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Abstract 25 

The development of biodiversity indicators is an integral component of forming marine strategies 26 

under the European Marine Strategy Framework Directive (MSFD). A key stage in the development 27 

of biodiversity indicators is the selection of an appropriate temporal scale over which to assess 28 

change in indicator state. This presents a particular challenge for the development of plankton 29 

indicators for assessing the state of pelagic habitats, due to the inherent stochasticity of plankton 30 

dynamics and the sensitivity of indicators to both climate-driven change and directly manageable 31 

pressures. Using two plankton indicator metrics, we demonstrate that the outcome of indicator 32 

assessments is inherently influenced by the temporal scale of the time-period over which the 33 

indicators are assessed. For example, we show that the inclusion of data from before a regime shift 34 

that occurred in the 1980s often alters the assessment of change compared to only including data 35 

from after the regime shift. We highlight that ultimately the appropriate temporal scale selected 36 

depends on the policy questions being addressed. We also suggest that reporting indicators over 37 

multiple temporal scales within an assessment helps provide information relevant to contemporary 38 

management, whilst also retaining crucial multi-decadal trends such as those caused by climate 39 

change.  40 

 41 

 42 

 43 



1 Introduction 44 
Monitoring of marine biodiversity underpins the achievement of healthy marine ecosystems by 45 

ensuring that management can be flexible, adaptive and effective (Addison et al., 2017). Across 46 

European seas, cumulative pressures from human activities are causing changes in marine 47 

biodiversity that are being addressed through both national and regional scale management 48 

frameworks (Apitz et al., 2006; Berg et al., 2015). Focusing at a regional scale, the European Union 49 

(EU) Marine Strategy Framework Directive (MSFD) incorporates biodiversity status into ecosystem-50 

based management strategies, where different components of the marine ecosystem are formally 51 

monitored and assessed against targets representing ‘Good Environmental Status’ (GES) (Directive 52 

2008/56/EC). As the base of the marine pelagic food web, plankton communities form one of the 53 

key components of these biodiversity assessments, and plankton community indicators are used to 54 

assess the status of ‘pelagic habitats’.  55 

A suite of indicators for pelagic habitat biodiversity has been identified and developed for formal 56 

assessment under the MSFD, reflecting change in bulk, functional, and compositional aspects of 57 

plankton community structure and ultimately, pelagic habitat state (McQuatters-Gollop et al., 2017). 58 

To quantify changes in these indicators, appropriate metrics have been selected which detect and 59 

measure change in the indicator state from a temporal baseline (McQuatters-Gollop et al., 2019; 60 

Rombouts et al., 2019). As current indicator state is compared to this baseline to evaluate change, 61 

here we refer to this temporal baseline as a ‘comparison period’.   62 

This temporal comparison period can be selected for a series of years that are considered to best 63 

represent Good Environmental Status, so that deviations away from this period inherently imply the 64 

pelagic habitat is not in GES (Dickey-Collas et al., 2017; Scherer et al., 2016). Plankton communities, 65 

however, are highly dynamic, species rich, and are driven by a multitude of complex ecological 66 

processes. An initial role of indicators therefore, before the evaluation of GES, is in the detection of a 67 

change in plankton community state compared to background variability. A comparison period for 68 

pelagic habitat indicators needs to be suitable for providing an initial flag of change in pelagic habitat 69 



state. This flagging process can trigger subsequent investigations as to how that change in state 70 

relates to Good Environmental Status, including identifying the underlying causes of change, and any 71 

implications for management. 72 

An inherent challenge in the development of pelagic habitat indicators therefore, is the selection of 73 

an appropriate temporal scale from which to compare current indicator state, i.e. whether to 74 

compare current indicator state to the full extent of a multi-decadal time series, or just a recent 75 

period. For example, it may be important to account for ‘shifting baselines syndrome’ in ecosystem 76 

state that has been identified within other areas of marine conservation (McClenachan et al., 2015; 77 

Pauly, 1995; Thurstan et al., 2015) . This is the phenomenon where neglecting past changes obscures 78 

the magnitude of change or variability in ecosystem components. Here, plankton data from the 79 

beginning of long-term time-series provide a possibility for setting a comparison period for pelagic 80 

habitat assessments that minimises shifting baselines syndrome. For example, Wasmund (2017) 81 

used historical plankton data to define a threshold value for the ratio for the diatom/dinoflagellate 82 

index, an indicator of plankton community structure used in assessments of the Baltic Sea, arguing 83 

that using pre-eutrophication period from the first half of the 20th century in the Baltic Sea provides 84 

a relatively pristine period for comparison. Furthermore, it is well understood that multi-decadal 85 

data are required for detecting climate change signals. For example, a well-documented climate 86 

change-driven regime shift occurred in the late 1980s in the North Sea, associated with a 87 

fundamental restructuring of the food-web (Reid et al., 2015). Including data from before, as well as 88 

after, this regime shift in the comparison period would be required to account for impacts of this 89 

regime shift in the assessment of current biodiversity indicator status. This requirement further 90 

supports the use of long temporal scales when establishing whether the current indicator state 91 

represents a changed or perturbed pelagic habitat (Giron-Nava et al., 2017; Henson et al., 2010).  92 

On the other hand, there are arguments against the use of including historic data, e.g. from the 93 

beginning of a long multidecadal time-series, in comparison periods, and instead establishing a 94 



comparison period using contemporary data. Firstly, plankton communities are naturally variable at 95 

seasonal, inter-annual and multi-decadal time-scales. The biodiversity of a given ecological 96 

community can be seen as having a temporal component, and turnover in a community occurs 97 

regardless of human pressures, meaning a degree of multidecadal change is to be expected 98 

(Magurran et al., 2010). Secondly, ‘legacy’ effects, where the state of an ecosystem at a given point 99 

in time (in this case an MSFD assessment period) is representative of previous accumulated human 100 

pressures, as well as the pressures for the period that is being assessed (O'Higgins et al., 2014). A 101 

balance must be drawn as to whether management is focused on contemporary pressures occurring 102 

in the current assessment cycle, or on the reduction and remediation of longer term legacy effects.  103 

