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Abstract
Fast-slow dynamical systems have subsystems that evolve on vastly different 
timescales, and bifurcations in such systems can arise due to changes in any 
or all subsystems. We classify bifurcations of the critical set (the equilibria of 
the fast subsystem) and associated fast dynamics, parametrized by the slow 
variables. Using a distinguished parameter approach we are able to classify 
bifurcations for one fast and one slow variable. Some of these bifurcations are 
associated with the critical set losing manifold structure. We also conjecture 
a list of generic bifurcations of the critical set for one fast and two slow 
variables. We further consider how the bifurcations of the critical set can be 
associated with generic bifurcations of attracting relaxation oscillations under 
an appropriate singular notion of equivalence.
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1.  Introduction

Many natural systems are characterized by interactions between dynamical processes that run 
at very different timescales. These can often be modelled as fast-slow systems, where system 
dynamics can be separated into interacting fast and slowly changing variables. This has been 
applied to a wide range of natural phenomena, including electrical circuits [39], plasma oscil-
lations [34], surface chemistry [27] and cell physiology [24] to ecology [41] and climate [3]. 
The dynamical behavior of such systems can often be understood in a common mathematical 
framework. See [29] for a recent monograph that summarizes both techniques and applica-
tions, and [2, 6, 7, 12, 18, 23, 21, 45] for examples of related work.

The analysis of fast-slow systems is built around a geometric singular perturbation theory 
(GSPT) approach [14], perturbing from a singular limit where timescales decouple: see also 
[13, 25]. In the singular limit, on the slow timescale there are instantaneous jumps (determined 
by the fast dynamics) between periods of slow evolution. The slow evolution typically takes 
place on stable sheets of a critical set where the fast dynamics is in stable balance, inter-
spersed by fast transitions. If the fast dynamics is one dimensional, then it is typically confined 
to a manifold (and hence the set is often called a critical manifold), though at bifurcation it 
may lose its manifold structure at isolated points. The fast transitions are determined by what 
we call the umbral map defined as the map from a fold point on the critical set to another part 
of the critical set. In the case of stable periodic behaviour in the singular limit, the resulting 
limit cycles are referred to as singular relaxation oscillations. Many examples of bifurcations 
of relaxation oscillations have been considered [2], including some associated with bifurca-
tions of the critical set [3, 15, 16] although it seems that no exhaustive list of scenarios has 
been proposed.

Although singular perturbation theory has been developed to explain many aspects of 
behaviour near the singular limit, there is still no full understanding of generic bifurcations 
of limit cycles even in the singular limit. Guckenheimer [18–20] suggests an approach and 
several results along these lines, but, as far as we are aware, these conjectures are yet to 
be framed, let along proved, in rigorous terms. The main aim of this paper is to present an 
approach to doing precisely this, using singularity theory with distinguished parameters and 
appropriate notions of equivalence. We classify local and global transitions in the critical set 
by codimension and consider the consequences for the umbral map. In doing so, we find a 
variety of scenarios that give bifurcation of attractors in such singular systems.

We show that it is possible to split the problem of bifurcations of relaxation oscillations 
into two aspects: bifurcations of the critical set, and bifurcations caused by singularities of 
the slow flow (possibly interacting with the critical set). In the simplest case of one fast and 
one slow variable, bifurcations of the critical set can be directly tackled using a global version 
of the singularity theory with distinguished parameter in [17]. We highlight that this theory 
needs extension to make it suitable for systems with multiple fast and slow variables. We are 
able to identify a large number of scenarios that can lead to bifurcation of relaxation oscilla-
tions. Note that we only consider fast-slow systems where the fast dynamics is constrained 
to a subset of the variables; following [14] it is possible to extend the theory developed here 
to more general fast-slow systems that are not in standard form: see for example [28, 30, 48].

We structure the paper as follows: in section 2 we briefly introduce the singular limit of fast-
slow systems, critical sets, singular trajectories and global equivalence of critical sets. In sec-
tion 3 we explore persistence and bifurcation of critical sets by examining versal unfoldings of 
the fast dynamics parametrized by the slow variables, using a notion of global equivalence of 
the fast dynamics. In the case of one fast and one slow variable we classify persistence (propo-
sition 1) and bifurcations of the critical set up to codimension one (proposition 2) using the 
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theory of [17]. For one fast and several slow variables we highlight the need for an improved 
theory of bifurcations with multiple distinguished parameters. We present conjectured state-
ments of persistence and of codimension one bifurcations of the critical set (conjectures 1 and 
2 respectively) for one fast and two slow variables. We find a rich variety of distinct mech
anisms for typical codimension one bifurcations of the critical set which includes local and 
global bifurcations in the fast variable.

Section 5 turns to the question of bifurcation of attractors in fast-slow systems and in par
ticular bifurcation of stable relaxation oscillations. We introduce a global singular equivalence 
for the singular trajectories and use this to classify persistence (proposition 4) and codimen-
sion one bifurcations (proposition 5) of these simple relaxation oscillations. These codimen-
sion one bifurcations naturally split into those caused by bifurcations of the critical set, and 
those caused by interaction of singularities of the slow flow with the critical set: in section 5.3 
we present some numerical examples of various types. Finally, section 6 is a discussion of 
some of the challenges for GSPT to describe the unfolding of such bifurcations, and relation 
to other singularity theory approaches. We include several Appendices that give more details 
of the tools used for the classification and the examples.

2.  Singular trajectories of fast-slow systems

A fast-slow system is a system of coupled ODEs for z = (x, y) ∈ Rm+n of the form
{
εẋ = g(x, y, ε)
ẏ = h(x, y, ε)� (1)

where x ∈ Rm and y ∈ Rn, ε > 0 is a small constant and t is a time measured relative to the 
slow dynamics. The functions g(x, y, ε) and h(x, y, ε) are C∞ functions of their arguments (they 
are well approximated by Taylor series to arbitrary order). We refer to x as the fast and y  as the 
slow subsystems; the dynamics in these subsystems are referred to as fast and slow dynamics 
respectively. These systems have a singular limit ε → 0, where a typical trajectory can remain 
close to an equilibrium of the fast system, except at isolated points where it ‘jumps’ along a 
trajectory of the fast subsystem. The singularly perturbed system with ε > 0 will have tra-
jectories that typically remain near a trajectory of the singular limit, although especially near 
bifurcations, trajectories may also explore unstable parts of the slow dynamics along so-called 
canard solutions (see e.g. [2, 6, 32, 45] and [29, chapter 8]).

In order to understand such systems it is useful to consider the reduced or slow equations 
in slow time t:

{
0 = g(x, y, 0)
ẏ = h(x, y, 0),� (2)

describing the slow dynamics in the singular limit ε → 0. Solutions of (2) are constrained to 
the critical set

C[g] =
{
(x, y) ∈ Rm+n : g(x, y, 0) = 0

}
.� (3)

Note that by the regular value theorem [33], this critical set is a manifold at all points where 
the derivative of g has maximal rank. For an open dense set of g ∈ C∞ this is true for an open 
and dense set (x, y) ∈ C[g]. The set is often called a critical manifold, however we do not use 
this notation as at bifurcation points the set may lose its manifold structure.

The flow g may have singular equilibria of the fast dynamics within C[g], where the term 
singular here means non-regular. The regular points of the critical set C[g] we define as
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Creg[g] = {(x, y) ∈ C[g] : ∂xg(x, y, 0) is hyperbolic} .� (4)

The remaining non-hyperbolic (fold) points, also called singular or limit points, form the fold 
set of the critical set

F [g] = {(x, y) ∈ C[g] : ∂xg(x, y, 0) is non-hyperbolic} .� (5)

At all regular points the reduced equations (2) can be used to describe the flow. At fold points, 
however, we need to consider the fast dynamics and there will be jumps in slow time deter-
mined by the fast subsystem only.

Changing variable to a fast time τ = t/ε and taking the limit ε → 0 gives quite a different 
set of equations: the layer or fast equations:

{
x′ = g(x, y, 0)
y′ = 0,� (6)

where we write x′ to denote d
dτ x and note that (a) the constant slow variable y  now acts as a 

parameter for evolution of the fast variable x and (b) the layer equation, when restricted to 
C[g] consists entirely of equilibria for m  =  1 (for m  >  1 there may be other objects, such as 
limit cycles). We split the regular set into a disjoint union of attracting/repelling/saddle points

Catt[g], Crep[g], Csad[g]

so that Creg[g] = Catt[g] ∪ Crep[g] ∪ Csad[g]. Note that F [g] is the union of the set of boundaries 
of these sets, and also that the set Csad[g] only exists for m � 2. Note that the regular set is the 
union of all non-singular points

Creg[g] = C[g] \ F [g].

From now on, we only concern ourselves with the system in the singular limit, and there-
fore drop the dependency on ε in our notation, such that e.g. g(x, y, 0) := g(x, y) and 
h(x, y, 0) := h(x, y). However, we stress once more that the system (1) may depend crucially 
on ε near, but away from, the singular limit.

We now make the notion of jumps more precise: For any point p = (x, y) ∈ F [g] we define 
the (possibly set-valued) umbral map to be

U[g]( p) = {ω-limits of a non-trivial trajectories in (6) with α-limit p},

that is, a map from every point q, which limits to p  in backward time (α-limit), to the set of 
forward time limits (ω-limit) of every such q, excluding p  itself. The ω-limits are always non-
empty since we will assume bounded global attractors. However, if all ω  limits equal p  then 
the umbral map is empty. The umbra (meaning shadow [18]) or drop set [29, chapter 5, p 109] 
is the image of the folds under the umbral map:

U [g] = U[g](F [g]).

We define the projection onto the slow variable as

π : Rm+n → Rn, π(x, y) = y

and for p = (x, y) we define the set of all co-folds to p  as

Π( p) = {q ∈ F [g] : π( p) = π(q)} = π−1 (π( p)) ∩ F [g],� (7)

i.e. all fold points with the same slow coordinate as p . Similarly, we define the set of folds 
sharing a given slow (y ) coordinate to be:
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P(y) = F [g] ∩ π−1(y).� (8)

2.1. Trajectories in the singular limit

Note that typical points in Rm+n are not on C[g]: starting at (x, y) �∈ C[g] there will be fast motion 
governed by the layer equations (6). If this settles to a limit we will typically have arrived at a 
point on the critical set that is a stable equilibrium, i.e. on Catt[g]. The slow dynamics then car-
ries the trajectory around Catt[g] until (possibly) it hits a fold point p = (x, y) ∈ F [g]. If U[g]( p) 
is a single point then there is a unique non-trivial trajectory of the layer equations from this 
point, the fast motion will take the dynamics to U[g]( p).

Hence typical trajectories in the singular limit (which can be viewed as trajectories of a 
constrained differential equation [42]) are composed of segments of slow trajectories on Catt[g] 
interspersed with fast jumps. Depending on the nature of the slow segments and fast jumps, 
characterised by the umbral maps, there may be a trajectory of the ε > 0 system that remains 
close to the singular trajectory. More precisely, we define a singular trajectory as follows (this 
idea is widely used and sometimes called a candidate trajectory, for example [4, 5, 32, 35, 44] 
and [29, chapter 3, p 64]):

Definition 1 (singular trajectory).  A singular trajectory is a homeomorphic image γ0(σ) 
of a real interval [a, b] with a  <  b, where

	 •	�The interval is partitioned as a = σ0 < σ1 < . . . < σk−1 < σk = b into a finite number of 
subintervals.

	 •	�The image of each subinterval γ0(σj−1,σj) is a trajectory of either the fast subsystem or 
the slow subsystem.

	 •	�The image γ0(a, b) is oriented consistently with the orientations on each subinterval 
induced by the fast or slow flows.

Note that σ is a parametrisation of the curve rather than fast or slow time. Consequently, 
the image of a subinterval can be complete homoclinic or heteroclinic orbits of the fast or slow 
subsystem. In typical cases, the attractor will consist of subintervals that alternate between fast 
and slow segments, but this may not be the case at bifurcation. In the case that all slow seg-
ments are on Catt[g], this will typically perturb [35] to similar trajectories as ε → 0. If the slow 
segments explore other hyperbolic points on the critical manifold, canard trajectories may 
appear. Several possible cases of fast/slow trajectories are considered in [35].

2.2.  Global equivalence of critical sets

In order to define persistence and bifurcation of critical sets, we need a notion of equivalence 
between critical sets. We define an equivalence of critical sets, called global equivalence, 
through the parametrized fast vector fields that generate them. We adopt the equivalence in 
[17] for the case m  =  n  =  1, and conjecture that that equivalence or a similar one may work 
also for the case m = 1, n = 2. A local version of this equivalence due to [38] is presented 
at the end of this section. Classification of local bifurcations (classification of bifurcation of 
germs) has been worked out for the local equivalence [38], but it remains to be shown if the 
equivalence is also suitable for global classification of bifurcations.

We consider fast and slow vector fields g : Rm+n → Rm and h : Rm+n → Rn, with the 
generic assumptions of smoothness and being in the singular limit ε → 0. More precisely we 
consider

Karl H M Nyman et alNonlinearity 33 (2020) 2853
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V ′
f := C∞(Rm+n,Rm), V ′

s := C∞(Rm+n,Rn).� (9)

We furthermore consider only systems (1) with bounded global attractors.
We restrict ourselves to vector fields defined on some fixed compact regions M ⊂ Rm  and 

N ⊂ Rn  with open interior and smooth boundaries having outward normals m(x) and n(y) 
respectively. Implicitly fixing these M and N, we define the open sets

Vf :=
{

g ∈ V ′
f :

g(x, y) · n(x) < 0 ∀(x, y) ∈ (∂M, N) and
g(x, y) = 0 ⇒ gx(x, y) �= 0 ∀(x, y) ∈ (M, ∂N)

}
� (10)

and

Vs := {h ∈ V ′
s : h(x, y) · m(y) < 0 ∀(x, y) ∈ (M, ∂N)}.� (11)

Note that if (g, h) ∈ M × N  then the forward dynamics must remain in M × N  and that there 
are no tangencies of the flow, (or the critical set) with the boundary. These conditions ensure 
that the properties persist under small perturbations of the vector field.

Recall now that the critical set and the fast dynamics depend only on g, and suppose that 
g, g̃ ∈ Vf . We say that the zero sets (C[g] and C[g̃]) of g and ̃g are globally equivalent on M × N , 
denoted g ∼ g̃, (see [17, p 144]) if there are functions Y(y) : N → Rn , X(x, y) : M × N → Rm 
and S : M × N → (0,∞) such that:

g̃(x, y) = S(x, y)g(X(x, y), Y(y))� (12)

i.e. we only consider changes in coordinate that map fast dynamics to fast dynamics up to a 
possible change in timescale. More precisely, we assume that:

	 •	�The map Φ(x, y) := (X(x, y), Y(y)) is a diffeomorphism
	 •	�The map S(x, y) > 0 is smooth on M × N

The requirement that S(·, ·) > 0 ensures that trajectories preserve their time orientation under 
equivalence. Note that we define the equivalence of critical sets through the functions that 
generate them. Consequently, equivalence of critical sets C[g] and C[g̃] does not imply equiva-
lence of every level set of g and g̃, such as g  =  1 and g̃ = 1.

For m  =  1 and n  =  2 we state a local equivalence adapted from [38, definition 2.1, p 6]:

g̃(x, y1, y2) = S(x, y1, y2)g(X(x, y1, y2), Y1(y1, y2), Y2(y1, y2)),� (13)

where we explicitly write y = (y1, y2), where Y1(y1, y2), Y2(y1, y2) : N → R2, X(x, y1, y2) :  
M × N → R, and S(x, y1, y2) : M × N → (0,∞) are smooth functions, and additionally

∣∣∣∣∣
∂Y1(x,y1,y2)

y1

∂Y1(x,y1,y2)
y2

∂Y2(x,y1,y2)
y1

∂Y2(x,y1,y2)
y2

∣∣∣∣∣ �= 0,

and ∂X(x,y1,y2)
∂x > 0 for every (x, y1, y2) ∈ M × N . Some further conditions are imposed in [38] 

since [38] deals with germs. Note that smoothness combined with the conditions on X, Y1 and 
Y2 makes (x, y1, y2) → (X(x, y1, y2), Y1(y1, y2), Y2(y1, y2)) a local diffeomorphism.

Since global equivalence should imply local equivalence we expect the classification of 
local bifurcations under a global equivalence, perhaps (12), to coincide with the classification 
under a local equivalence such as (13). The latter was worked out in [38].

