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SUMMARY 

For many service industries, workforce scheduling is an important technique that 

helps the company to manage employees and tasks, especially for modern airports which 

transport lots of passengers by flights. In this thesis, workforce scheduling for airport 

ground staff is studied to facilitate the employee utilization rate and improve the service 

satisfaction when passengers take a flight. 

When a flight arrives or departs the airport, it will generate lots of tasks like 

cleaning, catering, maintenance, check-in counter services and so on. Usually, these 

employees do not have all qualifications and thus they are divided into different groups. 

To manage these groups efficiently in the field where competence is more and more 

serious, workforce scheduling is implemented, which contains three optimization 

problems: shift planning that design shifts to cover the workforce demands, rostering that 

designs work-off lines and the corresponding shift assignment, and task scheduling that 

assigns tasks to shifts that on-shift employees work on. These problems take place during 

different time on the planning timeline.  

In this thesis, model formulation and corresponding solution for these optimization 

problems. Shift planning usually has a large scale and is formulated as a set partition model. 

A 2D GA is proposed to solve the problem. Rostering is also formulated as a set covering 

model, and it is solved by a column-generation-based method to cope with the challenge 

of finding feasible roster lines in numerous ones. Task scheduling contains two problems: 

task dispatching and disruption management. A column-generation-based algorithm is 

presented to solve the former, while a decision-making system is proposed to convert the 



 xiv 

latest dispatching details into a MIP that can be solved using the integer programming 

solver for disruption management. 
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CHAPTER 1. INTRODUCTION 

1.1 Airport Workforce Scheduling  

Modern airports work as a major transportation system and would transport a large 

number of passengers by flights every day. It becomes increasingly important as 

international interactions get more and more common. For example, the Atlanta Airport is 

the busiest airport and has the most people that transfer to the other parts of the world. 

According to the statistics, the Atlanta Airport served more than one billion and seven 

million passengers. This is just one example, and there are a lot of airports having a similar 

scale. 

How to manage such a large transportation system becomes a serious problem, and 

to have efficient workforce scheduling might be the key. On the one hand, it will help 

improve the employee utilization rate and reduce the labor cost and the operation cost for 

airlines. On the other hand, it can improve the service satisfaction for service-oriented tasks 

if well-organized task schedules can be made. In this regard, it is of great significance to 

have a highly efficient workforce scheduling system for large modern airports. 

1.2 Mathematical Modeling and Optimization for Real-Life Problems 

In this research, workforce scheduling for airport ground staff using optimization 

techniques is studied. And this regards to the mathematically modeling and optimization 

for real-life problems. 



 2 

There are still many airports that use the manual planning method. Compared to that, 

the math-based method requires precise descriptions for the problem formulation and one 

or multiple effective criteria as the optimization objective. On the one hand, precise 

descriptions require a clear expression of the relationship between each event. Also, it 

needs to list all the constraints that the model must satisfy and that are coherent to real-life 

situations. On the other hand, effective criteria will help the optimization system find a 

more satisfying solution that agrees to the real-world situation. 

It is beneficial to use the math-based method to do workforce scheduling. Normally, 

manual planning takes time and needs professional experience, while the optimization 

system does not need you to have field knowledge after the system is built. Moreover, it 

takes less time. The computer nowadays has strong computing abilities, and to solve the 

optimization problems does not take much time if a proper algorithm is applied. The output 

of the optimization system can serve as a support to those manual practitioners. 

1.3 Research Goals and Scopes 

The research is to study the workforce scheduling problem for airport ground staff. 

Shift planning, rostering, and task scheduling are studied in this research. A 2D GA is 

proposed to solve large-scale shift planning problems. Rostering and task scheduling are 

solved with column-generation-based branching and price approach and other integer 

programming techniques. Cases from a real-life airline are studied to analyze and validate 

the proposed approaches. 
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1.4 Organization of the Thesis 

This thesis is structured in seven chapters. Chapter 1 presents the basic introduction 

to airport workforce scheduling and relevant optimization techniques. The background 

review is in Chapter 2. Chapter 3 describes the planning timeline with corresponding 

planning objectives and the planning model for ground staff scheduling. Discussion of shift 

planning problems is in Chapter 4, and a 2D GA is proposed to solve the large-scale shift 

planning problems considering daily-wise shift formats. Chapter 5 introduces the model 

formulation for rostering problems with work patterns and the column-generation-based 

approach. The modeling and the corresponding method for task scheduling (including task 

dispatching and disruption management) are presented in Chapter 6. Computational 

experiments are conducted using cases from a real-life airline to validate the proposed 

approaches. Finally, the conclusions of this research and future work are discussed in 

Chapter 7. 
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CHAPTER 2. BACKGROUND REVIEW 

2.1 Workforce Scheduling Problems 

Workforce scheduling is a challenging problem faced by various service industries 

like airports, hospitals, and toll collection [1]. It has received large attention since the 

integer programming techniques are applied to real-world problems. The study on 

mathematically modeling and the corresponding algorithms for workforce scheduling can 

reduce the trouble of planning it manually and the solution can also serve as a reference for 

practitioners. 

Multiple optimization problems are included in this field: shift planning, rostering, 

task dispatching, and disruption management. Much research is done on these individual 

problems.  

Shift planning is the initial step of workforce scheduling and it aims to design a set 

of shifts with different start time and duration to cover the demands within the planning 

horizon. Most recent studies emphasize how to construct effective shifts, planning day-

offs, and assigning the employees to the day-off schedules. Variations of these problems 

are found to be NP-hard and NP-complete [ 2 ]. The shift planning problem is 

mathematically formulated as a set covering problem, solved by summing a sequence of 

shifts from the shift set based on the shift design requirement [3]. Because of the advance 

in information management software systems, it requires smaller time granularity, larger 

personnel scale, and longer planning horizon [ 4 ]. Meanwhile, from the modern 

management perspective, designed shifts are desired to be length and placement adjustable 
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with specific break rules [5]. Thus, more efficient shift planning algorithms need to be 

developed to cope with the increasing computational complexity. 

In accordance with Danzig’s set covering formulations, the mixed integer 

programming (MIP) methods have been widely applied to solve the shift planning 

problems [1, 6]. Metaheuristics are suggested to be critical methods for coping with 

combinatorial optimization problems by incorporating modular rules to implement shift 

planning efficiently [7, 8]. Specifically, GAs have been highlighted as an efficient heuristic 

to solve optimal shift planning problems. A GA encodes the shifts in the form of 

chromosomes and mimics the natural revolution to search for optimal solutions [9]. Popular 

generic encoding methods applied to shift planning include binary strings [10], the real 

value [11], permutation [12], among many others. 

The research on rostering problems is widely studied for its critical meaning for the 

solution quality of workforce scheduling. The detailed review of recent research on 

personnel scheduling and rostering is presented [2, 13]. Furthermore, among various 

service industries, the nurse rostering problem (NRP) is a typical problem to study for the 

multi-qualification and multi-time-period shift type characteristics. Overviews on the 

models and methodologies are presented [14, 15]. Rostering with work patterns is also a 

commonly studied problem. A two-phase algorithm is proposed to address the rostering 

with a 5&2 work pattern [16]. A rostering problem with the 14&7 work pattern considering 

cyclic weekly demand is studied [17]. 

Task scheduling is the final step of workforce scheduling. It contains two problems: 

task dispatching and disruption management. Task dispatching is to assign tasks to each 
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shift while considering the between-task travel time. What makes task dispatching 

challenging is how to make efficient and feasible assignments from the numerous 

combinations. This problem is essentially a vehicle routing problem with time windows 

(VRPTW) and can be solved using column generation, where employees can be regarded 

as vehicles and each task is a node with task start time and end time as its time window. 

Much research is done regarding VRPTW. The detailed reviews on VRP and its variations 

with the latest advances can be found in [18, 19]. Common approaches include heuristics 

and analytical approaches. Many metaheuristics prove to be useful: tabu search, ant colony, 

and hill climbing algorithms [20-22]. The column-generation-based approach, as an 

efficient approach to such combinatorial optimization problem, is initially proposed by 

Desrochers et al. [23], where the pricing problem is formulated as the shortest path problem 

with time windows (SPPTW). Further improvements on both speed and quality are made 

based on Desrochers’s approach [24-26]. 

Disruption management, on the other hand, is less of a mathematical problem than a 

decision-making process. Because of the existence of uncontrollable factors (extreme 

weather, security problems, emergencies on airplanes, and so on), flight delays, inserts, 

and cancellations happen from time to time. Thus, the corresponding adjustment is needed 

on those affected tasks, and rearrangement operations should be taken. The overview of 

disruption management in the airline industry and the techniques then is initially presented 

by Clarke et al. [27], and it is further studied by Kohl at al [28]. Both heuristics and 

analytical methods prove useful in solving the disruption management problem. Clausen 

et al. [29] present the set partitioning problem formulation with metaheuristic approaches. 
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Peterson et al. [30] propose simultaneous row and column generation to deal with large-

scale disruption management. 

2.2 Airport Ground Handling 

Airport ground handling concerns with tasks performed when the aircraft is on the 

ground, or tasks relating to the arrival or departure, which can be classified into technical-

oriented and service-oriented tasks based on the characteristics [31]. In this section, a 

detailed introduction to these tasks is presented. 

From the management perspective, the ground handling work can be divided into 

ramp tasks that target at the aircraft and terminal tasks that mainly serve the passengers, 

which is shown in Figure 2.1. In the figure, the terminal tasks are presented in the horizontal 

direction, and the ramp tasks are given in the vertical direction. Further description of the 

process for ground handling management is presented by Kazda et al. [32]. 

 

Figure 2.1 Operations from the passenger perspective (horizontal) and employee 

perspective (vertical). 
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The terminal tasks take place within the terminals and aim to handle passenger flow 

at the airport. Such tasks include check-in counter service, security service, and so on. 

Employees responsible for terminal tasks normally have short travel time between tasks 

and only work in a small area. The performance measures for such tasks are similar to a 

queueing model, which includes the waiting time and the waiting number in queue and 

reflects the passenger satisfaction to the services. Further details on terminal tasks are 

presented by Brusco et al. [33] and Stolletz et al. [34]. 

On the other hand, the ramp tasks are usually conducted on aprons or in front of the 

terminal gate, which can be further classified into above-wing and below-wing. Such tasks 

include catering, cleaning, maintenance, and so on. Ramp tasks tend to have longer travel 

time and shorter work time windows between tasks than terminal tasks because such tasks 

are determined by the flight departure and arrival and have a wide working area. Such 

characteristics make it challenging to its scheduling problems and much research is done 

on the optimization regarding ramp tasks [35]. More details on ramp task management can 

be found in [36]. 

Normally these airport ground tasks are taken on by service companies instead of 

airlines [31]. Each service company would be responsible for some part of the ground 

handling. Thus, the ground tasks are finished by multiple companies, which makes the 

employment more flexible and makes the workforce scheduling meaningful by reducing 

the operation cost as well as the labor cost.  
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2.3 Column Generation for Mixed Integer Programming 

Column generation is often applied in the large-scale optimization problem where 

enumeration is impractical or feasible variables have many constraints [37]. It is applied 

under the branch and bound framework, and the combined algorithm is called branch and 

price [38].The pricing problem is usually formulated as the shortest path problem with 

resource constraints and much research has been published on this topic. Desrosiers et al. 

propose the algorithm considering only time resources at the beginning [39] and is later 

generalized by Desrochers [40]. The algorithm is later modified by discarding labels that 

cannot result in negative reduced cost [41]. Several accelerated algorithms are developed 

to improve the label correcting process, such as the state-space augmenting approach [42] 

and bidirectional search [24]. 
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CHAPTER 3. AIRPORT WORKFORCE SCHEDULING: 

PROBLEM DEFINITION WITH AN EXAMPLE OF GROUND 

STAFF SCHEDULING 

Modern airports work as service industries that provide a fast transportation method 

for passengers all over the world every day. They usually have a large-scale of employees 

and need to perform plenty of tasks for the flights they have. For example, statistics show 

that Hartsfield–Jackson Atlanta International Airport (which has the largest passenger flow 

every day) serves more than 100 million passengers and has more than 950,000 flights per 

year. To manage this large volume of transportation involves lots of logistical knowledge 

and decision making and need to solve corresponding operation problems. This chapter 

reviews the planning process and the planning problems for airport ground staff scheduling. 