Lastly, and arguably the largest challenge for pelagic habitats, is that climate change is outside the 104 

scope of drivers managed under the MSFD, and climate change can obscure the response of 105 

plankton communities to management measures aimed at direct localised pressures.  Duarte et al. 106 

(2009) for example show that reduction in nutrient levels did not result in a return of a eutrophic 107 

coastal system to a pristine reference status, due to underlying environmental changes. Climate 108 

change is instead categorised as a ‘prevailing condition’ by the Directive, and state changes caused 109 

by climate change are not legislatively required to lead to a management response (McQuatters-110 

Gollop, 2012). These factors together therefore call into question the use of assessing indicators for 111 

certain policy needs over long, multidecadal time-series. For example, is detecting the impacts of a 112 

regime shift in the 1980s relevant for current management? Would it instead be more useful to 113 

assess indicator change over a shorter, more contemporary time-scale? 114 

Given these questions, much attention has been drawn to the temporal scale of indicator reporting 115 

within the Marine Strategy Framework Directive. A recent analysis by Machado et al. (2019) 116 

highlighted a lack of consensus on appropriate temporal scale by Member States in their MSFD 117 

reporting, leading to varied time-scales and a lack of comparability across indicators and regions. 118 

They also advise against the use of opportunistic historical data in reporting indicator trends, and 119 

advocate for more structured harmonisation of temporal scales. It is important therefore, to 120 



understand how temporal scale influences the outcome of indicator assessments to consolidate an 121 

appropriate temporal scale for reporting between indicators and assessment regions. It is also 122 

important to understand how different temporal scales may give different types of information to 123 

policy for making management decisions.  124 

Here we use two plankton indicator metrics developed at the OSPAR level (the regional seas 125 

convention for the North-East Atlantic) to test how different time scale lengths affect the 126 

assessment of an indicator. Underlying these tests is understanding whether including data from 127 

further in the past in the comparison period increases the chances of detecting a state change in the 128 

assessment period (because for example, data from different climate regimes are compared), or 129 

whether including this data decreases the ability of detecting state change because more variability 130 

is encompassed within the comparison period.  The first indicator metric aggregates plankton 131 

taxonomic data into broad functional groups, termed ‘lifeforms’, and compares the current balance 132 

of key plankton functional groups in the system to prior time-points in a time-series (McQuatters-133 

Gollop et al., 2019). This metric forms the assessment of the OSPAR PH1 indicator ‘Change in 134 

Phytoplankton and Zooplankton Communities’ (OSPAR, 2017a). The second indicator metric 135 

partitions the total variability in a time-series into the ‘Local Contributions’ of individual time-points, 136 

to detect whether the current plankton community composition is or anomalous, compared to that 137 

of the wider time-series. This ‘Local Contribution to Beta Diversity (LCBD)’ metric contributes to a 138 

multi-metric index for assessing the OSPAR indicator PH3 ‘Changes in plankton diversity’ (Budria et 139 

al., 2017; OSPAR, 2017b; Rombouts et al., 2019). Both indicators are reliant on comparison to 140 

previous data in a time-series, and therefore the outcomes of assessing these indicators are 141 

inherently influenced by the temporal scale of the comparison period. We therefore aim to 142 

understand the influence of short, medium and long temporal scales of indicator assessment.  143 

2 Materials and Methods 144 
 145 



2.1 Plankton community data 146 
Plankton community data were obtained from the Continuous Plankton Recorder (CPR) survey (DOI: 147 

10.7487/2019.98.1.1181). The CPR survey has been collecting samples in the North Sea on a routine, 148 

consistent basis since 1958, creating a fully comparable multi-decadal time-series. CPRs consist of a 149 

filtering mechanism housed in an external body that is towed behind ships of opportunity at a depth 150 

of approximately 7-10m, with each sample representing approximately 10 nautical miles (18.5km) of 151 

tow, and approximately 3m3 of sea (Batten et al., 2003). Both phytoplankton and zooplankton data 152 

are then identified and enumerated on a semi-quantitative scale (Richardson et al., 2006). Focusing 153 

on the North Sea as a case study for indicator assessment, samples were extracted from a ‘northern 154 

North Sea’ and a ‘southern North Sea’ bounding box (Figure 1). Only taxa enumerated consistently 155 

throughout the time-series were included in the analysis.  156 

 157 
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 167 

 168 

Figure 1. Northern North Sea (blue), and southern North Sea 
(yellow) study regions. 



 169 

2.2 Indicator metrics 170 
 171 

2.2.1 Plankton lifeform index 172 
 173 

An indicator based on functional traits has been selected for assessing changes in plankton 174 

community structure under the MSFD (McQuatters-Gollop et al., 2019). The indicator is based on 175 

grouping taxa into their respective ‘lifeforms’ based on shared functional traits. Lifeforms are groups 176 

of taxa that play the same functional role within an ecosystem (Tett et al., 2013) and are analogous 177 

to functional groups. As ecosystems experience change and are subjected to pressures, the relative 178 

proportions and ratios of different life forms can change. Monitoring the relative abundance of key 179 

lifeforms can therefore help assess change in ecosystem state. The method of aggregating individual 180 

taxa into lifeforms is outlined in McQuatters-Gollop et al. (2019). Here we use five lifeform pairs 181 

included in the OSPAR Intermediate Assessment of 2017 (2017a): Diatoms/Dinoflagellates, 182 

Phytoplankton/ Non-carnivorous zooplankton, Pelagic/Tychopelagic diatoms, Small/Large copepods, 183 

and Holoplankton/Meroplankton.  184 

The metric currently employed by OSPAR to quantify changes in the lifeform indicator is the 185 

