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Acoustic surface waves are supported at the surface of appropriately structured elastic materials.

Here the excitation and propagation of the lowest-order surface mode supported by a square array

of open-ended cavities on a metal plate submerged in water is demonstrated. This mode, which has

a half-wavelength character in the cavity, arises due to inter-cavity interaction by evanescent dif-

fraction of the pressure field, and forms a band from zero-frequency to an asymptotic limit fre-

quency. The authors perform an acoustic characterization of the pressure field close to the surface

of the perforated plate in the 60–100 kHz frequency range; sound is pulsed from a fixed point-like

acoustic source, and the evolution of the acoustic field across the sample surface is measured as a

function of time and space with a traversing detector. Using Fourier analysis, the dispersion is

imaged between points of high-symmetry (C;X;M) and at planes in momentum-space at fixed fre-

quencies. Beaming of acoustic energy on the surface over a narrow frequency band was observed,

caused by the anisotropic mode dispersion of the acoustic surface wave on the square lattice. The

measured dispersion shows good agreement with the predictions of a numerical model. VC 2019
Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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I. INTRODUCTION

Surface waves occur at the boundary between two differ-

ing media. There are several different classifications of

surface-wave phenomena in acoustics, which include Rayleigh

waves,1 particular cases of Lamb waves,2 and Scholte-Stoneley

waves,3–5 the latter being non-radiative. There are also non-

radiative waves called Acoustic Surface Waves (ASWs) that

exist on patterned surfaces, where the acoustic wave propagates

in the fluid above the solid material.6 Typically, structures

designed to support ASWs take the form of periodic sub-wave-

length-sized cavity arrays perforating a solid material. Unlike

Lamb waves that can propagate through a material, ASWs

exponentially decay in amplitude normal to the structured sur-

face to which they are bound, are highly localized, and have

slow group velocity. Structures that support ASWs are particu-

larly interesting because their mode dispersion can easily be

tailored by simply changing their structure, and have potential

applications in acoustic sensing, energy harvesting, signal proc-

essing, and material characterization.7,8

Much of the research into ASWs has been undertaken in

air.9–11 Although most studies of underwater structured surfa-

ces have concerned the radiation of Lamb modes influenced by

ASWs,12–14 there have been studies of these non-radiative sur-

face waves over one-dimensional (1D) arrays of water-filled

grooves10 and two-dimensional (2D) arrays of material-filled

holes.15 Furthermore, Hou et al. showed that it is possible to

excite underwater ASWs over a simple square array of holes in

a metal plate,16 which was assumed to be perfectly rigid.

Typically, patterned surfaces that comprise simple reso-

nating cavities can support localized ASWs. For arrays with

sub-wavelength repeat period resonators, these ASWs are

non-radiative, existing with in-plane k-vectors beyond the

sound line, defined by k0 ¼ 2pf=c where f and c are the fre-

quency and velocity of a free-space wave. The ASW, caused

by the evanescent diffracted fields from the cavities interact-

ing, forms a band from zero-frequency to an asymptotic limit

frequency, fASW. This limit is the lowest frequency volumet-

ric resonance of the array of holes, where fASW depends on

the size and shape of the cavity, the spacing between each

feature, and the material properties of the solid structure, and

the fluid that fills it. In airborne acoustics, where the struc-

ture can be considered acoustically rigid to the airborne pres-

sure field, fASW can be calculated easily,16,17 but this is a

non-trivial task underwater. However, full-solver computa-

tional methods can be used to obtain predictions of the pres-

sure fields, and from these, the dispersion of the ASWs can

be calculated.

In this study, a full experimental characterization of the

dispersion of the modes supported by a square array of

water-filled holes that perforate an aluminum-alloy plate

underwater is undertaken. The dispersion of the non-

radiative ASW is obtained through Fourier analysis of the

pressure fields measured in the fluid close to the surface of

the plate. Results demonstrate acoustic beaming of surface

wave energy in one direction over a small frequency band. A

Finite Element Method (FEM) model that takes into account

the full acoustic-elastic interactions of the system is used to

confirm and compare to the experimental results. There is

good agreement between measured and calculated data fora)Electronic mail: tg310@exeter.ac.uk
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the full dispersion of acoustic modes in the planes between

points of high lattice symmetry in momentum space.