3.1 The Planning Horizon and Planning Timeline 

Airlines usually need large-scale of employees to perform various tasks for different 

flights every day. To manage such a large volume of transportation well, planning should 

be done on employees’ shifts, and task assignments in advance, which usually takes place 

after the flight plan is determined. Such workforce scheduling usually has a long planning 

horizon (which refers to the planning period) and a planning timeline. It is not practical to 

plan everything at an early stage, because more details on resources and tasks can only be 

obtained as the day of operation draws near. Thus, it is of significance to divide the 

planning process into different periods in the planning timeline and to set different planning 

objectives in each period. 
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The planning process can be roughly divided into four periods, as shown in Figure 

3.1: Preparation, mobilizing, real-time management, and afterwards analysis. Such 

classification is based on the date of occurrence from the day of operation. Figure 3.2 

presents the planning timeline from the management perspective. 

 

Figure 3.1 Planning process from the algorithm perspective. 

 

Figure 3.2 The planning timeline. 

The preparation period includes long-term and mid-term decision making. In this 

period, resource allocation (including the number of needed staff and equipment), as well 

as work-off lines with specified shifts within the planning period should be determined. 
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Normally, the planning horizon is six months, and the preparation also starts six months 

ahead of the operation day. Firstly, different types of tasks are generated and organized 

based on the flight plan within the planning horizon. Workforce demands for each task can 

be evaluated and then workforce demands for every minimal time granularity within the 

planning horizon can be obtained. Shift planning is implemented to determine the shifts 

required to perform generated tasks. This can be solved either by the workforce demands 

or tasks directly. In this research, only demand-based shift planning is studied. Then the 

work-off line design and the shift assignment are implemented by rostering. 

Mobilizing takes place before one or two weeks from the day of operation. This is 

for manually adjusting the rostering result to fit the latest resource information. For 

example, some employees may ask for temporary leave and their absence should be filled. 

Real-time management is implemented one day before the day of operation and 

during that day. Based on the generated tasks and the roster lines, task dispatching is solved, 

so that each employee will know their task schedule on the day of operation. During that 

day, disruption management is performed for every fixed time to make a new arrangement 

when irregularities happen, like extreme weather and emergencies on airplanes. 

Afterwards analysis is performed after the day of operation. Things may not go as 

planned during the operation, so the planning performance should be evaluated to 

understand the defects existing in the current workforce scheduling system, and 

corresponding measures should be taken to improve the system. 
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3.2 A Planning Model for GSS 

In this research, a planning model is constructed to provide the basis for the solution 

of GSS. The model contains three major modules: shift planning, rostering, and task 

scheduling. Shift planning designs shifts with different start time and duration to cover the 

workforce demand generated from the flight plan. After determining the type and number 

of shifts, rostering combines these shifts as different roster lines based on the labor laws 

and employment rules. Finally, task scheduling deals with assigning specific tasks to 

employees' shifts before the day of operation and making quick rearrangements if 

unexpected events happen at the airport. 

3.2.1 Shift Planning 

Shift planning is the initial step during the workforce scheduling process, and it aims 

to design a set of shifts with different start time and duration to cover the demands within 

the planning horizon. The shift planning problem is mathematically formulated as a set 

covering problem, solved by summing a sequence of shifts from the shift set based on the 

shift design requirement. The mathematical model for shift planning is presented in Section 

4.2.  

3.2.2 Rostering 

Rostering uses the shift planning result as inputs and combines these shifts as 

different day-off lines with specified shifts to cover the shift demand while satisfying the 

labor regulations and employment rules. The detailed problem formulation is in Section 

5.1. 
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3.2.3 Task Scheduling 

Task scheduling concerns with assigning tasks to shifts before or during the day of 

operation. Two separate problems of task scheduling are task dispatching and disruption 

management. The detailed discussion for these two problems is represented in Section 6.2 

and 6.3. 

3.3 Chapter Summary 

On the one hand, workforce scheduling contains a sequence of planning activities. 

And airport workforce scheduling usually has a long planning horizon and should begin 

quite early from the day of operation. On the other hand, due to the large volume of 

transportation that an airline needs to manage, the resource scale is also large. Considering 

these, it is of significance to divide the scheduling process into different steps and to solve 

different planning problems during each stage. This chapter presents how the airport 

workforce scheduling process is divided into four stages and introduces the planning 

activities during each planning stage. A planning model is constructed with three modules 

(shift planning, rostering, and task scheduling), based on which airport workforce 

scheduling can be performed. These three modules are further studied separately as three 

optimization problems in this research. 
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CHAPTER 4. A 2D GA FOR LARGE-SCALE SHIFT PLANNING 

CONSIDERING DAILY-WISE SHIFT FORMATS 

Owing to the computational efficiency in dealing with combinatorial optimization 

problems, genetic algorithms (GAs) have been widely applied to human resource planning 

and workforce scheduling. Shift planning is of particular importance for personnel 

scheduling when practical concerns must be taken into account. Daily-wise shift formats 

are often introduced in practical operations to facilitate execution of the planned tasks and 

accommodate certain managerial convenience. However, the highly repetitive nature of 

running daily-wise shift formats entails an extreme imbalance of set covering between the 

tasks and staff availability, which leads to tremendous computational challenges in solving 

the combinatorial optimization problem that is subject to large redundancy of zero 

elements. In line with the inherent two-dimensions of shift planning in terms of shift 

formats and days, this chapter proposes a two-dimensional (2D) encoding scheme to 

implement the GA for efficient shift planning. An application to a real-life airport Ground 

Staff Scheduling (GSS) problem is presented to illustrate the feasibility and potential of 

the proposed 2D GA for efficient handling of daily-wise shift formats. 

4.1 Shift Planning 

Shift planning is the initial step during workforce scheduling, and it aims to design a 

set of shifts with different start time and duration to cover the demands within the planning 

horizon. It has been widely studied to improve the workforce utilization ever since Dantzig 

proposed the first mixed integer programming model for shift planning [43]. The challenge 
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of shift planning problems lies in the mathematical modeling for the shift design 

requirements and the large scale of the optimization problem. 

Metaheuristics are suggested to be critical methods for coping with such 

combinatorial optimization problems, especially GAs. Most of the existing encoding 

methods such as binary encoding and real-value encoding are one- dimensional (1D), 

whereby the highly repetitive daily-wise shift formats will result in a large redundancy in 

shift matrix after instantiation in the context of shift planning. Several 2D encoding 

methods have been applied to represent the intrinsic 2D problems include spin grids in 

Ising model [44], job-machine scheduling [45], orthogonal packing problem [46], to name 

but a few. The high repetitiveness of the daily-wise shifts implies an intrinsic 2D structure 

of the shift matrix, which in terms of days and daily timeline. This 2D structure can 

effectively reduce the redundancy of the shift matrix, by squeezing out the zero elements 

significantly. However, little research has shed light on the 2D encoding and calculation 

for 2D GA in the context of shift planning. 

The remainder of the chapter is organized as follows. Section 4.2 formally introduces 

the variable definition and formulates the mathematical model of the problem. Section 4.3 

proposes a 2D GA method for large-scale shift planning, including chromosome encoding 

and the corresponding matrix operations. Section 4.4 and 4.5 give a detailed description of 

crossover and mutation operators for 2D chromosome. Computational experiments are 

shown in Section 4.6 for the validation of the proposed 2D GA. The result analysis is 

elaborated in Section 4.7 and the summary of this research topic is given in Section 4.8. 

4.2 Set Partitioning Problem Formulation and Methodology 
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The solution to the shift planning problem is to explore the combination of shifts and 

to cover the demands based on trade-off rules while avoiding the violation of constraints 

from the regulatory and operational perspectives [43]. The objective should be set to 

minimize the operation cost while avoiding insufficient workforce. However, the set 

covering formulation cannot satisfy the prevailing shift planning requirements well. As the 

personnel management level goes higher, on the one hand, a small number of workforce 

deficiencies during peak hours and midnight is acceptable in order to reduce the degree of 

excess in workforce; on the other hand, workforce excess for some critical tasks is 

necessary as a backup. Considering above factors, the research of the balanced relationship 

among workload, understaffing, and overstaff in shift planning is widely studied [7]. 

The formulation of optimal shift design problems starts with the modeling of the 

timeline. The time of a planning horizon is represented by 𝑁, whose unit is a day. This 

planning period 𝑁 is discretized as 𝑇 equally sized time slots, 𝑡 = 1,2, … , 𝑇. The length of 

each time slot is named as time granularity 𝑎𝑔 , whose unit is minute. The workforce 

demand is represented in a 2D matrix 𝐷 ∈ ℕ|𝛷|×𝑇, where the row 𝜑 represents different 

kinds of requirements, while the column is the timeline in the planning period. The element 

of the demand matrix is natural numbers and describes the number of the required human 

resource units. The total amount of the required category is defined by |𝛷|. The shift is 

represented by 𝑠, while all 𝑠 is collected in the shift set 𝑆. The shifts are distinguished by 

the start time 𝑝𝑠 and end time 𝑞𝑠, thus a shift is in the time interval [𝑝𝑠, 𝑞𝑠]. The length of 

the shift 𝑠 is 𝑙𝑠, which is defined as 𝑙𝑠 = 𝑞𝑠 − 𝑝𝑠, 𝑝𝑠, 𝑞𝑠, 𝑙𝑠 ∈ ℕ.  
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However, since the intrinsic daily-wise shift repetitiveness, the start time and end 

time is not varying on each day. The shift format is introduced to simplify the 

representation of the shifts. One shift format should represent all the shifts which start from 

the same time on different days in a function 𝑠′(𝑛), and all 𝑠′(𝑛) are collected in the shift 

format set 𝑆′. The shift is the instantiation of a shift format with an input of specific Day 

𝑛: 

 𝑠′(𝑛) = 𝑠 (4.1) 

The mixed integer programming model of the shift planning for airport ground staff 

can be formulated as a set partition model as following: 

 

𝑧∗ = 𝑚𝑖𝑛 𝛼𝑐 ∑ 𝑐𝑠𝑥𝑠

𝑠∈𝑆

+ 𝛼𝑢 ∑ ∑ 𝑢𝜑𝑡

𝜑∈𝛷

𝑇

𝑡=1

+ 𝛼𝑜 ∑ ∑ 𝑜𝜑𝑡

𝜑∈𝛷

𝑇

𝑡=1

 

(4.2) 

 𝑠. 𝑡. ∑ 𝑎𝑠𝑡𝑥𝑠𝑚𝑠𝜑

𝑠∈S

+ ∑ 𝑢𝜑𝑡

𝜑∈𝛷

− ∑ 𝑜𝜑𝑡

𝜑∈𝛷

= 𝐷𝜑𝑡  ∀𝜑, 1 ≤ 𝑡 ≤ 𝑇 
(4.3) 

 ∑ 𝑣𝑖𝑠𝑥𝑠 ≤ 𝑉𝑖

𝑠∈S

,    ∀𝑉𝑖 ∈ 𝑉 
(4.4) 

 𝑢𝜑𝑡, 𝑜𝜑𝑡, 𝑥𝑠 ∈ ℕ (4.5) 

 𝑎𝑠𝑡 ∈ {0,1} (4.6) 

The objective function (4.2) is a weighted sum of shift operation cost, understaffing 

cost, and overstaffing cost, using weight factor 𝛼𝑐 , 𝛼𝑢 and 𝛼𝑜 , respectively. The shift 

operation cost is the sum of the cost of the specific shift 𝑐𝑠 multiply the number of this shift 
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𝑥𝑠. The overstaffing cost and understaffing cost are calculated by summing up the number 

of workforce deficiency and workforce excess of all requirements along the timeline, 

respectively. Constraint (4.3) describes the staff equilibrium of all requirements must agree 

at any time along the timeline. This staff equilibrium requires the sum of available staff, 

and workforce deficiency must equal to demands after subtracting the workforce excess. 

