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Abstract

This paper studies the problems of stick-slip mitigation and speed tuning for a lumped-parameter drill-
string system by using a proportional-derivative feedback controller via path-following analysis. In this
study, we consider two main control parameters, the weight-on-bit and the desired drill-bit speed, which
in general differs from the real angular speed. In particular, we determine the combinations of these two
parameters for which the proposed control scheme is applicable, which is affected by the non-smooth
nature of the system induced by bit-rock interaction. Our analysis using path-following techniques for
non-smooth systems reveals the inherent coexistence of stick-slip vibration and constant rotation, and
identifies a critical point where the drill-bit speed coincides with the desired angular speed. Furthermore,
our analysis proposes a strategy that allows controlling the drill-bit speed to suppress stick-slip, by tuning
the controller in a suitable manner.

Keywords: Drill-string; Stick-slip; Non-smooth dynamical system; Numerical continuation; Coexisting
attractors

1. Introduction

In oil and gas drilling, the drill-string system shown in Fig. 1 includes a rotary table, a series of
hollow drill pipes, several relatively thicker drill collars, and a drill-bit. It is essentially used to transfer
torque from the rotary table on the surface to the drill-bit in borehole, and generally can run up to
several kilometres deep [1]. Such a long and slender structure makes drilling process susceptible to
the stick-slip phenomenon, a self-excited torsional vibration [2–4]. Stick-slip vibrations decrease drilling
efficiency, degrade borehole quality, provoke premature drill-bit wear, and cause drill-string failures. In
practice, these vibrations exist in the 50% of drilling time [5] causing drill-bit to whip and rotate at a high
speed, which can lead to severe bit bouncing phenomenon and whirl motion at the bottom hole assembly
(BHA), see Fig. 1(a). The term of bit bouncing refers to axial vibrations of the drill-bit leading to loss
of contact between the bit and the drilled medium, while whirl motion is due to drill pipe eccentricity
producing lateral vibrations. In this work, our main focus will be on mitigation of stick-slip vibrations
and development of effective control strategies for this purpose.

In the present work, we will study the mitigation of stick-slip vibrations by using a proportional-
derivative (PD) controller via numerical continuation methods. Mitigation of torsional stick-slip vi-
brations has received considerable attention in the past, with a large number of both analytical and
experimental studies [7–12]. In general, there are passive and active control strategies. Passive control
strategies [13] utilise the internal structures of the drill-strings to mitigate stick-slip vibrations, such as
optimization of BHA configuration, drill-bit selection and optimum design [14], as well as utilization of
anti stick-slip tools [15, 16]. Active control strategies concerns the use of a certain actuation mechanism
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Figure 1: (a) Lateral, torsional and axial vibrations encountered in drill-strings during operation [6], and schematics of (b)
an oilwell drilling rig and (c) a simplified physical model of the drill-string.

(via external energy) driven by feedback signals related to the actual drill-bit speed or angular position.
Our studies in this paper will focus on active control using the feedback information of drill-bit and
rotary table. Until now, many feedback control approaches have been developed to mitigate torsional
stick-slip vibrations. For example, Canudas-de-Wit et al. developed a novel weight-on-bit (WOB) control
law leading the drill-string to a globally asymptotically stable closed-loop system [17]. The WOB control
strategy can greatly decrease the rate of penetration. Navarro-López and Licéaga-Castro investigated
the stick-slip vibrations of a discontinuous lumped-parameter drill-string model by studying its stability
characteristics at different system equilibria [18]. In particular, bifurcation analyses considering WOB
and rotary speed as the branching parameters were carried out by using the software package AUTO [19],
a bifurcation analysis tool for smooth dynamical systems. This software tool allows to a great extent the
study of constant rotation regimes of the considered drill-string model, but results of this type concern-
ing stick-slip motion are rather limited. In this work, we will employ the continuation platform COCO
[20, 21], which implements numerical routines for the study of bifurcation problems of both smooth and
non-smooth dynamical systems. In this way, COCO will be used to carry out an in-depth parametric
investigation of stick-slip vibrations, which involves the numerical treatment of piecewise-smooth periodic
solutions. Furthermore, Liu studied a sliding mode control strategy to avoid undesired bit sticking and
stick-slip vibrations while tracking a desired angular speed [22]. Karkoub et al. used the µ−synthesis
control design technique allowing the inclusion of modelling errors in terms of uncertain weights [23].
However, this drill-string model is required to be linearized around its operating point in order to apply
the µ−synthesis technique. So, the performance of the controller cannot be guaranteed if more degrees
of freedom of the system are considered. On the other hand, Ritto et al. proposed different PD control
strategies and constructed a torsional stability map to study the performance of these PD controllers
[24]. Vromen et al. developed an observer-based output-feedback controller which was verified through
realistic drilling case studies [25, 26]. From a control point of view, an important issue that deserves
attention is the determination of system parameter ranges for which the applied control strategy is effec-
tive, specially in terms of the stability of the desired system response. In particular, it has been observed
that the desired drill-bit speed is not always achievable for a specific control method due to the nonlin-
earity of bit-rock interaction, and therefore suitable ranges where the controller can operate effectively
should be identified. As mentioned above, all of the controllers were proposed for mitigating stick-slip
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vibrations, but the exact speed control and the hidden multistable dynamics of the drill-string system
have not been studied yet. In this work, we will pay particular attention to these issues and study the
proposed controller by considering the desired drill-bit speed and weight-on-bit in terms of the actual
angular speeds and stick-slip mitigation.

