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Neurologically Motivated Coupling Functions in Models of Motor Coordination\ast 

Piotr S\lowi\'nski\dagger , Sohaib Al-Ramadhani\ddagger , and Krasimira Tsaneva-Atanasova\S 

Abstract. We present an analysis of two Haken--Kelso--Bunz (HKB) oscillators coupled by a neurologically mo-
tivated function. We study the effect of time delay and weighted self-feedback and mutual feedback
on the synchronization behavior of the model. We focus on identifying parameter regimes support-
ing experimentally observed decrease in oscillation amplitude and loss of anti-phase stability that
has inspired the development of the HKB model. We show that a combination of cross-talk and
nonlinearity in the coupling, along with physiologically relevant time delay, is able to quantitatively
account for both drop in oscillation amplitude and loss of anti-phase stability in a frequency de-
pendent manner. Furthermore, we demonstrate that the transition between discrete and rhythmic
movements could be captured by this model. To this end, we carry out theoretical and numerical
analysis of the emergence of in-phase and anti-phase oscillations.

Key words. coupled oscillators, dynamical system, bifurcation analysis, coordination regimes, numerical con-
tinuation, parameter dependence
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1. Introduction. Intrapersonal and interpersonal motor coordination are active research
topics in variety of fields including robotics and human-machine interaction [12, 35], cogni-
tive psychology [47], and neuroscience [55]. Motor coordination has also been studied from
a dynamical systems point of view for over 30 years since the seminal paper [23] introducing
the Haken--Kelso--Bunz (HKB) model, which comprises a system of nonlinearly coupled hy-
brid Van der Pol--Rayleigh oscillators. This model qualitatively captures experimental results
demonstrating a transition between in-phase and anti-phase dynamics as a result of increase in
pacing of driving frequency [22, 30]. Furthermore, the hybrid Van der Pol--Rayleigh oscillator
quantitatively accounts for the linear dependence between frequency and amplitude of move-
ment [27, 29]. At present, the HKB model is a basis of various experimental paradigms such
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NEUROLOGICALLY MOTIVATED MODEL OF COORDINATION 209

as human-dynamic clamp [12], the mirror game with a virtual player [61], and Chronos---a
computer platform to study movement coordination in human ensembles [1]. Another, more
recent, contribution to the field has been made by the introduction of the Jirsa--Kelso exci-
tator model [28] that could be mapped, using a suitable change of variables, to the classical
FitzHugh--Nagumo model [13].

The importance of perceptual-motor delays has been acknowledged in the original HKB
model paper [23], and their role was later discussed in [36]. However, to date, there have been
very few mathematical modeling studies considering time delays in motor coordination. An
investigation of the excitator model with time delay has been carried out in [2], and a model
of relative phase dynamics with time delay can be found in [53, 54]. Recently, we presented
the first systematic analysis of the HKB model with delays. The specific model formulation
was motivated by a study that used numerical simulations of the HKB model with delays
to interpret changes in coordination patterns in patients with schizophrenia [58]. In [50]
we demonstrated the experimentally relevant role time delays play in shaping the properties
of movement coordination dynamics. Specifically, in [50] we showed that introduction of
time delays increases the size of parameter regions of bistability between in-phase and anti-
phase periodic solutions, thus making the model more robust in terms of reproducing the
experimentally observed transition between these two modes of coordination [22, 30]. We
also proposed a plausible dynamic mechanism explaining why the anti-phase solutions are
experimentally less stable in comparison to the in-phase solutions. In the current paper, we
analyze effects of different coupling functions on the coordination dynamics described by the
HKB model.

The HKB model [23] consisting of two coupled nonlinear oscillators i and j is given by

(1.1) \"xi(t) + \omega 2xi(t) - \gamma \.xi(t) + \alpha x2i (t) \.xi(t) + \beta \.x3i (t) = Ii,j(t, \tau ),

where \"xi(t) denotes acceleration, \.xi(t) velocity, and xi(t) position of the moving end-effector.
The term Ii,j(t, \tau ) denotes an arbitrary coupling function, and \alpha , \beta , and \gamma are parameters
that govern the intrinsic dynamics of an oscillator, while \omega could be interpreted (under the
appropriate assumptions) as a pacing frequency, represented by the natural frequency of each
of the oscillators in the model [23, 50]. Throughout the paper we fix the intrinsic parameter
of both oscillators at experimentally validated parameter values, namely, \alpha = 12.457, \beta =
0.007095, and \gamma = 0.641 [29].

We compare the original phenomenological coupling function, Fi,j(t, \tau ), introduced in [23],
extended by adding time delays in [58], and analyzed in [50], which has the form

(1.2) Fi,j(t, \tau ) = ( \.xi(t) - \.xj(t - \tau j))
\bigl( 
a+ b(xi(t) - xj(t - \tau j))

2
\bigr) 
,

with the neurologically motivated coupling, Gi,j(t, \tau 1, \tau 2), proposed in [2], given by

(1.3)

Gi,j(t, \tau 1, \tau 2) = \varepsilon 

\biggl( 
(xi(t) - (1 - r)xi(t - \tau 1) - rxj(t - \tau 2))

 - \delta 

3
(xi(t) - (1 - r)xi(t - \tau 1) - rxj(t - \tau 2))

3

\biggr) 
.

In (1.2) and (1.3) time delays \tau arise due to the physiology of the neuromuscular system.
The function F in (1.2) has two abstract coupling strength parameters a and b. The coupling
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210 S\LOWI\'NSKI, AL-RAMADHANI, AND TSANEVA-ATANASOVA

parameters of function G given in (1.3) have the following interpretations: \epsilon is the strength
of coupling, r \in [0, 1] is the degree of cross-talk in the neuromuscular system, and \delta controls
the degree of nonlinearity in the coupling. The latter parameter was set in [2] to the value
\delta = 1. In our study \delta is a free parameter, as we will demonstrate that it controls the stability
of the in-phase and anti-phase solutions. A schematic representation of the ideas motivating
(1.3) is illustrated in Figure 1.