We leave the generalisation of the global equivalence (12) to the case m > 1, n > 1 open.
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3.  Persistence and bifurcation of critical sets

Assume we define Vf  as in (10) for some compact regions M and N. In order to define per-
sistence of the critical sets we define the unfolding of the slow dynamics following [17, 
section III]. We say a smooth function G(x, y,λ) for λ ∈ Rr  is an r-parameter unfolding of 
g(x, y) if

G(x, y, 0) = g(x, y)

for all (x, y) ∈ M × N . Golubitsky and Schaeffer [17] mostly assumes G and g are germs 
of vector fields, though in [17, theorem III.6.1] the equivalence is global within a compact 
region, as we consider here.

If G and H are both unfoldings of g, we say that H factors through G if there exist smooth 
mappings S, X, Y , L and W ⊂ Rr , a neighbourhood of 0, such that

H(x, y,λ) = S(x, y,λ)G(X(x, y,λ), Y(y,λ), L(λ)),

for all λ ∈ W  and (x, y) ∈ (M, N), where S(x, y, 0) = 1, X(x, y, 0) = x, Y(y, 0) = y, L(0) = 0 
(see [17]). We define G to be a versal unfolding if every unfolding H of g factors through G. 
We say g is persistent if it is its own unfolding, i.e. for any unfolding G ∈ C∞(M × N × Rr) 
such that G(x, y, 0) = g(x, y), on M × N  there is a neighbourhood W of 0 in Rr  such that

G(x, y,λ) ∼ g(x, y), ∀λ ∈ W,

where, as before, ∼  denotes global equivalence on M × N .
If the unfolding is versal and contains a minimum number of parameters, we call it a 

universal unfolding [17]. The number of parameters λ in such a universal unfolding G is the 
codimension of g. In particular, if g is persistent then g is its own universal unfolding, and 
in this case we say it has codimension zero. We say that a bifurcation of g occurs if g is non-
persistent, in which case the codimension of the bifurcation is that of the universal unfolding 
of g. We emphasise once more that the equivalence relation (12) concerns the zero sets of g, 
i.e. the critical set C[g]. Hence, persistence and bifurcation of g under this equivalence is iden-
tified with persistence and bifurcation of the critical set.

Note that the aforementioned meaning of persistence does not concern persistence to per-
turbations involving the scale separation parameter ε, which is sometimes the case in the fast-
slow literature, e.g. [14, 35]. Here, we study exclusively the system (1) in the singular limit 
ε → 0.

3.1.  Persistence and codimension one bifurcation of critical sets for one fast and one slow 
variable

The case m  =  n  =  1 can be directly treated using the global bifurcation theory with distin-
guished parameter approach of [17, section III]. Here, a distinguished parameter is a param
eter which is considered integral to the model and separate from unfolding parameters, which 
represent model perturbations. In the fast-slow setting we consider the slow variable y  to be 
a distinguished parameter from the point of view of the layer equations (6). Consider some 
g ∈ V ′

f  and note that the critical set is

C[g] = { p = (x, y) ∈ R× R : g( p) = 0},

and that the fold set is

F [g] = { p ∈ C[g] : gx( p) = 0}.
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Table 1 lists the three degenerate fold sets Di[g], i = {1, 2, 3} for m  =  n  =  1: fold tangency, 
hysteresis point, and multiple limit point. The term limit point is a historical term for fold 
point. The set of all degenerate folds is then

D[g] = D1[g] ∪ D2[g] ∪ D3[g],� (14)

and any point in F [g] \ D[g] is a non-degenerate fold point. Note that [17] refers to the fold 
tangency as a ‘simple bifurcation’ and a multiple limit point as a ‘double limit point’ but our 
notation offers easier generalization to higher n. The following theorem characterizes the per-
sistent critical sets, using a result from [17].

Proposition 1 (Codimension zero, m  =  n  =  1).  In the case m  =  n  =  1, if g ∈ Vf  has 
no degenerate folds (i.e. if D[g] = ∅) then the critical set C[g] is persistent to smooth pertur-
bations.

Proof.  We apply [17, theorem 6.1]: this states that there is bifurcation equivalence if there 
are no (a) simple bifurcations (here called fold tangencies), (b) hysteresis points (c) double 
limit points (here called multiple limit points) or (d) codimension one interactions of equi-
libria or folds with the boundaries. The assumptions in (10) are open conditions that ensure 
that (d) does not happen and that any unfolding of g will remain within Vf  for small enough 
perturbations. Hence the only obstructions are (a–c) which are avoided if D[g] is empty.� □ 

To aid the classification of codimension one bifurcations, we define D1
i [g] in table 2. These 

are open dense subsets of Di[g] that avoid obvious further degeneracies. We then subdivide 
these cases further in table 3. A vector field g is degenerate at codimension one if exactly 
one of these degeneracies D1

i,j[g, y] occur for exactly one slow coordinate y  (in exactly one 
fast fibre) which means we only need to compare points in P(y) for some y . We avoid higher 
codimension fold tangency by precluding the cases det(D2g) = gxxgyy − g2

xy = 0 or higher 
order hysteresis gxxx  =  0. Note that D1

i,j[g, y] depends explicitly on y . This choice makes it 
easier notation-wise to preclude the critical set from being degenerate at multiple y , which 
would raise codimension. The next result shows that table 3 and figure 1 give a complete list 
of codimension one bifurcations for this case.

Table 1.  Degenerate fold sets for m  =  n  =  1: proposition 1 states that if 
D[g] = D1[g] ∪ D2[g] ∪ D3[g] defined in (14) is empty then g ∈ Vf  is persistent on 
M × N .

Fold tangency: D1[g] = { p ∈ F [g] : gy( p) = 0},
Hysteresis point: D2[g] = { p ∈ F [g] : gxx( p) = 0},
Multiple limit point: D3[g] = { p ∈ F [g] : |Π( p)| � 2}.

Table 2.  Subsets of Di[g] for m  =  n  =  1 whose union contains all codimension 
one bifurcations. Note that det(D2g) = gxxgyy − g2

xy and that the first two are local 
degeneracies.

Quadratic fold tangency: D1
1[g] = { p ∈ D1[g] : |Π( p)| = 1 

and det(D2g( p)) �= 0},
Cubic hysteresis point: D1

2[g] = { p ∈ D2[g] : |Π( p)| = 1 
and gxxx( p) �= 0},

Double limit point: D1
3[g] = { p ∈ D3[g] : |Π( p)| = 2}.
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Proposition 2 (Codimension one, m  =  n  =  1).  For n  =  1 and m  =  1 the codimension 
one bifurcations of critical sets C[g] for g ∈ Vf  are characterised in figure 1, such that one of 
the sets Dj,k[g, y] in table 3 is non-empty for precisely one y . At such a bifurcation, precisely 
one of the following occurs:

	 (i)	�Two folds merge at a fold tangency (e.g. figures 2(a)–(c) or (d)–(f)).
	(ii)	�Two folds merge at a hysteresis bifurcation (e.g. figures 2(g)–(i) or (j)–(l)).
	(iii)	�Two fold points share the same slow coordinate: there are six distinct ways this can occur 

(e.g. figure 3)

Proof.  To avoid persistence, at least one of the the degeneracies Di[g] listed in table 1 must 
occur for some i ∈ {1, 2, 3}: as these are independently defined we can assume that only one 
will occur for an open dense set of unfoldings. Without loss of generality we can assume that 
the open conditions in table 2 apply.� □ 

The subcases of D1
1[g] follow from examining the sign of det(D2g): the hyperbolic fold 

tangency D1,1[g, y] is the simple bifurcation of [17] while the elliptic fold tangency D1,2[g, y] 
is also called the isola. Similarly, the cubic hysteresis D1

2[g] can be either stable or unsta-
ble, depending on the sign of the leading order term. These cases can be transformed into 
the normal forms of table 4 (these are given in [17]). The cases D1

1[g] unfold on varying a 

Table 3.  Complete list of degeneracies that lead to codimension 1 bifurcations listed in 
proposition 2. We write P(y )  =  {p i} as the set of distinct singular points pi = (xi, y) of 
the vector field g with slow coordinate y . Note that local degeneracies have |P(y)| = 1.

Hyperbolic fold 
tangency

D1,1[g, y] = {P(y) ⊂ D1
1[g] : |P(y)| = 1 and 

det(D2g( p)) < 0}
Figures 2(a)–(c)

Elliptic fold  
tangency

D1,2[g, y] = {P(y) ⊂ D1
1[g] : |P(y)| = 1 and 

det(D2g( p)) > 0}
Figures 2(d)–(f)

Stable hysteresis: D2,1[g, y] = {P(y) ⊂ D1
2[g] : |P(y)| = 1 and gxxx(p )  >  0} Figures 2(g)–(i)

Unstable  
hysteresis:

D2,2[g, y] = {P(y) ⊂ D1
2[g] : |P(y)| = 1 and gxxx(p )  <  0} Figures 2(j)–(l)

Aligned  
umbra-fold double 
limit:

D3,1[g, y] = {P(y) ⊂ D1
3[g] : |P(y)| = 2 and U[g]( p1) = p2 

and ν[g]( p1) · ν[g]( p2) > 0, for some p1, p2 ∈ P(y)}
Figures 3(a)–(c)

Opposed  
umbra-fold double 
limit:

D3,2[g, y] = {P(y) ⊂ D1
3[g] : |P(y)| = 2 and 

U[g]( p1) = p2 and ν[g]( p1) · ν[g]( p2) < 0, for some 
p1, p2 ∈ P(y)}

Figures 3(d)–(f)

Aligned  
umbra-umbra  
double limit:

D3,3[g, y] = {P(y) ⊂ D1
3[g] : |P(y)| = 2 and 

U[g]( p1) = U( p2) and ν[g]( p1) · ν[g]( p2) > 0, for some 
p1, p2 ∈ P(y)}

Figures 3(g)–(i)

Opposed  
umbra-umbra  
double limit:

D3,4[g, y] = {P(y) ⊂ D1
3[g] : |P(y)| = 2 and 

U[g]( p1) = U( p2) and ν[g]( p1) · ν[g]( p2) < 0, for some 
p1, p2 ∈ P(y)}

Figures 3(j)–(l)

Aligned  
non-interacting 
double limit:

D3,5[g, y] = {P(y) ⊂ D1
3[g] : |P(y)| = 2 and 

(U[g]( p) ∪ p) ∩pi �=p (U[g]( pi) ∪ pi)) = ∅ and 
ν[g]( p1) · ν[g]( p2) > 0, for some p1, p2 ∈ P(y)}

Figures 3(m)–(o)

Opposed  
non-interacting 
double limit:

D3,6[g, y] = {P(y) ⊂ D1
3[g] : |P(y)| = 2 and 

U[g]( p) ∩ (U(P(y)) ∪ P(y) \ U[g]( p) = ∅, ∀p ∈ P(y), 
and ν[g]( p1) · ν[g]( p2) < 0, for some p1, p2 ∈ P(y)}

Figures 3(p)–(r)
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typical parameter λ as shown in figures 2(a)–(f) respectively, while D1
2[g] unfold as shown in 

figures 2(g)–(l).
The double limit point degeneracy D1

3[g] can be split into several subsets according to the 
direction of the folds given by the signs of

ν[g]( p) = gxx( p)gy( p)

at the two limit points, and k, the number of regular sheets that separate them. The number 
k determines whether the umbrae and folds intersect. If k  =  0, then the umbra of one fold 
intersects the other fold, if k  =  1 then the umbrae of the folds intersect, and if k � 2 then the 
umbrae and folds do not intersect. The six distinct subcases of D1

3[g] are shown in figure 3.
We conclude this section with a few comments. First, it may appear as if the non-inter-

acting double limit point degeneracy is not a degeneracy. However, the critical sets in e.g. 
figures 3(m) and (o) cannot be equivalent to that in figure 3(n) since the equivalence (12) 
preserves the number of zeros in fast fibres: at bifurcation there is a y  for which C[g] has five 
zeros, while the perturbed diagrams have at most four zeros for any given y . However, non-
interacting double limit point degeneracy does not cause bifurcation of singular relaxation 
oscillations, as is shown in section 5.2.

Figure 1.  Conditions that lead to codimension one degeneracies of the critical set for 
m  =  n  =  1 (see also table 3). Note that ν( p) is the direction vector of a fold at a point 
p  and det(D2(g( p))) is the Hessian of g at p . Similarly, f  means fold, fu means fold 
umbra and fx means non-interacting fold. For ease of notation, we suppress explicit 
dependence on g, such that e.g. ν[g]( p) = ν( p). For a persistent codimension one 
bifurcation exactly one branch must be followed for exactly one fast fibre (a single y ), 
leading to one of the red boxes. Overlapping red boxes symbolise that the degeneracy 
can be of either aligned or opposed type. See text for details.
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It may seem from figure 2 that the hyperbolic fold tangency is of codimension higher than 
one. This is not the case, however, as is shown algebraically in [17] using a considerable 
technical machinery. In figure 4 we aim to provide some intuition that the bifurcation does not 
require fine tuned perturbations, but rather arises generically as two branches of the critical set 
approach under one-parameter perturbation.

It might seem puzzling why some combinations of x and y  are left out from the normal forms 
in table 4. In general, which terms can be included in a certain normal form is a non-trivial ques-
tion, treated in e.g. [17]. However, for the particular case of fold tangency the transformation 
X(x, y) = x − ay, Y(y) = y/

√
|1 − a2| turns the polynomial g(x, y) = x2 + y2 + 2axy + λ 

into one of the normal forms in table 4 as long as g is non-degenerate. This transformation 
clearly preserves equivalence class under (12).

In the above example as well as in general, the diffeomorphism Φ(x, y) = (X(x, y), Y(y)) 
preserves the fast-slow structure of (1). This is seen by letting (x̂, ŷ) = Φ(x, y), such that 
(x, y) = Φ−1(x̂, ŷ) := (X̂(x̂, ŷ), Ŷ(ŷ)), and changing variables in (1)

Figure 2.  Unfoldings of local codimension one bifurcations of the critical set for 
m  =  n  =  1. Solid black lines show Catt[g], dashed black lines show Crep[g] while red 
arrows show the umbral map from fold points. Note that the fast variable x is plotted on 
the vertical axis, and that the slow variable y  is plotted on the horizontal axis.
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Figure 3.  Unfoldings of subcases of double limit point degeneracy, the global 
codimension one bifurcation of the critical set for m  =  n  =  1 (table 3). Bifurcation 
occurs when the unfolding (bifurcation) parameter λ equals the critical value λ0. Solid 
black lines show Catt[g], dashed black lines show Crep[g], and red arrows show the 
umbral map from fold points. As in figure 2, note that the fast variable x is plotted on 
the vertical axis, and that the slow variable y  is plotted on the horizontal axis.

Table 4.  Normal forms (for m  =  n  =  1) and hypothesised normal forms (for 
m = 1, n = 2) of local codimension one bifurcations of the critical manifold. Different 
signs of δ1, δ2 �= 0 give different subcases of bifurcation.

m  =  n  =  1

Fold tangency: g(x, y) = x2 + δ1y2 + λ,
Hysteresis: g(x, y) = δ1x3 + λx + y,

m  =  1, n  =  2

Fold tangency: g(x, y1, y2) = x2 + δ1y2
1 + δ2y2

2 + λ,
Cusp tangency: g(x, y1, y2) = δ1x3 + δ2xy2

2 + λx + y1,
Swallowtail: g(x, y1, y2) = x4 + λx2 + y1x + y2,

Figure 4.  Illustration how hyperbolic fold tangency can occur even though two opposed 
folds do not approach along the same fast coordinate. As the bifurcation parameter λ 
increases, the folds of the critical set get closer. First, the folds undergo a double limit 
point bifurcation after which the unstable uppermost branch intersects the lower stable 
branch in a hyperbolic fold tangency that then breaks up into two new folds.
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

ε
(

∂X̂
∂x̂

˙̂x + ∂X̂
∂ŷ

˙̂y
)

= g(x̂, ŷ)
∂Ŷ
∂ŷ

˙̂y = h(x̂, ŷ).

After rearranging the above equation, we get the system


ε ˙̂x =

(
g(x̂, ŷ)− ε∂X̂

∂ŷ h(x̂, ŷ)/∂Ŷ
∂ŷ

)
/∂X̂
∂x̂

˙̂y = h(x̂, ŷ)/∂Ŷ
∂ŷ ,

which is on the form (1). The above expression is well defined since Φ(x, y) is assumed to be 
a diffeomorphism.

