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कमȁȘयेवा˃धकारȭते मा फलेषु कदाचन ।
मा कमȁफलहेतुभूȁमाȁ ते सɣोऽȭșवकमȁʺण ।।

योगȭथः कुʕ कमाȁʺण सɣं șयȊșवा धनɫय ।
ʹसțȜयʹसțȜयोः समो भूșवा समșवं योग उȏयते ।।

karmanyevadhikaraste ma phalesu kadacana
ma karmaphalahetur bhur ma te sango ’stv akarmani

yogasthah kuru karmani sangam tyaktva dhananjaya
siddhyasiddhyoh samo bhutva samatvam yoga ucyate

Your right is to action alone, never to its fruits at any
time. The fruits of your action should not be your

motive, nor should your attachment be to inaction.

Perform your activities equipoised, abandoning all
attachment to success or failure. Such equanimity is

called Yoga.

— Bhagavad Gita
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SUMMARY

In naturally occurring swarms—living as well as non-living—local proximity encoun-

ters among individuals or particles in the collective facilitate a broad range of emergent

phenomena. In the context of robot swarms operating with limited sensing and communi-

cation capabilities, this thesis demonstrates how the systematic analysis of inter-robot en-

counters can enable the swarm to perform useful functions without the presence of a central

coordinator. We combine ideas from stochastic geometry, statistical mechanics, and biol-

ogy to develop mathematical models which characterize the nature and frequency of inter-

robot encounters occurring in a robot swarm. These models allow the swarm to perform

functions like localization, task allocation, and density regulation, while only requiring in-

dividual robots to measure the presence of other robots in the immediate vicinity—either

via contact sensors or binary proximity detectors. Moreover, the resulting encounter-based

algorithms require no communication among the robots or the presence of a central coor-

dinator, and are robust to individual robot failures occurring in the swarm.

In addition to algorithms which explicitly make use of inter-robot encounter measure-

ments, we also investigate a scenario where the physical forces experienced by robots dur-

ing collision-based encounters implicitly lead to the predictable formation of non-uniform

density regions in the environment. To this end, we take advantage of a lesser-known

formal connection between certain types of active-matter systems and equilibrium thermo-

dynamics to clarify the mechanisms underlying this emergent phenomena.

Throughout the thesis, experiments conducted on real robot swarms vindicate the idea

that inter-robot encounters can be advantageously leveraged by individuals in the swarm.

In addition to the extensive use of the Robotarium, we deploy some of the developed al-

gorithms on a swarm of brushbots, which are custom built vibration-driven robots that are

robust to collisions even at relatively high speeds.

xxii



CHAPTER 1

INTRODUCTION

Fueled by advances in embedded systems and communications technology, the last decade

has seen increased research focus on the deployment of robot swarms for achieving dy-

namic and complex objectives due to their redundancy, ability to perform different tasks

concurrently, and fault tolerance capabilities (e.g., see [1, 2] and references within). How-

ever, for large robot swarms, the issue of coordination among the robots becomes a complex

one, often requiring extensive communication between robots and/or a central coordinator

which has access to global information regarding the swarm [3]. This has motivated the de-

velopment of decentralized coordinated control algorithms where local interactions among

the robots—typically requiring onboard sensing—lead to desirable emergent properties for

achieving various objectives e.g., leaderless allocation of tasks [4], collective motion of in-

teracting immobile robots [5], geometric formations [6], and environmental monitoring [7].

Roboticists have often looked at nature for inspiration when designing group-level be-

haviors for robot swarms [8]. This is not without reason—animal swarms demonstrate

remarkable collective behaviors that emerge via local interactions among the individuals as

well as between individuals and the environment, e.g., [9, 10]. In particular, insect-colonies

perform sophisticated functions such as traffic regulation [11], resource collection [12], and

nest construction [13] in a leaderless fashion while being resilient to environmental distur-

bances. Such behaviors are not just limited to animal swarms—inanimate collectives like

colloidal suspensions and artificial nano-swimmers exhibit a wide-range of emergent phe-

nomena [14, 15]. In particular, the study of far-from-equilibrium physical systems has

generated a great deal of excitement [16] given its ability to systematically analyze systems

as diverse as bacterial swarms, fish schools, and highway traffic. In these active matter

systems, an interplay between self-propulsion, local inter-agent interactions, and environ-
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mental factors leads to a wide variety of emergent behaviors [17, 18].

