natural extension to the work of
the previous chapters. In this way, we will show that ordinary SQUID magnetome-
ters may be improved upon considerably. We will also unveil that one can choose
which of the two arms to excite, or even whether they oscillate in a symmetric or
antisymmetric mode, just by the application of the external flux.

In chapter 6 we explore the quantum nature of Josephson junctions, and in
particular their ability to produce oscillations that are a direct analogue of Bloch
oscillations in conventional electronic systems, with the DC current bias playing
the role of the external electric field. We show that, in a specific low energy limit,
these Bloch oscillations dominate with respect to the usual Josephson ones and may
be coupled to mechanical oscillations in the weak link. This allows the generation
of non-classical mechanical states that are intimately coupled with the quantum
dynamics of the junction.

The experimental realization of our theoretical proposals in state-of-the-art de-
vices is carefully discussed in each case. One paper has been published from the
work presented in chapter 4, focusing on the mechanically induced retrappings [28],
while another is in the process of being submitted that will focus on the mechani-
cally induced hysteresis. Two further papers are in production that will discuss the
mechanically induced effects in SQUIDS, and due to Bloch oscillations as discussed
in chapters 5 and 6 respectively.
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2 Superconductivity

Figure 1: The original data obtained by Kamerlingh Onnes showing superconduc-
tivity [29]. The resistance of mercury drops to zero (within experimental error)
abruptly as the temperature is decreased below Tc ≈ 4.2K.

Superconductivity is a result of quantum coherence at macroscopic scales. In a su-
perconductor, below a critical temperature a fraction of electrons become condensed
into a ‘superfluid’ which extends over the whole system. This macroscopic conden-
sate is responsible for the amazing properties of superconductors such as their zero
DC electrical resistance and perfect diamagnetism [1].

Superconductivity was discovered in 1911 when Kamerlingh Onnes first observed
that the electrical resistance of metals such as mercury, lead and tin decreased to
zero abruptly when the temperature T is decreased below a critical value Tc, as
shown in Fig. 1 [29]. The perfect diamagnetism of superconductors was discovered
by Meissner and Ochsenfeld in 1933 [30]. They found that a magnetic field is not
only excluded from a superconductor, but that a magnetic field in an originally
normal metal sample is actively expelled when the temperature is lowered below
Tc. This ‘Meissner effect’ only occurs up to some temperature dependent critical
magnetic field Bc(T ), above which superconductivity is broken and the material
enters a normal conducting state.

In 1935 the brothers Fritz and Heinz London proposed a phenomenological the-
ory which produces both perfect conductivity and the Meissner effect [31]. They
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considered a two-fluid model which separated the total electron density n into two
contributions n = nn+ns from ‘normal’ electrons nn and ‘superconducting’ electrons
ns. The normal electron current density is given by the usual expression Jn = σnE

with a finite conductivity σn, while the superconducting current density Js is pos-
tulated to satisfy

∂Js

∂t
=
nse

2

m
E, (1)

∇× Js = −nse
2

m
B. (2)

The first of these equations is simply Newton’s second law applied to a set of parti-
cles with charge −e and mass m, indicating that the superconducting electrons do
not experience the scattering mechanisms that usually give rise to a finite normal
conductivity. The second equation, when combined with Ampere’s law produces

∇2B =
1

λ2
L
B, (3)

which predicts that a magnetic field is attenuated inside a superconductor over the
London penetration depth λL =

√
m/µ0nse2, where µ0 is the vacuum permeability.

This is the Meissner effect. If one instead eliminates B from Eq. (2), a similar
equation is found for the supercurrent density

∇2Js =
1

λ2
L
Js, (4)

showing that the supercurrent is confined to a thin layer at the boundary of the
superconductor.

In 1950 Ginzburg and Landau extended the phenomenological London theory
by allowing the superconducting electron density ns to vary in space [32]. They
introduced a complex ‘macroscopic wave function’ ψ which is related to the super-
conducting electron density ns by

|ψ|2 ∝ ns, (5)

and is to be determined at every point in space by minimizing the free energy of the
system. By expanding the free energy in powers of |ψ|2 they derived the following
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equations for ψ and the supercurrent density Js

αψ + β|ψ|2ψ +
1

2m∗
(−i~∇− q∗A)2ψ = 0, (6)

Js =
q∗~

2m∗i
(ψ∗∇ψ − ψ∇ψ∗)− q∗2

m∗
|ψ|2A, (7)

where m∗ and q∗ are the effective mass and charge of the superconducting charge
carriers, while A is the magnetic vector potential and i is the imaginary unit. The
parameters α and β are phenomenological expansion coefficients, but may be ex-
pressed in terms of physical parameters by ensuring agreement with the London
model, these expressions will be derived in section 2.2 when we discuss the Ginzburg-
Landau theory in more detail. The Ginzburg-Landau equations have a clear physical
interpretation, Eq. (6) bears a similarity to the time independent Schrödinger equa-
tion except for the addition of a non-linear term, while Eq. (7) is identical in form
to the usual probability current equation except that it describes a real electronic
current. The Ginzburg-Landau theory is able to predict important features outside
the scope of the London theory, such as non-linear effects of fields strong enough to
change ns and the spatial variation of ns, but its first major accomplishment was its
ability to treat regions where superconducting and normal domains overlap.

Despite the success of these macroscopic phenomenological theories, it was not
until the 1950s, 40 years after Onnes’ first discovery, that the basic microscopic
origin of superconductivity was first being understood. In 1950 Reynolds [33] and
Maxwell [34] independently discovered that the critical temperature and magnetic
field vary with the isotopic mass of the material miso as Tc, Bc ∝ 1/

√
miso. This

‘isotope effect’ showed that the superfluid interacts with the ion cores of the metal
and gave support to Fröhlich’s point of view that an effective interaction between
electrons arising from lattice vibrations was of primary importance in developing
superconductivity [35].

A further clue came from the precise measurements of the specific heat capacity
of superconductors Cs made by Corak et al. [36, 37]. They showed that in the
superconducting state near T = 0 the specific heat is dominated by the scaling

Cs ∝ exp(−1.75Tc/T ). (8)

Such a scaling implies that the quasiparticle excitations have a minimum excita-
tion energy of ∆(T = 0) ≈ 1.75kBTc. The existence of an energy gap between
the ground state and the quasiparticle excitations was predicted earlier by Daunt
and Mendelssohn [38], and subsequently confirmed by additional experiments in
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electromagnetic absorption [39] and electron tunnelling [40].

Finally in 1956, Cooper showed that an arbitrarily weak attractive force between
electrons is sufficient to cause them to combine into bound pairs that lower their
total energy [41]. These ‘Cooper pairs’ were interpreted as the primary reason
for the energy gap in superconductors and led to the development of a complete
microscopic theory by Bardeen, Cooper and Schrieffer (BCS) in 1957 [42]. The
BCS theory shows that below Tc, Cooper pairs condense into a macroscopic super-
fluid that extends over the whole superconductor. In terms of the two-fluid model,
these Cooper pairs give rise to the superconducting electron density ns while the
quasiparticle excitations, having minimum energy ∆, act as the ‘normal electrons’
nn. In this chapter we give a detailed description of the BCS theory, followed by a
description of the phenomenological Ginzburg-Landau theory in preparation of its
use in providing a simple derivation of the Josephson effect in the following chapter.

2.1 BCS Theory

2.1.1 One Pair Problem

Following Cooper we consider a pair of electrons interacting with each other above
an inert Fermi sea. The electrons in the Fermi sea are non-interacting and serve only
to forbid the interacting pair from entering states below the Fermi level |k| < kF by
the Pauli exclusion principle. To describe a state with zero current, we will consider
a pair with zero net momentum. The pair wave function Ψ(r) then depends only
on the relative coordinate r = r1− r2 and we can expand it as a sum of plane waves
with momentum |k| > kF as follows

Ψ(r) =
∑
|k|>kF

gke
ik·r =

∑
|k|>kF

gke
ik·r1e−ik·r2 . (9)

The total wave function is thus a superposition of pair states with gk being the
probability amplitude to find the pair in the state (k,−k). The Schrödinger equation
is then

− ~2

2m
(∇2

1 +∇2
2)Ψ(r) + V (r)Ψ(r) = (E + 2EF)Ψ(r), (10)

where V (r) is the interaction potential and the energy E is measured from 2EF with
EF = ~2k2

F/2m being the Fermi energy. Substituting Eq. (9) into (10) one obtains

(E + 2EF − 2εk)gk =
∑
|k′|>kF

Vk,k′gk′ , (11)

8
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which is simply the Schrödinger equation in Fourier space, where εk = ~2k2/2m and

Vk,k′ =

∫
V (r)e−i(k−k

′)·rdr. (12)

Cooper chose a simple factorizable potential that captures the essential physics

Vk,k′ = λwkwk′ (13)

where

wk =

1, for EF < εk < EF + ~ωD

0, otherwise
(14)

indicating that electrons only interact within an energy window ~ωD above the
Fermi level, and interact with a constant strength λ. The Debye frequency ωD is
chosen since ~ωD is the characteristic energy scale of phonons, and it was already
understood that the electron pairing was due to lattice vibrations. Inserting this
potential into Eq. (11) we obtain

(E + 2EF − 2εk)gk = λwk

∑
|k′|>kF

wk′gk′ = λwkG, (15)

where G is a constant given by

G =
∑
|k′|>kF

wk′gk′ . (16)

The energy eigenvalues are calculated by inserting gk from Eq. (15) into Eq. (16)
to obtain the self-consistency equation

1

λ
=
∑
|k|>kF

w2
k

E − 2(εk − EF)
= Θ(E). (17)

The function Θ(E) is plotted in Fig. 2 for a one-dimensional system withN electrons
in the Fermi sea. For E > 0, singularities occur whenever E = 2(εk − EF) whereas
for E < 0 the function is negative, approaching zero when E → −∞.

9
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Figure 2: Plot of the function Θ(E) (blue lines) for a one-dimensional system with
N electrons in the Fermi sea. Singularities occur whenever E = 2(εk −EF)1. Inter-
sections with the line 1/λ give the solutions to the self-consistency equation (17) and
thus the energy eigenvalues. Two example values of 1/λ are plotted (green lines).
The repulsive interaction 1/λ > 0 gives trivial solutions for unbound pairs with a
positive energy only slightly renormalized with respect to the non-interacting case
while the attractive interaction 1/λ < 0 gives a unique bound state solution with
E < 0 (pink dot).

The solutions to Eq. (17), and thus the energy eigenvalues E are found from
the intersections of Θ(E) with the constant value 1/λ. For a repulsive interaction
λ > 0, the solutions are all positive and differ only a little from the non-interacting
results at 2(εk − EF). An attractive interaction λ < 0 also allows these trivial
positive energy solutions, but there is one unique solution at E < 0 corresponding
to a bound state of the electron pair. Crucially, this ‘Cooper pair’ bound state exists
no matter how weakly the electrons attract.

To actually carry out the summation in Eq. (17) and find the bound state energy
E we transform the summation into an integral over energy via the density of states
ν(ε)

1

λ
=

∫ ~ωD

0

ν(ε)
1

E − 2ε
dε, (18)

where we have defined ε = εk−EF. Since ~ωD � EF in ordinary metals, the density
of states does not change appreciably in the thin shell from EF to EF + ~ωD and we

1The singularities appear linearly spaced because we can expand εk = ~2(kF + ∆k)2/2m ≈
EF + ~2kF∆k/m. This is valid since ∆k/kF � 1 by virtue of the fact that the only terms that
enter the summation are in the thin shell ~ωD � EF. For a one-dimensional system of length L we
then have ∆k = nπ/L where n is an integer, and we can write εk −EF ≈ 2πnEF/kFL = 4nEF/N
where in the last equality we have used kF = πN/2L.

10
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can use the approximation ν(ε) ≈ ν(0). The integral is then easily carried out

− 1

ν(0)λ
=

1

2
ln

(
1− 2

~ωD

E

)
, (19)

to find the energy

E =
2~ωD

1− exp(−2/ν(0)λ)
. (20)

In the case of an attractive interaction we have λ = −|λ|, and if this interaction is
weak (ν(0)|λ| � 1) the bound state energy reduces to

E ≈ −2~ωD exp(−2/ν(0)|λ|). (21)

Thus the Cooper pair bound state exists for arbitrarily small attractive interactions.
We also see that the bound state energy is non-analytical in the dimensionless inter-
action strength ν(0)|λ| and thus does not permit any perturbative solutions. This is
the reason why early theories by Fröhlich [35] and Bardeen [43] based on a pertur-
bative treatment ran into mathematical difficulties and it took 46 years since Onnes’
discovery to develop a correct microscopic theory.

As a consequence of our choice of the interaction Vk,k′ , the pair wave function
Eq. (9) with gk given by Eq. (15) is isotropic in real space, depending only on |r|.
A real space wave function that is symmetric means that the Cooper pair must be
in a singlet state where the two electrons have opposite spins (k ↑,−k ↓). This
so-called s-wave pairing is the one considered by BCS theory, and is dominant in
the majority of superconductors. However, in materials with large anisotropy other
pairings such as p-wave or d-wave may be important and are thought to be crucial
in explaining unconventional superconductors with high Tc, although this remains
a contentious issue [44].

2.1.2 BCS State

Motivated by the insight from Cooper’s analysis, Bardeen, Cooper and Schrieffer
(BCS) considered a many-body wave function where all electrons take part in the
pairing process. Following their lead we use the formalism of second quantization
and consider a ground state where each singlet pair (k ↑,−k ↓) has a probability
amplitude uk to be unoccupied and amplitude vk to be occupied. For simplicity we
take uk and vk to be real, and by probability conservation we must have u2

k+v2
k = 1.

11
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The BCS state is then

|BCS〉 =
∏
k

(uk + vkc
†
k↑c
†
−k↓) |0〉 . (22)

where |0〉 is the vacuum while c†kσ and ckσ are creation and annihilation operators for
fermions with wavevector k and spin σ. These satisfy the usual anti-commutation
relations

{ckσ, ck′σ′} = 0, (23)

{c†kσ, c
†
k′σ′} = 0, (24)

{ckσ, c†k′σ′} = δkk′δσσ′ , (25)

where δij is the Kronecker delta. Around the same time that BCS were working
on their theory, Schafroth, Blatt and Butler (SBB) attempted a description of the
superconducting state as a Bose-Einstein condensate of electron pairs [45]. This is
a nice qualitative idea but is not completely correct as can be shown by considering
the commutation relations obeyed by the pair operator bk = c−k↓ck↑

[bk, bk′ ] = 0, (26)

[b†k, b
†
k′ ] = 0, (27)

[bk, b
†
k′ ] = δkk′(1− nk↑ − n−k↓), (28)

where nkσ = c†kσckσ is the number operator. These are not the commutation relations
required by Bose-Einstein statistics, in fact the Pauli principle acting on individual
electrons is evident from the fact that (b†k)2 = 0.

The only interaction processes which have a non-vanishing amplitude on the
ground state |BCS〉 are those which preserve the pairing structure, scattering a pair
from (k′ ↑,−k′ ↓) into (k ↑,−k ↓). Considering only these processes we have the
effective BCS Hamiltonian

HBCS =
∑
k,σ

εknk,σ +
∑
k,k′

Vk,k′c
†
k↑c
†
−k↓c−k′↓ck′↑. (29)

Following the approach of Bogoliubov [46] and Valatin [47] we perform a mean field
analysis of HBCS and diagonalize the resulting Hamiltonian to find the ground state

12
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energy and the quasiparticle excitation spectrum. The mean field Hamiltonian is

HM-F
BCS − µcpN̂ =

∑
kσ

(εk − µcp)nk,σ (30)

+
∑
kk′

Vkk′
(
〈c†k↑ck↑〉c

†
−k′↓c−k′↓ + 〈c†−k′↓c−k′↓〉c

†
k↑ck↑

)
+
∑
kk′

Vkk′
(
〈c†k↑c

†
−k↓〉c−k′↓ck′↑ + 〈c−k′↓ck′↑〉c†k↑c

†
−k↓

)
,

where 〈. . .〉 are expectation values taken on |BCS〉, N̂ =
∑

kσ nk,σ is the total particle
number operator and we have introduced a chemical potential µcp. Using Eq. (22)
the ‘normal averages’ in the second line are found to be

〈c†kσckσ〉 = v2
k, (31)

and contrary to the non-interacting ground state, the BCS state allows non-zero
‘anomalous averages’

〈c−k↓ck↑〉 = 〈c†k↑c
†
−k↓〉 = ukvk. (32)

The mean field Hamiltonian then becomes

HM-F
BCS − µcpN̂ =

∑
kσ

ε̃knkσ −
∑
k

(
∆kc

†
k↑c
†
−k↓ + ∆∗kc−k↓ck↑

)
, (33)

where we have introduced

ε̃k = εk − µcp +
∑
k′

v2
k′Vk,k′ , (34)

and
∆k = −

∑
k′

Vk,k′〈c−k′↓ck′↑〉. (35)

Thus we see that the normal average terms simply renormalize the single particle
energies while all the interesting behaviour will result from the anomalous terms.
Our task is then to diagonalize this mean field Hamiltonian, i.e. to put it in the
form

HM-F
BCS − µcpN̂ = EGS +

∑
kσ

Ekγ
†
kσγkσ, (36)

where EGS is the ground state energy and γkσ is a new quasiparticle operator de-
scribing particles with an energy spectrum Ek. It is important to realize that adding
an electron to |BCS〉 in the state k ↑ is equivalent to removing an electron from the
state −k ↓ except that the total number of pairs differs by unity. Based on this

13
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idea, Bogoliubov and Valatin independently introduced the following operators

γk↑ = ukck↑ − vkc†−k↓, (37)

γ−k↓ = ukc−k↓ + vkc
†
k↑. (38)

One can readily check that as long as the condition u2
k + v2

k = 1 is preserved, these
operators obey the anticommutation relations

{γkσ, γk′σ′} = 0, (39)

{γ†kσ, γ
†
k′σ′} = 0, (40)

{γkσ, γ†k′σ′} = δkk′δσσ′ , (41)

and thus describe fermions. We can now express the Hamiltonian in terms of these
operators and then diagonalize the system2. The terms proportional to γγ and γ†γ†

can be forced to vanish by imposing the following condition on uk and vk

u2
k − v2

k =
2ε̃k
∆k

ukvk. (42)

Together with u2
k+v2

k = 1 this completely determines uk and vk. The latter condition
can be imposed by writing

u2
k =

1

2

(
1 +

ε̃k
Ek

)
, (43)

v2
k =

1

2

(
1− ε̃k

Ek

)
, (44)

and Ek is then determined by Eq. (42), yielding

Ek =
√
ε̃2
k + ∆2

k. (45)

With this choice of parameters, our Hamiltonian is diagonalized in the form Eq.
(36) and the operators γ†kσ/γkσ create/annihilate quasiparticles with energy Ek.
The ground state energy measured relative to µcpN̂ is given by

EGS = −
∑
k

∆2
k

Ek + ε̃k
. (46)

Thus we see from Eq. (45) that a finite ∆k can be interpreted as a gap in the quasi-

2This is now a common-place treatment of many-body systems, known as a Bogoliubov or
Bogoliubov-Valatin transformation, although it was first developed in this BCS context.
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particle energy spectrum, and from Eq. (46) that the existence of this energy gap
causes the total energy of the ground state to be reduced below the non-interacting
value EGS = 0. The last thing to do is solve for ∆k from the definition Eq. (35).
One obtains

∆k = −
∑
k′

Vk,k′
∆k′

2Ek′

(
1− 〈γ†k′↑γk′↑〉 − 〈γ

†
k′↓γk′↓〉

)
, (47)

the operator γ†kσγkσ is just the number operator for the fermionic quasiparticle, and
as such its expectation value in thermal equilibrium is given by the Fermi-Dirac
distribution

〈γ†kσγkσ〉 =
1

eEk/kBT + 1
. (48)

Eq. (47) then becomes

∆k = −
∑
k′

Vk,k′
∆k′

2Ek′
tanh

(
Ek′

2kBT

)
. (49)

This is the BCS gap equation which determines the energy gap when the form of
interaction is specified. Using the simplified attractive interaction

Vk,k′ =

−|λ|, for |ε̃k| < ~ωD

0, otherwise
(50)

we see that the right hand side of Eq. (49) no longer depends on k and thus ∆k → ∆.
We can solve the equation by transforming the summation into an integral over the
density of states ν(ε̃) and again making the approximations ν(ε̃) ≈ ν(0) since we
operate only in a thin shell around the Fermi energy. We obtain

1

ν(0)|λ|
=

∫ ~ωD

−~ωD

tanh
(√

ε̃2 + ∆2/2kBT
)

2
√
ε̃2 + ∆2

dε̃, (51)

which is easily solved in the T = 0 limit by performing the change of variable
ε̃ = ∆ sinh(x), yielding

∆(0) =
~ωD

sinh
(

1
ν(0)|λ|

) . (52)

In the weak coupling limit ν(0)|λ| � 1 this reduces to

∆(0) ≈ 2~ωD exp(−1/ν(0)|λ|) (53)

which is very similar to Eq. (21) originally obtained by Cooper.
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Figure 3: The quasiparticle energy spectrum Ek from Eq. (45) sketched for ∆/EF =
0.2 (green line), compared with the non-interacting case (dashed blue line). In the
superconducting state an energy gap of size ∆ opens at the Fermi energy.

With ∆ determined, the quasiparticle energy spectrum and ground state energies
are fully determined from Eqs. (45) and (46). The energy spectrum E(k) is plotted
in Fig. 3, one sees that it differs from the non-interacting case by the small energy
gap ∆ that opens at the Fermi level. Thus there is always a finite energy to pay in
order to create excitations, explaining the observed gap in absorption and tunneling
experiments. Most importantly, the superfluidity is explained as there is now a
critical phase velocity vc and thus electronic current density Jc = −nsevc below
which there is no dissipation. This critical current density is given by3

Jc = −nsemin
(
Ek

~k

)
= −nse

∆

~kF
. (54)

2.1.3 Critical Temperature

Eq. (51) gives the full temperature dependence of ∆(T ) and allows one to determine
the critical temperature Tc above which ∆(T ) becomes zero and superconductivity
is destroyed. Setting T = Tc and ∆ = 0 and performing the integral yields

kBTc ≈ 1.13~ωD exp(−1/ν(0)|λ|), (55)

which when combined with Eq. (53) produces the very useful expression

∆(0)

kBTc
≈ 1.764, (56)

3Note that the effects of the pairing on ns → ns/2 and e→ 2e cancel eachother.
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which is well confirmed experimentally. The full temperature dependence of ∆(T )

must be calculated numerically from Eq. (51) but close to Tc it can be expressed
conveniently in terms of Tc as

∆(T )

∆(0)
≈ 1.74

(
1− T

Tc

)1/2

. (57)

The full temperature dependence and this approximation near Tc are both plotted
in Fig. 4.

Figure 4: Temperature dependence of the superconducting energy gap ∆(T ). The
exact dependence from numerically solving Eq. (51) is plotted in blue, while the
analytical solution Eq. (57) valid near Tc is plotted in orange.

2.2 Ginzburg-Landau Theory

The microscopic BCS theory works excellently in cases where the energy gap ∆ is
constant in space but there are many cases where there is spatial inhomogeneity such
as at interfaces between normal metals and superconductors. In these cases the full
microscopic theory becomes very difficult and we must use the more macroscopic
Ginzburg-Landau (GL) theory. In any case, in 1959 Gor’kov [48] showed that BCS
theory reduces to the GL theory at temperatures sufficiently close to Tc. We shall not
follow the derivation of Gor’kov but instead postulate the theory phenomenologically
as was originally done by Ginzburg and Landau.

They introduced a ‘macroscopic wave function’ ψ(r) whose squared modulus is
equal to the density of superconducting carriers n∗s

|ψ|2 = n∗s . (58)
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Since the charge carriers are Cooper pairs, the density n∗s is related to the density
of ‘superconducting electrons’ ns considered by the London brothers by n∗s = ns/2.
Gor’kov showed that |ψ|2 is proportional to the local value of the energy gap ∆(r)

within the BCS theory, with a complex phase arising from the phase difference
between the generally complex parameters uk, vk. This wave function is then to
be determined at each point in space by minimizing the free energy of the system∫
fsd3r. They focused on the region T ≈ Tc and expanded the free energy density fs

as a function of ψ around the normal state value fn. The phase of ψ is unobservable,
so that the free energy should depend only on |ψ|. Furthermore, to keep the first
derivative continuous at ψ = 0, only even powers of |ψ| are included. We thus write
the free energy density as

fs = fn + α|ψ|2 +
β

2
|ψ|4 +

1

2m∗
|(−i~∇− q∗A)ψ|2 +

B2

2µ0

, (59)

where α and β are phenomenological expansion coefficients to be given an exact
form soon. This expression also includes the kinetic energy of the charge carriers
with mass m∗ and charge q∗, and the energy of the magnetic field B. The kinetic
energy term is modified to the usual gauge invariant form using the magnetic vector
potential A. For now we will leave q∗ and m∗ unspecified but the BCS theory
gives their values as q∗ = −2e and m∗ = 2m as expected since the carriers of the
supercurrent are Cooper pairs.

Deep in the interior of the superconductor, it is screened from any surface fields
or currents and the free energy takes the simple form

fs − fn = α|ψ|2 +
β

2
|ψ|4. (60)

We can then determine |ψ|2 by minimizing this quantity. Clearly to obtain a physical
solution β must be positive or the minimum would occur for arbitrarily large values
of |ψ|2. Minimizing Eq. (60) then gives the following solutions

|ψ|2 = 0, (61)

|ψ|2 = −α
β
. (62)

If α > 0 then the only real solution is |ψ|2 = 0 which corresponds to the normal
state with ns = 0. On the other hand, if α < 0, the |ψ|2 = 0 minimum becomes
unstable and a new stable solution develops at |ψ|2 = −α/β, which corresponds to
a superconducting state. This situation is illustrated in Fig. 5. Clearly then, as α
transitions from positive to negative there is a second order phase transition where
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Figure 5: Sketch of fs − fn, the difference in free energy between the normal and
superconducting states, as a function of the macroscopic wave function ψ for α > 0
(T > Tc) and α < 0 (T < Tc). The pink dots indicate the equilibirum solutions,
which for α > 0 is the normal state |ψ|2 = 0 and for α < 0 are the states |ψ|2 = −α/β
with non-zero density of superconducting carriers.

superconductivity emerges. From what we know about superconductors, we expect
α to be a function of temperature, which decreases below zero as the temperature
is lowered below Tc.

The free energy difference fs − fn in the superconducting state is then obtained
by inserting Eq. (62) into Eq. (60) obtaining

fs − fn = −α
2

2β
= − B

2
c

2µ0

. (63)

Here we have also used the definition of the critical magnetic field Bc that destroys
superconductivity. We thus have in Eq. (63) a relation between α, β and Bc. From
Eqs. (58) and (62) we also deduce n∗s = −α/β so that we can express α and β in
terms of the physical parameters Bc and n∗s as

α = − B2
c

µ0n∗s
, (64)

β =
B2

c

µ0n∗2s
. (65)

It is more common to write these in terms of the London penetration depth λL =
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√
m∗/µ0n∗sq

∗2 as follows4.

α = −B
2
cλ

2
Lq
∗2

m∗
, (66)

β =
µ0B

2
cλ

4
Lq
∗4

m∗2
. (67)

In the general case with fields, currents and gradients, |ψ|2 must be calculated
by minimizing the total free energy

∫
fsd3r with fs given by the full expression Eq.

(59). Using standard variational techniques this leads to the GL equations5

αψ + β|ψ|2ψ +
1

2m∗
(−i~∇− q∗A)2ψ = 0, (68)

Js =
q∗~

2m∗i
(ψ∗∇ψ − ψ∇ψ∗)− q∗2

m∗
|ψ|2A. (69)

The first of these is similar in form to the time-independent Schrödinger equation
except for the addition of a non-linear term, while the second equation is identical
in form to the usual probability current equation, except that it is multiplied by the
charge q∗ so that it describes a real electronic current. In fact by writing ψ = |ψ|eiθ,
this equation takes the simple form

Js =
q∗

m∗
|ψ|2(~∇θ − q∗A) = |ψ|2q∗vs, (70)

with the identification of the kinematic momentum m∗vs = ~∇θ − q∗A.

2.2.1 Coherence Length

Let us look at the differential equation (68) in the case where there are no fields
A = 0. In this case the differential equation has only real coefficients so that we can
choose ψ to be real. We also non-dimensionalize the wave function as ψ̄ = ψ/ψ∞

where ψ2
∞ = −α/β > 0. In one dimension we obtain

~2

2m∗|α|
d2ψ̄

dx2
+ ψ̄ − ψ̄3 = 0. (71)

It is then natural to define the characteristic length scale ξ(T ) as follows

ξ2(T ) =
~2

2m∗|α|
. (72)

4This definition of λL agrees with the one introduced by the London brothers if we take q∗ =
−2e, m∗ = 2m and n∗s = ns/2 since our charge carriers are Cooper pairs.

