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Abstract

Genome editing has become an important tool in identifying the specific function 

and role of a gene in an organism. With the advent of genome editing using clustered 

regularly interspaced short palindromic repeats (CRISPR)/ CRISPR-associated (Cas) 

systems, editing a gene has become much easier and less expensive. This CRISPR/Cas9 

system uses a small 20 nucleotide long guided RNA (gRNA), which along with Cas9 will 

bind to the target site and cleave it. In this research, CRISPR/Cas9 system was used to 

knock out the inducible cAMP early repressor (ICER) promoter sequence in zebra fish. 

ICER has anti-proliferative activity and acts as a tumor suppressor. In Ras-induced 

melanoma, ICER protein is being targeted to degradation. Knocking out the ICER gene 

will help us to establish the tumorigenicity of ICER in melanomas.

A gRNA, specific towards the ICER promoter sequence was designed in an 

attempt to cleave it with Cas9. Plasmids pDR274(-)atgICER and pMLM3613 were used 

to generate gRNA and Cas9mRNA via in vitro transcriptions. To check the efficiency of 

designed gRNA in vitro, PAC-2 cell lines were transfected with a plasmid that expressed 

both gRNA and Cas9. The results demonstrate the ability of Cas9 to cleave the target 

sequence. In the future, this plasmid could be used to perform microinjection in zebra fish 

embryos with the generated gRNA and Cas9mRNA.
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Introduction

A critical role in biology is to determine the function of each gene \  Gene editing 

is one fascinating tool that enables us to study and determine the function of an individual 

gene in an organism. Earlier, gene functions were determined using forward genetics 

screening methods like chemical mutagenesis and transposon mediated mutagenesis 2’3. 

Even though these methods were initially successful, each had its own procedure to 

determine the mutated site and the whole process is laborious and time consuming 4.

With the advent of new and affordable sequencing methods, the complete genome 

sequence of an organism is more readily available. This led to the study of specific gene 

function using reverse genetics techniques. Some of the reverse genetics techniques 

include 1) partial gene knock down by R N A i5’6, 2) virus induced gene silencing 7, 3) 

insertional mutagenesis and 4) chemical mutagenesis/ targeted induced local lesions in 

genomes (TILLING). All of these methods have some limitations. For example, gene 

silencing using RNAi has unpredictable off targets and the result varies between 

experiments 8' 6. Methods like TILLING need large mutant populations and are expensive 

. The demand for more precise study on genes and their functions, led to the 

development of new gene editing techniques, which are more effective and less 

expensive.

In the past decade, a new genome editing approach emerged that enabled a gene 

to be edited using engineered nucleases 2? 6? 9. This approach relies on DNA repair that 

occurs when a double stranded DNA is cleaved. The two main types of DNA repair 

mechanism to repair double stranded breaks are non-homologous end joining method 

(NHEJ) and homologous recombination repair (H R )2. Non-homologous end joining
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repair could result in nucleotide insertion or deletion (indels), which in turn may affect 

the gene function 10. The genome editing tools like zinc finger nucleases (ZFNs) and 

transcription activator-like effector nucleases (TALENs) cut the DNA at specific sites 

and stimulate DNA repair mechanisms such as, NHEJ repair and HR, allowing study of 

gene function 6.

Zinc finger nucleases are a combination of a zinc finger domain and Fkol 

nucleases. Zinc finger domains are a small yet common motif observed in proteins, 

especially in DNA binding proteins 6. A different Zinc finger domain binds to a different 

nucleotide triplet in the major groove of the DNA. This nucleotide specificity of this zinc 

finger domain along with the nucleases Fkol allows precise cleavage within the target 

gene. Even though this method was successful, it had a few limitations, a) the 

corresponding zinc finger domains have not been discovered for all nucleotide triplets, b) 

production of zinc finger nuclease is highly labor intensive, time-consuming and very 

expensive 6.

Like ZFNs, another effective tool for genome editing with relatively rare off 

target effect is TALENs. TALEN is a combination of TALE and Fkol nuclease. TALE 

(transcription activator-like effector) was first discovered in plant pathogens 

Xanthomonas s p 2 and it has a DNA binding domain with 30 -35 tandem amino acid 

repeats that recognize a single, specific nucleotide in DNA 2’8. The amino acid residues 

within this repeats are highly conserved and changes within these amino acid residues 

contributes to its different binding specificity. The successful outcome in gene editing 

using TALE depends on the tandem repeats. At the same time, constructing a TALE with 

many repeats is laborious and time consuming.
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In spite of the site specific cleavage achieved using the above ZFNs and TALENs, 

the discovery of type II CRISPR/Cas system emerged as a more efficient gene editing 

tools. This CRISPR/Cas system, also called the RNA guided nucleases genome editing 

tool, has been proven to be very simple, cost effective, less time-consuming and can be 

applied on all organisms n ’12,13,14. In this system, a small piece of processed RNA guides 

Cas nuclease to specifically cleave the DNA to which it binds.