‘Plankton Index’, and is based around a ‘state-space’ approach (Tett et al., 2008). This approach 186 

involves selecting key lifeform pairs, based on their link to ecosystem structure and functioning, then 187 

plotting the abundance of the first lifeform for each month in a time series on the X axis, and the 188 

second lifeform on the Y axis (Tett et al., 2013). For example, in Figure 2 the abundance of diatoms is 189 

plotted on the X axis and the abundance of dinoflagellates on the Y axis, so that monthly plankton 190 

communities are plotted in ‘state-space’. As ratios of lifeforms vary naturally, e.g. seasonal variation, 191 

plotting multiple coordinates from months taken throughout a defined time period produces a 192 

‘domain’ within the plot of ecosystem state. The current plankton community, within the period that 193 

is being assessed, is used to create this domain. We hereby refer to this period as the ‘assessment 194 

period’. Previous time periods (i.e. ‘comparison periods’) can be compared to this assessment period 195 



domain by overlaying the months for the previous time period in question. If these points fall within 196 

the domain, it suggests the current state within the assessment period does not represent a change. 197 

If however these points fall outside the domain, it suggests the current state within the assessment 198 

period is different to previous time periods. This change in state is calculated as the proportion of 199 

points falling within the domain, quantified as a standardized ‘Plankton Index’. The lower the 200 

proportion of points falling inside the assessment period domain, the lower the Plankton Index 201 

value, and so the greater the change in state. In Figure 2, the assessment period represents a 202 

changed ecosystem state from the comparison period, revealing community change within the 203 

pelagic habitat (Tett et al., 2013).  204 

 205 
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 218 

Figure 2. The Plankton Index approach. Data from the 
current assessment period is used to create a 
domain. The comparison period is subsequently 
overlain and the PI quantifies the proportion of points 
falling outside of the domain. Here, we use a PI 
threshold of 0.6 to distinguish a state change from 
underlying variability. 



In this study, the total for each lifeform was calculated for each CPR sample in each of the two North 219 

Sea regions. These were then aggregated into annual means before being log10 (x+1) transformed. 220 

Months between 2013 and 2017 were used to create the assessment period domain for each 221 

lifeform pair for each region. This domain is calculated as an envelope that excludes the most 222 

extreme 10% of data points. The PI value is then calculated as the proportion of new points falling 223 

inside the domain, out of the total number of new points. To distinguish a state change from 224 

background variability, for this study we used a threshold of PI > 0.6 (i.e. fewer than 60% of points 225 

falling within the assessment period domain) to represent a state change.. The value of 0.6 was 226 

selected based on expert opinion, to represent a balance between sensitivity of the metric but 227 

allowing the distinguishing of change from background variability. As the selection of thresholds is a 228 

developing area, during future assessments this value may change based on quantitative criteria 229 

such as adjusting for multiple testing. 230 

 231 

 232 

 233 

 234 

 235 

2.2.2 Local Contribution to Beta Diversity 236 
 237 

This indicator metric identifies atypical or unique plankton community composition in a time-series, 238 

compared to  other time-points (Legendre and Gauthier, 2014) (without reference as to whether this 239 

composition is ‘good’ or ‘bad’ in terms of environmental status).  It is based on the concept that the 240 

total variability in community composition between points in a time-series can be viewed as the 241 

temporal ‘Beta Diversity’ of the time-series, analogous to the more classical use of Beta Diversity as 242 

a spatial concept. This total Beta Diversity can then be partitioned into the contribution each time-243 

point makes to the total variability. Time-points with significant contributions to the total can be 244 

viewed as contributing disproportionately to total variability, and therefore are atypical, or unique, 245 



in community composition, accounting for taxa identity, richness and dominance structures. This 246 

method therefore allows the evaluation as to whether the current assessment period is atypical in 247 

plankton community composition compared to a comparison period of previous time-points in the 248 

time-series. In this way, the evaluation of the assessment period will depend on the length of time-249 

series used as a comparison period. 250 

To calculate the ‘Local Contribution to Beta Diversity’ (LCBD) metric on annual mean data, first ‘Total 251 

Beta Diversity’ of both phytoplankton and zooplankton time-series was calculated following 252 

Legendre and Cáceres (2013). Total Beta Diversity (BDTotal) under this method was calculated as the 253 

total variance of the year-by-species community data, so was calculated without reference to alpha 254 

and gamma diversity as in other metrics of Beta Diversity (Anderson et al., 2011). A matrix of 255 

squared deviations from species means was calculated for each year for each species, so that if the 256 

abundance of a particular species was the same in all years, the values for that species were zero in 257 

each year. The total of these squared deviations were then summed across the species-by-year 258 

abundance data (SSTotal). BDTotal was then calculated as (SSTotal/(n-1)), where n refers to the number of 259 

years.  260 

For this study, the mean monthly abundances of each taxa were log10 (x+1) transformed, with any 261 

gaps in the monthly mean time-series filled through linear interpolation, before being further 262 

aggregated to annual means (Richardson et al., 2006). These annual means were then chord 263 

transformed prior to analysis to make the data suitable for Beta Diversity analysis and to avoid 264 

putting a large emphasis on rare species (Legendre and Borcard, 2018; Legendre and Gallagher, 265 

2001). Total Beta Diversity was then partitioned into the contribution of each individual year to the 266 

BDTotal, so that each year had an associated LCBD value. LCBD indices were tested for significance 267 

through permutation testing.  268 

To further interpret variation in the LCBD metric, we then identified the taxa that contribute the 269 

most to total community variability across the time-series. Here BDTotal was partitioned into the 270 



contribution each taxa makes, rather than each time-point makes as for LCBD. For each plankton 271 

community time-series, we calculated the ‘Species Contributions to Beta Diversity (SCBD)’ metric 272 

(Legendre et al., 2005) for each taxon, with taxa with high SCBD values showing the highest variation 273 

across the time-series, i.e. the highest contributions to BDTotal. All calculations and analyses of LCBD 274 

and SCBD were undertaken using the beta.div function in the R package ‘adespatial’ (Dray et al., 275 

