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Abstract

We discuss the equilibrium configurations of a flexible fiber clamped to a spherical 

body and immersed in a flow of fluid moving with a speed ranging between 0 and 

50cra/s. Experimental results are presented with both two-dimensional and three- 

dimensional numerical simulations used to model this problem. We present the effects 

of flow speed and initial configuration angle between the fiber and the direction of the 

flow. Investigations reveal that both the orientation of the fiber and the fiber length 

have a significant impact on the deformation of the fiber as well as on the forces it 

experiences. Specifically, we measure the drag and lift experienced by the system 

and measure them against known values in literature. We note, additionally, that 

longer fibers (i) bend significantly more than shorter fibers and (ii) display oscillatory 

or flapping motion at much lower flow speeds than their shorter counterparts. In 

the two-dimensional simulations we reveal that the drag on the fiber is noticeably 

affected by the size of the sphere. The analysis of the drag is done in terms of Vogel 

exponents, computed in both 2-D and 3-D, and is compared with the literature. The 

validity of the reduction of dimensionality is tested against the three-dimensional 

simulations and qualitatively compared. Both mesh density and convergence studies 

are performed in 2-D and 3-D to balance the accuracy and convergence rates. We 

also discuss the robustness of the three-dimensional model and the practicalities of 

using a lower-dimensional model.
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Chapter 1

Introduction

This paper focuses on the problem of equilibrium (re)configuration of deformable 

fibers in a flow. Other than the well known engineering applications of this problem, 

flexible fluid-structure interactions are ubiquitous in nature and their biological ap

plications are particularly interesting. The problem of snoring, for instance, has its 

roots in a fluid-structure interaction, where the fluid is air and the structure corre

sponds to the soft-palette in the pharynx whose oscillations induce snoring [18]. A 

second widely studied application is the dynamics of ciliary hairs which line much of 

the human body and whose motion helps propel bodily fluids[27]. The breakdown 

of the ciliary mechanism is the cause of several human pathologies and constitutes 

an important medical question. Fluid structure problems are also essential to our 

understanding of the mechanics of flying and swimming[7]. The investigation of the 

positioning and orientation of wings, their length and equilibrium configurations, flap

ping modes, can all assist in optimal flight design. In the context of plant biology, the 

pioneering work by Vogel [33, 34] has lead to considerable attention to issues of forces 

experienced by plants in high winds[16, 23]. The flexibility of plants and aquatic 

vegetation can provide important clues of their health.

The fundamental phenomenon of the terminal state, including velocity and orien-
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tation, of a rigid body in a fluid flow has been well studied for over a century. Despite 

the attention to this problem, several significant fundamental questions remain unan

swered. In the past few decades, effort has been spent on explaining the terminal 

orientation of rigid symmetric bodies in a flow (where the structure is freefalling or 

hinged with one degree of rotational freedom) [5, 10, 11, 12, 20, 22, 26, 32, 37]. Our 

previous studies on hinged cylinders reveal that when the flow speed (or Reynolds 

number) is very low, the cylinder maintains its initial orientation. However as the 

Reynolds number exceeds a certain threshold, determined by the inertia in the sys

tem, the cylinder aligns with its longest axis perpendicular to the direction of the 

flow which is a new stable equilibrium. Beyond a second threshold for the Reynolds 

number, the particle begins to display complex unsteady behavior such as periodic 

oscillations and autorotation[5, 26, 24]. These varying orientations of a rigid body 

have a lot to do with the structure of the vortex shedding around the body. When 

the suspended body has the additional characteristic of being flexible, the physics be

comes even more complicated. This thesis is a part of an ongoing contribution to the 

broader subject of terminal orientations and configurations in fluid-solid interaction 

and aims on extending previous work to flexible systems.

Many studies of fluid-structure interaction have been done in compressible fluids 

(air). The modeling of unmanned air vehicles (UAV) has a significant role in aerody

namics. The optimization design of aircraft stems in computation of drag coefficients. 

In our work we analyze drag coefficients for different configurations and geometries 

(2-D and 3-D). This study was computed for low Reynold’s number. We expand upon 

this three-dimensional model to higher Reynold’s numbers [6]. Additionally, studies 

have been done with medical applications. Numerical studies have been done to an

alyze the airflow in human vocal folds. Specifically, the modeling of the interaction 

between air and the vibrations made when one talks is used with potential application 

in planning of surgeries, and voice rehab. Understanding of such elastic structures
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and their interaction with fluids can greatly advance the medical industry [17]. Our 

study in flexible fibers helps analyze such biological structures and even analyzes the 

necessity (or lack thereof) of a three-dimensional model. Other studies are concerned 

with applications of fluid-structure interaction in hemodynamics. Work performed by 

researchers at the Southwest Hospital in China have created a method for measuring 

instantaneous blood pressure and flow by designing and implanting a Fabry-Perot 

fiber sensor via intubation [38] Understanding the interactions of these fiber sensors 

with blood flow can help accurately predict real-time blood pressure and flow. Our 

study can help determine the optimum design of such bio-mechanical devices.

Studies have been done for the strict sake of fluid-structure interaction. Numerous 

studies have been done on the classic flow past a cylinder. Research done by the 

Department of Aerospace Engineering at University of Naples analyzes the vortex 

structures formed behind finite and infinite cylinders in fluid flow. According to their 

work, for finite free-end cylinders the flexible fiber creates vortices that interact with 

the fixed end in a complex manner. Attribution is made to three-dimensional fea

tures of the flow for this complex behavior [13]. Our study specifically analyzes this 

complex behavior of flexible three-dimensional fibers, except that we are primarily 

concerned with flexible fibers clamped to a sphere. On a similar note, other stud

ies have analyzed the flow around a sphere. Work done by engineers at MIT have 

analyzed the flow structure past a finite porous obstruction (sphere) in a channel 

[40]. The applications of obstructions range from aquatic vegetation to habitat for 

animals. If we understand the flow behind such objects, we can understand the com

plex evolution of these biological organisms. Porous objects improve water quality by 

blocking harmful materials. Our study generalizes this to obstructions with flexible 

fibers (similar to grass) and has similar applications. Significant work has been done 

on the analysis of drag coefficients on a sphere [6]. We quantitatively compare our 

results against these theoretical drag curves.
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In a series of fundamental experimental and theoretical papers on a similar subject [1, 

14, 29, 39] and others, it has been pointed out that deformable bodies in a flow bend 

in order to reduce drag. Alben et al.[l, 2] considered their study in a two dimensional 

soap film with flow velocities ranging between 0-3m/s. Along with their accompa

nying theoretical analysis, they predicted the scaling law for drag on flexible bodies, 

namely Fjy oc f/X Gosselin et al. [14] have examined the reconfiguration of rectangular 

plates and circular disks in air flow for speeds up to 25m /s. Their theoretical analysis 

of the subject confirms previous findings but has also revealed important phenomena 

about deviation in deformation trends at large flow speeds observed by deviations 

in their drag scaling law. This thesis considers a flexible fiber submerged in a three 

dimensional flow in a water tank with speeds 0-50cra/s and is also concerned with 

some other, yet unexplored, aspects of the problem such as the effect of fiber length 

and orientation(#0)- Unlike previous work, our study also considers the bending of 

the fiber in the presence of a basal body, which is taken here to be spherical. A basal 

body is naturally present in all physical examples and therefore accounting for it is 

essential.

The rest of the thesis is organized as follows. In chapter 2, we describe our experi

mental investigations, including the procedure and outcomes. Chapter 3 details our 

two-dimensional numerical simulations performed using the software Comsol Multi

physics. Chapter 4, on the other hand, details the three-dimensional numerical simu

lations based on the experiments. The details of the numerical schemes, convergence 

studies, and comparisons with experiments are presented.
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Chapter 2

Experiments

Detailed experiments were conducted in this study on the interaction of a suspended, 

clamped fiber in a flow as a function of the fiber length, initial orient at ion (0O) and 

flow speed (U). The experiments were performed in a flow tank with recirculating 

water with flow velocities ranging between 0-50cra/s(0 < Re = < 30,000 where

pf is the density of the fiber, U is the free stream velocity measured at the center of 

the tank in the absence of an obstacle and L is the fiber length). Fibers chosen for 

our study were made of nylon and polyester and were extracted from paint brushes. 