5These equations were already briefly introduced in Eqs. (6) and (7) but I reproduce them here
for ease of reference.
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So that Eq. (71) becomes

ξ2(T )
d2ψ̄

dx2
+ ψ̄ − ψ̄3 = 0, (73)

from which it is clear that ξ(T ), named the Ginzburg-Landau coherence length, gives
the length scale over which variations of ψ occur. For example, at a superconductor-
normal metal interface, ψ does not immediately drop to zero as we cross from the
superconductor to the normal metal but instead continuously decreases to zero over
the length scale ξ(T ). This implies that the normal metal adopts some supercon-
ducting behaviour when in close proximity to a superconductor. This proximity
effect was first discussed in a pioneering paper by De Gennes [2]. We explore this
further in the following section and see how this gives rise to the Josephson effect
in superconducting weak links.
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3 Josephson Effect

In 1962 Josephson carried out an analysis of tunneling processes in a system of two
superconducting electrodes separated by an insulating barrier [3]. This led to his
remarkable prediction that a zero voltage supercurrent may flow between the two
electrodes due to the tunneling of Cooper pairs through the insulating barrier. This
supercurrent Is is strongly dependent on the phase difference φ = θ2 − θ1, where
θ1 and θ2 are the phases of the macroscopic wave functions in the two electrodes,
through the simple relation

Is = Ic sinφ, (74)

where Ic is a sample dependent critical current. He also predicted that if a voltage
bias V is maintained between the two electrodes, then the phase φ should evolve as

dφ

dt
=

2e

~
V, (75)

so that the supercurrent becomes AC with the frequency 2eV/~. This so-called
Josephson effect was first confirmed experimentally the following year by Anderson
and Rowell in the zero voltage case [49], while Shapiro soon after confirmed Eq. (75)
in the finite voltage regime [4, 5].

While the Josephson effect was first predicted from a microscopic analysis of
tunneling in superconductor-insulator-superconductor (SIS) junctions, it soon be-
came clear that it was much more general, occurring whenever two superconductors
are connected by a "weak link". This weak link may be a normal metal, forming
superconductor-normal-superconductor (SNS) junctions, as a result of the proximity
effect [51], or even a short, narrow constriction in an otherwise continuous supercon-
ductor, forming superconductor-constriction-superconductor (SCS) junctions, also
known as Anderson-Dayem bridges [50]. The fundamental equations (74) and (75)
remain valid in each of these cases. In what follows, we present a very simple deriva-
tion of the Josephson effect that follows directly from the Ginzburg-Landau theory,
which is general enough to describe all these different weak link structures, rather
than do a microscopic tunneling calculation as originally carried out by Josephson
himself.

3.1 DC Josephson Effect

We consider two superconducting electrodes separated by a short link of length l

and apply the Ginzburg-Landau theory. The one dimensional Ginzburg-Landau
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equation is

ξ2d
2ψ̄

dx2
+ ψ̄ − ψ̄3 = 0, (76)

where we recall that ψ̄ = ψ/ψ∞ is the order parameter in units of ψ∞ which is the
equilibrium value deep inside the superconductor. Assuming that the superconduct-
ing electrodes are in equilibrium and there is a phase difference φ between them,
we must then solve Eq. (76) subject to the boundary conditions ψ̄ = 1 at x = 0

and ψ̄ = exp(iφ) at x = l. The first term of this equation is larger than the other
terms by a factor (ξ/l)2 so that in the limit l � ξ this equation simply reduces to
Laplace’s equation d2ψ̄/dx2 = 0. Fixing our boundary conditions we obtain as a
solution

ψ̄ = (1− x/l) + (x/l)eiφ. (77)

This has a very simple interpretation, with the first bracketed term giving the spread
of the order parameter with phase zero from the first superconductor and the second
term giving the spread of the order parameter from the second superconductor with
phase φ.

Now that we know the value of the order parameter we can find the supercurrent
density Js flowing through the weak link by simply inserting this expression into the
Ginzburg-Landau expression Eq. (69) which is expressed in terms of ψ̄ as

Js =
e~ψ2

∞
m∗i

(
ψ̄∗

dψ̄

dx
− ψ̄dψ̄∗

dx

)
=

2e~ψ2
∞

m∗
|ψ̄|2∇θ, (78)

where θ is the complex phase of ψ̄ = |ψ̄| exp(iθ) and we have used q∗ = −2e as the
charge of a Cooper pair. Inserting our solution we obtain

Js =
2e~ψ2

∞
lm∗

sinφ, (79)

which upon multiplying by the cross-sectional area of the weak link S, yields the
supercurrent Is and thus the Josephson expression

Is = Ic sinφ, (80)

with the critical current
Ic =

2e~ψ2
∞

m∗
S

l
. (81)

The modulus square |ψ̄|2 and phase θ of the solution Eq. (77) are plotted in Fig.
6 for various phase differences φ. One can see from Eq. (78) that the supercurrent
is a product of the two factors |ψ̄|2, proportional to the Cooper pair density in the
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Figure 6: Plots of the modulus square |ψ̄|2 and phase θ of the solution Eq. (77)
for the normalized order parameter ψ̄, with several values of φ, the phase difference
between the superconducting electrodes. In the two electrodes at x ≤ 0 and x ≥ l
we have |ψ̄|2 = 1 while in the weak link 0 < x < l the order parameter is reduced
but generally non-zero, this is the proximity effect that gives rise to the Josephson
effect. The phase θ evolves from θ = 0 at x ≤ 0 to θ = φ at x ≥ l.

weak link, and ∇θ, proportional to their effective velocity. From Fig. 6 we can then
interpret the sinusoidal Josephson relation Eq. (80). When φ = 0 there is a high
number of carriers |ψ̄|2 but with zero velocity ∇θ so there is no supercurrent. When
φ = π there is a high velocity, but in the middle of the weak link where the carrier
number is zero. However between these two extremes both |ψ̄|2 and ∇θ are finite so
that a supercurrent can flow, reaching a maximum at φ = π/2.

The fact that Ic scales with the length and cross sectional area of the weak link
exactly as S/l is an important result that is confirmed experimentally. In fact Ic
scales in exactly the opposite way as the normal state resistance R = ρnl/S, where
ρn is the normal state resistivity. Thus IcR = 2e~ρnψ

2
∞/m

∗ is an invariant quantity
that does not depend on the weak link dimensions, and is named the characteristic
voltage. Ambegaokar and Baratoff [52] derived the following exact value for this
IcR product for SIS tunnel junctions using BCS theory

IcR = (π∆/2e) tanh(∆/2kBT ), (82)

which at T = 0 reduces to IcR = π∆(0)/2e. This same formula applies for short
constriction weak links except for a small pre-factor of order one [54, 55]. However
for SNS junctions Ic decreases exponentially with the thickness of the normal layer
l as exp(−l/ξn), where ξn = ~vF/2πkBT is the normal metal coherence length. The
characteristic voltage IcR can thus be lower than the ideal value given in Eq. (82)
by this same exponential factor.
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3.2 AC Josephson Effect

In order to derive the AC Josephson effect Eq. (75), we employ an alternate deriva-
tion due to Feynman [56]. Again we consider two superconductors, with a bias
voltage V between them and separated by a thin weak link. We denote the effec-
tive wave functions of the two superconductors as ψL and ψR respectively and write
down a two level system. Defining the zero point of potential to be between the two
electrodes, a Cooper pair in ψL has an electrostatic energy 〈ψL|H |ψL〉 = eV , while a
Cooper pair in ψR has an electrostatic energy 〈ψR|H |ψR〉 = −eV . Here H is the ef-
fective Hamiltonian of the system. We also introduce the probability amplitude for a
Cooper pair to transition between the two states as 〈ψR|H |ψL〉 = 〈ψL|H |ψR〉∗ = K,
which may be due to tunneling or direct conductivity. For more generality we can
account for the effects of a magnetic field by including a vector potential A, in this
case the transition amplitude is modified from the zero field value K0 by a correction
K = K0 exp(+i2e

~

∫
A · dl) in accordance with the usual laws of quantum mechan-

ics [57], where the line integral is taken from the left electrode to the right one. The
time dependent Schrödinger equation is then

i~
d
dt

(
ψL

ψR

)
=

(
eV K0 exp(−i2e

~

∫
A · dl)

K0 exp(+i2e
~

∫
A · dl) −eV

)(
ψL

ψR

)
. (83)

Denoting the phases of the two superconductors as θL and θR, as well as their Cooper
pair densities as nL and nR, we can make the substitutions ψL =

√
nL exp(iθL) and

ψR =
√
nR exp(iθR). The following four equations are then obtained by matching

the real and imaginary parts of the two complex equations in Eq. (83)

dθL
dt

= −eV
~
− K0

~

√
nR
nL

cos

(
φ− 2e

~

∫
A · dl

)
, (84)

dnL
dt

= +
2K0

~
√
nLnR sin

(
φ− 2e

~

∫
A · dl

)
, (85)

dθR
dt

=
eV

~
− K0

~

√
nL
nR

cos

(
φ− 2e

~

∫
A · dl

)
, (86)

dnR
dt

= −2K0

~
√
nLnR sin

(
φ− 2e

~

∫
A · dl

)
, (87)

where φ = θR − θL. From these equations we can calculate the current flow, being
proportional to dnR/dt = −dnL/dt. In reality the two electrodes are connected by
a battery so that extra terms should be added to Eqs. (85) and (87) which keep
nR and nL constant, but our expression for dnR/dt still gives the change due to the
flow of current through the weak link. Assuming the superconductors are similar
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we can set nR = nL = n which produces

dnR
dt

= −2K0

~
n sin

(
φ− 2e

~

∫
A · dl

)
. (88)

This is proportional to the total electronic supercurrent so that we obtain

Is = Ic sin

(
φ− 2e

~

∫
A · dl

)
, (89)

where Ic is a critical current that is highly sample specific, depending on K0, n
and the weak link geometry. This is the Josephson relation Eq. (74) except that
the argument of the sine is no longer the real phase difference φ = θR − θL but a
gauge-invariant phase difference

ϕ = φ− 2e

~

∫
A · dl. (90)

This same modification can be obtained from the Ginzburg-Landau equations by
keeping the full gauge invariant gradient expression (−i~∇− 2eA).

From Eqs. (84) and (86) we can now see how the phase difference evolves in time
when a voltage bias is applied

dφ

dt
=

d
dt

(θR − θL) =
2e

~
V, (91)

which is the AC Josephson relation Eq. (75). We can write both the Josephson
relations in terms of the gauge-invariant ϕ as

Is = Ic sinϕ, (92)
dϕ

dt
=

2e

~

(
V − d

dt

∫
A · dl

)
. (93)

In what follows we will make extensive use of these equations. In the absence
of external electromagnetic fields A = 0, ϕ = φ and we recover Eqs. (74) and
(75), however when we begin applying external fields and coupling to mechanical
oscillations the correction to Eq. (93) will play an important role.

3.3 RCSJ Model

The ratio between the frequency of the supercurrent and the voltage across the weak
link as given by the Josephson relation is very large, 2e/~ ≈ 3GHzµV−1, so that
Josephson oscillations in real experiments typically have very large frequencies of
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order GHz−THz. At such high frequencies the external circuitry, such as wires and
contacts, has a very large impedance compared to the Josephson junction itself. If
one then attempts to apply a voltage bias across the junction, most of the voltage
drop occurs over the external circuit leaving the actual voltage across the junction
hard to control. However, the current is very well defined so that the vast majority
of Josephson junction experiments are done assuming a current bias rather than a
voltage bias [25]. Under this assumption, Eq. (93) remains valid except that the
voltage V is now a dynamic variable that develops naturally due to the current bias.

From Eq. (92) we see that the supercurrent has a maximum amplitude Ic, it
is then clear that given a certain DC current bias IDC, if IDC < Ic then all the
applied current can be carried by a supercurrent, but if we have IDC > Ic there
must arise additional current components. In 1968, the resistively and capacitively
shunted junction (RCSJ) model for current biased Josephson junction dynamics
was introduced separately by W. C. Stewart [58] and D. E. McCumber [59]. This
model describes an equivalent circuit consisting of three parallel current channels: a
pure supercurrent Ic sinϕ, a normal current V/R with effective resistance R and a
displacement current CdV/dt where C is the capacitance between the two electrodes.
In contrast to the other current components, the displacement current is not carried
by real electrons through the weak link but is a result of charge accumulation at the
electrodes. Current conservation then yields the following equation

IDC = Ic sinϕ+
V

R
+ C

dV

dt
, (94)

where IDC is the DC bias current and V is the voltage across the junction which is
generally time dependent. This voltage drop is related to the phase ϕ by Eq. (93),
inserting this into Eq. (94) produces the following second order differential equation
for ϕ.

IDC = Ic sinϕ+
~

2eR

dϕ

dt
+

~C
2e

d2ϕ

dt2
. (95)

which is the main equation we will use to model Josephson junction dynamics. For
bias currents IDC < Ic, one can see by inspection that there is a solution with
constant phase difference ϕ = arcsin(IDC/Ic) where all the bias current is taken
by the supercurrent channel and there is zero voltage drop across the junction.
However, the supercurrent has a maximum amplitude Ic so that for bias currents
IDC > Ic, some of the current must be taken by the normal and displacement current
channels, which involves developing a finite voltage. In this finite voltage state ϕ
evolves with time due to Eq. (93) and the supercurrent becomes oscillatory.

We can simplify Eq. (95) by introducing a dimensionless current iDC = IDC/Ic
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and time τc = ωct where ωc = 2eIcR/~ is the characteristic frequency corresponding
to a voltage IcR

iDC = sinϕ+ ϕ̇+ βcϕ̈. (96)

Here ḟ refers to the derivative of f with respect to τc and βc = ωcRC is the Stewart-
McCumber parameter that can be expressed as the ratio βc = |ZR|/|ZC|, where
ZR = R and ZC = −i/ωcC are the impedances of the resistive and capacitive
channels at the frequency ωc, respectively. In the finite voltage state the oscillatory
supercurrent must be compensated by either the resistive or capacitive channels in
order for the total current IDC to be constant. In the regime βc � 1 the supercurrent
is mostly compensated by the resistive channel, while in the regime βc � 1 it
is mostly compensated by the capacitive channel. The voltage drop across the
junction is now conveniently expressed in units of the characteristic voltage IcR by
ϕ̇ = V/IcR.

3.3.1 Washboard Analogy

Before proceeding we consider an illuminating mechanical analogy. Our equation of
motion Eq. (95) is identical in form to the one governing a particle of mass (~/2e)2C

moving along the ϕ axis in the ‘tilted washboard’ potential

U(ϕ) = −EJ

(
cosϕ+

IDC

Ic
ϕ

)
, (97)

under the effect of a drag force (~/2e)2(1/R)dϕ/dt, where EJ = ~Ic/2e is the Joseph-
son energy. The washboard potential U(ϕ) is plotted in Fig. 7. In this analogy
the bias current IDC is proportional to the tilt of the washboard potential, while
the voltage is proportional to the velocity of the particle dϕ/dt by Eq. (93). For
bias currents IDC < Ic the washboard particle can be trapped in a local minimum
ϕ = arcsin(IDC/Ic) where it has zero average velocity corresponding to the super-
conducting (zero voltage) state. However, the particle oscillates in the potential
minimum for a while before coming to rest. One can show by expanding U(ϕ)

around a minimum that these oscillations have a frequency

ωosc = ωp[1− (IDC/Ic)
2]1/4, (98)
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Figure 7: The tilted washboard potential U(ϕ) which serves as a mechanical analog
for the RCSJ model Eq. (95). The tilt of the washboard increases with increasing
current IDC. When IDC < Ic there are local minima in which a particle may become
trapped, corresponding to a zero voltage state of the superconducting system. When
IDC > Ic there are no local minima and the particle may freely roll down the
washboard, corresponding to a finite voltage state.

where ωp = (2eIc/~C)1/2 is the Josephson plasma frequency6 and unless IDC is very
close to Ic we can approximate ωosc ≈ ωp. This plasma frequency is an impor-
tant quantity used frequently in the literature, especially in the context of thermal
fluctuations where the particle never comes to a complete rest in the local minimum.

In contrast, for bias currents IDC > Ic there are no local minima and the parti-
cle rolls down the washboard with a finite velocity corresponding to the dissipative
(finite voltage) state. In reference to this mechanical analogy, the zero and finite
voltage states will often be referred to as the ‘trapped’ and ‘running’ states respec-
tively.

The meaning of βc becomes evident by considering that damping occurs over a
time scale given by the mass of the particle divided by the drag coefficient, which
amounts simply to the RC product of the junction. The Stewart-McCumber pa-
rameter βc is then the ratio of this time scale over 1/ωc, the time scale over which
the particle progresses by a ‘distance’ ∆ϕ = 2π, corresponding to the separation
between two successive local minima of the washboard potential. For this reason
the regimes βc � 1 and βc � 1 are referred to as the overdamped and underdamped
regimes respectively.

6Named because these oscillations about the potential minima produce voltage, and thus charge,
oscillations. Although this Josephson plasma frequency should not be confused with the usual bulk
plasma frequency.
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3.3.2 Overdamped Regime, βc � 1

In the overdamped regime βc � 1, the impedance of the capacitive channel domi-
nates over the impedance of the resistive channel leading to a negligible displacement
current. In this limit Eq. (95) reduces to the first order equation

IDC = Ic sinϕ+
~

2eR

dϕ

dt
. (99)

In the running state, the AC supercurrent is thus compensated by a resistive current
(and therefore voltage) which has an average value IDC but is highly oscillatory, as
shown by the numerical solution in Fig. 8(a). In the washboard analogy the highly
oscillatory voltage is a result of the particle’s velocity being modified considerably
during one cycle ∆ϕ = 2π due to the large damping.

Fig. 8(b) shows the DC component of the voltage 〈V 〉 as a function of DC bias
current IDC i.e. the junction’s I-V characteristic. When IDC < Ic the trapped state
〈V 〉 = 0 is the only solution but when IDC > Ic the system enters a running state.
One can solve for the time average voltage 〈V 〉 in the running state by integrating
Eq. (99) to determine the period of time T required for ϕ to advance by 2π and
then using the relation 2e〈V 〉/~ = 2π/T . The integral may be carried out either
through the substitution u = tan(ϕ/2) or by employing Cauchy’s residue theorem,
and after a lengthy calculation one obtains

〈V 〉 = R
√
I2
DC − I2

c . (100)

Which shows that 〈V 〉 varies smoothly from 〈V 〉 = 0 for IDC < Ic to Ohmic be-
haviour 〈V 〉 = IR for IDC � Ic.

3.3.3 Underdamped Regime, βc � 1

In the underdamped regime βc � 1, the impedance of the resistive channel dom-
inates over the impedance of the capacitive channel so that the AC supercurrent
is compensated by the displacement current. This results in a normal current /
voltage which is predominantly DC with only a small AC component, as shown by
the numerical solution in Fig. 9(a).

The corresponding I-V characteristic is plotted in Fig. 9(b). Similarly to the
overdamped case, upon increasing IDC from zero, the system remains in the trapped
state until IDC > Ic at which point the system enters a running state. However,
in contrast to the overdamped case, the voltage does not change continuously from
zero but jumps to a finite value 〈V 〉 ≈ IcR corresponding to the terminal velocity of
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Figure 8: (a) Numerical solution of Eq. (95) with iDC = 1.2, βc = 0.1 showing
overdamped (βc � 1) behaviour. The impedance of the capacitive channel dominates
so that the AC supercurrent sinϕ is compensated by a strongly AC normal current
ϕ̇, with a negligible displacement current βcϕ̈. All currents are given in units of Ic.
(b) Corresponding I-V characteristic calculated numerically, again with βc = 0.1.
The analytical expression for this curve is given by Eq. (100).

Figure 9: (a) Numerical solution of Eq. (95) with iDC = 1.2, βc = 10 showing un-
derdamped (βc � 1) behaviour. The impedance of the resistive channel dominates
so that the AC supercurrent sinϕ is compensated by a strongly AC displacement
current βcϕ̈, leaving a normal current ϕ̇ that is predominantly DC with a small AC
component. All currents are given in units of Ic. (b) Corresponding I-V characteris-
tic calculated numerically, again with βc = 10, showing hysteresis behaviour where
the increasing and decreasing current paths access different states.
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Figure 10: (a) The washboard potential U(ϕ) plotted in three different current
regimes, with filled and unfilled circles representing possible trapped and running
states respectively. When IDC < Ir there exists only a trapped (zero voltage) state
and when IDC > Ic there are no potential minima and there exists only a running
(finite voltage) state. However if the junction is underdamped, Ir 6= Ic, and there
is a regime Ir < IDC < Ic where there exists both a trapped and a running state.
(b) The I-V characteristic of an underdamped junction with circles corresponding
to the states labeled in (a).

the washboard particle. Even more striking is the presence of a hysteresis whereby if
the current is reduced from above Ic the system remains in the running state until a
lower ‘retrapping current’ Ir is reached. This hysteresis is most easily understood by
referring again to the washboard analogy. The washboard potential U(ϕ) is plotted
again in Fig. 10(a) alongside the hysteretic I-V curve in Fig. 10(b). Similarly to
the overdamped case we see that there are the usual trapped and running states for
IDC < Ic and IDC > Ic respectively. However due to the low damping there is the
new regime Ir < IDC < Ic in which there is both a trapped solution and a finite
voltage running solution in which the particle has enough inertia to make it over the
potential barriers without becoming trapped. The initial conditions decide which of
these two solutions is chosen, leading to the observed hysteresis loop. To calculate
the important current value Ir we must first discuss the energy stored in the system.

3.3.4 Energy

The total energy supplied by the external current IDC over some time period is given
by the integral

∫
IDCV dt. Using the RCSJ model Eq. (94) we can find how this

energy is stored in the system. We obtain∫
IDCV dt =

∫
(Ic sinϕ)V dt+

∫
V 2

R
dt+

∫
C

dV

dt
V dt, (101)

where the first and third terms on the right hand side give the energy that is stored by
the supercurrent and displacement current, while the second term gives the energy
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dissipated by the normal current. Carrying out the integrals using the Josephson
relation Eq. (93) we obtain the total energy stored as

E =
~IDC

2e
ϕ−

∫
V 2

R
dt =

1

2
CV 2 − EJ cosϕ. (102)

When the system reaches a steady state, the total energy supplied by the bias
current over one cycle must be dissipated over this same period, leaving a stored
energy that has a constant average value but that is generally time dependent. In
the washboard model, the capacitive and supercurrent energies are interpreted as
kinetic and potential energies respectively. Note that the term−~IDCϕ/2e appearing
in the washboard potential Eq. (97) should be interpreted as the energy supplied
by a constant external force.

3.3.5 Retrapping Current

We can derive an expression for the retrapping current Ir in the underdamped case
by using a simple energy argument. In terms of the washboard analogy, at the
retrapping current, a particle infinitesimally close to rest ϕ̇ = 0 at a potential
maximum ϕ = −π will just reach the next potential maximum ϕ = +π where it will
again have zero velocity. Reducing the current any further will raise the potential
barrier, forcing the particle to become trapped. At the potential maximum then
V = 0, ϕ = π and the energy from Eq. (102) is E = EJ. If we now make the
approximation that E does not vary much during one cycle, which is true in the
underdamped limit, we can assume the total energy is constant at EJ and thus give
the voltage in terms of ϕ from Eq. (102) as

V 2 =
2EJ

C
(1 + cosϕ). (103)

The retrapping energy is then calculated by ensuring that the total energy supplied
as the particle goes from ϕ = −π to ϕ = +π is completely dissipated∫ T

0

IrV dt =

∫ T

0

V 2

R
dt,

~Ir
2e

∫ +π

−π
ϕ̇

dt

dϕ
dϕ =

∫ +π

−π

~
2eR

V ϕ̇
dt

dϕ
dϕ,

π~Ir
e

=
~

2eR

√
2EJ

C

∫ +π

−π

√
1 + cosϕ dϕ,

Ir =
4

πR

√
EJ

C
,
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where the integral has been evaluated using the double angle formula. Using the
definition of EJ one may then show that the fraction Ir/Ic depends only on βc

through the simple relation

Ir =
4

π
√
βc
Ic. (104)

3.4 Finite Temperature Effects

So far we have not included any effects of thermal currents in our RCSJ model, but
they can be included straightforwardly by adding a Johnson-Nyquist noise current
term Ĩ(t) to Eq. (95) as follows

IDC + Ĩ(t) = Ic sinϕ+
~

2eR

dϕ

dt
+

~C
2e

d2ϕ

dt2
. (105)

This noise current should satisfy the usual correlation function

〈Ĩ(t)Ĩ(t′)〉 =
2kBT

R
δ(t− t′), (106)

where δ(t− t′) is the Dirac delta function. This equation assumes that the noise is
a Gaussian uncorrelated process, meaning that at each point in time Ĩ(t) takes on a
random value given by a Gaussian distribution with zero mean and a finite variance
σ2

noise given by

σ2
noise =

2kBT

R∆t
, (107)

where ∆t is the time step over which the noise is sampled. We can write the cor-
relation function in terms of dimensionless quantities by defining ĩ(t) = Ĩ(t)/Ic and
measuring time again in units τc = ωct. After using the transformation properties
of the Dirac delta function we obtain

〈̃i(τc)̃i(τ ′c)〉 = 2
T

TJ
δ(τc − τ ′c), (108)

where TJ is the temperature scale associated with the Josephson energy EJ = kBTJ =

~Ic/2e. The corresponding variance is

σ2
noise =

2

∆τc

T

TJ
. (109)

These equations imply that temperature fluctuation effects become important only
when the thermal energy kBT is comparable or greater than the Josephson energy
EJ i.e. the height of the potential barriers in the washboard model. In insulating
tunnel junctions temperature effects are usually only significant near Tc whereas in
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Figure 11: I-V curves of an overdamped junction (βc = 0.1) at four different tem-
peratures by numerically solving Eq. (105). At T = 0 (blue line) we have the usual
analytical form Eq. (100), while at finite temperatures T/TJ = 0.1, 0.5, 1.0 (orange,
green and red lines) a finite voltage develops even at IDC < Ic due to phase slip pro-
cesses. At higher temperatures these processes are more common leading to higher
voltages, and in the limit T � TJ we recover an Ohmic curve 〈V 〉 = IDCR.

metallic weak links temperature effects can be important at lower temperatures due
to the much lower critical currents involved. A typical critical current of Ic = 100nA
corresponds to a Josephson temperature of TJ = 2.38K.

3.4.1 Thermal Effects in Overdamped Junctions

In overdamped junctions βc � 1, the ideal I-V curve Eq. (100) is fundamentally
modified by the presence of thermal fluctuations. These fluctuations allow a finite
voltage even when I < Ic due to so-called ‘phase-slip’ processes where the washboard
particle can be kicked out of one potential into a lower one by the thermal current,
causing a phase shift of ∆ϕ = 2π. This same process can then occur many times,
leading to a finite velocity of the washboard particle, and thus a finite voltage which
is less than if the particle was continuously rolling down as happens when IDC > Ic.
Numerically produced I-V curves for an overdamped junction (βc = 0.1) at finite
temperatures are shown in Fig. 11 which show this finite voltage due to phase slip
processes developing as the temperature T becomes comparable to the Josephson
temperature TJ.

3.4.2 Thermal Effects in Underdamped Junctions

In underdamped junctions βc � 1, the particle can also randomly receive a kick
big enough to allow it to transition over a potential barrier. However in this case
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Figure 12: I-V curves of an underdamped junction (βc = 10) at four different tem-
peratures by numerically solving Eq. (105), showing both the increasing and de-
creasing current paths, distinguished by the arrow directions. At T = 0 (blue line)
the switching and retrapping currents are Ic and Ir, while at finite temperatures
T/TJ = 0.05, 0.1, 0.2 (orange, green and red lines) the switching current decreases
while the retrapping current increases, leading to the eventual elimination of hys-
teresis in the limit T � TJ.

due to the low damping it becomes harder for the particle to become trapped again
and carries on running in the finite voltage state. This leads to the effective critical
current at which a finite voltage develops, sometimes called the switching current
Isw, being reduced below the ideal value Ic. This is a stochastic process, so that
different values of the switching current are measured with each current sweep, but
the mean value has been calculated by Fulton and Dunkleberger [61] to be

〈Isw〉 = Ic{1− [(T/2TJ) ln(ωpδt/2π)]2/3}, (110)

where δt is the time taken to experimentally sweep the bias current. Assuming
δt ≈ 1sec, this can be up to 10 orders of magnitude larger than the time scale 1/ωp

so that ln(ωpδt/2π) ∼ 10 and the reduction in Ic can become significant even when
T/TJ ≈ 0.1.