2016).  276 

 277 

2.3 Temporal scale analysis 278 
 279 

For this study, we used 2013-2017 as the focal period for an assessment, i.e. the policy aim is to 280 

characterise the plankton community within this period in relation to previous time periods. These 281 

are the latest5 years of the CPR time-series included in this study, and represent the period of time 282 

that would be assessed within the latest 6-yearly cycle of the MSFD implementation process. This 283 

current assessment period was then compared to three comparison periods of varying temporal 284 

scale. Firstly, a short-term comparison period going back to 2004 was used. This short-term 285 

comparison period represents the previous policy cycle to the assessment period, so is analogous to 286 

assessing whether there has been a state change since the last policy cycle. Secondly, a medium-287 

term comparison period going back to 1990 was selected to represent a multi-decadal perspective, 288 

but post the1980s regime shift. Lastly, we used a long-term comparison period going back to 1958, 289 

which is the start of the consistent CPR time-series. This long-term period represents a multi-decadal 290 

perspective including the time periods before and after the 1980s regime shift.  291 

The assessment period of 2013-2017 was assessed at these three temporal scales using each 292 

indicator metric. For the Plankton Index metric, the period 2013-2017 was used to create the 293 

assessment period domain, and then data between 2004 and 2012, 1990 and 2012, and 1958 and 294 

2012, respectively, were overlaid and a Plankton Index value calculated. This analysis therefore 295 

covered both different discreet periods of time within the comparison period, and also different 296 



lengths of comparison period. For the LCBD metric, three time-series were created, 2004-2017, 297 

1990-2017, and 1958-2017. The BDTotal was calculated for each time-series and the LCBD values for 298 

each year in each time-series calculated. These time-series of LCBD values were then used to 299 

evaluate whether the assessment period of 2013-2017 was assessed as atypical at each of the three 300 

temporal scales.  301 

 302 

3 Results 303 

3.1 The effect of temporal scale on the plankton lifeform index 304 
 305 

Outputs of the Plankton Index for the five lifeform pairs included in this study are shown in Table 1. 306 

When using a PI threshold of 0.6 to establish whether there has been a change from the comparison 307 

period, the southern North Sea appears more stable in terms of plankton community change on the 308 

short-term scale compared to the northern North Sea, which experienced change in all lifeforms 309 

pairs apart from Pelagic/Tychopelagic diatoms during all three time-scales. Similarly, using the long-310 

term comparison period, two of the lifeform pairs showed a change below the threshold in the 311 

southern North Sea, whereas all six lifeform pairs showed a change in the northern North Sea when 312 

including long-term data in the comparison period.  313 

 314 

 315 

 316 

 317 

 318 



Table 1. Results of the Plankton Index for each lifeform pair in each region. PI<0.6 represents a state 319 
change. 320 

Lifeform pair northern North Sea southern North Sea 
Short-term 
(2004-2012) 

Medium-
term 
(1990-2012) 

Long-term 
(1958-2012) 

Short-term 
(2004-2012) 

Medium-
term 
(1990-2012)  

Long-term 
(1958-2012) 

Diatoms/Dinoflagellates 0.54 0.57 0.54 0.64 0.64 0.53 
Pelagic/Tychopelagic 
diatoms 

0.62 0.58 0.55 0.72 0.69 0.62 

Phytoplankton/ Non-
carnivorous zooplankton 

0.52 0.58 0.56 0.69 0.69 0.63 

Large/Small copepods 0.52 0.48 0.37 0.8 0.7 0.62 
Holoplankton/Meroplankton 0.59 0.46 0.34 0.62 0.55 0.44 

 321 

 322 

There are also differences between lifeform pairs in terms of their assessment outcomes at different 323 

temporal scales. There is a general trend that as the temporal scale of the comparison period 324 

increases (i.e. data from further back in time is included in the comparison period), the PI value 325 

lowers, therefore indicating greater change. For example, the Holoplankton/ Meroplankton pair in 326 

the northern North Sea showed a change across all temporal scales, with this change getting 327 

stronger (increasingly smaller PI values) as the temporal scale of the comparison period increased 328 

(Figure 3A). This pattern suggests this lifeform pair shows a clear trajectory of change over time. A 329 

similar pattern occurs for the Large/Small copepod pair in the northern North Sea. In contrast, 330 

Large/Small copepods in the southern North Sea showed stability across all three temporal scales, 331 

suggesting that little directional change has occurred in this lifeform pair in this area over multi-332 

decadal scales (Figure 3B). Stability in the southern North Sea across all three temporal scales is also 333 

shown in Pelagic/Tychopelagic diatoms, and Phytoplankton/Non-carnivorous zooplankton.  334 

Some lifeform pairs however, show different results depending on temporal scale when using 0.6 as 335 

a threshold. In the southern North Sea for example, diatoms and dinoflagellates show stability over 336 

the short and medium time scales, but change over the longer time-scale (Figure 3C). This pattern 337 



suggests that a large change in this lifeform pair in the southern North Sea occurred before 1990, 338 

after which it appears more stable. 339 

 340 

 341 

 342 

3.2 The effect of temporal scale on the LCBD indicator metric 343 
 344 

Results from the analysis of temporal scale on the LCBD metric are shown in Table 2. Similarly to the 345 

PI outputs, results vary between short-term, medium-term and long-term time-scales. Results vary 346 

in two main ways. Firstly, the years that are calculated as having significant Local Contributions to 347 

Beta Diversity vary. For example, in the southern North Sea, 2017 was assessed as having a 348 

significant LCBD for phytoplankton when looking at the short time-scale (Figure 4B). When including 349 

data before 2004, however, 2017 was no longer assessed as significant. Instead, when looking at the 350 

longest time-scale an extended period during the late 1970s and early 1980s was assessed as 351 

significant. When looking at the longest time-frame, therefore, most of the overall time-series 352 

variability (BDTotal) is driven by this period, rather than the current assessment period. Increasing 353 

temporal scale in this context therefore decreases the likelihood of assessing the current assessment 354 

period as anomalous, as more variability is encompassed in the comparison period than in the 355 

assessment period. This contrasts to the northern North Sea (Figure 4A), where the years 2016 and 356 