II. EXPERIMENTAL METHOD

This work investigates an aluminum-alloy plate pat-

terned with a square array of open-ended holes as shown in

Fig. 1. A 2D square array of open-ended holes with a radius

R ¼ 1:5 6 0:1 mm and grating pitch kg ¼ 5:5 6 0:1 mm was

drilled through a L ¼ 6:4 6 0:1 mm thick plate of aluminum

alloy (5083). The plate is 400� 400 mm in area and has

4900 holes, in a 70� 70 square array.

Experiments were performed in a 3:0� 1:8� 1:2 m

(L�W�D) water tank, without wall or surface treatments.

The alloy plate was hung in a fixed position in the center of

the tank with the plate normal parallel to the tank length.

The plate was excited with a Neptune Sonar D70 source

driven to radiate pulses with the character of Hanning-win-

dowed-sine functions, centered at 70 kHz and with a band-

width from 50 to 500 kHz.

In order to create a localized point-like source excitation,

the source transducer was positioned in a polyvinyl chloride

foam enclosure (to provide a pressure-release-like boundary)

punctured with a hollow steel tube with an exit diameter of

6.0 6 0.1 mm (see Fig. 1 schematic). This source modification

shielded the transducer from the surrounding water, while pro-

viding a highly diffuse, more point-like, radiation pattern from

the exit tube. This tube was positioned directly over one of

the holes approximately 3 mm from the sample surface. This

source geometry provided acoustic fields that can excite the

high-momentum surface modes through diffractive coupling,

whose wavevectors, kASW, are greater than the wavevector of a

free-space sound wave, k0 ¼ 2pf=c.

The near-fields were detected on the opposite side of the

sample using a Precision Acoustics 1.0 6 0.1 mm diameter

needle hydrophone mounted on an xyz spatial scanning stage

(in-house built with Aerotech controllers). The tip of the

detector was positioned 0.5 6 0.1 mm from the face of the

sample, which is well within the decay length, dP, of the

expected ASW fields (dP � 40 mm18). The usable frequency

range of this source-detector arrangement is between 40 and

100 kHz. A rendering of the underwater setup is shown on

the right of Fig. 1.

The experimental data presented in Sec. III were acquired

by exciting the sample with the source fixed over a hole at one

corner of the sample, position (0, 0), and scanning the detector

over a 106.05� 106.05 mm area, in the xy plane. The scan

steps were Dx ¼ 1:414 mm and Dy ¼ 1:414 mm, and the sig-

nal at each point is an average of 50 repeat pulses to obtain a

good signal-to-noise ratio. Each time signal length was

1.3 msec measured at a sampling frequency of 9.4 MHz; this

time duration removes any issues that may arise from

unwanted tank-wall or surface reflections.

III. EXPERIMENTAL RESULTS

The measured acoustic pressure field, at an instance in

phase, of the wave traveling across the scanned area after

being diffracted through the hole at (0, 0) are presented in

Fig. 2, as detected voltage (V) in space (x and y). This map

shows the acoustic field propagating across the square array

of holes, as a function of time, t, after the pulse was launched.

At time t¼ 0.10 ms the pulse is confined to a region close to

the source, and shows the propagation of cylindrical wave-

fronts, that extend to the edge of the scanned area by the time

t¼ 0.15 ms. At later times t¼ 0.20 and t¼ 0.25 ms the ringing

of the cavities becomes apparent as the position of the holes

become clearly visible in the field data.

Through Fourier analysis of the temporal signals at

every spatial point, 2D pressure maps at each frequency are

obtained. Example data showing the real pressure amplitude

at an instance in phase (instantaneous amplitude), phase, and

time-averaged magnitude are depicted in Fig. 3. For the low-

est frequency, f¼ 80.0 kHz (Fig. 3, left panels), the instanta-

neous amplitude and phase of the wave shows clear

cylindrical spreading from the source placed at the bottom

left of the scan area. For the two higher frequencies, beaming

of acoustic power becomes very evident at an angle of 45�

from the x, y axes, and is highly directional in a confined

beam at frequency f¼ 82.7 kHz.