While a fluctuation can cause the particle to transition from a trapped state to a
running state, the reverse process is also possible where a particle rolling down the
washboard receives a random kick strong enough to lower its velocity causing it to
retrap. This retrapping can occur above the ideal value Ir so that while the effective
critical current is reduced by thermal fluctuations, the effective retrapping current
is increased. The combined effect of both these processes leads to the suppression
and eventual elimination of hysteresis in the I-V curve as the critical and retrapping
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currents approach each other. Numerically produced I-V curve for an underdamped
junction (βc = 10) are shown in Fig. 12 showing this elimination of hysteresis as T
increases.

3.5 AC Bias and Shapiro Steps

In 1963, a few months after the first experimental detection of the Josephson effect by
Anderson and Rowell [49], Shapiro confirmed these findings and made an important
discovery of his own [4]. He found that when a Josephson junction is irradiated
with radiation of a frequency ω1, a series of constant voltage steps arise in the I-V
characteristic at voltages 〈V 〉 = n~ω1/2e. On these ‘Shapiro steps’, the frequency
of the Josephson supercurrent 2e〈V 〉/~ is thus locked to multiples of ω1, and this
historically provided the first indirect evidence of the AC Josephson effect.

A theoretical understanding of Shapiro steps can be obtained by treating the
radiation as an ideal AC voltage source

V = VDC + VAC cos(ω1t). (111)

Similar to the DC bias case, an AC current bias is a much more realistic assumption
since the current of a small impedance device is fixed by the resistance of the external
circuit [60]. However using the ideal voltage bias Eq. (111) gives some useful
qualitative results. Integrating the AC Josephson relation Eq. (93) thus tells us
how the phase ϕ evolves in time

ϕ(t) = ϕ0 +
2eVDC

~
t+

2eVAC

~ω1

sin(ω1t), (112)

and we can find the supercurrent Is by

Is
Ic

= sinϕ (113)

= Im {exp(iϕ)} (114)

= Im
{

exp

(
i

(
ϕ0 +

2eVDC

~
t

))
exp

(
i
2eVAC

~ω1

sin(ω1t)

)}
, (115)

where Im{} indicates the imaginary component of the enclosed expression. To pro-
ceed we must use the Jacobi-Anger expansion

exp(iz sin θ) =
+∞∑

n=−∞

Jn(z) exp(inθ), (116)
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where Jn(z) are Bessel functions of the first kind, yielding

Is
Ic

= Im

{
exp

(
i

(
ϕ0 +

2eVDC

~
t

)) +∞∑
n=−∞

Jn
(

2eVAC

~ω1

)
exp(inω1t)

}
, (117)

= Im

{
+∞∑

n=−∞

Jn
(

2eVAC

~ω1

)
exp

(
i

(
ϕ0 +

2eVDC

~
t+ nω1t

))}
, (118)

=
+∞∑

n=−∞

Jn
(

2eVAC

~ω1

)
sin

(
ϕ0 +

2eVDC

~
t+ nω1t

)
. (119)

It is also convenient to make the transformation n→ −n using the identity J−n(z) =

(−1)nJn(z)

Is
Ic

=
+∞∑

n=−∞

(−1)nJn
(

2eVAC

~ω1

)
sin

(
ϕ0 +

2e

~

(
VDC −

n~ω1

2e

)
t

)
, (120)

from which it is obvious that there is a DC component of the supercurrent at pre-
cisely the voltages VDC = n~ω1/2e observed by Shapiro.

In the experimentally relevant AC current bias case, this DC component of the
supercurrent leads to the formation of the Shapiro plateaus in current appearing at
these voltage steps. We can see this numerically by adding an additional AC current
source IAC sin(ω1t) to our RCSJ model Eq. (95)

IDC + IAC sin(ω1t) = Ic sinϕ+
~

2eR

dϕ

dt
+

~C
2e

d2ϕ

dt2
, (121)

which upon non-dimensionalizing in the same way as Eq. (96) becomes

iDC + iAC sin(ω̄1τc) = sinϕ+ ϕ̇+ βcϕ̈, (122)

with iAC = IAC/Ic and ω̄1 = ω1/ωc. Solving this equation for various values of
the DC component of the bias iDC leads to the I-V characteristic plotted in Fig.
(13). Multiple Shapiro plateaus are visible, with higher plateaus having generally
smaller widths, providing an adequate theory to describe Shapiro’s experimental
observations.

A numerical analysis of the dependence of the Shapiro plateau widths on the AC
bias strength was carried out by P. Russer [62]. The maximum supercurrent before
entering the finite voltage state differs from Ic due to the influence of the AC current
and may be conveniently considered as the width of an n = 0 Shapiro step. The
dependence of this maximum current, as well as the widths of the n = 1 and n = 2
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Figure 13: I-V curve of an AC current biased Josephson junction, produced by
numerically solving Eq. (122) with ω̄1 = 0.5, iAC = 0.8 and βc = 0.1. Shapiro
plateaus are visible at voltages 〈V 〉/IcR = nω̄1. i.e. 〈V 〉 = n~ω1/2e, with decreasing
step sizes on higher plateaus.

steps, on the AC bias strength iAC is shown in P. Russer’s results in Fig. 14. The
step widths oscillate as a function of iAC in a qualitatively similar way to the Bessel
function form Eq. (120) found in the voltage bias treatment, with higher steps and
lower frequencies ω̄1 having generally lower amplitudes.

In the next chapter we will discuss new effects that arise when the Josephson
weak link is suspended and allowed to oscillate mechanically. In particular, we will
see the emergence of Shapiro-like constant voltage plateaus in the junctions I-V
characteristic where the supercurrent frequency becomes locked to the weak link’s
mechanical resonance frequency.
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Figure 14: Dependence of the maximum supercurrent before entering the finite
voltage state (n = 0) and the width of the first two Shapiro steps (n = 1) and
(n = 2) (in units Ic) as a function of the AC bias current amplitude iAC, adapted
from the work of P. Russer [62]. Four different values of the driving frequency ω̄1 were
used and each show that the width of the steps oscillate in a qualitatively similar
way to the Bessel function form Eq. (120) found in the voltage bias treatment.
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4 Josephson-Mechanical Coupling

Figure 15: (a) Electromechanical resonator suspended between two superconduct-
ing contacts above a substrate. The system is biased with a constant current IDC
and vibrates in the presence of an in-plane magnetic field B. A constant back-gate
voltage applied to the substrate can be used to tune the mechanical resonant fre-
quency. (b) Equivalent circuit of the RCSJ model. Current may flow through either
resistive, capacitive or supercurrent channels. Mechanical oscillations produce an
extra electromotive force that redistributes the current through the channels.

In the previous chapter we studied the Josephson effect in detail. We saw how a
Josephson supercurrent Ic sinϕ can flow through a weak link between two supercon-
ducting electrodes, and saw that when a voltage drop V is present between the two
electrodes this supercurrent becomes AC with a frequency dϕ/dt = 2eV/~. In this
chapter we will investigate new effects that arise when the weak link is suspended
and allowed to oscillate due to electromechanical coupling between the Josephson
supercurrent and its mechanical motion.

By means of numerical as well as analytical investigations, we show how existing
experimental setups can be used to induce and detect high-frequency mechanical
oscillations in suspended weak links using purely DC current bias conditions. Ex-
ploiting a setup that allows one to tune the coupling strength between electronic
and mechanical degrees of freedom, we explore the Josephson effect in regimes that
have not been studied before, revealing several features in the DC I-V characteristic.
Among them we analyze Shapiro step features that appear for weak electromechan-
ical coupling as well as new mechanically induced hysteresis loops. We unveil that
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for strong coupling these new Shapiro steps collapse to a zero voltage state with
a sudden mechanical-induced retrapping due to energy being subtracted from the
electronic system by the oscillations. Accessing the strong coupling regime thus
results in a dramatic shift in the retrapping current of up to 50%. We reveal how
the crossover between the weak and strong coupling regimes is intimately related to
the quality factor of the resonator. Remarkably, our predictions suffice to unveil all
the fundamental properties of the resonator, i.e. not just its proper frequency but
also the quality factor, allowing their direct experimental measurements by simply
recording the DC I-V curve without any additional measurement setup.

4.1 Model

We analyze theoretically a nanomechanical resonator of length l suspended between
two superconducting contacts and biased by a DC current IDC [see Fig. 15(a)].
The suspended resonator is subject to an in-plane magnetic field B that allows one
to tune the coupling between the electronic current and the fundamental flexural
deformation mode via the Lorentz force. The proposed device behaves as a Joseph-
son weak link and thus allows us to explore how the Josephson junction dynamics
of the previous section are modified when coupled to mechanical vibrations. This
rather standard setup can be realised experimentally in various ways using differ-
ent suspended resonators, e.g. nanowires [20], one dimensional carbon nanotubes
(CNTs) [63–67] or ultra-thin two-dimensional materials like graphene [68, 69] and
transition metal dichalcogenides [70].

The essential idea is to enter the running state so that there is an AC supercurrent
Ic sinϕ whose frequency can be matched to the resonance frequency ω0 of the res-
onator’s fundamental flexural mode by the Josephson relation dϕ/dt = 2eV/~ = ω0.
The applied in-plane magnetic field can then exert a Lorentz force on the super-
current which will activate out of plane mechanical vibrations. This idea has been
explored previously in the simple voltage bias case [12, 13], but as mentioned in
section 3.3, the vast majority of Josephson junction experiments are done with a
current bias since the current of a low resistance device is fixed by the resistance of
the external circuit [25, 60]. Here we consider the more realistic current bias case.
Obviously in this case we cannot match the voltage to the resonance frequency
directly, but we can choose the bias current so that the system develops a time
averaged voltage 〈V 〉 such that we reach the resonance condition

〈V 〉 = V0 =
~ω0

2e
, (123)
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leading to forced amplification of oscillations.

4.2 Achieving Resonance

There are two main problems that must be overcome in order to activate mechanical
oscillations in the current bias case.

• How can we obtain an AC electronic current through the device if the total
bias current is DC?

• In most devices the mechanical resonance frequency is much lower than the
characteristic frequency of the Josephson junctions i.e. ω0 < ωc (ω0/ωc ≈ 10−3

for graphene and nanowire devices [68, 69, 71, 72] and ω0/ωc ≈ 0.1 for carbon
nanotubes [27,63–67,73]). How can we reach low enough voltages to reach the
resonance condition Eq. (123)?

Pleasingly, both difficulties may be overcome by ensuring our device is in the un-
derdamped (βc � 1) regime.

The first problem may be overcome by realising that the displacement current is
not carried by charge carriers through the device but is a result of charge accumu-
lation at the superconducting interfaces, this is the effective capacitor in the RCSJ
model. The total electronic current which will experience the Lorentz force is thus
given only by the supercurrent and normal current contributions. As discussed in
section 3.3.3, in the underdamped limit the AC supercurrent is compensated mostly
by the displacement current, leaving a normal current / voltage which is strongly
DC. This results in a strongly AC electronic current which can be exploited to
activate mechanical vibrations, despite using a DC current bias.

The second problem may be overcome if we recall that in the underdamped case
there is a hysteresis in the junction’s I-V characteristic which allows us to decrease
the current from above Ic and remain in the running state until a retrapping current
at Ir = 4Ic/π

√
βc. In this way much lower voltages may be achieved, with the lowest

possible being of the order

IrR ∼
~ωp

2e
, (124)

where ωp =
√

2eIc/~C is the plasma frequency of the junction. Thus, as long as we
satisfy the important condition

ω0 & ωp, (125)

then the junction is underdamped enough to reach the resonant condition on the
decreasing current path. This is illustrated by Fig. 16.
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Figure 16: Sketch of an I-V curve for an underdamped junction. The voltage V0 =
~ω0/2e needed to activate mechanical vibrations in our setup is typically less than
the characteristic voltage IcR and thus cannot be reached on the increasing current
path (blue line). However if the junction is underdamped enough, we can exploit
the hysteresis and reach lower voltages, and thus the resonant condition, on the
decreasing current path (red line).

In terms of βc the above condition can be written as

βc &

(
ωc

ω0

)2

, (126)

but from an experimental point of view, one should increase the capacitance above
some threshold value

C &
2eIc
~ω2

0

. (127)

Fortunately, typical graphene and CNT based suspended Josephson weak links op-
erate in this underdamped regime with βc ∼ 10 − 100 [71–73]. In any case, the
capacitance can always be increased by connecting the junction in parallel with an
external capacitor [74].

4.3 Equations of Motion

We will write down the equations of motion of our system by using a modification
of the familiar RCSJ model discussed in Section 3.2. The presence of an in-plane
magnetic field has two major effects. First, it generates a Lorentz force on the
electronic currents which induces mechanical oscillations. These in turn produce
an additional electromotive force across the weak link that redistributes the current
through the channels.

Referring to our model Fig. 15(a), the electric field between the superconductors
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may be expressed as E = Q/Cl ŷ with ŷ the direction of positive current flow and
Q the charge accumulation at the superconducting interface, while the in-plane
magnetic field is B = B ẑ. Due to the oscillations of the weak link the charge
carriers acquire a transverse velocity v = dx/dt x̂ that couples to the magnetic field
to produce an electromotive force. Here we use the approximation that the weak
link is displaced uniformly, including the spatial profile simply modifies the coupling
strength by a factor of order unity. The normal current density is then

Jn = σn(E + v ×B) =
σn

l

(
Q

C
−Bldx

dt

)
ŷ, (128)

with σn the conductivity of the normal metal. In terms of the resistance, the normal
current is given by

In =
1

R

(
V −Bldx

dt

)
, (129)

where V is the voltage drop measured across the device given by

V =

∫
E · dl =

Q

C
. (130)

The supercurrent may still be expressed as

Is = Ic sinϕ, (131)

However referring to the derivation given in Section 3.2, the gauge-invariant phase
ϕ is no longer given simply by φ, the phase difference between the macroscopic wave
functions of the two superconductors, but instead the two are related by

ϕ = φ− 2e

~

∫
A · dl, (132)

where A is the vector potential and the line integral is taken along the weak link.
We also showed that φ evolves in time according to dφ/dt = 2eV/~ so that ϕ evolves
in time as

dϕ
dt

=
2e

~

(
V − d

dt

∫
A · dl

)
. (133)

In our case we can choose the gauge A = Bx′ŷ. Here x′ is a spatial position, whereas
x is the displacement of the weak link, of course when we perform the integral we
integrate over the line x′ = x. Since dl = dyŷ and we integrate over the length l of
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the weak link, we obtain

dϕ
dt

=
2e

~

(
V −Bldx

dt

)
. (134)

Note that in our case A itself is not time dependent, but the path over which we
integrate is since the weak link is oscillating.

The displacement current is still given by

Id =
dQ

dt
= C

dV

dt
, (135)

so that we can finally write the current conservation equation as

IDC = Ic sinϕ+
1

R

(
V −Bldx

dt

)
+ C

dV

dt
, (136)

which upon substitution of Eq. (134) can be written as a differential equation in ϕ
and x

IDC = Ic sinϕ+
~

2eR

dϕ
dt

+
~C
2e

d2ϕ

dt2
+ CBl

d2x

dt2
. (137)

In comparison with the uncoupled case, an extra current emerges resulting directly
from the electromechanical coupling. It is through this extra term that the oscillator
affects the I-V characteristic of the weak link and allows the oscillations to be de-
tected. In particular, during resonance this extra current oscillates with a frequency
ω0. As this scenario is analogous to the case of a Josephson weak link biased by an
AC current, we may expect a Shapiro plateau to develop at a voltage V0 = ~ω0/2e

when vibrations are induced.

The flexural mode of the suspended weak link is modelled mechanically as a
simple harmonic oscillator7 with mass M , resonance frequency ω0, damping coef-
ficient Γ0 and quality factor QΓ = ω0/Γ0. As to be seen later, anharmonic effects
are irrelevant in this work as only small amplitude mechanical oscillations will be
activated. Taking into account the Lorentz force exerted on the electronic currents
by the magnetic field, the equation of motion of the oscillator can be written as

d2x

dt2
+ 2Γ0

dx
dt

+ ω2
0x =

Bl

M
(Ic sinϕ+ In) . (138)

7The displacements we predict are significantly larger than the zero point motion of the res-
onator, justifying this classical treatment.
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Substituting Eq. (137) into Eq. (138), we obtain(
1 +

B2

B2
0

)
d2x

dt2
+ 2Γ0

dx
dt

+ ω2
0x =

Bl

M

(
IDC −

~C
2e

d2ϕ

dt2

)
. (139)

The electromechanical coupling produces a correction to the effective oscillator
mass of the form M(B/B0)2, where we introduced the magnetic field scale B0 =

(1/l)
√
M/C. The strength of the electromechanical coupling can then be expressed

in terms of the dimensionless parameter µ = B/B0. Similarly, we introduce di-
mensionless quantities for the current iDC = IDC/Ic, time τ = ω0t and oscillator
displacement a = x/x0 − iDCµ. Here x0 = B0Icl/Mω2

0 is the displacement at which
the restoring force equals the magnetic force scale B0Icl and we have subtracted the
small constant displacement arising from the force BIDCl.

In terms of these dimensionless quantities, Eqs. (137) and (139) can be rewritten
as

iDC = sinϕ+ β1ϕ̇+ β2ϕ̈+ µä, (140)

(1 + µ2)ä+
2

QΓ

ȧ+ a = −µβ2ϕ̈. (141)

Here β1 = ω0/ωc, β2 = β2
1βc and a dot over a quantity refers to a derivative with

respect to τ (recall that in our discussion of the uncoupled case we instead measured
time in units of τc = ωct). The coupled AC Josephson relation Eq. (134) can now
also be written in the simple form

ϕ̇ =
V

V0

− µ

β2

ȧ. (142)

The key experimental measurement is the DC time averaged voltage 〈V 〉. Since 〈ȧ〉
and thus the second term of Eq. (142) have zero average, we can calculate the DC
voltage in units of V0 very simply as

〈ϕ̇〉 =
〈V 〉
V0

. (143)

Eqs. (140) and (141) capture the essential aspects of the coupled Josephson-mechanical
system. Their solutions and corresponding I-V characteristics obtained both numer-
ically and analytically will be the main topic of this chapter. However first we will
briefly discuss the Lagrangian and Hamiltonian that give rise to these equations, in
anticipation for their use in subsequent sections.
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4.4 Lagrangian Formulation

The equations of motion (137) and (138) may be derived from the Euler-Lagrange
equations

d
dt

∂L
∂(dqi/dt)

− ∂L
∂qi

= − ∂P

∂(dqi/dt)
, (144)

with generalized coordinates qi = {ϕ, x} [75]. The Lagrangian L and dissipation
function P are given by

L =

∫
IDCV dt+

1

2
CV 2 + EJ cosϕ+

1

2
M

(
dx

dt

)2

− 1

2
Mω2

0x
2, (145)

P =
(V −Bldx/dt)2

2R
+MΓ0

(
dx

dt

)2

, (146)

which upon using the Josephson relation Eq. (134) become

L =
~IDC

2e
ϕ+

1

2
C

(
~
2e

dϕ

dt

)2

+ EJ cosϕ+
1

2
(M + CB2l2)

(
dx

dt

)2

(147)

− 1

2
Mω2

0x
2 +BIDClx+

~
2e
CBl

dϕ

dt

dx

dt
,

P =
1

2R

(
~
2e

dϕ

dt

)2

+MΓ0

(
dx

dt

)2

. (148)

A dimensionless Lagrangian and dissipation function may also be defined by L̄ =

L/EJ and P̄ = P/EJω0 respectively. Using our dimensionless scales of the previous
section these may be written as

L̄ =
1

2
β2

(
ϕ̇+

µ

β2

ȧ

)2

+ cosϕ+ iDCϕ+
1

2β2

(
ȧ2 − a2

)
, (149)

P̄ =
1

2
β1ϕ̇

2 +
1

QΓβ2

ȧ2, (150)

and one may easily show that upon insertion to the Euler-Lagrange equations

d
dτ

∂L̄
∂q̇i
− ∂L̄
∂qi

= −∂P̄
∂q̇i

, (151)

with qi = {ϕ, a}, that the dimensionless equations (140) and (141) are recovered.
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4.5 Hamiltonian and Energy

We may also derive the Hamiltonian of the system in the usual way

H =
∑
i

dqi
dt

∂L
∂(dqi/dt)

− L. (152)

where the canonical momenta ∂L/∂(dqi/dt) are given by

∂L
∂(dϕ/dt)

=
~C
2e

(
~
2e

dϕ

dt
+Bl

dx

dt

)
=

~
2e
CV, (153)

∂L
∂(dx/dt)

= (M + CB2l2)
dx

dt
+

~
2e
CBl

dϕ

dt
= M

dx

dt
+BlCV, (154)

and we obtain

H = −
∫
IDCV dt+

1

2
CV 2 − EJ cosϕ+

1

2
M

(
dx

dt

)2

+
1

2
Mω2

0x
2, (155)

H = −~IDC

2e
ϕ+

1

2
C

(
~
2e

dϕ

dt

)2

− EJ cosϕ+
1

2
(M + CB2l2)

(
dx

dt

)2

(156)

+
1

2
Mω2

0x
2 −BIDClx+

~
2e
CBl

dϕ

dt

dx

dt
, .

Comparing the Hamiltonian with the Lagrangian it is clear that they can also be
written in the traditional forms H = k.e.+ p.e. and L = k.e.− p.e. with an effective
kinetic energy

k.e. =
1

2
CV 2 +

1

2
M

(
dx

dt

)2

, (157)

and effective potential energy

p.e. = −
∫
IDCV dt− EJ cosϕ+

1

2
Mω2

0x
2. (158)

The first term in the Hamiltonian Eq. (155) is the energy of the external source,
which continuously decreases in the running state as energy is supplied to the
Josephson-mechanical system. Removing this term, we are left with the total energy
of the system, being the energy stored by the displacement current and supercurrent,
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plus the kinetic and potential energy of the oscillator.

E =
1

2
CV 2 − EJ cosϕ+

1

2
M

(
dx

dt

)2

+
1

2
Mω2

0x
2, (159)

E =
1

2
C

(
~
2e

dϕ

dt

)2

− EJ cosϕ+
1

2
(M + CB2l2)

(
dx

dt

)2

(160)

+
1

2
Mω2

0x
2 +

~
2e
CBl

dϕ

dt

dx

dt
.

The Hamiltonian and energy may both be put in dimensionless forms H̄ = H/EJ

and Ē = E/EJ as follows

H̄ =
1

2
β2

(
ϕ̇+

µ

β2

ȧ

)2

− cosϕ− iDCϕ+
1

2β2

(
ȧ2 + a2

)
, (161)

Ē =
1

2
β2

(
ϕ̇+

µ

β2

ȧ

)2

− cosϕ+
1

2β2

(
ȧ2 + (a+ iDCµ)2

)
. (162)

It should be noted that in our definition a = x/x0−iDCµ we removed the slack due to
the constant force BIDCl. This results in extra constant terms in the dimensionless
forms of the Lagrangian and Hamiltonian which may be discarded since the same
equations of motion are obtained. Finally we note that the energy may be split up
into three contributions Ē = Ēϕ + Ēm + Ēc, being the terms that depend on ϕ (the
‘electronic energy’)

Ēϕ =
1

2
β2ϕ̇

2 − cosϕ, (163)

the terms that depend on a (the ‘mechanical energy’)

Ēm =
1

2β2

(
(1 + µ2)ȧ2 + (a+ iDCµ)2

)
, (164)

and the terms that couple them (the ‘coupling energy’)

Ēc = µȧϕ̇. (165)

The rate of energy change is given by

dĒ
dτ

= iDCϕ̇− β1ϕ̇
2 − 2

QΓβ2

ȧ2 (166)

where the first term on the right-hand side is the power supplied by the external
current while the second and third terms describe energy losses due to Joule heating
and the intrinsic damping of the resonator. When the system reaches a steady state,
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the supplied energy must be completely dissipated on average, i.e.,

iDC〈ϕ̇〉 = β1〈ϕ̇2〉+
2

QΓβ2

〈ȧ2〉. (167)

This important energy balance equation is obeyed by any steady state solution, and
will be an important test for any analytical treatment. In the uncoupled case at
large currents, it simply leads to the Ohmic solution 〈ϕ̇〉 ≈ iDC/β1. Upon cou-
pling to mechanical oscillations, the intrinsic damping of the oscillator must also
be considered. Energy is transferred from the electronic subsystem to mechanical
oscillations leading to measurable effects on the total voltage across the device.

4.6 Weak-Coupling Limit

Due to the highly nonlinear nature of Eqs. (140) and (141), their solutions are
expected to display strong dependence on initial conditions. A general exact ana-
lytical solution cannot be achieved. In what follows, we first numerically solve the
equations to establish the characteristic I-V curve. The properties of the numerical
solutions will then suggest an ansatz for a semianalytical treatment of the problem
leading to a good agreement with the numerically established I-V curve.

We numerically solve Eqs. (140) and (141) using a fourth order Runge-Kutta
method. The experimentally tunable parameters are the input current iDC and the
coupling parameter µ, while the directly measurable quantity is the average voltage,
〈V 〉/V0 = 〈ϕ̇〉. All parameters other than iDC and µ are sample specific, as such
we use the following parameters which are consistent with previously studied CNT
devices [27, 63–67, 73]: Ic = 10nA, R = 330Ω, βc = 200, ω0 = 1GHz, QΓ = 103,
M = 10−20kg, l = 1µm. All other parameters may be derived from these, including
the important dimensionless quantities, β1 = 0.1, β2 = 2 and the dimensional scales
V0 = 0.3µV, B0 = 10T, x0 = 10pm.

Unless otherwise stated, the numerical simulations shown here will be carried out
with the above choice of parameters. While these are typical parameters, state of
the art devices may have larger quality factors QΓ = 106 and resonance frequencies
ω0 = 10GHz which allow measurements to be made at higher temperatures and
lower magnetic fields, as will be discussed in later sections. We have verified that
the general features of our analysis are present for a wide range of parameters as
long as the resonance region can be reached, i.e. if the junction is underdamped
enough. All simulations were performed at zero temperature with no noise currents,
the limits of validity of this approximation and the possible effects of temperature
are discussed in a later section.
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For now we will look at cases where µ is not too large, the weak coupling regime,
where the predominant feature is a Shapiro-like plateau. If µ exceeds some critical
value, we enter a strong coupling regime that is characterized by sudden retrap-
ping into the trapped state. The numerical value of µ where this strong coupling
regime is reached will be discussed in detail later when we look at the semianalytical
treatment.

4.6.1 Mechanically Induced Shapiro Steps

As Eqs. (140) and (141) are highly non-linear, different states can be accessed
depending on how the free parameters iDC and µ are varied. This was already seen
in the uncoupled case µ = 0 in underdamped junctions where the decreasing and
increasing current paths yielded different I-V curves. Now we are free to take any
path in the space (iDC, µ) when performing an experiment and each choice can yield
wildly different results. The simplest choice is a decreasing current path with a fixed
coupling µ, and that is what we shall use in this section, moving on to some more
complicated procedures later.

We employ continuous initial conditions whereby we start with iDC > 1, where
the only solution is the running state 〈ϕ̇〉 ≈ iDC/β1, and gradually decrease iDC in
small increments, at each point using as initial conditions the results for a, ϕ, ȧ and ϕ̇
from the simulation for the previous value of iDC after transients have decayed. This
adequately models the quasi-static process in which the characteristic time scales of
the system are much shorter than the time over which the impressed current iDC is
experimentally varied. This process is then repeated to obtain the I-V curves for
different values of µ.