3.2.  Persistence of critical sets for one fast and two slow variables

In analogy with the m  =  n  =  1 case we give a conjectured list of all degeneracies that can 
cause nonpersistency of vector fields with one fast and two slow variables, up to codimension 
one. First, we introduce some notation. For any g ∈ V ′

f  we write

gx =
∂g
∂x

, ∇yg = (gy1 , gy2) and ∇⊥
y g = (−gy2 , gy1).

By u||v we mean that vectors u and v are parallel. The non-zero vector u rescaled to unit length 
is denoted u = u/|u|. D2(g) is the Hessian of g with respect to all components of p = (x, y1, y2):

[D2(g)]ij =
∂2g
∂pipj

, i, j ∈ {1, 2, 3}.

The slow Hessian D2
y(g) is defined analogously, but with i, j ∈ {2, 3}.

Table 5.  Singularities of the critical set for one fast and two slow variables.

Quadratic fold: F0[g] = { p ∈ F [g] : gxx( p) �= 0}
Cubic cusp: F1[g] = { p ∈ F [g] : gxx( p) = 0, gxxx( p) �= 0}
Higher order cusp: F2[g] = { p ∈ F [g] : gxx( p) = 0, gxxx( p) = 0}

Table 6.  Possible degeneracies of the critical set for one fast and two slow variables, 
m  =  1 and n  =  2. As before, the co-fold set Π( p) is the subset in F [g] sharing slow 
coordinate with the point p .

Fold tangency D1[g] = { p ∈ F [g] : ∇yg( p) = 0}
Cusp tangency D2[g] = { p ∈ F [g] \ F0[g] : ∇⊥

y g( p) · ∇ygx( p) = 0}
High order cusp D3[g] = { p ∈ F [g] : gxxx( p) = 0}
Quadratic-fold projection tangency D4[g] = { p1 ∈ F0[g] : ∇yg( p1)||∇yg( p2) for some 

p2 ∈ (Π( p1) \ p1) ∩ F0[g]}
Cusp projection intersection D5[g] = { p ∈ F [g] : |Π( p)| � 2 and 

Π( p) ∩ F1[g] �= ∅}
Triple fold projection intersection D6[g] = { p ∈ F [g] : |Π( p)| � 3}
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Recall that the critical set is

C[g] = { p = (x, y) ∈ R× R2 : g( p) = 0}

and the fold set is

F [g] = { p ∈ C[g] : gx( p) = 0}.

As folds are not typically isolated in this case, we also need to distinguish between quadratic 
folds, cubic cusps and higher order cusps (table 5).

We believe that the list of degenerate sets Di[g] of F [g] given in table 6 is an exhaustive list 
of degeneracies under a suitable equivalence. These degeneracies are natural extensions from 
the degeneracies for m  =  n  =  1; generic objects (quadratic fold lines and cubic cusps) can 
intersect (D1[g], D2[g], D3[g]), their projections onto the slow variables can become tangent 
D4[g] or intersect D5[g] and D6[g]. More precisely, we define the set of degenerate points

D[g] = D1[g] ∪ D2[g] ∪ D3[g] ∪ D4[g] ∪ D5[g] ∪ D6[g].

Note that the umbral map is single valued for p ∈ F [g] \ (D2[g] ∪ D3[g]). If p ∈ D2[g] ∪ D3[g] 
then it can be zero, one or two-valued (see figure D1). We now conjecture a persistence crite-
rion for m  =  1, n  =  2 that is analogous to the m  =  n  =  1 case in proposition 1.

Conjecture 1 (Codimension zero, m  =  1, n  =  2).  For one fast and two slow variables, 
the critical set C[g] is persistent to perturbations for g ∈ Vf  if all folds are non-degenerate, i.e. 
if D[g] = ∅.

Unfortunately, the method of proof in [17, theorem III.6.1] used for proposition 1 does 
not easily generalize to this case of ‘multiple distinguished parameters’ (two slow variables 
in our case). This is because degenerate cases appear with codimension infinity [36], at least 
if we consider the restricted global equivalence where we require that q(y) is the identity in 
(12). Hence proof of this result will require a less stringent (but still natural) form of global 
equivalence.

3.3.  Codimension one bifurcations of critical sets for one fast and two slow variables

A variety of degeneracies can persistently occur for one parameter families, i.e. at codimen-
sion one. Table 8 lists degeneracies that we believe contain all persistent codimension one 
bifurcations for a suitable notion of global equivalence. We divide these into local or global 

Table 7.  Quantities used in the classification of degeneracies for one fast and two slow 
variables, m  =  1 and n  =  2. The last column refers to appendices where all definitions 
except ν[g]( p) are motivated (we do not motivate the natural definition of ν[g]( p)). See 
figure 5 for illustrations of all quantities except W[g]( p).

Quadratic fold 
direction vector

ν[g]( p) = gxx( p)∇yg( p)

Scalar quadratic 
fold curvature

K[g]( p) = sign (gxx( p))
∇⊥

y g( p)
T

D2
y(g( p))∇⊥

y g( p)
2|∇⊥

y g( p)| − (∇ygx( p)·∇⊥
y g( p))2

8|gxx( p)||∇⊥
y g( p)|

Appendix A

Quadratic fold 
curvature vector

κ[g]( p) =

(
∇⊥

y g( p)
T

D2
y(g( p))∇⊥

y g( p)
2|∇⊥

y g( p)| − (∇ygx( p)·∇⊥
y g( p))2

8gxx( p)|∇⊥
y g( p)|

)
∇yg( p)

Appendix A

Cubic cusp di-
rection vector

µ[g]( p) = gxxx( p)
∇ygx( p)·∇⊥

y g( p)
∇⊥

y g( p) Appendix B

Cusp quantity W[g]( p)= gxxx( p)
2 ∇⊥

y gT( p)D2
y(gx( p))∇⊥

y g( p)−∇ygxx( p) · ∇⊥
y g( p) Appendix C
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degeneracies. The local degeneracies (table 9) are denoted D1
i,j[g, y] for i ∈ {1, 2, 3}, the others 

involve interaction of two or more points in the same fast fibre of y : these global degeneracies 
are denoted D1

i,j[g, y] for i ∈ {4, 5, 6} and are listed in detail in appendix D.
We note that our conjectured local codimension one degeneracies coincide with those in 

the classification of [38], which is found for the local equivalence (13); it might be possible to 
extend these results to a related global equivalence.

We first state necessary conditions for the degeneracies Di[g] in table 6 to be codimension 
one. In this process we introduce some geometric notions, listed in table 7.

Starting with quadratic fold degeneracies, we note that for typical fold tangency we require 
that the Hessian D2(g) has no zero eigenvalues. For typical fold projection tangency, we require 
that the two folds sharing slow coordinate (y1, y2) do not have the same quadratic curvature. 
This is guaranteed if the quadratic fold curvature vectors κ[g]( p) (table 7 and figures 5(c) and 
(d)) at fold points p 1 and p2 ∈ Π( p1) are distinct:

κ[g]( p1) �= κ[g]( p2).

For typical triple quadratic folds we require that exactly three fold points occur for every 
slow coordinate (y1, y2) and that all folds are quadratic.

Turning to cusps, there is degeneracy if the cubic cusp direction vector µ[g]( p) at a cubic 
cusp point p  (table 7 and figure 5(b)) is either zero or undefined. The case µ[g]( p) = 0 corre-
sponds to gxxx(p )  =  0, resulting in a swallowtail bifurcation. The case that µ[g]( p) is undefined 
occurs if ∇⊥

y g( p) · ∇ygx( p) = 0; this results in a cusp tangency. However, for typical cusp 
tangency we require that the quadratic quantity W[g]( p) (table 7) is non-zero. Furthermore, 
the sign of W[g]( p) separates subcases of typical cusp tangency.

Finally, for typical cusp-fold projection intersection, we require that exactly one cubic cusp 
and one quadratic fold share slow coordinate (y1, y2).

The quantities ν[g]( p), µ[g]( p), W[g]( p) and κ[g]( p) are discussed more in appendices A–
C. Hypothesised normal forms for the local codimension one bifurcations are listed in table 4.

We now go trough the persistent subcases of codimension one degeneracies listed in table 8.

3.3.1.  Fold tangency.  Fold tangency occurs when a pair or continuum of folds intersect. Typi-
cal fold tangency D1

1[g] is classified by |Σ+|, the number of positive eigenvalues in Σ, the spec-
trum of sign (gxx( p))D2(g)( p). The cases of wormhole (|Σ+| = 1), tube (|Σ+| = 2) and isola 
(|Σ+| = 3) are shown in figures 6(a)–(i). Note that gxx( p) det(D2(g)( p) �= 0 implies that all 
non-positive eigenvalues are negative and that at least one eigenvalue is positive.

Figure 5.  Illustration of fold and cusp direction vectors and fold curvature in the slow 
plane. (a) Quadratic fold direction vector ν[g], (b) cubic cusp direction vector µ[g], (c) 
convex fold (viewed as a projection onto the slow subsystem) scalar quadratic fold 
curvature K[g] and quadratic fold curvature vector κ[g], (d) same as (c) but concave. See 
table 7 for definitions of ν[g], µ[g], κ[g] and K[g].
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3.3.2.  Cusp tangency.  At a cusp tangency, two cusps meet locally along a line. The sub-
sets beaks and lips are distinguished by whether cusps are directed away from or towards 
each other before bifurcation (see figures 6 and D1). These degeneracies are named after the 

Table 8.  Subsets of D[g], for one fast and two slow variables, whose union we conjecture contains all 
codimension one bifurcation sets. Note that D1

i [g] are local for i = 1, 2, 3 and global for i = 4, 5, 6. Π( p) 
is the set of all singular points sharing slow coordinate with p . The scalars a1, a2, a3 are coefficients in 
equation (15) and κ[g]( p), ν[g]( p) and µ[g]( p) are curvature and direction vectors at a point p . See text 
for details.

Typical fold tangency D1
1[g] = { p ∈ D1[g] : |Π( p)| = 1 and det(D2g( p)) �= 0}

Typical cusp tangency D1
2[g] = { p ∈ D2[g] : |Π( p)| = 1 and W[g]( p) �= 0}

Swallowtail D1
3[g] = { p ∈ D3[g] : |Π( p)| = 1 and gxxxx �= 0}

Typical double quadratic-fold  
projection tangency

D1
4[g] = { p ∈ D4[g] : |Π( p)| = |Π( p) ∩ F0[g]| = 2 and 

κ[g]( p) �= κ[g](q), ∀q ∈ Π( p) \ p}
Typical cubic-cusp—quadratic-fold 
projection intersection

D1
5[g] = { p ⊂ D5[g] : |Π( p)| = 2 and |Π( p) ∩ F0[g]| = 1 

and |Π( p) ∩ F1[g]| = 1 and ν[g]( p1) · µ[g]( p2) �= 0 for 
some p1 ∈ Π( p) ∩ F0[g] and p2 ∈ Π(q) ∩ F1[g]}

Typical triple quadratic-fold projection 
intersection

D1
6[g] = { p ∈ D6[g] : |Π( p)| = 3 and |Π( p) ∩ F0[g]| = 3 

and a1 · a2 · a3 �= 0}.

Figure 6.  Unfolding of examples of codimension one bifurcation of the critical set 
for m  =  1, n  =  2 (see tables 9 for (a) to (r), D1–D3 in the appendix for (s) to (dd)). 
Bifurcation occurs when the bifurcation parameter λ equals the critical value λ = λ0. 
Solid/dashed black lines show the stable/unstable sheets of the critical set while red 
lines show the image of the fold under the umbral map. Blue lines indicate special 
points of intersection.
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appearance of their projections onto the slow variables (figure 10), and the type is determined 
by the cusp quantity W[g]( p). The case W[g]  >  0 gives ‘lips’ and W[g]  <  0 gives ‘beaks’. We 
further subdivide these cases depending on their stability, determined by the sign of gxxx.

3.3.3.  Swallowtail.  The swallowtail (figures 6(p)–(r)) is well known from catastrophe theory 
and occurs when a fold ‘folds over itself’ to create a degenerate fold that splits up into a pair 
of cusps.

3.3.4.  Fold projection tangency.  At a fold tangency, the projection of two curves of folds 
onto the slow variables are tangent. We divide fold projection tangency D1

4[g] into subcases 
depending on whether the folds at points p 1 and p 2 approach each other from the same direc-
tion (aligned) or opposite directions (opposed), captured by the sign of the inner product of the 
quadratic fold direction vectors ν[g]( p1) · ν[g]( p2). We further subdivide the opposed cases 
depending on the sign of the sum

K[g]( p1) + K[g]( p2),

where K[g]( p) is the scalar quadratic fold curvature at a fold point p  (see table 7 and fig-
ures 5(c) and (d)). K[g]( p) > 0 corresponds to a quadratically convex fold with respect to the 
fold direction and K[g]( p) < 0 corresponds to a quadratically concave fold. Hence

K[g]( p1) + K[g]( p2) < 0

means that the concave curvature dominates, and the degeneracy is called a covering fold 
projection tangency since the folds locally cover the slow plane (see figure 7). Similarly, if

K[g]( p1) + K[g]( p2) > 0,

then the degeneracy is called a non-covering fold projection tangency. Accounting for whether 
the fold umbrae interact with each other, or one fold umbra interacts with a fold, or neither, 
we get six subcases of opposed fold projection tangency (table D1). If the two fold projec-
tions are aligned the total curvature does not matter as long as K[g]( p1) �= K[g]( p2), with one 
exception. This exceptional case occurs if a fold umbra hits a fold, in which case it matters if 

Figure 7.  Unfolding of a fold projection tangency, viewed in projection onto the slow 
plane. Three principal cases are shown in (a)–(c), (d)–(f) and (g)–(i). Darker colours 
mean that more sheets of the critical manifold overlap. Red arrows show quadratic fold 
direction vectors at tangency points. The aligned fold-fold umbra subcase has umbra-
dominant and fold-dominant subcases (a.i) and (a.ii) respectively. Dotted lines show 
parts of the destination fold covered by the umbral fold, seen from the stable side of the 
umbral sheet.

Karl H M Nyman et alNonlinearity 33 (2020) 2853



2870

the curvature of the umbral fold dominates the destination fold or not (figures 7(a.i) and (a.ii)). 
More details are listed in appendix D.

3.3.5.  Cusp-fold projection intersection.  At a cusp-fold projection intersection, the projec-
tions of a cusp and a fold line coincide in their projection onto the slow variables. We classify 
the intersection D5[g] of a cusp and a fold projection into ten cases (table D2), depending on 
the stability of the cusp (determined by gxxx), the direction from which the cusp approaches 
the fold (determined by the sign of ν[g]( p2) · µ[g]( p2)), and k, the number of regular sheets 
of equilibria separating the fold and cusp. If k  =  0, then one umbra intersect directly with a 
fold or cusp point (e.g. figure 6). If k  =  1, then two umbrae intersect, and if k � 2 then none 
of the umbrae or folds intersect. The middle columns of figures D4 and D5 show typical cases 
of these degeneracies. Note that no degeneracies involving the umbrae of a stable cusp exist, 
since stable cusps have no umbrae.

3.3.6. Triple fold projection intersection.  The projections of three fold lines D6[g] onto the 
slow variables can intersect transversally in two ways: as a covering triple limit or as a non-
covering triple limit (see figure 8(b)). For brevity we write νi := ν[g]( pi). In the covering 
case, all folds are opposed in the sense that their direction vectors span a convex cone covering 
all of R2. Therefore, the zero vector can be written as a linear combination of the direction 
vectors using only non-negative coefficients ai � 0, not all zero:

ν1a1 + ν2a2 + ν3a3 = 0.� (15)

In the non-covering case the convex cone of the direction vectors does not cover R2, mean-
ing that at least one coefficient has to be negative in order for the vector sum to be zero (see 
figure 8(a)). Therefore, the two subcases are defined by the signs of the coefficients in (15)

{
Non-covering triple limit if ± sign (a1, a2, a3) = (+,+,−)

Covering triple limit if ± sign (a1, a2, a3) = (+,+,+)
,� (16)

for some choice of prefactor sign. Note that a higher codimension degeneracy will occur if 
ai  =  0 for at least one i. Interactions of umbrae of the folds with other folds or umbrae give 
additional subclasses of triple limit points: these cases are detailed in appendix D in table D3. 
Note that it is not possible for all three fold umbrae to intersect.