Figure 1. Schematic representation of (1.1) with the coupling function (1.3). The yellow arrows represent
mixed and self-coupling on the sensory (vision and proprioception), processing (brain), and execution (spinal
cord, motor neurones, and muscles) levels. The time delays in the coupling (1.3) are due to the physiology of
the neuromuscular system.

We show that the HKB model with a neurologically motivated coupling, (1.3), allows for
quantitative description of the experimental findings [22, 30]---in contrast to the phenomeno-
logical coupling, (1.2), which provides only qualitative description. Specifically, we analyze the
onset of coordination patterns in the model, corresponding to transition from discrete to oscil-
latory motion, as the parameter \omega increases from 0. We further investigate how the solutions
of the HKB model with neurologically motivated coupling depend on the coupling parameters
and time delays. In contrast to earlier studies, which focused on the phase-approximation
dynamics in the HKB model for weak coupling [18, 32], here we follow [50] and use bifur-
cation analysis and numerical continuation to systematically investigate the behavior of the
HKB model in the full four-dimensional state space for a range of coupling parameters. The
bifurcation diagrams were computed using the numerical continuation package DDE-Biftool
(v3.1.1) [48] using MATLAB; for simulations we used the MATLAB dde23 solver with default
settings.
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NEUROLOGICALLY MOTIVATED MODEL OF COORDINATION 211

2. Results. Throughout the analysis we assume that \tau i = \tau j in (1.2) and that \tau 1 = \tau 2 in
(1.3); and we denote it by \tau . The simplified model with phenomenological coupling (1.2) has
the form

(2.1)

\.xi(t) =yi(t),

\.yi(t) = - 
\bigl( 
yi(t)(\alpha x

2
i (t) + \beta y2i (t) - \gamma ) + \omega 2xi(t)

\bigr) 
+ (yi(t) - yj(t - \tau ))

\bigl( 
a+ b(xi(t) - xj(t - \tau ))2

\bigr) 
,

and the model with neurologically motivated coupling (1.3) reads

(2.2)

\.xi(t) =yi(t),

\.yi(t) = - 
\bigl( 
yi(\alpha x

2
i (t) + \beta y2i (t) - \gamma ) + \omega 2xi(t)

\bigr) 
+ \epsilon 

\biggl( 
(xi(t) - (1 - r)xi(t - \tau ) - rxj(t - \tau ))

 - \delta 

3
(xi(t) - (1 - r)xi(t - \tau ) - rxj(t - \tau ))3

\biggr) 
.

Our main interests are the in-phase and anti-phase periodic solutions of systems (2.1)
and (2.2) and in particular their stability and coexistence. The two types of solutions are
illustrated in Figure 2. Figure 2(a) shows an example of the in-phase solution; due to overlap
only one time trace is visible for both oscillators. Figure 2(b) shows an example of the anti-
phase solution; the time traces of the two oscillators are reflected along x1,2 = 0 or y1,2 = 0; the
phases differ by \pi . The in-phase solutions are restricted to a hyperplane x1 = x2, y1 = y2 and
the anti-phase solutions are restricted to a hyperplane x1 =  - x2, y1 =  - y2 of the phase space
(x1, x2, y1, y2); compare Figure 2(c)--(d), where the time traces are shown in the (x1, x2, t) and
(y1, y2, t) subspaces, respectively.

We start by comparing how the stability and amplitude of the in-phase and anti-phase
periodic solutions depend on the parameter \omega , type of coupling, and time delay \tau . Figure 3
depicts the bifurcation diagrams of systems (2.1) and (2.2) in parameter \omega . Panels (a1)--
(a4) illustrate solutions of the system (2.1) with phenomenological coupling (note that similar
computations have been presented in [50]; they are included here for the sake of completeness
and comparison). Panels (b1)--(b4) and (c1)--(c4) illustrate solutions of the system (2.2)
with neurological coupling for cross-talk parameter values r = 1 and r = 0.5, respectively.
The cases of linear coupling, corresponding to the parameter values b = 0 and \delta = 0, are
illustrated in rows (a1)--(c1) and (a1)--(c2), while the nonlinear coupling cases, represented
by the parameter setting b = 1 and \delta = 1, are illustrated in panels (a3)--(c3) and (a4)--(c4).
A two-parameter bifurcation analysis of the system (2.1) in the coupling parameters a and
b is presented in Appendix A, Figure 11. Panels (a1)--(c1) and (a3)--(c3) correspond to the
no-delay cases (\tau = 0), whereas, the nonzero time-delay cases, for \tau = 0.14, are shown in
panels (a2)--(c2) and (a4)--(c4). In the figure we use delay \tau = 0.14[s], which is the same as
in [50].

Figure 3 indicates that the in-phase and anti-phase periodic solutions arise either via a
bifurcation involving a connecting orbit (homoclinic or heteroclinic, as we show in the next
section) or via the Hopf bifurcation of a steady state, labeled as \blacktriangle and \bullet , respectively. The
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212 S\LOWI\'NSKI, AL-RAMADHANI, AND TSANEVA-ATANASOVA

Figure 2. In-phase and anti-phase periodic solutions of (2.2) represented as time traces. (a) shows in-
phase solution; left axis for x1 and x2; right axis for y1 and y2. For the in-phase solution the variables overlap
x1 = x2 and y1 = y2. (b) shows anti-phase solution. For the anti-phase solution x1 =  - x2 and y1 =  - y2. For
the chosen parameter values the anti-phase solution is unstable. (c) shows the solutions in the (x1, x2, t)-space.
The in-phase and anti-phase solutions lie on perpendicular planes. (d) shows the solutions in the (y1, y2, t)-
space. Blue indicates in-phase solutions, and red indicates anti-phase solutions. In all panels, \alpha = 12.457,
\beta = 0.007095, \gamma = 0.641, \delta = 1, r = 1, \epsilon = 1, \omega = 2 [Hz], and \tau = 0.14.