2017 were assessed as significant over the long temporal scale, but not under the short or medium-357 

term scales.  358 



 359 

Figure 3. Visualisation of the Plankton Index using different temporal scales of comparison periods. A) 360 
Holoplankton/Meroplankton in the northern North Sea. An example of a lifeform pair showing change 361 
over all three temporal scales. B) Large/Small copepods in the southern North Sea. An example of a 362 
lifeform pair showing stability over all three temporal scales. C) Diatoms/Dinoflagellates in southern 363 
North Sea. An example of a lifeform pair showing stability on the short and medium time-scales, but 364 
change over the long-term time-scales. 365 



 366 

  367 

Plankton 
 community 

Short-term (2004-2017) Medium-term (1990-2017) Long-term (1958-2017) 

Significant  
LCBD years 

Top three 
 SCBD 

Significant 
 LCBD years 

Top three 
 SCBD 

Significant 
 LCBD years 

Top three  
SCBD 

Phytoplankton  
(northern North 
Sea) 

2004 Nitzschia spp. 
(unidentified) 
 
Thalassionema 
nitzschioides 
 
Corethron hystrix 

1992,1996,2008 Nitzschia spp. 
(unidentified) 
 
Ceratium furca 
 
Thalassiothrix 
longissima 

1972,1979,1980, 
2007,2008,2009, 
2016,2017 

Ceratium 
macroceros 
 
Ceratium furca 
 
Prorocentrum spp. 
('Exuviaella' type)        

       

Phytoplankton 
 (southern 
North Sea) 

2004, 2011, 2017 Ceratium 
macroceros 
 
Nitzschia spp. 
(unidentified) 
 
Thalassionema 
nitzschioides 

1990,1992 Ceratium furca 
 
Rhaphoneis 
amphiceros 
 
Ceratium 
macroceros 

1958, 
1973,1978,1979, 
1980,1982,1990 

Ceratium 
macroceros 
 
Ceratium furca 
 
Thalassionema 
nitzschioides 

       

       

Zooplankton 
 (northern 
North Sea) 

None Penilia avirostris 
 
Appendicularia 
 
Centropages spp. 
(Unidentified) 

1991,2009 Bivalve larvae 
 
Penilia avirostris 
 
Para-Pseudocalanus 
spp. 

1961,1965,1978, 
1980,1981,2007 

Calanus 
finmarchicus 
 
Centropages typicus 
 
Echinoderm larvae        

       

Zooplankton 
 (southern 
North Sea) 

2007 Appendicularia 
 
Penilia avirostris 
 
Centropages 
hamatus 

1990,1991,2007 Centropages spp. 
(Unidentified) 
 
Penilia avirostris 
 
Echinoderm larvae 

1958,1979,1982 Centropages 
typicus 
 
Oithona spp. 
 
Appendicularia 

 368 

 369 

 370 

Table 2. Outputs of the LCBD metric at different temporal scales. For each community (phytoplankton/zooplankton) in each 
region (northern/southern North Sea), the years with significant LCBD metrics are shown, with years in the assessment period 
(2013-2017) highlighted in bold. For each community, the ‘top 3’ species with the largest SCBD values are listed. 



 371 

 372 

As well as different years being assessed as significant, different taxa were identified as the main 373 

drivers of community variability at different time-scales (i.e., have the highest SCBD values). For 374 

example, in the northern North Sea region for zooplankton (Figure 5), the invasive cladoceran Penilia 375 

avirostris has the highest SCBD in the short-term, although no years had significant LCBD values at 376 

this time-scale in this region. At the medium time-scale, Bivalve larvae contributed the most to 377 

community composition variability, but at the long-term scale, Calanus finmarchicus contributed the 378 

highest to variability. This in turn affects the years that are assessed as having significant LCBD values 379 

(Figure 4). The years 1991 and 2009 are assessed as significant over the medium-term, which frame 380 

Figure 4. LCBD values for phytoplankton communities in the Northern and southern North Sea. Large blue dots indicate years 
with significant LCBD values at each time-scale. The assessment period of 2013-2017 is shown with vertical dotted lines in each 
plot.  



a period of rapid decline in the abundance of Bivalve larvae, moving from a positive to a negative 381 

abundance anomaly. When looking at the long-time-scale, the years 1980 and 1982, as well as 2007 382 

are assessed as significant, which frame a period of rapid decline in the abundance of Calanus 383 

finmarchcus. When looking at the short-term, these taxa are relatively stable in abundance and do 384 

not contribute as highly to the total Beta Diversity (BDTotal).  In the southern North Sea for 385 

zooplankton, Centropages typicus contributed highly to BDTotal over the longest time-scale, but 386 

unidentified Centropages spp. and Appendicularia contributed the most over the medium and short 387 

time-scale, respectively.  388 



 389 

 390 

 391 

4 Discussion 392 
 393 

Distinguishing ecologically-meaningful change in plankton communities from background variability 394 

is a key challenge facing the formal assessment of pelagic habitats under policy drivers. However, 395 

detection and interpretation of change depends on the years selected for the comparison period, 396 

Figure 5. The taxa with the highest ‘Species Contribution to Beta Diversity (SCBD)’ values for zooplankton at short, 
medium and long time scales. Abundance expressed as standardized anomalies of long term mean. For comparison, 
for each area and time scale the years with significant ‘Local Contribution to Beta Diversity (LCBD) values are shown 
with a blue dotted line. 



and here we have highlighted that the temporal scale of the comparison period affects the outcome 397 

of indicator assessments. For example, the Plankton Index based on lifeform pairs generally reveals 398 

greater change when including data from further back in time. This supports the concept that 399 

increasing the temporal scale of the comparison period increases the detection of change, because 400 

data from historic environmental conditions are included.   401 

This conclusion does not consistently extend to the LCBD indicator metric, however.  For example, 402 

the LCBD indices for phytoplankton in the southern North Sea area revealed that 2017 was 403 

anomalous on the short time-scales, but not on the medium or long-term time-scalesAlthough the 404 

two indicators display non-consistent patterns when assessed over increasing temporal scales, they 405 

provide different, yet complementary ecological information. When assessing over the shorter time 406 

scales therefore, there may be years within the assessment period identified as anomalous in 407 

species-level community composition, even though overall the assessment period doesn’t represent 408 

a fundamental change in functional group structure. 409 

Most of the long-term time-series variability for southern North Sea phytoplankton was driven by an 410 

anomalous period in the late 1970s, indicated by a period of consistently significant LCBD indices. 411 