The operational variable 𝑎𝑠𝑡 = 1 describes shift 𝑠 is active at time 𝑡 and 𝑎𝑠𝑡 = 0 describes 

shift 𝑠 is inactive at time 𝑡. Similarly, operational variable 𝑚𝑠𝜑 = 1 describes shift 𝑠 can 

fulfill requirement 𝜑 , while 𝑚𝑠𝜑 = 0  describes shift 𝑠  cannot fulfill requirement 𝜑 . 

Constraint (4.4) is the number constraints of the specified shift category, where 𝑣𝑖𝑠 = 1 

means shift 𝑠 belongs to category 𝑖. Shift category limit 𝑉𝑖 specifies the maximum number 

of a particular shift category, and all 𝑉𝑖 are collected in 𝑉. Constraint (4.5) states that the 

𝑢𝜑𝑡, 𝑜𝜑𝑡, and 𝑥𝑠 are nonnegative integers. 

To solve the shift planning problem formulated above, the existing typical heuristic 

approach is the 1D GA. As the approach name suggests, the chromosome [ℂ]1×|𝑆|  is 

encoded as a 1-by-|𝑆| matrix. Every gene represents the number of the corresponding shift 

in 𝑆. Following the similar index, the shift matrix [𝕊]|𝑆|×𝑇  is a |𝑆|-by-𝑇 binary matrix, 

whose element is equal to 𝑎𝑠𝑡 in (4.7). The number of active working resources within the 

planning horizon is represented in the working matrix [𝕎]1×𝑇, which can be calculated by: 

 [ℂ]1×|𝑆| ∙ [𝕊]|𝑆|×𝑇 = [𝕎]1×𝑇 (4.7) 

 

4.3 Two-Dimensional Genetic Algorithm 
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The above GA has some drawbacks in the current problem context. Firstly, there is 

much redundancy in the shift matrix. The timeline of the matrix is the planning horizon, 

while the actual active time of a shift is less than a day. Thus, most of the elements are 

redundant zeros during inactive days, and their existence dramatically reduces the 

computational efficiency of calculating (4.7). Secondly, the prevailing 24-hour operation 

challenges the daily-wise shift planning problem decomposition, since the 24-hour 

operation implies overlapping of shifts in two adjacent days. The overnight shifts in 24-

hour operation may start from the previous day but end later than the earliest potential 

shifts in the following day. The other daily-wise decomposition approach is separating the 

days before the earliest shift. However, the daily requirement start time varies from day to 

day. Thus, presetting a fixed time point to separate working days may tear apart the 

successive early morning requirement peaks. Thirdly, the 1D chromosome structure limits 

the efficiency of crossover and mutation operations, since the intrinsic 2D property of the 

shift planning problem. Because of the linear structure organizes the genes in one 

dimension, the simultaneously segmenting chromosomes from different dimensions is hard 

to implement. 

 To overcome the drawbacks caused by the encoding structure, the 2D GA is 

proposed to describe the problem in a new perspective. As is mentioned above, the shift 

format describes a set of shifts that have the same daily start time and end time in the shift 

set 𝑆. Due to the high repetitiveness of daily-wise shift formats, 𝑆 can be represented by a 

set of shift formats with date information. Thus, the chromosome can be constructed from 

the perspectives of the planning horizon and shift format, encoded as [ℂ]𝑀×𝑁, a 𝑀-by-𝑁 

matrix where 𝑀  is the number of shift formats in a day. The gene 𝑐𝑚𝑛  represents the 
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number of the 𝑚𝑡ℎ shift format on Day 𝑛. Correspondingly, the original shift matrix is 

changed into the shift format matrix [𝑆′]𝑀×𝑇24
, a 𝑀-by-𝑇24 binary matrix where 𝑇24 is the 

number of time slots in 24 hours. Contrary to the shift matrix in the 1D GA approach, the 

timeline of 𝑆′ is 24 hours. Every row of the matrix represents the active timeslots of a shift 

format for one day, which is 
1

𝑁
 smaller by eliminating insignificant zeros in the inactive 

days of that shift. On the other hand, due to the high repetitiveness, the number of shift 

formats is also 
1

𝑁
 smaller than |𝑆|. Thus, the shift format matrix [𝕊′]𝑀×𝑇24

 is 
1

𝑁2 smaller 

than the shift matrix [𝕊]|𝑆|×𝑇 , greatly improving the computational efficiency for the 

calculation of working resources. The number of working resources within the planning 

horizon is represented in the working matrix [𝑊]𝑁×𝑇24
, which can be calculated by: 

 [ℂ]𝑀×𝑁
𝑇

⋅ [𝕊′]𝑀×𝑇24
= [𝕎]𝑁×𝑇24

 (4.8) 

The chromosome and the shift format matrix should be decomposed to support the 

24-hour operation. The chromosome is divided into three categories, [ℂ𝑑]𝑀𝑑×𝑁, [ℂ𝑛1]𝑀𝑛×𝑁, 

and [ℂ𝑛2]𝑀𝑛×𝑁, where ℂ𝑑 and ℂ𝑛1 represent the chromosome for shift formats that do not 

span two days and overnight shift formats, and 𝑀𝑑  and 𝑀𝑛  equal to the corresponding 

number of shift formats. ℂ𝑛2 is the combination of a column of zeros followed by the first 

(𝑁 − 1) columns of ℂ𝑛1. Correspondingly, the shift format matrix is divided into three 

categories, [𝑆𝑑
′ ]𝑀𝑑×𝑇24

, [𝑆𝑛1
′ ]𝑀𝑛×𝑇24

, and [𝑆𝑛2
′ ]𝑀𝑛×𝑇24

, where 𝑆𝑑
′  represents the shift 

formats that do not span two days, 𝑆𝑛1
′  represents the parts of overnight shift formats before 

midnight, and 𝑆𝑛2
′  represents the parts after midnight. The working matrix [𝑊]𝑁×𝑇24

 can 

then be calculated by: 
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 [ℂ𝑑]𝑀𝑑×𝑁
𝑇

∙ [𝕊𝑑
′ ]𝑀𝑑×𝑇24

+ [ℂ𝑛1]𝑀𝑛×𝑁
𝑇

∙ [𝕊𝑛1
′ ]𝑀𝑛×𝑇24

 

+[ℂ𝑛2]𝑀𝑛×𝑁
𝑇

∙ [𝕊𝑛2
′ ]𝑀𝑛×𝑇24

= [𝕎]𝑁×𝑇24
. 

(4.9) 

The step-by-step process of 2D GA is described in Table 4.1. The flowchart is 

displayed in Figure 4.1. 

Table 4.1 Pseudocode of 2D Gas. 

// Initialization of generation 0: 

𝑖𝑡𝑒 ≔ 0; 

𝑃𝑖𝑡𝑒 ≔initial population of 𝑝 randomly generated 

[ℂ]𝑀×𝑁 individuals; 

// Evaluate the fitness value of the populations 

Compute 𝑓𝑖𝑡(𝑖) for 𝑖 ∈ 𝑃𝑖𝑡𝑒; 

while 𝑖𝑡𝑒 < 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

do 

// Create generation 𝑖𝑡𝑒 + 1: 

Select a proportion of members from 𝑃𝑖𝑡𝑒; 

Select another proportion of members to for 

crossover; 

Combine the selection and offspring; 

Mutate the combined set; 

Compute 𝑓𝑖𝑡(𝑖) for 𝑖 ∈ 𝑃𝑖𝑡𝑒+1; 

𝑖𝑡𝑒 ≔ 𝑖𝑡𝑒 + 1; 

if the fitness of the best individual is converged 

return best individual 

end 

end 
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Figure 4.1 2D GA Flowchart. 

4.4 Crossover Operators  

The crossover operations aim to exchange part of the parents’ chromosomes for 

producing offspring. The selected method is substring crossover, which randomly chooses 

the exchanging points and arbitrarily exchanges the substring. The crossover operations of 

2D chromosome can divide the parent chromosome from the exchanging point horizontally 

and vertically. The crossover operations can be summarized in the following four steps.  

The first step is selecting the parent chromosomes 𝑝1 and 𝑝2 based on their fitness 

value by applying the roulette algorithm. A fitter individual shows a superior probability 

of being selected. The second step is generating a random number and compare it with a 

preset constant, which is set as 0.5 in this research. If the random number is greater than 

0.5, the crossover will be done horizontally. Otherwise, a vertical operation will be applied. 
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Figure 4.2 Crossover Operations. 

The horizontal and vertical crossover will be based on the randomly generated 

exchange point indexes 𝑅𝑐  and 𝑅𝑟 . 𝑅𝑐  represents the selected column index, while 𝑅𝑟 

represents the selected row index. In the horizontal crossover, all the row after the 𝑅𝑟 will 

be exchanged. Meanwhile, at the row 𝑅𝑟, elements after 𝑅𝑐 will be exchanged. The vertical 

crossover is following a similar logic. The columns after the 𝑅𝑐 will be exchanged. At the 

column 𝑅𝑐, elements after 𝑅𝑟 will be exchanged. The generated two offspring will have 

elements from both parents. Figure 4.2 shows an example of the crossover operations. 

4.5 Mutation Operators 

The mutation operations are applied to introduce diversities to the populations. The 

1D mutation operations usually randomly change one bit from an arbitrary position. While 

the proposed 2D method has applied two mutation approaches, which are named as 
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swapping and perturbation, respectively. This kind of mutation operations will be 

conducted when a newly generated random number is smaller than the mutation rate, which 

is a preset constant. Moreover, the determination of swapping or perturbation is based on 

the approach selection rate, which is also a preset constant. If the swapping approach is 

selected, two pairs of indexes (𝑅𝑟 , 𝑅𝑐) will be randomly generated, and the corresponding 

two elements in the chromosome will be exchanged. Otherwise, the perturbation operations 

will regenerate a random value on the randomly selected position (𝑅𝑟 , 𝑅𝑐). This kind of 

mutation operations provides an approach to balance the introduction of diversity to the 

population and the prevention of contamination in the late searching stage. Figure 4.3 

shows an example of mutation operations. 

 

Figure 4.3 Mutation Operations. 

4.6 Computational Experiments 

The case is based on a real-world shift planning problem at a large airport. The case 

is implemented by MATLAB 2019a, under Win 10 pro operation software. The CPU is 

Intel Xeon CPU E3-1505M v5 @ 2.90GHz. The planned shifts and the coverage of the 

demands of a 7-day shift planning problem are shown in Figure 4.4. The time granularity 

is 1 minute. In everyday demand, there are two peaks, which are morning and evening rush 
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hours, respectively. Figure 4.5 shows the coverage details on the sixth day. The result has 

shown that most of the demands have been covered. The fitness function value of the fittest 

child in every generation is plotted in Figure 4.6. This plot is to show the convergence of 

the algorithm. Figure 4.6 suggests it takes around 200 iterations to converge. 

 

Figure 4.4 Shift coverage result of a 7-day shift planning problem. 

 

Figure 4.5 Shift coverage in one day span. 



 27 

 

Figure 4.6 Objective function value and iterations. 

4.7 Results and Analysis 

In the last section, experiments of 7-day shift planning are conducted to validate the 

proposed 2D GA. Three experiment responses are used as performance measure: the 

understaffing rate (the ratio of uncovered demands over the sum of total demands), the 

overstaffing rate (the ratio of excess workforce over the sum of total demands), and the 

computing time. As is seen in Figure 4.4, the combined shifts cover most of the demands: 

the understaffing rate is 4.09%, with some peaks uncovered during morning and evening 

rush hours, while the overstaffing rate is 28.94%. The computing time is 65.5 seconds, 

which is much smaller when compared to that of 1D GA (1220.4 seconds). The results are 

acceptable according to the company that sponsors this research. On the one hand, the 

overstaffing rate is below 30%, which is often applied as a criterion in most airlines. On 

the other hand, the results cover most of the demands except some peaks, and the coverage 
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of those peaks will bring much workforce excess and makes the overstaffing rate much 

larger. 