The I-V curves for four different values of µ are plotted in Fig. 17(a), along
with corresponding plots of the root mean square displacement xrms =

√
〈x2〉 in

Fig. 17(b). The dashed part of the curves are unphysical, showing transitions
where 〈V 〉 and xrms abruptly jump from one value to another. For µ = 0 (blue
line) we recover the usual uncoupled decreasing current path discussed extensively
in the previous chapter. However as µ increases we see that a plateau develops at
〈V 〉 = V0 = ~ω0/2e, where the supercurrent frequency is locked to the mechanical
resonance frequency. In fact we see from the corresponding values of xrms that
this plateau is associated with a strong mechanical resonance of the oscillator, with
higher currents deeper in the plateau corresponding to stronger oscillations. The
drop on to the plateau is not continuous but an abrupt transition, and similarly the
oscillator amplitude jumps up from close to zero to a finite value in a very small
current range. Increasing the coupling µ leads to an increase in the width of the
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Figure 17: (a) DC voltage 〈V 〉 and (b) root mean square mechanical oscillation
xrms =

√
〈x2〉 as functions of the applied current iDC = IDC/Ic for a simple de-

creasing current experiment, obtained by numerically solving Eqs. (140) and (141)
with β1 = 0.1, β2 = 2, QΓ = 103. Results are shown for four different magnetic
field coupling values µ = B/B0. For µ = 0 (blue line) we recover the usual un-
coupled decreasing current path, but for finite µ a Shapiro-like plateau develops at
〈V 〉 = V0 where the supercurrent and mechanical resonance frequencies are locked.
The plateau widens with increasing coupling and coincides with a resonant peak
in xrms, with the oscillations being stronger with higher currents deeper into the
plateau and with stronger coupling. Two additional small resonant peaks are visible
at low currents, these correspond to sub-harmonic Shapiro plateaus at 1/2 and 2/3
of ω0 and will be discussed further in section 4.10.

plateau and a corresponding increase in the strength of the oscillations xrms. This
behaviour is expected from the form of Eqs. (140) and (141), with the term −µβ2ϕ̈

in Eq. (141) acting as a forcing term that stimulates the oscillator into resonance
when the resonance condition is met. During resonance the term µä in Eq. (140)
then acts as an effective AC current term producing the Shapiro-like plateau.

This locking of frequencies on the Shapiro plateau may be seen in more detail by
looking at the time evolution a(τ) and ϕ̇(τ) of a particular solution. Fig. 18 shows
the solution for µ = 0.1 at the current value iDC = 0.125 where the current has just
been decreased on to the plateau solution. After a long transient period, the system
enters a resonant state and mechanical oscillations increase in amplitude. The oscil-
lations continue to increase but eventually saturate, while the average supercurrent
frequency (and thus voltage) 〈ϕ̇〉 = 〈V 〉/V0 lowers from an approximately Ohmic
value 〈ϕ̇〉 ≈ iDC/β1 to being locked at the mechanical resonant frequency 〈ϕ̇〉 = 1,
giving rise to the Shapiro plateau.

Thus we see that it is possible to activate mechanical oscillations in a suspended
Josephson weak link using only a DC current bias. By measuring the I-V character-
istic of such a junction it is then possible to detect these oscillations, and measure
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Figure 18: Time evolution a(τ) and ϕ̇(τ) for the solution to Eqs. (140) and (141)
when µ = 0.1 and at the current value iDC = 0.125 where the current has just
been decreased on to the plateau solution. After a long transient the oscillations
a(τ) increase and the supercurrent frequency 〈ϕ̇〉 becomes locked to the resonant
frequency, giving rise to the Shapiro plateau.

the mechanical frequency of the junction ω0 by measuring the voltage V0 = ~ω0/2e

at which the mechanically induced Shapiro plateau develops.
The Shapiro plateau found for our realistic parameters in Fig. 17 has a width

in current of the order ∼ 0.01Ic = 0.1nA for magnetic fields B ∼ 1T. This plateau
is measurable with state of the art devices, but we will now see that it is possible
to obtain much larger plateaus at the same coupling strengths by exploiting new
hysteresis loops that develop in our highly non-linear system.

4.6.2 Mechanically Induced Hysteresis

In the previous section we looked at a simple decreasing current experiment at fixed
coupling. We now explore what happens when we first decrease the current to reach
the Shapiro plateau, but then increase the current again. One finds that instead
of retracing the same path there is a mechanically induced hysteresis whereby the
system remains in the plateau state until much larger current values are reached.
We shall refer to this procedure as the increasing current path, although this should
be understood as increasing from an already finite voltage state, if one increased
the current from a zero voltage state we would of course stay at zero voltage until
reaching Ic.

The I-V curves obtained on this increasing current path are plotted in Fig. 19(a),
with corresponding plots of the root mean square displacement xrms =

√
〈x2〉 in Fig.

19(b). The dashed lines again show abrupt transitions. For µ = 0 (blue line) we
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Figure 19: (a) DC voltage 〈V 〉 and (b) root mean square mechanical oscillation
xrms =

√
〈x2〉 as functions of the applied current iDC = IDC/Ic for the increasing

current path described in the main text, obtained by numerically solving Eqs. (140)
and (141) with β1 = 0.1, β2 = 2, QΓ = 103. Results are shown for three different
magnetic field coupling values µ = B/B0. For µ = 0 (blue line) we retrace the same
path as the decreasing current path, but for finite µ we explore much larger plateaus
with larger oscillation amplitudes.

retrace the same path as the decreasing current path, but for finite µ we explore much
larger plateaus. For example considering the case µ = 0.06 (green line), a plateau of
width 0.3Ic is obtained by exploiting the hysteresis in the increasing current path,
compared to a plateau width 0.01Ic in the simple decreasing current path. This
represents a huge improvement in terms of the experimental feasibility of measuring
the plateau. The mechanical oscillation amplitude continues to increase as we go
deeper into the plateau, with the increasing current path producing oscillations with
roughly four times larger amplitude than the decreasing current path.

4.7 Analytical Ansatz

Having explored these mechanically induced Shapiro steps and hysteresis loops by
numerically solving Eqs. (140) and (141), we now give an analytical solution and
show in detail how these interesting new phenomena emerge. We choose a simple
ansatz for a steady state solution. For ϕ(τ) we choose

ϕ = ϕ0 + ωτ − g

ω
cos(ωτ), (168)

which is simply a statement that the voltage ϕ̇ has a constant average ω with a
sinusoidal correction of amplitude g

ϕ̇ = ω + g sin(ωτ). (169)
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For the mechanical oscillator a(τ) we again choose a simple sinusoidal ansatz, with
amplitude A and a phase lag γ compared to the voltage

a = A sin(ωτ + γ). (170)

Our task is then to substitute these into Eqs. (140) and (141) and solve for the five
unknowns ω, ϕ0, g, A, γ. We will find the latter four as functions of ω and then be
left with an equation involving only ω which we can solve.

Starting with the mechanical equation Eq. (141), after substitution we obtain

[1− (1 + µ2)ω2] sin(ωτ + γ) +
2ω

QΓ

cos(ωτ + γ) = −µβ2gω

A
cos(ωτ). (171)

We can then use the trigonometric addition formulae and match the terms propor-
tional to sin(ωτ) and cos(ωτ) from which we obtain

[1− (1 + µ2)ω2] cos γ − 2ω

QΓ

sin γ = 0, (172)

and
[1− (1 + µ2)ω2] sin γ +

2ω

QΓ

cos γ = −µβ2gω

A
, (173)

respectively. Using sin2 γ + cos2 γ = 1, Eq. (172) then gives γ in terms of ω

sin γ =
1− (1 + µ2)ω2

√
κ

, (174)

cos γ =
2ω/QΓ√

κ
, (175)

where κ is defined by

κ = [1− (1 + µ2)ω2]2 + (2ω/QΓ)2. (176)

Eq. (173) then gives A in terms of g and ω,

A = −µβ2gω√
κ

. (177)

Notice that if we had instead chosen the negative square root for κ, we would change
A→ −A and γ → γ + π which yields the same solution a(τ).

Turning now to the electronic equation Eq. (140), substituting our ansatz we
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obtain

iDC = sinϕ+ β1[ω + g sin(ωτ)] + β2gω cos(ωτ)− µAω2 sin(ωτ + γ). (178)

To expand out the sinϕ term we can write

sinϕ = sin[ϕ0 + ωτ − (g/ω) cos(ωτ)] (179)

= Im
{
ei(ϕ0+ωτ)e−i(g/ω) cos(ωτ)

}
(180)

and then use the Jacobi-Anger identity

eiz cos θ =
+∞∑

n=−∞

inJn(z)einθ, (181)

as we already did when looking at the regular Shapiro steps in section 3.5. We then
have

sinϕ = Im

{
ei(ϕ0+ωτ)

+∞∑
n=−∞

Jn
(
− g
ω

)
ein(ωτ+π/2)

}
, (182)

which after transforming n → −n and using the identity J−n(−z) = Jn(z) finally
becomes

sinϕ =
+∞∑

n=−∞

Jn
( g
ω

)
sin[ϕ0 + ωτ − n(ωτ + π/2)]. (183)

To proceed further we must make some approximations. We have already included
only terms oscillating at the single frequency ω in our ansatz, keeping only these
terms here we obtain

sinϕ ≈ −J1

( g
ω

)
cosϕ0 +

[
J0

( g
ω

)
+ J2

( g
ω

)]
cosϕ0 sin(ωτ) (184)

+
[
J0

( g
ω

)
− J2

( g
ω

)]
sinϕ0 cos(ωτ).

Returning to Eq. (178) we can now match the terms proportional to sin(ωτ) and
cos(ωτ) as well as the constant terms to obtain the following three relations.

β1ω − iDC − J1

( g
ω

)
cosϕ0 = 0, (185)

β1g − µAω2 cos γ +
[
J0

( g
ω

)
+ J2

( g
ω

)]
cosϕ0 = 0, (186)

β2gω − µAω2 sin γ +
[
J0

( g
ω

)
− J2

( g
ω

)]
sinϕ0 = 0. (187)

In principle these three equations along with Eqs. (174), (175) and (177) suffice to
determine our five unknowns but to carry on with our analytical treatment we will
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have to make a further approximation to treat the Bessel functions. However there
is one important relation we can obtain that is worth showing is true without any
need of approximation. We proceed by combining Eqs. (185) and (186) to eliminate
cosϕ0.

β1g − µAω2 cos γ + (β1ω − iDC)

(
J0

(
g
ω

)
+ J2

(
g
ω

)
J1

(
g
ω

) )
, (188)

then inserting A from Eq. (177), cos γ from Eq. (175), and using the Bessel function
recurrence relation

Jn−1(z) + Jn+1(z)

Jn(z)
=

2n

z
, (189)

we obtain g as a function of ω

g2 =
2ω(iDC − β1ω)

β1 + µ2β2ω3(2ω/QΓ)/κ
. (190)

This is an important relation because we can now show that it is equivalent to the
energy conservation relation Eq. (167) as follows

iDC〈ϕ̇〉 = β1〈ϕ̇2〉+
2

QΓβ2

〈ȧ2〉, (191)

iDCω = β1

(
ω2 +

g2

2

)
+
A2ω2

QΓβ2

,

iDCω = β1

(
ω2 +

g2

2

)
+
µ2β2g

2ω4

QΓκ
,

2ω(iDC − β1ω) = g2
(
β1 + µ2β2ω

3(2ω/QΓ)/κ
)
,

from which we recover Eq. (190).

As promised we will make one final approximation to treat the Bessel functions
and continue our progress. We already saw that in underdamped junctions the
voltage is almost constant at its average value ω = 〈V 〉/V0 with small fluctuations
of amplitude g. A reasonable assumption is then g/ω � 1, allowing us to expand
the Bessel functions in the small argument limit, i.e.,

Jn(z) ≈ 1

n!

(z
2

)n
. (192)

Keeping only terms up to first order in g/ω our six equations (174), (175), (177),
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(185), (186) and (187) are then

sin γ =
1− (1 + µ2)ω2

√
κ

, (193)

cos γ =
2ω/QΓ√

κ
, (194)

A = −µβ2gω√
κ

, (195)

β1ω − iDC −
g

2ω
cosϕ0 = 0, (196)

β1g − µAω2 cos γ + cosϕ0 = 0, (197)

β2gω − µAω2 sin γ + sinϕ0 = 0, (198)

with κ a function of ω given by Eq. (176). Combining Eqs. (196) and (197) again
gives Eq. (190) so that γ, A and g are all determined as functions of ω. All that
is left is to eliminate ϕ0 by rearranging Eqs. (197) and (198) for cosϕ0 and sinϕ0

respectively and writing sin2 ϕ0 + cos2 ϕ0 = 1 as

(µAω2 cos γ − β1g)2 + (µAω2 sin γ − β2gω)2 = 1. (199)

After inserting the relevant expressions for the other unknowns, we obtain the fol-
lowing eighth order polynomial for the DC voltage ω = 〈V 〉/V0

2ω(β1ω − iDC)D2 + β1κ+ µ2β2ω
32ω/QΓ = 0, (200)

where we have introduced a new quantity D2 (the reason for this name will become
apparent)

D2 = 2µ2β2ω
3

(
β1

2ω

QΓ

+ β2ω[1− ω2(1 + µ2)]

)
+ (β2

1 + β2
2ω

2)κ+ (µ2β2ω
3)2. (201)

In principle the polynomial Eq. (200) can be solved for ω as a function of iDC

and thus produce the I-V curve, but the polynomial is eighth order and thus does
not have a general analytical solution. A smarter approach is to notice that the
current iDC appears only once in this equation and thus we can rearrange for the
bias current as a function of voltage, iDC(ω), providing an analytical form for the
I-V characteristic.

59



4 JOSEPHSON-MECHANICAL COUPLING Thomas George McDermott

Figure 20: The current function iDC(ω) [Eq. (202)] plotted for β1 = 0.1, β2 = 2,
QΓ = 100 and µ = 0.04. This shows the allowed values of ω for a given current
iDC and when the axes are flipped gives the I-V characteristic in its traditional
form. Dashed lines are unphysical solutions with ∂iDC/∂ω < 0. The resonant peak
at ω = 1 splits the I-V characteristic into two branches, an upper Ohmic branch
iDC ≈ β1ω (red line) and a lower branch that includes half of the resonant peak
giving rise to the Shapiro plateau (orange line).

4.7.1 Current Function

The current function iDC(ω) is thus found from rearranging Eq. (200) to be

iDC(ω) = β1ω +
β1κ+ µ2β2ω

3(2ω/QΓ)

2ωD2

. (202)

This function is plotted in Fig. 20 with the same electronic parameters as used in
our numerical results, β1 = 0.1, β2 = 2, but with a lower quality factor QΓ = 100 to
make it easier to see the qualitative features. As ω → 0, iDC → ∞ and as ω → ∞
the system becomes Ohmic iDC → β1ω as is obvious from the form of Eq. (202).
The main feature however is a sharp peak close to the resonance frequency, this
produces a wide range of current values where the voltage is pinned very close to
ω = 1 i.e. 〈V 〉 = V0 = ~ω0/2e, which will give rise to our Shapiro plateau.

We see that there are multiple possible values of ω for a given bias current iDC.
Some of these solutions may be disregarded since they give a voltage that decreases
with increasing current, ∂iDC/∂ω < 0, these solutions are marked with dashed lines
in Fig. 20. The resonant peak at ω = 1 splits the I-V characteristic into two regions,
an upper branch with ω > 1 which is essentially Ohmic, iDC ≈ β1ω, and a lower
branch with ω < 1 which contains half of the resonant peak that forms the Shapiro-
like plateau. The presence of the peak thus admits multiple physical solutions for ω
at a fixed current and induces a hysteresis loop.
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Figure 21: The electromechanical coupling when µ 6= 0 induces a hysteresis loop in
the I-V characteristic as a result of the resonant peak in iDC(ω). On the decreasing
current path (blue line) only a fraction of the resonant peak is explored producing
a small Shapiro plateau. On the increasing current path (red line) however, one can
reach the top of the peak producing a much larger plateau.

This hysteresis loop is shown in Fig. 21 from which we can see the origin of
the difference between the decreasing and increasing current paths in our numerical
treatment. On the decreasing current path (blue line) only a fraction of the resonant
peak is explored producing a small Shapiro plateau. On the increasing current path
(red line) however, one can reach the top of the peak producing a much larger
plateau.

Fig. 22 shows iDC(ω) for various coupling values µ from which we see that it
consists of a µ independent profile plus the µ dependent correction that is peaked
very close to ω = 1. Using this fact we can write the function in the form

iDC(ω) = i
(0)
DC(ω) + δiDC(ω), (203)

where the µ independent profile i(0)
DC(ω) is found simply by setting µ = 0 in Eq.

(202)

i
(0)
DC(ω) = β1

(
ω +

1

2ω(β2
1 + β2

2ω
2)

)
. (204)

This function is the blue curve plotted in Fig. 22. The µ dependent correction
δiDC(ω) can be put into the form

δiDC(ω) =
N1N2

D1D2

, (205)

61



4 JOSEPHSON-MECHANICAL COUPLING Thomas George McDermott

Figure 22: The function iDC(ω) [Eq. (202)] plotted for β1 = 0.1, β2 = 2, QΓ = 100

and µ = 0, 0.02, 0.04, 0.06. The coupling µ modifies the µ = 0 curve i(0)
DC(ω) (blue

line) simply by the addition of a resonant peak at ω ≈ 1 whose height and width
increase with increasing coupling. The mechanically induced Shapiro step is thus
predicted to grow in size with increased coupling.

where the numerator terms N1, N2 and denominator terms D1, D2 are given by

N1 = µ2β2ω
3, (206)

N2 = β1β2(ω2 − 1) + ω2β2

(
β2

QΓ
+
β1µ

2

2

)
− β2

1

QΓ
, (207)

D1 = β2
1 + β2

2ω
2, (208)

D2 = (ω2 − 1)
[
(β2

1 + β2
2ω

2)(ω2 − 1) + 2ω2µ2β2
1

]
+ ω4

(
β1µ

2 +
2β2

QΓ

)2

+ β2
1

(
2ω

QΓ

)2

.

(209)

The function δiDC(ω) is plotted in Fig. 23, where we notice the important fact that
the resonant peak is not centered at the frequency 1/

√
1 + µ2 as might be expected

from the form of the equation of motion Eq. (141) but instead a frequency ωmax

which is much closer to the bare resonance frequency ω = 1.

So far our form of δiDC(ω) is very complicated but a massive simplification occurs
by performing an expansion around ω2 = 1 under the assumptions µ2, 1/QΓ � 1.
To be more exact, we make the following perturbation

ω2 → 1 + εδω2,
1

QΓ

→ ε

QΓ

, µ2 → εµ2, (210)

keeping terms up to lowest order in ε in both the numerator and denominator. This
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Figure 23: The function δiDC(ω) plotted with the experimentally relevant param-
eters β1 = 0.1, β2 = 2, QΓ = 103 and µ = 0.08. The ‘renormalized’ frequency
1/
√

1 + µ2 plays no special role, with the peak occurring at ωmax which for these
parameters is very close to the bare resonance frequency ω = 1.

procedure yields

N1 ≈ µ2β2, (211)

N2 ≈ β1β2(ω2 − 1) +
β2

2 − β2
1

QΓ

+
β1β2µ

2

2
, (212)

D1 ≈ β2
1 + β2

2 , (213)

D2 ≈ (ω2 − 1)
[
(β2

1 + β2
2)(ω2 − 1) + 2µ2β2

1

]
+

(
β1µ

2 +
2β2

QΓ

)2

+ β2
1

(
2

QΓ

)2

. (214)

We note that this approximation is equivalent to keeping only the singular terms
(ω2 − 1) in the exact expressions, while setting ω = 1 elsewhere. Inserting these
expressions into Eq. (205), δiDC(ω) can be put into the Fano form

δiDC(ω) ≈ µ2β1β
2
2

(β2
1 + β2

2)2

[
(ω2 − ω2

Fano) + ζ2−1
ζΓ

(
Γ
2

)2

(ω2 − ω2
Fano)

2 +
(

Γ
2

)2

]
(215)

where

ωFano =

√
1− µ2β2

1

β2
1 + β2

2

, (216)

Γ =
2β1β2µ

2

β2
1 + β2

2

+
4

QΓ

, (217)

and
ζ =

β2

β1

. (218)

The Fano line shape of δiDC(ω) is difficult to see with the realistic parameters
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Figure 24: The function δiDC(ω) plotted with the parameters β1 = 1, β2 = 2,
QΓ = 103 and µ = 0.08. The blue line is the approximate Fano form Eq. (215)
and the orange dashed line is the exact function Eq. (205). When β1 and β2 are
comparable this Fano form is obvious, but when β2 � β1 the Fano form reduces to
an ordinary Lorentzian as seen in Fig. 23.

chosen in Fig. 23 but if we increase β1 to be comparable to β2 the Fano shape is
obvious, as seen in Fig. 24. The frequency ωFano plays no direct role, but helps to
define three important frequencies, those of the minimum, maximum and crossing
points of the Fano function, which are given by

ωmin =

√
ω2

Fano −
Γζ

2
=

√
1− µ2 − 2β2

β1QΓ

, (219)

ωmax =

√
ω2

Fano +
Γ

2ζ
=

√
1 +

2β1

β2QΓ

, (220)

and

ωcross =

√
ω2

Fano +
Γ

4

(
1

ζ
− ζ
)

=

√
1− µ2

2
+

1

QΓ

(
β1

β2

− β2

β1

)
, (221)

respectively. The parameter Γ is a measure of the width of the resonance, and
contains a term inversely proportional to the mechanical quality factor as is expected.
However it also contains a term proportional to µ2 showing that the resonance peak
gets wider with increased coupling. The parameter ζ = β2/β1 is a measure of the
asymmetry of the resonance and in the limit ζ → ∞ i.e. β2 � β1, the Fano form
reduces to the simple Breit-Wigner (Lorentzian) expression

δiDC(ω) ≈ µ2

β2Γ

[
1

(ω2 − 1)2
(

2
Γ

)2
+ 1

]
. (222)
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This is a good approximation for our experimentally relevant parameters as can be
seen from the Lorentzian shape of Fig. 23.

We thus see that the exact peak frequency is ωmax which is not dependent on µ
at all and is extremely close to the bare resonance frequency 1 for experimentally
relevant parameters. We now realise that the plateau found numerically is actually
not a true plateau but the slope of a resonant peak, which becomes flatter with
increasing QΓ. The frequency increases as we get deeper into the plateau at higher
currents, reaching ωmax at its deepest point.

We can also now give an expression for the plateau width, given by

δiDC(ωmax) =
µ2β3

2

(β2
1 + β2

2)2Γ
=

β3
2

(β2
1 + β2

2)2

 µ2

2β1β2µ2

β2
1+β2

2
+ 4

QΓ

 . (223)

For low µ the plateau width increases as µ2 as

δiDC(ωmax) ≈ µ2QΓβ
3
2

4(β2
1 + β2

2)2
, (224)

while for large µ the width saturates at a value β2
2/2β1(β2

1 +β2
2). In reality µ generally

cannot become too large before other effects begin to dominate, as we will see in a
subsequent chapter when discussing the strong-coupling limit, so that Eq. (224) is a
good approximation. We note that this plateau width is the full width of the plateau
explored on the increasing current path rather than the much smaller section of the
plateau found on the decreasing current path.

The area of the mechanically induced hysteresis loop can also be estimated.
Looking at Fig. 21, it is clear that the area is dominated by a right-angled trian-
gular region with height given by the max plateau width δiDC(ωmax) and a width
given by the Ohmic voltage associated with this current jump δiDC(ωmax)/β1. This
approximation is better with decreasing width of the resonance i.e. higher quality
factor QΓ and low coupling. The area is thus approximated as

Area ≈ δiDC(ωmax)2

2β1

=
1

2β1

[
µ2β3

2

(β2
1 + β2

2)2Γ

]2

, (225)

and scales as µ4 for low coupling. This area is expressed in units of IcV0 = β1I
2
cR.

Now that we have the current as a function of ω we can find similar expressions
for other important quantities. The parameter g appearing in our ansatz Eq. (168)
was expressed in terms of ω and iDC in Eq. (190). Inserting the exact expression
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Figure 25: (a) The parameter g plotted as a function of voltage ω with various
coupling values µ. (b) Zoom of the function close to the mechanical resonance
frequency ω = 1 showing a Fano-like resonance. g becomes fairly large for high
coupling deep into the plateau at ω ≈ 1 indicating that our approximation g/ω � 1
starts to break down.

for iDC(ω) in Eq. (202) we can express g in the form

g2 =
κ

D2

≈ 1

β2
1 + β2

2

[
[1− (1 + µ2)ω2]2 + (2ω/QΓ)2

(ω2 − ω2
Fano)

2 +
(

Γ
2

)2

]
, (226)

where κ and D2 are functions of ω defined in Eqs. (176) and (209). The right
hand expression is derived using the same approximation that led to the Fano form
of δiDC(ω). g is plotted as a function of ω in Fig. 25 for various coupling values
showing that once again a Fano-like resonance appears near ω = 1. The peak of
this resonance in g occurs at a higher frequency than ωmax but because the largest
physical plateau solution occurs at ωmax the largest physical value of g is g(ωmax).
In the limit β2 � β1 where ωmax ≈ 1 this value is

g(1) ≈ 1

β2

√
1 +

(
µ2QΓ

2

)2

. (227)

We note that g can become comparable to 1 when µ2 ≈ 2(β2
2 − 1)/QΓ which for

our experimental parameters is µ ≈ 0.06. Since ω ≈ 1 in the region of interest,
our approximation g/ω � 1 breaks down and our analytics become quantitatively
incorrect above this point. However we will see that we can still make qualitative
predictions that are in good agreement with the numerical results.

The amplitude of the mechanical oscillations themselves can also now be calcu-
lated from Eq. (177). Inserting g2 = κ/D2 we obtain

A = −µβ2ω√
D2

. (228)
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Figure 26: Mechanical oscillation amplitude |A| plotted as a function of ω for various
coupling values µ. The true resonance frequency of the coupled system is ωFano which
differs only slightly from 1 for low coupling. The width of the resonance is given by
Γ which depends on QΓ and increases with µ.

Using the same approximations that led to the Fano form of δiDC(ω) i.e. expanding
around ω2 = 1 with µ2, 1/QΓ � 1, we obtain the Lorentzian form

A ≈ − µβ2√
β2

1 + β2
2

1√
(ω2 − ω2

Fano)
2 +

(
Γ
2

)2
. (229)

The mechanical oscillation amplitude |A| is plotted in Fig. 268. We thus see that
ωFano, which depends on µ according to Eq. (216), has a physical interpretation as
the true mechanical resonance frequency of the coupled system.

The phase delay γ between the voltage and mechanical oscillation is calculated
from the two equations

sin γ =
1− (1 + µ2)ω2

√
κ

, (230)

cos γ =
2ω/QΓ√

κ
, (231)

derived previously, and is plotted as a function of ω in Fig. 27. For ω � 1, γ = π/2,
and for ω � 1, γ = −π/2 with the crossover occurring in a region of width 1/QΓ

around the central frequency ω = 1/
√

1 + µ2.

8We have plotted |A| since A is negative because of the phase convention chosen for γ.
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Figure 27: The phase delay γ between the voltage and mechanical oscillations plotted
as a function of ω for various coupling values µ, calculated from Eqs. (174) and (175).
For ω � 1, γ = π/2, and for ω � 1, γ = −π/2 with the crossover occurring in a
region of width 1/QΓ around the central frequency ω = 1/

√
1 + µ2.

Figure 28: (a) The phase ϕ0 plotted as a function of ω for various coupling values µ,
calculated from Eqs. (232) and (233). Away from the resonance ϕ0 ≈ −π/2, but on
resonance it is shifted from this value. A physical interpretation of ϕ0 comes from
the fact that the average supercurrent is given by 〈sinϕ〉 = −(g/2ω) cosϕ0. This is
plotted in (b) showing that the shift of ϕ0 at resonance causes the supercurrent to
acquire a finite DC component.
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Finally the phase ϕ0 is calculated from Eqs. (197) and (198) i.e.

sinϕ0 = µAω2 sin γ − β2gω, (232)

cosϕ0 = µAω2 cos γ − β1g, (233)

after the insertion of the expressions for A, γ and g given above. The phase ϕ0 is
plotted as a function of ω in Fig. 28(a). A physical interpretation of ϕ0 comes from
the fact that the average supercurrent is given by 〈sinϕ〉 = −(g/2ω) cosϕ0, which
is plotted in Fig. 28(b). We see that off resonance we have ϕ0 ≈ −π/2 and thus the
average supercurrent is zero, but on resonance ϕ0 is shifted so that the supercurrent
acquires a finite DC component. A more useful expression for this supercurrent
average is obtained by taking the time average of our equation of motion Eq. (140),
yielding

〈sinϕ〉 = −(g/2ω) cosϕ0 = iDC − β1ω, (234)

which was found earlier in Eq. (196). This has a simple interpretation, the more the
voltage ω differs from the ideal Ohmic value iDC/β1, the greater the supercurrent’s
DC average. This DC average thus becomes very large on the Shapiro plateau.

From all these parameters we see that there are a number of important frequen-
cies in this complicated coupled problem. As we increase ω towards the mechanical
resonance, first the phase delay γ becomes zero at 1/

√
1 + µ2, then the oscillation

amplitude |A| has a maximum at ωFano then finally the plateau δiDC(ω) reaches
its maximum at ωmax. These are all distinct frequencies, different from the bare
resonance frequency ω = 1, with 1/

√
1 + µ2 < ωFano < 1 and ωmax > 1.

We thus have a good analytical theory that can explain the Shapiro-like steps that
were seen in the numerical analysis, as well as the mechanically induced hysteresis
that results in different I-V curves being obtained on the decreasing and increasing
current paths. We now move on to explore new phenomena that occur as µ continues
to increase.