These observations provide vital insights into the development of scalable algorithms

for coordinating large robot swarms, especially in situations where the deployment scenario

precludes the presence of a central coordinator and imposes restrictions on the exterocep-

tive sensing as well as communication capabilities of individual robots. For instance, robots

might have to operate in harsh and unpredictable GPS-denied environments where sens-

ing ranges are extremely limited [19]. Alternatively, in micro-robotics applications [20],

size limitations can pose restrictions on the exteroceptive sensing capabilities of individ-

ual robots. This motivates the following question: how can robot swarms equipped with

very limited sensing and communication capabilities perform useful functions without the

presence of a central coordinator?

This thesis provides an answer to this question by demonstrating how robots in a swarm

can leverage inter-robot encounters to perform useful tasks. We focus on the proximity en-

counters which occur among robots as a natural byproduct of the motion of robots in a

common physical space [21], e.g., during collision avoidance maneuvers or direct physical

contact. We demonstrate that such encounters—typically measured by the robots either

via onboard contact sensors or binary proximity detectors—can allow the robots to gather

information about their surroundings and perform useful tasks like localization [22, 23],

task allocation [24], and density regulation [25]. These motivating applications were cho-

sen to highlight how the resulting encounter-based algorithms are decentralized, require

extremely limited robot capabilities, and are robust to individual robot failures.

Indeed, plenty of direct evidence suggests that encounters play a crucial role in the

functioning of animals swarms, particularly insect colonies [26]. Solenopsis invicta ants

frequently engage in head-to-head contact to regulate traffic flow and ensure efficient trans-

port of resources in tunnels and narrow trails [11, 27]. Temnothorax rugatulus ants have

been shown to switch between different emigration strategies based on the rate of encoun-

tering other ants within the new nest [28]. Bees have been shown to use aggregation behav-
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iors, facilitated by collisions, to find the highest temperature spot in a varying temperature

field [29]. This bee colony phenomenon inspired the development of a distributed multi-

robot algorithm where the robots collectively aggregate near a light source using inter-robot

collisions to trigger measurements from on-board light sensors [30]. Work has also been

done on analyzing persistent collisional interactions between a robot and obstacles in the

environment [17], planning collisions with the environment for generating optimal trajec-

tories [31], and allowing a robot to localize itself in an environment using a minimal set of

sensors, including a contact sensor [32].

As a first step, we take these types of specific observations about collisions and inves-

tigate whether or not the collisions can be used as sufficiently rich sources of information

to enable the robots to localize themselves in a particular environment. To this end, Chap-

ter 3 envisions a collection of robots moving around somewhat randomly in a domain with

known characteristics, equipped with no other sensors than binary, tactile collision sen-

sors. The domain is assumed to be partitioned into a set of connected cells and the task is

for the individual robots to establish what cells they are currently occupying by counting

collisions. We use the theory of spatial point processes [33] to model the distribution of

robots in the environment and analytically compute the probability of a robot experiencing

a collision in a given cell. A probabilistic localization technique then allows each robot to

compute a probability distribution over the different cells that tells the robot how likely it

is that it is currently occupying a given cell. Experimental results conducted on real robots

validate the idea that inter-robot collisions can indeed facilitate localization.

The science of understanding and modeling collisions among individuals in a collective

is an old one. The kinetic theory of gases—which attempts to derive the macroscopic prop-

erties of gases by considering their molecular composition and motion—develops models

for the frequency of inter-molecular interactions between randomly moving molecules [34].

In contrast to the discrete-time treatment of collisions developed in Chapter 3, adopting

these models allows us to develop a continuous-time analytical characterization of the
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frequency of inter-robot encounters in Chapter 4. Furthermore, we demonstrate that not

just physical inter-robot collisions, but also proximity encounters among the robots—e.g.,

when two robots come close enough to detect each other’s presence but do not necessarily

collide—can act as sources of information for robots.