in-phase and anti-phase periodic solutions gain or lose stability via torus bifurcation (\ast ),
saddle-node of periodic orbits bifurcation, or at a branching point, both marked with (\times ).
Both the saddle-node of periodic orbits bifurcation and branching point are characterized by
a single real Floquet multiplier crossing the unit circle at 1. Distinction between the two
bifurcations could be based on the corresponding one-parameter bifurcation diagram. In the
case of a saddle-node of periodic orbits we observe that stable and unstable periodic solutions
collide and disappear (see, e.g., insets in Figure 3(b3)--(b4)), while in the case of a branching
point we observe the appearance of an additional branch of periodic solutions. For the sake
of clarity in Figure 3 we only show the bifurcation points at which the solutions emerge
or change stability. The only exceptions are the homoclinic bifurcations of the anti-phase
solutions shown in the insets in panels (b3)--(b4) and (c3)--(c4) (for \delta = 1, nonlinear coupling)
that are included in order to illustrate the connection with the onset of the anti-phase solutions
shown in the insets in panels (b1)--(b2) and (c1)--(c2) in the case of \delta = 0, i.e., linear coupling.

Overall, Figure 3 demonstrates the discrepancy between the behavior of the model (2.1)
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NEUROLOGICALLY MOTIVATED MODEL OF COORDINATION 213

Figure 3. Influence of the coupling on the stability of in-phase and anti-phase periodic solutions. Bifurcation
diagrams of the in-phase and anti-phase periodic solutions in the parameter \omega . Panels (a1)--(a4) for the system
(2.1) with phenomenological coupling. Panels (b1)--(b4) and (c1)--(c4) for system (2.2) with neurologically
motivated coupling; without (r = 1) and with (r = 0.5) self-coupling, respectively. Row (a1)--(c1) for linear
coupling, b = 0 and \delta = 0, with delay \tau = 0 and row (a2)--(c2) for linear coupling and \tau = 0.14. Row (a3)--
(c3) for nonlinear coupling b = 1 and \delta = 1 with delay \tau = 0 and row (a4)--(c4) for nonlinear coupling and
\tau = 0.14. Blue curves for the in-phase periodic solutions; red curves for the anti-phase periodic solutions; grey
curves ( (b3)--(c3) and (b4)--(c4)) for the steady states. Thick curves for stable and thin for unstable solutions.
Bifurcation points labels: \bullet Hopf bifurcation, \ast torus bifurcation, \times branching point or saddle node of limit
cycles, \blacktriangle bifurcation involving connecting orbit (homo- or heteroclinic). Grey rectangles indicate regions shown
in the insets. In all panels, \alpha = 12.457, \beta = 0.007095, and \gamma = 0.641.
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214 S\LOWI\'NSKI, AL-RAMADHANI, AND TSANEVA-ATANASOVA

and experimental observations. Concurrently, it shows that the behavior of the model (2.2),
even for arbitrary parameter values, has the potential to quantitatively describe experimental
observations. In particular, the model with phenomenologically motivated coupling, (2.1),
for \tau = 0 is monostable for 0 < \omega \leq 6[Hz]; see panels (a1) and (a3). The stable in-phase
and anti-phase periodic solutions, for the parameter values in Figure 3, coexist (as observed
experimentally) only if the time delay \tau > 0 (see also Figure 11(a)--(b), which shows that the
bistability of the system (2.1) with \tau = 0 can be observed only in a very small part of the
(a, b)-plane). Importantly, the system (2.2) with a neurologically motivated coupling function
supports bistability. Furthermore, Figure 3 columns (b)--(c) show that only for the model (2.2)
with the neurologically motivated coupling the amplitudes of the in-phase and anti-phase are
similar in magnitude and monotonic for \omega \in [0.5, 6][Hz]. The inverse amplitude-frequency
relation and similar amplitude of in-phase and anti-phase solutions are typical features of os-
cillatory movements observed experimentally in various movement tasks with nonconstrained
amplitude [5, 29]. These observations provide justification and motivate further investigation
of neurologically motivated coupling, thus supporting the need to consider physiological and
perceptual delays in order to accurately and quantitatively model experimentally observed
transitions between the in-phase and anti-phase coordination patterns [2, 7, 23, 34, 38].

2.1. Connecting orbits and periodic solutions. In this section, we investigate the emer-
gence of periodic solutions in the system (2.2) via connecting orbits. In Figure 3 columns
(b)--(c) we show that in all the cases the in-phase (blue) periodic solutions of the system (2.2)
arise at \omega = 0 in a heteroclinic bifurcation and gain stability at \omega > 0 at a branching point.
Meanwhile the anti-phase (red) periodic solutions arise at \omega > 0 in a heteroclinic bifurcation
for the linear coupling (\delta = 0; see Figure 3(b1)--(b2) and (c1)--(c2)) or via Hopf bifurcation
(\delta = 1; see Figure 3(b3)--(b4) and (c3)--(c4)) for the nonlinear coupling and later undergoes
homoclinic bifurcation. To investigate the role of connecting orbits in the onset of the in-phase
and anti-phase periodic solutions in more detail, we combine a theoretical analysis of the equi-
librium state of system (2.2) and a numerical bifurcation analysis of the periodic solutions
in the case \tau = 0. The observed heteroclinic bifurcation appears to be similar to transitions
involving connecting orbits described in [6].

Figure 4 illustrates the mechanism of emergence of the periodic solutions of (2.2) with
linear coupling, \delta = 0, and no delay, \tau = 0. Panel (a) shows the bifurcation diagram of
the system (2.2) in \omega using the same parameters' values as in Figure 3(b1). Panels (b)--(f)
show representative phase portraits of the system (2.2) at the values of \omega indicated by the
corresponding labels in panel (a). Panels (b) and (e) show the hyperplanes (x1 = x2, y1 = y2)
and (x1 =  - x2, y1 =  - y2), respectively, while panels (c)--(d) and (f) show the phase space
(x1, x2, y1) of the model.