4.8 Strong-Coupling Limit

In the previous section we numerically calculated the I-V curves of the coupled
system for both decreasing and increasing current paths, shown in Figs. 17 and
19 respectively. The width of the resulting mechanically induced Shapiro plateau
is predicted to increase with µ according to our analytically derived expression Eq.
(223). This agrees well with the numerical analysis when µ is not too large but fails
when µ exceeds some critical value, as we will now see.
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Figure 29: (a) DC voltage 〈V 〉 and (b) root mean square mechanical oscillation
xrms =

√
〈x2〉 as functions of the applied current iDC = IDC/Ic for a simple decreas-

ing current experiment, obtained by numerically solving Eqs. (140) and (141) with
β1 = 0.1, β2 = 2, QΓ = 103. Results are shown for five different magnetic field
coupling values µ = B/B0. The results for µ = 0.15 show that instead of forming
the Shapiro plateau, the system instead abruptly retraps to the zero voltage state
prematurely. This retrapping occurs for all coupling values µ above a critical value,
and will be shown in the next section to be a result of energy being transferred from
the electronic subsystem to the mechanical one.

4.8.1 Mechanically Induced Retrapping

Starting again with the simple decreasing current path, the numerically calculated
I-V characteristics displayed in Fig. 29 show that for µ = 0.15 the system abruptly
retraps to the zero voltage state instead of forming the Shapiro plateau. This occurs
at the current value at which we would expect the Shapiro plateau to start. The time
evolution of the system at this point is plotted in Fig. 30. After a long transient the
oscillations a(τ) increase and it seems that the system is going to enter the phase
locked Shapiro state, but instead the oscillations increase too rapidly and cannot
be maintained; the system is abruptly retrapped into the zero voltage state. The
supercurrent frequency rapidly goes to zero and oscillations decay. Soon we will see
that the analytics allow us to interpret this as due to the mechanical oscillations
subtracting too much energy away from the electronic system.

Having looked at I-V characteristics for some specific values of µ we can now look
at a colour plot showing how the Shapiro plateau develops as a continuous function
of µ. Such a colour plot is given in Fig. 31(a), displaying the average voltage 〈V 〉
as a function of both iDC and µ when traversing the decreasing current path. The
coloured lines correspond to the specific values of µ shown in Fig. 29. The white
region in this plot corresponds to the Shapiro plateau which widens as µ increases,
until we reach a critical value that we call µc2. For coupling µ above this value, the
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Figure 30: Time evolution a(τ) and ϕ̇(τ) for the solution to Eqs. (140) and (141)
when µ = 0.15 and at the current value iDC = 0.128. After a long transient the
oscillations a(τ) increase and it seems that the system is going to enter the phase
locked Shapiro state, but instead the oscillations increase too rapidly and cannot
be maintained; the system is abruptly retrapped into the zero voltage state. The
supercurrent frequency rapidly goes to zero and oscillations decay.

system instead retraps to zero voltage instead of forming the plateau, as has already
been seen in the specific case µ = 0.15 in Fig. 29. This amounts to an increase in
the retrapping current by up to 50% and should be easily detectable in state of the
art experiments. An accompanying plot of the root mean square displacement xrms

is seen in Fig. 31(b) which shows that the plateau region is characterized by strong
mechanical oscillations which grow with increasing current and magnetic field.

A natural question is whether this retrapping phenomenon occurs also on the
more complicated increasing current path. We recall that this path involves decreas-
ing the current to reach the plateau, and then increasing the current again exploiting
the mechanically induced hysteresis. Obviously we must have µ < µc2 or we would
not be able to reach the plateau initially. The I-V characteristics for this increasing
path are shown in Fig. 32(a). The plot for µ = 0.09 shows that the system is locked
to the Shapiro plateau for a small range of currents before becoming unstable and
retrapping in a similar way to the decreasing current case. There must be a lower
critical value µc1 < µc2 at which this phenomenon first occurs.

Once again a colour plot is displayed in Fig. 33(a) showing 〈V 〉 as a function
of iDC and µ, this time on the increasing current path. The full extent of the
Shapiro plateau is visible as the white region whose width grows approximately
quadratically with µ as expected from the analytical expression Eq. (223). Below
a critical coupling value µc1, as we increase the current we explore the entire width
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Figure 31: (a) DC voltage 〈V 〉 and (b) root mean square mechanical oscillation
xrms =

√
〈x2〉 as functions of the applied current IDC and magnetic field B, obtained

by numerically solving Eqs. (140) and (141) with experimentally relevant parameters
β1 = 0.1, β2 = 2, QΓ = 103, for the decreasing current path. The white region in
panel (a) shows the Shapiro plateau 〈V 〉 ≈ V0 which widens as µ increases, until a
critical value µc2 above which the plateau becomes unstable and instead the system
retraps to zero voltage prematurely. The coloured lines refer to the specific values
of µ plotted in Fig. 29.

of the plateau at which point the voltage increases to the Ohmic solution. However
above this critical value we only explore a small section of the plateau before the
system is retrapped. Again a plot of the root mean square displacement xrms is
seen in Fig. 33(b). One should compare these two colour plots to the ones for the
decreasing current path in Fig. 31. We notice that by exploiting the hysteresis we
can obtain a plateau width of approximately 0.4Ic compared to just 0.01Ic with the
decreasing current. Similarly, we can obtain mechanical oscillations that are up to
three times stronger. Clearly this increasing current path obtained by exploiting the
mechanically induced hysteresis represents a significant experimental advantage.

A comparison between the numerically calculated plateau width and the analyt-
ical one Eq. (223) is shown in Fig. 34, showing good agreement for low µ as they
both grow as µ2 but beginning to differ as we approach µc1. We believe this slight
discrepancy to be due to our approximation g/ω � 1 failing as we get deeper into
the plateau where the mechanical oscillations are very strong.

4.8.2 Fixed Current, Varying Magnetic Field

We have so far considered two simple possible experiments that both involve keeping
the magnetic field fixed while varying the current. However due to the non-linearity
of our system, and thus its strong dependence on initial conditions, there are an
infinite number of possible paths that can be taken in the space iDC, µ that will yield
different results. Most of these are of course far too complex to be experimentally
practical, but there is one additional simple one that we have not yet considered.
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Figure 32: (a) DC voltage 〈V 〉 and (b) root mean square mechanical oscillation
xrms =

√
〈x2〉 as functions of the applied current iDC = IDC/Ic for the increasing

current path described in the main text, obtained by numerically solving Eqs. (140)
and (141) with β1 = 0.1, β2 = 2, QΓ = 103. Results are shown for four different
magnetic field coupling values µ = B/B0. Similarly to the decreasing current case,
a portion of the Shapiro plateau becomes unstable when the coupling µ becomes
too large. In this case, the line at µ = 0.09 shows that the system abruptly retraps
to zero after exploring only a fraction of the whole plateau.

Figure 33: (a) DC voltage 〈V 〉 and (b) root mean square mechanical oscillation
xrms =

√
〈x2〉 as functions of the applied current IDC and magnetic field B, obtained

by numerically solving Eqs. (140) and (141) with experimentally relevant parameters
β1 = 0.1, β2 = 2, QΓ = 103, for the increasing current path. The white region in
panel (a) shows the Shapiro plateau 〈V 〉 ≈ V0 which widens as µ increases, until a
critical value µc1 above which a large portion of the plateau becomes unstable and
the system instead retraps to zero in a similar way to the decreasing current path.
The coloured lines refer to the specific values of µ plotted in Fig. 32.
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Figure 34: Shape of the Shapiro plateau region calculated numerically compared to
the shape predicted by the analytics (yellow line). The edge of the plateau is given
by the current at the local maximum point ωmax. The plateau edge is thus predicted
analytically to be iDC(ωmax, µ) = i

(0)
DC(ωmax) + δiDC(ωmax, µ), where the µ dependent

part is given by Eq. (223), growing as µ2 for low µ.

Instead of fixing the magnetic field and varying the current we do the opposite and
fix the current while varying the magnetic field. To obtain non-trivial results we of
course must be in a finite voltage regime to start with or else the system will just
remain in the trapped zero voltage state with a DC supercurrent and no mechanical
oscillations. The process then involves decreasing the current from above Ic down
to a current near the resonant region 〈V 〉 ∼ V0 and then keeping the current fixed
while increasing µ from zero.

We have simulated this experiment numerically over a wide range of starting
currents, with the results being shown in Fig. 35. Panel (a) shows the DC voltage as
a function of iDC and µ. We see that as µ increases the voltage becomes pinned to the
plateau value V0 over a wide range of currents. This constant current procedure thus
maps all the plateau states explored by the decreasing current path at constant µ (cf.
Fig. 31) but also accesses additional states, as the sharp boundary at µc2 extends into
a funnel-like feature. The system eventually retraps as the coupling is increased too
much, occurring at a different µ for each current value. At a third critical coupling
value µc3 > µc2, the plateau becomes unstable for all current values. Fig. 35(b)
shows the corresponding colour plot of the root mean square displacement, while
panels (c) and (d) show the result for specific current values corresponding to the
coloured lines in panels (a) and (b) respectively.

We thus have seen three different possible experiments that can be carried out
on this coupled system, each associated with its own critical coupling value. For
the decreasing current experiment, the plateau becomes unstable at µc2. For the
increasing current experiment, the plateau becomes unstable at µc1. Finally for the
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Figure 35: (a) DC voltage 〈V 〉 and (b) root mean square mechanical oscillation
xrms =

√
〈x2〉 as functions of the applied current IDC and magnetic field B, obtained

by numerically solving Eqs. (140) and (141) with experimentally relevant parameters
β1 = 0.1, β2 = 2, QΓ = 103, for the fixed current, increasing magnetic field path.
This constant current procedure thus maps all the plateau states explored by the
decreasing current path at constant µ (see Fig. 31) but also accesses additional
states, as the sharp boundary at µc2 extends into a funnel-like feature. At µc3,
the plateau becomes unstable for all current values. (c) DC voltage 〈V 〉 and (d)
root mean square mechanical oscillation xrms =

√
〈x2〉 for specific current values

corresponding to the coloured lines in panels (a) and (b).
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increasing magnetic field experiment, the plateau becomes fully unstable at µc3. The
results for all three of these experiments are collected for convenience together in
Fig. 36. We now carry out an analytical treatment based on an energy argument to
understand why the plateau becomes unstable leading to these sudden retrappings.
This will lead to analytical expressions for the dependence of µc1, µc2 and µc3 on the
system parameters.

4.9 Analytical Explanation of Retrapping

In section 4.7 we derived a number of important parameters as functions of voltage
ω, but we have not yet considered the various energy contributions in the system.
Recall that the total energy of the system is given by

Ē =
1

2
β2

(
ϕ̇+

µ

β2

ȧ

)2

− cosϕ+
1

2β2

(
ȧ2 + (a+ iDCµ)2

)
, (235)

which is given in units of the Josephson energy EJ = ~Ic/2e and may be split up
into three contributions Ē = Ēϕ + Ēm + Ēc, where the electronic energy is

Ēϕ =
1

2
β2ϕ̇

2 − cosϕ, (236)

the mechanical energy is

Ēm =
1

2β2

(
(1 + µ2)ȧ2 + (a+ iDCµ)2

)
, (237)

and the coupling energy is
Ēc = µȧϕ̇. (238)

These are in general time dependent quantities, but inserting our ansatz Eqs. (168)
and (170) we can obtain expressions for their time averages as functions of ω

〈Ēϕ〉 =
1

2
β2(ω2 +

g2

2
)− g

2ω
sinϕ0, (239)

〈Ēm〉 =
iDC(ω)2µ2

2β2

+
A2

4β2

(ω2 + 1), (240)

〈Ēc〉 = −µAωg
2

sin γ. (241)

The mechanical energy is positive definite and strongly peaked at the resonance, as
we would expect. While the mechanical energy can be extremely large, the coupling
energy is a rather small contribution and not particularly significant. The electronic
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Figure 36: DC voltage 〈V 〉 and root mean square mechanical oscillation xrms =√
〈x2〉 as functions of the applied current IDC and magnetic field B, obtained by

numerically solving Eqs. (140) and (141) with experimentally relevant parameters
β1 = 0.1, β2 = 2, QΓ = 103. Typical parameter scales are Ic = 10nA, B0 = 10T
and V0 = 0.3µV (a) DC voltage measured along the decreasing current path for
a range of coupling values. (b) I-V characteristics for specific values of coupling
(µ = 0, 0.03, 0.06, 0.09, 0.15) corresponding to the cuts in (a). A plateau at 〈V 〉 = V0

develops for low coupling µ < µc2 which becomes unstable when µ > µc2. (c) Plot of
xrms for the same cuts as (b) showing that mechanical oscillations are amplified on
the voltage plateau, growing stronger at higher currents. (d) DC voltage measured
when increasing the current from the plateau, for a range of coupling values. (e) I-V
characteristics for specific values of coupling (µ = 0, 0.03, 0.06, 0.09) corresponding to
the cuts in (d). The plateau here starts to become unstable above a critical value µc1.
(f) Plot of xrms for the same cuts as (e). On this increasing path we can reach higher
currents deeper into the plateau, leading to stronger mechanical oscillations. (g)
DC voltage measured when increasing magnetic field at fixed bias current. (h) DC
voltage against coupling µ for specific bias current values (iDC = 0.1, 0.11, 0.12, 0.13)
corresponding to the cuts in (g). As the coupling is increased, voltage values begin
to lock to the resonant value V0 as the Shapiro-like plateau widens, but eventually
retrap to the zero voltage state as the plateau becomes unstable. Above µc3, the
plateau becomes unstable for all current values. (i) Plot of xrms for the same cuts
as (h).
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Figure 37: (a) Average electronic energy 〈Ēϕ〉 plotted over a wide range of voltage
values ω. (b) Zoom around the resonance value ω = 1 showing that on the physical
portion of the curve with ω < 1, the electronic energy is on average reduced by the
mechanical oscillations. The plot for µ = 0.08 shows that when µ becomes too large
〈Ēϕ〉 can drop below 1 in a range of ω values.

energy displays a much more interesting dependence on ω. Inserting g and sinϕ0

from Eq. (226) and (232) we can write 〈Ēϕ〉 explicitly in terms of ω as

〈Ēϕ〉 =
β2

2

[
ω2 +

3κ

2D2

+
µ2ω2

D2

(
1− (1 + µ2)ω2

)]
. (242)

This is plotted as a function of ω in Fig. 37, which shows that the coupling again in-
duces a Fano-like resonance in 〈Ēϕ〉 close to the resonance frequency. It is important
to notice that on the physical portion of this resonance with ω < 1, the electronic
energy is substantially reduced by the mechanical oscillations (recall that the right
side of the resonance region with ω > 1 is regarded as unphysical as ∂iDC/∂ω < 0).
This reduction becomes more significant the stronger the coupling is. The lower
average energy the electronic system has, the harder it is to remain in the running
state with a finite voltage. In terms of the washboard analogy, the particle’s kinetic
energy is reduced so that it only just makes it over the maxima of the potential
− cosϕ. In fact, when µ becomes too large the average electronic energy can drop
below the potential maximum i.e. 〈Ēϕ〉 < 1, as shown by the curve µ = 0.08 in Fig.
37. We find this to be a very good condition for predicting when the system becomes
unstable, providing an analytical understanding for the various sudden retrappings
observed in the numerical analysis. The coupling value at which 〈Ēϕ〉 first goes
below 1 is thus identified with the first critical value µc1.

4.9.1 First Critical Coupling, µc1

In Fig. 38 we explain the transition that happens as µ exceeds µc1. In panel (a)
we see a sketch of the function iDC(ω) when µ < µc1, with the blue and green
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Figure 38: Sketch of iDC(ω) for (a) µ < µc1 showing the usual decreasing and
increasing current paths, and (b) for µ > µc1 showing the emergence of the ‘forbidden
region’ 〈Ēϕ〉 < 1. When this region is entered on the increasing current path the
system retraps to ω = 0 explaining the sudden retrapping observed numerically in
Fig. 36(d).

arrows showing the states explored by the decreasing and increasing current paths
respectively. The decreasing path reaches the end of the Ohmic branch and then the
voltage falls to a value ω2 near the bottom of the resonant peak. The increasing path
reaches the top of the resonant peak and then there is a jump to the Ohmic solution.
In contrast, panel (b) shows the case µ > µc1 where over a region of ω values we
have the so-called ‘forbidden region’ 〈Ēϕ〉 < 1, highlighted as a thin red strip. On
the increasing current path, the system enters this region and subsequently retraps
to ω = 0, explaining the transition seen numerically in Fig. 36(d). Notice that
this transition to ω = 0 occurs somewhere in the middle of the peak rather than at
its maximum point, explaining the instantaneous reduction of the observed plateau
width when µ crosses µc1. As µ continues to increase, the observed plateau width
continues to decrease as more and more states become unstable.

The region 〈Ēϕ〉 < 1 is plotted as a function of ω and µ in Fig. 39. Our expression
Eq. (242) allows us to solve for the contour 〈Ēϕ〉 = 1 and thus the minimum point
µc1. Multiplying 〈Ēϕ〉 = 1 by 2D2/β2 we obtain an equation for the contour as(

ω2 − 2

β2

)
D2 +

3

2
κ+ µ2ω2

(
1− (1 + µ2)ω2

)
= 0. (243)

Inserting the expressions for κ and D2 from Eqs. (176) and (209), we notice that
µ appears in Eq. (243) only as µ2 or µ4 and thus we can express it as a quadratic
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Figure 39: The region 〈Ēϕ〉 < 1 plotted as a function of ω and µ. The contour
〈Ēϕ〉 = 1 is found from the two real solutions to Eq. (244). When the system
crosses into this region, it retraps to ω = 0, the lowest value of µ at which this can
occur is µc1.

polynomial equation in µ2.

Aµ4 + Bµ2 + C = 0, (244)

where

A
ω4

= β2
1

(
ω2 − 2

β2

)
+

1

2
, (245)

B
2ω2

=

(
ω2 − 2

β2

)[
β2

1(ω2 − 1) +
2β1β2

QΓ

ω2

]
+ ω2 − 1, (246)

C =

[(
ω2 − 2

β2

)
(β2

1 + β2
2ω

2) +
3

2

][
(ω2 − 1)2 +

(
2ω

QΓ

)2
]
. (247)

The two positive solutions to this biquadratic equation thus give an analytic form
for the upper and lower bounds of the region 〈Ēϕ〉 < 1 shown in Fig. 39.

Unfortunately it is not easy to find µc1 the minimum value of µ with respect
to ω since Eq. (244) contains powers of ω up to eighth order. However, since the
minimum occurs very close to ω = 1 we can perform our now familiar expansion
ω2 → 1 + εδω2, 1/QΓ → ε/QΓ, µ

2 → εµ2, to approximate the contour. Eq. (244)
then reduces to

Ãµ4 + B̃µ2 + C̃ = 0, (248)
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Figure 40: Comparison between the exact contour 〈Ēϕ〉 = 1 calculated from Eq.
(244) and its approximation, calculated from Eq. (248). These are plotted with
our experimentally relevant parameters β1 = 0.1, β2 = 2, QΓ = 103 for which we
see that the approximation is very good, leaving the minimum point µc1 basically
unchanged.

where

Ã = β2
1

(
1− 2

β2

)
+

1

2
= A0, (249)

B̃ = 2

(
1− 2

β2

)[
β2

1(ω2 − 1) +
2β1β2

QΓ

]
+ 2(ω2 − 1) = B0 + B1(ω2 − 1), (250)

C̃ =

[(
1− 2

β2

)
(β2

1 + β2
2) +

3

2

][
(ω2 − 1)2 +

(
2

QΓ

)2
]

= C0 + C2(ω2 − 1)2. (251)

Here we have also defined coefficients An,Bn,Cn by grouping up powers of (ω2 − 1)

for future use. This approximate contour is compared to the exact one in Fig. 40
showing a very good agreement, especially at the minimum point that defines µc1.
In employing this approximation we have removed many powers of ω so that our
contour equation (248) can now be written as a quadratic polynomial equation in
(ω2 − 1) as follows

C2(ω2 − 1)2 + µ2B1(ω2 − 1) + A0µ
4 + B0µ

2 + C0 = 0. (252)

The solutions to this equation still give the same contour of course, but the benefit
is that now we can set the discriminant of this new quadratic equation to zero9

and obtain an equation for the minimum point µc1. This yields the following final

9i.e. finding the point where the two real solutions for ω at fixed µ are equal.
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equation for µc1 itself
Dµ4

c1 + Fµ2
c1 + G = 0, (253)

where

D = B2
1 − 4A0C2 = 1− 2β2

2

(
1− 2

β2

)
− 4β2

1β
2
2

(
1− 2

β2

)2

, (254)

F = −4B0C2 = −16β1β2

QΓ

(
1− 2

β2

)[(
1− 2

β2

)
(β2

1 + β2
2) +

3

2

]
, (255)

G = −4C0C2 = − 16

Q2
Γ

[(
1− 2

β2

)
(β2

2 + β2
1) +

3

2

]2

. (256)

Our first critical coupling µc1 is thus determined in terms of β1, β2 and QΓ as

µ2
c1 =

−F±
√
F2 − 4DG
2D

. (257)

This can be simplified by noticing that

F2 − 4DG =

(
8

QΓ

)2 [(
1− 2

β2

)
(β2

1 + β2
2) +

3

2

]2 [
1− 2β2

2

(
1− 2

β2

)]
. (258)

The resulting expression is then

µ2
c1 =

(
4

QΓ

) 2β1β2(1− 2
β2

)±
√

1− 2β2
2(1− 2

β2
)

1− 2β2
2

(
1− 2

β2

)
− 4β2

1β
2
2

(
1− 2

β2

)2

[(
1− 2

β2

)
(β2

1 + β2
2) +

3

2

]
,

(259)
which has the form (x±√y)/(y − x2) = 1/(−x±√y) so that we finally obtain

µ2
c1 =

(
4

QΓβ2

)
(β2 − 2) (β2

1 + β2
2) + 3

2
β2

−2β1 (β2 − 2)±
√

1− 2β2 (β2 − 2)
. (260)

We immediately see an important result, the critical coupling µc1 scales with the
mechanical quality factor QΓ as µc1 ∝ Q

−1/2
Γ .

The dependence on the other two parameters β1 and β2 is much more compli-
cated. Firstly it seems that there are multiple solutions, however we can easily show
that only one of these is real for a given set of parameters. Writing Eq. (253) as
(µ2

c1−u)(µ2
c1−v) = 0 where u and v are the two solutions above, we see that r = uv.

Since r < 0, one solution must be positive and the other negative so that in terms of
µc1, one value is real and the other imaginary. As it turns out, the negative square
root solution is only valid in a small range of parameters where β1 ≈ β2. Since
β2 � β1 for experimentally relevant underdamped junctions, we can simply take
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the positive square root solution. In fact in this limit our expression becomes

µ2
c1 ≈

1

QΓ

4β2(β2 − 2) + 6√
1− 2β2(β2 − 2)

. (261)

The scaling of µc1 with QΓ gives an excellent agreement with the numerical results,
as we will show in Fig. 43. Numerically µc1 increases with β2 and decreases slightly
with β1, agreeing with the Eq. (260), but the exact functional form of this equation
is not particularly accurate.

There is another important qualitative prediction we can make however, which
is that for certain combinations of β1 and β2, µc1 diverges so that this mechanically
induced retrapping does not occur. The critical value of β2 is easily shown to be

β2,crit = 2− 1±
√
β2

1 + 3/2

1 + 2β2
1

. (262)

For low β1 one root becomes negative and can be ignored, while the other becomes

β2,crit = 1 +
√

3/2 ≈ 2.225. (263)

The numerical results indeed show that such critical value of β2 does exist, but is
higher than predicted analytically with β2,crit ∼ 5. This disagreement arises due to
the assumptions g � ω and µ2 � 1 not holding in this regime. Experimentally,
our system must be sufficiently underdamped to achieve resonance as discussed in
section 4.2. Furthermore if the system is so underdamped that β2 > β2,crit then the
Shapiro plateau is stable with respect to the energy-induced retrapping mechanism
discussed here. The value of β2,crit seems fairly low but we should remember that
β2 = β2

1βc where β1 � 1 so that a small change in β2 corresponds to a relatively
large one in terms of the more physical Stewart-McCumber parameter βc. In reality
we expect it to be fairly difficult to experimentally achieve a junction underdamped
enough to reach β2,crit.

Now that we have an analytical expression for µc1 we can also find the maximum
size of the Shapiro plateau, which is simply δiDC(ωmax, µc1). Combining Eqs. (224)
and (261) we obtain

δiDC(ωmax, µc1) ≈ 1

4β2

[
4(β2 − 2)β2 + 6

1− 2β2(β2 − 2)

]
. (264)
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Figure 41: Sketch of iDC(ω) for µ > µc2. As the current is decreased, we reach the
bottom of the Ohmic branch and then move horizontally to the point ω2. When
µ < µc2, this point is stable and we continue decreasing the current on the plateau
until we reach the global minimum before retrapping [see Fig. 38(a)]. However when
µ > µc2 as shown here, the point ω2 is in the unstable region 〈Ēϕ〉 < 1 so that the
system retraps to ω = 0 early rather than forming the plateau. This is the scenario
discovered numerically in Fig.36(a).

4.9.2 Second Critical Coupling, µc2

We see from Fig. 39 that the region 〈Ēϕ〉 < 1 widens as µ increases beyond µc1. At a
second critical value µc2 this region has widened enough that states on the decreasing
current path also become unstable. This scenario is sketched in Fig. 41. Ordinarily,
i.e. when µ < µc2, when decreasing the current we would reach the bottom of the
Ohmic branch, move horizontally to the point ω2 and then continue decreasing the
current to reach the global minimum before retrapping [see Fig. 38(a)]. However
when µ > µc2 the point ω2 is in the unstable region 〈Ēϕ〉 < 1 so that the system
retraps to ω = 0 directly rather than forming the plateau. This is precisely what
was found in the numerical analysis [see Fig. 36(a)].

To obtain an analytical expression for µc2 we then must find how the point ω2

depends on µ, and then find where this intersects with the contour 〈Ēϕ〉 = 1. A good
approximation for ω2 when QΓ � 1 is the point ωcross defined in Eq. (221) which
we recall is the point where δiDC = 0. Inserting ω = ωcross into our approximate
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contour equation Eq. (248) we obtain the following quadratic equation for µc2(
C2

4
− 1

2

)
µ4

c2 +

[
B0 +

(
C2 − B1

QΓ

)(
β2

β1

− β1

β2

)]
µ2

c2 +
C2

Q2
Γ

(
4 +

(
β2

β1

− β1

β2

)2
)

= 0.

(265)
Since B0 ∝ 1/QΓ, we can simply multiply through by Q2

Γ and obtain an equation
in µ2

c2QΓ, showing that µc2 ∝ Q
−1/2
Γ in the same way as µc1. The full expression for

µc2 is again rather complicated but we can take the limit β2 � β1 and obtain the
following simple expression

µ2
c2 ≈

2β2

β1QΓ

(
2√

1− 2β2(β2 − 2)
− 1

)
. (266)

This predicts that µc2 diverges when 1− 2β2(β2− 2)→ 0, which occurs at the same
critical β2 value at which µc1 diverges i.e. β2,crit ≈ 2.225.

4.9.3 Third Critical Coupling, µc3

We have seen that when µ > µc2 we can no longer decrease the current to reach
the plateau without becoming prematurely retrapped. However if we have already
decreased the current on to the lower plateau branch before we increase the coupling
above µc2, we can remain on the lower branch. This is precisely what was done
numerically in the fixed current, varying magnetic field scenario discussed in section
4.8.2. Our analytics suggest that as µ increases above µc2, the region 〈Ēϕ〉 < 1

continues to expand, causing increasing numbers of solutions to become unstable.
This reaches a critical point at some value µc3 where the forbidden region extends
all the way down to the global minimum point ∂iDC(ω)/∂ω = 0, rendering all of the
plateau states unstable. This scenario is sketched in Fig. 42.

To obtain an analytical expression for our final critical coupling µc3 we first
require a value for this global minimum point. Actually, this value does not vary
much with the coupling and can be relatively well approximated by its uncoupled
value ∂i(0)

DC(ω)/∂ω = 0. This is calculated from Eq. (204) to be10 ω ≈ (3/2)1/4/
√
β2.