4.8 Chapter Summary 

Applying GAs on shift planning has become increasingly critical for practitioners 

and researchers since they can provide a nearly optimal result in an acceptable time. The 

1D GA encoding schemes have limited the application to the large-scale shift planning 

problems, which leads to a high redundant shift representation and inefficient chromosome 

operations. In this regard, this chapter proposes a 2D encoding scheme as well as the 

corresponding computing approach and operations to serve the introduction of shift formats. 

This scheme has improved the algorithm computational efficiency by squeezing out the 

redundant zero. The transform of the chromosome from 1D to 2D allows easier crossover 

operations by segmenting the parent chromosomes in two dimensions. The corresponding 

computation approach can support efficient matrix operations and a 24-hour operation 

paradigm. Finally, an application case of a 24-hour airport GSS scheduling problem from 

the real world has been demonstrated to examine the efficiency and potential of proposed 

2D GA in coping with large-scale shift planning problems with shit formats. 
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CHAPTER 5. ROSTERING WITH SPECIFIC WORK PATTERNS 

USING COLUMN GENERATION 

Different from shift planning problems, the rostering problem is to combine different 

types of shifts and obey a certain work pattern to form a roster line. Rostering algorithms 

need to face the challenge of the combinatorial explosion and have a large impact on the 

staff utilization rate in airlines. This chapter addresses the rostering problem with work 

patterns. A set covering model is formulated to model the relationship between formed 

roster lines and required shifts. A branch and price algorithm is developed, using the label 

correcting algorithm for column generation to solve the shortest path problem with 

restricted constraints. Cases from real-life airlines are studied to validate the developed 

algorithm. Computational results are analyzed to verify the feasibility. 

5.1 Rostering 

Workforce scheduling aims to assign workers with a line of specified shifts with day-

off information and is often regarded as a multi-stage planning process [47]. Rostering 

operations are conducted during the mid-term of the planning timeline and happen after 

shift planning is finished [31]. It concerns with minimizing the operation cost while 

satisfying the requirements of different shifts needed during the planning horizon. Because 

rostering is to form a roster line with different combinations of shifts, even one more shift 

than needed can bring large workforce excess. Thus, the quality of rostering operations has 

a great impact on workforce scheduling results. 
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The rostering problem can be formulated as a set covering problem, which is solved 

by forming rostering lines using the shifts existing in the shift planning result to cover the 

shift demands while satisfying specific work patterns and avoiding violating the labor law 

and the employment rules [48]. Some definitions are given in Table 5.1 to better understand 

the rostering problem. Examples of shift demands, a roster line, and a roster are given in 

Table 5.2, Table 5.3, and Table 5.4. 

Table 5.1 Rostering term explanation. 

Term Explanation 

Shift demand Number of different required shifts from the shift planning results 

Work pattern 

The minimum period that specifies the sequence of the days of work 

and required days of rest, sometimes certain shift types are specified 

on some workday, which is often seen in nurse scheduling problem 

[49]. (For example, M-A-O means working on a morning shift on the 

first day, an afternoon shift on the second, and off on the third day.) 

Roster line A line of specified shifts on the planning horizon [38] 

Roster A set of roster lines for needed employees on the planning horizon 

Rostering 
The process of selecting roster lines to cover the shift demands based 

on the labor law and employment rules 

 

Table 5.2 An example of shift demands. 

Shifts 𝐴1 𝐴2 𝑃1 𝐴3 𝑃2 𝑃3 𝐴4 𝐴5 𝑃4 𝐴6 𝐴7 𝑃5 𝐴8 𝑃6 𝑃7 𝐴9 𝐴10 𝑃8 

Days 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 

Number 5 7 13 15 8 6 7 9 14 5 8 16 19 9 10 7 4 12 

 

Table 5.3 An example of a 6-day roster line. 
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Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 

𝐴2 𝑃3 𝑂 𝐴6 𝑃6 𝑂 

 

Table 5.4 An example of a 6-day roster. 

Employee 

type 
Number Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 

1 3 𝐴2 𝑃3 𝑂 𝐴6 𝑃6 𝑂 

2 5 𝑃1 𝑂 𝐴4 𝑃5 𝑂 𝐴9 

3 4 𝑂 𝐴3 𝑃4 𝑂 𝐴8 𝑃8 

The challenge of the rostering problem lies in two aspects. On the one hand, to find 

feasible roster lines with specified work patterns while satisfying constraints from the labor 

law and employment can be formulated as a shortest path problem with resource constraints, 

which is NP-hard in the strong sense [50]. On the other hand, as the planning horizon grows 

linearly, the number of feasible roster lines grows exponentially, making it impractical to 

enumerate every combination to solve it directly, especially when the number of everyday 

shifts is large. To solve this problem, the branch and price algorithm using column 

generation is often applied [2]. 

Column generation is the key idea due to the characteristics of the rostering problem. 

Because the feasible roster lines are numerous and enumeration is not possible, also it is 

not easy to find sets of feasible roster lines, column generation can be used to generate 

high-quality feasible lines by computing the reduced cost, and the combinatorial problem 

is left with the master problem. This greatly improves the algorithm efficiency by only 

using a set of effective lines. 
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In this regard, this chapter is organized as follows. Section 5.2 presents formal 

definitions of basic variables and the MIP model for the rostering with work patterns 

problem. Section 5.3 proposes the column-generation-based approach and it is divided into 

two parts, corresponding to the two optimization problems decomposed from the original 

one. The first part introduces the master problem, and the second part presents the 

subproblem with one dynamic programming solution. Section 5.4 provides the branching 

scheme to guarantee the feasibility of the solution. Section 5.5 presents the computational 

experiments using a rostering case from a real-life airline. Results are discussed and 

analyzed in Section 5.6. Finally, the summary of the research on rostering with work 

patterns is given in Section 5.7. 

5.2 Set Covering Problem Formulation 

The rostering problem entails an exploration of selecting a set of roster lines to cover 

the shift demands while avoiding the violation of constraints from the labor law and the 

employment rules. The goal is to minimize the operation cost while satisfying the 

requirements on the number of different shifts. Because lacking one shift results in large 

workforce deficiency, the number of an arranged shift in this research is set to be no smaller 

than the corresponding required number. 

The inputs of the problem include the work pattern, employment rules, and the shift 

planning result. The work pattern describes the required day-off sequence from the 

management perspective. Sometimes the work pattern specifies the time period of the shift 

on some day. For example, shifts in a day can be classified as three kinds: morning shifts 

with starting time from 04:00 to 12:00, afternoon shifts starting from 12:00 to 18:00, and 
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night shifts starting from 18:00 to 04:00. Thus, a work pattern M-M-A-N-O-O represents 

the sequence of two morning shifts, one afternoon shift, one night shift and two offs. 

Employment rules define the feasibility of a roster line with constraints on some parameters: 

the minimal time between two shifts, the planning horizon, minimal working time and 

maximal working time in a week. The shift planning result contains a set of shifts with 

corresponding properties: the work date, start time, end time, and the required number. 

The challenge for the mathematical model is typically how to generate a feasible 

roster line with high qualities. Because the rotation of the work pattern (like 𝑀 − 𝐴 − 𝑂, 

A-O-M, and O-M-A) and various constraints on the shift arrangement, it is nearly 

impossible to enumerate all the feasible roster lines for practical use. In the meantime, 

compared to the number of total possible combinations, only a very small number will be 

used in the solution. Thus, column generation is considered to flexibly generate effective 

roster lines to the problem. 

The integer programming model for generalized rostering problems can be 

formulated as a set covering model described in the following: 

 𝑚𝑖𝑛 ∑ 𝑐𝑟𝑥𝑟

𝑟∈𝑅

 
(5.1) 

 𝑠. 𝑡. ∑ 𝑎𝑠𝑟𝑥𝑟

𝑟∈𝑅

≥ 𝑞𝑠, ∀𝑠 ∈ 𝑆 
(5.2) 
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 ∑ 𝑎𝑔𝑟𝑥𝑟

𝑟∈𝑅

≤ 𝑚𝑔, ∀𝑔 ∈ 𝐺 
(5.3) 

 ∑ 𝑥𝑟 ≤ 𝑛

𝑟∈𝑅

 
(5.4) 

 𝑥𝑟 ∈ ℕ (5.5) 

 𝑎𝑠𝑟 , 𝑎𝑔𝑟 ∈ {0,1} (5.6) 

Since the rostering process is after the shift planning and airport staff has a high 

understaffing cost while a low labor cost, the objective function (5.1) is set to be the sum 

of labor cost. The shift planning result is identified by the shift set 𝑆 containing every shift 

used 𝑠. The roster line set is represented by 𝑅, and each roster line 𝑟 in the set is a |𝑆| × 1 

binary matrix, in which each element suggests whether the corresponding shift is chosen 

in that roster line. The labor cost of a specific roster line is represented by 𝑐𝑟, which is 

calculated by the total working hours of that roster line. The shift demand requirement is 

described in Constraint (5.2). 𝑎𝑠𝑟 indicates whether a shift 𝑠 is chosen in a roster line 𝑟, 

with 𝑎𝑠𝑟 = 1 meaning the shift belongs to this roster line and 0 meaning the shift is not 

chosen. 𝑥𝑟  refers to the number of a roster line in the solution. The corresponding 

requirement for the number of a shift is 𝑞𝑠, ∀𝑞𝑠 ∈ 𝑄𝑠. The limitation on the work pattern 

groups is represented in Constraint (5.3). A pattern group 𝑔 is one variation of the specified 

work pattern, and ∀𝑔 ∈ 𝐺. 𝑎𝑔𝑟 indicates the pattern group that the roster line belongs to. 

The maximum number of a pattern group is represented by 𝑚𝑔. This constraint is often 



 35 

used to better manage employees working on the same work pattern. For example, a roster 

line M -O-M belongs to a pattern group W-O-W (work-off-work) and 𝑎𝑔𝑟 equals to the 

number that represents the pattern group and corresponding 𝑚𝑔 is the maximum number 

of roster lines on W-O-W. Constraint (5.4) indicates the limitation on the number of 

employees, and Constraint (5.5) guarantees the integrality of the solution. 

5.3 Column Generation for Rostering with Work Patterns 

For some combinatorial optimization problems, it is nearly impossible to explicitly 

enumerate all feasible combinations. Such problems are often solved by the column 

generation approach, which is embedded into the branch and bound algorithm. The 

rationale of the column generation technique is similar to the simplex method. Due to the 

fact that the non-basic variables of the solution are in the majority, only the variables that 

have the potential to make the solution performance better should be considered. Thus, this 

approach decomposes the problem into two related optimization problems: the master 

problem that measures the performance of the current solution and the pricing problem 

(also referred to as the subproblem) that continuously generates high-quality and feasible 

combinations for the master problem. Figure 5.1 represents the flowchart of the approach. 
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Figure 5.1 The flowchart of branch and price algorithms. 

5.3.1 The Master Problem 

The master problem aims to combine existing roster lines to satisfy the shift demands 

while avoiding the violation of the pattern group limitations. Thus, the variables used in 

the master problem is not the universal set but only a subset. The new variables (roster 

lines) will continuously generated by applying column generation until no more roster lines 

that have negative reduced costs can be found. However, the integrality requirement on 𝑥𝑟 

needs to be relaxed in order to embed column generation into the branch and bound [38]. 

Thus, Constraint (5.7) is replaced by the following formula: 
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 𝑥𝑟 ∈ ℝ+ (5.7) 

The mathematical modeling on the objective function and other requirements remain 

the same as in the problem formulation, and this revised problem is called the restricted 

master problem (RMP). RMP and its dual problem are then be used to measure the 

performance of current columns and generate new high-quality columns. 