This anomalous period in the CPR time series has previously been associated with a pulse of cold, 412 

low salinity water entering the North Sea causing a rapid decrease in SST and salinity (Dickson et al., 413 

1988; Edwards et al., 2002). This ‘Great Salinity anomaly’ caused an associated shift in 414 

phytoplankton community composition, most notably a sharp population crash of Ceratium 415 

macroceros, which here had the highest SCBD value at the long time-scale.  Such extreme anomalies 416 

in community composition when looking at the long-temporal scale can mean that any shorter-term 417 

variability is not assessed as significant. In this specific case therefore, increasing the temporal scale 418 

over which the indicator is calculated decreases the likelihood that the current assessment period 419 

represents a change.   420 



A large cause of the underlying variability in assessment outcomes at different temporal scales is the 421 

regime shift that occurred in the 1980s; including data from before the regime shift affects the 422 

conclusion of whether the current assessment period represents a change. For example, the PI for 423 

Diatoms/Dinoflagellates in the southern North Sea region was stable over the short- and medium-424 

term time-scales, but fell below the 0.6 threshold when including pre-regime shift data, indicating a 425 

state change in the community over a long-multidecadal time-scale. This multidecadal pattern in 426 

diatoms and dinoflagellates indicates a shift in trophic pathways within the pelagic ecosystem. 427 

Similarly, when looking at the Species Contributions to Beta Diversity, long-term variability in 428 

southern North Sea zooplankton was largely driven by Centropages typicus, which showed a rapid 429 

increase in abundance between 1982 and 2005. Both these years had significant LCBD values, 430 

‘framing’ this increase in C. typicus. C. typicus did not have a large contribution to overall variation in 431 

community composition over the short-time-scale, however, suggesting its abundance was stable 432 

over this short temporal scale. The tendency for significant LCBD indices to ‘frame’ a specific event 433 

as found here was also found by  who showed that LCBD values for mollusc assemblages before 434 

nuclear testing events were significant over a long-term-time-series indicating that the intervention 435 

of nuclear testing led to the establishment of a community largely different to what it had previously 436 

been. This highlights the importance of hindsight for this indicator metric; a given year can become 437 

significant once more data are added to the time-series.  438 

When a long-term time-series experience a major hydrographic change, such as a regime shift, the 439 

question therefore becomes ‘Do we select a comparison period representing ‘new conditions’ or do 440 

we use the whole time-series as a comparison?’. Given the large influence of climate change, which 441 

is outside the scope of the MSFD, on pelagic habitat biodiversity indicators, it may be appropriate to 442 

first use contemporary data within the current climate regime as a comparison period. For the 443 

assessment of plankton lifeforms for example, this would involve calculating the Plankton Index 444 

between the current assessment period and contemporary data (such as the short- or medium- 445 

time-scale periods used here), rather than comparing all the way back to 1958.  446 



The importance of understanding the influence of changing oceanographic and climatic conditions 447 

on biodiversity indicators, however, is increasingly being recognised as important for developing 448 

effective marine strategies (Bedford et al., 2018). This understanding provides a broader perspective 449 

of changing marine ecosystems upon which directly manageable pressures are superimposed. 450 

Crucially, therefore, after assessing over short-temporal scales, long-temporal scale data can then be 451 

used to provide context to the assessment, and inform on multi-decadal changes including any 452 

signals of climate change.  By using long temporal scale data in this additional, contextual way, the 453 

assessment process can adapt to ongoing environmental change, whilst also avoiding shifting 454 

baseline syndrome by not losing important information on the influence of prevailing conditions 455 

(Figure 6).  456 

 457 

 458 

 459 

 460 

 461 

 462 

The LCBD metric is a key example of an indicator that provides different types of information when 463 

assessed over different temporal scales. Whereas over short time-scales the LCBD indicator may 464 

reveal short-term population changes and anomalous phytoplankton blooms (Rombouts et al., 465 

Figure 6. Suggested incorporation of climate regimes into the pelagic habitat assessment process in the North Sea. 
Contemporary data can be used first as the comparison period for assessments, but, crucially, long temporal scale 
data should be used as ‘contextual data’ to inform on the influence of changing prevailing conditions, helping to 
avoid shifting baselines syndrome.  



2019), we have highlighted here that over long temporal scales it can reflect large-scale ocean 466 

climate anomalies and climate driven shifts. Similarly, identifying the species contributing the most 467 

to total compositional variability at long time-scales gives insight to large-scale climate-driven shifts. 468 

For example, the copepod species Calanus finmarchicus had the highest zooplankton SCBD value in 469 

the northern North Sea over the long-temporal scale, indicating its long-term importance to the 470 

community. Calanus finmarchicus is a keystone species in the North Atlantic food-web, and has 471 

undergone a much-documented decline in the North Sea in response to warming, with ramifications 472 

for higher trophic levels (Helaouët and Beaugrand, 2007).   473 

4.1 Conclusion 474 
Where resources and time-series length allow, assessing indicators over multiple temporal scales 475 

provides different scales of information to policy assessments; from detecting detailed changes 476 

within the current management cycle, to providing broad-scale multi-decadal context to 477 

assessments. Selection of appropriate temporal scales is therefore a key example of the importance 478 

of co-production and dialogue between scientists and policy-makers during the development of 479 

biodiversity indicators.   480 

 481 

 482 

5 Acknowledgements 483 

This work was supported through the EMFF funded ‘ICEGRAPH’ project (Increasing Confidence 484 
Evaluating GES for Regional Assessments of Pelagic Habitats). A.M-G was supported by the UK 485 
Natural Environmental Research Council Knowledge Exchange fellowship scheme (NE/ R00273/1). 486 

