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Traffic Management Initiatives such as Ground Delay Programs and Ground Stops are
implemented by traffic management personnel to control air traffic volume to constrained
airports when traffic demand is projected to exceed the airports’ acceptance rate due to
conditions such as inclement weather, volume constraints, etc. Ground Delay Programs are
issued for lengthy periods of time and aircraft are assigneddeparture times later than scheduled.
Ground Stops on the other hand, are issued for short periods of time and aircraft are not
permitted to land at the constrained airport. Occasionally, Ground Stops are issued during
an ongoing Ground Delay Program, and vice versa, which hinders the efficient planning and
implementation of these TrafficManagement Initiatives. This research proposes amethodology
to help stakeholders better capture the impact of the coincidence of weather related Ground
Delay Programs and Ground Stops, and potentially help reduce the number and duration of
such coincidences. This is achieved by leveragingMachine Learning techniques to predict their
coincidence at a given hour, predict which Traffic Management Initiative would precede the
other during their coincidence, and identify key predictors that cause their coincidence. The
Random Forests Machine Learning algorithm was identified as the best suited algorithm for
predicting the coincidence of weather-related Ground Delay Programs and Ground Stops, as
well as the TrafficManagement Initiative that would precede the other during their coincidence.

I. Nomenclature

API = Application Program Interface
ASOS = Automated Surface Observing Systems
ASPM = Aviation System Performance Metrics
ATC = Air Traffic Controllers
CASSIE = Computing Analytics and Shared Services Integrated Environment
CSV = Comma-Separated Value
EDCT = Expected Departure Clearance Times
FI X M = Flight Information Exchange Model
FN = False Negative
FP = False Positive
GDP = Ground Delay Program
GS = Ground Stop
LGA = LaGuardia Airport
N AS = National Airspace System
SMOTE = Synthetic Minority Over-sampling Technique
TFMS = Traffic Flow Management System
T MI = Traffic Management Initiative
T N = True Negative
TP = True Positive
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II. Introduction

Air Traffic Controllers (ATC) continually monitor demand and capacity at airports [1, 2]. Inclement weather,
runway-related incidents, equipment failures, and volume constraints often cause air traffic demand to exceed

airport capacity. Whenever this occurs, traffic management personnel implement Traffic Management Initiatives
(TMI) to balance demand and airport capacity [3–7]. However, their implementation often leads to delays which
sometimes propagate throughout the National Airspace System and are costly to airlines and passengers, as seen in
Table 1. Consequently, efforts are being pursued by stakeholders in the aviation industry to improve the planning and
implementation of Traffic Management Initiatives as a means to reduce delays, and their impacts. However, as with any
other process, the planning and implementation of Traffic Management Initiatives continually faces challenges that need
to be addressed. One of these challenges is the coincidence of two Traffic Management Initiatives (TMI): Ground Delay
Programs and Ground Stops. The coincidence of the two TMIs often occurs due to rapid changes in conditions which
leaves traffic management personnel with limited time to plan and implement initiatives.

Table 1 Total Cost of Delay in the United States ($Billions)[8]

2012 2013 2014 2015 2016 2017 2018
Airlines 5.7 6.0 5.8 5.8 5.6 6.4 6.4

Passengers 9.7 11.0 10.5 13.3 13.3 14.8 16.1
Lost Demand 1.3 1.4 1.4 1.8 1.8 2.0 2.1

Indirect 2.5 2.7 2.6 3.1 3.0 3.4 3.6
Total 19.2 21.1 20.3 24.0 23.7 26.6 28.6

A. Ground Delay Programs (GDP)
Ground Delay Programs are implemented whenever an airport is constrained by inclement weather, volume

constraints, etc. over a long period of time [4, 5, 9]. Figure 1 provides an overview of projected air traffic demand and
airport capacity at an airport, prior to and after the implementation of a Ground Delay Program. From Figure 1a, it
can be seen that projected air traffic demand exceeds airport capacity between 17:30 and 22:30 due to constraints at
the airport. Consequently, a Ground Delay Program is implemented to ensure that air traffic demand matches airport
capacity, as seen in Figure 1b. During this time, all flights scheduled to arrive at the constrained airport are issued
Expected Departure Clearance Times (EDCT), which are updated whenever conditions change. EDCT is the runway
release time (“Wheels Off”) assigned to aircraft due to Traffic Management Initiatives that require holding aircraft on
the ground at the departure airport [10]. Figure 2 provides an overview of steps taken to plan a Ground Delay Program
at a constrained airport.