This value should then be inserted into our contour equation Eq. (244) and solved
for µc3. Note that since ω is not necessarily that close to the resonant region in
this case, it does not make sense to use our approximation that (ω2 − 1) is small.
Similarly µ is not necessarily that small in this regime, leaving the only remaining
small quantities as 1/QΓ and β1. Neglecting terms involving these quantities and

10Note that this is just the voltage at the retrapping current Ir and thus scales with βc in the
same way as the exact expression Ir/Ic = (4/π)/

√
βc.
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Figure 42: Sketch of iDC(ω) for µ > µc3. As we progress towards µc3 fewer and fewer
states are stable, reaching a critical point at µc3 where the region 〈Ēϕ〉 < 1 extends
all the way down to the global minimum point ∂iDC(ω)/∂ω = 0, so that the plateau
is unstable for all current values. This is the scenario discovered numerically in Fig.
36(g).

inserting ω = (3/2)1/4/
√
β2 we obtain

µ4
c3 + 4

(
1− β2

√
2

3

)
µ2

c3 + 6

(
1−

√
2

3

)(
1− β2

√
2

3

)2

= 0. (267)

There are two real solutions to this equation but one is unphysical at a very high µ
where our approximations are invalid. We thus require the lower of the two solutions,
obtaining

µc3 ≈
(√

2/3

(
2−

√
2(
√

6− 1)

))1/2√
β2 −

√
3/2. (268)

The complicated numerical prefactor amounts to simply 0.493... ≈ 1/2 so that we
can make one final approximation

µc3 ≈
1

2

√
β2 −

√
3/2. (269)

Note that this is independent of QΓ which is not surprising since we neglected the
small terms involving 1/QΓ.

We now have analytical expressions for our three critical coupling values µc1,
µc2 and µc3 in Eqs. (261), (266) and (269) respectively. The analytics suggest that
µc1 and µc2 both scale with the mechanical quality factor as Q−1/2

Γ , while µc3 is
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Figure 43: Logarithmic plot of µc1 (blue), µc2 (orange) and µc3 (green) as functions
of QΓ, with β1 = 0.1, β2 = 2. In the high QΓ limit, the numerically calculated values
(data points) agree well with the analytical values (solid lines) given by Eqs. (261),
(266) and (269). Both methods predict that µc1 and µc2 scale as Q−1/2

Γ while µc3 is
independent of QΓ.

independent of QΓ. These expressions are compared with numerical results in Fig.
43, showing that the predicted QΓ dependence is very accurate for realistic large
quality factor devices. For the numerical results shown in Fig. 36 with β1 = 0.1,
β2 = 2 and QΓ = 103, we see that µc1 = 0.07, µc2 = 0.12 and µc3 = 0.36, while
the analytics predict that µc1 = 0.08, µc2 = 0.2 and µc3 = 0.44. Thus our analytics
provide good order of magnitude estimates, as well as predicting the correct QΓ

dependencies.
A summary of all the different coupling regimes is given in Fig. 44, with panels (a-

d) showing the possible transitions. Panel (e) shows the region 〈Ēϕ〉 < 1 and how the
three critical µ values are defined. The minimum point defines µc1, the intersection
of the region with ω2(µ) defines µc2 and the intersection with the line ∂iDC/∂ω = 0,
visible in the inset, defines µc3. The grey regions are the unphysical solutions where
∂iDC/∂ω < 0. This plot shows that our analytics predicts an additional stable region
for strong coupling to the right of the region 〈Ēϕ〉 < 1 very close to the top of the
resonant peak. However it is not clear that this region exists experimentally since
our analytics are expected to break down here where the approximation g/ω � 1

fails.

4.10 Additional Plateaus

So far we have analyzed only the main Shapiro plateau at ω = 1, but in reality
there can exist additional mechanically induced plateaus at any fractional frequency
ω = n/m where n and m are natural numbers. Actually, two steps at ω = 2/3 and
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Figure 44: (a-d) Sketches of bias current as a function of voltage, iDC(ω), for various
coupling regimes (QΓ = 50 for illustrative purposes). (a) µ < µc1 - a finite coupling
introduces a resonance peak on top of the uncoupled (µ = 0) profile, plotted in
yellow. This creates a hysteresis loop, with the decreasing and increasing current
paths plotted with blue and green arrows respectively, while unphysical solutions
are shown as grey dashed lines. Reducing iDC on the Ohmic (ω > 1) branch to the
minimum causes a transition to the frequency ω2 (blue dot) on the plateau. (b)
µc1 < µ < µc2 - a range of frequencies (red regions) have a critically low electronic
energy (〈Ēϕ〉 < 1) and are thus unstable. The system retraps to ω = 0 as this
region is entered on the increasing current path. (c) µc2 < µ < µc3 - the solution at
ω2 is unstable so that the system retraps to ω = 0 on the decreasing current path.
(d) µ > µc3 - the whole plateau becomes unstable. (e) A contour plot illustrating
the various regions in the space (ω, µ). The black lines are ∂iDC/∂ω = 0 contours,
separating the physical/unphysical solutions (white/grey regions). The blue line is
the solution ω2(µ), and the red region again represents the energy unstable solutions.
The minimum of the unstable region defines µc1, while the intersection of this region
with the lines ω2(µ) and ∂iDC/∂ω = 0 define µc2 and µc3 respectively.
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Figure 45: (a) DC voltage 〈V 〉 as a function of iDC and µ for a decreasing current
experiment at fixed coupling [reproduction of Fig. 36(a)], highlighting the existence
of fractional Shapiro steps at ω = 2/3 and ω = 1/2. (b) DC voltage 〈V 〉 as a function
of iDC and µ for an increasing coupling experiment at fixed current [reproduction of
Fig. 36(g)], highlighting that these fractional Shapiro steps extend into spike-like
features in the same way as the main ω = 1 plateau. These fractional Shapiro
steps are associated with their own energy induced retrappings and critical coupling
values.

ω = 1/2 are visible already in our decreasing current color plot Fig. 36(a). This plot
is reproduced in Fig. 45(a) with the additional steps highlighted. When increasing
the coupling at fixed current, these steps extend into spike-like features in the same
way as the main ω = 1 plateau, as highlighted in Fig. 45(b). These additional steps
are each associated with their own critical coupling values.

A zoom of the ω = 1/2 plateau on the decreasing current path is shown in Fig.
46. This shows an almost identical form to the main ω = 1 plateau which really
highlights the self-similar, or fractal, nature of our non-linear equations of motion
Eqs. (140) and (141). Further sub-plateaus at smaller fractions are even visible in
this zoomed plot. Earlier we discussed that above a critical value of β2 the energy-
induced retrapping on the main ω = 1 plateau do not occur. However, retrapping
does still occur on these smaller plateaus, themselves being associated with higher
critical β2 values.

Our analytics of course fails to capture these additional plateaus since we in-
cluded only terms oscillating at a single frequency ω. In principle it is possible, but
challenging, to include higher frequency components and obtain a general theory for
the ω = n/m Shapiro plateau.

4.11 Finite Temperature Effects

In order to experimentally observe the phenomena discussed here, temperatures
must be below the critical temperature Tc of the superconducting contacts. These
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Figure 46: Zoom of the DC voltage plot Fig. 45(a) around the ω = 1/2 plateau,
showing how similar it is in form to the main plateau. This smaller plateau is even
associated with its own critical coupling value at which there is an increase in the
retrapping current.

contacts could be realised with rigid nanostructures based on e.g. niobium ni-
tride [72] or molybdenum rhenium [76] with rather high Tc ≈ 10K. Even at these
temperatures thermal currents and displacements may exceed the typical scales IDC

and x0, disrupting the experimental signatures. We analysed temperature effects
by including a Johnson-Nyquist noise current ĩ to our equations of motion with
correlation function

〈̃i(τ )̃i(τ ′)〉 = 2β1
T

TJ
δ(τ − τ ′), (270)

where TJ is a temperature scale related to the Josephson energy ~Ic/2e = kBTJ . To
minimize the effects of temperature the thermal energy kBT must be less than the
energy scale ~IDC/2e associated with the current IDC i.e. T < β1TJ . In terms of
physical parameters, this condition reads

kBT <

(
~
2e

)2
ω0

R
, (271)

so that experiments may be optimised using devices with low resistances and high
mechanical resonance frequencies. For state of the art CNT devices with ω0 ≈
10GHz [63,64] and R ≈ 1kΩ [27, 73] we find T < 100mK.
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5 SQUIDs

In 1964, two years after Josephson discovered the Josephson effect, Robert Jaklevic,
John Lambe, James Mercereau, and Arnold Silver invented the SQUID (supercon-
ducting quantum interference device) [26]. A SQUID consists of two Josephson
junctions connected in parallel, forming a superconducting loop. An applied mag-
netic flux through the loop produces quantum interference between the two junctions
so that the total supercurrent becomes sensitively dependent on the applied field.
SQUIDs thus make extremely good magnetometers, being able to measure magnetic
fields down to 10−15T [77]. In this chapter we will first develop the theory of ordi-
nary DC SQUIDs that have no mechanically vibrating parts. We will then move on
to consider SQUIDs where one or both arms may be free to mechanically oscillate,
extending our work of the previous sections. The external flux will prove to be a
useful experimentally variable parameter, allowing us to redirect the current flow
between the two arms. In particular we can choose which of the two arms to excite,
or even whether they oscillate in a symmetric or antisymmetric mode. The two
arms of the electromechanically coupled SQUID can thus allow the creation of two
distinct states that can be switched between controllably.

5.1 DC SQUIDs

Figure 47: Sketch of a DC SQUID, which consists of a superconductor that branches
into two arms which later recombine forming a loop. Inside each arm are Josephson
junctions (grey regions) that are associated with their own phase differences ϕ1 and
ϕ2. The SQUID is biased with a DC current IDC and a magnetic field is applied
such that a magnetic flux Φ penetrates the loop. This flux imposes a constraint on
ϕ1 and ϕ2 as well as inducing a circulating current J so that the current flowing in
the two arms are I1 = IDC/2 + J and I2 = IDC/2− J .
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A DC SQUID is sketched in Fig. 47. Two Josephson junctions are connected
in parallel in an otherwise superconducting loop that is biased with a DC current
IDC. The current is not split symmetrically in both arms but differs due to a
circulating current J that is induced by an applied magnetic flux Φ that penetrates
the loop. The current in the two arms can thus be expressed as I1 = IDC/2 + J

and I2 = IDC/2 − J . Each junction hosts a supercurrent Icn sinϕn where ϕn is the
gauge-invariant phase difference, related to the voltage drop Vn across the junction
by the usual Josephson relation

dϕn
dt

=
2e

~

(
Vn −

d
dt

∫
A · dl

)
, (272)

derived in section 3.2. In the present case we consider a constant external magnetic
field and Josephson junctions that do not mechanically oscillate so that the second
term of Eq. (272) does not contribute. Using the now familiar RCSJ model, we
can also write down the resistive and capacitive current contributions, Vn/Rn and
CndVn/dt respectively. In all the above expressions, the subscript n = 1, 2 labels
the two separate junctions and for generality we have allowed them to have different
critical currents Icn, normal state resistances Rn and inter-electrode capacitances
Cn. Current conservation in the two arms thus yields the following two equations

IDC

2
+ J = Ic1 sinϕ1 +

~
2eR1

dϕ1

dt
+

~C1

2e

d2ϕ1

dt2
, (273)

IDC

2
− J = Ic2 sinϕ2 +

~
2eR2

dϕ2

dt
+

~C2

2e

d2ϕ2

dt2
. (274)

To completely describe our system we also require a third equation that relates ϕ1

and ϕ2 to the flux through the loop. This is derived by ensuring that the supercon-
ducting phase φ is single valued as we now show.

5.1.1 Flux Relation

Applying Stokes’ law we can find the total magnetic flux penetrating the SQUID by
integrating the vector potential A anticlockwise around the loop shown in Fig. 47.
The fact that the arms have finite width does not matter, we can take the integral
as far inside the electrodes as we like, since no flux penetrates them by virtue of
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them being superconducting. 11 This integral then produces∮
A · dl =

∫
sc
A · dl +

∫
link 1

A · dl−
∫

link 2
A · dl, (275)

where the integral over the two weak links are separated from the integral over the
superconducting electrodes and we have reversed the final integral so that it is taken
in the direction of current flow.

The real (non-gauge invariant) superconducting phase φ is related to the vector
potential and supercurrent velocity vs by the canonical momentum relation

~∇φ = 2mvs + 2eA, (276)

where m is the mass of an electron and the factors of two arise due to the charge
carriers being Cooper pairs. Deep in the electrodes the supercurrent velocity is zero,
by virtue of Eq. (4), so that

A =
~
2e
∇φ (in electrodes). (277)

Inserting this into Eq. (275), it becomes∮
A · dl =

~
2e

∫
sc
∇φ · dl +

∫
link 1

A · dl−
∫

link 2
A · dl. (278)

The integral over the electrodes may be simplified by realising that the phase φ
must be single valued so that this integral plus the phase differences φ1, φ2 across
the weak links must be zero (mod 2π)∫

sc
∇φ · dl + φ1 − φ2 = 0 (mod 2π). (279)

Here we have again reversed φ2 so that it gives the phase difference in the direction
of current flow. We thus have

2e

~

∮
A · dl =

(
φ2 −

2e

~

∫
link 1

A · dl
)
−
(
φ1 −

2e

~

∫
link 2

A · dl
)

(mod 2π). (280)

The bracketed expressions on the right hand side are just the definitions of the gauge

11Assuming that the dimensions of the SQUID arms are large compared to the London penetra-
tion depth.
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invariant phase differences ϕ1,ϕ2 across the two weak links, so that we can write

ϕ2 − ϕ1 =
2e

~

∮
A · dl (mod 2π). (281)

The total magnetic flux may differ from the applied contribution Φ due to the natural
inductance of the loop. We can account for this by assigning each arm an effective
inductance Ln and writing the total flux as∮

A · dl = Φ + L1I1 − L2I2 = Φ + (L1 − L2)
IDC

2
+ (L1 + L2)J. (282)

Eq. (281) can then finally be written as

ϕ2 − ϕ1 =
2π

Φ0

[
Φ + (L1 − L2)

IDC

2
+ (L1 + L2)J

]
(mod 2π), (283)

where we have introduced the flux quantum Φ0 = h/2e. This equation provides an
extra constraint for our system and thus when combined with our two equations of
motion (273) and (274), the variables ϕ1, ϕ2 and J are completely determined.

5.1.2 Voltage

We can calculate the voltage across the device

V =
~
2e

dϕ1

dt
+ L1

dI1

dt
=

~
2e

dϕ2

dt
+ L2

dI2

dt
. (284)

One can check that the same voltage is obtained by traversing either of the two arms
by taking the time derivative of the flux relation Eq. (283). We can also express
the voltage in a symmetric form

V =
1

2

[
~
2e

(
dϕ1

dt
+

dϕ2

dt

)
+ (L1 − L2)

dJ

dt

]
, (285)

V =
~
2e

(
L2

L

dϕ1

dt
+
L1

L

dϕ2

dt

)
, (286)

where in the second equality we have inserted J from Eq. (283), and written the
total inductance of the loop as L = L1 + L2.

5.1.3 Dimensionless Equations

For simplicity, from now on we shall assume that the inductances of both arms are
identical L1 = L2 = L/2. The flux term proportional to IDC in Eq. (283) then
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vanishes, which in any case is a small contribution and only produces a constant
shift to the applied flux Φ. We will also no longer explicitly write (mod 2π) when
employing the flux equation (283), with the understanding that ϕ1 and ϕ2 are phases
and of course only physical modulo 2π.

Our three equations can be made dimensionless by introducing the average crit-
ical current Ic = (Ic1 + Ic2)/2, average capacitance C = (C1 + C2)/2 and twice
the parallel resistance of the SQUID R = 2R1R2/(R1 + R2). We can then measure
currents in units iDC = IDC/Ic, j = J/Ic, applied flux in units of the flux quantum
φa = Φ/Φ0 and time in units τc = ωct where ωc = 2eIcR/~. We can also intro-
duce the Stewart-McCumber parameter βc = ωcRC and dimensionless inductance
βL = 2IcL/Φ0. This is an obvious generalisation of how we non-dimensionalized the
single junction in section 3.3. Eqs. (273), (274) and (283) can then be expressed as

iDC

2
+ j = (1− αI) sinϕ1 + (1− αR)ϕ̇1 + βc(1− αC)ϕ̈1, (287)

iDC

2
− j = (1 + αI) sinϕ2 + (1 + αR)ϕ̇2 + βc(1 + αC)ϕ̈2, (288)

ϕ2 − ϕ1 = 2π

(
φa +

1

2
βLj

)
, (289)

where αI = (Ic2 − Ic1)/(Ic1 + Ic2), αR = (R1 − R2)/(R1 + R2) and αC = (C2 −
C1)/(C1 +C2) characterise asymmetries in the junction critical currents, resistances
and capacitances.

The voltage can then be expressed in units of IcR from Eq. (284) as

V

IcR
= ϕ̇1 +

πβL
2
j̇ = ϕ̇2 −

πβL
2
j̇, (290)

or, in symmetric form
V

IcR
=
ϕ̇1 + ϕ̇2

2
. (291)

A Lagrangian formulation for the uncoupled SQUID is presented in appendix A.

5.1.4 Static Solutions

We will first consider the simplest case of identical junctions αI = αR = αC = 0 and
look for static solutions. Eqs. (287) and (288) then simplify considerably to

iDC

2
+ j = sinϕ1, (292)

iDC

2
− j = sinϕ2, (293)

95



5 SQUIDS Thomas George McDermott

and if we further assume that the inductance is low, βL � 1, then the flux relation
Eq. (289) reduces to

ϕ2 − ϕ1 = 2πφa. (294)

From these equations we find iDC = sinϕ1 + sin(ϕ1 + 2πφa), which can be written
as

iDC = 2 sin(ϕ1 + πφa) cos(πφa). (295)

If we apply a bias current, ϕ1 will adjust so that this equation is fulfilled. The
maximum supercurrent before we must include dissipative currents is then obtained
for sin(ϕ1 + πφa) = ±1. In other words, the SQUID acts as a single junction with
a modified critical current

I ′c = 2Ic| cos(πφa)|, (296)

which is heavily dependent on the applied flux. This function is plotted as a blue
line in Fig. 48, showing that the maximum supercurrent I ′c is periodic in the applied
flux with a period equal to the flux quantum Φ0 = h/2e ≈ 2× 10−15Wb. When an
integer number of flux quanta penetrate the loop, the superconducting phases are
equal ϕ1 = ϕ2, and thus the supercurrents in both arms flow in the same direction
giving I ′c = 2Ic. However when there is a half integer number of flux quanta, the
phases are half a cycle out of phase ϕ2 = ϕ1 + π so that the supercurrents flow in
opposite directions and cancel out yielding I ′c = 0. A small change in the applied flux
of the order of one flux quantum can thus produce a large change in the supercurrent,
which is the basic principle behind SQUID magnetometers [77].

Plots of I ′c for non-zero inductance βL 6= 0 have been calculated numerically and
are given in Fig. 48, which shows that the basic principle remains unchanged, I ′c
is still periodic in Φ with period Φ0. The only major change is that the minimum
value of I ′c is raised from zero. This is due to the circulating current J being induced
that keeps the total flux φa + βLj/2 close to an integer number of flux quanta.

5.1.5 Dynamic Solutions

To study the dynamic solutions to Eqs. (287), (288) and (289) it is convenient to
perform a change of variables to ϕ+ = (ϕ1 +ϕ2)/2 and ϕ− = (ϕ1−ϕ2)/2. The flux
relation is then given by

ϕ− = −π(φa + βLj/2), (297)
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Figure 48: The maximum supercurrent of the SQUID I ′c as a function of the applied
flux Φ. This modified critical current is periodic in Φ with a period equal to the flux
quantum Φ0 = h/2e. It is maximum for integer number of flux quantum, I ′c = 2Ic,
since the supercurrent flows in the same direction in both arms and minimum for
half integer number of flux quantum where the supercurrents in both arms tend to
cancel out. For zero loop inductance, βL = 0 (blue line), this cancellation is perfect
and I ′c = 0, but for finite inductance (orange, green and red lines) the minimum
value is raised due to the circulating current J inducing an extra flux on top of the
applied value Φ.

while the other two equations become

iDC = 2 cos(πφa + πβLj/2) sinϕ+ + 2ϕ̇+ + 2βcϕ̈+, (298)

j = − sin(πφa + πβLj/2) cosϕ+ −
πβL

2
j̇ − πβcβL

2
j̈. (299)

where we have again assumed symmetric junctions, αI = αR = αC = 0, and inserted
Eq. (297) to obtain two coupled equations in ϕ+ and j. The voltage Eq. (291)
becomes simply

V

IcR
= ϕ̇+. (300)

In the limit βL � 1, Eq. (298) becomes decoupled and is identical to the RCSJ
equation for a single junction with a critical current 2Ic cos(πφa), resistance R/2
and capacitance 2C.12 If we are also in the overdamped limit βc � 1 we can follow
the same logic as in section 3.3.2 and exactly solve for the DC voltage as

〈V 〉 =
R

2

√
I2
DC − I ′2c . (301)

where I ′c is given by Eq. (296) [cf. Eq. (100) for a single junction]. SQUIDs used
in practical magnetometers are usually made to satisfy βL, βc � 1 to eliminate

12This resistance and capacitance are simply those of the two arms taken in parallel.
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Figure 49: Increasing current I-V curve of a symmetric SQUID calculated from Eqs.
(298) and (299). The junction is underdamped with βc = 10 and a finite inductance
βL = 0.02. Plots for various values of applied flux φa = Φ/Φ0 from integer flux,
φa = 0, to half integer flux, φa = 0.5, are given (φa is only physical modulo 1
and the system is symmetric around the point φa = 0.5). The modification of the
effective critical current I ′c is clearly visible, as well as the addition of a new plateau
at a value 〈V 〉/IcR =

√
2/πβcβL. This plateau is due to an internal LC resonance

and thus appears when 〈dϕ+/dt〉 =
√

2/LC. Since it is induced by the circulating
current the plateau is most prominent at half integer flux and vanishes for integer
flux.

both magnetic hysteresis and hysteresis in the I-V curve, so that Eq. (301) is
widely used [60]. If the junction is instead underdamped there is no exact analytical
solution, but if one can still neglect the inductance, βL � 1, the SQUID displays all
the same behaviour as the single junction discussed in section 3.3.3.

In the more interesting case where both βc and βL are finite there is an interesting
new phenomenon. The increasing current I-V curves in Fig. 49, calculated from Eqs.
(298) and (299), show that a new voltage plateau develops at a finite voltage. Our
knowledge of Shapiro plateaus immediately leads us to the conclusion that this must
be due to some internal resonance in the circuit. We also expect it to be related to
the circulating current since the plateau vanishes at integer flux quantum when there
is little circulating current, and reaches maximum size at half integer flux quantum
when the circulating current is large. Such steps have been observed experimentally
and are due to an LC resonance in the loop induced by the circulating current
[78, 79]. The steps thus appear at a frequency 2e〈V 〉/~ = 〈dϕ+/dt〉 =

√
2/LC,

or in dimensionless units 〈V 〉/IcR = 〈ϕ̇+〉 =
√

2/πβcβL. In fact Eq. (299) can
be interpreted as an oscillator equation in j at exactly this frequency, but with
an additional non-linear term. The current flowing in each arm thus acquires a
component oscillating at this frequency and a Shapiro-like plateau develops. The
factor of two arises due to the fact that the total capacitance of the loop taken in
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series is C/2.

We will now move on to allow the possibility of the two weak links to mechani-
cally oscillate, extending our work of the previous chapter. It is important that we
discussed the above LC resonances because it may be necessary in an experiment to
distinguish between these Shapiro steps and those due to mechanical oscillations.

5.2 SQUID-Mechanical Coupling

Figure 50: The two weak links that make up the DC SQUID are now suspended
and allowed to oscillate out of the plane. The SQUID is exposed to a total magnetic
field B = B1x̂ + B2ŷ + B3ẑ, where B3 controls the applied flux as before while B1

and B2 excite mechanical oscillations in the two weak links via the Lorentz force.

We now couple the current flowing through the SQUID to mechanical oscillations
in the same way as we did in the single junction case. The SQUID is exposed to a
total magnetic field B = B1x̂ + B2ŷ + B3ẑ such that oscillations in the two weak
links are forced independently by B1 and B2 while B3 penetrates the whole loop
inducing the applied flux Φ. The supercurrent in each junction is still Icn but Eq.
(272) which gives the relation between Vn and ϕn now becomes

dϕn
dt

=
2e

~

(
Vn −Bnln

dxn
dt

)
, (302)

where ln are the length of the weak links and xn are their displacements in the ẑ

direction. Analogously to the single junction case, the normal and displacement
currents are given by (Vn−Bnlndxn/dt)/Rn and CndVn/dt respectively, so that the
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current conservation equations are

IDC

2
+ J = Ic1 sinϕ1 +

~
2eR1

dϕ1

dt
+

~C1

2e

d2ϕ1

dt2
+ C1B1l1

d2x1

dt2
, (303)

IDC

2
− J = Ic2 sinϕ2 +

~
2eR2

dϕ2

dt
+

~C2

2e

d2ϕ2

dt2
+ C2B2l2

d2x2

dt2
. (304)

The flexural modes of each weak link are again modelled as harmonic oscillators
with masses Mn, resonance frequencies ωn, damping coefficients Γn and quality
factors QΓn = ωn/Γn. Each oscillator is excited by a Lorentz force that acts on the
supercurrent and normal currents so that the two mechanical equations of motion
are

M1
d2x1

dt2
+ 2M1Γ1

dx1

dt
+M1ω

2
1x1 = B1l1

(
Ic1 sinϕ1 +

~
2eR1

dϕ1

dt

)
, (305)

M2
d2x2

dt2
+ 2M2Γ2

dx2

dt
+M2ω

2
2x2 = B2l2

(
Ic2 sinϕ2 +

~
2eR2

dϕ2

dt

)
. (306)

We then have four differential equations in the five unknowns ϕ1, ϕ2, x1, x2 and J .
We must again use the flux relation to impose another constraint.

5.2.1 Flux Relation

The relation between ϕ1, ϕ2 and the total flux was derived in section 5.1.1 as

ϕ2 − ϕ1 =
2e

~

∮
A · dl. (307)

Naïvely one might assume that the total flux is
∮
A · dl = Φ + L1I1 − L2I2 as in

the uncoupled case. Let’s be more thorough and actually write down the vector
potential for our system and perform the integration. As the flux is gauge-invariant
we can freely choose the vector potential to be

A = B2zx̂ + (B3x−B1z)ŷ. (308)

For ease of calculation we shall assume a square geometry as shown in Fig. 50
where the whole SQUID has dimensions of X, Y , while the junctions themselves
have lengths l1, l2. The whole loop is in the z = 0 plane, except the junctions
which are displaced by z = x1 and z = x2 respectively. We can then split the
integral up over the four sides of the SQUID, remembering that the integral is taken
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anticlockwise. The contribution from the bottom edge where y = z = 0 is∫ X

0

B2zdx = 0. (309)

Similarly for the right side where x = X, z = 0 we have∫ Y

0

(B3x−B1z)dy = B3XY = Φ. (310)

At the top y = Y , z = 0 except over a distance l2 where z = x2 so that it contributes∫ 0

X

B2zdx = −B2x2l2. (311)

Finally at the left edge x = 0, z = 0 except over a distance l1 where z = x1,
contributing ∫ 0

Y

(B3x−B1z)dy = B1x1l1. (312)

If we then add the contribution due to the inductances L1 and L2 as before, the
total flux is ∮

A · dl = Φ +B1x1l1 −B2x2l2 + L1I1 − L2I2. (313)

Thus there is an extra contribution to the flux due to the mechanical oscillations.
When x1 and x2 are non-zero the whole loop does not lie in the z = 0 plane so that
the field B1 penetrates an area x1l1 while B2 penetrates an area x2l2. While this may
seem like a small contribution we will see that we must include this extra flux for
our resulting equations to be consistent and to be able to write down a Lagrangian.
The flux relation Eq. (307) is then

ϕ2 − ϕ1 =
2π

Φ0

[
Φ +B1x1l1 −B2x2l2 + (L1 − L2)

IDC

2
+ LJ

]
, (314)

which, when combined with the four equations of motion Eqs. (303)-(306), com-
pletely determine ϕ1, ϕ2, x1 and x2.