In Figure 4(b) we demonstrate that an unstable in-phase periodic orbit emerges from
a family of heteroclinic orbits (blue area with dashed curves) that connects unstable (thin
grey) and stable (thick grey) branches of a family of nonisolated equilibria of the dynamics of
system (2.2) restricted to the in-phase hyperplane. The existence of the family of nonisolated
equilibria and their stability can be inferred as follows; for \delta = 0, the system (2.2) takes the
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NEUROLOGICALLY MOTIVATED MODEL OF COORDINATION 215

Figure 4. Mechanisms of emergence of the in-phase and anti-phase periodic solutions. (a) Bifurcation
diagram of the in-phase and anti-phase periodic solutions of (2.2) in the parameter \omega for the linear coupling,
\delta = 0, and \tau = 0, r = 1, \epsilon = 1; the same parameters' values as in Figure 3(b1). Colors and symbols are as
in Figure 3; additionally, the purple curve indicates periodic orbit with phase that changes from in-phase to
anti-phase and grey \blacksquare indicates transition involving family of nonisolated equilibria. Panels (b)--(f) show phase
portraits for increasing values of \omega . (b) Phase plane (x1 = x2, y1 = y2) at \omega = 0; gray arrows indicate direction
of the flow, green x-nullclines, dark green y-nullcline, and dashed blue curves indicate family of the heteroclinic
orbits connecting the unstable and stable nonisolated equilibria. (c) Phase space (x1, x2, y1) at \omega = 0.2249[Hz].
(d) \omega = 0.2250[Hz]. (e) Phase plane (x1 =  - x2, y1 =  - y2) at \omega = 1/(

\surd 
2\pi ); dashed red curves indicate family

of the heteroclinic orbits. (f) \omega = 0.2252[Hz]. The insets show the full shape of nullclines of the system (2.2)
reduced to the in-phase plane (blue axis box) and anti-phase plane (red axis box). In all panels, \alpha = 12.457,
\beta = 0.007095, and \gamma = 0.641.
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form

(2.3)

\.xi(t) =yi(t),

\.yi(t) = - 
\bigl( 
yi(t)(\alpha xi(t)

2 + \beta yi(t)
2  - \gamma ) + \omega 2xi(t)

\bigr) 
+ \epsilon 

\biggl( 
xi(t) - (1 - r)xi(t - \tau ) - rxj(t - \tau )

\biggr) 
.

The steady state is determined by equating the right-hand side of (2.3) to 0 (recall that for
steady state we have xi(t - \tau ) = xi(t)), which leads to the system of linear equations

(2.4)
yi = 0,

 - \omega 2xi + \epsilon r(xi  - xj) = 0.

For \omega = 0 the solutions of the system satisfy the following conditions: yi = 0, xi = xj .
Therefore, the steady state of the system consists of a family of nonisolated fixed points
defined by the line

L = \{ (x1, x2, y1, y2) \in \BbbR 4| x1 = x2, y1 = 0, y2 = 0\} .

We investigate this case further by considering the dynamics with zero delay (\tau = 0; to
simplify notation we also omit the dependence on time in equations). We focus only on the
dynamics defined on the in-phase plane,

(2.5) P = \{ (x1, x2, y1, y2) \in \BbbR 4| x1 = x2, y1 = y2\} ,

which for \omega = 0 can be described as

(2.6)
\.x = y,

\.y = - y(\alpha x2 + \beta y2  - \gamma ).

The Jacobian matrix of system (2.6) at the nonisolated family of equilibria (y = 0) is given
by

J =

\biggl[ 
0 1
0  - (\alpha x2  - \gamma )

\biggr] 
,

which has the eigenvalues
\lambda 1 = 0, \lambda 2 = \gamma  - \alpha x2.

For \alpha , \gamma > 0 (including the choice \alpha = 12.457 and \gamma = 0.641), the nonisolated equilibrium

on y = 0 has a stable direction if x \in (\infty , - 
\sqrt{} 

\gamma 
\alpha ) \cup (

\sqrt{} 
\gamma 
\alpha ,\infty ) and an unstable direction if

x \in ( - 
\sqrt{} 

\gamma 
\alpha ,

\sqrt{} 
\gamma 
\alpha ).

The nullclines of this system are given by

x-nullcline: y = 0,

y-nullcline: y = 0 \cup \alpha 

\gamma 
x2 +

\beta 

\gamma 
y2 = 1.

D
ow

nl
oa

de
d 

01
/1

6/
20

 to
 1

44
.1

73
.1

77
.9

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NEUROLOGICALLY MOTIVATED MODEL OF COORDINATION 217

The x-nullcline and the y = 0 branch of the y-nullcline overlap. The self-intersection point of
the y-nullcline, i.e., the intersection points between the line y = 0 and the ellipse (\alpha /\gamma )x2 +
(\beta /\gamma )y2 = 1, are located at x = \pm 

\sqrt{} 
\gamma /\alpha , at which the family of nonisolated equilibria changes

its stability. The nullclines are shown in the inset in Figure 4(b).
Figure 4(c), \omega = 0.2249[Hz], shows in-phase periodic solution (thick blue) and two phase-

locked periodic solutions (purple) that appear at the branching point where the in-phase
periodic solution gains stability. Panel (d), \omega = 0.2250[Hz], shows further that the phase-
locked periodic solutions disappear at the points of intersection of the nullclines of system (2.3)
and contract to the anti-phase plane. For \omega = 1/(

\surd 
2\pi ), Figure 4(e), the stable anti-phase

periodic solution emerges in the same fashion as the in-phase periodic solutions at \omega = 0.
For \omega > 0 the solutions (2.4) of the system (2.3) satisfy the following conditions: y1 =

y2 = 0, x1 + x2 = 0, (2\epsilon r - \omega 2)(x1  - x2) = 0 (we added and subtracted the last two equations
of (2.4)). Therefore, the steady state of the system either is the trivial equilibrium (0, 0, 0, 0)
for (2\epsilon r  - \omega 2) \not = 0, or it consists of a family of nonisolated fixed points defined by the line

L = \{ (x1, x2, y1, y2) \in \BbbR 4| x1 + x2 = 0, y1 = 0, y2 = 0\} 

for (2\epsilon r  - \omega 2) = 0. This equation defines a boundary for the region of existence of the anti-
phase solution in the parameter space (\epsilon , r, \omega ). To further investigate the dynamics before
and after this transition, we again consider the dynamics of the system (2.3) for \tau = 0. We
proceed analogously to the in-phase case and focus only on the dynamics restricted to the
anti-phase plane:

(2.7) P = \{ (x1, x2, y1, y2) \in \BbbR 4| x1 =  - x2, y1 =  - y2\} .