Type II CRISPR/Cas system is an adaptive immune mechanism used by many 

bacteria against invading pathogens, especially viruses 15,16,17. In this process, bacteria 

incorporates a short sequence of a genetic element from the invading pathogen into its 

genome, at a unique site called the clustered regularly interspaced short palindromic 

repeats or CRISPR loci. This CRISPR is composed of short tandem repeats of 

approximately 30-40 base pairs (bp). The sequence from the invading pathogen called the 

spacer/protospacer is incorporated between the CRISPR repeats 18,19,20. Following an 

attack, the CRISPR responds to the invading pathogen, by transcribing and processing the 

protospacer sequence at the CRISPR locus to produce CRISPR RNA (crRNA).The 

crRNA consists of the sequence from the invading pathogen and it is flanked by part of 

the CRISPR repeat. This crRNA hybridizes with the trans-activating RNA (tracrRNA) 

and forms a complex with the Cas9 protein (Cas9 protein contains RuvC nucleases and 

HNH nuclease domain). The crRNA then binds to its complementary target DNA and 

directs Cas9 nuclease to cleave the DNA-1, 22. Overall, genome editing using 

CRISPR/Cas9 requires only two components: a small crRNA specific towards the target 

site and a Cas9 enzyme to cleave the target site. This eliminates the complication of
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designing multiple zinc fingers as required by ZFNs and repetitive amino acid sequence 

as required by TALENs at target site 23,24.

Researchers have used this CRISPR/Cas system from Streptococcus pyogenes 

(S.pyogenes) to edit the genome in recent years. This was done by expressing the Cas9 

protein and a small guided RNA called gRNA (a fusion between crRNA and tracrRNA) 

complementary to the target DNA that is to be cleaved. Recent in vitro and in vivo studies 

have successfully employed this mechanism in a few model organisms like zebra fish, 

fruit flies, and mice ’11,25. The only constraints with this system are: the size of the 

gRNA should be 20 nucleotides long and the target site should be immediately followed 

by a protospacer adjacent motif called PAM. The PAM sequence is necessary for gRNA 

to direct Cas9 to cleave the target DNA 21,26,21. The most recognized PAM sequence is 

5’-NGG-3’. Sometimes a PAM site with 5’-NGA-3’ is also recognized, but with less 

efficiency. Thus, Cas9 protein could be directed to cleave any DNA site in the form of 

N20-NGG, by simply creating a complementary gRNA 15,23,28,29. This form of gene 

editing tool has made it very easy for scientists to study and determine the function of 

specific genes. This type II CRISPR/Cas9 gene editing tool was used in this study to edit 

the promoter of the induced cyclicAMP early repressor (ICER) in zebra fish cells.

Melanoma is a skin cancer that is rapidly growing in western countries. It 

develops in the melanocytes located in the epidermis of the skin32,33. It is caused by 

mutations in B-Raf, N-Ras and H-ras by UV exposure. Mutations, in these proto­

oncogenes, leads to loss of cell cycle control and results in uncontrolled cell proliferation. 

In melanocytes, increased levels of cyclic AMP (cAMP) are observed, which positively 

regulates cell growth and differentiation. Increased levels of cAMP regulate the
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transcription of many cellular genes. This signaling pathway requires the activation of 

transcription factors by protein kinase A (PKA). PKA phosphorylates many transcription 

factors like CREB (cyclicAMP- response element binding protein), CREM (cyclicAMP -  

response element modulators) and the ATF gene family 32,30,33. Upon phosphorylation 

by PKA, these transcription factors activate CRE-containing genes. CREM is a unique 

gene that generates gene activators and repressors by alternate splicing 30. One of the 

products of the CREM gene that is not activated by PKA is the ICER protein. The CREM 

gene consists of two promoters PI and P2. Both PI and P2 are induced by cAMP 2a 31. 

ICER is a product of P2, which is not regulated by PKA. ICER acts as a potent inhibitor 

of cAMP inducible responses. When the cAMP level increases within a cell, ICER binds 

to CREs on the CREB/CREM gene as a homodimer or heterodimer and negatively down 

regulates cAMP gene expression 31. This function of ICER is important to manage cAMP 

genes, and in keeping the delicate balance that is necessary for proper gene regulation. 

This negative down regulation of ICER prevents the cancer cells from growing in an 

anchorage -  independent manner 30’37. Recent studies have demonstrated that increased 

cAMP levels contribute to melanocyte growth and differentiation, thus resulting in 

melanoma 3 4. In the case of Ras induced melanoma, ICER has been targeted for

degradation by Ras, thereby preventing the down regulation of cAMP genes. This 

indicates the significant role of ICER as a tumor suppressor in preventing melanoma. By 

knocking out the ICER promoter sequence using CRISPR/Cas9 system in zebra fish, it 

may be possible to establish the role of ICER in melanoma.
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Outline of Research and Designing gRNA

The aim of this study was to knock out the ICER gene promoter. The first step 

was to identify the potential target site for gRNA. ZiFiT Targeter 10 was used to identify 

the potential target site for gRNA. This was done by submitting the ICER sequence to 

the ZiFiT website. Out of four suggested target sites, the site that contained part of the 

ICER promoter, with adjacent PAM sequence was selected.