In many swarm robotics applications, e.g., in the context of foraging [35] or collection

tasks [36, 37], an increase in the frequency of inter-robot encounters typically implies a

decrease in the efficiency of the swarm [38]. This is because, with increasing robot density,

robots tend to spend more time and effort avoiding collisions with each other, thereby hurt-

ing the overall productivity of the swarm. In Section 4.3, we demonstrate that the developed

continuous-time encounter model enables an analytical characterization of this interference

phenomena. As a motivating application, we consider a swarm of robots performing a dis-

tributed collection task and analytically derive the fraction of time that each robot spends

performing the primary task as opposed to avoiding collisions with other robots. This leads

to the computation of an optimal robot density which achieves a trade-off between the de-

ployed swarm size and the performance of the swarm at the collection task. We develop

a decentralized algorithm which enables the robot swarm to achieve this optimal density

using only binary encounter measurements.

While the encounter model developed in Chapter 4 provides a continuous-time charac-

terization of encounters, it implicitly assumes that each robot has a zero footprint area—an

assumption that contributes to the inaccuracy of the model at higher robot densities. To this

end, Chapter 5 uses ideas from the Enskog theory of high density gases [39, 40] as well

as stochastic geometry to explicitly account for the finite footprint area of the robots. This

is manifested as a correction factor introduced into the previously developed encounter

model, and is shown to yield a more accurate prediction of the measured encounter rates

experienced by robots.

We develop this corrected encounter model in the context of a motivating applica-

tion which highlights how leveraging encounter-based information can facilitate leaderless
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swarm behaviors which are robust to individual robot failures. To this end, we are partially

inspired by red harvester ants, Pogonomyrmex barbatus which have been shown to take

up midden work (sorting the refuse pile within the colony nest) when encountering other

ants performing midden work [41]—an instance where division of labor within the colony

is facilitated via encounters. Motivated by such behaviors, Section 5.2 develops a decen-

tralized task allocation mechanism to allocate a set of pre-defined tasks among a swarm

of robots by leveraging the spatial interactions occurring among the robots as they move

around the domain. We propose a strategy where individual robots switch between differ-

ent tasks when they encounter other robots in the region. By appropriately designing an

encounter-based probabilistic scheme for each robot to transition between tasks, we allow

the swarm to achieve the desired task allocation. Furthermore, the inter-robot encounters

enable the robots to measure the current allocation of the swarm, enabling a closed-loop

regulation of task transitions in a decentralized and leaderless fashion.

Designing collective behaviors for minimally equipped robot swarms can become es-

pecially challenging when considering tasks which require them to spread across an en-

vironment, e.g., for distributed sensing or environmental surveillance applications [42].

Under these circumstances, the robots might require spatial proximity to facilitate infor-

mation exchange, while simultaneously performing task related actions [43]. In Chapter

6, we highlight a mechanism to achieve coexisting regions of low and high robot density

in swarms with severe constraints on sensing and communication. However, in contrast to

the explicit use of encounter measurements in Chapters 3, 4 and 5, we demonstrate how

the physical forces experienced by robots during collision-based encounters can implicitly

lead to formation of these regions of non-uniform density [44].

Concepts from statistical mechanics provide a theoretical justification for the formation

of these regions of low and high density. We demonstrate that, under certain conditions, a

system of self-propelled colliding robots can be mapped to a system of particles at equi-

librium, thus allowing us to inherit the rich theory of equilibrium thermodynamics. This
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enables us to analytically determine the conditions on the motion parameters of the robots

required to display such phase separating behaviors. We validate our ideas on a team of

vibration-driven robots, called brushbots [45], which sit atop bristles and achieve directed

motion by vibrating them.

Throughout this thesis, we primarily rely on two different robotic platforms to validate

the developed encounter-driven algorithms. Chapters 3, 4 and 5 use the Robotarium, a

remotely-accessible swarm robotics testbed located at the Georgia Institute of Technology

[46], whereas Chapter 6 uses the brushbots: a swarm of vibration-driven robots, ideal for

testing the emergence of collision-based behaviors. In Chapter 7, we highlight the design

details of both these swarm robotics platforms, while also highlighting the steps taken to

ensure their reliable operations. Chapter 8 concludes this thesis by highlighting the primary

contributions and outlining future work.
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CHAPTER 2

BACKGROUND

We begin this chapter by highlighting some of the existing work in the robotics literature

that has focused on proximity-based interactions among robots in a swarm or between

robots and the environment. The focus then shifts to naturally occurring collectives—

extensively studied in both the biology and physics literature—where encounters have been

shown to play a fundamental role in the emergence of organized behaviors.