Another goal of the present paper is to study the multistability of the drill-string system under
the action of the proposed controller, as well as to investigate the evolution of the resulting coexisting
attractors. In [4], three attractors of the system, including friction-induced torsional stick-slip vibrations,
constant rotation, and permanent bit sticking, have been observed to coexist within a certain parameter
window, and this feature was used to steer the response of the system from a sticking equilibrium or stick-
slip regime to an equilibrium with constant drill-bit rotation. As is usual in the literature, the drill-string
system is modelled by a non-smooth dynamical system, where the near-grazing dynamics (i.e. transitions
between stick-slip and no stick-slip oscillations characterized by grazing-sliding bifurcations) and friction-
induced vibrations are known to produce rich complex dynamics, such as the appearance of coexisting
attractors [27], which could cause catastrophic drill-string failures. To avoid such failures, we will employ
a recently developed control method which has been used to control a multistable impact oscillator [28].
Our proposed control scheme is achieved by coupling systems via a linear feedback consisting of the
relative angular position and speed of the drill-string. In particular, we will pay special attention to
investigating how the proposed controller can be used to effectively drive the system to a desired rotary
speed, and furthermore, how to reduce at the same time the severity of stick-slip vibrations.

The contribution of the present paper is trifold: first, studying the hidden bistable dynamics of the
drill-string system under a PD controller, and second, determination of the minimum controllable rotary
speed for the PD controller, and third, a numerical approach based on path-following techniques for
tuning the rotary speed of the system to a desired speed. Our work in this paper is based on a well-
established drill-string model, which has been studied by [17, 18, 25, 26] and was validated using field
data by [24]. The drill-strings are simplified by a torsional model. It consists of four elements: (1) the
rotary table system (Jt), (2) the drill pipes (Jp), (3) the drill collars (Jr), (4) the drill bit (Jb). The drill
pipes are much more longer than other components. Therefore, the drill pipes are usually divided by
more elements. The elements are connected one to each other by linear springs with torsional stiffness
kp, kr, kb and torsional damping cp, cr, cb. A viscous damping is considered at the rotary table system crt
and at the bit crb. A friction torque Tb is considered acting at the bit. The model only considers torsional
vibrations of drill-strings without consideration of axial vibration coupling. However, the axial vibration
could be taken into account by varying the WOB periodically, but this is not the main focus of this study.
The main contributions of this work are twofold: first, studying multistability in drill-strings when rotary
speed is low, and second, a numerical approach based on path-following techniques that allows controlling
rotary speed and stick-slip mitigation by tuning the PD controller in a suitable manner.

The remainder of the paper is organized as follows. In Section 2, the physical model and equations of
motion of the drill-string system are introduced, as well as the mathematical formulation of the proposed
controller. In Section 3, the dynamical behaviour of the drill-string model under the action of the proposed
control law is analyzed via numerical continuation methods. Our study starts with the one-parameter
analysis without and with consideration of the proposed controller, which is followed by a two-parameter
analysis. The severity of stick-slip vibrations is also investigated under the variation of different control
parameters. Finally, the main conclusions of the present work are given in Section 4.

2. Mathematical model of the lumped-parameter drill-string system

In this section we will analyze the dynamical behaviour of the drill-string shown in Fig. 1 (a) under
the action of a PD controller. Fig. 1 (b) shows a physical representation of a lumped-parameter system
based on a series of disks interconnected via torsional springs and dampers. Specifically, the model
considers a number of disks, corresponding to the rotary table (t), drill-pipes (p), drill collars (r) and
drill-bit (b). In this study, we will consider one drill pipe in the drill-string model. Therefore, in this
setting the mathematical description of the generalized lumped-parameter model can be divided into two
operation modes (Stick and Slip), as follows. It should be noted that this model has been developed
and used in [4, 6], and we will briefly introduce it here for studying the proposed PD controller. It is

3



also worth noting that Liu et al. studied the stick-slip oscillations encountered in the model from both
numerical and experimental points of view [4]. Liu et al. focused on analysing the cause of coexistence
of sticking, stick-slip vibration, and constant rotation in the model [6]. Different from [4, 6], this paper
studies a numerical approach based on path-following techniques which allows controlling rotary speed
of the drill-string and stick-slip mitigation by using a newly developed PD controller.

Slip (SL). In this mode the drill-bit rotates with positive angular speed, and the system motion is
governed by the equations





Jtφ̈t + crtφ̇t + cp(φ̇t − φ̇p) + kp(φt − φp) = u,

Jpφ̈p + cp(φ̇p − φ̇t) + cr(φ̇p − φ̇r) + kp(φp − φt) + kr(φp − φr) = 0,

Jrφ̈r + cr(φ̇r − φ̇p) + cb(φ̇r − φ̇b) + kr(φr − φp) + kb(φr − φb) = 0,

Jbφ̈b + crbφ̇b + cb(φ̇b − φ̇r) + kb(φb − φr) + T SL

b = 0.