The reduced system (2.3) takes the following form:

\.x =y,

\.y = - 
\bigl( 
y(\alpha x2 + \beta y2  - \gamma ) + \omega 2x

\bigr) 
+ \epsilon (x - (1 - r)x+ rx) .

The linearization of system (2.8) at the equilibrium (x, y) = (0, 0) has the following Jacobean:

(2.8) J0 =

\biggl[ 
0 1

 - \omega 2 \gamma 

\biggr] 
with eigenvalues

(2.9) \lambda 0 =
\gamma \mp 

\sqrt{} 
\gamma 2 + 4(2\epsilon r  - \omega 2)

2
.

Hence, depending on the sign of (2\epsilon r  - \omega 2), we can distinguish three different cases:
\bullet \omega 2 < 2\epsilon r. The trivial equilibrium (0, 0) is of saddle type, and no limit cycle exists in
the anti-phase plane.

\bullet \omega 2 = 2\epsilon r. In this case, there is no flow through the line y = 0, which consists of a
family of nonisolated equilibria.
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\bullet \omega 2 > 2\epsilon r. For \gamma > 0 (as in our setting \gamma = 0.641) the trivial equilibrium (0, 0) of
(2.6) is unstable and surrounded by a stable limit cycle. (Note that for \gamma < 0 the
equilibrium would be stable.)

The stability of the case \omega 2 = 2\epsilon r restricted to the anti-phase hyperplane is similar to the
\omega = 0 case restricted to the in-phase hyperplane. Furthermore, this analysis can be extended
to the system (2.1) for \tau = 0.

Finally, Figure 4(f), \omega = 0.2252[Hz], shows coexistence of the stable in-phase and anti-
phase periodic solutions for \omega > 1/(

\surd 
2\pi ). We conjecture that the results for \tau = 0 can be

extended to \tau > 0. We base the conjecture on two observations. First, the models for \tau = 0
and \tau > 0 have the same steady states, although their stability might differ. Second, as the
continuation parameter \omega approaches \omega = 0 (for the in-phase solutions) or \omega = 1/(

\surd 
2\pi ) (for

the anti-phase solutions) the period of the oscillatory solutions of the system (2.3) with \tau > 0
increases exponentially, which is consistent with existence of a connecting orbit.

Figure 5. Sequence of phase portraits of the system (2.2) restricted to the anti-phase hyperplane that
illustrate the bifurcations of the anti-phase periodic solutions shown in the inset in Figure 3(b3). Colors and
symbols are as in Figure 4. Additionally, grey dots indicate equilibria (large - stable, small - unstable); black
curves are stable and unstable manifolds of the saddle point; thin red curve with arrows indicates double
homoclinic orbit. In all panels, \tau = 0, \delta = 1, r = 1, \epsilon = 1, \alpha = 12.457, \beta = 0.007095, and \gamma = 0.641.

Figure 5 shows a sequence of phase portraits of the system (2.2) restricted to the anti-
phase hyperplane that illustrate the bifurcations of the anti-phase periodic solutions shown
in the inset in Figure 3(b3) for \tau = 0, \delta = 1, r = 1, \epsilon = 1. In panel (a) there are two stable
equilibria (large grey dots) and a saddle point at (x, y) = (0, 0). As the parameter \omega increases,
a pair of anti-phase periodic solutions (stable and unstable) surrounding the three equilibria
appears in a saddle-node bifurcation of limit cycles, panel (b). Next, the unstable periodic
orbit and the saddle point connect and become a double homoclinic orbit, panel (c). In panel
(d), the homoclinic orbit breaks into two small unstable anti-phase periodic orbits surrounding
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two stable nodes. These two small unstable periodic orbits shrink and disappear in a Hopf
bifurcation as \omega increases. After the Hopf bifurcation the three unstable steady states (two
nodes and one saddle) are surrounded by a single stable anti-phase periodic solution, panel (e).
As the parameter \omega increases further, the system undergoes a pitchfork bifurcation, where the
two unstable nodes merge with the saddle point. After the pitchfork bifurcation, the single
unstable focus point at the origin (0, 0) is surrounded by a stable anti-phase periodic solution.

2.2. Influence of coupling parameters and time delay on the stability of in-phase and
anti-phase oscillations. We proceed by investigating the stability of in-phase and anti-phase
coordination patterns and its dependence on the coupling parameters and time delay. We
compute two-parameter continuations of the bifurcations of in-phase and anti-phase periodic
solutions of system (2.2) in order to study the effect of time delay and coupling parameters on
the regions of bistability and monostability in the parameter space. Our aim is to identify the
regions in parameter space that support the experimentally observed transition from bistable
dynamics of in-phase and anti-phase periodic regimes to monostable in-phase oscillations.

Figure 6. Influence of time-delay on stability of the in-phase and anti-phase oscillations. Two parameter
bifurcation diagrams of the stability of in-phase and anti-phase oscillations of system (2.2) in the (\tau , \epsilon )-plane
for \delta = 0 (a); and in the (\tau , \delta )-plane for \epsilon = 1 (b). The labels, I and A, and colors (blue and red) indicate,
respectively, the existence of stable in-phase and anti-phase oscillations in the corresponding region; IA (pink)
indicates regions where the two kinds of solutions coexist. The dashed/thin curves represent, respectively, the
loci of torus and branching point bifurcations of periodic solutions. In all panels, \alpha = 12.457, \beta = 0.007095,
\gamma = 0.641, \omega = 1[Hz], and r = 1.