The exposed portion of the fibers were of lengths 2cm, 4cm and 6cm. These were 

inserted into a styrofoam ball of diameter 3cm in such a way as to prevent any motion 

with respect to the ball (Figure 2.1). The styrofoam ball with the fiber was held in 

place by means of a copper wire of thickness 1mm passing through the ball which was 

placed at the center of the tank appropriately to prevent any transverse or rotational 

motion. Panels (a) and (b) in Figure 2.1 show a side and back view of the fiber with 

the spherical basal body to which it is attached.
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Figure 2.1: Experimental setup: panel (a) shows a side view of the fiber attached to 
the spherical body (b) shows a rear view of the same object and panel (c) shows the 
nylon fiber inserted into the styrofoam ball which serves as the basal body. The flow 
direction in the experiments occurs from left to right in panel (a) or out of the plane 
of the paper in panel (b)

The dynamics of the fiber in the flow were recorded using a digital camera (Sony 

a), placed orthogonal to the flow. The orientation of the fiber with respect to the 

flow were changed by appropriately rotating the styrofoam ball upon the copper wire 

before clamping it. In this study three different angles were considered (where an

gles are measured using the standard convention with respect to the horizontal axis, 

counterclockwise.), namely1 225°, 270° and 315°.

The results of our experiments study are shown in Figure 2.2. The primary ex

perimental observation relates the bending of the various fibers as a function of the 

Cauchy number (Ca), which defines the ratio of inertial to elastic forces in the sys

tem. We define this number as Ca = where p is the density of the fluid, U is the 

characteristic velocity and K  is the bulk modulus of the fiber, which is taken to be

4GPa in our experiments, corresponding to Nylon.

1In our numerical simulations for the problem, presented in the following section, the fibers were 
placed at the antipodal end of the spheres, i.e. at angles 135°, 90° and 45°. Due to the symmetry of 
the problem and absence of any gravitational effects on the fiber, these angles are similar to those 
used in experiments. However, henceforth in this text we will use the experimental angles when 
referring to the fiber orientation.

6



(a) (b) (c)

Figure 2.2: These graphs show the average bending of the fibers between their sus
pension point and free end based on experimental investigations. Variations of the 
bending with Ca, fiber length and initial orientation are examined. Panel (a) corre
sponds to Oq = 225°, (b) to #o — 270° and (c) to 60 — 315°.

Gosselin et al. [14] note that the drag on a flexible rectangular plate can be seen 

to depend on an appropriate scaling of Ca, defined by Ca = Cd ' Ca (where Cd is 

the drag coefficient) such that for 1 < Ca < 10 the flexible plate transitions to a 

reconfigured state.

Due to the difficulty in obtaining drag coefficients and flexural rigidity in our study, 

we use a simple rescaling of the Cauchy number, Ca = 10~12 x Ca to bring it to the 

same scale as in previous studies.

Figure 2.2 shows the average bending of the fibers as a function of Ca for various 

dimensions of the fiber and different initial configurations. The average bending is 

estimated by the angle of the straight line connecting the points P  and Q where P 

is the point on the fiber in contact with the ball and Q is the free end of the fiber. 

The bending is shown for the three fibers of different lengths as well as the initial 

orientation angle of the fiber(#0)- Increasing Ca has the effect of greater bending
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force upon the fiber. Our observations reveal that beyond a certain critical value of 

Ca, which depends upon the material of the fiber and its physical dimensions such as 

length and thickness, the fiber begins to bend and continues to do so until it reaches 

a second critical Ca, which we shall refer to as Cac , when it starts to display time 

dependent motion. Since the focus of this paper is the equilibrium configuration of 

the fiber, the Ca was restricted to the range below Cac . The longer fibers display 

greater propensity to bending, and eventually flapping or random motion, than the 

shorter ones and start to bend for smaller values of Ca as seen from the slopes of the 

tangents to these curves; the 2cm fiber shows a minimal change with respect to its 

initial configuration.

The average bending is seen to be highest when the fiber protrudes more into the 

incoming flow (0O =  225°) and least for the case of 6 = 315° where the fiber is closer 

to the wake region making the body more streamlined. We can use the changes in 

concavity of the deformation angle data to identify the values of Cac. The value of 

Cac is seen to depend on the fiber length as well as the orientation. For the case 

6q =  225°, Cac is of 0(1) for the 6cm fiber and shifts to 0(10) for the 2cm and 4cm 

cases. For the remaining angles the 6cm fiber displays no yield stress while Cac for 

the 4cm and 2cm fibers show an order of magnitude reduction. The shorter fibers in 

the experiments, namely 2cm and 4cm, display time dependent fluttering at the high

est velocity considered here but the 6cm fiber achieves the time dependent flapping 

at much lower values of Cac than the other cases. It must be however noted that 

unsteady motion referred to here was not the consistent large periodic oscillation of 

the type observed by [28].

Visualizations of the flow structure past the body indicates a complex wake vortex 

pattern even at fairly low velocities (figure 2.3). The resulting pressure differences

8



Figure 2.3: Visualization of the wake vortex behind the fiber. Panel (a) shows the 
vortex structure for a 4cm fiber at approximately U = 5cm/s while panel (b) shows 
the structure for a 6cm fiber at a higher velocity of U = 15cm/s.

between the fore and aft regions of the fiber eventually cause the bending of the fiber 

as the pressure force exceeds the tension in the fiber. To allow for the visualization 

past the fiber, we repeated the aforementioned experiments with a thicker fiber. The 

flow was seeded with microscopic hollow glass spheres of average diameter 13/xm 

and illuminated using a laser sheet (532nm, 1W laser from Opto Engine LLC). The 

resulting images of the flow structure via scattering from the seeded particles are 

shown in figure 2.3.

Visualization of the flow structure along the Y Z  plane was also conducted in order 

to discern any significant three dimensional effects. The spherical basal body gener

ates a noticeable dimensional wake; the fiber is however, far too thin to do so. The 

figure 3.7 depicts the three dimensional flow structure in the plane Z  and it shot from 

an oblique angle to allow for visual identification of the flow structure. The fiber used 

for purposes of visualization are thicker (3mm width) than the nylon fibers referred 

to earlier since the flow past the nylon fibers are practically impossible to visualize 

due to their slenderness. The red box in figure 3.7 highlights the three dimensional 

structure which can be seen to be obvious behind the sphere but not as prominent be

hind the fiber and remains sufficiently small for the flow speeds examined in this study.
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Also, it is reasonable to assume that the symmetry of the flow around the fiber 

cancels any bending forces along the Y Z  plane; the flow asymmetry in the X Y  plane, 

along which the fiber lies is the only cause of the bending which occurs in the same 

plane. As a consequence of these observations our following analysis are conducted 

in two dimensions. Also, while we were unable to measure the drag and lift forces 

experimentally, they have been studied numerically and discussed in the following 

section. Close comparisons with experimentally observable parameters are also made 

to estimate deviations of theoretical results from experiments. Furthermore, the three 

dimensional computation remains a considerable challenge at this stage in terms of 

its computational cost and time.
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Chapter 3

2-Dimensional Numerical 

Simulations

We performed a two dimensional numerical simulation for the problem using the 

software Comsol by employing the Fluid Structure Interaction (FSI) module.