ICER Sequence

CTTCTGAGCTT AAAT A AAT AAAT ATGCAACTGC ACT ATTTTTTT AAGC AATGA
AT AT AAGCTTGT ATGTT AAT AT AAA ATGAGTCCTGTTTCTCTCTCTCTTTC AC A
CACACACACACACACACACACACACACATACATTCTCCAGAGACAGTGTGTT
ATTTCCCTGTGAGGCTGCTGTG ATGTC AT AGTGATGTCAATGCCCTT AATAGT
AATCTGACTGAGCGAGAGAGAGAGGGAGGGAGGGAGGGAGAAAGAGAGAT
AGGGAAGGAGAGAGAGGGTT AAAGGGAAAC AGT AAGTGTC AC AACTCT AAC
AGAGAGTCAGTAGGAGCGCGTGAGAGAGAAACTCAGCCAGCGAAGAGCTGA
AGGG A AG AC AG AGCTTT AAT AGG A A AT C A AG AGG A A AC ACT AT CCC A ACT G
GATT ACT AC AGT AT AG AG ATGGC AGTGACCGGGGAAGA AACCG AGTC AGCT
GCCACAGGAGACATGCCAGCATATCAGATCCGCTCGCCGTCGTCAGGGCTGC
CTCCAGGTGTTGTCATGGCATCGTCACCAGGGGCGATGCACAGCCCGCAACC
CAACGCAGAGGAGGCCACGCGCAAGAGAGAAGTCCGTCTGATGAAGAACAG
GGAGGCAGCGCGCGAGTGTCGCAGAAAAAAGAAAGAATACGTGAAGTGTTT
GGAGAATCGGGTTGCCGTGCTGGAAAACCAGAACAAGACTCTCATAGAGGA
GCTGAAAGCCCTTAAAGACATCTACTGCCACAAGCCTGAATAACCCTCACAA
ACACTGCTCAAGGACTGTGTGATTCACACAATACCCGTCTCCTCACTTCTACT
GCTGCACCGCCTGGATTTT ATCGCT

The sequence in Yellow indicates the gRNA target sequence .The sequence in red color 
(ATG) indicates the start codon.

The research was done in two stages:
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Stage 1- Production of mRNA for in vivo gene alterations study

Two separate vectors, pDR274 and pMLM3613, were used to express gRNA and 

Cas9. Both gRNA and Cas9 sequence were under the control of the T7 promoter.

Previous studies ' suggested that the T7 promoter requires a pair of Guanine or 

Adenine residues at the 5’ end of the transcript. So the gRNA sequence should be in the 

form of 5’--GG/AA-N18-NGG-3’.

The following sequence 5’ -  GGATTACTACAGTATAGA - 3’ was cloned in to 

the vector pDR274. pDR274 harboring the 5’ GGATTACTACAGTATAGA -3’ gRNA 

sequence was transcribed in vitro following the MAXIscript® kit manufacturer’s 

protocol (Life Technologies, Grand Island, NY, USA). Cas9 sequence, under the control 

of theT7 promoter in the vector pMLM3613, was transcribed in vitro following the 

mMessage mMachine T7 ultra kit manufacturer’s protocol ( Life technologies, Grand 

Island, NY, USA). Since Cas9 is an enzyme a 3’ poly (A) tail and a 5’ cap were added to 

the mRNA sequence. The mRNA of both gRNA and Cas9 was purified by lithium 

chloride precipitation and stored.

Stage 2 - In vitro study of CRISPR/Cas9 system in zebra fish cells

A single vector system that carried both gRNA and Cas9 sequences along with 

the sequence for GFP expression was used. This single vector system enhanced the 

chance of equal delivery of all CRISPR/Cas components into the cells. The presence of 

the GFP sequence in the vector made it easy to determine the percentage of transfected 

cells using a fluorescent microscope. When the construct was transfected into the zebra 

fish cells, and if the gRNA bound specifically to the target site, it would direct the Cas9
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nuclease to cleave the target DNA. Cleavage by Cas9 nucleases on the target sequence 

could be determined by amplifying the ICER sequence using PCR and performing a T7 

endonuclease assay on the amplified DNA. A positive result would indicate the 

efficiency of CRISPR/Cas9 system on the ICER sequence in zebra fish. In the future, 

Cas9mRNA and gRNA (generated in stage 1) could be used to perform microinjection in 

zebra fish embryos.

pCMV Cas9GFP(-)atgICER

U$
17CM*/ ' Xba!
'  * CiiO 2A c n  ,

19-20 bp 
Target region

C
Hip# I

N
Hp#i |

CD
pUC or«

< = □
^  K èf/

pCMVCas9GFP(-)atgICER contains the sequence for gRNA, Cas9 and GFP. U6 
promoter drives gRNA expression and CMV promoter drives Cas9 expression. 
pCMVCas9GFP(-)atgICER was purchased from Sigma (Sigma-Aldrich, St. Louis, MO, 
U SA ).
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Materials and methods

Identifying gRNA target site

The ZiFiT Targeter (http://zifit.partners.org/ZiFiT/) was used to identify the 

potential target site for gRNA. The ZiFiT site also gives the list of oligonucleotide 

sequences necessary for cloning the target sequence into the pDR274 vector.

Target site - 5’ -  GG ATT ACT AC AGT AT AG A - 3’

Oligonucleotide sequence 1 - 5’- TAGG ATT ACT AC AGT AT AG AG A -  3’ 

Oligonucleotide sequence 2 - 5’ -  AAACTCTCTATACTGTAGTAAT -  3’

Stage-1

pDR274atg(-)ICER construction.