5.3.2 The Pricing Problem 

The objective of the pricing problem is to generate high-quality variables that have 

the potential to improve the solution performance based on the current variables until no 

such variables can be found. This is done by exploring the variables with minimum 

negative reduced costs using the dual solution of the current restricted master problem. The 

pricing problem is formulated in the following: 

 

𝑚𝑖𝑛𝑟∈𝑅 (𝑐𝑟 − ∑ 𝑎𝑠𝑟𝜋𝑠

𝑠∈𝑆

− ∑ 𝑎𝑔𝑟𝜇𝑔

𝑔∈𝐺

− δ) (5.8) 

In the objective function (5.8), the shift combination of a roster line is represented 

by the matrix of 𝑎𝑠𝑟 and the pattern group 𝑎𝑔𝑟. A roster line must satisfy all the labor law 

and the employment rules, which contain the following: Employees can work no more than 

one shift per day; Two consecutive shifts of a roster line has a required minimum time 

interval; The day-off sequence of the roster line must correspond to the pattern group it 

belongs to. 𝜋𝑠 , 𝜇𝑔 , and δ are dual variables for shift number constraints, pattern group 



 38 

constraints, and total employee number constrains correspondingly. Because of the 

commonality on the pattern group and the number of employees, the pricing problem can 

be simplified as follows: 

 
𝑚𝑖𝑛𝑟∈𝑅 (𝑐𝑟 − ∑ 𝑎𝑠𝑟𝜋𝑠

𝑠∈𝑆

) (5.9) 

This pricing problem in this context can be formulated as a shortest path problem 

with resource constraints (SPPRC). In SPPRC, each shift is a node with the dual variable 

value as its cost. A feasible path is to combine the shifts and off days based on the rules of 

connectivity and the total working hour constraints. The objective is to find the path with 

the minimum negative reduced cost. Usually this is solved by the label correcting algorithm 

based on the concept of dynamic programming. The basic idea is to set the labels for each 

shift and track them while extending them to the connectable shifts and off days through 

the graph. After visiting a node, labels on that node will be compared and the unpromising 

ones will be discarded though they are feasible. Those left labels will continuously be 

extended to the destination and form a feasible path. Paths with minimum negative costs 

are then chosen and the corresponding variables will enter the basis of the RMP.  

Some basic definition in the label correcting algorithm is given in Table 5.5. 

Table 5.5 Basic definition in the label correcting algorithm. 

Variable/Function Definition 

𝑠 Each shift is encoded as a node on the graph 
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𝜆 A non-dominated label 

Λ A list of non-dominated labels 

𝑠𝑢𝑐𝑐(𝑠) The set of successor shifts of some shift 

𝐸𝑥𝑡𝑒𝑛𝑑(𝜆𝑖, 𝑠𝑗) Function of extending labels from 𝜆𝑖 to 𝑠𝑗 

𝐹𝑖𝑗 The set of labels extends from 𝑠𝑖 to 𝑠𝑗 

𝐸𝐹𝐹(Λ) Function of discarding dominated labels in Λ 

Pseudocode of the label correcting algorithm is presented in Table 5.6. 

Table 5.6 Pseudocode of the label correcting algorithm. 

// Initialization 

Λ𝑝 ← ∅ 

For all 𝑠𝑖 ∈ 𝑆\{𝑝} 

 do Λ𝑖 ← ∅ 

End for  

𝐸 ← {𝑝} 

// Label correcting 

While 𝐸 ≠ ∅ 

 pick 𝑠𝑖 ∈ 𝐸 

 for all 𝑠𝑢𝑐𝑐(𝑠𝑗) 

  do 𝐹𝑖𝑗 ← ∅ 

  for all 𝜆𝑖 ∈ Λ𝑖 

    𝐹𝑖𝑗 ← 𝐹𝑖𝑗 ∪ 𝐸𝑥𝑡𝑒𝑛𝑑(𝜆𝑖, 𝑠𝑗) 

  end for 

  Λ𝑗 = 𝐸𝐹𝐹(Λ𝑖, 𝐹𝑖𝑗) 

  if Λ𝑗 is changed 

   𝐸 ← 𝐸⋃𝑠𝑗 

  end if 

 end for 

 𝐸 ← 𝐸\{𝑠𝑖} 

End while 
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5.4 Solution Integrality 

One problem that remains to be solved is the solution feasibility. Due to the 

relaxation on 𝑥𝑟 in the RMP, the solution of RMP might be fractional, which makes no 

sense in practical problems. Thus, the branching strategy is needed to fathom the solution 

with decimal part. 

The idea to apply variable fixing every time the RMP is solved. The branching 

strategy in this research adopts a greedy method [47]. Because of the computational cost 

to bound variables with the upper bound, the strategy only considers doing with lower 

bounds. 

Assume the optimal solution to one RMP is 𝑥∗ . If 𝑥𝑟
∗𝜖ℤ+, ∀𝑟 ∈ 𝑅 , then 𝑥∗  is the 

optimal solution that is feasible to the original formulation. Otherwise, the fractional part 

𝑓𝑟
∗ = 𝑥𝑟

∗ − ⌊𝑥𝑟
∗⌋ of every variable value is taken to bound the variables with a predefined 

threshold 𝜏, where 𝜏 ∈ (0,1). The following strategy is taken: 

 𝑥𝑟 ≥ ⌈𝑥𝑟
∗⌉, ∀𝑟 ∈ 𝑅: 𝑓𝑟

∗ ≥ 𝜏 (5.10) 

However, if 𝑓𝑟
∗ < 𝜏 for every 𝑟 ∈ 𝑅, then the variable with the largest fractional part 

will be rounded up: 

 if 𝑟 ∈ 𝑅: 𝑓𝑟
∗ ≥ 𝜏 = ∅, then 𝑥𝑟 ≥ ⌈𝑥𝑟

∗⌉, 𝑟 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑟𝑓𝑟
∗ (5.11) 
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5.5 Computational Experiments 

The experiment is a case based on a real-world rostering problem. The objective is 

to generate a 7-day rostering. The input is from a 7-day shift planning result, as shown in 

Table 5.7, where the shift date, start time, and duration (represented in minutes), and the 

required number are given for each type of shift. The work pattern is set as W-W-W-W-

W-O-O, and the interval between two shifts in one roster line must be larger than 10 hours. 

The minimum weekly working hour is 40 and the maximum is 45. The experiment result 

is shown in Table 5.8, indicating the shifts with specified date, start time and duration of 

each roster line. Figure 5.2 represents the shift coverage of the current rostering solution 

on each day. The result shows that all shifts are covered and there are three superfluous 

shifts, two on the fifth day and one on the last day of the rostering horizon. 

Table 5.7 Inputs from shift planning results 

Day 
Start 

(min) 

Duration 

(min) 
Num Day 

Start 

(min) 

Duration 

(min) 
Num Day 

Start 

(min) 

Duration 

(min) 
Num 

1 210 510 1 3 450 480 2 5 900 480 2 

1 240 480 2 3 810 480 3 5 930 480 1 

1 330 480 1 3 840 480 1 6 240 480 2 

1 360 480 3 3 870 480 2 6 330 480 1 

1 390 480 1 3 930 480 2 6 360 480 3 

1 450 480 1 3 1050 480 1 6 420 480 2 

1 810 480 2 4 240 480 1 6 450 480 1 

1 840 480 4 4 330 480 2 6 810 480 4 

1 870 480 1 4 390 480 5 6 900 480 3 

1 900 480 2 4 420 480 2 6 930 480 2 

2 210 600 1 4 810 480 1 6 1050 480 1 

2 240 600 1 4 840 480 3 7 240 510 1 

2 330 480 1 4 870 480 4 7 330 510 2 

2 360 480 1 4 1020 480 2 7 360 510 1 

2 390 480 1 5 240 540 1 7 450 480 2 

2 450 480 2 5 240 600 1 7 480 480 1 

2 810 480 2 5 330 510 1 7 510 510 1 
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2 870 480 4 5 360 480 1 7 870 480 2 

2 930 480 3 5 390 480 1 7 900 480 1 

3 210 510 1 5 420 480 1 7 930 480 2 

3 240 480 1 5 450 480 1 7 1050 510 3 

3 330 510 2 5 810 480 3     

3 360 480 3 5 870 480 2     

 

Table 5.8 Results of a 7-day rostering with a 5&2 work pattern 

Day 
Start 

(min) 

Duration 

(min) 
Day 

Start 

(min) 

Duration 

(min) 
Day 

Start 

(min) 

Duration 

(min) 
Day 

Start 

(min) 

Duration 

(min) 
Day 

Start 

(min) 

Duration 

(min) 

1 240 480 4 390 480 5 390 480 6 900 480 7 1050 510 

1 840 480 4 390 480 5 810 480 6 900 480 7 900 480 

1 900 480 4 1020 480 5 810 480 6 810 480 7 900 480 

1 330 480 2 330 480 3 330 510 4 840 480 7 1050 510 

1 360 480 2 240 600 3 360 480 4 870 480 5 810 480 

2 210 600 3 360 480 4 240 480 5 330 510 6 240 480 

3 360 480 4 330 480 5 360 480 6 360 480 7 450 480 

1 810 480 2 930 480 3 930 480 4 870 480 7 930 480 

3 810 480 4 870 480 5 870 480 6 810 480 7 1050 510 

1 810 480 2 870 480 3 870 480 6 240 480 7 360 510 

1 360 480 4 390 480 5 930 480 6 810 480 7 510 510 

2 870 480 3 840 480 4 840 480 5 900 480 6 900 480 

2 810 480 3 450 480 4 810 480 5 450 480 6 450 480 

2 390 480 3 330 510 4 390 480 5 420 480 6 930 480 

1 210 510 2 450 480 3 450 480 6 360 480 7 330 510 

1 870 480 2 930 480 3 810 480 4 1020 480 7 450 480 

1 840 480 2 870 480 3 1050 480 6 420 480 7 930 480 

1 840 480 4 330 480 5 450 480 6 930 480 7 870 480 

1 840 480 4 420 480 5 240 600 6 420 480 7 240 510 

1 360 480 2 810 480 3 810 480 6 360 480 7 480 480 

1 900 480 2 870 480 3 870 480 4 840 480 5 900 480 

2 930 480 3 930 480 4 870 480 5 870 480 6 1050 480 

1 390 480 4 390 480 5 360 480 6 330 480 7 330 510 

1 240 480 2 360 480 3 210 510 4 420 480 5 240 540 

1 450 480 2 450 480 3 240 480 6 810 480 7 870 480 
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Figure 5.2 Rostering with a 7-day rostering problem with a 5&2 work pattern 

5.6 Results and Analysis 

Two performance measures are used to evaluate the rostering algorithm 

performance: the computing time and the number of superfluous shifts. In the experiment 

above, the computing time is 28.48 seconds with around ten shift types each day, in which 

most of the time is used on column generation. The required number of shifts to fully cover 

the demands from the solution is 125, which is 2.5% more than the actual required number. 

The results are acceptable for the industry application. 

5.7 Chapter Summary 

Rostering is to assign shifts to different work-off lines based on the specified work 

pattern as well as labor laws and employment rules. It is challenging to implement not only 

because it has high requirements for the feasibility of a roster line but also because the 
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combinations are numerous and to enumerate is impractical. This chapter represents the 

column-generation-based method, which can generate high-quality feasible roster lines by 

decomposing the original problem into the master problem and the pricing problem. The 

master problem is a set covering problem, while the pricing problem is solved by using the 

dual variable values to find routes with minimum negative reduced costs continuously. The 

pricing problem is a SPPRC and applies the label correcting algorithm based on dynamic 

programming so that only routes that would improve the solution are chosen instead of 

enumerating all feasible routes. Finally, an experiment is conducted using a case from a 

real-world rostering problem to validate the feasibility of the presented algorithm. 
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CHAPTER 6. TASK SCHEDULING: TASK DISPATCHING AND 

DISRUPTION MANAGEMENT BY INTEGER PROGRAMMING 

Task scheduling happens after roster lines are assigned to every employee, and it is 

the final step in workforce scheduling. The objective is to assign individual tasks to each 

shift. Task scheduling contains two kinds of problems: operational problems regarding task 

dispatching and real-time problems regarding disruption management, which are addressed 

in this chapter. The mathematical model for task scheduling is formulated and variable 

management is also introduced. A column-generation-based approach is proposed to solve 

the task dispatching as a vehicle routing problem with time windows. A decision-making 

system is developed to analyze the latest task information and to build a MIP model, which 

can be solved by integer programming solvers. Finally, a case of shuttle bus dispatching 

from a real-life airline is studied to analyze and verify the feasibility of the proposed 

approach. 