3.1 T he governing equations and num erical schem e

The resolution of this fluid-structure problem followed from solving the following 

coupled equations:

= f  (3-1)

= 0 (3.2)

=  F„ (3.3)

chi
P f [ -  +  n - V n /¿V • (Vu +  Vr u) + Vp

d2us 
dt2

V u

V • (T

where u is the incompressible fluid velocity field, us is the displacement of the solid 

fiber, t is time, p/ is the density of the fluid, ps is the density of the solid, p is the 

dynamic viscosity, f is the external volume force on the fluid and Fv is the force per 

unit volume on the fiber. At the channel inlet, the flow is taken to be fully developed
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and parabolic while at the chancel outlet, zero pressure conditions are imposed. The 

Cauchy stress tensor for the solid material, cr, is given by[30]

o (3.4)

where F = (I + Vus), S = S0 + C : (e — e0) and e = \  (Vus T- VuJ). Here C, S, 

So, e and stand for the stiffness tensor, stress tensor, initial stress tensor, strain 

tensor and initial strain tensor, respectively. In the special case of a homogeneous 

isotropic media, like considered in our study, a reduces to the simple form

where K  is the bulk modulus and ¡is is the shear modulus of the material.

On the solid boundaries of the channel, no-slip conditions are imposed. On the 

deformable body, the flow velocities are taken to be equal to the rate of deformation

The FSI module solves the Navier-Stokes equations for the flow in a continuously

deformation of the mesh relative to the initial shape of the domain was computed using 

hyperelastic smoothing. Inside the fiber, the moving mesh follows the deformations of 

the fiber and at the exterior boundaries of the flow domain the deformation was set 

to zero in all directions. A fine mesh was chosen specifically to be calibrated for fluid 

dynamics problems (see figure 3.3). We solved for the time dependent variables using 

the PARDISO solver (included in Comsol) which was run for 5 seconds in increments 

of 0.5 seconds. Once the flow field was computed, we also evaluated the net drag and

(3.5)

of the fiber (i.e. the time rate of change of the displacement).

deforming geometry using the arbitrary Lagrangian-Eulerian (ALE) technique. The
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lift forces on the fibers as a function of the flow velocity:

FD = U - ¿ T - n d S ,  FL = J) p k - n d S ,  (3.6)
J s  J s

where S  is the surface of the obstacle, T is the Newtonian stress tensor, p refers to 

the pressure, n is the normal unit vector pointing into the body and k is the unit 

vector normal to the direction of the free stream. Parameters used for the study are 

shown in table 6.1.

3.2 Convergence tests

Several tests were performed to confirm the validity of our computational results. 

In particular, we investigated the effect of mesh density by computing the steady 

state drag and lift forces for various mesh density options, as shown in figure 3.1. 

The x axis denotes the various mesh configurations, where 1 is defined as a ’custom 

mesh’(11381 elements) , 2 as ’coarser’(2212 elements), 3 as ’coarse’(3590 elements), 4 

as ’normal’(5241 elements), 5 as ’fine’(8609 elements), 6 as ’finer’(16768 elements), 7 

as ’extra fine’(37456 elements) and 8 as ’extremely fine’(66682 elements). Numerical 

convergence was achieved (figure 3.1) and the result seem stable beyond the choice 

of normal mesh. Mesh 1 was user controlled while meshes 2-8 were automatically 

generated by Comsol. Based on these estimates we chose the ’fine mesh’ or higher to 

run all our cases, with grid points ranging between about 9000-12000.
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Figure 3.1: The values for drag and lift are computed for a 4cm fiber of thickness 
0.05cm with initial orientation 9$ = 270° relative to the flow, as a function of different 
mesh densities. Here the x axis denotes the various mesh configurations, where 1 is 
defined as a custom mesh, 2 as ’coarser’, 3 as ’coarse’, 4 as ’normal’, 5 as ’fine’, 6 as 
’finer’, 7 as ’extra fine’ and 8 as ’extremely fine’.

Figure 3.2: The values for drag and lift are computed for a 4cm fiber with initial 
orientation 60 = 270° relative to the flow, as a function of different channel heights.

Our computational domain was chosen to match with experimental configuration, 

apart from the restriction in dimensionality. For this reason the majority of the com

putational results reported here correspond to the case of h = 18cm. Variations in the 

values of terminal drag and lift forces for increasing channel heights (in centimeters) 

were computed and are depicted in figure 3.2 for the sample case of a 4cm fiber at 

initial angle 0 — 270°. Increasing channel heights naturally changes the drag and lift 

forces which appear to converge to a fixed value. There is a change of nearly 20% in 

the drag force and about 25% in the lift force as one moves from h — 18cm to the 

final channel height of h = 75cm considered here. It needs to be kept in mind that 

the convergence of the computed quantities with respect to h is not in question here; 

the choice of h is dictated by experimental considerations.

14



Figure 3.3: The two-dimensional triangular fine mesh generated in Comsol for the 
fluid structure problem under investigation.

3.3 R esults: com parison w ith  experim ents

At the conclusion of the experimental section above we presented our flow visualiza

tion data indicating negligible three dimensional flow around the fiber. This is not 

to say that there is no three dimensional flow behind the fiber or that the fiber re

mains unaffected by the flow induced by the basal body. We use these observations to 

restrict our initial computational investigations to two dimensions. The three dimen

sional simulation is extremely challenging and will be pursued in our future work. 

In this section we discuss the relative merit of the numerical method employed to 

simulate and qualitatively replicate the experimental results. We do so by comparing 

the numerical estimates of the average bending versus Ca with those obtained from 

experiments (see figure 2.2).

A time sequence of the results of our simulations are shown in figure 3.5 for the 

same cases explored in experiments. The simulations permit us to visualize the evo-
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lution of the two dimensional vortex structures and its interaction with the bending 

of the fiber. As anticipated, the wake structure and resulting pressure differential 

in the fore and aft regions of the fiber appears to be the driving factor causing the 

fiber to reconfigure. While the fiber orients into the flow, the primary cause of the 

first vortex is the fiber. In the streamlined position, it is the sphere which affects 

the primary vortex (see also figure 2.3) the most while with the fiber in the vertical 

orientation, the ball and fiber, both contribute equally to the primary vortex.

(a) (b) (c)

Figure 3.4: These graphs show the average bending of the fibers, between their sus
pension point and free end, versus Ca for three different fiber lengths and initial orien
tations, based on the 2d numerical simulations. Panel (a) corresponds to 0O = 225°,(b) 
to 6>0 =  270°, and (c) to <90 -  315°.

Figure 3.4 examines the average bending behavior versus Ca where the same range 

in Ca has been maintained as in experiments. The numerical results are in good qual

itative agreement with experiments and show the same overall profiles observed in 

figure 2.2. Specifically, we note that the average deformation angle increases sharply 

with the length of the fiber, i.e. longer fibers are more prone to bending than the 

shorter ones. The 2cm fiber displays little propensity to bend, much like in ex-
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Figure 3.5: The time evolution of a 4cm fiber at various orientations are depicted along 
with the corresponding flow structure. The fibers achieve their steady configurations 
as the flow simultaneously evolves into its steady state. The wake vortex structure is 
also seen to depend on the fiber orientation.
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periments. In terms of orientation, the deformation angle is largest when the fiber 

protrudes into the flow direction and least when the fiber is in a more streamlined 

configuration (see also figure 3.6(d)). This is not so obvious for the 6cm fiber which 

shows a drop in the average bending past (7a ~  40 which is caused by the free tip 

of the fiber dropping below its maximum height in this orientation. While the 4cm 

and 6cm fibers show no critical behavior (i.e. absence of Cac), the 2cm fiber exhibits 

critical behavior at 0(10) for the streamlined case and at 0(1) for the remaining two 

orientations. In these cases, the deviations from experimental observations can be 

attributed primarily to the mismatch of material properties of the fibers which had 

to be approximated in experiments. We also considered the case when the diameter 

of the basal body is reduced from 2.5cm to 0.06cm (note the triangular points in 

figure 3.4), in order to understand the impact of the body size on the fiber deforma

tion. Our preliminary calculations revealed that the diameter of the basal body does 

indeed make a noticeable difference when the fiber protrudes into the flow but is less 

so when the fiber is in a streamlined position.
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Figure 3.6: The panels (a)-(c) show variations in drag versus U. Panel (d) shows the 
drag transition of a sample case, the 4cm fiber at 0O = 270°. In all cases here, the 
fiber is seen to reach steady state at about Is with the highest drag when the fiber 
protrudes into the flow and the least drag when the fiber is in its most streamlined 
configuration.
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The 2>axis in figure 3.4 was chosen to conform with the experimental range. In 

this range, no time dependent motion was observed for any of the fibers. However, 

we extended our study to explore values of Cac for the 2cm and 4cm fibers (the 6cm 

fibers broke down in the unsteady regime), each oriented at three different configu

rations. These simulations also display sensitivity to the orientation of the fiber. At 

certain critical flow speeds the fibers transition from steady state

Critical Speeds 225° 270° 315°
2cm 75.08 cm/s 42.63 cm/s 305.18 cm/s
4cm 39.68 cm/s 54.43 cm/s 83.93 cm/s