(a) Prior to a Ground Delay Program (b) After a Ground Delay Program

Fig. 1 Projected air traffic demand and airport capacity, prior to and after a Ground Delay Program [1]
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Fig. 2 Overview of steps taken to plan a Ground Delay Program [2]

B. Ground Stops (GS)
Ground Stops are implemented whenever an airport is constrained over a short period of time, which can be caused

by inclement weather, volume constraints, runway-related incidents, equipment failures, etc [9]. Unlike during the
implementation of Ground Delay Programs, aircraft are not allowed to land at constrained airports during Ground
Stops. Thus, en-route flights are kept in airborne holding patterns or are diverted, while flights that are yet to depart are
grounded until the Ground Stop is terminated. This significantly impacts airports and flight operations, sometimes
across the entire National Airspace System (NAS). Figure 3 provides an overview of the steps taken to plan a Ground
Stop at a constrained airport. In particular, it shows that traffic management personnel provide stakeholders with the
duration and the probability of extending a Ground Stop. It also shows that at the end of its duration, a decision is made
to either terminate the Ground Stop, implement another Ground Stop, or implement a Ground Delay Program.

Fig. 3 Overview of steps taken to plan a Ground Stop [2]
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III. Background
The coincidence of Ground Delay Programs and Ground Stops poses a challenge to the efficient planning and

implementation of these Traffic Management Initiatives. The coincidence occurs when Ground Delay Programs are
introduced during the implementation of Ground Stops, and vice versa. This is usually as a result of sudden changes
in conditions at the constrained airport. This section discusses previous work related to Ground Delay Programs and
Ground Stops, and outlines research gaps and the objectives of this work.

A. Previous Work related to Ground Delay Programs and Ground Stops
Jixin proposed the development of a framework to optimize key parameters of Ground Delay Programs such as

file time, end time, and distance, using a genetic algorithm. The model calculated the optimal Ground Delay Program
file time, which was estimated to significantly reduce the delay times. Results showed that, when compared to actual
Ground Delay Programs that occurred, the proposed framework reduced the total delay time, unnecessary ground delay,
and unnecessary ground delay flights by 14.7%, 50.8%, and 48.3%, respectively [11].

Avijit et al. developed an optimization algorithm to assign flight departure delays under probabilistic airport capacity.
The algorithm dynamically adapted to weather forecasts by revising, when necessary, departure delays. San Francisco
International Airport served as a use case. The algorithm was applied to assign departure delays to flights scheduled to
arrive during the fog clearance time. Weather forecasts were obtained from an ensemble forecast system for predicting
fog burn-off time developed by the National Weather Service (NWS) and MIT Lincoln Labs. Experimental results
indicated that overall delays at San Francisco International Airport could be reduced by up to 25% [12].

Wang generated a classification model using Ensemble Bagging Decision Trees to map historical airport weather
forecast, scheduled traffic, and other airport conditions to implemented Ground Stop and Ground Delay Program
operations. The model yielded an 85% overall classification accuracy when predicting Ground Stop only days and
a 71% accuracy when predicting Ground Delay Program only days [13]. In addition, Wang also determined that the
coincidence of Traffic Management Initiatives affects the implementation of Ground Delay Programs.

Mangortey et al. developed prediction models to predict the occurrence of Ground Delay Programs and Ground
Stops. This was achieved by fusing TMI data with airport data, and benchmarking Machine learning algorithms to
identify the best suited ones for the tasks at hand [5, 14].