2.2.1. The influence of time delay. To explore the influence of time delay on the stability,
we perform a two-parameter numerical continuation of the bifurcations of in-phase and anti-
phase periodic solutions in the time delay \tau , the coupling strength \epsilon , and the degree of
nonlinearity \delta .
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Figure 6 shows two-parameter bifurcation diagrams of the in-phase and anti-phase periodic
solutions of the system (2.2). Panel (a) depicts the bifurcation diagram in the (\tau , \epsilon )-plane for
\delta = 0, which illustrates the dependence of stability on the time delay and coupling strength
in the linear coupling case, while panel (b) shows the bifurcation diagram in the (\tau , \delta )-plane
illustrating the dependence of stability of periodic solutions on the time delay and degree of
nonlinearity of the coupling function for \epsilon = 1. The other parameters are \omega = 1[Hz] and r = 1.
The different stability regions of the periodic solutions are bounded by curves representing
the loci of torus and branching point bifurcations in the parameter plane. For the sake of
clarity, we only show parts of the curves that bound the regions of stable solutions.

The bifurcation diagrams presented in Figure 6 demonstrate that for sufficiently small
time delay, in-phase and anti-phase periodic regimes coexist for wide ranges of the coupling
parameters \epsilon and \delta . For larger values of \tau , torus or branching point bifurcation leads to the
emergence of regions of monostable in-phase or anti-phase coordination patterns. As the time
delay increases, the regions of bistability and monostability alternate. It can also be noticed
that the bifurcations of in-phase and anti-phase coordination patterns alternate in the range
of \tau . Analysis of effects of time delay on the dynamics of system (2.1) can be found in [50].

2.2.2. The influence of coupling parameters. The bifurcation analysis in (\tau , \epsilon ) and (\tau , \delta )
parameter planes, presented in the section above, shows that for sufficiently small time delay,
the dynamics of the system (2.2) at frequency \omega = 1[Hz] exhibits bistable in-phase and anti-
phase oscillations. The next step is to identify the ranges of the coupling parameters that
support the transition from bistable dynamics to the monostable in-phase periodic regime as
the frequency \omega increases [23, 50].

Degree of coupling nonlinearity. First, we consider the effects of the degree of coupling
nonlinearity on the stability. To this end, we perform two-parameter continuation of the
bifurcations of in-phase and anti-phase periodic solutions in the parameter \delta and frequency
\omega . Figure 7 presents the two-parameter bifurcation diagrams of the stability of in-phase
and anti-phase oscillations in the (\omega , \delta )-plane for \delta \geq 0. Panels (a), (c) and (b), (d) show a
comparison between two values of the time delays \tau = 0.08[s] and \tau = 0.14[s] (representing the
range 70 - 150[ms] that have been measured experimentally in human responses to continuous
stimuli [33]). Furthermore, the value of time delay \tau = 0.08[s] is consistent with the most
recent estimates of the delays within the neuromuscular system [60]. Figure 7 illustrates also
how the bifurcation diagrams change for different levels of cross-talk. Specifically, (a)--(b) show
bifurcation diagrams for r = 1 representing pure mutual (no self) feedback (corresponding to
a moving effector that is influenced only by the position of the other effector), and panels (c)--
(d) show show bifurcation diagrams for r = 0.5 representing equal self- and mutual feedback
(corresponding to a moving effector being equally influenced by the feedback of its own and
the other effector positions) [2]. The range of frequency is 0 < \omega < 6[Hz] and corresponds to
the experimentally explored pacing frequency range [5, 7, 29, 34].

The bifurcation diagrams in Figure 7 demonstrate that bistable regimes of in-phase and
anti-phase oscillations exist for a range of values of the frequency parameter \omega in the regions
labeled as IA. As the parameter \omega increases, the anti-phase periodic solutions lose stability
via a branching point bifurcation. Panels (a), (c) for \tau = 0.08[s] show sizeable ranges of
the (\omega , \tau ) parameter space, where the dynamics of system (2.2) supports the experimental
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Figure 7. Influence of coupling nonlinearity on stability of the in-phase and anti-phase oscillations. Two
parameter bifurcation diagrams of the stability of in-phase and anti-phase oscillations of system (2.2) in the
(\omega , \delta ) plane for \tau = 0.08, 0.14, r = 1, 0.5, \epsilon = 1, \alpha = 12.457, \beta = 0.007095, and \gamma = 0.641. The labels, I and A,
and colors (blue and red) indicate, respectively, the existence of stable in-phase and anti-phase oscillations in
the corresponding region; IA (pink) indicates regions where the two kinds of solutions coexist. The solid black
curves represent the loci of branching point bifurcation.

observations, i.e., transition from bistable to monostable coordination patterns. Furthermore,
panels (a) and (c) show that increasing the degree of nonlinearity \delta increases the frequency
at which the anti-phase periodic solution loses its stability and the transition in coordination
pattern takes place. On the other hand, for longer delays \tau = 0.14[s], in panels (b) and (d),
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we observe an additional transition in the coordination pattern around \omega \approx 3.5[Hz]. At this
frequency the anti-phase periodic solutions regain stability. Such a transition has not been
observed experimentally for bimanual coordination and could be regarded as an experimentally
testable model prediction.

Figure 8. Influence of coupling strength on stability of the in-phase and anti-phase oscillations. Bifurcation
diagram of stability of the in-phase and anti-phase oscillations of system (2.2) in the frequency parameter \omega 
for the coupling strength values \epsilon = 0.2, 1, 5. All colors and symbols are the same as in Figure 3 and Figure 4;
additionally grey \times indicates pitchfork bifurcation. Grey semitransparent rectangles indicate regions enlarged
in the panels (a2)--(f2). In all panels, \alpha = 12.457, \beta = 0.007095, and \gamma = 0.641.
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Coupling strength and cross-talk. Next, we investigate the effects of the coupling strength
\epsilon and cross-talk r on the stability of the in-phase and anti-phase periodic solutions by close
examination of one-parameter bifurcation diagrams in the frequency parameter \omega for weak
\epsilon = 0.2, moderate \epsilon = 1, and high coupling strengths \epsilon = 5 and for two values of cross-talk
r = 1 and r = 0.5. The values of the other coupling parameters, \delta = 6 and \tau = 0.08[s], were
selected from Figure 7 such that the pattern of coexistence of bistability of the in-phase and
anti-phase periodic solutions is consistent with the experimental observations.