Figure 8.  Sheets of the critical manifold near (a) non-covering and (b) covering triple 
limit points bifurcations, projected onto the slow variables. Solid black lines show folds. 
Red arrows indicate direction vectors of folds νi, i ∈ {1, 2, 3}, and grey areas indicate 
overlapping folds. The convex cones spanned by the direction vectors are shown as 
striped regions.
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We summarise the discussion in this section  with the following classification of  
codimension one bifurcations for the case of one fast and two slow variables, analogous to 
proposition 2.

Conjecture 2 (Codimenson one, m = 1, n = 2).  For m  =  1 and n  =  2 the codimension 
one bifurcations of critical sets C[g] for g ∈ Vf  are characterised in figure 9, such that precisely 
one of the sets Dj,k[g, y] in table 3 is non-empty, for precisely one y ∈ R2. At such a bifurca-
tion, precisely one of the following occurs:

	 (i)	�A loop or pair of hyperbolae appears in the fold projections at a fold tangency D1,k . (e.g. 
figures 6(a)–(i))

	(ii)	�Two cusps annihilate at a cusp tangency D2,k . (e.g. figures 6(j)–(o))
	(iii)	�A quadratic fold line folds over to form two cusps in a swallowtail D3,k . (e.g. figures 6(p)–

(r))
	(iv)	�The projections of two quadratic fold curves onto the slow variables become tangent D4,k . 

(e.g. figures 6(s)–(u))
	(v)	�The projections of a quadratic fold curve and a cubic cusp intersect D5,k . (e.g. fig-

ures 6(v,w,aa))
	(vi)	�The projections of three fold lines intersect D6,k . (e.g. figures 6(bb,cc,dd))

Figure 10 shows the projections of fold lines and cusps that correspond to the possible codi-
mension one degeneracies of the critical set. Appendix D gives a detailed listing of inequiva-
lent subcases of codimension one bifurcations associated with projection intersection: we do 
not attempt to suggest global normal forms for these cases.

4.  Global singular equivalence, persistence and bifurcation

4.1.  Global singular equivalence of systems

To define a useful notion of global equivalence of system (1) in the singular limit, we fix com-
pact regions M and N as above and suppose that {g, h} and {g̃, h̃} are both in Vf × Vs where 
these are defined as in the previous section.

We say {g, h} is globally singularly equivalent to {g̃, h̃} (on M × N ) if one can write
{

g̃(x, y) = S(x, y)g(X(x, y), Y(y)) for all (x, y) ∈ M × N
h̃(x, y) = T(x, y)h(X(x, y), Y(y)) for all (x, y) ∈ C[g̃]� (17)

where:

	 •	�The map Φ(x, y) = (X(x, y), Y(y)) is a diffeomorphism on M × N .
	 •	�The function S(x, y) > 0 is smooth and positive on M × N .
	 •	�The function T(x, y) > 0 is smooth and positive on M × N .

Note that because we are only interested in equivalence of the singular systems, we allow 
independent re-parametrization of the fast and slow timescales. Note that T(x, y) is globally 
defined but only evaluated on C[g̃]. Clearly, if {g, h} is globally singularly equivalent to {g̃, h̃} 
then g is globally equivalent to g̃ in the sense of (12). One can check that this is an equivalence 
relation—it is transitive and reflexive, and one can check it is symmetric by noting that if (17) 
holds then
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Figure 9.  Classification of codimension one degeneracies of the critical set for m  =  1 
and n  =  2. ν  and µ are direction vectors of folds and cusps, and K, ai, W and Σ+ 
are described in section 3.3 and the appendix. Additionally, f means fold, sc/uc means 
stable/unstable cusp, fu/cu means fold/cusp umbra and fx/cx means non-interacting 
fold/cusp. Similarly, fd means fold dominant and fud means fold umbra dominant. 
We suppress dependence on g e.g. ν[g]( p) = ν( p). Each red box corresponds to one 
persistent codimension one bifurcation, if degeneracy occurs for one y  only. Overlapping 
red boxes means there are two subcases separated by a condition. See text for details.
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{
g(x, y) = S̃(x, y)g̃(X̃(x, y), Ỹ(y)) for all (x, y) ∈ M × N
h(x, y) = T̃(x, y)h̃(X̃(x, y), Ỹ(y)) for all (x, y) ∈ C[g]� (18)

because (x, y) ∈ C[g] if and only if Φ(x, y) ∈ C[g̃], and one can verify that:

	 •	�The map Φ̃(x, y) = (X̃(x, y), Ỹ(y)) is a diffeomorphism that is the inverse of Φ on M × N .
	 •	�The function S̃(x, y) = 1/S(Φ̃(x, y)) is smooth and positive on M × N .
	 •	�The function T̃(x, y) = 1/T(Φ̃(x, y)) is smooth and positive on M × N .

Note that singular trajectories are mapped onto each other by global singular equivalence as 
expressed in the following result.

Lemma 1.  Suppose that {g, h} is globally singularly equivalent to {g̃, h̃} on M × N . Then 
the singular trajectories of these systems are equivalent via a diffeomorphism.

Proof.  To see this, suppose that Φ, S, T  are found that satisfy (17) and sup-
pose that γ0 : [a, b] → M × N  is a singular trajectory for {g, h} as in definition 1 for 
a = s1 < · · · < sm = b. If Jj = (s̃j, s̃j+1) is any fast trajectory segment then Φ̃(Jj) is a fast 
trajectory segment for {g̃, h̃} with the same orientation (and time scaled by S̃). If Jj  is a slow 
segment then it lies within C[g] and so Φ̃(Jj) is a slow trajectory segment for {g̃, h̃} that lies 
within C[g̃] with the same orientation (and time scaled by T̃ ).� □ 

4.2.  Persistence under global singular equivalence

If system (1) is its own universal unfolding under global singular equivalence then we say the 
system is persistent. Clearly, in such a case the fast vector fields indexed by the slow variables 
must be persistent, but also we cannot have degeneracies of the slow system on the critical 
set. We expect (1) to be persistent under global singular equivalence if the fast subsystem is 
persistent and, in addition, the slow system has persistent behaviour on the critical set.

Figure 10.  Types of codimension one bifurcations of the critical set for one fast and two 
slow variables, shown in terms of changes to the fold set projected onto slow variables. 
The cases are enumerated more precisely in figure 9.
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For the case m  =  n  =  1 we can make this statement more precise. We define the slow 
nullcline

N [h] = {(x, y) : h(x, y) = 0}.

For any regular point p0 = (x0, y0) ∈ Creg[g] there will be a curve (Xp0(y), y) ∈ C[g] with 
Xp0(x0) = y0 such that g(Xp0(y), y) = 0. Implicitly differentiating this gives

dXp0

dy
(y) = −

gy(Xp0(y), y)
gx(Xp0(y), y)

for y  close to y 0. Then we can locally reduce (2) to an equation on the critical set of the form

ẏ = Hp0(y) := h(Xp0(y), y).

If p0 = (x0, y0) ∈ N [h] ∩ Creg[g] then Hp0(y0) = 0 is an equilibrium and its linear stability is 
determined via

H′
p0
=

dHp0

dy
= −hx

gy

gx
+ hy

evaluated at p 0. This highlights that the slow dynamics are essentially one-dimensional when 
restricted to Creg[g]. Before stating a result on persistence of fast-slow systems, we give some 
definitions. We define the restriction of the slow nullcline onto the critical manifold as

Nr[g, h] = N [h] ∩ C[g],

and define the slow degenerate set E [g, h] as the union of two subsets, defined shortly: 
E [g, h] = E1[g, h] ∪ E2[g, h]. The slow locally degenerate set is

E1[g, h] = { p = (x, y) ∈ Nr[g, h] : gx( p)hy( p)− hx( p)gy( p) = 0},

which occurs when the fast and the slow nullclines intersect tangentially. Note that this con-
dition is equivalent to the determinant of the Jacobian of the full system being zero, and for 
p0 ∈ Creg[g] this implies that H′

p0
(y) = 0.

Recalling that π( p) is the projection onto the slow variables, we define the set of slow 
co-equilibria

Ξ[g, h]( p) = {π−1(π( p)) ∩ Nr[g, h]},

which we use to define the multiple slow equilibrium set

E2[g, h] = { p ∈ Nr[g, h] : |Ξ[g, h]( p)| � 2}.

We define the (mixed) fold-equilibrium multiple projection set as

M[g, h] = { p ∈ Nr[g, h] : π( p) ∩ π(F [g]) �= ∅},

that is, the set of equilibria that share slow coordinate with at least one fold of the critical 
manifold. This finally allows us to define the fast-slow degenerate set as

G[g, h] = D[g] ∪ E [g, h] ∪M[g, h].

Theorem 1 below establishes that this set contains all degeneracies under global singular 
equivalence.

Theorem 1.  In the case m  =  n  =  1, if g ∈ Vf  and h ∈ Vs then (1) is persistent under global 
singular equivalence for {g, h} if and only if the all of the following hold (i.e. G[g, h] = ∅):

	 (i)	�The critical set C[g] has no degenerate folds (i.e. D[g] = ∅).
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	(ii)	�There is at most one equilibrium per slow coordinate y  (i.e. E2[g, h] = ∅)
	(iii)	�There is no intersection of the slow nullcline and folds or co-folds, i.e. (M[g, h] = ∅).
	(iv)	�There are no degenerate slow equilibria on the critical manifold (E1[g, h] = ∅)

Proof.  We begin with the ‘if’ part. If the critical set has degenerate folds D[g] �= ∅ then g 
is non-persistent under global equivalence. Hence, we need that D[g] = ∅. Assume by con-
tradiction that E2[g, h] �= ∅. Then at least two equilibria share slow coordinate y 1. Under a 
generic perturbation of {g, h} these will have different slow coordinates, and since the base 
is preserved under global singular equivalence, {g, h} cannot be deformed to make the equi-
libria share y  coordinate. Hence, for persistence we need E2[g, h] = ∅. A similar argument 
implies that M[g, h] = ∅ is required for persistence. Given that M[g, h] = ∅, E1[g, h] �= ∅ 
implies that there is a p0 ∈ Creg[g] and a y  such that Hp0(y) = H′

p0
(y) = 0. But this is a non-

hyperbolic equilibrium, and thus is not persistent to perturbation. Hence, for persistence we 
need E1[g, h] = ∅.

For the ‘only if’ part, we need to argue that there is no other way for (1) to be non-persistent 
than if G[g, h] �= ∅. Assume that G[g, h] = ∅. Then there is a neighbourhood of every singular-
ity of g and equilibrium of {g, h} that has only one fold or equilibrium in the fast fibre. These 
are either quadratic folds of g or hyperbolic equilibria of {g, h}, both which are persistent 
under perturbation. Hence, {g, h} must be persistent.� □ 

Note that the global singular equivalence (17) does not depend on the nullcline N (x, y) 
away from the critical manifold. Bifurcation occurs if one of the assumptions in theorem 1 
is broken. Note that the assumptions that g ∈ Vf  implies the critical set does not intersect 
∂M × N, and that h ∈ Vs implies that the nullcline does not intersect M × ∂N; more generally 
there will be additional persistence conditions that require persistent intersection with these 
boundaries.

4.3.  Generic bifurcations in singular fast-slow systems

We can understand generic codimension one bifurcations of fast-slow systems (1) by exam-
ining the ways that the persistence conditions of proposition 1 are violated. For m  =  1 and 
n = 1, 2 this means that the codimension one bifurcations of the critical manifold are possible 
bifurcations under global singular equivalence. In addition, there are many ways that a change 
in the slow subsystem can lead to a bifurcation.

For m  =  n  =  1 we define, as for the critical manifold, subsets of E1[g, h], E2[g, h] and M[g, h] 
containing all codimension one degeneracies of G[g, h], which are not only due to degeneracy 
of the fast subsystem, in table 10. We further define subsets of these, which give codimen-
sion one bifurcation if all except for one of the subsets are empty, and if the nonempty subset 
is nonempty for only one slow coordinate y  (table 3). Equipped with the subsets in table 11, 
proposition 3 lists the codimension one degeneracies of (1) for m  =  n  =  1.

Proposition 3.  In the case m  =  n  =  1, codimension one bifurcation of the fast-slow system 
(1) for {g, h} occurs due to exactly one of the following reasons, for exactly one slow coordi-
nate y ∈ N.

	 (i)	�Two folds of C[g] merge at a quadratic fold tangency of the critical manifold at some 
(x, y), and G[g, h] \ D1

1[g, y] = ∅.
	(ii)	�There is a cubic hysteresis of C[g] at some (x, y), and G[g, h] \ D1

2[g, y] = ∅.
	(iii)	�There is a double limit point degeneracy of C[g] for some y  and G[g, h] \ D1

3[g] = ∅
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	(iv)	�There is a nondegenerate slow saddle-node equilibrium on the regular part of the critical 
manifold, and G[g, h] \ E1,1[g, h, y] = ∅

	 (v)	�There are exactly two hyperbolic equilibria that share the same slow coordinate y  
(i.e. there are exactly two points p1, p2 ∈ E2[g, h] for which π( p1) = π( p2) = y, and 
G[g, h] \ E2,1[g, h, y] = ∅.

	(vi)	�The slow nullcline intersects the critical set transversally at exactly one point (x, y) that 
shares slow coordinate with a quadratic fold, and G[g, h] \M1[g, h] = ∅

Proof.  Note that all degeneracies are contained in the set G[x, y] = D1[g] ∪ D2[g]∪  
D3[g] ∪ E1[g, h] ∪ E2[g, h] ∪M[g, h]. Because of this, and because the defining conditions are 
independent, codimension one degeneracy will occur at a point that is in exactly one of those 
sets. Furthermore, bifurcation must occur for exactly one y  since otherwise more than one 
equality constraint is imposed, raising the codimension.

Case (i) describes the only subset D1
1[g] of D1[g] containing codimension one degenera-

cies exclusively in D1[g], and therefore it produces codimension one degeneracy of {g, h}. 
The same is true for cases (ii) and (iii). Case (iv) is codimension one since we impose just 
one equality condition and exclude higher codimension degeneracy with the non-degeneracy 
condition in table 11. Case (v) is codimension one since hyperbolic equilibria are persistent, 

Table 10.  Subsets of E1[g, h], E2[g, h] and M[g, h] for m  =  n  =  1 whose union contains 
all codimension one bifurcations, not only due to bifurcation in the fast subsystem. Note 
that det(D{g, h}) = gxhy − gyhx  is the Jacobian of the full system (1) and that the first 
subset is a local degeneracy.

Saddle-node: E1
1 [g, h] = { p ∈ E1[g, h] : |Ξ[g, h]( p)| = 1 and 

det(D{g, h}( p)) �= 0}
Double slow equilibrium: E1

2 [g, h] = { p ∈ E2[g, h] : |Ξ[g, h]( p)| = 2}
Fold-equilibrium double projection set: M1[g, h] = { p ∈ M[g, h] : |Ξ[g, h]( p)| = 1}

Table 9.  Subsets of local degeneracies, for one fast and two slow variables parametrized 
by the slow coordinate, conjectured to include all codimension one bifurcations. Note 
that P(y) is the set of all singular points of the vector field g with slow coordinate y . The 
number of positive eigenvalues of the Hessian sign (gxx)D2[g] at p  is written as |Σ+|. 
Note that no eigenvalues are zero, since det(D2g( p)) �= 0 by assumption. Figure D1 is 
in appendix D. See text for details.

Wormhole fold  
tangency

D1,1[g, y] = {P(y) ⊂ D1
1[g] : |Σ+| = 1} Figures 6(a)–(c)

Tube fold tangency D1,2[g, y] = {P(y) ⊂ D1
1[g] : |Σ+| = 2} Figures 6(d)–(f)

Isola fold tangency D1,3[g, y] = {P(y) ⊂ D1
1[g] : |Σ+| = 3} Figures 6(g)–(i)

Stable lips cusp  
tangency

D2,1[g, y] = {P(y) ⊂ D1
2[g] : W[g]( p) > 0 and gxxx < 0} Figures 6(m)–(o)

Unstable lips cusp 
tangency

D2,2[g, y] = {P(y) ⊂ D1
2[g] : W[g]( p) > 0 and gxxx > 0} Figures D1(j)–(l)

Stable beaks cusp  
tangency

D2,3[g, y] = {P(y) ⊂ D1
2[g] : W[g]( p) < 0 and gxxx < 0} Figures 6(j)–(l)

Unstable beaks cusp 
tangency

D2,4[g, y] = {P(y) ⊂ D1
2[g] : W[g]( p) < 0 and gxxx > 0} Figures D1(d)–(f)

Swallowtail: D3,1[g, y] = {P(y) ⊂ D1
3[g]} Figures 6(p)–(r)
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Table 11.  Degeneracies that lead to codimension one bifurcation of the singular fast-slow system (1) up to global singular equivalence. The sets F [g] and U [g] are 
the fold and the umbral sets and π( p) is the projection map. R(y) is the set of all equilibria sharing slow coordinate y . In saddle-node non-degeneracy condition, 

r and q are eigenvectors of the Jacobian of the full system and its adjoint respectively, and B =
∑2

j,k qjqk
∂2

∂ξ1∂ξ2
(g, h), where (ξ1, ξ2) = (x, y) [31, p 175]. The 

last column associates the degeneracy to a possible bifurcation of relaxation oscillations. Degeneracies which do not lead to bifurcation of singular relaxation 
oscillations have no associated figures.