6.1 Task Scheduling 

Different from shift planning and rostering, the focus of task scheduling is not on the 

coverage of workload demands nor the shift assignment, but on the assignment of tasks 

carrying high-level details like qualification, position, start time, and duration. Task 

scheduling aims to have tasks scheduled and assigned to employees from the rostering 

result which indicates the workforce availability during a day [38]. In the task scheduling 

problem, three perspectives are considered: the allocation of tasks, the scheduling of tasks, 

and routing of personnel or vehicles within the shift on that day. In other words, an optimal 
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scheduling question that needs to be answered is “who is to finish which task at which time 

and place” [38]. An efficient task scheduling algorithm can improve the utilization rate of 

employees and facilities, thus reducing the labor cost and operation cost for the company.  

For service industries like airlines, task scheduling can be decomposed into two 

separate problems: task dispatching that happens before the day of operation and disruption 

management dealing with the changes that occur during the day of operation [31]. Thus, 

task dispatching is an operational optimization that puts the solution quality in the first 

place, while disruption management is real-time optimization, which requires quick 

reactions to sudden task changes and makes a new arrangement. 

According to different task characteristics of airport ground staff, tasks can be 

decomposed into three types from the task scheduling perspective: passenger services, 

above wing services, and below wing services. Passenger services handle passenger flow 

in the airport, and such tasks have neglectable travel distance and are determined based on 

the passenger arriving patterns. Above wing services deal with aircraft services that have 

neglectable travel distance with specific limited time windows, like cleaning, catering, and 

boarding tasks. Below wing services are concerned with aircraft services with long travel 

distance. Such tasks have not only limited time windows but limited equipment, including 

shuttle bus driving, tow tractor driving, luggage handling, and so on. Among these tasks, 

below wing task scheduling is the most challenging for the consideration of limited time 

windows and equipment. In this regard, this research mainly studies the below wing 

services. 



 47 

In the remainder of this chapter, further details of task scheduling are reviewed. In 

section 6.2, task scheduling problems are introduced. The definition of basic variables is 

provided, and a set partition model is formulated. A column-generation-based approach is 

applied. The pricing problem is formulated as SPPTW and is solved by dynamic 

programming. Section 6.3 presents the disruption management problem. A set partition 

model is formulated. A decision-making system is developed to implement real-time 

response by analyzing the latest task information. Section 6.4 presents the computational 

experiments of both task dispatching and disruption management using a shuttle bus 

dispatching case from a real-life airline. Section 6.5 further discusses the results and 

analysis. The summary of task scheduling is given in 6.6. 

6.2 Task Dispatching 

Task dispatching aims to assign tasks to the assigned shifts from rostering results so 

that each employee has a specific timetable indicating which tasks to finish with time and 

location information. It happens after rostering in workforce scheduling and is the last step 

before the day of operation on the planning timeline. Task dispatching concerns with 

minimizing the missing tasks and the operation cost calculated by the travel time between 

tasks while avoiding the violation of labor regulations and time constraints of tasks. When 

the time span is long and the task number is large, there exist numerous feasible routes to 

finish tasks within shifts. Also, depending on the travel time between tasks, the utilization 

rate can vary on a large scale. Thus, it is of great significance to have a high-quality solution 

for the assignment to improve the employee utilization rate and reduce the operation cost. 
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6.2.1 Set Partitioning Problem Formulation 

The task dispatching problem formulation starts with the modeling of tasks. To 

efficiently manage needed data, each task is instantiated with five attributes: the place of 

departure, the place of arrival, in position time, end time, and task active time. Thus, 

𝑡𝑎𝑠𝑘𝛾 = (𝑣𝛾𝑎, 𝑣𝛾𝑏 , 𝑎𝛾, 𝑏𝛾, 𝑡𝛾), where 𝛾 represents a certain task, while all 𝛾 are collected 

in the task set 𝛤. 𝑣 indicates the place, and 𝑎, 𝑏, 𝑡 represents the start time, the end time, 

and the active time. 

The integer programming model for task dispatching can be formulated as a set 

partition model, and it is described as following: 

 min ∑ 𝑐𝑘𝑥𝑘

ℎ𝑘∈Ω

+ 𝑐𝑢 ∑ 𝑢𝛾

𝛾∈Γ

 
(6.1) 

  𝑠. 𝑡. ∑ 𝑎𝛾𝑘𝑥𝑘

ℎ𝑘∈Ω

+ 𝑢𝛾 = 𝐷𝛾, ∀𝛾 ∈ 𝛤 
(6.2) 

 ∑ 𝑧𝑠𝑘

ℎ𝑘∈𝛺

≤ 𝑠𝑗 , ∀𝑠𝑗 ∈ 𝑆 
(6.3) 

 𝑥𝑘, 𝑢𝛾 ∈ ℕ (6.4) 

 𝑎𝛾𝑘, 𝑧𝑠𝑘 ∈ {0,1} (6.5) 
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The objective function (6.1) is the sum of the operation cost and the cost of missing 

tasks. Each dispatching line is a shift carrying tasks to be fulfilled and is defined as ℎ𝑘 with 

the index 𝑘 , and the set of dispatching lines is defined as Ω. The operation cost of a 

dispatching line is 𝑐𝑘, calculated by the accumulative travel time between tasks, and the 

cost of a missing workforce on a task is a fixed value 𝑐𝑢. The number of each dispatching 

line is 𝑥𝑘  and the number of missing workforces of task 𝛾  is 𝑢𝛾 . The task demand 

requirement is described in Constraint (6.2), where 𝑎𝛾𝑘 indicates whether the dispatching 

line ℎ𝑘 contains task 𝛾, with 𝑎𝛾𝑘 = 1 meaning the task is assigned to this dispatching line 

and 0 meaning not. The limitation on the number of shifts used is described in Constraint 

(6.3). 𝑧𝑠𝑘 indicates the type of shift that a dispatching line uses, with 𝑧𝑠𝑘 = 1 meaning the 

dispatching line ℎ𝑘 uses the shift 𝑠 and 0 meaning not. Because task dispatching uses the 

rostering results as inputs, the type and number of shifts used to dispatch tasks should 

correspond with those obtained from rostering on that day. Constraint (6.4) guarantees the 

integrality of the solution. 

6.2.2 Column Generation for Task Dispatching 

The challenge to solve task dispatching is to efficiently choose a set of routes to cover 

the task demands from numerous combinations while satisfying the time constraints of task 

start time and end time. For a task dispatching problem with enough long time span, it is 

not practical to enumerate all feasible dispatching lines. Thus, column generation can be 

applied in a branch and bound framework and decomposes the problem into two: the master 

problem to select proper routes to cover the task demand, and the pricing problem to 

continuously generate high-quality and feasible routes. 
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6.2.2.1 The Master Problem 

The master problem is a set partitioning problem, a restricted version of the original 

problem with only a subset of dispatching lines. It aims at selecting dispatching lines from 

the existing routes to cover the task demand while minimizing the sum of the operation 

cost and the cost of missing tasks. The problem formulation is the same as in Section 6.2.1, 

except that for RMP, the integrality of 𝑥𝑘  and 𝑢𝛾  is relaxed, and Constraint (6.4) is 

replaced by Constraint (6.6).  

 𝑥𝑘, 𝑢𝛾 ∈ ℝ+ (6.6) 

The dual problem of RMP will then be solved, and its solution will be used in column 

generation to generate new routes. 

6.2.2.2 The Pricing Problem 

The pricing problem uses the dual variable values to generate new variables of high 

quality for the master problem. As it can be formulated as a shortest path problem with 

time windows, the exploration of new variables involves calculating the reduced cost along 

feasible routes and choosing those with minimum negative reduced costs. The objective 

function of the pricing problem is thus as following: 

 𝑚𝑖𝑛ℎ𝑘∈Ω (𝑐𝑘 − ∑ 𝑎𝛾𝑘

∀𝛾∈𝛤

∙ 𝜔𝛾) (6.7) 
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In this SPPTW, each task is represented as a node with start time and end time. Only 

the difference of start time and end time of two tasks is smaller than the travel time between 

them can they be connected. A feasible dispatching line is represented by a sequence of 

tasks that can connect to each other. The reduced cost of a route is the difference of the 

operation cost and the sum of dual variable values (defined as 𝜔𝛾) that assigned tasks 

correspond to, where the operation cost is calculated by the sum of travel time between 

tasks. 

The process of exploration of routes with minimum negative reduced cost is 

implemented by the label correcting algorithm based on dynamic programming. The idea 

is to set labels for tasks and to track the status while extending the labels from the first to 

the last task within the shift. The label of every visited task will be updated based on the 

travel time between tasks and the dual variable value. Unpromising labels will be discarded 

after visiting each task. Finally, dispatching lines with minimum negative reduced costs 

will be chosen to enter the basis in RMP. 

6.3 Disruption Management 

Disruption management is responsible to make quick reactions to sudden changes in 

tasks caused by unexpected factors. Causes for such irregularity can be classified into 

following classes: air carrier delay, extreme weather delay, NAS delay, security delay, and 

aircraft arriving late [30]. Disruption management aims to assign unallocated tasks and 

conflict tasks quickly and it happens during the day of operation on the planning timeline, 

thus requiring high speed on computation. It is a real-time optimization problem and 

concerns with minimizing the missing tasks and the operation cost. The algorithm runs by 
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a fixed time to make new rearrangements. The difficulty of disruption management lies in 

two perspectives: the tracking of both tasks and employees, and the identification of tasks 

that need to be rearranged. Thus, a decision-making system is proposed to quickly clear 

out the information and constructs a mixed integer programming problem that can be 

solved by the integer programming solver. 

6.3.1 Set Partitioning Problem Formulation 

Disruption management needs to track the status of every task and employee to find 

dispatching lines that have conflict tasks and to implement quick rearrangement. The first 

thing to do is to determine the time period of the disruption management operation. In this 

problem, the disruption management operation starts from 𝑡𝑑. 𝑡𝑝 represents the time range 

of the operation, and 𝑡𝑟  is defined as the time interval between each run of disruption 

management. 𝑡𝑑 , 𝑡𝑝 , and 𝑡𝑟  are set by users. Apart from the time period information, 

employee data and task data are also needed. Each employee is specified by the employee 

ID, the existing Gantt, the status variable (indicating whether the employee is on the shift 

or off work), the shift start time, and the shift duration. Each task is instantiated by the 

place of departure and arrival, in position time and end time, task ID, employee ID (which 

indicates to whom the task is assigned), and the status variable. The status of a task is 

classified as follows: waiting to be assigned, assigned, should have been assigned, in 

progress, finished, and cancelled.  

The integer programming model for disruption management is nearly the same as 

that for task dispatching. The set partition model is formulated as below: 
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min ∑ 𝑐𝑘𝑥𝑘

ℎ𝑘
′ ∈Ω′

+ 𝑐𝑢 ∑ 𝑢𝛾

𝛾∈𝛤′

 
(6.8) 

 
𝑠. 𝑡. ∑ 𝑎𝛾𝑘𝑥𝑘

ℎ𝑘
′ ∈Ω′

+ 𝑢𝛾 = 𝐷𝛾 , ∀𝛾 ∈ 𝛤′ 
(6.9) 

 
∑ 𝑧𝑠𝑘

ℎ𝑘
′ ∈𝛺

≤ 𝑠𝑗 , ∀𝑠𝑗 ∈ 𝑆 
(6.10) 

 𝑥𝑘, 𝑢𝛾 ∈ ℕ (6.11) 

 𝑎𝛾𝑘, 𝑧𝑠𝑘 ∈ {0,1} (6.12) 

The difference between this model and the task dispatching model is that the tasks 

only reassign those start within the time period. Thus, the corresponding set of dispatching 

lines is represented by Ω′, and the task set is defined as 𝛤′. Because the dispatching line 

ℎ𝑘
′  only considers a small subset of tasks, feasible routes can be enumerated, which is 

further discussed in the next section. 

6.3.2 Decision-making System for Disruption Management 

By inputting related data, the decision-making system sorts out the tasks that need to 

be reassigned and make a quick arrangement. The process can be decomposed into the 

following steps: data collection, conflict check, conflict disposal, optimization problem 

construction, and application of the integer programming solver. For this problem, these 



 54 

steps are organized as a decision-making system to implement disruption management in 

a short time. 