(1)

where φt, φp, φr, and φb are the angular positions of the lumped mass, and Jt, Jp, Jr, and Jb are the
moments of inertia. cp, cr, and cb are the damping coefficients, and kp, kr, and kb are the torsional

stiffness of the drill pipe, drill collar, and drill-bit, respectively. A viscous damping torque, crtφ̇t, is
considered in this model which corresponds to the lubrication of the mechanical elements of the rotary
table, where crt is a viscous damping coefficient. A viscous damping torque, crbφ̇b, is considered on the
drill-bit representing the influence of drilling fluids. u is the control torque input, and T SL

b is the reaction
torque computed as

T SL

b =



















T0, φ̇b = 0,

RbWb



µcb + (µsb − µcb)e
−γb

φ̇b

vf



 , φ̇b > 0,
(2)

In the expression above, T0 = µsbRbWb is the break-away torque, µcb, µsb are the Coulomb and the static
friction coefficients, respectively, 0 < γb < 1 is a constant defining the speed decrease rate, vf is a speed
constant, Rb is the bit radius, and Wb is the WOB. This operation mode terminates at some t = tstick ≥ 0
when the angular speed of the drill bit becomes zero, i.e. φ̇b(tstick) = 0. At this time, the system switches
to the stick mode of operation defined below.

Stick (ST). During this regime the drill-bit is in stationary position, and the system motion is described
by the equations





Jtφ̈t + crtφ̇t + cp(φ̇t − φ̇p) + kp(φt − φp) = u,

Jpφ̈p + cp(φ̇p − φ̇t) + cr(φ̇p − φ̇r) + kp(φp − φt) + kr(φp − φr) = 0,

Jrφ̈r + cbφ̇r + cr(φ̇r − φ̇p) + kr(φr − φp) + kb(φr − φb) = 0,

φ̈b = 0, φ̇b = 0.

(3)

During this mode, the reaction torque is computed via Newton’s third law as follows

T ST

b = cbφ̇r + kb(φr − φb), (4)

which means that the reaction torque adjusts itself to enforce the equilibrium with the external torque
acting on the drill-bit. This mode terminates at some t = tslip ≥ 0 when T ST

b

∣∣
t=tslip

= T0. At this point,

the reaction torque has reached the break-away torque value T0, where the drill-bit begins to rotate,
hence switching the system to the slip phase introduced previously.

For the purpose of mitigating stick-slip vibrations and controlling the drill-bit speed, we propose the
following PD controller:

u = k1(φt − φb) + k2(Ωd − φ̇t) + k3(Ωd − φ̇b), (5)

where Ωd is the desired rotary speed, while the parameters k1, k2 and k3 represent control gains to be
adjusted. It should be noted that, in practice, real-time downhole measurement of drill-bit rotation is not
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possible. However, this measurement can be estimated by using observer-based state-feedback approach,
e.g. [25]. Therefore, we assume the angular position and speed of the drill-bit, φb and φ̇b, are measurable
in this work.

In order to numerically study periodic and equilibrium solutions of the drill-string model (1)–(4), it
is convenient to introduce the following variable transformation





xt = φt,

yt = ωt,

xp = φp − φt,

yp = ωp,

xr = φr − φp,

yr = ωr,

xb = φb − φr,

yb = ωb,

(6)

where ωt, ωp, ωr and ωb give the angular speed of the rotary table, drill pipe, drill collar and drill-bit,
respectively. According to the operation regimes defined above, the equations of motion of the system
can be written in compact form in terms of the new variables as follows

z′ =

{

fST(z, α), yb = 0 and T ST

b = cbyr − kbxb < T0,

fSL(z, α), otherwise,
(7)

where α = (Jt, Jp, Jr, Jb, crt, cp, cr, cb, crb, kp, kr, kb, Rb,Wb, γb, µcb, µsb,Ωd, k1, k2, k3) ∈ R
21 and z =

(yt, xp, yp, xr, yr, xb, yb)
T ∈ R

7 stand for the parameters and state variables of the piecewise-smooth
system, respectively. In the system introduced above, the vector fields fST (stick) and fSL (slip) are
defined as (cf. Eqs. (1), (3) and (6))

fST(z, α) =




1

Jt

(
ũ− crtyt + kpxp + cp(yp − yt)

)

yp − yt
1

Jp

(
krxr − kpxp + cp(yt − yp) + cr(yr − yp)

)

yr − yp
1

Jr

(
kbxb − krxr − cbyr + cr(yp − yr)

)

−yr
0




,

fSL(z, α) =




1

Jt

(
ũ− crtyt + kpxp + cp(yp − yt)

)

yp − yt
1

Jp

(
krxr − kpxp + cp(yt − yp) + cr(yr − yp)

)

yr − yp
1

Jr

(
kbxb − krxr + cb(yb − yr) + cr(yp − yr)

)

yb − yr
1

Jb

(
cb(yr − yb)− crbyb − kbxb − T SL

b

)




,

where ũ = k1(−xb − xr − xp) + k2(Ωd − yt) + k3(Ωd − yb), see Eqs. (5) and (6).