E.coli cells containing pDR274 plasmid were purchased from Addgene 

(Cambridge, MA, USA). These bacterial cells were grown on an agar plate containing 

kanamycin, and then plasmid pDR274 was isolated following QIAprep® spin Miniprep 

protocol (Qiagen, Valencia, CA, USA). pDR274 contains the T7 promoter. To this the 

20 nucleotide target sequence (gRNA) was incorporated as following the protocol 

detailed below.

pDR274 digestion and DNA extraction from agarose gel

Ten microliters of pDR274 were mixed with 2 pL of lOx BufferG, 2 pL of Bsal 

(Thermo fisher scientific, Waltham, MA, USA), and 6 pL of double distilled water and 

incubated at 37°C for 1 hour. The reaction mixture was then run on 1% agarose gel at 

100V for 1 hour. The DNA was extracted according to the QIAquick® gel extraction kit
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(Qiagen, Valencia, CA, USA) protocol. The band of interest (approx. 2147bp) was 

excised from the gel, placed in 1.5mL micro centrifuge tube and weighed. To this QC 

buffer was added in the ratio of 1:3 (Gel: QC buffer). The solution was then placed on a 

heating block at 50°C for 10 minutes, mixing every 3 minutes. To this isopropanol was 

added in the ratio of 1:1 (Gel: Isopropanol). The solution was then placed on a DNA 

specific column and purified according to the manufacturer’s protocol. DNA 

concentration was measured with the Nanodrop spectrophotometer.

Ligation of oligonucleotide (gRNA) into pDR274

The forward and reverse oligonucleotides were reconstituted (1.5pg/pL) and were 

mixed together in the ratio of 1:1. The oligonucleotides were annealed by placing them 

in a beaker containing water at 94°C and were then allowed to cool to less than 30°C on 

the bench. Then oligonucleotides were allowed to cool to room temperature overnight. 

Following annealing, different dilutions of inserts (annealed oligos) were prepared (1:5, 

1:10, 1:50, 1:100). DNA ligation was done following manufacturer’s protocol (DNA 

ligation Kit ver. 1 Manual, Takara, Clone Tech Laboratories, Mountain view, CA, USA). 

Five microliters of linearized vector pDR247 (extracted from the gel) was mixed with 

5pL of insert at various concentrations (1:5, 1:10, 1:50 and 1:100). To this 5 0 p L o f 

solution A and 10 pL of solution B were added. The solutions were incubated at 16°C 

for 30 minutes.

DNA transfection and sequencing

DNA transfection was done following One Shot® Top 10 competent cell 

transformation protocol (Invitrogen, Carlsbad, CA, USA). Five microliters of ligate was
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added to 50 pL of One Shot® Top 10 competent cells (1 vial of cells for each dilution). 

The vials were incubated on ice for 20 minutes. Following incubation on ice, the vials 

were incubated in a water bath at 42°C for 30 seconds. Then the vials were immediately 

placed on ice. To this 250 pL of pre-warmed S.O.C medium was added and the vials 

were kept in a shaking incubator for 1 hour at 225RPM. Following transformation, 200 

pL of the mixture from each vial were spread on labeled LB agar plates containing 

kanamycin, and were incubated at 37°C overnight. Following incubation, plasmids were 

isolated from the transfected cells according to the QIAprep® spin Miniprep protocol 

(Qiagen, Valencia, CA, USA). Once the plasmids were isolated, the DNA samples were 

sent to GeneWiz (South Plainfield, NJ, USA) for sequencing to check for the proper 

ligation of target sequence (gRNA) in to pDR274 vector.

In vitro transcription of Cas9mRNA and gRNA

Restriction Digestion of pDR274(-)atgICER and pMLM3613

The expression vector, pMLM3613, containing the gene for Cas9 was purchased 

from Addgene (Cambridge, USA). These bacterial cells were plated on agar dishes 

containing kanamycin. Following incubation, pMLM3613 were isolated from the 

bacterial cells. Both pDR274(-)atgICER and pMLM3613were isolated following 

QIAprep spin Miniprep protocol (Qiagen, Valencia, CA,USA ). Additionally, pDR274(- 

)atgICER was linearized with Dral (Invitrogen, Carlsbad, CA, USA). In a 1.5mL 

microcentrifuge tube, 12 pL of pDR274(-)atgICER, 2 pL lOx buffer B, 1 pL of Dral, and 

5 pL of ultra-pure water were combined and incubated at 37°C for 5 hours. Similarly, 

pMLM3613 was linearized with Pmel (Invitrogen, Carlsbad, CA, USA). In a 1.5mL
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microcentrifuge tube, 11 pL of pMLM3613, 6 pL ultra-pure water, 2 pL lOXbuffer B 

and 1 ¡iL of Pmel were combined and incubated at 37°C for 5 hours. The digested 

samples were then mixed with 2 pL of loading buffer and run on 1% agarose gel 

(containing ethidium bromide) at 100 volts for 60 minutes in lxTAE buffer. The bands 

were observed under gel dock.

Production of Cas9mRNA and gRNA

The linearized plasmid pDR274(-)atgICER and pMLM3613 were extracted from 

the gel according to the QIAquick® gel extraction kit protocol (Qiagen, Valencia, CA, 

USA), and the concentration of the plasmids were measured with Nanodrop 

spectrophotometer. The linearized plasmids pDR274(-)atgICER and pMLM3613 were 

used as templates for gRNA and Cas9mRNA in vitro transcription. pDR274 (-)atglCER 

was transcribed following MAXIscript® kit manufactures protocol ( Life Technologies, 

Grand Island, NY, USA) . In a 1.5 mL microcentrifuge tube, 80 pL of nuclease free 

water, 10 pL of pDR274(-)atgICER, 2 pL of 10X transcription buffer, 1 pL of 10 mM 

ATP, 10 mM CTP, 10 mM GTP, 10 mM UTP each, 4 pL of T7 (15U/ pL) enzyme were 

added and mixed thoroughly. The solution was incubated at 37°C for 1 hour. Following 

incubation, 1 pL of TURBO DNase (2U/ pL) (Life Technologies, Grand Island, NY, 

USA) was added and incubated at 37°C for 15 minutes.