Figure 8 demonstrates that increasing the coupling strength leads to a larger difference in
the amplitudes of the in-phase and anti-phase periodic solutions. The bifurcation diagrams
for r = 1 show that increasing the coupling strength \epsilon has little effect on the value of \omega where
the anti-phase solution loses stability at a branching point bifurcation. In contrast, at a high
level of cross-talk r = 0.5 the value of \omega at which the anti-phase solution loses stability (via
the branching point bifurcation) depends strongly on the coupling strength \epsilon .

Figure 8 panels (a2)--(c2) and (d2)--(f2) show the details of the bifurcation diagrams for
small values of \omega . Specifically, we find stable nontrivial (| | x1| | > 0) steady states losing
stability via Hopf bifurcation and disappearing in a pitchfork bifurcation. We also observe a
second Hopf bifurcation. One of the Hopf bifurcations gives rise to the anti-phase periodic
solutions and the other to a branch of phase-locked periodic solutions that collides with the
in-phase periodic solutions at a branching point at which the in-phase periodic solutions gain
stability. We further observe that both the anti-phase and period-locked periodic solutions
undergo a series of bifurcations through which they lose and gain stability. For the sake of
clarity, in Figure 8 we only indicate the bifurcations at which the periodic solutions gain or
lose stability and bifurcations that involve connecting orbits.

2.2.3. Transient dynamics and transition between discrete and continuous movement.
Finally, we investigate how the stability and solution structure presented in Figure 8 might
affect transition between discrete and continuous movement as well as transient dynamics
observed in experiments. Figure 9 shows details of the one-parameter bifurcation diagram in
the frequency \omega for the same parameters values as in Figure 8(b).

The transient dynamics in the system (2.2) is affected by the phase-locked periodic solu-
tions coexisting with the in- and anti-phase periodic solutions and by the rate of convergence
to the stable periodic attractors. Figure 9(a) shows two branches of phased-locked solution
that emerge from the branching point at which the anti-phase periodic solutions lose stabil-
ity. Although both branches of the phase-locked periodic solution are unstable, one of the
branches is close in terms of the max(x1) to the stable in-phase solution and depending on ini-
tial conditions will affect the orbits converging to a stable attractor. Convergence to the stable
attractor is further affected by slow attraction/repulsion rate of the in-phase and anti-phase
periodic solutions for \omega > 3 [Hz]. Figure 9(c) shows that for \omega > 3 [Hz] the maximal nontrivial
Floquet multipliers of the the in-phase and anti-phase periodic solutions have modulus close
to the unit circle max(| \mu | ) \approx 1.

Figure 9(b) shows a complicated structure of coexisting phase-locked periodic solutions
and a sequence of period doubling bifurcations of solutions that emerge from them. The exis-
tence of the period doubling cascade indicates the presence of chaotic dynamics. To illustrate
this, in Figure 9(d) we plot a complicated attractor that can be found in this region. The
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complex pattern of multistability presented in panel (b) highlights potentially complex dy-
namics underlying the transitions between discrete and continuous movement. Although such
rich dynamics would be unlikely to be observed in experiments due to inherent experimental
noise, it nonetheless demonstrates that the dependence of the transition between discrete and
continuous motion on coupling parameters and driving frequency \omega can be explored by means
of bifurcation analysis of the model (2.2).

Figure 9. Details of dynamics for Figure 8(b), including phase-locked solutions and period doubling cascade.
(a) Bifurcation diagrams of (2.2) in the parameter \omega . All colors and symbols are the same as in Figure 8. (b)
Details of the shaded region in (a); inset shows a begging of the period doubling sequence (\blacklozenge period doubling
bifurcations; black curves period doubled solutions). (c) Maximum of the modulus of the Floquet multipliers
max(| \mu | ) for the in-phase and anti-phase solutions from (a). (d) Phase space plot showing an attractor and
unstable in-phase and anti-phase periodic orbits for \omega = 0.178 [Hz]; indicated in (b). \alpha = 12.457, \beta = 0.007095,
and \gamma = 0.641.

In order to demonstrate the above ideas, in Figure 10 we present results of simulations of
the model (2.2) which follow the experimental protocol from [29, 30] in which pacing frequency
is increased by 0.2 Hz every 10 seconds. Accordingly, we vary the parameter \omega in 16 consecutive
simulations (each running for 10 seconds). The initial state of each simulations is the end-state
of the previous run with an additional small (5\% of the amplitude) noise drawn from uniform
distribution. We ran the sequence of the simulations twice, starting from the in-phase and
anti-phase initial states. Figure 10 depicts time traces from the simulations in the (x1, x2)
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phase plane. Transition from anti-phase to in-phase periodic solution occurs at \omega = 3 [Hz].
Further, we observe that the simulations initiated in an anti-phase state (red) deviate strongly
from the both coordination patterns for 2.6 < \omega < 3.4 [Hz]. In the literature, depending on
the specific experiments, the transition between anti-phase and in-phase coordination regimes
has been reported to occur for 1 < \omega < 3 [Hz] [7, 29, 30, 44, 46]. The two bottom panels
show the first five seconds of the simulation time series for \omega = 2.4 [Hz], \omega = 3.2 [Hz], and
\omega = 4 [Hz] representing the experimentally observed transition.