To gain further insight from the experimental data, the

2D frequency data are Fourier transformed spatially (in x

FIG. 1. (Color online) Left: A three-dimensional (3D) rendered image of the square array of holes. The array has cavities of radius, R, with a pitch, kg, in a

plate of thickness, L. The unit cell for this structure is shown as a square red-dotted box. White-dotted lines follow the center lines of selected rows of cavities.

Right: A three-dimensional (3D) rendered image of the square array submerged in the water tank. Acoustic pulses are projected from the d ¼ 6:0 6 0:1 mm

diameter source and detected by a 1.0 6 0.1 mm diameter needle hydrophone spatially rastered on the opposite sample surface using an xyz scanning stage.
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and y) after zero-padding (�3 factor) in x and y. By doing

so, the Fourier amplitude as a function of wavevector (kx, ky)

and frequency is obtained, from which the band structure of

the surface modes is found between points of high-symmetry

(C, X, M) of the reciprocal lattice. Since only one quadrant

of the wave propagation is measured with respect to the

source ðþx;þyÞ, once Fourier transformed in space, the dis-

persion obtained will only show the forward propagation of

the mode in one quadrant in reciprocal space (þkx;þky).

Figure 4 shows the Fourier amplitude for a plane in k-

space for different frequencies: 75.0, 80.0, 82.7, and 85.0 kHz.

In these graphs the sound line, indicated by the solid line, is

defined by the dispersion of a free-space acoustic wave propa-

gating parallel to the sample surface (a grazing wave), defined

by the wavevector, k0, of a free-space grazing wave as a func-

tion of frequency, f (k0 ¼ 2pf=c). The experimental results

show a surface mode beyond the sound line, indicating that

mode is indeed bound and has a greater momentum than a

grazing wave. As the frequency is increased from 75.0 to

85.0 kHz, the ASW disperses strongly, transforming from a

mode that resembles a loosely bound grazing plane wave near

the sound line (kASW � k0 ¼ 2pf=c, where c � 1500 ms�1) to

a strongly-confined surface mode (kASW � k0).

The ASW equi-frequency contours begin circular, then

become anisotropic as they approach the first Brillouin zone

boundary (jkxj; jkyj ¼ kg=2, where kg ¼ 2p=kg). Since group

velocity, vg, is defined by vg ¼ rkx, where x is the angular

frequency, acoustic power transfer is indicated by the direc-

tion normal to the mode equi-frequency contour. At 80 kHz,

the shape of the ASW contour is approximately circular,

meaning power propagates across the sample in all direc-

tions. As the frequency increases the contour is perturbed,

and at 82.7 kHz the ASW equi-frequency contour has clearly

flattened, which corresponds to the beaming of acoustic

power across the sample at 45� shown in Fig. 3. And at

85 kHz the surface mode contour has the opposite curvature,

which manifests itself as convergent-like phase fronts in the

real space pressure maps (Fig. 3).

IV. EIGENFREQUENCY ANALYSIS

FEM modeling (COMSOL Multiphysics 5.3) was used

to calculate eigenmodes of the bound modes supported by

the sample.

The system is modelled as a unit cell bound by Floquet

periodic conditions in the x and y directions and by Perfectly

FIG. 2. (Color online) Spatial maps of measured instantaneous voltage

(mV) at four different times, t¼ 0.10, 0.15, 0.20, and 0.25 ms, after the

source is triggered. The amplitude of the measured signal indicated in the

color bar for each time plot presented voltage is 6V¼ 30, 280, 205, and

128 mV, respectively, for increasing time.

FIG. 3. (Color online) Frequency dependent xy spatial plots showing the

instantaneous real amplitude (top), phase (middle), and time averaged mag-

nitude (bottom) of the measured pressure field above the square array of

holes at 80.0, 82.7, and 85.0 kHz. The acoustic beaming across the sample is

clearly evident at 82.7 kHz at 45� from the x, y axis.