The expression vector, pMLM3613, was transcribed following the mMessage 

mMachine T7 ultra kit manufacturer’s protocol ( Life Technologies, Grand Island, NY, 

USA). In a 1.5 mL microcentrifuge tube, 20 pL of nuclease free water, 10 pL of T7 2X 

NTP/ARCA, 2 pL of 10X T7 reaction buffer, 6 pL of pMLM3613 and 2 pL of T7 (15U/
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pL ) enzyme were added. The solution was incubated at 37°C for 1 hour. To this, 1 pL of 

TURBO DNase (2U/ pL) was added and incubated for 15 minutes at 37°C. Following 

transcription a 3’poly (A) tail was added according to the of mMessage mMachine® T7 

ultra kit protocol (Life Technologies, Grand Island, NY, USA). To the incubated 

solution, 20 pL of mMessage mMachine® T7 ultra reaction, 36 pL of nuclease free 

water, 20 pL of 5X E — PAP buffer, 10 pL of Mncl2 and 10 pL of ATP solution were 

mixed together. The solution was incubated at 37°C for 40 minutes. After the addition of 

the 3’ poly (A) tail and the 5’ cap, the Cas9mRNA was recovered by lithium chloride 

(LiCl) precipitation and was re-dissolved in RNase free water. The concentration of both 

gRNA and Cas9 mRNA were measured with Nanodrop spectrophotometer.

Stage-2

pCMV Cas9GFP(-)atgICER

The vector, pCMVCas9GFP(-)atgICER ( the gRNA sequence was cloned into the 

vector pCMVCas9GFP by Sigma, to generate pCMVCas9GFP(-)atgICER ) was 

purchased from Sigma (Sigma-Aldrich, St. Louis, MO,USA). The vector contains the 

gRNA, Cas9 and GFP sequence. The gRNA was expressed under the U6 polymerase III 

promoter and Cas9 was expressed under the CMV promoter.

Transfection of pCMVCas9(-)atgICER in PAC-2 cells.

Two PAC-2 cell culture flasks were used. One PAC-2 cell culture flask was 

transfected with pCMVCas9GFP(-)atgICER using FuGENE HD transfection reagent 

(Promega, Madison, WI, USA ) and the other flask was transfected with pCMVEGFP. 

Briefly, 6 pL of pCMVCas9GFP(-)atgICER, 270 pL of LS media and 24 pL of FuGENE
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were combined, and added to the PAC-2 cells. Similarly, 20 pL of pCMVEGFP, 256 pL 

of LS media and 24 pL of FuGENE were combined and added to the second PAC-2 cell 

culture flask. This served as a control. Both the flasks were incubated at 25°C for 48 

hours.

Genomic DNA Extraction

Following 48 hours of incubation and prior to genomic DNA extraction, the cells 

were observed under fluorescent microscope and the transfection efficiency was 

determined. Genomic DNA was extracted using GeneArt ©Genomic cleavage Detection 

Kit (Life technologies, Grand Island, NY, USA). Briefly, the transfected PAC-2 cells 

were washed three times with lmL of 0.1% PBS. After a final wash 500 pL of 0.1%

PBS was added and then the cells were scraped. The cells were then transferred into 

1.5mL centrifuge tube and were centrifuged at 2000 g for 5 minutes at 4°C. The 

supernatant was removed, and to the pellet, 50 pL of cell lysis buffer and 2 pL of protein 

degrader were added and the pellets were re-suspended. The entire solution was then 

transferred into PCR tubes, and cells were lysed in the thermal cycler. The thermal cycler 

parameters for lysis were: 68°C for 15 minutes, 95°C for 10 minutes and 4°C on hold.

Primers Used

ICER SEQUENCE

CTTCTGAGCTT AAAT A AAT AA AT ATGC AACTGC ACT ATTTTTTT AAGC AATGA 
AT AT A AGCTTGT ATGTT AAT AT AAAATG AGTCCTGTTTCTCTCTCTCTTTCAC A 
CACACACACACACACACACACACACACATACATTCTCCAGAGACAGTGTGTT 
ATTT CCCT GTG AGGCTGCT GTG ATGTC AT AGT GAT GT C A AT GCCCTT AAT AGT 
AATCTGACTGAGCGAGAGAGAGAGGGAGGGAGGGAGGGAGAAAGAGAGAT 
AGGGAAGGAGAGAGAGGGTTAAAGGGAAACAGTAAGTGTCACAACTCTAAC
a g a g a g t c a g t a g 1 a g c g c g t g a g a g a 1 a a a c | c a g c c a g c g a a g a 1 c t g a

AGGGAAGACAGAGCTTTAATAGGAAATCAAGAGGAAACACTATCCCAACTG
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GATT ACT AC AGT AT AG AG ATGGC AGTGACCGGGG A AGA AACCG AGTC AGCT
GCCACAGGAGACATGCCAGCATATCAGATCCGCTCGCCGTCGTCAGGGCTGC
CTCCAGGTGTTGTCATGGCATCGTCACCAGGGGCGATGCACAGCCCGCAACC
CAACGCAGAGGAGGCCACGCGCAAGAGAGAAGTCCGTCTGATGAAGAACAG
GGAGGCAGCGCGCGAGTGTCGCAGAAAAAAGAAAGAATACGTGAAGTGTTT
GGAGAATCGGGTTGCCGTGCTGGAAAACCAGAACAAGACTCTCATAGAGGA
GCTGAAAGCCCTT AAAGAC ATCT ACTGCC AC AAGCCTGAAT AACCCTC AC AA
ACACTGCTCAAGGACTGTGTGATTCACACAATACCCGTCTCCTCACTTCTACT
GCTGCACCGCCTGGATTTTATCGCTCAAA^HHATTGTGCAGGGCCGTfTTGT
TTGTTTGTT