Non-degenerate saddle-node E1,1[g, h, y] = {R(y) = π−1(y) ∩ Nr[g, h] ⊂ E1
1 [g, y] : |R(y)| = 1 and 

b = 1
2 (r · B(q, q)) �= 0}

Figures 11(a)–(c), saddle-node on in-
variant circle (SNIC) [12]

Double slow equilibrium: E2,1[g, h, y] = {R(y) ⊂ E1
2 [g] : |R(y)| = 1}

Sink-fold intersection: M1,1[g, h, y] = {R(y) ⊂ M1[g, h] : |R(y) ∩ F [g]| = 1 and H′
p0
(y) < 0 

for p0 ∈ R(y)}
Figures 11(d)–(f), singular Hopf

Source-fold intersection: M1,2[g, h, y] = {R(y) ⊂ M1[g, h] : |R(y) ∩ F [g]| = 1 and H′
p0
(y) > 0 

for p0 ∈ R(y)}
Sink-fold umbra intersection: M1,3[g, y] = {R(y) ⊂ M1[g, h] : |R(y) ∩ U [g]| = 1 and H′

p0
(y) < 0 

for p0 ∈ R(y)}
Source-fold umbra intersection: M1,4[g, h, y] = {R(y) ⊂ M1[g, h] : |R(y) ∩ U [g]| = 1 and H′

p0
(y) > 0 

for p0 ∈ R(y)}
Figures 11(g)–(i), singular homoclinic

Non-interacting source-fold umbra: M1,5[g, h, y] = {R(y) ⊂ M1[g, h] : R(y) ∩ (U [g] ∪ F [g]) = ∅}
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and more than two hyperbolic equilibria sharing slow coordinate would impose more than one 
equality constraint. Case (vi) is codimension one for the same reason.� □ 

Note that codimension two bifurcations may combine degeneracies in more than one of 
these sets.

5.  Generic bifurcations of relaxation oscillations in singular fast-slow systems

Not all bifurcations of the singular fast-slow system listed in proposition 3 will lead to bifurca-
tion of singular relaxation oscillations, as the degeneracy in the fast-slow system must interact 
with a limit cycle. We focus on bifurcation of singular relaxation oscillations and simple relax-
ation oscillations, a generic subclass due to [18]. Several cases of these bifurcations have been 
considered in the literature, see for example [35].

5.1.  Singular relaxation oscillations

Consider a fast-slow system with m  =  1 fast variables (1) in the singular limit ε = 0. A relax-
ation oscillation is a singular periodic trajectory γ : [a, b] → M × N  (i.e. such that γ(b) = γ(a)) 
where the slow segments are in Catt. If the oscillation consists of alternating stable slow seg-
ments on Catt[g] up to non-degenerate folds, fast segments from these folds to their umbra, 
and satisfies certain other non-degeneracy conditions then we say it is a simple relaxation 
oscillation. These are called strongly common slow-fast cycles in [35] where it is shown that 
these singular trajectories will be shadowed by a stable periodic orbit for small enough ε. 
Guckenheimer stated a similar persistence theorem in [18]; in section 5.2 we state and prove 
a version of it.

We say a continuous curve sk : [0, 1] → M × N  is a slow segment of a singular trajectory if 
there is a continuous and monotonic increasing function θk : Ik → [0, 1] on an interval Ik ⊂ R 
such that (i) the interior of Ik is mapped surjectively to (0, 1) and (ii) sk(θk(t)) is a trajectory of 
(2). We say a slow segment sk has slow time duration Tk  >  0 if we can choose θk(t) = t/Tk  for 
slow time t ∈ Ik = [0, Tk]. If not, we say Tk = ∞.

Note that the surjectivity requirement on θk(t) excludes the possibility Tk  =  0. Note also 
that the interpretation of t as a slow time is only useful for defining the slow time duration; 
henceforth t should be thought of as a general parameter, and we drop the explicit dependence 
of θ on t and k.

Up to equivalence of the fast segments joining the slow segment end-points, we define a 
relaxation oscillation in terms of its slow segments as

A = {sk(θ) : θ ∈ [0, 1]}d−1
k=0� (19)

a sequence of continuously parametrized slow segments sk : [0, 1] → M × N . We will assume 
that either A is a loop entirely within Catt[g] or

	 •	�sk(θ) ⊂ Catt[g] for all θ ∈ (0, 1)
	 •	�There are trajectories φ(τ) of the fast system such that α(φ(0)) = sk(1) and 

ω(φ(0)) = sk+1(0) for k modulo d.

for each k, where ω( p) and α( p) are the omega and alpha limits of a point p  respectively. This 
equivalence class of relaxation oscillations has more than one member if there is more than 
one fast segment joining two consecutive slow segments.
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We define the slow period P(A) of a relaxation oscillation A to be the total slow time dura-
tion of its slow segments. This is

P(A) =
d−1∑
k=0

Tk� (20)

which may be infinite, where orbits in the equivalence class of A clearly all have the same 
slow period. We allow the possibility that A is a loop on Catt[g] without jumps, in which case 
d  =  1 and s0(1) = s0(0), or that the jumps are trivial and on Catt[g]. Infinite slow period relax-
ation oscillation (P(A) = ∞) of a variety of types are covered by this definition. We define a 
simple relaxation oscillation (see Guckenheimer [19, 22]) as follows:

Definition 2 (Simple relaxation oscillation (m = 1, n � 1)).  A relaxation oscillation 
A in (19) is simple if all of the following hold:

	 (i)	�The slow period P(A) is finite.
	(ii)	�The slow segments are on Catt[g], except possibly the last point.
	(iii)	�Either sk(1) ∈ F [g] \ D[g], or d  =  1 and s0(1) = s0(0).
	(iv)	�The slow segments are not tangent to either fold set or umbral set.
	(v)	�The singular return map local to sk(1) is well-defined with a hyperbolic equilibrium at 

sk(1).

Note that the assumption P(A) < ∞ implies that the slow segments do not limit to any 
equilibria of the slow flow. For one fast and one slow variable, our definition of a simple 
relaxation oscillation can be expressed in a simpler way:

Definition 3 (Simple relaxation oscillation (m = n = 1)).  A relaxation oscillation 
(19) with one fast and one slow variable (m  =  n  =  1) is simple if

	 (i)	�The slow period P(A) is finite.
	(ii)	�We have sk(θ) ∈ Catt[g] for all θ ∈ [0, 1).
	(iii)	�Either sk(1) ∈ F [g] \ D[g] or d  =  1 and s0(1) = s0(0).

5.2.  Persistence and bifurcation

We say that a simple relaxation oscillation undergoes bifurcation if the relaxation oscillation 
ceases to be simple under perturbation of the singular fast-slow system. If not, we say that the 
relaxation oscillation is persistent. Note that as we only consider fast-slow systems on absorb-
ing regions in R2, singular relaxation oscillations can bifurcate to either equilibrium points or 
other singular relaxation oscillations. The following proposition links bifurcation of simple 
relaxation oscillations to degeneracy in the fast-slow system (see [18–20]):

Proposition 4.  A simple relaxation oscillation A is persistent for n  =  m  =  1 if the fast-
slow system is persistent under global singular equivalence.

Proof.  Assume {g, h} is persistent. Because the slow period is finite, no slow equilibrium 
can intersect a slow segment sk(θ) in a degenerate way; intersection for θ ∈ {0, 1} implies 
that M[g, h] �= ∅ and intersection for θ ∈ (0, 1) implies E1[g, h] �= ∅, since the flow must have 
the same direction on both sides of the equilibrium, which is not possible if the equilibrium is 
hyperbolic. Hence condition (i) is persistent. Condition (ii) is persistent since sk(0) �∈ Catt[g] 
implies that both sk−1(1) and sk(0) are in F [g], which in turn would imply that D3[g] �= ∅. 
Condition (iii) is persistent since the fold set is non-degenerate everywhere, and since trivi-
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al relaxation oscillations s0(1) = s0(0) coincide with hyperbolic equilibria in the interior of 
Catt[g].� □ 

The converse is not true, however: only some of the degeneracies in the fast-slow system 
will give rise to a bifurcation of a simple relaxation oscillation. The reasons are listed in the 
following proposition and in table 12. Examples are portrayed in figures 11 and 12.

Proposition 5.  Bifurcation of a singular relaxation oscillation A for m  =  n  =  1 due to 
codimension one bifurcation of the singular fast-slow system { f , g} occurs for exactly one of 
the following reasons, at exactly one point (x, y) ∈ A.

	 (i)	�There is saddle-node bifurcation of the slow subsystem in the interior of Catt[g]: 
(x, y) ∈ E1,1[g, h, y].

	(ii)	�There is a hyperbolic fold tangency of the critical manifold: (x, y) ∈ D1,1[g, y].
	(iii)	�There is a stable hysteresis of the critical manifold: (x, y) ∈ D2,1[g, y].
	(iv)	�There is an aligned fold-umbra double limit point of the critical manifold: (x, y) ∈ D3,1[g, y].
	 (v)	�There is an opposed fold-umbra double limit point of the critical manifold: 

(x, y) ∈ D3,2[g, y].
	(vi)	�A sink in the slow subsystem intersects a quadratic fold in the fast subsystem: 

(x, y) ∈ M1,1[g, h, y].
	(vii)	�A source in the slow subsystem intersects the umbra of a quadratic fold in the fast subsys-

tem: (x, y) ∈ M1,4[g, h, y].

Table 12.  Bifurcations of singular relaxation oscillations for m  =  n  =  1 due to 
codimension one bifurcation of the fast-slow system. Definitions of the calligraphic 
sets are found in tables  3 and 11. It is understood that A(λ) is perturbed due to 
perturbed g(λ) = g(x, y,λ) and h(λ) = h(x, y,λ). The final column indicates whether 
the bifurcation is due to bifurcation of the critical set.

Type: example
Conditions for a simple singular relaxation oscilla-
tion A(λ) to bifurcate at λ = λ0

Bifurcation 
of C[g]?

Saddle node on invariant  
circle [12]: figures 11(a)–(c)

There exists a unique y ∈ N such that 
Alim(λ0) �= ∅ and E1,1[g(λ0), h(λ0), y] �= ∅ and 
G[g(λ0), h(λ0)] \ E1,1[g(λ0), h(λ0), y] = ∅,

No

Singular Hopf:  
figures 11(d)–(f)

There exists a unique y ∈ N such that 
Alim(λ0) �= ∅ and M1,1[g(λ0), h(λ0), y] �= ∅ and 
G[g(λ0), h(λ0)] \M1,1[g(λ0), h(λ0), y] = ∅,

No

Singular homoclinic:  
figures 11(g)–(i)

There exists a unique y ∈ N such that 
Alim(λ0) �= ∅ and M1,4[g(λ0), h(λ0), y] �= ∅ and 
G[g(λ0), h(λ0)] \M1,4[g(λ0), h(λ0), y] = ∅,

No

Hyperbolic fold tangency:  
figures 12(a)–(c)

There exists a unique y ∈ N such that 
Alim(λ0) �= ∅ and D1,1[g(λ0), y] �= ∅ and 
G[g(λ0), h(λ0)] \ D1,1[g(λ0), y] = ∅,

Yes

Hysteresis: figures 12(d)–(f) There exists a unique y ∈ N such that 
Alim(λ0) �= ∅ and D2,1[g(λ0), y] �= ∅ and 
G[g(λ0), h(λ0)] \ D2,1[g(λ0), y] = ∅,

Yes

Aligned fold-fold umbra  
double limit: figures 12(g)–(i)

There exists a unique y ∈ N such that 
Alim(λ0) �= ∅ and D3,1[g(λ0), y] �= ∅ and 
G[g(λ0), h(λ0)] \ D3,1[g(λ0), y] = ∅,

Yes

Opposed fold-fold umbra  
double limit: figures 12(j)–(l)

There exists a unique y ∈ N such that 
Alim(λ0) �= ∅ and D3,2[g(λ0), y] �= ∅ and 
G[g(λ0), h(λ0)] \ D3,2[g(λ0), y] = ∅,

Yes
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Proof.  We determine which of the codimension one degeneracies in tables 1 and 11 can 
cause bifurcation of singular relaxation oscillations by ruling out those that cannot, and by 
providing examples in the following section.

First, two hyperbolic equilibria sharing y-coordinate E2,1[g, h, y], a non-interacting double 
limit point degeneracy D3,5[g, y] or D3,6[g, y] or an equilibrium sharing slow coordinate with a 
fold point but not intersecting it or its umbra M1,5[g, h, y] are ruled out because these degen-
eracies cannot break the simple property of limit cycles at codimension one.

Furthermore, codimension one bifurcation of limit cycles requires that a regular stable part 
of the critical manifold exists in a neighbourhood of the bifurcation point, or else the limit cy-
cle does not generically pass through that point. This excludes elliptic fold tangency D1,2[g, y] 
and unstable hysteresis D2,2[g, y].

Moreover, a source equilibrium intersecting a fold M1,2[g, h, y] or a sink interacting with 
a fold umbra M1,3[g, h, y] are excluded since no relaxation oscillation can exist either at or 
in a neighbourhood of the bifurcation parameter at codimension one. Additionally, a ‘fold 
umbra—fold umbra’ double limit point degeneracy D3,3[g, y] or D3,4[g, y] cannot cause bifur-
cation at codimension one, since the umbra is generically on Creg[g], and not intersecting any 
equilibria (making the period finite). Therefore, there is no way for the simple property to be 
lost at such a point.� □ 

The remaining codimension one bifurcations can break the simple property by violating 
one of the defining conditions: these are listed in table 12. If a vector field is perturbed by a 
distinguished parameter λ ∈ R , a simple singular relaxation oscillation may cease to exist 

Figure 11.  The middle column shows typical examples of the classes of codimension 
one bifurcations of equilibria for m  =  n  =  1 that are not due to bifurcation of the critical 
set (table 12). In all cases solid black lines show the critical set, red lines show the 
image of the fold under the umbral map, blue lines show nullclines of the slow variable 
and orange lines show stylised solutions of the non-singular system. Filled/open dots 
are stable/unstable equilibria of the fast subsystem.
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for some critical λ0 where we assume the limit is from below. In such cases we define a limit 
relaxation oscillation Alim(λ0) as the limit, in the Hausdorff distance, of a sequence of relaxa-
tion oscillations A(λ) parametrized by λ

Alim(λ0) = lim
λ→λ0−

A(λ).� (21)

The limit is well defined for simple relaxation oscillations but may be empty. The bifurca-
tion of relaxation oscillations will unfold for the non-singular systems ε > 0 to give a variety 

Figure 12.  Examples of bifurcation of relaxation oscillation due to bifurcation of the 
critical set for m  =  n  =  1. Bifurcation occurs at the critical value λ0 of the bifurcation 
parameter λ. Black lines are the critical set, blue dashed lines are nullclines of the 
slow subsystem, and orange lines show example trajectories of a nearly singular system 
started at the indicated red point, that evolve towards a relaxation oscillation. In panels 
(j)–(l) the point of interest is the left facing fold near y   =  0 which nearly intersects the 
slow nullcline; at bifurcation that fold shares y -value with another right facing fold at 
a larger value of x. As λ increases the left facing fold moves rightward and singular 
relaxation oscillations change from passing right of the fold to the left of it. Polynomial 
equations for the critical set are listed in table 13, bifurcation conditions are listed in 
table 12, and a detailed description of the systems is found in appendix E.

Karl H M Nyman et alNonlinearity 33 (2020) 2853



2883

of canards that will appear on a case to case basis: see for example [29, chapter 8] and [35]. 
Outside a small (in ε) range of parameters λ(ε) near the critical λc, many of the solutions will 
closely resemble those of the singular system. Hence, the bifurcations in proposition 5 will 
give rise to a detectable qualitative change even for non-singular systems.