FIG. 4. (Color online) Fourier amplitude plots as a function of wavevector

of the field propagating over the square array of holes at frequencies: 75.0,

80.0, 82.7, and 85.0 kHz. The wavevector of a grazing plane wave across

the sample surface (k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
) is shown as a solid circle: modes

beyond this limit are non-radiative (i.e., bound to the surface). Diffracted

sound lines are shown as dashed lines. Dotted lines mark the boundary of

the first Brillouin zones.
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Matched Layers in the z direction. This approximates the

sample as a periodically-perforated plate with infinite extent

in the x and y direction, bounded top and bottom by water

half-spaces which extend infinitely. To fully represent the

physical system, the plate is treated as an elastic solid and

water as a viscous fluid. This captures the viscous damping

in the fluid due to the no-slip boundary condition at the walls

of the aluminum plate, which manifests as a negligible reduc-

tion in resonance frequency caused by a reduction of the

effective velocity of sound in the cavity due to the boundary

layer. The elastic and viscous acoustic parameters used in the

model for each medium are given in Table I;19–21 these values

are either empirically measured or industry-used estimates of

the properties of water and aluminum alloy.

The predicted eigenmodes are compared to experimen-

tal results as a function of frequency and wavevector

between reciprocal lattice points of high-symmetry in Fig. 5.

For the frequency range studied here, the numerical simu-

lations show one ASW mode that lies between 65 and 86

�kHz, that moves from C to X, X to M, and M to C, as the

in-plane wavevector, kk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
, moves around the

inset of Fig. 5 (where X: ðkx; kyÞ ¼ ðkg=2; ky ¼ 0Þ, and M:

ðkx; kyÞ ¼ ðkg=2; kg=2Þ. These modes meet the Brillouin

zone with zero group velocity, forming standing waves at

the X and M point. The experimental results agree well

with the numerical prediction; showing a surface mode

with the same dispersion. We note as the mode group

velocity approaches zero, the amplitude of the mode is

seen to decrease, which is expected for a wave that is not

propagating, and therefore not detected in real space.

V. ACOUSTIC AND ELASTIC MODE SHAPES

To investigate the influence of acoustic perturbation on

the elastic properties of the plate and the resulting effect on the

dispersion of the acoustic surface mode, the deformation of the

plate was computationally explored where the mode is at the X
and M points. Figure 6 shows the mode shapes where pressure

is maximum inside the holes of the array, and where the defor-

mation of the surrounding elastic solid is at maximum ampli-

tude at X and M. The maximum acoustic pressure in the water

for all plots is localized at the center of the holes, which is

characteristic of the fundamental mode within the hole.

The deformation at the X point of reciprocal space is

dipolar in nature with maximum deformation in the propaga-

tion direction. At the M point the deformation becomes

quadrupolar with deformation maxima in both x and y direc-

tions. At X, each neighboring cell pressure field is p radians

out-of-phase in the x direction and at M in both x and y, with

the field traveling diagonally. Due to symmetry, at the X
point the unit cell does not deform in the y direction, and for

the M point it does not distort at the corners of the unit cell.

Interestingly, the asymptotic frequency, fASW, calculated

for this elastic-solid perforated plate is approximately 4 kHz

lower than predicted for the same geometry in a perfectly rigid

solid. Figure 7 (left) shows a comparison of the mode disper-

sion as it approaches the first Brillouin zone boundary at X cal-

culated for an elastic and for a rigid solid boundary. The ratio

of these asymptotic frequencies, at the X point where the mode

is highly localized to the cavity, implies that there is a 4.4%

reduction of velocity of sound within the cylindrical cavity,

due to the elastic constraint of the boundary walls.

We posit that this slower speed of sound within the

water can be understood in terms of the effective compress-

ibility, b, of the fluid, which is in essence increased by the

elastic deformation. Since compressibility, b, is related to

the bulk modulus, B, by b ¼ B�1 and since c ¼
ffiffiffiffiffiffiffiffiffi
B=q

p
,

where q is the density of water, the speed of sound in water

inside the hole must decrease, reducing the asymptotic fre-

quency of the ASW. A 3.8 kHz change in the frequency as

calculated here equates to an �9% effective change in the

bulk modulus of water.