B. Research Gap and Objective
The implementation of a Ground Stop during an ongoing Ground Delay Program, and vice versa, hinders the efficient

planning and implementation of these Traffic Management Initiatives. Thus, accurately predicting their coincidence
may be beneficial to stakeholders. However, across the surveyed applications in the literature, it appears that previous
work has focused on improving the implementation of Ground Delay Programs and Ground Stops, and no work has
been conducted to analyze and predict the coincidence of weather-related Ground Delay Programs and Grounds Stops.
Consequently, the objective of this research is three-fold:

1) Predict the coincidence of weather-related Ground Delay Programs and Ground Stops
2) Predict whether a Ground Delay Program will precede a Ground Stop, or vice versa, when coincidence occurs
3) Identify factors that influence the coincidence of weather-related Ground Delay Programs and Ground Stops so

as to help stakeholders better understand this phenomenon

Figure 4 shows that LaGuardia Airport (LGA) had the highest number of coinciding Ground Delay Programs and
Ground Stops across multiple U.S. airports from January to August 2017. Consequently, this work was carried out using
LGA data. Sections III, IV, and V discuss the methodology used, the results obtained, and provide some concluding
remarks and avenues for future work, respectively.
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Fig. 4 Coincidence of GDP and GS at Multiple Airports from January - August 2017

IV. Methodology
Figure 5 provides an overview of the methodology used in this work which is discussed in detail in this section.

Fig. 5 Overview of methodology

A. Identify datasets
The following datasets containing Ground Delay Program and Ground Stop data, as well as weather data from

January to August 2017 were identified and used for this research:

1. Traffic Flow Management System (TFMS)
Air traffic management personnel use the Traffic Flow Management System (TFMS) to implement traffic flow

management initiatives. These are implemented to ensure that constrained areas in the National Airspace System (NAS)
remain safe [15]. TFMS is composed of two components: TFMS Flight and TFMS Flow. TFMS Flight provides
initial flight plan messages, amended flight plan messages, departure and arrival time notifications, flight cancellation
messages, boundary crossing messages, and track position reports. TFMS Flow on the other hand, provides data on
traffic flow management initiatives such as Ground Stops, Reroutes, Airspace Flow Programs, etc [15]. This data
was obtained from the Federal Aviation Administration’s (FAA) Computing Analytics and Shared Services Integrated
Environment (CASSIE). CASSIE brings FAA divisions, partners, and stakeholders together in a shared services
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environment consisting of Big Data, computing power, and analytical tools [7].

2. Automated Surface Observing Systems (ASOS)
The Automated Surface Observing Systems (ASOS) dataset provides weather conditions, which are widely used by

meteorologists, climatologists, hydrologists, and aviation weather experts [16, 17]. In particular, this data provides a
summary of airport weather conditions such as the date and time that the conditions were recorded as well as weather
attributes such as ambient temperature, sea level pressure, visibility, wind speed, wind direction, wind gusts, dew point
temperature, precipitation accumulation, cloud height and amount, etc. The ASOS data used for this research was
obtained online in csv format [18].

B. Parse datasets
This section discusses steps taken to parse the Traffic Flow Management System (TFMS) dataset into a format

suitable for analytical purposes.

1. Traffic Flow Management System (TFMS)
The Traffic Flow Management System (TFMS) dataset is stored in Flight Information Exchange Model (FIXM)

[19] format, which is widely used for storing and transmitting aviation data. These datasets are stored as hourly files
containing advisories generated during that hour and need to be parsed from FIXM format to csv format. FIXM files
have schema files, which dictate the structure of the files and should be parsed using their respective schema to ensure
that all required fields are extracted in their correct format. This is done using a Python [20] parser developed by
Mangortey et al. [4–6], which follows the process highlighted in Figure 6 and is described below:

Fig. 6 FIXM to JSON conversion process

1) Since the dataset is comprised of advisories generated within the hour, there is no way to distinguish between the
beginning of the file and the end of the file. Thus, it is important to enclose each file with a header and footer
such as <root > and <\root > respectively to ensure that each file has unique starting and end points.