3. Discussion. We demonstrate that the hybrid oscillator (1.1) with the neurologically
motivated coupling (1.3) incorporating time delay accurately captures the empirically ob-
served features of rhythmic movement coordination. And in this respect it performs better
than the HKB model with phenomenologically motivated coupling (1.2). It captures, quanti-
tatively, two hallmark features of rhythmic movement behavior---namely, the linear amplitude-
frequency relation of the oscillations and the stability transition of the coordination dynamics
(from bistable in-phase and anti-phase oscillations to monostable in-phase periodic regime)
as the frequency parameter \omega increases. Both these characteristics were observed and con-
sistently reproduced in many oscillatory movement experiments [3, 4, 5, 7, 8, 9, 10, 11, 24,
25, 29, 30, 34, 37, 39, 40, 41, 43, 51, 56, 59] as well as in real-life hand movements [26]. Our
analysis revealed that these two properties of the periodic solutions of system (2.2) are per-
sistent for a large, and experimentally relevant, range of the explored parameter space of the
neurologically motivated coupling function (1.3) (see, e.g., Figure 3, Figure 8, Figure 9, and
Figure 10).

The presented numerical bifurcation analysis shows that inclusion of the time delay in
the coupling function has significant effects on altering the regions of bistability and mono-
stability in the parameter space and is necessary to explain the experimental observations.
For the explored parameter space, the stability transition in the coordination dynamics is
best captured for a small value of delay \tau = 0.08[s] which is consistent with electrophysically
estimated delay in the neuromuscular system [60] and is closer to the lower limit for time
delays estimated experimentally [33]. The observed upper limit of time delay offers a way for
direct experimental validation of our findings regarding persistence of anti-phase coordination
pattern for higher pacing frequencies.

We further show how, by varying the strength \epsilon , nonlinearity \delta , and cross-talk degree
r of the coupling, one can control the driving frequency at which the anti-phase solution
loses stability and the coordination patterns becomes monostable. This is essential not only
for comparison to the experimental observations of rhythmic movement coordination but
also in applications of this modeling approach to hybrid system such as the human-dynamic
clamp [12]. Additionally, our analysis and, in particular, the interpretability of the parameters
of the neurologically motivated coupling function (1.3) might help to explain changes observed
in coordination patterns in people with neuropsychiatric and developmental disorders [14, 15,
16, 17, 19, 20, 21, 31, 42, 45, 49, 57, 58].

Finally, the presented theoretical and numerical analysis reveals that for small values of the
parameter \omega system (2.2) can be used to model transition between discrete and oscillatory
movements [28], going beyond the applicability of the original HKB model [23]. The rich
structure of this transition (see, e.g., Figure 9) might help in developing experimental protocols
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Figure 10. Numerical experiment. The first four rows show 10 seconds of simulated in-phase (blue) and
anti-phase ( red) solutions in the (x1, x2) phase plane. The bottom two rows show the first 5 seconds of the
in-phase and anti-phase times series for \omega = 2.4 [Hz], \omega = 3.2 [Hz], and \omega = 4 [Hz]. In all panels, r = 1,
\delta = 6, \tau = 0.08, \epsilon = 1, \alpha = 12.457, \beta = 0.007095, and \gamma = 0.641.
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to validate these findings. Another potential future direction would be a comparison of the
presented analysis with a bifurcation analysis of an alternative model of rhythmic movement
with perceptual coupling [7]. Perceptual coupling provides an alternative (to neuromuscular
coupling) approach to modeling socio-motor coordination with a growing experimental support
[34, 52].

4. Conclusions. In this work, we investigated analytically and numerically the dynamics
of two coupled hybrid oscillators that can be used to model movement coordination behavior,
considering the physically relevant intrinsic parameter setting, that is consistent with exper-
imental data. The analysis demonstrates that the periodic regimes of two hybrid oscillators
coupled by neurologically motivated coupling can consistently exhibit the desired in-phase
and anti-phase bistability patterns, in addition to the amplitude-frequency relation, that have
been reported in many empirical studies of rhythmic movement coordination. Our analysis
also highlights some parameter ranges for which the model supports the dynamics of discrete
movement, which is the class of movements absent in the original HKB model.

Appendix A. Bifurcation diagram of system (2.1) in the plane of coupling coefficients
\bfita and \bfitb . Figure 11 shows bifurcation diagrams of solutions of system (2.1) in the plane
of coupling strengths a and b. Panels (a) and (b), for \tau 1,2 = 0, show that the region of
bistability (in the enlargement) changes relatively little with increasing frequency \omega . Panel
(c), for \tau 1,2 = 0.14[s] and \omega = 1.3[Hz], demonstrates that introduction of the time delay in
the coupling considerably increases the region of bistability in comparison with panel (a).
The same region becomes almost in-phase monostable as the frequency parameter increases
to \omega = 3[Hz], as illustrated in panel (d).

Data availability. This study did not generate any new data.
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Figure 11. Two parameter bifurcation diagrams of periodic solutions of (2.1) in the a, b-plane for different
combinations of intrinsic frequencies \omega and time delays \tau 1,2. In (a) \tau 1,2 = 0 and \omega = 1.3[Hz], (b) \tau 1,2 = 0
and \omega = 3[Hz], (c) \tau 1,2 = 0.14[s] and \omega = 1.3[Hz], and (d) \tau 1,2 = 0.14[s] and \omega = 3[Hz]. Blue areas indicate
stable in-phase solutions, and red areas indicate stable anti-phase solutions. Bistability is indicated in purple.
Enlargements in the bottom left corner of each panel show regions of bistability around a = 0 and b = 0. Thick
black lines are lines of Hopf bifurcations, thin black lines are lines of branching points, and dashed black lines
are lines of torus bifurcations. We show only parts of the bifurcation lines that bound regions of stable periodic
solutions. Red-dashed line indicates part of the boundary of the region of anti-phase solution where growing
amplitude caused computed stability information to be unreliable. Top left and right insets in each panel show
1D bifurcation diagrams in a for b = 1 and in b for a = 5; thick lines indicate stable solutions, and thin lines
indicate unstable solutions; grey lines shown in the insets are unstable steady states | | xi| | = 0. In all panels,
\alpha = 12.457, \beta = 0.007095, and \gamma = 0.641.
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