 487 

 488 

 489 



References 490 

Addison, P., Collins, D., Trebilco, R., Howe, S., Bax, N., Hedge, P., Jones, G., Miloslavich, P., 491 
Roelfsema, C., Sams, M., 2017. A new wave of marine evidence-based management: emerging 492 
challenges and solutions to transform monitoring, evaluating, and reporting. ICES Journal of Marine 493 
Science 75, 941-952. 494 
Anderson, M.J., Crist, T.O., Chase, J.M., Vellend, M., Inouye, B.D., Freestone, A.L., Sanders, N.J., 495 
Cornell, H.V., Comita, L.S., Davies, K.F., Harrison, S.P., Kraft, N.J., Stegen, J.C., Swenson, N.G., 2011. 496 
Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecol Lett 497 
14, 19-28. 498 
Apitz, S.E., Elliott, M., Fountain, M., Galloway, T.S., 2006. European environmental management: 499 
moving to an ecosystem approach. Integrated environmental assessment and management 2, 80-85. 500 
Batten, S.D., Clark, R., Flinkman, J., Hays, G., John, E., John, A.W.G., Jonas, T., Lindley, J.A., Stevens, 501 
D.P., Walne, A., 2003. CPR sampling: the technical background, materials and methods, consistency 502 
and comparability. Progress in Oceanography 58, 193-215. 503 
Bedford, J., Johns, D., Greenstreet, S., McQuatters-Gollop, A., 2018. Plankton as prevailing 504 
conditions: A surveillance role for plankton indicators within the Marine Strategy Framework 505 
Directive. Marine Policy 89, 109-115. 506 
Berg, T., Furhaupter, K., Teixeira, H., Uusitalo, L., Zampoukas, N., 2015. The Marine Strategy 507 
Framework Directive and the ecosystem-based approach - pitfalls and solutions. Mar Pollut Bull 96, 508 
18-28. 509 
Budria, A., Aubert, A., Rombouts, I., Ostle, C., Atkinson, A., Widdicombe, C., Goberville, E., Artigas, F., 510 
Johns, D., Padegimas, B., Corcoran, E., McQuatters-Gollop, A., 2017. Cross-linking plankton indicators 511 
to better define GES of pelagic habitats. EcApRHA Deliverable WP1.4. 512 
Dickey-Collas, M., McQuatters-Gollop, A., Bresnan, E., Kraberg, A.C., Manderson, J.P., Nash, R.D., 513 
Otto, S.A., Sell, A.F., Tweddle, J.F., Trenkel, V.M., 2017. Pelagic habitat: exploring the concept of 514 
good environmental status. ICES Journal of Marine Science 74, 1846-1854. 515 
Dickson, R.R., Meincke, J., Malmberg, S.-A., Lee, A.J., 1988. The “great salinity anomaly” in the 516 
northern North Atlantic 1968–1982. Progress in Oceanography 20, 103-151. 517 
Directive 2008/56/EC, Of the European Parliament and of the Council of 17 June 2008: Establishing a 518 
framework for community action in the field of marine environment policy (Marine Strategy 519 
Framework Directive). 520 
Dray, S., Blanchet, G., Borcard, D., Guenard, G., Jombart, T., Larocque, G., Legendre, P., Madi, N., 521 
Wagner, H., 2016. adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.0-4. 522 
Duarte, C.M., Conley, D.J., Carstensen, J., Sánchez-Camacho, M., 2009. Return to Neverland: shifting 523 
baselines affect eutrophication restoration targets. Estuaries and Coasts 32, 29-36. 524 
Edwards, M., Beaugrand, G., Reid, P.C., Rowden, A.A., Jones, M.B., 2002. Ocean climate anomalies 525 
and the ecology of the North Sea. Marine Ecology Progress Series 239, 1-10. 526 
Giron-Nava, A., James, C.C., Johnson, A.F., Dannecker, D., Kolody, B., Lee, A., Nagarkar, M., Pao, 527 
G.M., Ye, H., Johns, D.G., 2017. Quantitative argument for long-term ecological monitoring. Marine 528 
Ecology Progress Series 572, 269-274. 529 
Helaouët, P., Beaugrand, G., 2007. Macroecology of Calanus finmarchicus and C. helgolandicus in the 530 
North Atlantic Ocean and adjacent seas. Marine Ecology Progress Series 345, 147-165. 531 
Henson, S.A., Sarmiento, J.L., Dunne, J.P., Bopp, L., Lima, I.D., Doney, S.C., John, J.G., Beaulieu, C., 532 
2010. Detection of anthropogenic climate change in satellite records of ocean chlorophyll and 533 
productivity. Biogeosciences 7, 621-640. 534 
Legendre, P., Borcard, D., 2018. Box–Cox‐chord transformations for community composition data 535 
prior to beta diversity analysis. Ecography 41, 1820-1824. 536 
Legendre, P., Borcard, D., Peres-Neto, P.R., 2005. Analyzing beta diversity: partitioning the spatial 537 
variation of community composition data. Ecological Monographs 75, 435-450. 538 



Legendre, P., Cáceres, M., 2013. Beta diversity as the variance of community data: dissimilarity 539 
coefficients and partitioning. Ecology letters 16, 951-963. 540 
Legendre, P., Gallagher, E.D., 2001. Ecologically meaningful transformations for ordination of species 541 
data. Oecologia 129, 271-280. 542 
Legendre, P., Gauthier, O., 2014. Statistical methods for temporal and space–time analysis of 543 
community composition data. Proceedings of the Royal Society of London B: Biological Sciences 281, 544 
20132728. 545 

Legendre, P., Salvat, C., 2015. Thirty-year recovery of mollusc communities after nuclear 546 
experimentations on Fangataufa atoll (Tuamotu, French Polynesia). Proceedings of the Royal Society 547 
of London B: Biological Sciences, 282, n. 1810, p. 20150750. 548 