5.3.  Examples of bifurcations of relaxation oscillations

To illustrate how the bifurcations of limit cycles can be realised, we show in figure 12 some 
examples of bifurcations of relaxation oscillations in fast-slow systems (1) with m  =  n  =  1, 
near the singular limit. In all cases the critical manifold is expressed as a relatively low-order 
polynomial (table 13). We explain how these were derived in appendix E.

6.  Discussion

Almost two decades ago, Guckenheimer [19] called for a classification of bifurcations of 
relaxation oscillations in fast-slow systems up to two slow and two fast variables. In this paper 
we have used bifurcation theory with distinguished parameters and singular equivalence to 
take some steps towards such a classification. Indeed, in [19] Guckenheimer gives the follow-
ing list of codimension one degeneracies that we can relate to our classification:

	G1:	�A fast segment ends at a regular fold point. There are two cases depending on whether the 
slow flow approaches or leaves the fold near this point.

	G2:	�A slow segment ends at a folded saddle.
	G3:	�A fast segment encounters a saddle point.
	G4:	�There is a point of Hopf bifurcation at a fold.
	G5:	�A slow segment ends at a cusp.
	G6:	�The reduced system has a quadratic umbral tangency between projections of fold and 

umbra.

The degeneracy G1 is a subcase of fold projection intersection for m = 1, n = 1, 2 and fold 
projection tangency for m = 1, n = 2. The degeneracy G2 appears when the slow flow is tan-
gent to a fold line: this can occur for n � 2. Degeneracy G3 can appear at a saddle for m � 2 
or at an unstable node for m  =  1. Note that the formulation of G3 is slightly modified from 
[19]. Degeneracy G4 corresponds to a singular Hopf bifurcation, which we discussed in the 
context of m  =  n  =  1. Degeneracy G5 corresponds to a hysteresis bifurcation for m  =  n  =  1, 
and to a limit cycle hitting a cusp on the slow manifold for m  =  1, n  =  2. Finally, degeneracy 
G6 requires n � 2.

Guckenheimer states in [19] that the list is incomplete, and mentions the case that a slow 
segment ends at a folded node as an example. Degeneracy due to fold tangency of the critical 
set is missing from the list, since the slow variables were not regarded as distinguished param
eters in [19]. We believe that proposition 5 completes the list for m  =  n  =  1.

For n  =  2, the degeneracies involve tangencies of generic one-dimensional objects such as 
relaxation oscillations, fold lines and fold umbrae, as well as intersections of one-dimensional 
objects and generic zero-dimensional objects such as cusp points and equilibria in the slow 
subsystem. Some of these cases are in Guckenheimer’s list. Note that degeneracies of the 
critical manifold do not cause codimension one bifurcation of relaxation oscillations since 
they occur at points, which do not generically intersect relaxation oscillations. They will be 
involved in bifurcation of invariant tori or more complex singular attractors or of relaxation 
oscillations at higher codimension however.
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Table 13.  Examples of fast subsystems g that undergo each of the codimension one bifurcations of the critical set g(x, y) = 0 for m  =  n  =  1 at 
λ = λc ≈ 0, shown in figure 12. Indefinite integrals are taken to have zero constant term. (x̂, ŷ) are scaled, rotated and translated coordinates. 
Details how g(x, y) is constructed, and parameters for the opposed double limit degenerate case can be found in appendix E.

Fold tangency (figures 12(a)–(c)) g(x, y) = −(g1(x, y)g2(x, y) + λx + q), with g1(x, y) = x3 − 2x + y and g2(x, y) = (x − xc)
2 + (y − yc)

2 − R2 and (xc, yc, R, q) = (81/100,−1/4, 11/20, 1/100),
Hysteresis (figures 12(d)–(f) g(x, y) =

∫
−a(x + x1)(x + x2)(x + x3)

2dx + λx − b − y, (a, b, x1, x2, x3) = (15/4, 6/10,−1, 1/25,−1),
Aligned double limit (figures 12(g)–(i) g(x, y) =

∫
−a(x + x1)(x + x2)(x + x3)(x + x4)dx + λx − y, (a, x1, x2, x3, x4) = (640/49,−1,−13/40, 1/2, 5/4),

Opposed double limit (figures 12(j)–(l) g(x, y) = −(g1(x, y)g2(x̂, ŷ) + λx + q), with g1(x, y) = 0.5x3 − x + y, and g2(x̂, ŷ) = (x̂2 + ŷ2)3−(x̂2 + (x̂2 + ŷ2)2ŷ2),
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6.1.  Relation to other singularity theory problems

There appears to be connections between global equivalence of critical sets with two distin-
guished parameters (for m  =  1 and n  =  2) and the equivalence of vector fields under projection 
to the slow plane. In particular, several hypothesised degeneracies under strong equivalence 
also appear as degeneracies of orthogonal projections of vector fields, see for instance [1, 9, 
37, 43, 47] and references. Crucially, however, such equivalences do not produce degeneracies 
such as the fold tangency where the manifold structure is lost.

Our approach to bifurcation of the critical manifold in fast-slow systems uses a singularity 
theory approach with distinguished parameters from [17]. In the following we briefly indicate 
how this approach is related to singularity theory, catastrophe theory, the theory of constrained 
equations, and projections from manifolds to manifolds.

Much of singularity theory concerns the stability of zero sets of smooth functions g(x) = 0 
under perturbation [46]. In the singularity theory approach to bifurcation theory of [17], there 
is a distinguished (bifurcation) parameter y  that is not ‘mixed up’ with the unfolding param
eters. Hence, e.g. the quadratic fold g  =  x2  +  y  is a codimension one degeneracy of g(x)  =  x2 
in singularity theory, but is codimension zero in bifurcation theory with one distinguished 
parameter y . For our interpretation, y  is identified with the slow variables.

Catastrophe theory [2, 40] classifies the changes to stationary points of potentials V(x), with 
∇V(x) = g(x), by codimension of deformation. Although different equivalences and objects 
are studied in catastrophe theory and singularity theory, for one (fast) variable, the classifica-
tion of local singularities of the critical set is the same. Constrained systems [26, 42] cor-
respond to singular fast-slow systems where equivalence of critical manifolds is defined by 
potential functions, as in catastrophe theory, together with a slow flow local to a point. Unlike 
our approach, there are no distinguished parameters and the unfolding parameters are identi-
fied with the slow variables. This means that some local bifurcations (notably fold tangencies) 
that are present for the distinguished parameter approach are missed, because ‘slow variables’ 
never appear in powers higher than one in the local normal forms.

Singularity theory, catastrophe theory and constrained equations have been framed in terms 
of germs, which are local notions of functions. This means that global intersections of pro-
jections of singularities (such as double limit points which are important for bifurcations of 
relaxation oscillations) have not been widely studied in these contexts, some exceptions being 
[2, 8, 19, 35].

6.2.  Further perspectives

Persistence and codimension one bifurcation of the critical set for one fast (m  =  1) and two 
slow variables (n  =  2) remains to be proved. This requires a suitable equivalence, which 
should give rise to the degeneracies that we have listed, but possibly more.

A full investigation of bifurcations of singular relaxation oscillations for m = 1, n = 2 is 
outside the scope of this paper. Some specific examples have been studied by Guckenheimer 
[20, 23, 21] who outlined a scheme for investigation of bifurcation of solutions to singular 
fast-slow systems in [18].

The general case of two fast variables m  =  2 is considerably more complicated as the vec-
tor fields cannot be written as gradients of potentials, and hence there can be other asymptotic 
behaviour than fixed points. If n  =  2 then for generic asymptotic fast dynamics, the system 
will approach a critical set that is a union of all equilibria, periodic orbits and homoclinic/
heteroclinic cycles of the fast system. The persistence of bifurcations on the critical set will 
depend on the number of slow variables. For n  =  1 then we expect persistence precisely when 
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(a) All singularities of equilibria within the critical set are quadratic folds or Hopf points. (b) 
All singularities of limit cycles within the critical set are one of saddle-nodes of limit cycles, 
saddle node on a periodic orbit, or homoclinic bifurcation. (c) The slow flow has generic inter-
section with umbrae of the singularities. For n  =  2 we will get in addition generic local and 
global codimension two singularities at isolated points in the slow variables; this will include, 
for example, cusp points, Bogdanov Takens points and Bautin points at singular equilibria, 
and a wide variety of possible generic codimension two bifurcations of homoclinic orbits [10].

We have ignored the phenomena that arise when the scale separation is imperfect, that is 
for ε > 0. In that case, the fast and slow subsystems evolve at similar speeds close to singular 
points; this gives rise to canards and mixed mode oscillations [11]. Canard behaviour has 
been extensively studied, especially near regular values of the critical set see e.g. [6, 18, 29, 
45]. Canards for degenerate critical sets are discussed in [2, 8, 35], but we are unaware of any 
systematic treatment.
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Appendix A. The quadratic curvature

We define the scalar quadratic fold curvature (see table 6)) at a fold point p  in the direction of 
a fold of the critical manifold as

K[g]( p) = sign (gxx( p))
∇⊥

y g( p)
T

D2
y(g( p))∇⊥

y g( p)
2|∇⊥

y g( p)| − (∇ygx( p)·∇⊥
y g( p))

2

8|gxx( p)||∇⊥
y g( p)| ,

�
(A.1)

where D2
y(g) is the Hessian of the slow subsystem, superscript T denotes transpose, ⊥ denotes 

perpendicular, and ∇⊥
y g  denotes ∇⊥

y g scaled to unit length. For the remainder of this sec-
tion we drop the dependency on p , such that e.g. g( p) is written just g. If ∇⊥

y g = 0, then 
K[g] is undefined. Note that this notion of scalar quadratic fold curvature only captures the 
quadratic curvature of the fold curve as a projection onto the slow (0, y1, y2) plane.

In this section, we first motivate our definition of (A.1) and then offer an interpretation.
To motivate (A.1), we start with a quadratic fold at the origin and completely in the slow 

plane whose curvature in the slow plane reasonably should be considered to be along the 
y 1-axis

g(x, y1, y2) = ξx2 + c1y1 + c2y2
2,

where ξ, c1 and c2 are real constants.
Recall that the quadratic direction vector of a fold is given by ν[g] = gxx∇yg = (2ξc1, 0), 

so if ξc1 > 0 then the fold is directed rightward, while if ξc1 < 0 the direction is directed 
leftward. It makes sense to define the slow quadratic fold curvature of this fold as

K[g] = sign (ξ)
c2

2c1
,� (A.2)
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since then the curvature is independent of the magnitude of ξ, proportional to c2  =  0, and 
inversely proportional to c1. The fold is convex in the direction of the fold if K[g]( p) > 0 and 
concave if K[g]( p) < 0; see figure 5 for a graphical representation.

We now consider a general quadratic polynomial function of a quadratic fold at the origin 
with terms of relevant order

g(x, y1, y2) = ξx2 + ay1 + by2 + αy2
1 + βy2

2 + 2γy1y2 + δxy1 + ηxy2,� (A.3)

where a, b, α, β, γ , δ and η are real constants unrelated to any quantities with the same names 
elsewhere in this text. The x term and constant term are missing because of the quadratic fold 
condition g  =  gx  =  0, and higher order terms are not present since they should not matter for 
the quadratic curvature.

Next, we find an expression for the projection of the quadratic approximation of the fold 
curve onto the slow plane (0, y1, y2). To this end, we solve (A.3)  =0 for x to get

x = 1
2ξ

(
(δy1 + ηy2)

±
√
(δy1 + ηy2)2 − 4ξ(αy2

1 + βy2
2 + 2γy1y2 + ay1 + by2)

)
.

�
(A.4)

At the quadratic approximation of the fold curve the discriminant of (A.4) is zero

(δy1 + ηy2)
2 − 4ξ(αy2

1 + βy2
2 + 2γy1y2 + ay1 + by2) = 0,

giving a condition on y 1 and y 2. Expanding parentheses, collecting terms and dividing by −4ξ  
gives that

ay1 + by2 +

(
α− δ2

4ξ

)
y2

1 +

(
β − η2

4ξ

)
y2

2 + 2
(
γ − δη

4ξ

)
y1y2 = 0.

We define the new coefficients α̃ = α− δ2/4ξ, β̃ = β − η2/4ξ and γ̃ = γ − δη/4ξ, such that

ay1 + by2 + α̃y2
1 + β̃y2

2 + 2γ̃y1y2 = 0.� (A.5)

Based on (A.5) we define a new function

g̃(x, y1, y2) = ξx2 + ay1 + by2 + α̃y2
1 + β̃y2

2 + 2γ̃y1y2,� (A.6)

which defines a quadratic fold curve at the origin having the same slow quadratic curvature as 
g in (A.3) but lying entirely in the slow plane.

Next, we seek a rotation R of the slow variables which brings the quadratic fold direc-
tion vector ν[g] = sign (gxx)(a, b)T  of g (as well as g̃) in the positive y 1 direction, that is: 
Rν[g] = (|ν[g]|, 0)T . This rotation does not change the slow curvature, but it allows us to 
identify the relevant coefficients corresponding to c1 and c2 in (A.2).

The sought rotation in matrix form is

R = sign (gxx)
1√

a2 + b2

(
a b
−b a

)
,

and consequently

R−1 = sign (gxx)
1√

a2 + b2

(
a −b
b a

)
.
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The old slow coordinates (y1, y2) are expressed in the new ones (ŷ1, ŷ1) as
(

y1

y2

)
= R−1

(
ŷ1

ŷ2

)
.

In the new coordinates (A.6) becomes

g(x, ŷ1, ŷ2) = ξx2 + 1
a2+b2 [sign (gxx)

√
a2 + b2a(aŷ1 − bŷ2)

+ sign (gxx)
√

a2 + b2b(bŷ1 + aŷ2)

+α̃(aŷ1 − bŷ2)
2 + β̃(bŷ1 + aŷ2)

2

+2γ̃(aŷ1 − bŷ2)(bŷ1 + aŷ2)]

= ξx2 + 1
a2+b2 [sign (gxx)(a2 + b2)3/2ŷ1

+(α̃b2 + β̃a2 + 2γ̃ab)ŷ1
2

+(α̃b2 + β̃a2 − 2γ̃ab)ŷ2
2

+2(−α̃ab + β̃ab + (a2 − b2)γ̃)ŷ1ŷ2].

Hence, reading off the coefficients of ŷ1 and ŷ2
2 in analogy with (A.2), we get the scalar qua-

dratic fold curvature

K[g] = sign (gxx)
(α̃b2+β̃a2−2γ̃ab)

(a2+b2)3/2

= sign (gxx)
(αb2+βa2−2γab)

(a2+b2)3/2 + (δ2b2+η2a2−2δηab)
4|ξ|(a2+b2)3/2

= sign (gxx)
(gy1y1 g2

y2
−gy2y2 g2

y1
−2gy1y2 gy1 gy2 )

2(g2
y1
+g2

y2
)3/2

− (g2
xy1

g2
y2
+g2

xy2
g2

y1
−2gxy1 gxy2 gy1 gy2 )

8|gxx|(g2
y1
+g2

y2
)3/2

= sign (gxx)
∇⊥

y g
T

D2
y(g)∇⊥

y g
2|∇⊥

y g| − (∇ygx·∇⊥
y g)

2

8|gxx||∇⊥
y g| ,

� (A.7)

where ∇⊥
y g = ∇⊥

y g/|∇⊥
y g| and ∇ygx = (gxy1 , gxy2). The case K[g]  >  0 implies a locally con-

vex fold and K[g]  <  0 implies a locally concave fold. The degenerate case K  =  0 implies that 
the fold line is not quadratic.

We can now define the quadratic fold curvature vector as

κ[g]( p) = K[g]( p)ν[g]( p)

=

(
∇⊥

y g( p)
T

D2
y(g( p))∇⊥

y g( p)
2|∇⊥

y g( p)| − (∇ygx( p)·∇⊥
y g( p))

2

8gxx( p)|∇⊥
y g( p)|

)
∇yg( p).

The quadratic fold curvature vector points in the direction of the fold if the fold is convex, and 
against the direction if it is concave (see figure 5).

Some special cases of equation  (A.1) are insightful. First, if the fold lies locally in the 
slow plane (that is, if the coefficients of the xy1 and xy2 terms in (A.3) are zero), then a 
positive definite matrix sign (gxx)D2

y(g) implies that the fold is convex and a negative definite 
sign (gxx)D2

y(g) implies that it is concave. However, if sign (gxx)D2
y(g) is indefinite or has a 

zero eigenvalue, then the sign of K[g] can be either positive, negative or zero depending on 
the direction of the fold.