Table 3.1: Critical flow speeds at which the fibers display periodic oscillations.

to periodic oscillations, which are not actually observed in our experiments, in the 

range of flow speeds considered. Table 3.1 denotes the critical speeds which trig

gers the onset of oscillations. As in experiments, the larger fibers transition out of 

equilibrium more easily than the smaller ones. However, unlike in experiments, the 

simulations indicate that fibers oriented at Oq — 225° oscillate at lower flow speeds 

than the 60 =  315°. This apparent discrepancy can be attributed to lack of a suffi

cient range of speeds in the observations, non-constant stiffness across the fiber and 

possibly, three-dimensional effects.

Drag Exponent 315° 270° 225°
2cm 1.19 1.24 1.22
4cm 1.19 1.26 1.29
6cm 1.14 1.28 1.40

4cm (small sphere) 1.20 1.33 1.30

Table 3.2: The drag exponents for fibers of varying lengths and orientations based on 
least squares fit of our 2D simulations.

Yet another way to classify the effect of the flow upon the bending configurations20



of the fiber is by examining the overall drag on the system. It is well known that 

for rigid bodies the drag force varies as the square of the velocity[4]. However for 

flexible bodies, since the bodies can bend to reduce drag, the relation is markedly 

different from the rigid body case and can be given by Fp oc Ua [34] where, the 

exponent, 1 < a < 2. Several studies performed on flexible bodies of different shapes 

and materials seem to put the exponent in the range 1-1.5 [1, 14, 34]. It is to be 

noted that in these studies the body is always initially held perpendicular to the flow 

direction. The results of our calculation of the drag exponent are indicated in the 

table 3.2. A least squares fit to the drag force values applied to the results of our two 

dimensional numerical computations (see figure 3.6) yield the values of a which seem 

to conform to the previously reported ranges. The exponents are seen to be sensitive 

to the orientation and length of the fiber although it is not quite clear if there is any 

distinct pattern. It has been observed [14] that there is a critical length below which 

the drag shows an increasing trend and above which the drag decreases with increas

ing length. While no such trend is seen here, it is plausible that such a reversal also 

shows itself as we combine the fiber length with its orientation. The values obtained 

in our computations clearly correspond to the case of small deformations [14, Table 

1]; after all the velocities considered in our study are well below 1ms“1.
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Figure 3.7: The image shows the wake vortex behind the obstacle in the Z direction. 
The fiber used here is 6cm in length and the corresponding flow velocity is nearly 
15cm/s. The picture in the red box shows the three dimensionality of the wake 
flow field. The fuzzy circular region behind the sphere corresponds to the 3-D wake 
structure behind the sphere; the fiber, however, does not generate any noticeable 
wake in the third dimension.
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Chapter 4

3-Dimensional Numerical 

Simulations

In this section, 3-dimensional simulations are used to better portray the experiments 

described in Chapter 1. The differences between two and three dimensions, specifically 

the numerical calculations, will be discussed in detail. In this Chapter we describe the 

differences in assembly, solver configurations, and accuracy of solutions in reference 

to the modeling of the experiment.

4.1 Equations and C onditions

Navier-Stokes and Linear elasticity Equations (3.1),(3.2),(3.3) are again used to model 

the structural deformation of flexible fibers. In the 3-dimensional model we model the 

steady-state solution of the problem, since we are strictly concerned with the steady 

drag force and final bending angle. This fluid-structure interaction model is known as 

a two-way boundary coupling, in that the structural deformation affects the fluid flow 

and the fluid flow affects the structural deformation. We impose an inlet condition,

I6umaxy(w -  y)z(z -  h) 
w2h2u(0 , y , z) (4.1)
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at the inlet and zero pressure condition p =  0 at the outlet p(L,y,z), where L is 

the length of the tank. Here umax represents the maximum velocity along the inlet 

boundary, and w and h represent the width and height of the flow tank, respectively. 

We impose this inlet condition such that w(0,0,z) = it(0,p,0) = 0 and w(0, | )  =

Umax- Since the problem is steady state, we are therefore considering the following 

system of equations:

pf (u • Vu) — pV • (Vu +  V Tu) 4- Vp = f (4.2)

V u = 0 (4.3)

—V • a = FX V (4.4)

where p/, y  / ,  and Fv are as defined in chapter 3.

4.2 N um erical Set-up

4 .2 .1  T h e  B e n c h m a r k  S p h e r e

In order to study the interaction between the fluid with the flexible body, we will first 

analyze the results of laminar flow around a sphere (see figure 4.1). This problem 

is a classic problem in fluid mechanics [4]. We are primarily concerned with what 

numerical parameters result in accurate solutions to the Navier-Stokes Equations.
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Figure 4.1: Environment used to numerically simulate flow around a rigid sphere in 
3-D

The numerical procedure used in Comsol to solve the laminar flow problem is the 

finite element method. A comparison of discretizations is used between P I  +  PI  and 

P2 +  P I for fluid elements. P I + P I means that we construct linear test functions 

for velocity and linear test functions for pressure, versus P 2 + P I  using quadratic 

test functions for velocity. Similar to the 2-dimensional model, we construct a mesh 

study to analyze the best possible mesh for use in the full ball and fiber model. The 

mesh study run includes number of mesh elements ranging from 5000 to 310000.

25



(a) Visualization of the mesh used on the flow tank for the flow 
around a sphere problem. The mesh was generated with 5847 
mesh elements on the domain.

(b) Mesh of the sphere used for the benchmark problem

Figure 4.2: A typical mesh generated by Comsol to solve the 3-D flow past a sphere 
laminar flow problem.

Drag is chosen as the primary source of comparison for the mesh study. It is well 

known that for a sphere:

Fd = l-p n  R2(4.5)

where Fp, p, R ,C d ,U are the drag force, density of the fluid, radius of the sphere, 

drag coefficient, and terminal velocity, respectively. Special attention is paid to the 

drag coefficient. According to literature drag coefficients of many objects have been 

both experimentally and numerically computed. Since the velocity is approximated, 

so is the drag coefficient. There is a known ’’theoretical” drag curve which tells how 

the increase in Reynolds number affects the drag coefficient. [6]
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Figure 4.3: The theoretical drag curve for a sphere. Shown are the effects of surface 
roughness on the drag coefficient. In our study, we consider the sphere to be perfectly 
smooth.

As a balance between computational time and velocity, we choose parameters that 

give a Reynolds number of 15000. Specifically, the velocity is chosen to be a slightly 

higher velocity than the maximum velocity needed in the three-dimensional simulation 

with sphere and fiber.