Primers Used

Primer set 1: Forward Primer - AGTAGGAGAGAGTGAGAGAG 
Reverse primer - TAATAATGTGTGCAGGGCCGT

Primer set 2: Forward Primer - GAGCGCGTGAGAGAGAAACT 
Reverse primer - TAATAATGTGTGCAGGGCCGT

Primer set 3: Forward Primer - GAAACTCAGCCAGCGAAGAG 
Reverse Primer -  TAATAATGTGTGCAGGGCCGT

These three sets of primers were used to amplify the ICER sequence.

Yellow sequence - Indicates the target site in ICER sequence where forward primer 1 
anneals in ICER sequence. Red letters -  Indicates the start and end of the target site in 
ICER sequence where primer 2 anneals. Green letters -  The start and end of the target 
site in ICER sequence where forward primer 3 anneals. Purple -  Indicates the target site 
in ICER sequence where reverse primer anneals.

PCR Amplification

Three different sets of primers were designed to amplify the ICER sequence. 

OligoAnalyzer 3.1 (http://www.idtdna.com/analvzer/) was used to design primers for 

PCR. A total of six reactions were prepared. Briefly, 2 pL of genomic DNA, 1 pL of 10 

mM forward primer, 1 pL of 10 mM reverse primer, 25 pL of AmpliTaqGold360 Master 

Mix ( GeneArt ©Genomic cleavage Detection Kit, Life technologies, Grand Island, NY,
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USA) and 22 pL of water were combined together in a PCR tube and PCR reaction was 

run. The thermal cycler parameters were: 95°C for 10 minutes, 40 cycles of 95°C for 30 

seconds, 40 cycles of 55°C for 30seconds, 40 cycles of 72°C for 30 seconds, 72°C for 7 

minutes and 4°C on hold. Three microliters of the PCR product, 1.3 pL of lOx loading 

buffer and 10 pL of water were combined in a PCR tube and were run on a 2% agarose 

gel. Five microliters of DNA ladder (HiLo, Minnesota Molecular Inc, MN, USA) was run 

in parallel to compare and estimate the fragment size and DNA concentration of the 

products.

Cleavage Assay

The amplified PCR samples were subjected to a cleavage assay. This was done 

following the GeneArt® Genomic Cleavage Detection Kit (Life technologies, Grand 

Island, NY, USA). Briefly, 3 pL of PCR product, 1 pL of detection reaction buffer and 5 

pL of water were combined in a PCR tube. These solutions were then kept in the thermal 

cycler for re-annealing. The thermal cycler parameters are: 95°C for 5min, 95°C to 85°C 

at the rate of (-2°C)/seconds, 85°C to 25°C at the rate of (-0.1 °C)/seconds, 4°C on hold. 

Following re-annealing, 1 pL of detection enzyme was added to the entire mixture and 

the samples were incubated in a water bath at 37°C for 1 hour.

Agarose gel electrophoresis

Following enzyme digestion, to each enzyme digested sample, 10 pL of water and 

2 pL of lOx loading buffer were added. The samples were then run on a 2% agarose gel 

at lOOv for 60 minutes. Five microliters of DNA ladder (HiLo, Minnesota Molecular Inc, 

MN, USA) was run in parallel to compare the size of the cleaved products.
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Results

Stagel

Inserting gRNA sequence into pDR274/ construction of pDR274(-)atgICER

The goal of this project was to knockout the ICER promoter by using a gRNA 

specifically targeting the ICER promoter sequence followed by the cleavage of Cas9. In 

order to produce the vector, pDR274(-)atgICER, plasmid pDR274 was linearized and 

analyzed by agarose gel electrophoresis. The band of size 2147 (Figure 1) was excised 

and pDR274 was extracted. The concentration of the plasmid was measured with the 

NanoDrop spectrophotometer. The total yield of pDR274 was 200 ng/pL. This pDR274 

was ligated with gRNA oligonucleotides and the constructs were transfected. The 

plasmids extracted from the transfected cells were sequenced. The sequenced data 

suggest the successful insertion of gRNA into pDR274. The inserted gRNA 

oligonucleotide is highlighted in yellow (Figure 2).

In vitro transcription of Cas9mRNA and gRNA

The vector, pDR274(-)atgICER, was digested and analyzed by agarose gel 

electrophoresis. Two bands of approximate size 1885 bp and 282 bp were observed 

(Figure 3). The band of size 282 bp that contained the gRNA sequence was excised for 

DNA extraction. The concentration of the DNA was measured with a Nanodrop 

spectrophotometer and the yield was 1 pg/pL. The extracted DNA was transcribed into 

RNA and concentration was measured. The total yield of gRNA was 634.2 ng/pL.

The vector, pMLM3613 was digested and the band of size 8000 bp was extracted 

(Figure 2) and the concentration of the DNA was measured. The total yield was 2.2
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^xg/̂ iL. The extracted DNA was transcribed into RNA and the RNA concentration was 

measured. The yield of Cas9mRNA was 1 pg/pL. The RNA was analyzed by a RNA gel 

electrophoresis (Figures 4a and 4b).
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2000bp - -pDR274

Figure 1 - Lane 1-Molecular weight marker (HiLo). Lanes 2 and 3 - pDR274 (-2147) 
digested with Bsal.