On the other hand, if the xy1 and xy2 terms are present in (A.3), then the second term 
in (A.1) only serves to reduce convexity (or equivalently increase concavity). The extent to 
which convexity is reduced depends quadratically on the component of the gradient of ∇ygx  
perpendicular to the gradient, and inversely on the magnitude of the gradient and the magni-
tude of the curvature in the x direction.
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A.1.  Persistent subcases of the fold projection tangency

We classify the fold projection tangency degeneracy (degeneracy subset D4[g] for m  =  1 fast 
and n  =  2 slow variables) into a number of qualitatively different subcases (see table D1). 
The subcases are separated by the scalar quadratic fold curvatures at the points of degeneracy 
(see table 7), whether the umbrae interact with each other or a fold, and in the case of fold-
umbra degeneracy, whether the dominant curvature belongs to the fold curve with the largest 
x-coordinate.

Aligned folds generate four distinct subcases. In analogy with the situation for m  =  n  =  1, 
we have fold-fold, fold-umbra, and non-interacting fold cases. But the fold-umbra has two 
subcases, depending on whether the fold with interacting umbra also has the greatest scalar 
quadratic fold curvature K[g]. Hence, there are four subcases.

Opposed folds have six distinct subcases, three for each case that either the sum of cur-
vatures is positive (net convex) or negative (net concave). Opposed fold projection tangency 
does not have the two fold-umbra subcases of aligned fold projection tangency, since the 
dominant x-values are reversed by one half rotation of the slow variables. Hence there are six 
such subcases, and ten subcases in total.

The nonpersistence condition (at codimension one) for fold projection tangency degen-
eracy at points p1 ∈ D4[g] and p2 ∈ Π( p1) ∩ D4[g] is

κ[g]( p1) �= κ[g]( p2)

that is, the folds must have distinct quadratic curvature vectors (see appendix A). However, to 
distinguish subcases of degeneracy we will later use the scalar quadratic fold curvature K[g] 
and information about whether folds are aligned or opposed.

We now separate subcases depending on whether folds are aligned or opposed. If 
ν[g]( p1) · ν[g]( p2) > 0 then the folds are aligned, and qualitatively indistinguishable unless 
the umbra of the fold with the larger x component hits the other fold. If the umbra U[g]( p1) of 
an aligned fold at a point p 1 hits another fold at a point p 2 and the scalar quadratic fold curva-
tures satisfy K[g]( p1) > K[g]( p2), then the degeneracy is called umbra dominant. Otherwise 
if K[g]( p1) < K[g]( p2), then the degeneracy is called fold dominant. Therefore, we get the 
four subcases illustrated in figure D2 and tabulated in table D1. (Figures 7(a)–(c) shows a slow 
projection sketch of aligned fold projection tangency.)

If, on the other hand ν[g]( p1) · ν[g]( p2) < 0, then the folds are opposed and therefore dis-
tinguishable at bifurcation. (figures 7(d)–(f) shows a slow projection sketch of opposed fold 
projection tangency).

Assuming that folds are opposed, the defining condition for covering opposed fold projec-
tion tangency is

K[g]( p1) + K[g]( p2) < 0,

that is, if at least one fold is concave, and the magnitude of the curvature of the convex fold is 
smaller than that of the convex curve (see figures 7(d)–(f)). If, on the other hand

K[g]( p1) + K[g]( p2) > 0,

then we have covering opposed fold projection tangency (see figures 7(g)–(i)).
Opposed fold curves do not have the umbra-dominant and fold-dominant subcases that 

aligned fold curves do, since a rotation of the slow variables by 180 degrees turns one such 
case into the other. Therefore, there are four aligned cases and six opposed cases, giving in 
total the ten subcases in table D1.
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Appendix B.  Definition of the cusp direction vector

We define the direction of a cubic cusp (see table 6)) to be

µ[g] =
gxxx( p)

∇ygx( p) · ∇⊥
y g( p)

∇⊥
y g( p).

� (B.1)
For the remainder of this section we do not explicitly write out the dependence on p , so that 
for instance g( p) is written g. For the example in this section we assume that p = (0, 0, 0). As 
for the definition of scalar quadratic fold curvature, we motivate the definition starting from a 
normal form of the cubic cusp

g(x, y1, y1) = ξx3 + c1xy2 + c2y1,� (B.2)

where ξ, c1 and c2 are real constants. In this case we naturally let the cusp direction vector be

Figure D1.  Examples of codimension one cusp tangency bifurcation for one fast and 
two slow variables (see table 9). Each row shows unfolding with a bifurcation parameter 
λ. Bifurcation occurs as λ = λ0. Solid/dashed black lines show stable/unstable sheets 
of the critical set and red lines show the image of the fold under the umbral map.
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µ[g] =
(

ξ

c1

)
(0,−c2),� (B.3)

where (0, −  c2) is a vector perpendicular to the gradient (c2,0). It makes sense for the direction 
of the cusp to be along the gradient perpendicular, since it is parallel to the pair of fold curves 
which emanate from the cusp.

Next, we consider a more general expression

g(x, y1, y2) = ξx3 + αxy1 + dxy2 + ay1 + by2,� (B.4)

where ξ, a, b,α and β are coefficients, and where we do not keep terms of intermediate orders 
xy2

1 or x2y2, since visually they do not seem to alter the direction or sharpness of the cusp. We 
then rotate the slow subsystem as to make the gradient in the old coordinates (a, b) directed 
along the positive y 1 axis. We accomplish this with a rotation R

Figure D2.  Examples of codimension one aligned fold projection tangency bifurcation 
(see table D1). Each row shows unfolding with a bifucation parameter λ. Bifurcation 
occurs as λ = λ0. Solid/dashed black lines show the stable/unstable sheets of the 
critical set, red lines show the image of the fold under the umbral map and blue lines 
indicate tangency of projections of fold sheets. As a visual aid, the number of sheets of 
the critical set in a neighbourhood of the bifurcation is shown to the right, to be viewed 
as a projection onto the slow variables.
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R =
√

a2 + b2

(
a b
−b a

)
,

mapping the new coordinates ŷ1, ŷ2 to the old ones

Figure D3.  Examples of codimension one opposed fold projection tangency bifurcation 
(see table D1. Each row shows unfolding with a bifucation parameter λ. Bifurcation 
occurs as λ = λ0. Solid/dashed black lines show the stable/unstable sheets of the 
critical set, red lines show the image of the fold under the umbral map and blue lines 
indicate tangency of projections of fold sheets. As a visual aid, the number of sheets of 
the critical set in a neighbourhood of the bifurcation is shown to the right, to be viewed 
as a projection onto the slow variables.
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(
y1

y2

)
= R−1

(
ŷ1

ŷ2

)
,

such that in the new coordinates equation (B.4) becomes

g(x, ŷ1, ŷ2) = ξx3 + 1√
a2+b2

[α(aŷ1 − bŷ2)x + β(bŷ1 + aŷ2)x

+a(aŷ1 − bŷ2) + b(bŷ1 + aŷ2)]

= ξx3 + (aα+βb)√
a2+b2

ŷ1x + (−bα+aβ)√
a2+b2

ŷ2x +
√

a2 + b2ŷ1.
� (B.5)

By reading off the coefficients of the x3, y 2x and y 1 terms, we find that the cubic cusp direction 
vector in the new coordinates is

µ[g] =
ξ
√

a2 + b2

−bc + ad
(
√

a2 + b2, 0).� (B.6)

Rotating this vector back to the original coordinates we get that

µ[g] =
ξ
√

a2 + b2

−bc + ad
(−b, a),� (B.7)

which we recognise can be written (up to constant scaling)

µ[g] =
gxxx

∇ygx · ∇⊥
y g

,� (B.8)

where ∇⊥
y g = ∇⊥

y g/|∇⊥
y g|. Hence, the cusp is always perpendicular to the slow gradient, 

with magnitude inversely proportional to the projection of ∇ygx  onto the gradient perpend
icular. As a consequence, the magnitude of the cubic cusp direction vector blows up (becomes 
undefined) if ∇ygx  is parallel to the gradient (its perpendicular component vanishes).

Appendix C. The quantity W[g]

To construct the cusp quantity W[g]( p) (table 6) at a point p = (x, y1, y2), we start from a 
modified normal form for the cusp tangency bifurcation (see table 4)

g(x, y1, y2) = δ1x3 + δ2xy2
1 + δ3x2y1 + xλ+ y2,

where λ is an unfolding parameter. The sign of the cusp quantity W[g] = 6δ1δ2 − 2δ3 �= 0 
gives the type of bifurcation (W[g]  <  0 gives beaks and W[g] gives lips), see [38]. Our aim is 
to express W[g] for a general function equivalent to g. In this section we do not explicitly write 
out the dependence on p , which for the normal form is p = (0, 0, 0), so that e.g. W[g]( p) is 
written W[g]. The parameter δ3 does not appear in the normal form in table 4 because there are 
only four subcases of cusp tangency, which can be represented with just δ1 and δ2. However, 
all of δ1, δ2 and δ3 are needed in the non-degeneracy condition W[g] �= 0 and for separating 
different subcases.

The derivation of W[g] is as for K[g] in appendix A. Adding coefficients a, b,α1,α2,β1,β2, γ  
to the above normal form at bifurcation (λ = 0), with terms of relevant order only, we get that

g(x, y,λ) = δ1x3 + α1xy2
1 + β1xy2

2 + 2γxy1y2

+ α2x2y1 + β2x2y2 + ay1 + by2.

Rotating the coordinate system to have gradient in the positive y 1 direction by the transformation
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(
y1

y2

)
=

1√
a2 + b2

(
a −b
b a

)(
ŷ1

ŷ2

)

gives that the coefficient of the xŷ2
2 term is

δ2 =
1

a2 + b2

(
−b a

)(α γ

γ β

)(
−b
a

)
=

1
2|∇⊥

y g|2
∇⊥

y gTD2
y(gx)∇⊥

y g,

and the coefficient of the x2ŷ2 term is

Figure D4.  Examples of codimension one aligned cusp-fold projection intersection 
bifurcation (see table D2). Each row shows unfolding with a bifucation parameter λ. 
Bifurcation occurs as λ = λ0. Solid/dashed black lines show the stable/unstable critical 
set, red lines show umbrae, and blue lines indicate intersection of projections of cusps 
and fold onto the slow plane. As a visual aid, the number of sheets of the critical set in 
a neighbourhood of the bifurcation is shown to the right, to be viewed as a projection 
onto the slow variables.
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δ3 =
1√

a2 + b2
(−α2b + β2a) =

1
2
∣∣∇⊥

y g
∣∣∇ygxx · ∇⊥

y g.

Note that the gradients and the slow Hessian D2
y(gx) are expressed in the original slow coordi-

nates (y1, y2). Combining the expressions for δ1, δ2 and δ3, we have that

Figure D5.  Examples of codimension one opposed cusp-fold projection intersection 
bifurcation (see table D2). Each row shows unfolding with a bifucation parameter λ. 
Bifurcation occurs as λ = λ0. Solid/dashed black lines show the stable/unstable critical 
set, red lines show umbrae, and blue lines indicate intersection of projections of cusps 
and fold onto the slow plane. As a visual aid, the number of sheets of the critical set in 
a neighbourhood of the bifurcation is shown to the right, to be viewed as a projection 
onto the slow variables.
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W[g] = 6δ1δ2 − 2δ3

= 6 gxxx
6

1
2|∇⊥

y g|2 ∇
⊥
y gTD2

y(gx)∇⊥
y g − 2 1

2|∇⊥
y g|∇ygxx · ∇⊥

y g

= gxxx
2 ∇⊥

y gTD2
y(gx)∇⊥

y g −∇ygxx · ∇⊥
y g,

where ∇⊥
y g = ∇⊥

y g/|∇⊥
y g| is the unit length slow gradient perpendicular. We repeat that if 

W[g]  <  0 then the cusp tangency is of beaks type, whereas if W[g]  >  0 it is of lips type.

Figure D6.  Examples of covering (a)–(c) and non-covering (d)–(f) codimension one 
triple limit point bifurcation (see table D3). Each row shows unfolding with a bifucation 
parameter λ. Bifurcation occurs as λ = λ0. Solid/dashed black curves show the stable/
unstable critical set, red curves show umbrae, and blue curves show intersections of at 
least the lower two folds, but possibly all three folds. As a visual aid, the number of 
sheets of the critical set in a neighbourhood of the bifurcation is shown to the right, to 
be viewed as a projection onto the slow variables.

Figure D7.  Examples of codimension one triple limit point bifurcation (table D3), to 
be viewed almost as a projection onto the (x,y 1) plane. Each row shows unfolding with 
a bifucation parameter λ. Bifurcation occurs as λ = λ0. Solid/dashed black horizontal 
curves show stable/unstable sheets of the critical set, and dashed vertical lines indicate 
coordinates where slow projections of folds intersect transversally. Red, blue and 
magenta lines are representations of three fold lines (the row (a)–(c) illustrates this 
representaion for the (d)–(f) row). Bifurcation occurs as the slow projections of all 
three folds intersect. Each case can be either covering or or non-covering, as shown in 
figure D6.
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Appendix D.  Global codimension one bifurcations for one fast and two slow 
variables

Tables D1–D3 list the various inequivalent subclasses of degeneracies D4,5,6 in table 6. We 
also include a number of figures which illustrate these degeneracies.

Appendix E.  Examples of bifurcations of relaxation oscillations for one fast 
and one slow variable

In this section we present the equations  for the example fast-slow systems for m  =  n  =  1, 
showing bifurcations of relaxation oscillations due to the critical manifold in figure 12, how 
they were constructed, and how the figures were produced.

Table D1.  Subclasses of special global degeneracies for one fast and two slow variables 
with tangency of fold projection. P(y) is the set of all singular points of the vector 
field g with slow coordinate y . ν[g]( p) is the direction vector of a fold at a point p  
and K[g]( p) is the scalar quadratic curvature of a fold (see text for details). f   =  fold, 
fu  =  fold umbra, fx  =  non-interacting fold. For example, fu × fu means that the umbrae 
of two folds intersect.

Aligned umbra-
dominant fu × f 
tangency: 

D4,1[g, y] = {P(y) ⊂ D1
4[g] : |P(y)| = 2 and 

U[g]( p1) = p2 and ν[g]( p1) · ν[g]( p2) > 0, and 
K[g]( p1) > K[g]( p2) for some p1, p2 ∈ P(y)}

Figures D2(a)–(c)

Aligned fold-
dominant fu × f 
tangency:

D4,2[g, y] = {P(y) ⊂ D1
4[g] : |P(y)| = 2 and 

U[g]( p1) = p2 and ν[g]( p1) · ν[g]( p2) > 0 and 
K[g]( p1) < K[g]( p2) for some p1, p2 ∈ P(y)}

Figures D2(d)–(f)

Aligned fu × fu 
tangency:

D4,3[g, y] = {P(y) ⊂ D1
4[g] : |P(y)| = 2 and 

U[g]( p1) = U[g]( p2) and ν[g]( p1) · ν[g]( p2) > 0 for 
some p1, p2 ∈ P(y)}

Figures D2(g)–(i)

Aligned fx × fx 
tangency:

D4,4[g, y] = {P(y) ⊂ D1
4[g] : |P(y)| = 2 and 

∀p1, U[g]( p1) �= p2, U[g]( p2) and ν[g]( p1) · ν[g]( p2) > 0 
and K[g]( p1) < K[g]( p2) for some p1, p2 ∈ P(y)}

Figures D2(j)–(l)

Opposed non-
covering fu × f 
tangency:

D4,5[g, y] = {P(y) ⊂ D1
4[g] : |P(y)| = 2 and U[g]( p1) = p2 

and ν[g]( p1) · ν[g]( p2) < 0 and K[g]( p1) + K[g]( p2) < 0 
and K[g]( p1) < K[g]( p2) for some p1, p2 ∈ P(y)}

Figures D3(a)–(c)

Opposed non-
covering fu × fu 
tangency:

D4,6[g, y] = {P(y) ⊂ D1
4[g] : |P(y)| = 2 and 

U[g]( p1) = U[g]( p2) and ν[g]( p1) · ν[g]( p2) < 0 and 
K[g]( p1) + K[g]( p2) < 0, for some p1, p2 ∈ P(y)}

Figures D3(d)–(f)

Opposed non-
covering fx × fx 
tangency:

D4,7[g, y] = {P(y) ⊂ D1
4[g] : |P(y)| = 2 and 

∀p1, U[g]( p1) �= p2, U[g]( p2) and ν[g]( p1) · ν[g]( p2) < 0 
and K[g]( p1) + K[g]( p2) < 0, for some p1, p2 ∈ P(y)}

Figures D3(g)–(i)

Opposed covering 
fu × f tangency:

D4,8[g, y] = {P(y) ⊂ D1
4[g] : |P(y)| = 2 and 

U[g]( p1) = p2 and ν[g]( p1) · ν[g]( p2) < 0 and 
K[g]( p1) + K[g]( p2) > 0, for some p1, p2 ∈ P(y)}

Figures D3(j)–(l)

Opposed covering 
fu × fu tangency:

D4,9[g, y] = {P(y) ⊂ D1
4[g] : |P(y)| = 2 and 

U[g]( p1) = U[g]( p2) and ν[g]( p1) · ν[g]( p2) < 0 and 
K[g]( p1) + K[g]( p2) > 0, for some p1, p2 ∈ P(y)}

Figures D3(m)–(o)

Opposed covering 
fx × fx tangency:

D4,10[g, y] = {P(y) ⊂ D1
4[g] : |P(y)| = 2 and 

∀p1, U[g]( p1) �= p2, U[g]( p2) and ν[g]( p1) · ν[g]( p2) < 0 
and K[g]( p1) + K[g]( p2) > 0, for some p1, p2 ∈ P(y)}

Figures D3(p)–(r)
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Table D2.  Subclasses of special global degeneracies for one fast and two slow variables involving the intersection of projections of a fold and 
cusp. P(y) is the set of all singular points of the vector field g with slow coordinate y . ν[g]( p) and µ[g]( p) are direction vectors of folds and 
cusps respectively (see text for details). f   =  fold, fu  =  fold umbra, uc  =  unstable cusp, sc  =  stable cusp, ucu  =  unstable cusp umbra, fx  =  non-
interacting fold, cx  =  non-interacting cusp. E.g. fu × sc means that the umbra of a fold intersects a stable cusp.