2.1 Encounters in Robotics

Since robots are embedded in a physical space where they interact with each other and the

environment, a vast literature has emerged on the study of their spatial interactions—both

in the single-robot and multi-robot setting. In addition to providing a survey of the relevant

literature, the following sections aim to provide a broad classification of the major research

threads in this area.

2.1.1 Spatial Interference

In the field of swarm robotics, spatial interference—characterized as the competition for

physical space among robots—has been an active area of research (e.g., see [47, 48] and

references within). A significant portion of antecedent research has considered spatial in-

terference as an undesirable phenomenon—it can lead to increased design complexity in

coordination algorithms, waste of resources as robots spend time avoiding each other, and

even physical damage due to inter-robot collisions. One approach to curtailing spatial in-

terference is to choose the right number of robots to perform a specific task [49, 50]. To

this end, [38] presents a quantitative analysis of the trade-off between robot team size and

efficiency in the context of collective search tasks. Another approach is to limit deadlocks
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by allowing the robots to decide who gets priority by performing “aggression maneuvers”,

e.g., [51, 52].

Different strategies for ameliorating the negative effects of spatial interference have

been studied in the context of decentralized multi-robot foraging tasks, where the robots

find and collect target objects before bringing them back to a pre-designated area, e.g., [53,

54, 55]. In order to prevent robots from getting in each others way, some approaches [56,

57] opt for a bucket-brigading technique where individual robots are restricted to remain

in a finite search area, and transport objects to and from their neighbors’ search area.

In [58], the authors present an adaptive bucket-brigading technique where robots modify

their search radii based on the level of interference they experience.

Inspired by interference regulation mechanisms observed in insect colonies, many multi-

robot foraging and task allocation techniques allow an unequal workload distribution to

emerge among the robots with the aim of regulating robot densities, e.g., [59, 60]. In [11],

the authors conduct robophysical experiments to demonstrate that behaviors such as idle-

ness and individual retreating adopted by Solenopsis invicta ants can prevent the formation

of flow-stopping clogs in narrow and confined environments. In the prey-retrieval task stud-

ied in [59], the authors demonstrate via robotic experiments that allowing robots to modify

their tendency to participate in the primary task leads to reduced interference. In particu-

lar, approaches developed in [61] and [62] allow individual robots to count the number of

collisions or measure their own performance, respectively, in order to decide whether to

continue foraging or rest. Similar studies predefine participatory tendencies in robots [63],

or allow them to adjust it online [35], demonstrating an improvement in efficiency by run-

ning experiments.

The effects of interference on the efficiency of a swarm have been studied experimen-

tally e.g., [36, 53, 64], and by developing analytical models [65, 66, 67]. There have also

been studies on how interference among robots can be used as a tool to guide the design of

multi-robot coordination controllers, e.g., [21]. The work presented in this thesis analyti-
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cally characterizes the spatial interference among robots in a swarm as a function of their

motion parameters and density. For robots performing a collection task, Chapter 4 derives

a continuous-time Markov chain based analytical characterization of the fraction of time

spent by robots avoiding collisions as opposed to engaging in productive activities. This

leads to a decentralized mechanism via which individual robots can take decisions so as

to achieve a desired trade-off between team size and productivity. The development of a

Markov chain based framework is borne out of necessity: in order to allow robots to make

decisions at an individual level, we require more than a mean-field characterization of the

effects of interference.

2.1.2 Stochastic Swarm Models

A major challenge in the modeling and control of large-scale robot swarms is to develop

techniques which scale well with the size of the swarm. In situations where the robots

are homogeneously distributed, robot-robot as well as robot-environment interactions can

be modeled as being analogous to chemical reactions between molecules, thus allowing

the use of chemical reaction network (CRN) models [68]. By characterizing the local

interactions experienced by robots using such models, many approaches then develop a

macroscopic view of the swarm behavior to accomplish functions such as aggregation [69],

redistribution of agents among different sites [70], and collaborative manipulation [71]. For

instance, [72] enables the decentralized assembly of parts using a swarm of homogeneously

distributed robots by modeling their interactions with the parts as CRNs. In [73, 74], the

authors develop stochastic descriptions of encounter-based switching among predefined

behaviors in individual robots—with applications in boundary coverage and the collective

transport of objects using robot swarms.