To validate the plausibility of this difference in ASW

asymptotic frequency, and associated slow sound velocity in

the water cavity, between elastic and rigid boundary conditions,

we compare results to Biot’s theory.22 Biot’s theory derives

expressions for the solid–fluid mode that exists at the boundary

of a fluid cylinder of infinite length bounded by an elastic solid

with infinite extent. In Biot’s work, the axisymmetric waves

that propagate along the cylinder axis are considered, and the

ratio of the velocity of sound in the cylinder to the velocity of

sound in a unbound fluid (f ¼ v=c) is presented as a function

TABLE I. Elastic and viscous material parameters for water and aluminum alloy 5083 that are used in the FEM model. E is the elastic modulus of the material,

G is the shear modulus of the material, q is the density of the material, r is the Poisson’s ratio, lB is the bulk viscosity, and l is the dynamic viscosity of the

medium.

Medium E (GPa) G (GPa) q (kg=m3) r lB (mPa s) l (mPa s)

Water — — 997.0 6 0.5 (Ref. 19) — 2.50 6 0.46 (Ref. 20) 1:00 6 0:13 (Ref. 19)

Aluminum alloy 72.0 6 0.2 (Ref. 21) 26.4 6 0.2 (Ref. 21) 2660 610 0.34 6 0.1 (Ref. 21) — —

FIG. 5. (Color online) The directional dispersion along planes of high sym-

metry C� X �M � C of the square array of holes. X, M, and C are shown

in k-space in the inset. The crossing between the experimental results and

the dashed line at the first Brillouin zone edge, X, marks the value of the

asymptotic frequency, fASW ¼ 81:8 kHz.
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of the dimensionless wavelength parameter k=D where D is the

cylinder diameter (see Appendix A for further details).

Following Biot’s presentation, Fig. 7 (right) shows this

theory calculated using the physical parameters for water and

aluminum detailed in Table I. At short wavelength the velocity

ratio, f, is close to unity; as the wavelength increases the veloc-

ity ratio decreases before tending to a limit velocity, vlimit, dic-

tated by the fluid density, q, and solid shear modulus, G.

FIG. 6. (Color online) Calculated mode shapes from the FEM model inside one model unit-cell of the square array for an applied pressure of 1 Pa: The acoustic

pressure field (left) is plotted on a cross-section through the plate at the center of the fluid cavity, and shows the field is localized in the cavity and decays into the

fluid above and below. The elastic deformation shape and magnitude (color scale) of the solid (middle and right) are plotted in the solid region. The middle plots

show a cross-section through the thickness of the plate at the cavity center, and the right plots show a cross-section taken at the mid-plane of the plate thickness. The

top section through the plate thickness (left, middle) are cross-sections shown as a function of x with y¼ 0 mm, while the bottom are shown where x¼ y; these corre-

spond to the ASW propagation directions in real space at the X and M point, respectively. The displacement has been enhanced by�109 to aid visualization.

FIG. 7. (Color online) Theoretical and numerical results comparing the difference between an elastic and rigid solid. (Left) FEM calculated dispersion relation for

elastic and rigid solid for a periodic array of resonant cavities, compared to the resonance calculated for a cavity in a plate with infinite extent in the plane (not peri-

odic). (Right) A comparison of sound velocities calculated using Biot’s theory and numerical model sound velocities for the periodic and infinite cavity system.
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For comparison to Biot’s theory, the resonance fre-

quency of a single cavity in an elastic (fe) and in a rigid (fr)

plate for the same sample thickness and with infinite extent

is calculated. From this, the ratio of velocities are obtained

(v=c ¼ fe=fr) and plotted at appropriate k=D in Fig. 7

(right). The sound velocity ratio shows good agreement

between Biot’s theory and the numerical simulation; the

slight underestimation in the velocity reduction of the

numerical model is expected since cavity end-effects will

increase the effective compressibility of the fluid in the

cavity—not present for Biot’s infinite cylinder of fluid.

The same approach is used to compare the sound veloc-

ity ratio for the periodic cavity array, studied experimentally,

at the X-point in mode dispersion; again the FEM velocity

ratio agrees with Biot’s theory within 1%, but this time the

reduction in velocity of sound in the fluid cavity is overesti-

mated. This is unsurprising, since perforating an elastic plate

will only enhance the elastic deformation of the cavity walls

(see Fig. 6).