CCCGTGTAAAACGACGGCCAGTTTATCTAGTCAGCTTGATTCTAGCTGATCGTGGACCGGAAGGTGAGCC

AGTGAGTTGATTGCAGTCCAGTTACGCTGGAGTCTGAGGCTCGTCCTGAATGATATGCGACCGCCGGAGG

GTTGCGTTTGAGACGGGCGACAGATCCAGTCGCGCTGCTCTCGTCGATCCAAGCTTTTTAAAAGCACCGA

CTCGGTGCC ACTTTTTC A AGTTGATAACGGACT AGCCTT ATTTT A ACTTGCT ATTTCT AGCTCTA

TAGGATTACTACAGTATAGAGACCTATAGTGAGTCGTATTAGCTAGCGGTGCGAGCGGATCGAGCAGTGTCG

ATCACTACTGGACCGCGAGCTGTGCTGCGACCCGTGATCTTACGGCATTATACGTATGATCGGTCCACGA

TCAGCTAGATTATCTAGTCAGCTTGATGTCATAGCTGTTTCCTGAGGCTCAATACTGACCATTTAAATCA

TACCTGACCTCCATAGCAGAAAGTCAAAAGCCTCCGACCGGAGGCTTTTGACTTGATCGGCACGTAAGAG

GTTCCA ACTTTC ACCAT A ATG A A ATA AGATC ACTACCGGGCGT ATTTTTTGAGTT ATCGAGATTTTC AGG

AGCTAAGGAAGCTAAAATGAGCCATATTCAACGGGAAACGTCTTGCTTGAAGCCGCGATTAAATTCCAAC

ATGGATGCTGATTTATATGGGTATAAATGGGCTCGCGATAATGTCGGGCAATCAGGTGCGACAATCTATC

GATTGTATGGGAAGCCCGATGCGCCAGAGTTGTTTCTGAAACATGGCAAAGGTAGCGTTGCCAATGATGT

TACAGATGAGATGGTCAGGCTAAACTGGCTGACGGAATTTATGCCTCTTCCGACCATCAAGCATTTTATC

CGTACTCCTGATGATGCATGGTTACTCACCACTGCGATCCCAGGGAAAACAGCATTCCAGGTATTAGAAG

AATATCCTGATTCAGGTGAAAATATTGTTGATGCGCTGGCAGTGTTCCTGCGCCGGTTGCATTCGATTCC

TGTTTGTAATTGTCCTTTTAACGGCGATCGCGTATTTCGTCTCGCTCAGGCGCAATCACGAATGAATAAC

GGTTTGGTTGGTGCGAGTGATTTTGATGACGAGCGTAATGGCTGGCCTGTTGAACAAGTCTGGAAAGAAA

Figure 2 - Confirmation of gRNA sequence in pDR274 vector. Yellow highlights the 
gRNA sequence.



1 2 3 4 5 6 7 8 9  10

Figure 3 - Lane 1- molecular weight (HiLo), Lanes 2-6 -  pMLM3613 digested with 
Pmel and the band displays the successfully linearized plasmid. Lanes 7-10 -  pDR274(- 
)atgICER digested with Dral sample and displays 2 distinct bands. The band ~ 282 bp 
codes for gRNA sequence.

Figure 4a - Cas9mRNA and gRNA were transcribed in vitro and was run on RNA gel. 
Lane 1- Molecular weight 0.5,1,1.5,2,2.5,3,4,5,6 and 9kb, Lane-2— Cas9RNA after 
poly(A) tail, Lane-3—Cas9 RNA before poly(A) addition, Lane-4 -  gRNA (the band is 
faint).

26



Lo
ng

 ru
n

1 2 3 4

Figure 4b - Cas9mRNA and gRNA were transcribed in vitro and was run on RNA gel. 
Lane 1- Molecular weight 0.5,1,1.5,2,2.5,3,4,5,6 and 9kb, lane-2— Cas9RNA after 
addition of poly(A) tail and smeared band was observed, Lane-3— Cas9 RNA before 
poly(A) addition, Lane-4 -  gRNA band is not visible.
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Stage -2

Transfection of PAC-2 cell line with pCMVCas9GFP(-)atgICER and pCMVEGFP

The transfected cells were observed under a fluorescent microscope. The 

percentage of transfection was determined by counting the total number of cells and the 

number of cells that emitted fluorescence. The percentage of transfection in the control 

flask (PAC-2 cells transfected with pCMVEGFP) and the test flask (PAC-2 cells 

transfected with pCMVCas9GFP (-)atglCER) was 14.2% and 8.7%, respectively 

(Figures 5a and 5b). Overall, the transfection efficiency was very low in both test and 

control flasks.

Table 1 - Percentage of Transfection in PAC-2 cells

PAC-2 Cells 
Transfected plasmid

Total Number 
of cells

Fluorescent
cells

%
Transfection

pCMVCas9GFP(-)atgICER 114 10 8.7
pCMVEGFP 140 20 14.2

Genomic DNA Extraction and Amplification of ICER

Total genomic DNA was extracted from test (PAC-2 cells transfected with 

pCMVEGFP) and control (PAC-2 cells transfected with pCMVCas9GFP(-)atgICER) 

cells. The ICER sequence was amplified with PCR. Gel electrophoresis of PCR products 

gave a strong band of size 350 bp with all 3 sets of primers (Figure 6).