Re —
U L p

(4.6)

For this numerical comparison of drag coefficients we use, p = 10~3Pa • s, U = 

0.75m/s, and p — 1000kg/m3. The radius of the ball is r — 1cm = .01m. Here, the 

diameter of the sphere is used as the characteristic length, L = 2r =  .02m. Estimates 

have been made for the drag coefficients as a function of Reynolds number. For low 

Reynolds number the drag coefficient follows a linear relationship with Reynolds num

ber (Stokes flow). There is a point where the drag coefficient increases with increased 

Reynolds number and then eventually drops off. For higher Reynolds number many 

papers have been published that attempt to develop an equation governing the re

lationship between these two variables. Unfortunately, the chosen Reynolds number
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lies in the regime of instability (the drop-off) for drag coefficients. There are many 

papers with estimates for the drag coefficients. One in particular points out a list 

of drag coefficient formulas [6]. Simulations were run for both quadratic and linear 

velocity elements. In Figure 4.5 we compare the percent error in each formula for 

drag coefficients to our numerically computed drag for linear velocity elements:

Figure 4.4: Evolution of drag force with increasing mesh elements
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Comparisons of Measured and Theoretical Drag 
Coefficients

Figure 4.5: Comparison of computed and theoretical drag coefficients based on liter
ature.

Notice here that the smallest percent error lies in the bottom-most theoretical drag 

formula from Mikhailov [25]. According to Mikhailov:

c  3808 ((1617933/2030) + (178861/1063)Re +  (1219/1084)Re2)
Da ~~ 681-Re ((77531/422) +  (13529/976)iïe — (l/71154)i?e2) ' ' '

This formulation of drag coefficient is then used as the standard for our model. Using 

this reveals small errors for large number of mesh elements.

We can see from Figure 4.1 that the increase of mesh elements greatly reduces 

the amount of error in the measured drag coefficients relative to the computed drag 

based on that in literature. Remarkably, the drag for linear velocity elements reaches 

a point where the error is under 1 %. On the other hand, we can see that the error in 

quadratic elements is still large comparably.
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Mesh Number 
of Elements

Cd
P l + P l

c D
P2 + P1

% Error 
P l + P l

% Error 
P2 + P1

5847 0.473984641 .581115839 1.97127 25.01907161
11771 0.477832654 .533478156 2.79912 14.77048019
26030 0.496393657 .520264826 6.79226 11.92781398
50843 0.48586821 .506749019 4.52786 9.020074388
155780 0.469231214 N/A 0.94864 N/A
309889 0.465496378 N/A 0.14514 N/A

Table 4.1: Comparison between drag coefficients for varying mesh densities. In 
this second and third column the drag coefficients are compared between linear and 
quadratic velocity elements. The' percent error is computed relative to the closest 
representative drag coefficient given in Equation 4.2.1 . The percentage error is also 
compared between linear and quadratic velocity elements.

Mesh
size

DOF 
P l + P l

DOF 
P2 + P1

Comp, time (s) 
P l  +  P l

Comp, time (s) 
P2 +  P1

Extremely Coarse 4264 24688 17 120
Extra Coarse 8768 51077 2 1 202

Coarser 19428 114129 37 1926
Coarse 37360 221797 60 4122
Normal 111576 672291 262 N/A

Fine 218836 1328473 921 N/A

Table 4.2: Comparison of linear and quadratic velocity elements. The pressure is 
consistently measured in linear test functions. Degrees of freedom (DOF) is compared 
against computational time and mesh sizes. The mesh sizes correspond directly to 
the elements of Table 4.1.

These experiments were run with a Intel Xeon CPU E5-2609 v2 with 2 processors at 

2.50 GHz each. The CPU holds 8 cores and has 64 GB of RAM. The high percentage 

error in P2+ P 1 is considered a practical justification in choosing P l+ P l  elements for 

the discretization of the finite elements needed for the sphere with fiber. It is obvious 

that for ’’Fine” mesh size the

rees of freedom is well beyond 1 million degrees of freedom. This is a computationally 

difficult task to numerically solve.
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4 .2 .2  C o n v e r g e n c e  S tu d y  for S p h e re  a n d  F ib e r

It is the goal of this section to describe the set-up needed to solve the equations 

governing the 3-dimensional fluid-structure model described in Chapter 2. The envi

ronment in which we set-up the fiber attached to basal body is seen in figure 4.6.

Figure 4.6: The sphere with fiber attached in the flow tank. The dimensions of the 
flow tank are representative of the experiments done and can be seen in the appendix.

The previous section is considered justification in the choice of P I -f P I discretiza

tion. The environment must be meshed in order to evaluate the independent variables. 

To make the proper choice of mesh a mesh study is done for the sphere and fiber.
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#

(b) A refined mesh is created around the boundary of the object to ensure 
that sharp corners are properly dealt with.

Figure 4.7: Meshing of the flow tank with the sphere and fiber.

Three settings governed the meshing of the fluid environment: (1 ) A Master size 

defining global properties, (2) Free Tetrahedral meshing for the Flow tank without 

the fiber, and (3)Free Tetrahedral meshing for only the sphere and fiber. We choose 

(by trial and error) to make the Master setting a ” custom” mesh. The parameters 

for the custom mesh are detailed in Table 4.3.
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Element Size Parameters Value
Maximum element size 0.00824 [m]
Minimum element size 0.001 [m]

Maximum element growth rate 1.13
Resolution of curvature 0.5

Resolution of narrow regions 0.8

Table 4.3: Custom mesh parameters chosen for Master size in mesh.

According to an official Comsol Multiphysics blog by Andrew Griesmer, to increase 

performance it is desirable to lower the minimum element size, lower the resolution of 

curvature, raise the resolution of narrow regions, and increase the maximum element 

growth rate. [15] This explains the use of certain parameters in the custom mesh given 

in Figure 4.3.

The mesh governing the ball and fiber is consistently chosen to use the predefined 

’’extra fine” setting in Comsol. This gives a nice refinement near the object to ensure 

that sharp corners are taken into account. We run a mesh study on the size of the mesh 

governing the flow tank without the ball and fiber. This parameter sweep runs through 

four predefined settings with number of elements ranging from 21000 to 74000. Table 

4.4 shows us the measured drag at a maximum velocity of 0.4510ra/s run for each 

setting of mesh densities. Additionally this table shows the correspondence between 

degrees of freedom and mesh density. The degrees of freedom is very important in 

terms of computational time and can result in lack of convergence from matrices of 

sizes which are too large.

Mesh Elements Degrees of Freedom Fd
21617 117209 .02097
31004 167124 .0 221
48493 250784 .02251
73857 373838 .02282

Table 4.4: Mesh Study for ball and fiber
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In order to measure the relative error, we desire equally spaced mesh points. To do 

this we use the curve fitting toolbox in Matlab to fit the data. Specifically, Matlab 

used an interpolant with the Shape-preserving (PCHIP) method interpolating as a 

piecewise polynomial where the independent variable, number of mesh elements, is 

normalized by mean 4.37 x 104 and standard deviation 2.296 x 104. This fit is then 

used to measure the drag at equidistant number of mesh elements. A step-size of 

10000 mesh elements is chosen to measure relative drag; that is,

Errorrel = (4.8)

Mesh number of elements Relative Error
10000 0.0301
20000 0.0637
30000 0.0146
40000 0.0075
50000 0.0066
60000 0.0048
70000 0.0020
80000 0.0017

Table 4.5: Relative Error in drag force measured from interpolated fit.

Mesh Density Relative Error (N)
21617 0.0605
31004 0.0134
48493 0.0068
73857 0.00071022

Table 4.6: Relative error in drag force for specific values of available mesh densities.