3. Path-following analysis of the dynamical response of the controlled drill-string model

In this section we will present a detailed numerical investigation of the dynamical response of the
drill-string model (7). For this purpose, we will apply numerical continuation methods for non-smooth
dynamical systems, implemented via the continuation platform COCO [20, 21]. The results of the nu-
merical investigation will be presented using the following solution measure

Mωb
=

1

T0

T0∫

0

yb(t) dt =
1

T0

T0∫

0

ωb(t) dt, (8)
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which gives the average angular speed of the drill-bit in the time window [0, T0], where T0 is a suitably
chosen positive number. In the case of studying periodic orbits, T0 will correspond to the period of the
solution. Similarly, we will consider the value

Pu =
1

T0

T0∫

0

u(t)2 dt, (9)

which measures the power of the control signal employed to drive the drill-string system. To evaluate the
performance of the proposed PD controller, we consider the severity factor of stick-slip vibrations defined
as

Sss =
ωmax
b − ωmin

b

Ωd

, (10)

where ωmax
b and ωmin

b represent the maximum and the minimum angular speeds of the drill-bit after
the transients have decayed, respectively. The rationale of using this severity factor is to compare the
maximum angular speed with the minimum one when stick-slip vibration is encountered. Therefore, the
larger of the difference ωmax

b − ωmin
b is, the more serious of the fluctuation in the drill-strings is. When

ωmax
b − ωmin

b = 0, it corresponds to constant rotation of the drill-strings without any fluctuation.
When the PD controller is not applied, the drill-string system can exhibit bit sticking, stick-slip

vibration, or constant rotation based on the WOB and control torque. Here, our control goal is to
mitigate bit sticking and stick-slip vibration and control the drill-string to rotate at a desired rotary
speed Ωd. Drill-string parameters used in our simulations are given as in Table 1, which were adopted
from [18].

Parameter Value Unit Parameter Value Unit Parameter Value Unit

Jt 910 kg ·m2 cp 150 N ·m · s/rad µcb 0.45

Jp 2800 kg ·m2 cr 190 N ·m · s/rad µsb 0.8

Jr 750 kg ·m2 cb 180 N ·m · s/rad Rb 0.15 m

Jb 450 kg ·m2 crt 410 N ·m · s/rad vf 1

kp 700 N ·m/rad crb 80 N ·m · s/rad ξ 10−6

kr 1080 N ·m/rad kb 910 N ·m/rad γb 0.85

u - kN ·m Wb - kN ωt, ωb,Ωd - rad/s

k1 - N ·m/rad k2, k3 - N ·m · s/rad t - s

Table 1: Physical parameters of the drill-string system adopted from a real drill-string design [18] and relevant units.

3.1. One-parameter analysis without control

An initial simulation for the drill-string system under variations of the WOB and constant control
torque (i.e. taking u = constant, see (5)) is presented in Fig. 2, where all initial values of the variables
(xt, yt, xp, yp, xr, yr, xb, yb) are chosen at the origin. As can be seen from the figure, three stable states,
constant rotation, stick-slip vibration, and bit sticking, can be observed. As the WOB is small, the
drill-string system can be maintained at the constant rotation regime of drilling. However, smaller WOB
corresponds to a lower rate of penetration of drilling, so a higher WOB is always desired. As the WOB
increases, stick-slip vibrations emerge, and the bit could be permanently stuck in borehole due to the
increased WOB. It can be seen from the boundaries of stick-slip and bit sticking, increasing the constant
control torque will not help to enlarge the regime of constant rotation significantly. It is therefore that
in the present work, we propose a control method to enlarge the operating regime for constant rotation.

Next, the dynamical behaviour of the drill-string model under open-loop torque control can be ob-
served in Fig. 3, which is obtained via path-following of the dynamical response of the drill-string model
(7) with respect to the control torque u, showing the average angular speed of the drill-bit (see (8)) on
the vertical axis. The continuation was started at u = 0 when the drill-bit does not rotate (i.e. ωb = 0).
As the control torque gradually increases, the torque applied on the drill-bit increases as well, but it is
not enough to bring the drill-bit into rotation, due to the opposing reaction torque. A critical value is
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Figure 2: Different operating regimes of the drill-string system without the PD controller under variations of the WOB and
constant control torque.
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Figure 3: Numerical continuation of the dynamical response of the drill-string model (7) with respect to the open-loop
torque control u, computed for the same parameter values of Fig. 2 when Wb = 30. The black and blue curves represent
the continuation of equilibrium points corresponding to ωb > 0 (constant rotation) and ωb = 0 (bit sticking), respectively.
The green curve stands for the continuation of stick-slip solutions, while the red branch corresponds to periodic solutions
with no sticking phases. Solid and dashed lines denote stable and unstable solutions, respectively. The vertical axis gives
the average angular speed of the drill-bit computed via (8).

found when u = 3.6, where a boundary-equilibrium bifurcation (labeled BEB) takes place, consisting in a
situation in which an equilibrium point lies at a discontinuity boundary (see [29]). Such bifurcations can
manifest themselves in several ways, for instance as a non-smooth fold, as it is in our case. In this scenario
we have that a branch of unstable (dashed black curve) and stable (solid blue curve) equilibria collide at
the BEB point, hence resembling the behaviour observed for fold bifurcations of smooth systems.