2) Extract the schema location from the xsd file. The schema location is typically of the format "xlmns:......"
3) Parse the FIXM file using the ElementTree [21] Application Program Interface (API)
4) Extract "Active" weather-related Ground Stop and Ground Delay Program advisories for the selected airport of

interest
5) Store each advisory as a row in a csv file

Duplicate rows were then removed, and the data was analyzed to ensure that the dataset was parsed correctly.
Parameters extracted for this work include the start and end dates and times of Ground Stops and Ground Delay
Programs, and the detailed cause of the TMIs (thunderstorms, wind, etc.).

2. Automated Surface Observing Systems (ASOS)
The following parameters were extracted from the Automated Surface Observing Systems database in csv format:

• Date and time
• Air Temperature (Fahrenheit)
• Dew Point Temperature (Fahrenheit)
• Relative Humidity (%)

• Wind Direction (Degrees)
• Wind Speed (Knots)
• Precipitation Accumulation (Inches)
• Pressure Altimeter (Inches)
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• Visibility (Miles)
• Wind Gusts (Knots)
• Cloud Coverage Type

• Cloud Altitude (Feet)

C. Clean datasets
The next step in the methodology focuses on identifying inconsistent and/or missing data and cleaning the datasets.

1. Traffic Flow Management System (TFMS)
1) The first step of the data cleaning process involves analyzing the data to ensure that fields are in their appropriate

formats and do not contain any missing values or non-alphanumeric characters
2) The next step involves removing duplicate Ground Stop and Ground Delay Program advisories. Duplicate

advisories exist because TFMS occasionally stores the same advisory multiple times
3) The duration and scope of an ongoing Ground Stop or Ground Delay Program may be modified whenever

conditions change. This leads to overlapping advisories which is inaccurate. In order to address this inconsistency,
the end time of the initial advisory is set as the start time of the new advisory as seen in Figure 7. In particular it
shows that the start time of advisory number 0117 is prior to the end time of advisory number 0071. Thus, the
end time of advisory number 0071 is set as the start time of advisory number 0117.

Fig. 7 Updating the end dates and times of an updated active advisory

2. Automated Surface Observing Systems (ASOS)
ASOS data is recorded in five minute intervals, and was analyzed to ensure that fields were in their appropriate

formats and to identify any fields with missing values. In particular, rows containing missing values were deleted since
the Machine Learning algorithms used for this work do not support data with missing values. In addition, fields such as
cloud coverage type and altitude, ice accretion, and peak wind gust and direction were not used for this research as over
80% of these fields contained missing values.

D. Fuse data
The next step in the methodology focuses on fusing the datasets by date and time. Data Fusion is a method of

data analysis involving the combination of data from multiple sources to obtain more consistent information than that
obtained from a single data source [22]. For this research, this was achieved by:

1) Fusing Ground Delay Program and Ground Stop data with weather conditions to generate non-coincident cases
2) Identifying coincident Ground Delay Program and Ground Stop advisories for the selected airport, and fusing

with weather conditions to generate coincident cases
3) Including weather conditions from days without Ground Delay Programs or Ground Stops to generate additional

non-coincident cases

Some Machine Learning techniques require numerical data rather than categorical data. Thus, after fusing the
datasets, there was a need to encode categorical data into numerical data. This was done using One-Hot Encoding,
where each unique categorical parameter was converted into a binary parameter [23–25], as seen in Figure 8, where four
binary variables were created from the four categories (dates).
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Fig. 8 One-Hot Encoding Process

The non-encoded variables used for this research were Pressure Altimeter (inches), Wind direction (degrees), Dew
point temperature (Fahrenheit), Temperature (Fahrenheit), Precipitation (inches), Visibility (miles), Wind gust (knots)
and Wind speed (knots). Encoded variables were the month of year, hour of day and details of the cause of the TMI
(thunderstorms, wind, etc.).