We can see from Table 4.5 that, according to the interpolated fit, the relative error 

in drag force decreases with increase in mesh density. Figure 4.8(a) shows the increase 

in the final drag force, measured once the velocity is in steady state and the fiber is
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fully deformed, as the mesh density is increased. Additionally, Figure 4.8(b), shows 

the error described here in increments of 10000 number of mesh elements. On the 

other hand, the actual available mesh densities for use in Comsol are described in 

the first column of Table 4.6. The relative errors in drag are also measured for these 

mesh densities according to the interpolated fit given in Matlab.
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(a) Computed value of final drag force (steady state) with increasing mesh 
density

Figure 4.8: Interpolated fit for mesh study. The blue triangles represent points at 
which Comsol computed a solution for the given mesh points in Table 4.4 and the 
black diamonds represent points at which the relative error was measured.
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Notice here that the relative error is eventually of order 10_3 for a sequence of 

large mesh densities, which is desirable for convergence. Therefore, the justification 

in choosing 48493 mesh elements as the number of discretized points to solve on is 

that the error drop below 10-3  for actual values seen in Table 4.6.

Divergence of Velocity Field for 315

(a) Divergence of Velocity field in 315° initial configu
ration.

Divergence of Velocity F ield  for 270

(b) Divergence of Velocity field in 270° initial configu
ration.

Figure 4.9: Comparison of numerical error in the continuity equation for varying 
initial configuration angles. Here (□) represents 2cm fiber length and (o) represents 
4cm fiber length.
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A probe was used to calculate the evolution of the divergence of the velocity field 

throughout the iterations. Figure 4.9 shows the final divergence, after the velocity 

has reached steady state. We conclude that magnitude of divergence increases with 

Reynolds number. As we increase Reynolds number we approach turbulence, in which 

Laminar flow is no longer completely accurate. This plot shows us the error we obtain 

with said approach to turbulence.

4 .2 .3  S p h e r e  a n d  F ib e r  w ith  C h o se n  P a r a m e te r s

A study was then computed with a sphere and fiber with chosen parameters, seen 

in the appendix. Based off the benchmark and convergence studies done, we chose 

P I +  P I for the discretization of velocity elements and 48493 as the number of mesh 

points on which to solve the coupled system of equations.

The system of equations (4.2 through 4.4) are used with the same inlet conditions 

described in Chapter 4.1. The no-slip boundary conditions are imposed on all faces 

of the rectangular prism and at all boundaries on the ball and fiber and zero pressure 

conditions are held at the outlet. The sphere is held fixed, while the fiber is free to 

bend. The tip of the fiber has an imposed boundary load

a • n =  Fv (4.9)

where Fv is force per unit volume on the fiber. The fiber is considered to be linear 

elastic material with isotropic material properties E — 8 x 106Pa, v = 0.33, and 

p = 7850kg/m3 being the Young’s modulus, Poisson’s ratio, and density, respec

tively. A moving mesh is used as a continuously deforming geometry (like the 2D 

case) using the arbitrary Lagrangian-Eulerian (ALE) technique. The deformation of 

the mesh relative to the initial shape of the domain was computed using Winslow 

smoothing (the default smoothing given by Comsol). The moving mesh again follows
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the deformations of the fiber, so to represent the bending, and on the flow tank the 

deformation was set to zero in all directions. The discretization of the displacement 

field for the solid is given by quadratic elements.

A fully coupled numerical procedure is used to solve the system of equations. Corn- 

sol uses the finite element method to convert the problem from a system of partial 

differential equations to a system of equations via the stiffness matrix. That is we 

desire to solve the equation:

K u  — b (4-10)

where K  is the stiffness matrix, u is the velocity vector and b is the remaining 

component left over form turning the problem into variational form. In order to solve 

this linear system we use the MUMPS Linear solver. We assign Newton’s method to 

minimize the quadratic function

r(u) =  bu — ^ K u  • u (4-11)

MUMPS then finds the point / ( u) = 0, where r(u) is a minimum. Essentially, we 

demand that Comsol directly solves the fully coupled system by finding u =  K 1b. 

Attempting to invert a large matrix can be difficult computationally. This is why 

special attention was paid to the parameters in this study.

Two different angles were computed for speeds ranging from 0.009m/s  to 0.4510m/s, 

chosen based on the two-dimensional simulations and experiments. Additionally, sim

ulations were run for both 2cm and 4cm fibers (see figure 6.2 ).

4.3 R esu lts

As stated in Chapter 2 , this three-dimensional simulation is very challenging. In this 

section, we describe the numerical solutions generated with Comsol. Additionally, we
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discuss similar results to the two-dimensional simulations such as deformation angles, 

drag and lift, and Vogel exponents. Additionally, we show the three-dimensional 

vortices formed.

4 .3 .1  A n a ly s is  o f  D r a g  a n d  L ift

We can see from Figure 4.10 that an increase in fiber length leads to a significant 

increase in drag force. Additionally, we can see how the drag force is quadratically 

related to velocity. The lines in red represent exponential least squares fits. That is,

Fd = CDUa (4.12)

Matlab’s curve fitting toolbox is used once again to find an exponential fit to this 

model. The drag coefficients and Vogel exponents, a are summarized in the following 

table:

Fiber Length 2 cm 2 cm 4cm 4cm
Angle 315 deg 270 deg 315 deg 270 deg
cD 0.1092 0.0838 0.1231 0.08825
a 1.984 1.98 1.977 1.966

Table 4.7: Summary of least squares fit of Drag to Velocity

We can see from this table that the Vogel exponents are much closer to the tradi

tional expected value for rigid values of a  — 2 . The flexible body appears to be much 

stiffer, and bends less due to the properties of the solid such as the bulk modulus.
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(a) The steady-state drag force on the body for 2cm 
fiber with increasing flow speed.

Drag vs. Flow  Speed for 4cm Fiber

(b) The steady-state drag force on the body for 4cm 
fiber with increasing flow speed.

Figure 4.10: These plots show the change of drag force as a function of velocity. These 
plots are computed for angles of 315° (Q) and 270° (□)

By definition, the lift force is the force perpendicular to the flow. Since the flow 

at infinity is in the x direction, we have that the lift force now has two components. 

This differs from the 2-dimensional model, in which we had only one lift force.
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x 1Q-3 Y Component of Lift force for 2cm Fiber

(a) Comparison of Lift y-component for 2cm  fiber 
length.

x 1 Q-4 Y Component of Lift force for 4cm Fiber

(b) Comparison of Lift y-component for 4cm fiber 
length.

Figure 4.11: The y-component of the lift force is plotted against flow speed. Here the 
(□) represents 315° and (o) represents 270° angles.
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x 1 0 - 4 Z Component ofL iftForce for 2cm Fiber

Flow  Speed (m/s)

(a) Comparison of Lift z-component for 2cm  fiber 
length.

x 1 0 -3 Z Component ofL iftForce for 4cm Fiber
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(b) Comparison of Lift z-component for 4cm fiber 
length

Figure 4.12: Z component of the Lift force with comparison in initial configuration 
angle of the fiber. Here the (□) represents 315° and (Q) represents 270° angles.

4 .3 .2  A n a ly s is  o f  B e n d in g

A main focus in this research was to analyze the bending of fibers under fluid flow. 

Specifically, it is desirable to understand how changing different lengths of fibers and
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initial configuration angles may affect the flow around the fiber. Furthermore, we 

would like to analyze the vortex affects that occur around them. Some people are 

interested in how fibers, known as primary cilian (sensors in certain cells), may affect 

the blood flow around them. This blood flow may affect the calcium intake and 

therefore affect the cell-division process. It is important, therefore, to understand 

how different parameters induce bending and flow effects.

Since we are dealing with a three-dimensional model, one must consider the ad

ditional angles needed to fully describe the bending of the fiber. It seems natural, 

in this instance, to use spherical coordinates. The initial coordinates (xi, Hi, Z{ were 

calculated by hand using the coordinates of the sphere. That is, for the 270 degree 

case, we have = xsphere, yt = ysphere, and z{ — zsphere +  rsphere. For the 315 de

gree case we used a geometrical argument to deduce Xi — x sphere +  ŝphere cos(45°), 

Vi = ysphere5 and ^  =  zsphere +  rsphere sin(45°). The coordinates of the tip of the fiber, 

denoted (X f,y f ,Z f) were measured using an averaging probe around the boundary 

representing the tip of the fiber. We will use spherical coordinates, (r, <p, #), where 

ip is the measure of the angle from the vertical and 6 is the measure of the angle 

in the xy plane. Typically, the bending in the zx  direction, </?, is that being com

pared to the 2-dimensional results. Here 6 = tan-1( ^ )  and </? =  cos- 1 (^r), where 

r = yj A x 2 +  A y2 +  A z2.