At the BEB point found before there is an emanating curve (plotted as a dashed green line) of
unstable periodic orbits, corresponding to stick-slip solutions. If we decrease the control torque along
this curve, we find a critical point u ≈ 3.1736 (labeled F2) where a fold bifurcation of limit cycles takes
place. At this point, the stick-slip solutions become stable, and remain so until the critical point GR-SL
is found (u ≈ 3.4788), where a grazing-sliding bifurcation occurs. Here, a branch of oscillatory unstable
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solutions (dashed red curve) with no sticking phases appears, which ends at a subcritical Hopf bifurcation
(u ≈ 3.2059) located on the black curve (equilibria representing constant rotation of the drill-bit).

Fig. 3 represents a practical operation for the drill-string system, where the drill-strings start to
rotate from stationary as the control torque from the rotary table increases from zero. When the torque
increases to u ≈ 3.1736 (labeled F2) and u ≈ 3.2059 (labeled H), the sticking bit could be suddenly
switched to the branches of stick-slip and constant rotation, respectively, due to external disturbances,
such as pipe-borehole interaction. Unless the control torque increases to u = 3.6 (labeled BEB), this
multistable regime (between F2 and BEB) is completely avoided and the drill-strings will rotate at a
constant speed. In the next subsection, we will study how to use our proposed PD controller to overcome
this multistability if the drill-string system is operated in this regime.

3.2. One-parameter analysis with control

In order to mitigate stick-slip vibrations, the proposed PD controller is applied to the drill-string
system, and its dynamic response is shown in Fig. 4. As can be seen from the figure, the drill-string
system exhibits stick-slip vibrations initially, and the PD controller is switched on at t = 30 seconds.
Thereafter, the angular speeds of both rotary table ωt and drill-bit ωb have significant fluctuations due
to the control action, but the equilibrium of the drill-string system for constant rotation settles down at
ωt = ωb = 4.4 at about t = 200. Here, it should be noted that although the proposed PD controller can
effectively suppress stick-slip vibrations, the desired rotary speed for the drill-string system is Ωd = 4
which is different from our actual equilibrium, ωt = ωb = 4.4. Next, we will address this issue by using
the path-following methods.

0

2

4

6

0

3

6

9

t [r
ad

/s
]

Control on

b [r
ad

/s
]

0 50 100 150 200
0

4

8

u 
[k

N
m

]

Time [s]

Figure 4: Dynamic response of the drill-string system for Wb = 30. The PD controller for which k1 = 500, k2 = 300 ,
k3 = 200, and Ωd = 4 is applied at t = 30. Stick-slip vibrations are suppressed immediately, and the rotary speed of the
system settles down at ωt = ωb = 4.4.

One-parameter continuation of the initial stick-slip response of the drill-string model is shown in Fig.
5(e), with respect to the desired speed Ωd (see (5)). The result is represented by the solid green curve
depicted in panel (a), showing the average angular speed of the drill-bit (see (8)) on the vertical axis.
Along this line the stick-slip solution remains stable and persists until the critical point GR-SL is found
(Ωd ≈ 3.6651), corresponding to a grazing-sliding bifurcation of limit cycles. This critical solution is
plotted in panel (d), which shows a tangential intersection of the orbit with the grazing boundary ωb = 0.
At the GR-SL point another branch is born (dashed, in red), which corresponds to the continuation of
unstable periodic solutions with no sticking phases, as the one shown in panel (c). The grazing-sliding
bifurcation found in the drill-string model (7) is characterized by a so-called non-smooth fold transition,
see [29, Section 8.5.3]. This is because a branch of stable and a branch of unstable periodic solutions
collide at the GR-SL point, and then disappear for parameter values above the bifurcation point.
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Figure 5: (a) Numerical continuation of the dynamical response of the drill-string model (7) with respect to the desired
angular speed Ωd, computed for Wb = 30, k1 = 500, k2 = 300, and k3 = 200. The green and red curves represent the
continuation of periodic orbits with and without stick-slip vibrations, respectively. The black line stands for the continuation
of equilibrium points corresponding to constant rotation of the four disks. Along this line, the label H stands for a Hopf
bifurcation. In this bifurcation diagram, solid and dashed curves represent stable and unstable solutions, respectively. The
vertical axis gives the average angular speed of the drill-bit computed via (8). The blue curve represents the identity
function, in such a way that the intersection at P1 gives the parameter value for which the resulting bit speed coincides
with the desired speed. Panel (b) shows the system response at this point. Panels (c), (d) and (e) present phase plots
for Ωd = 2 (unstable, red branch), Ωd ≈ 3.6651 (grazing-sliding bifurcation GR-SL) and Ωd = 2 (stable, green branch),
respectively.