E. Develop prediction models
This subsection discusses the steps taken to develop, tune and test prediction models for the following tasks:

1) Predicting the coincidence of Ground Stops and Ground Delay Programs
2) Predicting whether a Ground Delay Program will precede a Ground Stop, or vice versa, when coincidence occurs

Python and open-source Machine Learning libraries such as Scikit-learn[26] and Keras/Tensorflow[27] were
leveraged for these tasks. Figure 9 provides an overview of this process. First, the fused data was randomly partitioned
into two sets: training-validation and testing. 80% of the data was assigned to the training-validation set, which was
used to generate and tune the models and 20% of the data was assigned to the test set, which was used to generate
predictions for evaluations. The Neural Networks [28], Random Forests [29] and Boosting Ensemble algorithms [30]
Machine Learning algorithms were benchmarked for this research based on their performance in related work [7].

Fig. 9 Overview of model generation, validation, and testing process

As mentioned previously, 80% of the fused data was used to train and tune the prediction models. However, the
datasets were heavily imbalanced, as the non-coincident cases greatly outnumbered the coincident cases. Imbalanced
datasets often lead to poorly performing prediction models [5, 7]. Thus, the Synthetic Minority Over-sampling Technique
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(SMOTE) algorithm [31] was leveraged to produce balanced training-validation sets. The SMOTE algorithm balances a
dataset by increasing the minority class. This is achieved by randomly selecting a k-nearest-neighbor of each member of
the minority class. Implementing the SMOTE algorithm instead of naively oversampling the minority class ensures that
over-fitting is avoided. However, the SMOTE algorithm cannot be used for very large datasets.

K-fold validation was then implemented to validate and tune hyperparamters of the different algorithms. During a
k-fold cross-validation, a subset of the training-validation dataset is randomly held-out. The rest of the dataset is used
to train the models, while varying combinations of algorithm hyperparameters. After training, the models are then
validated using the previously held-out dataset. This process is repeated k times and the average performance across all
folds is assessed to identify the optimal combination(s) of hyperparameters of the algorithms [29]. For this research a
three-fold cross-validation was used to limit the number of computations needed to train each algorithm.

F. Evaluation of models
Evaluating the performance of prediction models is an important step as it informs as to how the model will perform

on future data. Prediction models can be evaluated using results obtained from a confusion matrix, which categorizes
predictions according to whether they match the actual value, as seen in Table 2.

Table 2 Confusion Matrix

Actual: No Actual: Yes
Predicted: No True Negative (TN) False Negative (FN)
Predicted: Yes False Positive (FP) True Positive (TP)

True Positive (TP) refers to the correct classification of the class of interest. True Negative (TN) refers to the correct
classification of the class that is not of interest. False Positive (FP) refers to the incorrect classification of the class of
interest. False Negative (FN) refers to the incorrect classification of the class that is not of interest [29]. The following
performance metrics were then computed to assess model performance:

1. Accuracy
This refers to the ratio of the number of true positives and negatives, to the total number of predictions. Accuracy

varies from 0 to 1 and is specified as [29]:

Accuracy =
TP + T N

TP + T N + FP + FN

2. Sensitivity
This refers to the proportion of true positives that were correctly classified. Sensitivity varies varies from 0 to 1 and

is specified as [29]:
Sensitivity =

TP
TP + FN

3. Specificity
This refers to the proportion of negative examples that were correctly classified. Specificity varies from 0 to 1 and is

specified as [29]:
Speci f icity =

T N
FP + T N

4. Kappa Statistic
A model might have high accuracy because it correctly predicts the most frequent class, particularly when the

dataset is imbalanced. Kappa Statistic adjusts accuracy by accounting for the probability of a correct prediction by
chance alone, and is appropriate for imbalanced datasets. Kappa Statistic is specified below, where P0 is the observed
value and PE is the expected value [32]. It is specified as:
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K =
P0 − PE

1 − PE

5. Balanced Accuracy
A model might have high accuracy because it correctly predicts the most frequent class, particularly when the

dataset is imbalanced. Balanced accuracy adjusts accuracy by calculating the average of accurate predictions in each
class [33] and is specified as:

Balanced Accuracy =
Sensitivity + Speci f icity

2

V. Results and Discussion
Table 3 provides a summary of the distribution of classes in the fused dataset used for this research. In particular, it

shows that the dataset is heavily imbalanced as the number of GDP and GS cases, as well as cases without GDP and
GS greatly outnumber cases with coinciding GDP and GS. This justifies the use of the SMOTE technique to create a
balanced training-validation set,