Cleavage Assay

The PCR products were cleaved with detection enzymes and were analyzed by 

agarose gel electrophoresis. The bands obtained in each lane were compared with a
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positive control. Samples amplified with primer set 1 and primer set 2 did not have three 

bands as was visible in the positive control. The samples amplified with primer set 3, had 

three bands similar to that of the positive control (Figure 7). This indicates that the 

cleavage assay was successful and the ICER promoter sequence was knocked out. The 

cleavage band that appeared in lane 3(+) was very faint. This suggests that the 

transfection efficiency had a major effect on the band strength since only 8% of cells 

were transfected.
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5a 5b

Figure 5a - Control- PAC-2 cells transfected with pCMVEGFP (viewed under 
fluorescent microscope -  400x).

Figure 5b - Test- PAC- 2 cells transfected with pCMVCas9GFP (-)atglCER (viewed 
under fluorescent microscope -  400x).

MW l(-) l(+ï 2(~) 2(+) 3(-J 3(+) +C

Figure 6 - Gel display the PCR amplification. The band of ~350bp indicates that the 
ICER sequence has been amplified, l(-) and 1(+) indicates PCR amplification with 
primer set 1. 2(-) and 2(+) indicates PCR amplification with primer set 2. 3(-) and 3(+) 
indicates PCR amplification with primer set 3. +C indicates positive control (sample from 
the gene art kit)
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MW l(-) 1(+) 2{~) 2(+) 3{-) 3{+) +C

cleavage band 1 
. cleavage band 2

Figure 7- Gel displays the cleavage assay. Lane l(-) and 1(+), Lane 2(-) and 2(+) 
displays one band. This indicates that the cleave assay is not positive and ICER promotes 
sequence is not cleaved. Lane 3(+) displays cleavage bands similar to that of the +C, and 
the 2nd cleavage band is visible, but it is very faint.

31



Discussion

The vector pCMVCas9GFP(-)atgICER successfully knocked out the ICER 

promoter sequence in vitro, in PAC-2 cell lines. At the same time, the cleavage bands 

obtained, after the cleavage assay, were not very strong. One of the major reasons behind 

this was the transfection efficiency in PAC-2 cell lines. The percentage of transfection in 

the PAC-2 cell line with a ratio of 8:2 was only 3% and the cleavage assay result was not 

positive. In an attempt to increase the transfection efficiency, a ratio of 10:2 was used, 

and the percentage of transfection was increased by 5.2%. The cleavage assay was 

successful, but the cleavage bands were very faint. The other factor that would have had 

an effect on the cleavage assay was the percentage of indels formed. It was demonstrated 

that indel mutation less than 2% at the target site will not be cleaved by cleavage 

enzymes L\  Since the overall transfection in PAC-2 cells was only 8.2%, it could have 

had a major effect in the percentage of indels formed. The other factor that might have 

had an effect on the cleavage assay results was the specificity of Cas9 nucleases. Cas9 

cleaves the target at the PAM site, and acts efficiently if the PAM sequence is NGG. The 

PAM site at the 3’end of the gRNA used in this research is NGA and this might have 

reduced the specificity of Cas9.

The other major challenge in this research was to produce a sufficient amount of 

gRNA by in vitro transcription. The initial concentration of gRNA after in vitro 

transcription was around 43.2 ng/pL. It was believed that lithium chloride worked better 

on RNA samples greater than 300 bp and the gRNA used in this research was only 282 

bp. In an attempt to increase the gRNA yield, the gRNA was transcribed in vitro again 

and the RNA was precipitated with ammonium acetate. The gRNA yield increased and
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the concentration of gRNA was around 634.2 ng/pL. This gRNA concentration should be 

sufficient to perform in vivo experiment in zebra fish embryos.

Future Studies

In the future, the gRNA and Cas9mRNA generated in vitro could be used to 

perform an in vivo transfection in zebra fish embryos. While performing the 

microinjection, it would be good to try various concentrations of gRNA and Cas9mRNA, 

since the difference in concentrations may have an impact in the percentage of indel 

formations 2\  Future studies should also concentrate on the factors that affect the 

transfection efficiency and Cas9 nuclease’s specificity. It is necessary to optimize the 

transfection in PAC-2 cells by trying different transfection ratios. A few recent studies 

have demonstrated nucleofection as the better transfection method for PAC-2 cell lines ’ 

36. If possible, transfection efficiency in PAC-2 cells could be studied using different 

transfecting reagents, and the reagent that gives better efficiency could be used in future 

research. Since in this research the bands obtained after the cleavage assay were very 

faint, the DNA sequencing should be done on the PCR products to confirm the presence 

of an indel mutation in the target sequence. Since there is a possibility that NAG located 

next to the 3’ end of the gRNA at the target site might have had an effect on Cas9 

cleavage, in the future, designing a gRNA that satisfies the NGG requirement next to the 

3’end may give better results. This could be achieved by extending the current gRNA by 

3 bases at the 3’end.

These suggested changes, especially optimizing the transfection efficiency and 

increasing Cas9 specificity, may increase the effect of CRISPR/Cas9 system in knocking
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out the ICER promoter sequence in zebra fish cells (in vitro) and in zebra fish embryos 

(in vivo). Knocking out the ICER promoter sequence in zebra fish models may establish 

the tumorigenicity of ICER in melanomas.
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