Our numerical investigation reveals that the unstable periodic solutions found above are created via
a subcritical Hopf bifurcation (Ωd ≈ 1.1177), characterized by a positive first Lyapunov coefficient at the
bifurcation point. At this point two branches of equilibria are found (black curve), one of which corre-
sponds to stable (solid line) and the other one to unstable (dashed line) equilibrium points, respectively.
Physically speaking, these points yield a system response for which all four disks rotate with a constant
angular speed, and can be regarded as a desired system behaviour from a practical point of view. As the
prescribed angular speed Ωd increases, the resulting drill-bit speed Mωb

increases as well, and a critical
point P1 (Ωd ≈ 4.2686) can be identified, where the drill bit speed coincides with the desired speed Ωd,
which can be regarded as an optimal operation point from the control perspective. This point is obtained
from the intersection of the solid black curve representing stable equilibria and the blue straight line,
which corresponds to the identity function Mωb

= Ωd. Panel (b) shows the system behaviour precisely at
this point, where it can be seen that both the top and drill-bit angular speed settle down to the desired
speed Ωd.

By comparing Figs. 5 and 3, there are certain similarities and differences between the drill-string model
with PD and open-loop torque control. One common feature is that of multistability. As mentioned
earlier, under PD control the system presents a parameter window where two attractors coexist, namely,
stick-slip oscillations and equilibria representing drill-bit constant rotation. In the open-loop control
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scenario there appears a third attractor, corresponding to permanent sticking, which did not appear in
the previous case, at least not for the considered parameter values of the PD controller. Another common
feature consists in the possibility of steering the system from undesired stick-slip oscillations to equilibrium
solutions with constant drill-bit rotation by suitably adjusting the considered control parameter (in this
case, Ωd and u). The main difference, however, is that the proposed PD controller allows not only the
elimination of stick-slip oscillations but also a precise control of the drill-bit rotation speed, as will be
analyzed and demonstrated in the next section.

Figure 6: Basins of attraction for stick-slip vibrations (red dots) and constant rotation (grey dots) when k1 = 500, k2 = 300,
(a) k3 = 300, (b) k3 = 250, (c) k3 = 150, (d) k3 = 100, and Ωd = 2 .

Apart from the bifurcation phenomena described above, another relevant observation is the presence
of coexisting attractors in the model. Specifically, there is a parameter window defined by the GR-SL
and the H points found before in which two attractors coexist, namely, the stick-slip vibrations and the
equilibrium solutions. Therefore, in this parameter window the system presents bistability, a feature that
can be used to steer the response from a stick-slip vibration to an equilibrium with constant drill-bit
rotation. Fig. 6 presents the evolution of basins of attraction of these two coexisting attractors in the
coordinate (φr − φp, φb − φr, φ̇b) under variation of the control gain k3, where the initial values that
converge to stick-slip vibration and constant rotation are denoted by red and grey dots, respectively.
As can be seen from Fig. 6(a), the response of stick-slip vibration dominates the initial values of the
drill-string system when k3 = 300. As k3 decreases, the basin for stick-slip vibration shrinks, while the
basin for constant rotation expands. This result also reveals that smaller value of k3 will help to mitigate
stick-slip vibration.
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3.3. Two-parameter analysis with control

Our numerical investigation has revealed the presence of three critical points, namely, a Hopf and
a grazing-sliding bifurcation, as well as a parameter value for which the desired and the actual drill-bit
angular speeds coincide. In the present section we will carry out a two-parameter continuation of the
critical points mentioned above in order to gain a deeper understanding of the dynamics of the drill-string
model. For this purpose we will vary the desired angular speed Ωd and the control gain k1. The reason
for choosing these parameters is because one of the main goals of the current system implementation is
to set the actual drill-bit speed to the desired speed Ωd, due to which the two last terms of the expression
(5) vanish, and hence the remaining control parameter that can be effectively used is precisely k1.
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Figure 7: (a) Two-parameter continuation of the Hopf (red curve) and grazing-sliding (blue curve) bifurcations found in
Fig. 5(a), with respect to the desired angular speed Ωd and the control gain k1. These curves define a region (grey area)
in the parameter space where stable stick-slip solutions and stable equilibria (constant rotation) coexist. The area above
and below the grey region yields stick-slip and equilibrium solutions, respectively. Panels (b) and (c) show coexisting stable
solutions computed for P1 (Ωd = 4, k1 = 0.54).

The numerical investigation begins with the two-parameter continuation of the Hopf and grazing-
sliding bifurcations found in Fig. 5(a), with respect to Ωd and k1. The result is plotted in Fig. 7(a). This
picture presents two curves corresponding to the continuation of the bifurcation points mentioned before.
These curves divide the two-parameter space into three regions. The first one is located above the Hopf
bifurcation curve (red) in which stable stick-slip vibrations can be found, as the one depicted in Fig.
5(e). The second region lies below the blue curve, which results from the two-parameter continuation of
the grazing-sliding bifurcation of limit cycles. In this area the system presents stable equilibria which
correspond to a rotation of the drill-string at a constant angular speed. The region between the red and
blue curves (grey area) represents the region of bistability, a phenomenon that was already identified
in the previous section. In this area, the system has, for the same set of parameters, two coexisting
attractors, which are precisely the two types of system responses described above. At the test point P1
(Ωd = 4, k1 = 0.59) the two coexisting solutions are computed, see Fig. 7(b) and (c).