Table 3 Number of Instances For Each Class

Normal GDP only GS only Coincidence Total
4765 725 85 300 5875

Further analysis of the data revealed that low ceilings and low visibility were the most frequent causes of Ground
Delay Programs, Ground Stops and their coincidence, as seen in Figure 10. Figure 11 shows the distribution of the
occurrence of Ground Delay Programs, Ground Stops and their coincidence across all hours of the day. It shows that
their coincidence was higher later in the day or early in the morning. It also shows that the occurrence of Ground Delay
Programs varies across the day compared to Ground Stops which were predominant in the afternoon and early evening.
Figure 12 shows that Ground Stops and their coincidence with Ground Delay Programs were more frequent over the
summer, while Ground Delay Programs were distributed across all months.

Fig. 10 Causes of Ground Delay Programs, Ground Stops and their coincidence at LGA airport between
January and August 2017
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Fig. 11 Hourly distribution of the occurrence of Ground Delay Programs, Ground Stops and their coincidence
at LGA airport between January and August 2017

Fig. 12 Monthly distribution of the occurrence ofGroundDelay Programs, Ground Stops and their coincidence
at LGA airport between January and August 2017

The remainder of this section discusses results obtained for the objectives of this research:

1) Predict the coincidence of weather-related Ground Delay Programs and Ground Stops
2) Predict whether a Ground Delay Program will precede a Ground Stop, and vice versa, when coincidence occurs
3) Identify factors that influence the coincidence of weather-related Ground Delay Programs and Ground Stops so

as to help stakeholders better understand their coincidence
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A. Predicting the coincidence of weather-related Ground Delay Programs and Ground Stops
Figures 13 provides a breakdown of the distribution of classes with the imbalanced training-validation set. It also

shows the distribution of the balanced set created with the SMOTE algorithm. The targets of this model are Coincidence
or No coincidence.

Fig. 13 Distribution of classes for predicting the coincidence of GDP and GS

Grid searches are commonly performed to tune hyperparameters in order to determine the optimal values for a
given model. Thus, grid searches were performed on the training-validation set for each of the algorithms (Neural
Networks, Random Forests, and Boosting Ensemble). Table 4 provides a summary of the hyperparameters of the
algorithms that were tuned with 3-fold cross-validation during the grid search. It also shows the combinations of
the hyperparameters that had the best performance for each algorithm. Fewer combinations of hyperparamters were
performed for Neural Networks compared to the other algorithms because of the time needed to train the model. The
optimal set of hyperparamters were then used to test the prediction models to identify the best suited algorithm for
predicting the coincidence of weather-related Ground Delay Programs and Ground Stops.

Table 4 List of Hyperparameters

Neural Network Random Forest Boosting Ensemble
Grid Number of layers = [4, 6, 8] Max Depth = [30, 50, 70, 110] Learning rate = [0.1, 0.001, 0.0001]

Activation functions = [Relu, Elu] Number of estimators = [100, 200, 500, 1000] Number of estimators = [20, 50, 100, 200]
Number of Combinations 6 16 12

Best Estimator Activation function = Relu Max Depth = 30 Learning rate = 0.1
Number of layers = 8 Number of estimator = 100 Number of estimators = 100

Tables 5, 6 and 7 show the confusion matrices obtained with the testing set for the Neural Network, Random Forests
and Boosting Ensemble algorithms, respectively.

Table 5 Confusion Matrix for Neural Network

Actual True Actual False
Predicted True 52 4
Predicted False 35 1084
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Table 6 Confusion Matrix for Random Forest

Actual True Actual False
Predicted True 53 3
Predicted False 1 1118

Table 7 Confusion Matrix for Boosting Ensemble

Actual True Actual False
Predicted True 52 4
Predicted False 1 1118

Table 8 provides a comparison of the performance of the three algorithms using the aforementioned evaluation
metrics. The Random Forest algorithm was identified as the best suited algorithm for predicting the coincidence of
Ground Delay Programs and Ground Stops based on this comparison.