Such techniques, combined with inspirations from fluid dynamics and biological mod-

els, have paved the way for stochastic descriptions of swarm movement, where the swarm

is treated as a continuum, e.g., [75, 76]. Beginning with stochastic models to describe
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the motion of individual robots, such techniques use the Kolmogorov forward equation to

describe the evolution of the probability density of the entire swarm. In particular, this

framework provides a natural way to incorporate state feedback-based control techniques

to manipulate the behavior of the swarm e.g., [77] and has been applied to various swarm

robotics applications such as coverage [78] and task allocation [79].

2.1.3 Spatially Organized Swarm Behaviors

A significant part of the relevant literature has focused on the synthesis of organized behav-

iors in minimally-equipped robot swarms, e.g., for creating robot aggregates [80], segre-

gation of robots into groups that share a common property [81], clustering of objects [82],

or self-assembly [83]. The problem of aggregation becomes especially relevant when the

robots have limited sensing capabilities and basic computational resources, since physical

proximity is then essential to enable more sophisticated swarm behaviors [84]. In [85],

the authors investigate the ability of robots with access to minimal but unrestricted range

information to aggregate.

In [86], robots segregate into different groups based on the concept of different en-

counter radii. Recent work has demonstrated a segregation mechanism which only requires

each robot to detect the binary presence of a robot close to it as well as whether the detected

robot is of the same type [87]. By allowing the robots to move differently based on such a

classification, segregation of the robot team is achieved.

The development of algorithms requiring minimal sensory capabilities of the robots

helps us to understand what fundamental behaviors are possible using basic sensing and

computational capabilities on the robots [88]. For instance, collections of individually con-

figurable immotile modules interacting with each other mechanically in a confined space

can lead to collective motion as demonstrated in [5, 89]. Furthermore, such algorithms

enable the deployment of robots in harsh environments—where sensing capabilities are

severely restricted, and also help enable novel applications in micro-scale robot swarms.
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2.1.4 Collisional Interactions

The robotics literature is scattered with examples where collision-based encounters among

robots and the environment are leveraged to achieve specific goals. This is especially true

in the context of small and slow robots, where physical collisions can be tolerated. In

recent work, the authors in [17] experimentally and numerically study the collisional inter-

actions between a sensorless snake-robot and an array of immovable posts, with the aim

of designing control principles for robots navigating cluttered and complex environments.

In [90], the authors demonstrate how a collision-tolerant pico-quadrotor can fly through

cluttered obstacle-laden environments while sustaining multiple collisions—some of which

are leveraged to quickly change direction. Along a similar vein, [31] incorporates planned

collisions with the environment into the generation of optimal robot trajectories, and [91]

investigates the use of contact-based sensing to localize a single robot in a region with ob-

stacles. In [32], the authors investigate the ability of a robot equipped with a minimal set of

sensors, including a contact sensor, to localize itself within a region. However, the contact

sensor is used as a boundary detector, and does not provide sensory observations as such.

The work in [30] develops a distributed multi-robot algorithm where the robots use

inter-robot collisions to trigger measurements from on-board light sensors, thus enabling

collective decision making. This algorithm was directly inspired by the ability of bees

to utilize collisions for creating large clusters around an optimal temperature spot, a feat

which cannot be achieved by isolated bees on their own [29].

2.2 Encounters in Nature

As discussed in Chapter 1, there are plenty of examples in nature where encounters play a

crucial role in the emergence of collective behaviors. Below, we highlight some of the rep-

resentative literature on this topic, which have served as a motivation for the ideas pursued

in this thesis.
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2.2.1 Living Collectives

As elucidated in Chapter 1, there is plenty of evidence to suggest that local interactions

among individuals in animal swarms contribute to the collective cognition of the swarm [9].