A family of Hopf and grazing-sliding bifurcation curves for different values of WOB were presented in
Fig. 8. It can be observed that the region of bistability increases as the WOB increases, and the grey area
defines a common parameter region where bistability persists under varying WOB. For safe drilling with
a constant rotation speed up to Wb = 50, the parameter region below the black grazing-sliding curve is
suggested.

As can be seen from Fig. 7(b) and (c), the desired angular speed Ωd and the resulting drill-bit speed
will not necessarily be the same during the system operation. In Fig. 5(a) and (b), however, we identified
an operation point for which the desired and the output speed (after transients have decayed) are exactly
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the same, and the main concern now is to determine whether the system controller is able to reproduce
this ideal situation for a certain range of the desired speed Ωd. To do so, we will carry out a two-parameter
continuation of the point P1 found in Fig. 5(a), with respect to Ωd and the control gain k1. The result can
be seen in Fig. 9(a). The computed curve comprises all combinations of Ωd and k1 for which the desired
and the resulting drill-bit speed are the same. Furthermore, we can identify a speed range where such
control is possible, given by the parameter window 1.2929 < Ωd < 6.0414. This window is determined
by the presence of two supercritical Hopf bifurcations labeled H1 (lower bound) and H2 (upper bound).
In addition, Fig. 9(a) shows the test points Q1, Q2 and Q3 whose corresponding system responses are
depicted in panels (c), (d) and (e), respectively. Here, we can see that the system indeed settles down to
an equilibrium for which the top and drill bit speeds coincide with the desired speed Ωd, hence illustrating
the effectiveness of the proposed control scheme.

Another question that arises from our investigation is whether the speed range can be extended by
varying a third system parameter, which could be, for instance, the WOB Wb. Specifically, we will now
carry out the two-parameter continuation shown in Fig. 9(a) for different values of WOB. The result
of this computation is presented in Fig. 9(b). As in the case studied in panel (a), the resulting curves
define a certain parameter window where the speed control can be effectively applied. Once again, the
boundaries of the parameter ranges are defined by supercritical Hopf bifurcations, represented in the
picture by dots. The picture also reveals that the size of the parameter window can indeed be controlled
by the WOB Wb. According to our investigation, there is a clear relation indicating that the larger Wb,
the wider the speed range, which shows a remarkable interplay between the desired speed, the controller
and the WOB.

In order to evaluate the contribution of the control signal employed to drive the drill-string system
to the desired speed, a family of curves showing the power of the control signal (9) computed along the
curves shown in Fig. 9(b) are presented in Fig. 10. As can be seen from this figure, the required power
increases as the WOB increases, and faster desired speed requires more power to drive. Hence, it suggests
us always to use a low WOB for a slow desired speed, while to increase the WOB accordingly as the
desired speed increases.

3.4. Stick-slip severity

To test the effectiveness of the control gain of the PD controller, the stick-slip severity factor Sss

under variations of the WOB and the desired angular speed for different k2 are presented in Fig. 11.
Comparing the stick-slip severity factors for different k2, it can be found that the controllable (blue)
regions are similar, i.e. increasing k2 does not improve the stick-slip severity of the system when the
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desired angular speed is small and the WOB is large. The dynamic responses of the drill-string system
under various WOB when k1 = 500, k2 = 300, k3 = 200, and Ωd = 1.5 are shown in Fig. 12, where the
responses under various severity factors are presented. It can be seen that increasing WOB will aggravate
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stick-slip severity, and the controller is only effective at Wb = 25 where the system is settled down to
ωt = ωb = 2.45.
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Figure 11: The effect of k2 on stick-slip severity and controllable region (the blue areas where Sss = 0) when k1 = 500 and
k3 = 200.

The influence of the control gain k3 is studied in Fig. 13 where the stick-slip severity factors under
variations of the WOB and the desired angular speed are calculated. It can be seen clearly that reducing
k3 can improve the controllable region of the system, e.g. for k3 = 50, the drill-string system will exhibit
stick-slip vibrations for Ωd < 2 once Wb > 30. As the control gain k3 increases, the stick-slip severity of
the system increases and the controllable (blue) region shrinks significantly.

The reasons that k2 has less but k3 has significant effects on stick-slip mitigation are given as follows.
Based on the controller in Eq. (5), k2 governs the weighting of the difference between the desired rotary
speed and the actual speed of rotary table, while k3 manages the weighting of the difference between the
desired rotary speed and the actual drill-bit speed. Since the stick-slip vibration emerges from drill-bit
and is transferred to rotary table through drill-strings, the terms with k3 has larger fluctuation than the
one with k2. So, the drill-string system is more sensitive to k3. If k3 is large, the controller takes more
weighting on bit fluctuation leading to large fluctuation in control torque, which cannot help stick-slip
mitigation. In addition, the term with k2 only deals with the difference for rotary table, so regulation of
this term cannot guarantee the mitigation of stick-slip vibration. However, involvement of this term is
necessary as we need to regulate all the degrees of freedom of the drill-string system to the desired rotary
speed.