Table 8 Comparison of Machine Learning algorithms using evaluation metrics

Neural Network Random Forest Boosting Ensemble
Accuracy 0.967 0.997 0.996

Balanced Accuracy 0.949 0.973 0.964
Specificity 0.969 0.999 0.999
Sensitivity 0.929 0.946 0.929

Kappa Statistic 0.710 0.962 0.952

Figure 14 shows the ranking of predictor importance for the prediction model developed with the Random Forest
algorithm. In particular, it shows that thunderstorms, low ceilings, pressure altimeter, the fourteenth hour of the day
and wind direction are key predictors for this prediction model. A Partial Dependence Plot (PDP) was then used to
validate the impacts that the top two key predictors have on the prediction model [34]. This was achieved by varying
each predictor while keeping others constant in order to assess its impact on the model’s target. The Skater library
[35] was leveraged to assess the impacts of the top predictors of the best prediction model (Random Forest) on the
prediction of its target (coincidence occurrence). Figure 15 shows the Partial Dependence Plots (PDP) for the two
highest key predictors of the Random Forest model: thunderstorms and low ceilings. In particular, it shows that the
probability of having a coincidence increased by about 9% and 4.5% whenever thunderstorms and low ceilings were
present, respectively. This validates the ranking of thunderstorms as the top predictor followed by low ceilings. Partial
Dependence Plots can be created for other predictors to assess their impacts on the prediction model.
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Fig. 14 Feature importance of Random Forests algorithm for predicting the coincidence of GDP and GS

(a) PDP for thunderstorms (b) PDP for low ceilings

Fig. 15 Partial Dependence Plots for predicting the coincidence of GDP and GS
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B. Predicting the precedence of weather-related Ground Delay Programs before Ground Stops, or vice versa,
when coincidence occurs
Figures 16 provides a breakdown of the distribution of classes with the imbalanced training-validation set. It

also shows the distribution of the balanced set created with the SMOTE algorithm. The targets of this model are No
coincidence, GDP preceding GS during their coincidence, and GS preceding GDP during their coincidence.

Fig. 16 Distribution of classes for predicting the precedence of GDP before GS, or vice versa, when coincidence
occurs

Table 9 provides a summary of hyperparameters that were tuned, as well as the best combinations of hyperparameters
for each algorithm. These combinations were then used to develop the prediction models and their performances were
evaluated with the testing set.

Table 9 List of Hyperparameters for predicting the precedence of weather-related Ground Delay Programs
before Ground Stops, or vice versa

Neural Network Random Forest Boosting Ensemble
Grid Number of layers = [4, 6, 8] Max Depth = [30, 50, 70, 110] Learning rate = [0.1, 0.001, 0.0001]

Activation functions = [Relu, Elu] Number of estimators = [100, 200, 500, 1000] Number of estimators = [20, 50, 100, 200]
Number of Combinations 6 16 12

Best Estimator Activation function = Elu Max Depth = 30 Learning rate = 0.1
Number of layers = 4 Number of estimator = 100 Number of estimators = 50

Tables 10, 11 and 12 show the confusion matrices obtained with the testing set for the Neural Network, Random
Forests and Boosting Ensemble algorithms, respectively.

Table 10 Confusion Matrix for Neural Network (GDP precedence of GS, and vice versa, when coincidence
occurs)

Actual Normal Actual GDP Preceded Actual GS Preceded
Predicted Normal 1113 4 2

Predicted GDP Preceded 6 17 5
Predicted GS Preceded 6 3 19
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Table 11 Confusion Matrix for Random Forest (GDP precedence of GS, and vice versa, when coincidence
occurs)

Actual Normal Actual GDP Preceded Actual GS Preceded
Predicted Normal 1118 0 1

Predicted GDP Preceded 1 21 6
Predicted GS Preceded 4 3 21

Table 12 Confusion Matrix for Boosting Ensemble (GDP precedence of GS, and vice versa, when coincidence
occurs)

Actual Normal Actual GDP Preceded Actual GS Preceded
Predicted Normal 1116 0 3

Predicted GDP Preceded 2 20 6
Predicted GS Preceded 2 4 22

Table 13 provides a comparison of the performance of the three algorithms using evaluation metrics. The Random
Forest algorithm was also identified as the best suited algorithm for predicting the whether a Ground Delay Program
will precede a Ground Stop, or vice versa, when coincidence occurs.