Machado, I., Costa, J.L., Leal, M.C., Pasquaud, S., Cabral, H., 2019. Assessment level and time scales 549 
of biodiversity indicators in the scope of the Marine Strategy Framework Directive–A case study for 550 
the NE Atlantic. Ecological Indicators 105, 242-253. 551 
Magurran, A.E., Baillie, S.R., Buckland, S.T., Dick, J.M., Elston, D.A., Scott, E.M., Smith, R.I., 552 
Somerfield, P.J., Watt, A.D., 2010. Long-term datasets in biodiversity research and monitoring: 553 
assessing change in ecological communities through time. Trends Ecol Evol 25, 574-582. 554 
McClenachan, L., Cooper, A.B., McKenzie, M.G., Drew, J.A., 2015. The Importance of Surprising 555 
Results and Best Practices in Historical Ecology. BioScience 65, 932-939. 556 
McQuatters-Gollop, A., 2012. Challenges for implementing the Marine Strategy Framework Directive 557 
in a climate of macroecological change. Philos Trans A Math Phys Eng Sci 370, 5636-5655. 558 
McQuatters-Gollop, A., Atkinson, A., Aubert, A., Bedford, J., Best, M., Bresnan, E., Cook, K., Devlin, 559 
M., Gowen, R., Johns, D.G., 2019. Plankton lifeforms as a biodiversity indicator for regional-scale 560 
assessment of pelagic habitats for policy. Ecological Indicators 101, 913-925. 561 
McQuatters-Gollop, A., Johns, D.G., Bresnan, E., Skinner, J., Rombouts, I., Stern, R., Aubert, A., 562 
Johansen, M., Bedford, J., Knights, A., 2017. From microscope to management: The critical value of 563 
plankton taxonomy to marine policy and biodiversity conservation. Marine Policy 83, 1-10. 564 
O'Higgins, T., Cooper, P., Roth, E., Newton, A., Farmer, A., Goulding, I.C., Tett, P., 2014. Temporal 565 
constraints on ecosystem management: definitions and examples from Europe's regional seas. 566 
Ecology and Society 19. 567 
OSPAR, 2017a. Changes in Phytoplankton and Zooplankton Communities. Intermediate Assessment 568 
2017. Available at:  https://oap.ospar.org/en/ospar-assessments/intermediate-assessment-2017. 569 
OSPAR, 2017b. Pilot assessment of Changes in Plankton Diversity. Intermediate Assessment 2017. 570 
Available at: https://oap.ospar.org/en/ospar-assessments/intermediate-assessment-2017. 571 
Pauly, D., 1995. Anecdotes and the shifting baseline syndrome of fisheries. Trends in ecology & 572 
evolution 10, 430. 573 
Reid, P.C., Hari, R.E., Beaugrand, G., Livingstone, D.M., Marty, C., Straile, D., Barichivich, J., 574 
Goberville, E., Adrian, R., Aono, Y., Brown, R., Foster, J., Groisman, P., Hélaouët, P., Hsu, H.-H., Kirby, 575 
R., Knight, J., Kraberg, A., Li, J., Lo, T.-T., Myneni, R.B., North, R.P., Pounds, J.A., Sparks, T., Stübi, R., 576 
Tian, Y., Wiltshire, K.H., Xiao, D., Zhu, Z., 2015. Global impacts of the 1980s regime shift. Global 577 
Change Biology 22, 682-703. 578 
Richardson, A., Walne, A., John, A., Jonas, T., Lindley, J., Sims, D., Stevens, D., Witt, M., 2006. Using 579 
continuous plankton recorder data. Progress in Oceanography 68, 27-74. 580 
Rombouts, I., Simon, N., Aubert, A., Cariou, T., Feunteun, E., Guérin, L., Hoebeke, M., McQuatters-581 
Gollop, A., Rigaut-Jalabert, F., Artigas, L., 2019. Changes in marine phytoplankton diversity: 582 
Assessment under the Marine Strategy Framework Directive. Ecological Indicators 102, 265-277. 583 
Scherer, C., Gowen, R.J., Tett, P., 2016. Assessing the State of the Pelagic Habitat: A Case Study of 584 
Plankton and Its Environment in the Western Irish Sea. Frontiers in Marine Science 3, 236. 585 
Tett, P., Carreira, C., Mills, D.K., van Leeuwen, S., Foden, J., Bresnan, E., Gowen, R.J., 2008. Use of a 586 
Phytoplankton Community Index to assess the health of coastal waters. Ices Journal of Marine 587 
Science 65, 1475-1482. 588 



Tett, P., Gowen, R.J., Painting, S.J., Elliott, M., Forster, R., Mills, D.K., Bresnan, E., Capuzzo, E., 589 
Fernandes, T.F., Foden, J., Geider, R.J., Gilpin, L.C., Huxham, M., McQuatters-Gollop, A.L., Malcolm, 590 
S.J., Saux-Picart, S., Platt, T., Racault, M.F., Sathyendranath, S., van der Molen, J., Wilkinson, M., 591 
2013. Framework for understanding marine ecosystem health. Marine Ecology Progress Series 494, 592 
1-27. 593 
Thurstan, R.H., McClenachan, L., Crowder, L.B., Drew, J.A., Kittinger, J.N., Levin, P.S., Roberts, C.M., 594 
Pandolfi, J.M., 2015. Filling historical data gaps to foster solutions in marine conservation. Ocean & 595 
Coastal Management 115, 31-40. 596 
Wasmund, N., 2017. The diatom/dinoflagellate index as an indicator of ecosystem changes in the 597 
Baltic Sea. 2. Historical data for use in determination of good environmental status. Frontiers in 598 
Marine Science 4, 153. 599 

 600 

 601 

 602 


	Corresponding author: Jacob Bedford, jacob.bedford@plymouth.ac.uk
	Keywords:  biodiversity, ecosystem assessment, climate change, baselines
	1 Introduction
	2 Materials and Methods
	2.1 Plankton community data
	2.2 Indicator metrics
	2.2.1 Plankton lifeform index
	2.2.2 Local Contribution to Beta Diversity

	2.3 Temporal scale analysis

	3 Results
	3.1 The effect of temporal scale on the plankton lifeform index
	3.2 The effect of temporal scale on the LCBD indicator metric

	4 Discussion
	4.1 Conclusion

	5 Acknowledgements

