

Are You Going to Have Heart Failure Soon? **Presented By: Ari Afshar**

Motivation

- About 6.5 million (1 in 8 deaths) American adults have heart failure [1,2].
- Electronic Health Records (EHRS) consist of patient information such as diagnosis codes, medications, vital signs, demographics, and procedures.
- The large electronic data on health records in the past 15 years opens new opportunities to implement early detection surveillance.

Number of deaths by cause, World, 2017

Our World in Data

Cardiovascular diseases			17.79 million
Cancers		9.56 million	
Respiratory diseases	3.91 million		
Lower respiratory infections	2.56 million		
Dementia	2.51 million		
Digestive diseases	2.38 million		
Neonatal disorders	1.78 million		
Diarrheal diseases	1.57 million		
Diabetes	1.37 million		https://ourworldindata.org/causes-of-death

Objectives

Gender

We categorize factors causing heart failure (HF) into two:

• **Time Variant Factors:** these factors change with time.

Vital Signs

Medication

Diagnosis

Time-invariant Factors: these are factors that are not evolving with time or changing very slowly.

Race & Ethnicity

Body Mass Index (BMI)

How to combine Time Variant and Time-invariant factors to improve early prediction of heart failure?

Data Collection

• A nested case-control design was applied to the primary care population from Sutter Clinics.

STATISTICS SUMMARY
CASE PATIENTS
CONTROL PATIENTS
PATIENTS (K)
DIAGNOSIS FEATURES
MEDICATION FEATURES
VITAL SIGNS FEATURES
TIME VARIANT FEATURES (J)
TIME-INVARIANT FEATURES (P)

Computational Phenotyping Results

- **Phenotyping:** Identifying patient sub-groups sharing common clinically meaningful Characteristics.
- Why Phenotyping is important? phenotype characterizations can be used to predict an individual's risk of disease or response to drug therapy.

Elderly Heart Failure with Preserved Ejection Fraction			
Diagnosis			
 Essential hypertension Chronic kidney disease Diabetes with renal manifestations 			
Medication			
 Calcium Channel Blockers ACE Inhibitors Beta Blockers Cardio-Selective Angiotensin II Receptor Antagonists 			
 Demographics and Life-Style Behavior Gender: Female Age: Between 70 to 79. Race: White No Smoking No Alcohol 			
Vital Signs	V		
• Pulse: High			

Nachard P

Cardiometabolic Driving Heart Failure

agnosis

Diabetes mellitus without complication. Cardiac dysrhythmias Heart valve disorders

edication

Biguanides Sulfonylureas Insulin Angiotensin II Receptor Antagonists

emographics and Life-Style Behavior

Gender: Male Age: Between 60 to 69. **BMI: Severely Obese**

tal Signs

Blood Pressure: High Pulse: Normal

Predictive Performance Results

Why Predictive modeling is important? It helps us to identify people at high risk and prioritize them for early intervention strategies.

AUC Score is a performance measurement for classification problem when data in imbalance.

How is the predictive power our proposed model in compare to other baselines?

The average AUC score of our proposed model in compare to other baselines.

What is the effect of different feature domains and various prediction window lengths on early detection of HF?

The average of AUC score of our proposed model with 20 phenotypes (R=20) for different data domains and prediction window lengths.

Conclusion

- We proposed an interpretable model to tackle two important challenges in healthcare.
- The predictive performance of our model is comparable with state-ofthe-art deep learning models with the advantage of interpretability.

References

- Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e56–528.
 - Centers for Disease Control and Prevention, National Center for Health Statistics. Underlying Cause of Death, 1999–2017. Accessed January 7, 2019.
- Afshar, Ardavan, Ioakeim Perros, Haesun Park, Christopher deFilippi, Xiaowei Yan, Walter Stewart, Joyce Ho, and Jimeng Sun. "TASTE: Temporal and Static Tensor Factorization for Phenotyping Electronic Health Records." arXiv preprint arXiv:1911.05843 (2019).Richesson, Rachel L., et al. "Clinical phenotyping in selected national networks: demonstrating the need for high-throughput, portable, and computational methods." Artificial intelligence in medicine 71 (2016): 57-61.