Data collection aims at identifying the tasks and employees that are active within a 

certain time period. Two kinds of tasks are considered in this problem: tasks that take place 

during the operation ([𝑡𝑑, 𝑡𝑑 + 𝑡𝑝]), and tasks that end within the last 𝑡𝑟 ([𝑡𝑑 − 𝑡𝑟 , 𝑡𝑑]). The 

reason to count in the tasks that take place before the current time period is to consider the 

connectivity between the first task after 𝑡𝑑 and the last task before 𝑡𝑑. On the other hand, 

the selection of employees only considers whether their shifts overlap with the operation 

period. 

Conflict check is to identify tasks that are not reasonable in the employee Gantt. Two 

scenarios are considered here: whether the task is out of the range of the employee’s shift 

range; whether the tasks in the Gantt conflicts with each other. The Gantt here refers to a 

sequence of tasks that are assigned to the employee and start between [𝑡𝑑 − 𝑡𝑟 , 𝑡𝑑 + 𝑡𝑝]. 

Because of the flight delay and some other factors, the task starts later than scheduled and 

may move out of the shift or cannot be connected to the following tasks with a shorter 

interval or none. Thus, every task is checked whether it starts after the employee’s shift 

ends and the ID of such task will be put into the “unprocessed task pool.” On the other 

hand, every adjacent two tasks are checked whether they are connectable. If yes, the IDs 

of the conflict tasks and tasks after them will be put into the “unprocessed task pool.” 

The conflict disposal operation is conducted after the unprocessed task pool is 

obtained. For each task in the pool, the employee ID of the task is erased. Also, the Gantt 

of the corresponding employee needs to eliminate that task and the tasks in the following. 
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Till this step, the process for conflict tasks is done. The tasks that need reassignment are 

these plus the newly generated tasks that take place within the operation period. 

Optimization problem construction aims to convert the analysed data into the 

mathematical problem formulated in Section 6.3.1. The basic idea is to enumerate all 

feasible dispatching lines because the number of tasks in this problem is not large. Firstly, 

the dispatching line matrix 𝐴𝛾𝑘  is represented by the combination of every employee’s 

Gantt. Each dispatching line ℎ𝑘
′  is the employee’s Gantt, a 1 × |𝛤′| binary matrix where 

|𝛤′| is the number of tasks chosen in the data collection process. Every 1 in ℎ𝑘
′  means the 

corresponding task is assigned to this employee’s Gantt. Then every employee checks 

whether the unprocessed tasks can fit into his Gantt one by one. If the task can be 

scheduled, a new Gantt is generated and enters 𝐴𝛾𝑘. As this process is done task by task, 

all the feasible dispatching lines can be enumerated in the end. The cost of a line is the sum 

of travel time between tasks. 

Finally, the constructed optimization problem can be solved using the integer 

programming solver, and the corresponding Gantt of each employee in the new 

arrangement can be obtained. 

6.4 Computational experiments 

6.4.1 Task Dispatching 

This experiment is from a case of shuttle bus dispatching from a real-world airline. 

Shuttle buses are major transportation that transfers passengers of arrival from the apron to 

the terminal or passengers of departure from the terminal to the apron. Thus, shuttle bus 
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tasks usually have a long travel distance, which makes the pricing problem more 

challenging to solve. On the other hand, considering the frequency of the irregularity, the 

dispatching horizon is only several hours, and then the disruption management will be 

performed for every fixed time.  

In this experiment, the dispatching horizon is set as 4 hours. Table 6.1 shows the 

details of tasks within the planning horizon. Seven types of data are given: task ID, status, 

in position time, end time, the apron of arrival, and the apron of departure. Status shows 

how the task is planned, including 1 for “waiting to be assigned”, 2 for “assigned”, 3 for 

“should have been assigned”, 4 for “work in progress”, 5 for “finished”, and 6 for 

“cancelled”. The travel time between each apron is given in Table 6.2. Information on 

active employees that can be dispatched is presented in Table 6.3, including the employee 

ID, the shift start time, and the shift end time. These data are inputs of the dispatching 

algorithm. The dispatching result is shown in Table 6.4, including the task ID, task status, 

and employee ID. If there are not enough employees to perform the task, the task status 

will be set as three and the employee ID be “[]”. 

Table 6.1 Details of tasks to be dispatched 

Task ID Status In Position Time End Time Arrival Departure 

1169624838194331684 1 2019-01-16 05:25:00 2019-01-16 05:45:00 3 4 

1169624838190137854 1 2019-01-16 05:30:00 2019-01-16 05:50:00 3 4 

1169624838190137684 1 2019-01-16 05:40:00 2019-01-16 06:04:00 3 5 

1169624838164971555 1 2019-01-16 05:45:00 2019-01-16 06:05:00 3 4 

1169624838194331933 1 2019-01-16 05:45:00 2019-01-16 06:05:00 3 4 

1169624838164971640 1 2019-01-16 05:50:00 2019-01-16 06:10:00 3 4 

1169624838164971620 1 2019-01-16 06:00:00 2019-01-16 06:20:00 3 4 

1169624838164971621 1 2019-01-16 06:05:00 2019-01-16 06:25:00 3 4 

1169624838190137954 1 2019-01-16 06:05:00 2019-01-16 06:25:00 3 4 

1169624838190137681 1 2019-01-16 06:10:00 2019-01-16 06:30:00 3 4 

1169624838190137969 1 2019-01-16 06:15:00 2019-01-16 06:39:00 3 5 

1169624838164971543 1 2019-01-16 06:25:00 2019-01-16 06:45:00 3 4 

1169624838164971545 1 2019-01-16 06:25:00 2019-01-16 06:41:00 3 3 

1169624838185943261 1 2019-01-16 06:30:00 2019-01-16 06:46:00 3 3 

1169624838164971572 1 2019-01-16 06:35:00 2019-01-16 06:55:00 3 4 
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1169624838164971573 1 2019-01-16 06:40:00 2019-01-16 07:00:00 3 4 

1169624838164971523 1 2019-01-16 06:45:00 2019-01-16 07:09:00 3 5 

1169624838164971524 1 2019-01-16 06:50:00 2019-01-16 07:14:00 3 5 

1169624838164971614 1 2019-01-16 06:50:00 2019-01-16 07:06:00 3 3 

1169624838164971533 1 2019-01-16 07:10:00 2019-01-16 07:34:00 3 5 

1169624838164971575 1 2019-01-16 07:10:00 2019-01-16 07:30:00 3 4 

1169624838185943255 1 2019-01-16 07:10:00 2019-01-16 07:26:00 3 3 

1169624838164971534 1 2019-01-16 07:15:00 2019-01-16 07:39:00 3 5 

1169624838164971584 1 2019-01-16 07:15:00 2019-01-16 07:31:00 3 3 

1169624838164971585 1 2019-01-16 07:20:00 2019-01-16 07:36:00 3 3 

1169624838190137859 1 2019-01-16 07:20:00 2019-01-16 07:36:00 3 3 

1169624838185943247 1 2019-01-16 07:30:00 2019-01-16 07:54:00 3 5 

1169624838164971638 1 2019-01-16 07:35:00 2019-01-16 07:51:00 3 3 

1169624838185943248 1 2019-01-16 07:35:00 2019-01-16 07:59:00 3 5 

1169624838164971566 1 2019-01-16 07:45:00 2019-01-16 08:05:00 3 4 

1169624838185943263 1 2019-01-16 07:45:00 2019-01-16 08:01:00 3 3 

1169624838194332048 1 2019-01-16 07:45:00 2019-01-16 08:09:00 3 5 

1169624838164971567 1 2019-01-16 07:50:00 2019-01-16 08:10:00 3 4 

1169624838164971629 1 2019-01-16 07:55:00 2019-01-16 08:15:00 3 4 

1169624838185943228 1 2019-01-16 07:55:00 2019-01-16 08:19:00 3 5 

1169624838164971630 1 2019-01-16 08:00:00 2019-01-16 08:20:00 3 4 

1169624838185943229 1 2019-01-16 08:00:00 2019-01-16 08:24:00 3 5 

1169624838164971590 1 2019-01-16 08:05:00 2019-01-16 08:29:00 3 5 

1169624838185943230 1 2019-01-16 08:05:00 2019-01-16 08:29:00 3 5 

1169624838164971591 1 2019-01-16 08:10:00 2019-01-16 08:34:00 3 5 

1169624838185943233 1 2019-01-16 08:25:00 2019-01-16 09:01:00 3 N2/M 

1169624838194331935 1 2019-01-16 08:25:00 2019-01-16 08:49:00 3 5 

1169624838190137856 1 2019-01-16 08:25:00 2019-01-16 08:49:00 3 5 

1169624838185943234 1 2019-01-16 08:30:00 2019-01-16 09:06:00 3 N2/M 

1169624838194331936 1 2019-01-16 08:30:00 2019-01-16 08:54:00 3 5 

1169624838164971563 1 2019-01-16 08:35:00 2019-01-16 08:59:00 3 5 

1169624838194332402 1 2019-01-16 08:35:00 2019-01-16 09:02:00 3 3 

1169624838190137687 1 2019-01-16 08:35:00 2019-01-16 09:11:00 3 N2/M 

1169624838164971564 1 2019-01-16 08:40:00 2019-01-16 09:04:00 3 5 

1169624838194332403 1 2019-01-16 08:40:00 2019-01-16 09:04:00 3 3 

1169624838169165941 1 2019-01-16 08:45:00 2019-01-16 09:12:00 3 3 

1169624838185943240 1 2019-01-16 08:45:00 2019-01-16 09:05:00 3 4 

1169624838194332404 1 2019-01-16 08:45:00 2019-01-16 09:04:00 3 3 

1169624838190137929 1 2019-01-16 08:45:00 2019-01-16 09:01:00 3 3 

1169624838169165942 1 2019-01-16 08:50:00 2019-01-16 09:14:00 3 3 

1169624838185943266 1 2019-01-16 08:50:00 2019-01-16 09:10:00 3 4 

1169624838194332405 1 2019-01-16 08:50:00 2019-01-16 09:04:00 3 3 

1169624838190137966 1 2019-01-16 08:50:00 2019-01-16 09:26:00 3 N2/M 

1169624838169165943 1 2019-01-16 08:55:00 2019-01-16 09:14:00 3 3 

1169624838190137967 1 2019-01-16 08:55:00 2019-01-16 09:31:00 3 N2/M 

1169624838164971569 1 2019-01-16 09:00:00 2019-01-16 09:24:00 3 5 

1169624838169165944 1 2019-01-16 09:00:00 2019-01-16 09:14:00 3 3 

1169624838164971570 1 2019-01-16 09:05:00 2019-01-16 09:29:00 3 5 

1169624838164971536 1 2019-01-16 09:10:00 2019-01-16 09:34:00 3 5 

Table 6.2 Travel time between aprons 

          Apron 

       Time 

Apron  (min) 
‘3’ ‘4’ ‘5’ ‘93’ ‘95’ ‘N1’ ‘N2/M’ 

‘3’ 5 7 9 11 13 19 15 

‘4’ 7 5 7 9 11 17 13 
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‘5’ 9 7 5 7 9 15 11 

‘93’ 11 9 7 5 7 13 9 

‘95’ 13 11 9 7 5 11 7 

‘N1' 19 17 15 13 11 5 9 

'N2/M' 15 13 11 9 7 9 5 

Table 6.3 Employee information 

Employee ID 
Start 

(min) 

End 

(min) 

Employee 

ID 

Start 

(min) 

End 

(min) 

Employee 

ID 

Start 

(min) 

End 

(min) 

1000422 300 780 1000451 480 990 1000483 480 990 

1000423 420 930 1000452 480 990 1000496 480 990 

1000425 480 990 1000455 480 990 1000502 300 780 

1000428 360 840 1000456 480 990 1000504 480 990 

1000433 480 990 1000457 480 990 1000505 480 990 

1000440 480 990 1000458 240 750 1000506 360 840 

1000450 480 990 1000482 480 990    

Table 6.4 Dispatching details 

Task ID Status Employee ID Task ID Status Employee ID 

1169624838194331684 2 1000422 1169624838164971567 2 1000428 

1169624838190137854 2 1000458 1169624838164971629 2 1000502 

1169624838190137684 3 [] 1169624838185943228 3 [] 