5.2.2 Voltage

The voltage across the device may again be taken along either of the two arms

V =
~
2e

dϕ1

dt
+B1l1

dx1

dt
+ L1

dI1

dt
=

~
2e

dϕ2

dt
+B2l2

dx2

dt
+ L2

dI2

dt
. (315)
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Interestingly, if we rearrange and integrate with respect to time, we obtain

~
2e

(ϕ2 − ϕ1) = B1x1l1 −B2x2l2 + L1I1 − L2I2 + constant, (316)

which is simply the flux relation Eq. (314) with the constant of integration equal to
the applied flux Φ. In symmetric form the voltage becomes

V =
1

2

[
~
2e

(
dϕ1

dt
+

dϕ2

dt

)
+ (L1 − L2)

dJ

dt
+B1l1

dx1

dt
+B2l2

dx2

dt

]
, (317)

V =
~
2e

(
L2

L

dϕ1

dt
+
L1

L

dϕ2

dt

)
+
L2

L
B1l1

dx1

dt
+
L1

L
B2l2

dx2

dt
. (318)

5.2.3 Dimensionless Equations

We can non-dimensionalize our mechanically coupled equations in a similar way as
we did in the uncoupled case. We define the average junction length l = (l1 +

l2)/2 and a combined mass M = 2M1M2/(M1 + M2). This allows us to define
dimensionless couplings µn = Bn/B0 and displacements an = xn/xc where B0 =

(1/l)
√
M/C and xc = B0Icl/Mω2

c . These are mostly the same parameters as in the
single junction case, except that we use xc ∝ 1/ω2

c rather than x0 ∝ 1/ω2
0. We also

measure time in units of τc = ωct and frequencies in units of ωc as ω̄n = ωn/ωc. These
modifications make analysing the case ω1 6= ω2 easier. A more subtle modification is
that, when defining an, we no longer remove the constant slack due to the constant
force B0IDCln/2 that is present in both junctions. This is because, unlike in the
single junction case, this slack has the physical consequence of increasing the flux
through the SQUID by a constant amount.

With the above quantities defined we can write down our full set of dimensionless
equations of motion as

iDC

2
+ j = (1− αI) sinϕ1 + (1− αR)ϕ̇1 + (1− αc)[βcϕ̈1 + µ1(1− αl)ä1], (319)

iDC

2
− j = (1 + αI) sinϕ2 + (1 + αR)ϕ̇2 + (1 + αc)[βcϕ̈2 + µ2(1 + αl)ä2], (320)

ä1 +
2ω̄1

QΓ1

ȧ1 + ω̄2
1a1 = µ1(1− αl)(1− αM)[(1− αI) sinϕ1 + (1− αR)ϕ̇1], (321)

ä2 +
2ω̄2

QΓ2

ȧ2 + ω̄2
2a2 = µ2(1 + αl)(1 + αM)[(1 + αI) sinϕ2 + (1 + αR)ϕ̇2], (322)

ϕ2 − ϕ1 = 2πφ+ πβLj +
1

βc
[(1− αl)µ1a1 − (1 + αl)µ2a2], (323)

where αl = (l2− l1)/(l1 + l2) and αM = (M1−M2)/(M1 +M2) characterise asymme-
tries in the junction lengths and effective masses. The voltage is similarly expressed
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as

V

IcR
= ϕ̇1 +

πβL
2
j̇ +

µ1

βc
(1− αl)ȧ1 = ϕ̇2 −

πβL
2
j̇ +

µ2

βc
(1 + αl)ȧ2, (324)

or in symmetric form,

V

IcR
=
ϕ̇1 + ϕ̇2

2
+

1

βc
[(1− αl)µ1ȧ1 + (1 + αl)µ2ȧ2]. (325)

Since 〈ȧ1〉 = 〈ȧ2〉 = 0, the extra contributions due to the mechanical oscillations
have zero average so that they do not contribute directly to the measured DC voltage
〈V 〉, just as we saw in the single junction case.

Eqs. (319)-(323) contain a very large number of free parameters in the general
case where the junctions are non-identical so that it becomes challenging to draw
any general conclusions. For simplicity when we move on to solve these equations
we shall generally assume that the junctions are identical so that all the asymmetry
parameters αI etc. become zero. However we will allow the junctions to have distinct
resonance frequencies ω1, ω2 and electromechanical couplings µ1, µ2.

A Lagrangian formulation for the coupled SQUID is presented in appendix B.

5.2.4 Single Junction Equivalence

We now move on to numerically solve our equations of motion (319)-(323). We will
reduce the large number of free parameters by assuming identical junctions as usual
so that αI = αR = αC = αl = αM = 0 and QΓ = QΓ1 = QΓ2, ω̄0 = ω̄1 = ω̄2,
µ = µ1 = µ2. The remaining free parameters are then iDC, βc, βL, φa as in the
uncoupled case but with the additional parameters µ, ω0 and QΓ.

Just as we did in section 5.1.5 it is convenient to perform a change of variables
to ϕ+ = (ϕ1 + ϕ2)/2, ϕ− = (ϕ1 − ϕ2)/2, a+ = (a1 + a2)/2 and a− = (a1 − a2)/2.
The equations of motion can then be put in the form

iDC

2
= sinϕ+ cosϕ− + ϕ̇+ + βcϕ̈+ + µä+, (326)

j = sinϕ− cosϕ+ + ϕ̇− + βcϕ̈− + µä−, (327)

(1 + µ2)ä+ +
2ω̄0

QΓ

ȧ+ + ω̄2
0a+ = µ(iDC/2− βcϕ̈+), (328)

(1 + µ2)ä− +
2ω̄0

QΓ

ȧ− + ω̄2
0a− = µ(j − βcϕ̈−), (329)

ϕ− = −π(φa + βLj/2)− µ

βc
a−, (330)
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and the DC voltage is 〈V 〉/IcR = 〈ϕ̇+〉. We thus see immediately that the bias
current iDC is responsible for exciting the symmetric mode a+ while the circulating
current j is responsible for exciting the antisymmetric mode a−. This is due to iDC

flowing in the same direction in both arms while j flows in opposite directions.
We will take the limit βL � 1 since we already saw in the uncoupled case that

the inclusion of inductance does not produce any qualitative differences, except for
the existence of LC resonance steps. In the integer flux case φa = 0, Eqs. (327),
(329) and (330) are solved by j = ϕ− = a− = 0 while the remaining two equations
become

iDC

2
= sinϕ+ + ϕ̇+ + βcϕ̈+ + µä+, (331)

(1 + µ2)ä+ +
2ω̄0

QΓ

ȧ+ + ω̄2
0a+ = µ(iDC/2− βcϕ̈+). (332)

These are identical to the mechanically coupled single junction equations (140) and
(141) except that the bias current is halved by splitting in the two junctions.13 All
the results of section 4 then follow, including all the mechanically induced Shapiro
steps, hysteresis loops and retrappings. We now investigate how these results are
modified when the applied magnetic flux differs from an integer number of flux
quanta.

5.2.5 Effect of Magnetic Flux

We will solve Eqs. (326)-(330) numerically using the same experimentally realistic
parameters that we used in the single junction case i.e. ω̄0 = 0.1, QΓ = 103,
βc = 200 while the relevant dimenzsional scales are IcR = 3µV, B0 = 10T and
xc = 0.1pm. The bias current iDC and in plane magnetic field µ = µ1 = µ2 are
directly controllable variables as usual, but we can now also vary the applied flux
φa. We will begin with a decreasing current experiment as we did in section 4.6.1.

In Fig. 51 we compare the I-V curves for integer number of flux quanta, φa = 0

[panel (a)], to those for half integer flux quanta, φa = 0.5 [panel (c)]. The former
case exactly emulates the results found in the single junction case as discussed above,
while the latter case shows a strikingly different behaviour. The main differences
arise due to the effective critical current I ′c approaching zero14 as was discussed in

13The form of the equations are slightly modified due to the different dimensionless units dis-
cussed previously. Also note that ω̄0 is just β1, but the new notation is used for consistency with
the non-symmetric case.

14The effective critical current is slightly greater than zero even for φa = 0.5 due to the small
amount of flux that enters the SQUID from the constant displacements [see Eq. (314)], but this is
a very tiny correction unless the coupling reaches unrealistically large values.
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Figure 51: I-V curves and oscillator root mean square displacements on a decreasing
current path calculated by numerically solving Eqs. (326)-(330) with the experimen-
tally realistic parameters ω̄0 = 0.1, QΓ = 103, βc = 200, βL = 0. Panels (a) and (b)
show the results for integer flux quanta φa = 0, which are equivalent to the single
junction case, cf. Fig. 29. Panels (c) and (d) show the results for half integer flux
quanta φa = 0.5 which differ due to the vanishing effective critical current I ′c. The
trapped state then no longer exists so that the plateau is stable for all coupling
values. The case φa = 0 is characterized by the excitation of the symmetric mode
a+ while the case φa = 0.5 is characterized by the excitation of the antisymmetric
mode a−.
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section 5.1.4. This means that the trapped state 〈V 〉 = 0 no longer exists for any
current values. This is useful as one can reach much lower voltages without relying
on the hysteresis of underdamped junctions as we had to in the single junction case.
The sudden mechanically-induced retrappings also no longer exist since there is no
state to become trapped to. For example consider the I-V curves for µ = 0.15

(pink), when φ = 0 [panel (a)] the system becomes retrapped as we decrease the
current approaching the plateau whereas when φ = 0.5 [panel (c)] no such retrapping
occurs. This latter case thus results in larger voltage plateaus than are observed in
the integer flux quanta or single junction case.

We can also study the oscillator displacements which again show very different
behaviour in these two opposite cases. For φa = 0 the symmetric mode a+ is strongly
excited on the plateau state, as shown in panel (b), while the antisymmetric mode
a− is zero everywhere, as we argued in the previous subsection. In other words, for
integer flux quanta the two oscillators are equally excited in phase a1 = a2 since the
circulating current j is vanishingly small and the supercurrents in both arms flow in
the same direction. In contrast, the case φa = 0.5 displays the opposite behaviour,
with the antisymmetric mode a− being strongly excited, as shown in panel (d). The
symmetric mode a+ is here zero except for a small constant value µiDC/2ω̄

2
0 which

is negligible compared to a− and results from the constant force BIDCl/2 acting on
both resonators. Thus in this case the two oscillators are excited antisymmetrically
a1 ≈ −a2 due to a strong circulating current j and the supercurrents in both arms
flowing in opposite directions.

An increasing current experiment can also be performed, using the mechanically
induced hysteresis to access the full plateau width. Fig. (52) compares the I-V
curves for φa = 0 [panel (a)], equivalent to the single junction, to those for φa = 0.5

[panel (c)]. In the former case we must first decrease the current to the plateau
before increasing the current just as we did in section 4.6.2, but in the latter case
we may increase the current directly from zero due to the vanishing critical current.
Panel (c) shows that when φa = 0.5 one can explore the full extent of the Shapiro
plateau without becoming retrapped, reaching widths in excess of Ic. The plateau
size asymptotes to a maximum value at a finite coupling, although for the parameters
chosen here this occurs at unrealistically large magnetic fields. The regimes φa = 0

and φa = 0.5 are again characterized by resonances of the symmetric mode a+ [panel
(b)] and of the antisymmetric mode a− [panel (d)], respectively.

If we fix iDC and µ such that we are in a stable plateau state, we can thus
controllably switch between exciting the modes a+ or a− simply by varying the
applied flux. This behaviour is illustrated in Fig. 53 where we choose iDC = 0.22,
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Figure 52: I-V curves and oscillator root mean square displacements on an increasing
current path calculated by numerically solving Eqs. (326)-(330) with the same
parameters as in Fig. 51. Panels (a) and (b) show results for φa = 0, again equivalent
to the single junction case cf. Fig. 32, while panels (c) and (d) show results for
φa = 0.5. One sees much of the same behaviour as the decreasing current path Fig.
51 except that here much larger plateaus are accessed by exploiting the mechanically
induced hysteresis. The fact that retrapping does not occur for φa = 0.5 means that
we can obtain very large plateaus with widths greater than Ic.
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Figure 53: Simulation with varying external flux φa for fixed current, iDC = 0.22,
and coupling, µ = 0.09. The system is in a stable plateau state so that mechanical
oscillations are excited, but whether these oscillations are excited symmetrically
a+ = (a1+a2)/2 or antisymmetrically a− = (a1−a2)/2 is flux dependent. When φa =
0, or more generally an integer, there is no circulating current and the supercurrents
in both arms flow in the same direction so that the oscillator is excited symmetrically.
In contrast when φa = 0.5, or half integer, the circulating current is strong and the
supercurrents flow in opposite directions so that the antisymmetric mode is excited.

µ = 0.09 and access the plateau 〈V 〉/IcR ≈ ω̄0 = 0.1. The same experiment can
be performed at stronger coupling, choosing iDC and µ such that the plateau is
unstable for φa = 0 but stable for φa = 0.5. In this way one can switch between the
trapped and plateau states. The results of such an experiment for iDC = 0.22 and
µ = 0.3 are shown in Fig. 54. Around φa = 0 we are in a region where the plateau
is unstable so that the system is trapped 〈V 〉 = 0. As we then approach φa = 0.5

the trapped state vanishes when I ′c becomes less than IDC and the system makes a
discrete jump to the plateau state 〈V 〉/IDCR ≈ ω̄0 = 0.1 which is now stable. In
between these two extremes however there is a multistable region where the plateau
is stable but the trapped state still exists. Which state the system enters then
becomes history dependent, forming the hysteresis pattern depicted in Fig. 54, with
the blue and orange lines showing increasing and decreasing flux paths respectively.
This multistable region decreases in size as µ increases and more plateau states
become unstable.

5.2.6 Double Steps

Up until now we have assumed that the resonance frequencies of both weak links
ω1 and ω2 are identical, but we will now briefly explore what happens if they are
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Figure 54: Simulation with varying external flux φa for fixed current, iDC = 0.22,
and coupling, µ = 0.3. Here the coupling is large enough that the plateau is unstable
when φa = 0 and the system is trapped. Increasing the flux to φa = 0.5 then forces
the system to make a discrete jump to the mechanically resonant plateau state
since the trapped state vanishes as I ′c < IDC. A multistable region is present where
the trapped state exists and the plateau is stable. This multistability leads to the
hysteresis pattern shown, with the blue and orange lines corresponding to increasing
and decreasing flux respectively.

different. Fig. 55 shows possible I-V curves calculated numerically when ω̄1 = 0.1,
ω̄2 = 0.15, µ = 0.09, φa = 0. The other parameters are the same as we have used
previously, βc = 200, Q = 103 and βL = 0. As one might expect, instead of a
single Shapiro plateau, there are now two plateaus appearing at the frequencies ω1

and ω2. On the ω1 step, the oscillator a1 is in resonance while on the ω2 step a2 is
in resonance. The I-V curve is as usual strongly hysteretic and by increasing the
current from different starting points we can explore the full width of either of the
two steps. The full hysteresis profile is highlighted by the various arrows in Fig. 55.
We see that in some regions there are four possible stable solutions for the same
current value, a trapped state at 〈V 〉 = 0, a non-resonant running state 〈V 〉 ≈ IDCR

and two resonant plateau states 〈V 〉/IcR = ω̄1 and 〈V 〉/IcR = ω̄2. Thus by varying
the current we can choose to excite either of the two oscillators a1 or a2.

For larger couplings, the Shapiro steps exhibit energy-induced retrappings, and
are each associated with their own critical coupling values. This produces a large
number of additional transitions that are not displayed in Fig. 55. If φa is not
an integer value there is of course also different behaviour in the same way as we
discussed in the equal frequency case, in particular the aforementioned retrappings
do not occur.

We have now analyzed DC SQUIDs whose two constituent weak links can me-
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Figure 55: Possible I-V curves of an electromechanically coupled SQUID whose arms
have distinct resonance frequencies ω̄1 = 0.1 and ω̄2 = 0.15. The other parameters
are µ = 0.09, φa = 0, βc = 200, QΓ = 103 and βL = 0. Two distinct plateaus are
present at the frequencies ω1 and ω2. The I-V curves are highly hysteretic, with each
line corresponding to different possible paths and the arrows indicating whether the
bias current is increased or decreased. In particular by increasing the current from
different starting points we can explore the full width of either of the two steps. On
the ω1 step the oscillator a1 is in resonance while on the ω2 step the oscillator a2 is
in resonance.

chanically oscillate under the application of DC currents and magnetic fields. This
forms a natural extension of the electromechanically coupled single junction dis-
cussed in the previous section, where the external flux through the loop becomes an
important new parameter. We have seen that varying this external flux allows one
to control whether we activate the symmetric mode a+ or antisymmetric mode a−.
In addition, in the strong coupling regime we can make discrete transitions from a
zero voltage state to a mechanically resonant one at finite voltage, while keeping
the bias current and coupling fixed. This large increase/decrease in voltage over a
very small range of flux could be useful for ultra high-precision magnetometers. The
Josephson junctions in this set up do not necessarily need to be underdamped, since
we can reach much lower voltages by reducing the effective critical current, and the
induced circulating current can provide the electronic AC current. The requirement
to reduce thermal noise in our device still remains however, with temperatures still
needing to be reduced below 100mK, as discussed in section 4.11.

In principle a full analytical treatment of the electromechanically coupled SQUID
is possible using an ansatz similar to Eqs. (170) and (168) although the sheer number
of parameters in the general case makes it a challenging problem.
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6 Josephson Bloch Oscillations

When subjected to a constant and uniform electric field, electrons in solids may
undergo periodic motions known as Bloch oscillations [80]. These oscillations can
be revealed either by the transport properties of the solid [81,82] or by the radiation
generated by them [83]. One of the most practical aspects of Bloch oscillations is
that they can be used to amplify radiation in the terahertz range [84].

Bloch oscillations are not exclusive to solids. In their pioneering work, Likharev
et al. showed [85–88] that the dynamics of a Josephson junction was formally equiv-
alent to that of an electron moving in a one-dimensional solid. As such, Bloch
oscillations also occur in these junctions when driven by a DC current, which plays
an analogous role to the constant uniform electric field that induces ordinary elec-
tronic Bloch oscillations. Bloch oscillations in a Josephson junction can be revealed
in its I-V characteristic in the presence of a probing AC current [89, 90].

In this chapter we will begin by discussing the theory of Josephson Bloch os-
cillations before moving on to consider how they may be coupled to mechanical
oscillations in the weak link. We will consider the same mechanically coupled sin-
gle junction set up that was considered in chapter 4, but in a regime where Bloch
oscillations dominate with respect to the usual Josephson oscillations. We will see
that these Bloch oscillations, induced only by a DC current and uniform magnetic
field, can excite nano-scale mechanical vibrations that may be detected in the junc-
tion’s DC I-V characteristic. This could provide a novel way of observing the Bloch
oscillations without the need of an AC current, as well as producing non-classical
mechanical states that are intimately coupled with the quantum dynamics in the
junction.

6.1 Likharev Theory

The following Hamiltonian describes a Josephson junction biased with a current IDC

Ĥ =
Q̂2

2C
− ~Ic

2e
cos ϕ̂+

~
2e

(Îq − IDC)ϕ̂+ Ĥq, (333)

where symbols have their usual meanings. In contrast to the previous chapters,
dissipation has now been included directly by introducing Îq, the normal current
carried by thermally excited quasiparticles, which serve as a heat bath for the Cooper
pair condensate, and Ĥq, the Hamiltonian describing these quasiparticles. Recall
that Ĥ is identical in form to the Hamiltonian for a particle in the ‘tilted washboard’
potential U(ϕ) = −~(Ic cosϕ+ IDCϕ)/2e (see section 3.3.1), except for the coupling
to the quasiparticle current that generates damping. We saw that around the local
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minima, this potential can be approximated as harmonic with a frequency ωp =

(2eIc/~C)1/2, when IDC � Ic. In quantum mechanical terms, we thus expect the
first few energy levels of Ĥ to be separated by a spacing ~ωp. When the Josephson
energy EJ = ~Ic/2e is much larger than this energy spacing, EJ � ~ωp, we can
neglect the quantum nature of ϕ and treat it as a classical variable, as has been
done throughout the preceding chapters. However in the opposite limit, we must
treat the system quantum mechanically. It is in this limit that the Bloch oscillations
dominate with respect to the much faster, lower amplitude, Josephson oscillations.

To continue we must then treat the system parameters as quantum mechanical
operators, in particular ϕ̂ and Q̂ must satisfy the canonical commutation relation
[ϕ̂, Q̂/2e] = i. The first two terms of Eq. (333) make up the bare Hamiltonian Ĥ0

in the absence of currents. In the coordinate representation this becomes

Ĥ0 = −4EC
∂2

∂ϕ2
− EJ cos ϕ̂, (334)

where we have expressed the charge operator as Q̂ = −2ei ∂/∂ϕ and substituted
the Josephson energy EJ = ~Ic/2e and the charging energy EC = e2/2C. The
Schrödinger equation is then identical to that of a particle in the periodic potential
−EJ cosϕ, so that the solutions are Bloch waves. The energy dispersion is thus a
series of energy bands with a periodic dependence within each band i.e.

En(q) = En(q + 2e), (335)

where n = 0, 1, 2... is the band index and q is the quasicharge, which differs from the
real charge Q in the same way that quasimomentum differs from real momentum in
a crystal lattice. We will consider the low temperature kBT � ~ωp, and low current
~IDC/2e � ~ωp, limits where Zener transitions to higher energy bands have low
probability and we can restrict our analysis to the lowest energy band E(q) = E0(q).
Also in this limit, we can perform a semiclassical analysis, treating the currents as
small perturbations to Ĥ0.

We then proceed by analogy with the semiclassical model of electron transport,
with the current IDC playing the role of an applied electric field. In what follows we
will use unhatted symbols to represent quantum mechanical state averages of the
corresponding operators, while angle brackets will be reserved for time averages as
usual. The time derivative of ϕ is then given by the group velocity

dϕ

dt
=

2e

~
∂E(q)

∂q
, (336)
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from which we identify the voltage as

V =
Q

C
=
∂E(q)

∂q
. (337)

In the electron transport analogy, the term (Îq−IDC)ϕ̂ appearing in the Hamiltonian
Eq. (333) acts as an effective electronic scalar potential, so that the quasicharge q
evolves due to the following applied force

dq

dt
= IDC − Iq. (338)

The expectation value Iq should be determined in a self-consistent way by solving
the Heisenberg equations for Iq and Hq, but if the superconducting gaps of the
electrodes are much larger than EJ it takes the simple form

Iq =
V

R
=

1

R

∂E(q)

∂q
, (339)

where R is the normal state resistance, in accordance with the RCSJ model. Insert-
ing this into Eq. (338) we obtain the main equation that describes the dynamics of
the system.

dq

dt
= IDC −

1

R

∂E(q)

∂q
. (340)

When the energy dispersion E(q) is specified, this equation may be solved for the
evolution of the quasicharge q(t). The evolution of the voltage is then determined
from Eq. (337).

If IDC is smaller than the following threshold value

It = max
(
∂E(q)

∂q

)
/R, (341)

then there is a stationary solution q̇ = 0 which yields an Ohmic voltage V = IDCR.
However, if the DC current is larger than this threshold current, q(t) evolves in time
producing oscillations in voltage and energy. These oscillations are a direct analogue
of Bloch oscillations. Their time period tB may be calculated by integrating Eq.
(340), producing

q(tB)− q(0) = IDCtB −
1

R

∫ tB

0

V (q(t))dt. (342)

The energy and voltage are periodic in q with period 2e so the time period is the
time needed for q to increase by 2e i.e. q(tB) − q(0) = 2e. Defining the average
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voltage as 〈V 〉 we then obtain the frequency as

ωB =
2π

tB
=
π

e

(
IDC −

1

R
〈V 〉
)
. (343)

To continue we must specify the energy dispersion E(q). In the limit EJ � EC

the potential can be approximated as a series of deep wells so one can use a tight-
binding approach.15 The energy dispersion is then well known, with the lowest band
being

E(q) =
Ω0

2
(1− cos(πq/e)) , (344)

where Ω0 is the band width given by

Ω0

EJ
= 16

√
2

π
exp

(
−
√

8EJ
EC

)
. (345)

The equation of motion (340) is then

dq

dt
= IDC − It sin

(πq
e

)
, (346)

where the threshold current is It = πΩ0/2eR. For ease of calculation we can write
these equations in dimensionless form as usual. The current will now be expressed in
units of the threshold current by redefining iDC = IDC/It. Time is measured in units
of τt = ωtt, where ωt = πIt/e is the Bloch frequency ωB at the threshold current,
in the absence of damping. The quasicharge q is conveniently expressed as q̄ = q/q0

where q0 = e/π so that the voltage is V/ItR = sin q̄. Eq. (346) then becomes

˙̄q = iDC − sin q̄, (347)

where a dot over a quantity now denotes a derivative with respect to τt = ωtt.

This equation can now be solved numerically for q̄(t), and the DC voltage ob-
tained by taking the time average 〈V 〉/ItR = 〈sin q̄(t)〉. This produces the I-V curve
displayed in Fig. 56(a). The regime IDC ≤ It is Ohmic 〈V 〉 = IDCR (blue line),
while the oscillatory regime, IDC > It, is characterized by a region with negative
differential resistance d〈V 〉/dIDC < 0 (orange line). Panel (b) displays a plot of the
energy dispersion E(q), highlighting the evolution of q in time. Below the threshold
current q is constant giving a definite energy and voltage, while above the threshold

15In the opposite limit EC � EJ, the potential is weak so the energy dispersion within the first
Brillouin zone is approximately parabolic q2/2C. Bloch oscillations also arise in this limit with
little qualitative difference, except that the analysis is more difficult [90].
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Figure 56: (a) I-V curve obtained from solving Eq. (347). When the DC bias
current IDC is less than the threshold current It, the DC voltage is Ohmic (blue line)
and there are no Bloch oscillations. In contrast, when IDC > It there is negative
differential resistance d〈V 〉/dIDC < 0 (orange line) which signals the existence of
Bloch oscillations. (b) Energy dispersion E(q) of the lowest energy band, given by
Eq. (344). Dashed lines show the boundary of the first Brillouin zone, while the
blue and orange dots show the behaviour of q in the two current regimes.

current the quasicharge increases with time, producing oscillations in the energy and
voltage.

One may also include an AC current IAC sin(ωACt) on top of IDC, just as we did
in the classical limit in section 3.5. Eq. (347) then becomes

˙̄q = iDC + iAC sin(ω̄ACτt)− sin q̄, (348)

where iAC = IAC/It and ω̄AC = ωAC/ωt. The I-V curve obtained in this case is
shown in Fig. 57(a) from which we see that the oscillatory region now contains
Ohmic branches where the Bloch frequency locks to harmonics or subharmonics
of the driving frequency, ωB = (n/m)ωAC. The fact that this coupling leads to
Ohmic branches rather than flat Shapiro plateaus can be readily seen by the fact
that ωB, as defined in Eq. (343), is proportional to IDC − 〈V 〉/R rather than 〈V 〉
directly. A plot of ωB as a function of a current is displayed in panel (b), where the
frequency locking is easily visible. It was by measuring this frequency locking under
the application of an AC current bias that Bloch oscillations were first observed in
Josephson junctions [89].

6.2 Bloch-Mechanical Coupling

We now attempt to couple these Bloch oscillations to mechanical vibrations, just
as we did with the Josephson oscillations in the classical limit. We use an identical
set up to the one used previously, which is extensively discussed in chapter 4 and
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Figure 57: (a) I-V curve obtained from solving Eq. (348) where the bias current con-
tains an AC component with amplitude IAC/It = 1 and frequency ω̄AC = ωAC/ωt =
2. Two additional Ohmic branches are clearly visible in the region IDC > It, where
the Bloch oscillation frequency locks to multiples of the bias frequency ωAC. This
frequency locking is more visible in panel (b) which shows a plot of the Bloch oscil-
lation frequency directly, ωB/ωt = iDC − 〈V 〉/ItR.

displayed in Fig. 15. The Josephson weak link is now suspended and allowed to
oscillate due to the application of an in-plane magnetic field B. The mechanical
oscillations have their usual effect on the electronic system, leading to an effective
AC bias current flowing through the weak link. However, instead of forming Shapiro
plateaus in the I-V curve, the oscillations are expected to produce Ohmic branches
as discussed above.

6.2.1 Coupled Hamiltonian

The following Lagrangian and Hamiltonian for this coupled system were derived in
sections 4.4 and 4.5.