VI. CONCLUSIONS

We have observed underwater ultrasonic ASWs sup-

ported by a square array of open-ended holes in a perforated

aluminum plate. By Fourier analyzing the fields temporally

and spatially, we characterized the ASW and obtained its

dispersion. In addition, in-plane ultrasonic beaming was

observed over a narrowband of frequencies, centered around

82.7 kHz. The experimental results presented agree well

with numerical simulations. A Poisson’s ratio of 0.34 and

elastic modulus of 72.0 GPa resulted in an asymptotic fre-

quency (at the X point) change of �4 kHz compared to that

of an equivalent rigid system. This frequency reduction is

attributed to an increase in the effective compressibility of

the fluid within the cavities, as is seen in Fig. 6, because the

cavity walls now act as an elastic constrain. The ultrasound

technique presented could be applied to any submerged flat

2D system to detect ASWs over periodic arrays of diffract-

ing structures. By adding extra degrees of freedom or chang-

ing the geometry of the array these surfaces can be readily

tailored to support ASW modes tuned to selected frequency

ranges. Acoustic devices made from such 2D arrays could be

used to harvest directional energy, improve acoustic propa-

gation for communications, or direct unwanted sound away

from an area.
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APPENDIX A: THEORY FOR ACOUSTIC MODE
DISPERSION IN A FLUID CONSTRAINED BY AN
ELASTIC CONSTRAINT

The results presented in Fig. 7 are produced from the

theory presented in Biot’s 1952 article “Propagation of

Elastic Waves in a Cylindrical Bore Containing Fluid.”22

Following Lamb’s work23 for large wavelength, Biot derives

a more general theory for axisymmetric acoustic and elastic

waves propagating down the axis, either in or at the bound-

ary, of a fluid-filled cylinder bound by an elastic solid with

infinite extent. The dispersion relations of these modes are

derived, and it is shown that only one wave is caused solely

by the coupling of fluid and liquid, and is termed the

Stoneley wave (which is more commonly recognized as the

Scholte wave).

The following equations are included for completeness,

and we refer the reader to the original work for the full deriva-

tion. The results presented are obtained by numerically solving

the following equation [corrected from Eq. (3.14) in Biot22],

4ð1� f2
1Þ

1=2 1

ka
þ K0ðkaÞ

K1ðkaÞ

� �

� 2ð2� f2
1Þð1� f2

2Þ1=2

ma
� ð2� f1

2Þ2

ð1� f2
2Þ1=2

K0ðmaÞ
K1ðmaÞ

¼
qf

qs

f1
4

ð1� f2Þ1=2

I0 lað1� f2Þ1=2
h i

I1 lað1� f2Þ1=2
h i ; (A1)

where f is considered to be the unknown variable, and

defined as f ¼ v=c the ratio of fluid phase velocity to the

velocity of sound in an unbound fluid. qs and qf denote the

density of the solid and the fluid, respectively, D is the diam-

eter of the fluid cylinder, and k is the wavelength in fluid. I
and K denote the modified Bessel function of the first kind of

real order, and the modified Bessel function of the second

kind, respectively. f is also related to the other terms: f1

¼ cf=vs and f2 ¼ vsf1=vc, where vc and vs are the compres-

sional and shear velocities of sound in the solid, and are

related to the following:

ka ¼ pD

k
ð1� f1

2Þ1=2; ma ¼ pD

k
ð1� f2

2Þ1=2: (A2)

The shear wave speed is obtained from the shear modulus,

G, and density of the solid, qs, by vs ¼
ffiffiffiffiffiffiffiffiffiffiffi
G=qs

p
, from which

the compressional wave speed is determined with the

Poisson ratio, �:,

vc ¼ vs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� �Þ
1� 2�

r
: (A3)

The long wavelength velocity ratio limit shown by the dotted

line in Fig. 7 is given by

v

c
¼ 1

1þ ðqsc
2=GÞ

� �1=2
: (A4)

The material properties used are shown in Table I, and the

velocity of sound is assumed to be c¼ 1490 ms�1.
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