Figure 4.13: A schematic of the deformation angles in 3-D. Picture courtesy of [35].
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(a) ZX Deformation with initial configuration angle of 
315°.

-0.5 10 20 30 40 50 60
Modified Cauchy Number

(b) ZX Deformation with initial configuration angle of 
270°

Figure 4.14: The </? Deformation is considered to be measured in the Z X  plane (up 
and down). These angles are measured for both 315° and 270° configuration angles 
for fiber lengths of 2cm (o) and 4cm (□).

We can see from Figure 4.14 that an increase in fiber length corresponds to an 

increase in bending. Furthermore, for higher Cauchy numbers we have that the dif

ference between the deformation angles among varying fiber lengths increases. For 

Cauchy numbers of about 50 one can see that the difference between the 4cm and 2cm
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fibers in initial configuration of 315 degrees is about 1.5°. Additionally, the difference 

in the 270° case seems more significant. The difference between the differing fiber 

lengths seem to vary about 3° in this case. If we compare among the two images we 

see that qualitatively the different configuration angles produce qualitatively similar 

deformation. Although, the difference is subtle, it appears that the 270° configura

tion changes with modified Cauchy number in a faster rate. A few degrees may be 

significant on the cellular level. The fiber that we represent here is merely a prototype 

to represent different scenarios , in which bending may be more. For example, the 

hair that lines the skin is much thinner than the fiber used, and thus has different 

structural properties. We expect that these type of fibers should bend more. For the 

two-dimensional study, we used a fiber of different length and resulted in significant 

bending. This simulation now shows us that the difference in structural properties 

can lead to a significant difference in stiffness and therefore bending.

According to the numerical simulations computed, there is no bending in the yx 

direction, 9, for the 315° case. This means that 6 = 0. Interestingly enough, we do 

have a 6 component in the 270° case. The results are shown below.
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Figure 4.15: 6 Deformation is considered to be bending in the yx direction. This 
deformation was measured with initial configuration of 270°. Here (o) represents 2cm 
fiber length and (□) represents 4cm fiber length.

In figure 4.15 we see that initially the bending angles drop significantly. We believe 

this is due to error in the averaging in the coordinates of the tip (xf,y/,Zf). Notice, 

however, how the 2cm fiber actually bends more than the 4cm fiber for a while. If 

we examine the graph more closely, we can see that the magnitude of the bending is 

greater in the 4cm case, however. The 4cm bends in the opposite direction initially 

for low Reynolds numbers. Eventually, for large enough Reynolds numbers, the two 

fibers have an insignificant difference in bending angle 9. This bending in the xy 

direction is significant in terms of 3-dimensional effects. We have no previously seen 

a second angle effect. This will later be explained by 3-dimensional vortex effects.

4 .3 .3  A n a ly s is  o f  V e lo c ity  a n d  P r e s su r e

In this section, the solutions to Navier-Stokes equations are analyzed more closely. 

Both the velocity field and pressure play a significant role in this problem. We see that
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the sphere and fiber actually create vortex motion, as seen in the two-dimensional 

case. A significant difference will be noted. The goal in this section is to show a 

significant number of viewpoints for the velocity field and pressure. Being a three- 

dimensional problem many vantage points can be taken. The following images were 

taken with 4cm fiber in both 90° and 45° configurations at a maximum flow velocity 

of .4510m/s.

Figure 4.16: The plane viewed in this picture is the zx plane. The fluid flows from to 
the right in this picture. Red signifies higher velocity and blue signifies lower velocity. 
The color code measures the magnitude of the velocity vector at each point of the 
plane. The black lines represent the projection of the streamlines of the flow onto 
the zx plane and were computed at the position of the body. If u = (wx, uy,uz), then 
here uy — 0.
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Figure 4.17: This picture is similar to the previous picture except that the streamlines 
are viewed with all three components. Here the three-dimensional vortex structure is 
apparent. The velocity profile is taken to be slightly opaque to visualize the stream
lines behind the body.

Figure 4.18: This picture shows the aerial view (above the fiber) of the flow velocity 
plane (yx) with streamlines following the flow (left to right). The streamlines here 
are projected on to the yx plane (uz = 0) and show similar results to the flow past a 
rigid cylinder problem.
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Figure 4.19: Pressure gradient on the ball and fiber seen in a contour plot.
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Chapter 5

Comparisons between 2D and 3D

One main goal in computations is to reduce the dimensionality of the problem to make 

the modeling easier. It is important to check the validity of this reduction, however. 

We will outline comparisons between the simulations in two and three dimensions 

here.

In the two-dimensional experiments we see the Vogel exponents to be significantly 

smaller than those of the three dimensional problem. In 2-D we see Vogel exponents 

ranging from 1.1 to 1.4. In 3-D we see that the Vogel exponents follow closer to the 

exponents of a rigid body. Specifically we have found that the exponents range from 

1.96 to 1.99. There appears to be a difference between rigid bodies. The flexibility 

of the fiber does appear to partake a primary role in this analysis. Since the Vogel 

exponent holds all the information needed for drag we use this as our comparison of 

the drag force between the differing dimensions.

The deformation in the zx  plane was measured (tp) in both two and three dimen

sions. We have found there to be insignificant differences in the percent increase in 

bending between the slowest flow speed of u = .009m/s  and fastest flow speed of 

u = 0.4510m/s. We measured the initial configurations of 270° and 315° for both the 

2cm and 4cm fibers. For the 2cm fiber the percentage increase in bending is rather
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Angle 2D % 3D %
270°
315°

0.50908
0.19281

0.147211349
0.064313345

Table 5.1: Percentage increase in 2cm fiber length bending at u — 0.4510m/s relative 
to u — 0.009m/s for initial configurations of 270° and 315° for both 2-D and 3-D 
simulations.

Angle 2D % 3D %
270°
315°

4.66557
1.61049

0.946241708
0.492157133

Table 5.2: Percentage increase in 4cm fiber length bending at u = 0.4510m/s relative 
to u — 0.009m/s for initial configurations of 270° and 315° for both 2-D and 3-D 
simulations.

small. Specifically, for 270° we see an increase of about 0.5% in 2-D versus an increase 

of approximately 0.14% for 3-D. The 315° initial configuration shows an percentage 

increase of approximately 0.19% for the 2-D fiber versus an increase of approximately 

0.064313345% for the 3-D fiber. The 4cm fiber bends much more however, but shows 

no significant difference in dimensionality. For the initial configuration of 315° we 

have an percentage increase of about 4.7% for 2-D fiber and 0.95% for 3-D fiber. For 

the initial configuration of 270° we see an increase of approximately 1.61% for the 2-D 

fiber and 0.49% for the 3-D fiber. More accurate calculations and relative percentage 

differences are seen in tables 5.1 and 5.2.

Finally, a comparison is made between the dimensions of the vortices formed behind 

the solid body. Significant attention is paid to the dimensions of the vortex structure 

formed behind certain bodies [[8],[5]] In two dimensions we measured the length and 

height of the vortices and compared them relative to the length and width of the flow 

tank, respectively. In three dimensions we measured the length,width, and height of 

the vortices relative to the length,width, and height of the flow tank, respectively. 