1169624838164971555 3 [] 1169624838164971630 2 1000423 

1169624838194331933 2 1000502 1169624838185943229 2 1000458 

1169624838164971640 3 [] 1169624838164971590 2 1000425 

1169624838164971620 2 1000422 1169624838185943230 2 1000504 

1169624838164971621 2 1000458 1169624838164971591 2 1000422 

1169624838190137954 2 1000428 1169624838185943233 2 1000506 

1169624838190137681 2 1000506 1169624838194331935 2 1000505 

1169624838190137969 3 [] 1169624838190137856 2 1000455 

1169624838164971543 3 [] 1169624838185943234 2 1000428 

1169624838164971545 2 1000502 1169624838194331936 2 1000456 

1169624838185943261 2 1000422 1169624838164971563 2 1000457 

1169624838164971572 2 1000428 1169624838194332402 2 1000450 

1169624838164971573 2 1000458 1169624838190137687 2 1000458 

1169624838164971523 2 1000506 1169624838164971564 2 1000451 

1169624838164971524 3 [] 1169624838194332403 2 1000452 

1169624838164971614 2 1000502 1169624838169165941 2 1000423 

1169624838164971533 3 [] 1169624838185943240 2 1000496 

1169624838164971575 2 1000422 1169624838194332404 2 1000483 

1169624838185943255 2 1000458 1169624838190137929 2 1000440 

1169624838164971534 2 1000502 1169624838169165942 2 1000482 

1169624838164971584 2 1000428 1169624838185943266 2 1000433 

1169624838164971585 2 1000506 1169624838194332405 2 1000434 

1169624838190137859 2 1000423 1169624838190137966 2 1000422 
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1169624838185943247 3 [] 1169624838169165943 2 1000435 

1169624838164971638 2 1000458 1169624838190137967 2 1000502 

1169624838185943248 3 [] 1169624838164971569 3 [] 

1169624838164971566 2 1000506 1169624838169165944 3 [] 

1169624838185943263 2 1000422 1169624838164971570 3 [] 

1169624838194332048 3 [] 1169624838164971536 3 [] 

6.4.2 Disruption Management 

The experiment for disruption management also uses a case of shuttle bus 

dispatching from a real-world airline. The disruption management checks tasks from 06:00 

to 07:00, and the frequency 𝑡𝑟 is set as 20 minutes. Table 6.5 shows the active employees 

during the dispatching horizon. The latest dispatching details are presented in Table 6.6, 

where the tasks with status 1 and 2 should be checked and have a new arrangement. The 

result is shown in Table 6.7. 

Table 6.5 Scheduling table of active employees during the dispatching horizon 

Employee ID 
Start 

(min) 

End 

(min) 
Employee ID 

Start 

(min) 

End 

(min) 

1000427 270 840 1000465 330 900 

1000435 270 840 1000467 330 900 

1000477 270 840 1000470 330 900 

1000424 300 870 1000487 330 900 

1000434 330 900 1000490 330 900 

1000441 330 900 1000496 330 960 

1000442 330 900 1000497 330 900 

1000443 330 900 1000432 360 900 

1000446 330 900 1000448 360 930 

1000454 330 900 1000481 360 930 

1000459 330 990 1000464 390 960 

1000461 330 960 1000499 420 990 

1000463 330 900 1000493 465 1065 

Table 6.6 The latest dispatching details 

Task ID Status In Position Time End Time 
Employee 

ID 
Arrival Departure 

1173516560808808785 5 2019-01-17 05:30:00 2019-01-17 05:55:00 1000434 4 3 
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1173516560808808543 4 2019-01-17 05:40:00 2019-01-17 06:05:00 1000435 4 3 

1173516560808808565 2 2019-01-17 05:40:00 2019-01-17 06:01:00 1000477 3 3 

1173516560808808715 2 2019-01-17 06:00:00 2019-01-17 06:25:00 1000463 4 3 

1173516560808808768 2 2019-01-17 06:05:00 2019-01-17 06:26:00 1000463 3 3 

1173516560800419990 2 2019-01-17 06:15:00 2019-01-17 06:40:00 1000481 4 3 

1173516560808808578 2 2019-01-17 06:15:00 2019-01-17 06:40:00 1000448 4 3 

1173516560808808587 2 2019-01-17 06:15:00 2019-01-17 06:40:00 1000464 4 3 

1173516560808808520 2 2019-01-17 06:20:00 2019-01-17 06:41:00 1000463 3 3 

1173516560808808451 2 2019-01-17 06:25:00 2019-01-17 07:06:00 1000463 N2/M 3 

1173516560800419991 2 2019-01-17 06:25:00 2019-01-17 06:50:00 1000477 4 3 

1173516560808808788 2 2019-01-17 06:35:00 2019-01-17 06:56:00 1000424 3 3 

1173516560808808549 1 2019-01-17 06:40:00 2019-01-17 07:05:00 [] 4 3 

1173516560813002752 1 2019-01-17 06:45:00 2019-01-17 07:06:00 [] 3 3 

1173516560808808550 1 2019-01-17 06:50:00 2019-01-17 07:15:00 [] 4 3 

1173516560808808702 1 2019-01-17 06:50:00 2019-01-17 07:19:00 [] 5 3 

1173516560808808589 1 2019-01-17 06:55:00 2019-01-17 07:20:00 [] 4 3 

1173516560808808713 1 2019-01-17 06:55:00 2019-01-17 07:20:00 [] 4 3 

1173516560808808571 1 2019-01-17 07:00:00 2019-01-17 07:25:00 [] 4 3 

1173516560808808703 1 2019-01-17 07:00:00 2019-01-17 07:29:00 [] 5 3 

Table 6.7 New dispatching details 

Task ID Status Employee ID Task ID Status Employee ID 
1173516560808808785 5 1000434 1173516560800419991 2 1000477 

1173516560808808543 4 1000435 1173516560808808788 2 1000424 

1173516560808808565 2 1000477 1173516560808808549 2 1000459 

1173516560808808715 2 1000496 1173516560813002752 2 1000454 

1173516560808808768 2 1000427 1173516560808808550 2 1000446 

1173516560800419990 2 1000481 1173516560808808702 2 1000427 

1173516560808808578 2 1000448 1173516560808808589 2 1000443 

1173516560808808587 2 1000464 1173516560808808713 2 1000442 

1173516560808808520 2 1000497 1173516560808808571 2 1000441 

1173516560808808451 2 1000435 1173516560808808703 2 1000477 

6.5 Results and Analysis 

The experiment analysis comes down to task dispatching and disruption 

management. For the case of task dispatching, there are totally 66 tasks and 13 employees 

to be dispatched in the first 4 hours. The computation takes 179.20 seconds, which is not 

fast, but task dispatching usually happens before the day of operation and does not have a 

high requirement for computational efficiency. Thus, it is still acceptable for industry 

applications. The result shows 15 tasks cannot be scheduled, which is caused by the lack 

of active employees. From the scheduling result, the manager can assign employees to 

perform those tasks manually. 
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On the other hand, it takes 0.45 seconds for the disruption management algorithm to 

check 20 tasks and 26 employees. Table 6.6 suggests that eight tasks are new tasks, while 

the fourth, fifth, ninth, and tenth tasks cause conflict. After the rearrangement, these tasks 

are assigned to 16 employees, and no more conflict exists. It also suggests that there are 

more employees than needed, and the manager could arrange fewer employees during this 

time. Compared to task scheduling, disruption management implements real-time 

responses to prevent workforce deficiency when unexpected events happen. 

6.6 Chapter Summary 

Task scheduling is the last step of workforce scheduling and it aims to provide task 

schedules for on-shift employees. This includes task dispatching that assigns tasks before 

the day of operation and disruption management that makes new arrangements when 

irregularities happen. Task dispatching needs to dispatch on-work employees to perform 

existing tasks while minimizing the operation cost and the cost of missing tasks and it is 

essentially a combinatorial optimization problem. This chapter formulates the problem as 

a set partition model and presents a column-generation-based method to avoid the 

enumeration of all feasible dispatching. On the other hand, disruption management needs 

to check conflicts existing in the current task schedules and make new rearrangements in 

real-time. To solve this problem, this chapter proposes a decision-making system to convert 

the latest schedules to a MIP that can be solved with the integer programming solver. It 

normally returns the result in seconds and shows the optimal dispatching under the current 

scenario. Finally, experiments are conducted using a shuttle bus dispatching case from a 

real-world airline to validate the feasibility of the proposed methods of task scheduling.  
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CHAPTER 7. CONCLUSIONS, LIMITATIONS, AND FUTURE 

WORK 

7.1 Contributions 

This research aims at using optimization techniques to do workforce scheduling for 

airport ground staff to replace manual planning or serves as a reference for these 

technicians. Workforce scheduling is divided into three optimization problems: shift 

planning, rostering, and task scheduling. The contributions of this research are summarized 

as follows. 

A comprehensive mathematical model for airport workforce scheduling is 

formulated and corresponding solutions are proposed to solve it by optimization 

techniques. This research studies the major problems in different stages of scheduling from 

the algorithm perspective. This means when generated tasks within the planning horizon 

are input into the proposed model, it finally outputs a rostering and task schedules for every 

employee before or during the day of operation, which is exactly what the manual 

scheduling aims at. 

A 2D GA is proposed with corresponding genetic operators to solve the large-scale 

shift planning problem with daily-wise shift patterns. Compared to 1D GAs, it greatly 

improves the computing efficiency by effectively compress the unnecessary information. 

The experiment is done to validate the proposed 2D GA. 

To solve the rostering problem, a column-generation-based method is presented. 

Compared to the shift planning problem, it has numerous feasible basic variables, and it is 
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not easy to find a feasible variable. Thus, enumerating all feasible variables is not practical 

and column generation is introduced to the problem. Column generation decomposes the 

problem into a master problem and a pricing problem. The former uses part of variables 

within the total set and obtains a temporary solution. Then the dual problem of the restricted 

master problem is solved, and variable values are used to generate high-quality feasible 

variables in the pricing problem by computing the reduced cost, while the pricing problem 

is solved by the label correcting algorithm based on dynamic programming. The 

experiment is conducted to validate the proposed method. 

Task scheduling contains two problems: task dispatching and disruption 

management. A column-generation-based method is presented to solve the task dispatching 

problem because it has similar characteristics with the rostering problem. On the other 

hand, a decision-making system is proposed to convert the latest dispatching details into a 

MIP that can be solved using the integer programming solver for disruption management. 

7.2 Research Limitations 

Admittedly, this research has some limitations. The major limitations come down to 

three. Firstly, there is no comparison experiment between the analytical approach and the 

proposed 2D GA for shift planning. Without such comparison, only the conclusion that 2D 

GAs have better performance than 1D GAs can be made, but whether analytical approaches 

perform better than 2D GAs is not known. Secondly, the computational performance of 

column generation is not satisfying in both rostering and task scheduling. When there are 

more than 80 shift types per day, the rostering can take one or two hours to obtain the 

solution. On the other hand, when the dispatching horizon in task dispatching is long, the 
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column-generation-based method also has a very slow computing speed. Finally, a rigorous 

branch strategy should be applied to test the algorithm performance for rostering problems 

instead of using the greedy branch strategy, which results in a more accurate solution but 

takes longer to finish. 

7.3 Future Work 

If more time is given, improvement can be made for this research in the following 

aspects. For shift planning, a comparison between the analytical solution and 2D-GA-based 

solution should be made to compare their performance difference. For rostering problems, 

accelerating algorithms should be studied to improve the performance of the current 

algorithm, like using the bidirectional search method. Also, the rigorous branch scheme 

should be applied to compare the performance from the solution accuracy and the 

computing speed perspectives by using the greedy scheme. For the task dispatching 

problem, the column-generation-based algorithm should be accelerated, so that it could 

manage a longer dispatching horizon using shorter computing time. 
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