Table 13 Metric Comparisons (GDP precedence of GS, and vice versa, when coincidence occurs)

Neural Network Random Forest Boosting Ensemble
Accuracy 0.978 0.987 0.986

Balanced Accuracy 0.760 0.833 0.832
Kappa Statistic 0.746 0.856 0.841

Sensitivity (GDP Preceded) 0.607 0.75 0.714
Sensitivity (GS Preceded) 0.679 0.75 0.786

Specificity 0.995 0.999 0.997

Figure 17 shows the ranking of predictor importance for the prediction model developed with the Random Forest
algorithm. It shows that the presence of thunderstorms, hour of day (midnight), low ceilings, pressure altimeter and low
visibility are key predictors for the model. Figure 18 show the Partial Dependence Plots (PDP) for the three highest key
predictors of Random Forest model: thunderstorms, hour (midnight) and low ceilings. Figures 18a and 19 show that the
likelihood of a Ground Stop preceding a Ground Delay Program when they coincide is much higher with thunderstorms
and at midnight, compared to a Ground Delay Program preceding a Ground Stop. Figure 18b also shows that the
likelihood of a Ground Delay Program preceding a Ground Stop when they coincide is much higher with low ceilings.
Partial Dependence Plots can be created for other predictors to assess their impacts on the prediction model.
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Fig. 17 Feature importance of Random Forests algorithm for predicting the whether a Ground Delay Program
will precede a Ground Stop, or vice versa, when coincidence occurs

(a) PDP for thunderstorms (b) PDP for low ceilings

Fig. 18 Partial Dependence Plots for thunderstorms and low ceilings from Random Forest algorithm for
predicting whether a GDP precedes a GS, or vice versa, when coincidence occurs
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Fig. 19 Partial Dependence Plots for an hour (midnight) fromRandomForest algorithm for predicting whether
a GDP precedes a GS, or vice versa, when coincidence occurs

VI. Conclusion
One of the most common type of delays are delays created by the implementation of Traffic Management Initiatives

(TMIs). Traffic Management Initiatives are in place to control air traffic volume to specific airports, where the projected
traffic demand is expected to exceed the airport’s acceptance rate. These TMIs are commonly triggered by inclement
weather, aircraft congestion, closed runways, etc. Ground Delay Programs and Ground Stops are implemented over
lengthy and short periods of time, respectively. Occasionally, Ground Delay Programs and Ground Stops coincide,
leading to further delays. This research develops and implements a methodology to predict and analyze the coincidence
of weather-related Ground Delay Programs and Ground Stops. This work also focuses on predicting whether a Ground
Delay Program will precede a Ground Stop, and vice versa, when coincidence occurs. This was achieved by 1) fusing
Ground Delay Program and Ground Stop data from the Traffic Flow management System, and weather data from
the Automated Surface Observing Systems, and 2) benchmarking Machine Learning algorithms to predict the tasks
at hand. The Random Forest algorithm was identified as the best suited algorithm for predicting the coincidence of
weather-related Ground Delay Programs and Ground Stops, and which Traffic Management Initiative would precede the
other when coincidence occurs. Analysis of the models revealed that the top predictors for predicting the coincidence
were thunderstorms, low ceilings and pressure altimeter. Indeed, the probability of coincidence increased to 9% and
4.5% whenever thunderstorms and low ceilings were present, respectively. The top predictors for predicting which
Traffic Management Initiative will precede the other were thunderstorms, hour of day (midnight) and low ceilings. In
particular, the likelihood of a Ground Stop preceding a Ground Delay Program when coincidence occurs is much higher
with thunderstorms and at midnight, compared to a Ground Delay Program preceding a Ground Stop. It is expected
that this methodology can be repeated for other airports and across different days to help stakeholders have a better
understanding of this phenomenon.
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