The influence of the control gain k1 is presented in Fig. 14 where the stick-slip severity factors under
variations of the WOB and the desired angular speed are calculated. It can be seen from the figure that
reducing k1 can improve the controllable region of the system, and only small-amplitude fluctuations
in rotary speed are observed (light blue areas) when k1 = 200. As the control gain k1 increases, the
stick-slip severity of the system becomes worse and the uncontrollable region grows quickly. Again, if
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Figure 12: Time histories of rotary speeds of the rotary table, ωt (dash lines) and the drill bit, ωb (solid lines) under various
WOB when k1 = 500, k2 = 300, k3 = 200, and Ωd = 1.5.

k1 is large, as it involves the difference between the rotary table and the bit speeds, the controller takes
more weighting on bit fluctuation, which could cause large fluctuation in control torque. Therefore, large
k1 may aggravate the stick-slip vibrations.

4. Conclusions

This paper presents a numerical study of stick-slip mitigation and speed tuning for a drill-string system
by using a recently developed proportional-derivative (PD) feedback controller. As is well-known, due
to the non-smooth nature of the drill-strings induced by bit-rock interaction, the minimum controllable
desired rotary speed is, in general, unknown. Secondly, the coexistence of constant rotation, stick-slip
vibration, and bit sticking, has been observed at a certain parameter window of the drill-string system, as
observed in our investigation. If, for instance, the system operates according to an equilibrium solution
with constant rotation (which can be identified as a desirable response), a sufficiently large perturbation
can switch the system to permanent bit sticking or stick-slip vibrations. In order to address these two
issues, we proposed a PD feedback controller which simply adopted the relative displacement and speed
between the rotary table and the drill-bit, and our studies mainly focused on exploring its capability of
mitigating stick-slip vibrations and tracking the desired rotary speed, which are the main contributions
of this paper.

Our one-parameter analysis shows that although the controller can effectively mitigate stick-slip vi-
brations, there is always a difference between the desired and the actual rotary speeds. To investigate
the multistability and the speed tuning issues, we applied numerical continuation methods by following
the stick-slip and the constant rotation solutions which are limited by a grazing-sliding and a Hopf bifur-
cation, respectively. It was observed that there was a parameter window defined by the grazing-sliding
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Figure 13: The effect of k3 on stick-slip severity and controllable region (the blue areas where Sss = 0) when k1 = 500 and
k2 = 300.
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Figure 14: The effect of k1 on stick-slip severity and controllable region (the blue areas where Sss = 0) when k2 = 300 and
k3 = 200.

and the Hopf points for which two attractors, stick-slip vibration and constant rotation, coexisted. This
could explain the reason for the sudden emergence of the triangular blue region in the stick-slip severity
window in our later analysis.

Following the one-parameter analysis, we carried out a two-parameter continuation of the grazing-
sliding and the Hopf bifurcations with respect to the desired rotary speed and the control gain k1, and
the region of bistability between the Hopf and the grazing-sliding curves, i.e. the coexistence of stick-
slip vibration and constant rotation, was identified. By varying the WOB, a family of these Hopf and
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grazing-sliding curves were computed. Therefore, by using these curves, we can determine the minimum
desired rotary speed for the proposed PD controller under different values of WOB.

To improve the tracking accuracy of our proposed PD controller, we identified an operation point for
which the desired and the output speeds were exactly the same. Then, via the two-parameter continuation
of this critical point with respect to the desired speed and the control gain k1, we could identify a speed
range where such control is possible, defined by the parameter window limited by two supercritical Hopf
bifurcations. Within this range, we demonstrated that the drill-string system indeed settled down to
an equilibrium for which the rotary and the drill-bit speeds coincided with the desired speed. Then, we
computed a family of these curves for different WOBs, and found that the size of the parameter window
can indeed be controlled by the WOB, showing that the larger WOB is, the wider the speed range is.

Finally, the effectiveness of the PD controller was evaluated using the stick-slip severity factor under
variations of WOB and the desired rotary speed. Our calculations show that increasing the control gain
k2 does not improve the stick-slip severity of the system when the desired angular speed is small and
WOB is high, while reducing the gains k1 and k3 can improve its controllable region significantly. Based
on this investigation, future work can be focused on experimental studies of multistability in drill-strings,
as well as implementation and calibration of the proposed PD controller for real applications.
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[4] Y. Liu, J. Páez Chávez, R. De Sa, S. Walker, Numerical and experimental studies of stick–slip
oscillations in drill-strings, Nonlinear Dynamics 90 (4) (2017) 2959–2978.

[5] J. Brett, The genesis of torsional drillstring vibrations, SPE Drill Eng (1992) 168–174.
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