Aligned fu × sc intersection: D5,1[g, y] = {P(y) ⊂ D1
5[g] : |P(y)| = 2 and 

U[g]( p1) = p2 and gxxx( p2) < 0 and ν[g]( p1) · µ[g]( p2) > 0, for some p1, p2 ∈ P(y)}
Figures D4(a)–(c)

Aligned f × ucu intersection: D5,2[g, y] = {P(y) ⊂ D1
5[g] : |P(y)| = 2 and 

U[g]( p2) ∩ p1 �= ∅ and gxxx( p2) > 0 and ν[g]( p1) · µ[g]( p2) > 0, for some p1, p2 ∈ P(y)}
Figures D4(d)–(f)

Aligned fu × ucu intersection: D5,3[g, y] = {P(y) ⊂ D1
5[g] : |P(y)| = 2 and 

U[g]( p2) ∩ U[g]( p1) �= ∅ and gxxx( p2) > 0 and ν[g]( p1) · µ[g]( p2) > 0, for some 
p1, p2 ∈ P(y)}

Figures D4(g)–(i)

Aligned fx × scx intersection: D5,4[g, y] = {P(y) ⊂ D1
5[g] : |P(y)| = 2 and 

(U[g]( p1) ∪ p1) ∩ (U[g]( p2) ∪ p2) = ∅ and ν[g]( p1) · µ[g]( p2) > 0 and gxxx( p2) < 0, for 
some p1, p2 ∈ P(y)}

Figures D4(j)–(l)

Aligned fx × ucx intersection: D5,5[g, y] = {P(y) ⊂ D1
5[g] : |P(y)| = 2 and 

(U[g]( p1) ∪ p1) ∩ (U[g]( p2) ∪ p2) = ∅ and ν[g]( p1) · µ[g]( p2) > 0 and gxxx( p2) > 0, for 
some p1, p2 ∈ P(y)}

Figures D4(m)–(o)

Opposed fu × sc intersection: D5,6[g, y] = {P(y) ⊂ D1
5[g] : |P(y)| = 2 and 

U[g]( p1) = p2 and gxxx( p2) < 0 and ν[g]( p1) · µ[g]( p2) < 0, for some p1, p2 ∈ P(y)}
Figures D5(a)–(c)

Opposed f × ucu intersection: D5,7[g, y] = {P(y) ⊂ D1
5[g] : |P(y)| = 2 and 

U[g]( p2) ∩ p1 �= ∅ and gxxx( p2) > 0 and ν[g]( p1) · µ[g]( p2) < 0, for some p1, p2 ∈ P(y)}
Figures D5(d)–(f)

Opposed fu × ucu intersection: D5,8[g, y] = {P(y) ⊂ D1
5[g] : |P(y)| = 2 and 

U[g]( p2) ∩ U[g]( p1) �= ∅ and gxxx( p2) > 0 and ν[g]( p1) · µ[g]( p2) < 0, for some 
p1, p2 ∈ P(y)}

Figures D5(g)–(i)

Opposed fx × scx intersection: D5,9[g, y] = {P(y) ⊂ D1
5[g] : |P(y)| = 2 and 

(U[g]( p1) ∪ p1) ∩ (U[g]( p2) ∪ p2) = ∅ and ν[g]( p1) · µ[g]( p2) < 0 and gxxx( p2) < 0, for 
some p1, p2 ∈ P(y)}

Figures D5(j)–(l)

Opposed fx × ucx intersection: D5,10[g, y] = {P(y) ⊂ D1
5[g] : |P(y)| = 2 and 

(U[g]( p1) ∪ p1) ∩ (U[g]( p2) ∪ p2) = ∅ and ν[g]( p1) · µ[g]( p2) < 0 and gxxx( p2) > 0, for 
some p1, p2 ∈ P(y)}

Figures D5(m)–(o)
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Table D3.  Subclasses of special global degeneracies for one fast and two slow variables that involve |P(y)| = 3 singular points. P(y) is the set of 
all singular points of the vector field g with slow coordinate y . The scalars a1,a2 and a3 are coefficients of fold direction vectors. See section 3.3 for 
details. f   =  fold, fu  =  fold umbra, fx  =  non-interacting fold. E.g. fu × f fu × fu means that one fold umbra intersects another fold, whose umbra 
interacts with the umbra of another fold.

Non-covering fu × f f × fu 
intersection: 

D6,1[g, y] = {P(y) ⊂ D1
6[g] : |P(y)| = 3 and U[g]( p1) = p2 and U[g]( p2) = p3 and a1 · a2 · a3 < 0 

for some p1, p2, p3 ∈ P(y)} Figures D7(d)–(f)

Covering fu × f f ×  
fu intersection:

D6,2[g, y] = {P(y) ⊂ D1
6[g] : |P(y)| = 3 and U[g]( p1) = p2 and U[g]( p2) = p3 and a1 · a2 · a3 > 0 

for some p1, p2, p3 ∈ P(y)}
Figures D7(d)–(f)

Non-covering fu × f fu ×  
fu intersection:

D6,3[g, y] = {P(y) ⊂ D1
6[g] : |P(y)| = 3 and 

U[g]( p1) = p2 and U[g]( p2) = U( p3) and a1 · a2 · a3 < 0 for some p1, p2, p3 ∈ P(y)}
Figures D7(g)–(i)

Covering fu × f fu × fu  
intersection:

D6,4[g, y] = {P(y) ⊂ D1
6[g] : |P(y)| = 3 and 

U[g]( p1) = p2 and U[g]( p2) = U( p3) and a1 · a2 · a3 > 0}
Figures D7(g)–(i)

Non-covering fu × f fx × fx 
intersection:

D6,5[g, y] = {P(y) ⊂ D1
6[g] : |P(y)| = 3 and 

U[g]( p1) = p2 and U[g]( pi) ∩ (P(y) ∪ U[g](P(y)) \ U[g]( pi)) = ∅, ∀pi �= p1 and a1 · a2 · a3 < 0 
for some p1, p2, p3 ∈ P(y)}

Figures D7(j)–(l)

Covering fu × f fx × fx  
intersection:

D6,6[g, y] = {P(y) ⊂ D1
6[g] : |P(y)| = 3 and 

U[g]( p1) = p2 and U[g]( pi) ∩ (P(y) ∪ U[g](P(y)) \ U[g]( pi)) = ∅, ∀pi �= p1 and a1 · a2 · a3 > 0 
for some p1, p2, p3 ∈ P(y)}

Figures D7(j)–(l)

Non-covering fu × fu fx × 
fx intersection:

D6,7[g, y] = {P(y) ⊂ D1
6[g] : |P(y)| = 3 and 

U[g]( p1) = U[g]( p2) and U[g]( pi) ∩ (P(y) ∪ U[g](P(y)) \ U[g]( pi)) = ∅, ∀pi �= p1 and a1 · a2 · a3 < 0 
for some p1, p2, p3 ∈ P(y)}

Figures D7(m)–(o)

Covering fu × fu fx × fx 
intersection:

D6,8[g, y] = {P(y) ⊂ D1
6[g] : |P(y)| = 3 and 

U[g]( p1) = U[g]( p2) and U[g]( pi) ∩ (P(y) ∪ U[g](P(y)) \ U[g]( pi)) = ∅, ∀pi �= p1 and a1 · a2 · a3 > 0 
for some p1, p2, p3 ∈ P(y)}

Figures D7(m)–(o)

Non-covering fx × fx fx × 
fx intersection:

D6,9[g, y] = {P(y) ⊂ D1
6[g] : |P(y)| = 3 and 

U[g]( pi) ∩ (P(y) ∪ U[g](P(y)) \ U[g]( pi)) = ∅, ∀pi and a1 · a2 · a3 < 0 for some p1, p2, p3 ∈ P(y)}
Figures D7(p)–(r)

Covering fx × fx fx × fx 
intersection:

D6,10[g, y] = {P(y) ⊂ D1
6[g] : |P(y)| = 3 and 

U[g]( p) ∩ (P(y) ∪ U[g](P(y)) \ U[g]( p)) = ∅, ∀p ∈ P(y) and a1 · a2 · a3 > 0 for some 
p1, p2, p3 ∈ P(y)}

Figures D7(p)–(r)
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E.1.  Bifurcation of relaxation oscillation due to hyperbolic fold tangency

We seek fast and slow subsystems g(x, y) and h(x, y) such that (1) displays bifurcation of sin-
gular relaxation oscillations due to hyperbolic fold tangency bifurcation (figures 12(a)–(c)).

The fast subsystem g(x, y) is written as a perturbed product of a hysteresis curve and a 
circle:

ghyst(x, y) = x3 − 2x + y
gcirc(x, y) = (x − λ)2 + (y − yc)

2 − R2

g(x, y) = −(ghyst(x, y)gcirc(x, y) + λx + q).
� (E.1)

(xc, yc) = (0.81,−0.25) is the centre and R  =  0.55 the radius of the circle, λ is the bifurca-
tion parameter and q  =  0.01 is a genericity parameter. For some λ ∈ [−0.02, 0.02] tangency 
bifurcation off the critical set occurs.

The slow subsystem is taken to be

h(x, y) = x − (−b(y − yc)
2 + xmax),

where b  =  0.5 and xmax = xc + R − 0.1. This choice of h(x, y) makes the nullcline h(x, y) = 0 
intersect the critical set at where it is unstable, for λ ∈ [−0.02, 0.02].

In figures 12(a)–(c) we solve (1) with Matlab’s stiff solver ode23s for 2000 time units, 
starting from initial conditions (x, y) = (2,−1) and with scale separation parameter ε = 0.02.

E.2.  Hysteresis bifurcation of relaxation oscillations

We seek fast and slow subsystems g(x, y) and h(x, y) such that (1) displays bifurcation of sin-
gular relaxation oscillations due hysteresis bifurcation (figures 12(d)–(f)).

The function g(x, y) is constructed such that the critical set g(x, y) = 0 at bifurcation λ = 0 
is a fifth order polynomial in x as a function of y  with quadratic extrema at points x1, x2 and a 
cubic double root at x3, that is, gx satisfies:

gx(x, y) = a(x − x1)(x − x2)(x − x3)
2 − λ.

We fix x1  =  1,x3  =  1 and leave a and x2 as free parameters. We take g to be the primitive func-
tion of gx with constant term q  =  −0.6 and y -term  −y  such that

g(x, y) =
∫

a(x − x1)(x − x2)(x − x3)
2dx − λx − q − y,

and g(0, 0) = 0. For λ = 0 we solve the linear pair of equations

g(x1, 1) = g(x3, 1) = 0

for a and x2, giving x2  =  −13/40 and a  =  640/49. The system undergoes hysteresis bifurca-
tion for λ ∈ [−0.2, 0.2].

Finally, we reverse the sign of x, x �→ −x , such that

g(x, y) =
∫

−a(x + x1)(x + x2)(x + x3)
2dx + λx − q − y.

The slow subsystem is set to be positive above the constant nullcline x = xnc = 0.7 and 
negative below such that

Karl H M Nyman et alNonlinearity 33 (2020) 2853
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h(x, y) = x − xnc.

In figures 12(d)–(f) we solve (1) with Matlab’s stiff solver ode23s for 1000 time units, 
starting from initial conditions x  =  y   =  0 and with scale separation parameter ε = 0.05.

E.3.  Aligned double limit point bifurcation of relaxation oscillations

We seek fast and slow subsystems g(x, y) and h(x, y) such that (1) displays bifurcation of 
singular relaxation oscillations due to aligned double limit point bifurcation figures 12(g)–(i).

g(x, y) is constructed such that the critical set g(x, y) = 0 is a fifth order polynomial in x as 
a function of y  with extrema at points x1, x2, x3 and x4, that is, gx satisfies:

gx(x, y) = a(x − x1)(x − x2)(x − x3)(x − x4).

We fix x1  =  −1,x3 = 1/2, x4 = 5/4 and leave a and x2 as free parameters. We take g to be the 
primitive function of gx with zero constant term (default of Matlab’s int command) such that

g(x, y) =
∫

a(x − x1)(x − x2)(x − x3)(x − x4)dx − y,

and g(0, 0) = 0. We solve the linear pair of equations

g(x1, 1) = g(x3, 1) = 0

for a and x2, giving x2  =  −13/40 and a  =  640/49. Then we add a bifurcation parameter λ 
breaking the degeneracy, giving

g(x, y) =
∫

a(x − x1)(x − x2)(x − x3)(x − x4)dx − λx − y.

In figures 12(g)–(i) λ ∈ [−0.1, 0.1]. Finally, we reverse the sign of x, such that

g(x, y) =
∫

−a(x + x1)(x + x2)(x + x3)(x + x4)dx + λx − y.

The slow subsystem is set to be positive above the constant nullcline x = xnc = 1.5 and 
negative below such that

h(x, y) = x − xnc.

In figures 12(g)–(i) we solve (1) with Matlab’s stiff solver ode23s for 1000 time units, 
starting from initial conditions x  =  y   =  0 and with scale separation parameter ε = 0.01.

E.4.  Opposed double limit point bifurcation of relaxation oscillations

We seek fast and slow subsystems g(x, y) and h(x, y) such that (1) displays bifurcation of sin-
gular relaxation oscillations due to opposed double limit point bifurcation (figures 12(j)–(l)).

We construct the fast subsystem g(x, y) the perturbed product of a hysteresis curve and a 
‘bean’ curve4

4 See www.2dcurves.com/higher/highergb.html, accessed 4 August 2019.
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ghyst(x, y) = 0.5x3 − x + y
gbean(x̂, ŷ) = (x̂2 + ŷ2)3 − (x̂2 + (x̂2 + ŷ2)2ŷ2)

g(x, y) = −(ghyst(x, y)gbean(x̂, ŷ) + λx + q),
� (E.2)

where λ is a bifurcation parameter λ ∈ [−0.003, 0.006], q  =  0.01 is a genericity parameter, 
and (x̂, ŷ) are scaled, rotated and translated coordinates (x, y):

(x̂, ŷ) = (Mx cos θ + My sin θ − xc,−Mx sin θ + My cos θ − yc),

where M = 1.5, θ = 13/40π and (xc, yc) = (0.97,−0.55).
The slow subsystem

h(x, y) = x − (ky + c),

with k = (x1 − x2)/(y1 − y2), c = x1 − ky1, x1  =  0.7868, x2  =  1.221, y 1  =  −0.11 and 
y 2  =  −0.74 is chosen to make the nullcline h(x, y) = 0 pass through the unstable parts of the 
critical set and enable relaxation oscillation.

In figures 12(j)–(l) we integrate (1) with Matlab’s stiff solver ode23s for 500 time units, 
starting from initial conditions (x0, y0) = (2.3,−1) and with scale separation parameter 
ε = 0.001.
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