In this section we compare both 315° and 270° configurations for initial maximum 

flow speed of u = 0.4510m/s. Since the 4cm appear to have more interesting effects
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Vortex Dimensions Relative % 2D Relative % 3D
315° Length 
315° Width 
315° Height 
270° Length 
270° Width 
270° Height

23.72396898
N/A

39.9304678
17.45537829

N/A
27.77535882

39.9304678
4.81269387
22.67716535
6.50680029
16.20734908
15.11811024

Table 5.3: Comparison between two-dimensional and three-dimensional vortex di
mensions for 315° and 270° initial fiber configurations.

than the 2cm fiber, we outline the information for only the 4cm fiber. According to 

the measurements taken in two-dimensions, the relative length of the vortex to the 

length of the tank is approximately 23.7%, whereas the relative height of the vortex 

to the relative height of the tank is approximately 40% for 270° initial configuration. 

The corresponding 315° measurements taken approximate the relative length and 

width to be 17.46% and 27.8%, respectively. On the other hand, for the 270° initial 

configuration, the approximate length, width, and height of the vortices relative to the 

dimensions of the tank are 4.81%, 13.1%, and 22.7%, respectively. The 315° relative 

length, width, and height, are approximately 6.51%, 16.2%, and 15.1%, respectively. 

Although there appear to be differences in the lengths and heights of the vortices 

formed behind the solid object, the hypothesis is that the structural parameters 

(such as the bulk modulus) contributes greatly to these effects. These parameters 

were changed in 3-D to more accurately depict the experiments performed.
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Chapter 6

Conclusion

In conclusion, our goal with this study was to investigate how fluids interact with 

elastic fibers. We aimed to show how the initial configurations effect the final config

urations and the forces upon these fibers.

In the second chapter we described the experimental procedure. We experimentally 

measured the bending of these fibers and have seen, generally, that longer fibers bend 

more. We notice a difference in the magnitude of bending, both experimentally and 

numerically between the different initial configurations. Specifically, the fiber experi

ences the most bending when the fiber is pointed straight upwards in the z  direction 

(initial configuration of 270°. The experiments reveal that there is a certain critical 

value of Ca where the fiber starts to bend. Eventually this bending is controlled by 

time-dependent motion, for high enough Ca. The laser imaging (Figure2.3) reveals 

the vortex-like flow pattern formed behind the basal body. This imaging indicates 

complex wake vortex pattern occurring even for fairly low velocities.

Comsol was then used to numerically simulate this phenomenon. The primary 

source of comparison was chosen to be the drag force on the body. We analyzed 

the effects of the mesh density, height, and size of the ball in terms of the drag 

force. Convergence in 2-D was analyzed and an appropriate mesh was chosen. The
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channel height seems to affect the drag and lift forces significantly. The height in the 

experiments were fixed, however, and were chosen to dictate the simulations. The 

size of the ball seems to have a significant effect with initial configuration of 225°, but 

less so with the other configurations. The deformation seems to match closely to the 

experiments for the 2cm fiber, exhibiting little to no bending. We see, additionally, 

that longer fibers are more prone to bending than the shorter ones. The orientation 

has an effect on the bending of the fiber. The deformation angle is largest when the 

fiber faces into the flow and least when the fiber is more streamlined. The Vogel 

exponents (drag exponents) seem to match to the ranges reported in literature.

A similar study was developed numerically in 3-D (see chapter 4) to compare the 

differences. The goal was to see if their were any qualitative differences in the flow. 

Since the parameters of the experiment were changed to more realistically represent 

the experiments, we expected some change. Specifically, we have found the relative 

change in deformation from lowest to highest speed is not significantly different from 

2-D to 3-D. The 2cm fiber still seems to have low deformation, which matches experi

ments. Qualitatively, the longer fibers still experience more drag and bend more than 

shorter fibers. The initial configuration angle seems to have a significant effect on the 

bending. The 270° configuration shows more deformation than the 315° case for both 

2cm and 4cm length fibers. The 3-D simulations reveal an additional bending angle, 

0. Although the scale of this bending is small, alternative bending angles cannot 

be neglected until further investigation is done. This additional bending may very 

well come from the additional component of the lift force in the y direction. Once 

again, the scale of this force is small (O(10 ~3)) but further analysis may prove this 

value non-negligible. Since the parameters of this three-dimensional study have been 

modified we see an increase in Vogel exponents. Specifically we see exponents in the 

range of 1.96 — 1.99. These seem to match closely to the drag exponents of rigid 

bodies. This explains the lack of deformation in the ip direction.
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A stiffness param eter study  should be done to  analyze the  difference in bending. 

Future work would include the  analysis of stiffness, the  effect of fluid viscosity, and 

effect of th e  m aterial on the  sphere. In future work we in tend on num erically com

puting  th e  transien t term s in the system 4.2 such as to  ob ta in  an understand ing  of 

the  build up to  steady  sta te . U nderstanding the tim e-dependent three-dim ensional 

model will help analyze such things as vortex shedding and flapping. In fu ture work, 

a critical speed study  would be done to  see, for different m ateria l properties, a t w hat 

speeds the  fibers begin to  flap. The determ ination of the  proper dim ension to  analyze 

th e  experim ents is of u tm ost im portance. The hope is th a t, w ith  additional investi

gation, th is  flu id-structure interaction problem  can be m odeled as much as possible 

w ith  num erical simulations.
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Appendix

Parameter Values
Domain Height 0.18 [m]
Domain Length 0.5 [m]

Fiber width 0.0005 [rn]
Fiber Length 0.02,0.04,0.06 [m]

x coordinate of cylinder 0.09 [m]
y coordinate of cylinder 0.09 [m]

Radius of disk 0.0125 [m]
Density of solid 10000 [kg/ra3]

Poisson ratio 0.4
Shear modulus 0.7xl09 [kg/(ms2)]

Young’s modulus 2.8 x 109[kg/(ms2)]
Fluid density 1000 [kg/m3]

Fluid kinematic viscosity 0.001 [m2/s]
Fluid dynamic viscosity 1 [m2/s]

Mean inlet flow 0.009-0.451 [m/s]
Reynolds number 0-30,000

Initial angle of the fiber 135°(225°), 90°(270°), 45°(315°)

Table 6.1: The table lists the numerical values of parameters assumed in our 2D 
numerical investigations.
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Parameter Values
Domain Length 0.4191 [m]
Domain Height ,15875[m]
Domain Width .1524[m]

x coordinate of the sphere .10478[m]
y coordinate of the sphere .0762[m]
z coordinate of the sphere ,079375[m]

Radius of the sphere .01 [m]
Radius of the fiber ,0015[m]

Density of solid 7850 [kg/m3]
Poisson ratio 0.33

Shear modulus 3.008 xlO6 [kg/(ms2)]
Young’s modulus 8 x 106[kg/(ms2)]

Fluid density 1000 [kg/m3]
Fluid kinematic viscosity 1 x 10-6 [m2/ s]
Fluid dynamic viscosity 1 x 10-3 [m2/s]

Mean inlet flow 0.009-0.451 [m/s]
Reynolds number 0-9,020

Initial angle of the fiber 90°(270°), 45°(315°)

Table 6.2: The table lists the numerical values of parameters assumed in our 3D 
numerical investigations.
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Supplem ental Figures

V*

Figure 6.1: G eom etrical entity  designed in Comsol to  m odel the  ball and  fiber used 
in experim ents.
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(a) Fiber Length=2cm, Initial angle =  (b) Fiber Length=4cm, Initial angle 
270° 270°

(c) Fiber Length=2cm, Initial angle =  (d) Fiber Length=4cm, Initial angle 
315° 315°

Figure 6.2: List of balls and fibers created geometrically using Comsol.
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Figure 6.3: The velocity here is governed by two individual slices, one in th e  x y  plane 
and another in the  z x  plane. B oth of these slices go th rough the  center of th e  ball. 
Red signifies high velocity where blue signifies low velocity. T he stream lines were 
only p lo tted  on the  individual slices to  em phasize the flow around the  object. T he 
flow goes into the  picture in the  x direction.

Figure 6.4: T he mesh points a t which Comsol solves the  system  of equation. Notice 
th e  higher density  around the  object.
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