L =
1

2
C

(
~
2e

dϕ

dt
+Bl

dx

dt

)2

+ EJ cosϕ+
~
2e
IDCϕ+

1

2
M

(
dx

dt

)2

− 1

2
Mω2

0x
2 +BIDClx,

(349)

H =
1

2
C

(
~
2e

dϕ

dt
+Bl

dx

dt

)2

− EJ cosϕ− ~
2e
IDCϕ+

1

2
M

(
dx

dt

)2

+
1

2
Mω2

0x
2 −BIDClx,

(350)

where symbols have their usual meanings and damping has not yet been included.
In order to treat this Hamiltonian quantum mechanically we must of course write
it in traditional form in terms of the canonical momenta of the variables ϕ and x.
Instead of ϕ we will find it is more convenient to perform a change of variables
and use s = ~ϕ/2e since its conjugate momentum is equal to the charge Q. These
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conjugate momenta are then

p =
∂L

∂(dx/dt)
= (M + CB2l2)

dx

dt
+ CBl

ds

dt
, (351)

Q =
∂L

∂(ds/dt)
= C

(
ds

dt
+Bl

dx

dt

)
, (352)

so that the two commutation relations both take the canonical form [x, p] = i~ and
[s,Q] = i~. In terms of these momenta the Hamiltonian is

Ĥ =
1

2C̃

(
Q− C̃Bl

M
p

)2

−EJ cos(2es/~)−IDCs+
p2

2M̃
+

1

2
Mω2

0x
2−BIDClx, (353)

where for convenience we have defined a renormalized capacitance C̃ = C/(1 + µ2)

and mass M̃ = M(1 + µ2), and µ has the usual definition µ = B/B0 with B0 =√
MC−1/l. We can now proceed with quantization and add explicitly terms that

produce both the electronic and mechanical damping as follows

Ĥ =
1

2C̃

(
Q̂− C̃Bl

M
p̂

)2

− EJ cos(2eŝ/~) + (Îq − IDC)ŝ+ Ĥq (354)

+
p̂2

2M̃
+

1

2
Mω2

0x̂
2 −BIDClx̂+ Ĥb + Ĥi.

Here Ĥq and Îq produce the electronic damping as before, but we have also intro-
duced

Ĥb =
∑
ω

~ω(b̂†ω b̂ω + 1/2), (355)

which models a mechanical heat bath consisting of a spectrum of harmonic oscillators
and

Ĥi =
∑
ω

~λω(âb̂†ω + â†b̂ω) (356)

which describes the coupling to this bath. The operators b̂ω, b̂†ω are the annihilation
and creation operators for the heat bath oscillators, while â and â† are those for
the resonator, yielding x̂ =

√
~

2Mω0
(â + â†) and p̂ = i

√
~Mω0

2
(â† − â). The vibron

number operator is given by n̂ = a†a. The parameters λω are chosen by assuming a
white noise distribution for the heat bath, i.e.∑

ω

λ2
ωe

iω(t−t′) = Γ0δ(t− t′), (357)
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so that the interaction with the heat bath will lead to the usual velocity dependent
damping.

Mathematically, the Hamiltonian Eq. (354) resembles that of an ordinary elec-
tronic Bloch oscillator placed in a single mode optical cavity with frequency ω0. The
current Îq − IDC acts as an electronic scalar potential as it did previously, but the
mechanical resonator also introduces an effective vector potential proportional to p̂.
It is through this term that Q̂ and p̂ are coupled, with the coupling strength C̃Bl/M
being tunable by the field B. Thus, by again employing the analogy with electron
transport, the particle velocity ds/dt is still given by the group velocity as

ds

dt
=

~
2e

dϕ

dt
=
∂E

∂q
. (358)

The voltage however is proportional to the charge Q so that

V =
Q

C
=
∂E

∂q
+Bl

dx

dt
=

1

1 + µ2

∂E

∂q
+
Bl

M̃
p, (359)

where we have used Eqs. (351) and (352) to write this in terms of momenta. How-
ever, since the resonator velocity dx/dt has zero time average, the DC voltage is
still given by the simple expression

〈V 〉 =

〈
∂E

∂q

〉
. (360)

Just like the uncoupled case, there is an effective force IDC − Iq due to the gradient
of the scalar potential but now there is an additional component from the time
derivative of the effective vector potential C̃Blp/M . The time evolution of q is then
given by

dq

dt
= IDC − Iq −

C̃Bl

M
ṗ. (361)

We can again include electronic dissipation by assuming that the expectation value
of the quasiparticle current takes the classical form

Iq =
1

R

(
V −Bldx

dt

)
=

1

R

∂E

∂q
. (362)

We must now find how the mechanical resonator evolves in time. This can be
achieved by writing down the Heisenberg equations of motion for the operators x̂
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and p̂ as follows

dx̂

dt
=
i

~
[Ĥ, x̂] =

p̂− CBl ∂E/∂q
M̃

, (363)

dp̂

dt
=
i

~
[Ĥ, p̂] = BIDCl −Mω2

0x̂− 2MΓ0
dx̂

dt
. (364)

The first of these equations follows directly from the definition of p from Eq. (351).
By taking quantum mechanical state averages these equations transform simply into
ones for the expectation values x and p. Inserting p from Eq. (363) into Eq. (364)
one then obtains the following second order differential equation for x

M
d2x

dt2
+ 2MΓ0

dx

dt
+Mω2

0x = Bl

(
IDC −

dQ

dt

)
, (365)

which is identical in form to the classical equation obtained in chapter 4 [cf. Eq.
(138)]. If we write Q in terms of q using Eq. (359) this equation becomes

(1 + µ2)
d2x

dt2
+ 2Γ0

dx

dt
+ ω2

0x =
Bl

M

(
IDC − C

∂2E

∂q2

dq

dt

)
, (366)

which when combined with the equation for the evolution of q

dq

dt
= IDC −

1

R

∂E

∂q
− C̃Bl

M
ṗ, (367)

completely determine the evolution of x, p and q.

We could immediately solve these equations and produce I-V curves and plots of
the root mean square displacement. However, as the mechanical vibration amplitude
turns out to be of the order of zero-point motion amplitude, xzp =

√
~/2Mω0, it is

desirable to also characterize the resonator by the evolution of the vibron number
n̂ = â†â, or more precisely, its expectation value n(t).

6.2.2 Vibron Evolution

We begin by finding how the creation and annihilation operators â† and â evolve
from the Heisenberg equation of motion, yielding

dâ

dt
=
i

~
[Ĥ, â] = −iω0â−BlQ

√
ω0

2~M
+ i

BIDCl√
2M~ω0

− Γ0â+ F̂ , (368)

dâ†

dt
=
i

~
[Ĥ, â†] = +iω0â

† −BlQ
√

ω0

2~M
− i BIDCl√

2M~ω0

− Γ0â
† + F̂ †. (369)
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where we have used [â, â†] = 1 and defined F̂ = −i
∑

ω λω b̂ω(0). The terms F̂ and
F̂ †, which depend only on the initial configuration of the heat bath, describe the
effect of thermal noise and can thus be neglected if we consider the low temperature
limit kBT � Ω0. For the realistic parameters discussed later, this corresponds to
very low but achievable temperatures of the order of 10mK. The evolution of n̂ = â†â

is then found from

dn̂

dt
=
i

~
[Ĥ, â†â] =

i

~

{
â†[Ĥ, â] + [H, â†]â

}
= â†

dâ

dt
+

dâ†

dt
â, (370)

yielding
dn̂

dt
= −Blω0

~
x̂Q̂+

BIDCl

~Mω0

p̂− 2Γ0n̂. (371)

Here the first term on the right hand side describes the excitation of mechanical
vibrations by the electromechanical coupling, the second term arises from the con-
stant force BIDCl and the final term gives the damping due to the coupling with
the heat bath. This operator equation can be easily transformed into a classical
equation for the expectation value n(t), producing

dn

dt
= −Blω0

~
C1 +

BIDCl

~Mω0

p− 2Γ0n, (372)

where C1 is the state average of x̂Q̂. Applying Heisenberg’s equation to C1 and any
new quantity that appears in the ensuing equations, one finds

dC1

dt
= x

dQ

dt
+ C2/M −BlC3/M − Γ0C1, (373)

dC2

dt
= p

dQ

dt
−Mω2

0C1 +BIDClQ− Γ0C2, (374)

dC3

dt
= 2Q

dQ

dt
, (375)

where C2 and C3 are the state averages of p̂Q̂ and Q̂2, respectively. If we again use
Eq. (359) to express Q in terms of the quasicharge q, Eqs. (372) - (375) can be
solved for n(t), with x, p and q obtained from (366) and (367).

6.2.3 Magnetic Field Dependence of Band Energy

To actually solve the above equations, we must specify the energy dispersion E(q).
This is the dispersion of the lowest band of the bare electronic Hamiltonian when
the effective scalar and gauge fields are zero, Iq = IDC = p = 0 i.e. Ĥ0 = Q̂2/2C̃ −
EJ cos ϕ̂. This is identical to the uncoupled case Eq. (334) except that the magnetic
field renormalizes the effective capacitance C̃ = C/(1 + µ2). If we remain in the
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tight-binding limit EJ � EC(1 + µ2) we can then write down E(q) by analogy with
Eqs. (344) and (345) as follows

E(q) =
Ω

2
(1− cos(πq/e)) , (376)

where Ω is the band width given by

Ω

EJ
= 16

√
2

π
exp

(
−

√
8EJ

EC(1 + µ2)

)
. (377)

Thus the magnetic field acts to slightly increase the band width. For convenience
we will define the ratio of Ω to the zero magnetic field band width Ω0 as

D(µ) =
Ω

Ω0

= d[(1+µ2)(−1/2)−1], (378)

where

d = exp

(
−
√

8EJ
EC

)
. (379)

This modification is usually very small, since µ2 � 1 for realistic magnetic field
strengths.

6.2.4 Dimensionless Equations

Before numerically solving our equations of motion (366) and (367), we will write
them in dimensionless form. Just as in the uncoupled case we define iDC = IDC/It,
q̄ = q/q0 and measure time in units of τt = ωtt. Here It = πΩ0/2eR is the threshold
current at zero magnetic field, q0 = e/π and ωt = πIt/e. We also define the quality
factor16 QΓ = ω0/Γ0, dimensionless resonance frequency ω = ω0/ωt and displace-
ment a = x/xt where xt = B0Itl/Mω2

t . The equations of motion then take the
following form

˙̄q = iDC −D(µ) sin(q̄) +
µ

1 + µ2

(
ω2a+

2ω

QΓ

ȧ− iDCµ

)
, (380)

(1 + µ2)ä+
2ω

QΓ

ȧ+ ω2a = µ(iDC − ΛD(µ) cos(q̄) ˙̄q). (381)

Here Λ = ωtRC is a new parameter that is reminiscent of the Stewart-McCumber
parameter βc = ωcRC in the classical case. In fact Λ may again be regarded as the
ratio Λ = |ZR|/|ZC |, where ZR = R and ZC = −i/ωtC are the impedances of the

16Not to be confused with the charge Q.
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resistance and capacitive channels at the frequency ωt, which is the characteristic
frequency scale of Bloch oscillations. It is clear from Eq. (381) that in order to
excite oscillations Λ should not be too small. This is just the condition that the bias
current is mostly shunted by the displacement current so that the electronic current
is predominantly AC. This was one of the reasons we needed to use underdamped
junctions βc � 1 in the classical treatment in chapter 4, and the same principle
applies here. The voltage may be expressed dimensionlessly as

V

ItR
= D(µ) sin q̄ +

µ

Λ
ȧ, (382)

where, as usual, the second term on the right hand side has zero time average so it
does not contribute to the DC voltage.

The vibron evolution equations (372) - (375) may also be put in a dimensionless
form as follows

ṅ =
2Σµ

π2ω

(
µiDC

(
p

p0

)
− ω2c1

)
− 2ω

QΓ

n, (383)

ċ1 = a

(
Q̇

q0

)
+ c2 − µc3 −

ω

QΓ

c1, (384)

ċ2 =

(
p

p0

)(
Q̇

q0

)
+ µiDC

(
Q

q0

)
− ω2c1 −

ω

QΓ

c2, (385)

ċ3 = 2

(
Q

q0

)(
Q̇

q0

)
, (386)

where p0 = Mx0ωt is a characteristic momentum scale, Σ = Ec/~ωt while c1 =

C1/x0q0, c2 = C2/p0q0 and c3 = C3/q
2
0 are dimensionless forms of the state averages

of x̂Q̂, p̂Q̂ and Q̂2 respectively. Upon insertion of

p

p0

= (1 + µ2)ȧ+ ΛµD(µ) sin(q̄), (387)

and
Q

q0

= ΛD(µ) sin(q̄) + µȧ, (388)

these four equations may be solved for n(t) once q̄ and a are determined from Eqs.
(380) and (381). The fixed parameters of our system of equations are ω, QΓ, d, Λ

and Σ while iDC and µ may be experimentally tuned as usual. We now finally move
on to numerically solve these equations to establish whether mechanical oscillations
are excited and what effects they have on the electronic system.
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6.2.5 Mechanically Induced Voltage Peaks

We numerically solve Eqs. (380), (381) and the vibron evolution equations (383)-
(386) using the following parameters appropriate for carbon nanotube devices Ic =

1nA, R = 10kΩ, C = 5 × 10−14F, l = 1µm, M = 10−21kg, ω0/2π = 1GHz,
QΓ = ω0/Γ0 = 104 [27, 63–67, 73]. All other parameters may be derived from
these fundamental ones, and in particular the important dimensionless parame-
ters ω = ω0/ωt = 1.92, Λ = ωtRC = 1.64 and Σ = Ec/~ωt = 0.74. The ratio
of the two energy scales EJ and EC may then be derived as EJ/EC = 1.29 so
that our tight-binding approximation is fairly reasonable. The final parameter d
that characterizes the change in the energy band width is then calculated to be
d = exp(−

√
8EJ/EC) = 0.04.

Fig. 58(a) shows the numerically calculated I-V characteristics for a number
of different values of the coupling µ, where the characteristic current, voltage and
magnetic field scales are It = 0.167nA, Vt = ItR = 1.67µV and B0 = 141T. In
the absence of electromechanical coupling, i.e. µ = 0, the usual Ohmic behaviour
for IDC < It is observed along with negative differential resistance for IDC > It.
Switching on the coupling causes the oscillator to vibrate, resulting in distinctive
voltage peaks in the I-V curve. These peaks develop when the Bloch oscillation
frequency ωB matches the resonance frequency ω0, due to the gauge field C̃Blṗ/M
acting as an effective AC current. The inset of Fig. 58 displays a plot of ωB against
current that explicitly shows this frequency locking, similar to the familiar Shapiro
plateaus. The voltage peaks reach a maximum size of ∼ 0.2µV, but if the coupling
is increased further the peaks begin to reduce in size. At first glance, it appears that
this may be due to the coupling entering the electronic equation (380) as µ/(1+µ2),
due to the renormalization of the capacitance, but this reduction begins to occur
at low coupling µ ≈ 0.3 where the renormalization is still insignificant. The true
explanation of this effect seems to be that when the oscillations become too strong,
their back action on the electronic degrees of freedom brings the system off resonance.

The excitation of the oscillator may be studied by looking at the expectation
value n(t) of the vibron number. Solving Eqs. (383) - (386), we find that the
oscillator eventually evolves into a state with n(t) generally oscillatory but highly
localized around an average 〈n〉. In Fig 58(b) we display 〈n〉 as a function of the
bias current IDC, focusing on the region IDC > It where mechanical oscillations are
excited. Comparing this plot with panel (a) shows that the oscillator excitation
coincides with the voltage peaks in the I-V characteristic. As such, the mechanical
vibrations have a direct influence on the I-V curve and may be turned on or off by
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Figure 58: (a) I-V characteristic obtained from Eqs. (380) and (381) for various
values of coupling strengths µ = B/B0 with the parameters quoted in the main
text, for which It = 0.167nA, Vt = ItR = 1.67µV, ω0/2π = 1GHz, B0 = 141T.
A distinct voltage peak of size ∼ 0.2µV is observable when the Bloch oscillation
frequency ωB locks onto the mechanical resonance frequency ω0. The inset displays
a plot of ωB against current that explicitly shows this frequency locking. (b) Time
average of the vibron number 〈n〉 as a function of IDC, obtained from Eqs. (383) -
(386) for various values of coupling µ = B/B0 using the same parameters as in Fig.
58. Plots with µ 6= 0 are displaced upward along the vertical axis slightly for clarity.

simply tuning ωB toward or away from ω0. Note that the oscillator is not excited
gradually, increasing IDC does not increase 〈n〉 until frequency locking happens, the
oscillator is then suddenly activated, increasing n by multiple orders of magnitude
within a small range of current, from zero to the peak value ∼ 200 for the parameters
used here. The zero-point motion of the oscillator is

√
~/2Mω0 ≈ 2.9pm so that we

can estimate the maximum amplitude of the oscillations by xzp
√

2n+ 1 ≈ 58pm.

To observe in more detail how these voltage and vibron number peaks are mod-
ified by the coupling, Fig. 59 displays colour plots of 〈V 〉 [panel (a)] and 〈n〉 [panel
(b)] as functions of both the current and the magnetic field. Only the region IDC > It

is shown for clarity. A direct correspondence between 〈V 〉 and 〈n〉 is observed. Op-
timal values of µ and IDC are observed where 〈n〉 and 〈V 〉 are peaked, see the red
spot in the plots. For the parameters used here the optimal coupling value occurs
around µ ≈ 0.03, corresponding to a magnetic field of B ≈ 4T. If µ is increased
further, vibrations begin to be suppressed as discussed above.

Thus we have seen that Bloch oscillations in Josephson junctions can be used
to amplify mechanical vibrations with only DC techniques, just as the classical
Josephson oscillations were used in chapter 4. This could provide a novel way
of observing Bloch oscillations without the need of a probing AC current as has
been used in previous set ups. Our work may also give an insight into non-classical
mechanical states, as the vibrations excited here are intimately coupled to the Bloch
oscillations, a strictly quantum phenomenon.
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Figure 59: (a) DC voltage 〈V 〉 and (b) average vibron number 〈n〉 as functions of
IDC and µ for the same parameters as in Figs. 58. Optimal values for IDC and
µ exist for which the mechanical oscillations are maximally excited, leading to the
maximum size of the voltage peak. 〈V 〉 and 〈n〉 peak at approximately 1µV and
200, respectively.

In order to experimentally realize this proposal, or at least to reach the optimal
value of µ, fairly large magnetic fields must be used of the order of 1T. Supercon-
ducting contacts with fairly high critical fields of the order of 10T or more should
then be used, for example ones based on niobium nitride [91]. The optimal magnetic
field value may also be lowered by increasing the quality factor QΓ, analogously to
the critical values µc1 and µc2 of chapter 4. Additionally, as the coupling strength
C̃Bl/M is proportional to the capacitance C, it is desirable to increase C to enhance
the coupling. On the other hand, the peak value of 〈V 〉 = (πΩ/2e)〈sin(πq/e)〉 is
proportional to the band width Ω which, as Eq. (377) suggests, decreases with
increased capacitance. For the best experimental outcome, C should therefore be
tuned between these two extremes. Finally, low temperatures are required to en-
sure that the amplified mechanical vibrations exceed thermal excitations, and also
so that voltage fluctuations do not destroy the voltage peak. This latter condition
is much stricter, requiring the thermal energy to be lower than the band width,
kBT � Ω. For the parameters used here this corresponds to very low but achievable
temperatures of the order of 10mK.
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7 Conclusions and Perspectives

Throughout this thesis, we discussed the theory of electromechanically coupled
Josephson junctions. It is clear that the Josephson effect, via the conversion of
a DC bias into an AC supercurrent, allows the excitation of mechanical oscillations
in a suspended weak link, removing the need for AC bias in NEMS devices. We ana-
lyzed in depth a very simple setup consisting of a weak link, or a SQUID, suspended
between two superconducting contacts. A DC current bias and uniform magnetic
field, combined with DC voltage measurements, are then all that is required to ob-
serve a variety of interesting mechanically induced effects including Shapiro steps,
abrupt energy induced retrappings and fractal-like structures.

In state-of-the-art devices with resonance frequencies and quality factors ω0 ≈
10GHz and QΓ ≈ 106 [63, 64], mechanically induced effects are predicted to appear
at voltages of the order 1µV and span over large current plateaus of the order of the
critical current. There is no difficulty in achieving this level of resolution in present
setups [27, 73]. The crossover to the strong coupling regime may be observed in
these devices at magnetic fields of the order of 100mT.

One challenge for the experimental observation of the predictions presented here
is the need for the Josephson junctions to be in the underdamped regime, βc =

ωcRC � 1 (or in the Bloch oscillation regime Λ = ωtRC � 1) i.e. devices with
large inter-electrode capacitances. Fortunately, many graphene and CNT based
junctions seem to naturally operate in this regime [71–73]. In the Bloch oscillation
regime, a stricter constraint is placed on the capacitance, as increasing it too much
reduces the width of the energy bands, and thus decreases the mechanically induced
voltage signal. This difficulty is easily overcome, as the effective capacitance may
be tuned by connecting the junction in parallel with an external capacitor [74].

A further challenge is the need to minimize the effects of temperature by de-
creasing the thermal energy kBT below the energy scale ~IDC/2e associated with
the bias current IDC. For the state-of-the-art devices with ω0 ≈ 10GHz discussed
above, we predict that the observation of the proposed effects requires temperatures
T < 100mK, compatible with recent measurements [18,20]. Once again in the Bloch
oscillation regime a stricter constraint is placed on the temperature by the require-
ment that the thermal energy is lower than the energy band width Ω, so that to
observe the mechanically induced effects in this regime, lower temperatures of the
order of T ∼ 10mK are required.

It is hoped that the mechanically induced effects presented here will soon be
observed experimentally in suspended Josephson junction resonators. They could
subsequently find their use in a number of potential applications. The existence of a
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Shapiro plateau, located at precisely the bare resonance frequency of the weak link,
could be very useful for metrology as well as further research into NEMS without
requiring complicated AC setups. The abrupt transitions that emerge in the strong
coupling regime, and in particular their dependence on the magnetic flux in SQUIDs,
could result in high precision sensors for current, voltage and magnetic fields.
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A Lagrangian: Uncoupled SQUID

The equations of motion (273) and (274) can be derived from the Euler-Lagrange
equations

d
dt

∂L
∂(dqi/dt)

− ∂L
∂qi

= − ∂P

∂(dqi/dt)
, (389)

where qi = {ϕ1, ϕ2} are the generalised coordinates and the Lagrangian L and
dissipation function P are given by

L =
∑
n

{
1

2
CnV

2
n +

~Icn
2e

cosϕn −
1

2
LnI

2
n

}
+

∫
IDCV dt, (390)

P =
∑
n

V 2
n

2Rn

, (391)

where the summations are over the two arms n = 1, 2. These are just the sums of
the corresponding functions for two separate junctions, except for the inductance
term which couples the two together through the circulating current J . This can be
seen by writing L and P explicitly in terms of ϕ1 and ϕ2 as

L =
∑
n

{
1

2
Cn

(
~
2e

dϕn
dt

)2

+
~Icn
2e

cosϕn +
~IDC

2e

Lred

Ln
ϕn

}

−
(

~
2e

)2
1

2L

(
ϕ2 − ϕ1 −

2πΦ

Φ0

)2

, (392)

P =
∑
n

1

2Rn

(
~
2e

dϕn
dt

)2

, (393)

where Lred = L1L2/L is the reduced inductance. Here we can see that the inclusion
of the energy stored in the inductance leads to a term that couples ϕ1 and ϕ2. The
following equations of motion can then be derived

IDC
Lred

Ln
± ~

2eL

(
ϕ2 − ϕ1 −

2πΦ

Φ0

)
= Icn sinϕn +

~
2eRn

dϕn
dt

+
~Cn
2e

d2ϕn
dt2

, (394)

where the plus sign is taken for n = 1 and the minus sign for n = 2. Using the flux
relation (283) to write J in terms of ϕ1 and ϕ2 we see that the LHS of (394) is just
IDC/2± J so that these correctly produce Eqs. (273) and (274).
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The Hamiltonian may also be derived from the usual relation

H =
∑
n

dqn
dt

∂L
∂(dqn/dt)

− L, (395)

=
∑
n

Cn

(
~
2e

dϕn
dt

)2

− L. (396)

So that, compared to the Lagrangian, the kinetic energy terms keep the same sign
while the potential energy terms reverse sign as usual, producing

H =
∑
n

{
1

2
Cn

(
~
2e

dϕn
dt

)2

− ~Icn
2e

cosϕn −
~IDC

2e

Lred

Ln
ϕn

}

+

(
~
2e

)2
1

2L

(
ϕ2 − ϕ1 −

2πΦ

Φ0

)2

. (397)

For completeness the total energy is given by E = H +
∫
IDCV dt as follows

E =
∑
n

{
1

2
Cn

(
~
2e

dϕn
dt

)2

− ~Icn
2e

cosϕn

}
+

(
~
2e

)2
1

2L

(
ϕ2 − ϕ1 −

2πΦ

Φ0

)2

.

(398)
If the junctions are symmetric, we can express each of these functions in terms of
dimensionless quantities, L̄ = L/EJ, P̄ = P/EJωc, H̄ = H/EJ and Ē = E/EJ,
where EJ = ~Ic/2e, as follows

L̄ =
∑
n

{
βc

2
ϕ̇2
n + cosϕn +

iDC

2
ϕn

}
− 1

2πβL
(ϕ2 − ϕ1 − 2πφa)

2, (399)

P̄ =
1

2

∑
n

ϕ̇2
n (400)

H̄ =
∑
n

{
βc

2
ϕ̇2
n − cosϕn −

iDC

2
ϕn

}
+

1

2πβL
(ϕ2 − ϕ1 − 2πφa)

2, (401)

Ē =
∑
n

{
βc

2
ϕ̇2
n − cosϕn

}
+

1

2πβL
(ϕ2 − ϕ1 − 2πφa)

2. (402)
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B Lagrangian: Coupled SQUID

The Lagrangian and dissipation functions of the mechanically coupled SQUID are
given by

L =
∑
n

{
1

2
CnV

2
n +

~Icn
2e

cosϕn −
1

2
LnI

2
n +

1

2
Mn

((
dxn
dt

)2

− ω2
nx

2
n

)}
+

∫
IDCV dt,

(403)

P =
∑
n

{
(Vn −Bnlndxn/dt)2

2Rn
+MnΓn

(
dxn
dt

)2
}
. (404)

which in terms of our generalized coordinates qi = {ϕ1, a1, ϕ2, a2} become

L =
∑
n

{
1

2
Cn

(
~
2e

dϕn
dt

+Bnln
dxn
dt

)2

+
~Icn
2e

cosϕn +
~IDC

2e

Lred

Ln

(
ϕn +

2e

~
Bnlnxn

)

+
1

2
Mn

((
dxn
dt

)2

− ω2
nx

2
n

)}
− 1

2L

[
~
2e

(ϕ2 − ϕ1)− Φ +B2l2x2 −B1l1x1

]2

, (405)

P =
∑
n

{
1

2Rn

(
~
2e

dϕn
dt

)2

+MnΓn

(
dxn
dt

)2
}
. (406)

We note that this Lagrangian (405) is obtained from the uncoupled one (392) by first
adding the purely mechanical terms, and then replacing ϕn with (ϕn+(2e/~)Bnlnxn)

everywhere except the Josephson energy (cosine) term. This reflects the fact that
the voltage is related to ϕ̇n in this new way, while the supercurrents remain as
Icn sinϕn. The Hamiltonian and energy are then derived in the usual way, yielding

H =
∑
n

{
1

2
Cn

(
~
2e

dϕn
dt

+Bnln
dxn
dt

)2

− ~Icn
2e

cosϕn −
~IDC

2e

Lred

Ln

(
ϕn +

2e

~
Bnlnxn

)

+
1

2
Mn

((
dxn
dt

)2

+ ω2
nx

2
n

)}
+

1

2L

[
~
2e

(ϕ2 − ϕ1)− Φ +B2l2x2 −B1l1x1

]2

, (407)

E =
∑
n

{
1

2
Cn

(
~
2e

dϕn
dt

+Bnln
dxn
dt

)2

− ~Icn
2e

cosϕn

+
1

2
Mn

((
dxn
dt

)2

+ ω2
nx

2
n

)}
+

1

2L

[
~
2e

(ϕ2 − ϕ1)− Φ +B2l2x2 −B1l1x1

]2

. (408)
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Finally, the dimensionless forms in the symmetric junction case are

L̄ =
∑
n

{
βc

2
(ϕ̇n + µnȧn/βc)

2 + cosϕn +
iDC

2
(ϕn + µnan/βc)

+
1

2βc
(ȧ2
n − ω̄2

na
2
n)

}
− 1

2πβL
[ϕ2 − ϕ1 − 2πφa + (µ2a2 − µ1a1)/βc]

2 , (409)

P̄ =
∑
n

{
1

2
ϕ̇n

2 +
ω̄n
QΓβc

ȧn
2

}
, (410)

H̄ =
∑
n

{
βc

2
(ϕ̇n + µnȧn/βc)

2 − cosϕn −
iDC

2
(ϕn + µnan/βc)

+
1

2βc
(ȧ2
n + ω̄2

na
2
n)

}
+

1

2πβL
[ϕ2 − ϕ1 − 2πφa + (µ2a2 − µ1a1)/βc]

2 , (411)

Ē =
∑
n

{
βc

2
(ϕ̇n + µnȧn/βc)

2 − cosϕn

+
1

2βc
(ȧ2
n + ω̄2

na
2
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+

1
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2 . (412)
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