For instance, collisional interactions are often fruitfully leveraged by animals to locomote

over complex terrain, as in the case of the snakes navigating through obstacle-laden envi-

ronments [92], or cockroaches passing through irregular terrain [93].

In particular, ant colonies have demonstrated remarkably complex behaviors made pos-

sible via encounters—defined as physical proximity or antennation—occurring among the

ants [94]. For example, colonies of the ant species Leptothorax tuberointerruptus have

been shown to regulate nest size through local interactions between the ants surrounding

the brood, new building materials, and the current walls of the nest [13]. As mentioned in

Chapter 1, red harvester ants take up midden work (sorting the refuse pile within the colony

nest) when they encounter other ants performing midden work.

Encounters play a crucial role in the successful emigration of Temnothorax rugatulus

ants from an unsuitable nest to a suitable one. As the population size in a candidate nest

surpasses a threshold, the ants switch from a slow recruitment-based emigration strategy

to a fast transport-based one. It has been shown that the detection of this quorum occurs

via the rate of encounters experienced by an ant when she enters the candidate nest [28].

In other ant colonies, encounter rates serve as critical cues which allow the regulation of

densities in narrow tunnels and ensure the smooth transportation of materials [11, 27].

2.2.2 Non-living Collectives

There has been a significant amount of interest in the physics community to understand the

mechanisms underlying the origins of collective motion in nature. This is partially due to

the ubiquity of such behaviors across a broad range of scales, from molecular motion to

large animal swarms [95]. While thermodynamics provides well-established literature on

deriving macroscopic properties emerging from microscopic phenomena, a vast amount of
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the literature only applies to systems at equilibrium—thus limiting its direct applicability

in the study of robot swarms.

On the other hand, the physics of active matter deals with the study of self-driven par-

ticles that convert stored or ambient energy into organized movement, and the associated

models have been used to describe systems such as fish schools, colloidal suspensions, and

bacterial colonies (see surveys [15, 18] for a discussion on collective phenomena in active

matter systems). Such systems are far-from-equilibrium due to the interplay between self-

propulsion, persistent collisional interactions, and random fluctuations. In a now canonical

example, the authors in [96] demonstrated the onset of collective motion when individ-

ual particles in the ensemble tended to align with the average direction of motion of the

particles in their local neighborhood.

In Chapter 6, we specifically focus on the study of motility induced phase separa-

tion [97] which describes how active matter systems consisting of self-propelled particles

under purely repulsive interactions can spontaneously phase separate. In particular, it has

been shown that, under suitable modeling assumptions, a direct connection can be made

between such a system and a passive simple fluid at equilibrium with attractive interactions

among the molecules. Systems of the latter kind are well understood [98], thus allowing

a large body of analysis to be transferred for the study of active self-propelled systems,

as discussed in [97, 99, 100]. We leverage this connection to demonstrate how a swarm

of brushbots [45] with severely constrained sensing capabilities can phase separate into

regions of high and low robot density.

2.3 Conclusions

This chapter served to highlight the diversity of literature on the study of encounter-based

interactions among agents in a collective as well as between agents and the environment.

We specifically provided a review of relevant work from the robotics literature, where such

interactions have been studied in both single-robot and multi-robot scenarios. This interest
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partially stems from remarkable trends in nature where encounters—either collisional or

proximity-based—enable useful behaviors. Consequently, the latter part of the chapter fo-

cused on specific examples from the physics and biology literature where such interactions

have been studied.

Despite a common thread of investigation, perspectives among these studies drastically

vary, both in terms of the end goal as well as the tools used to analyze the collective.

In this thesis, we focus on (i) the development of mathematical models to systematically

analyze proximity encounters occurring in robot swarms, and (ii) demonstrate the potential

such models unlock by considering certain motivating applications where robot swarms

perform tasks in a completely decentralized manner. This is enabled by combining distinct

perspectives and modeling choices from the statistical mechanics, biology, and robotics

literature.
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CHAPTER 3

LOCALIZATION USING INTER-ROBOT COLLISIONS

Collision avoidance constitutes one of the key mechanisms for making multi-robot systems

operate in a safe and orderly manner—to keep the robots safe, collisions should be avoided

at all costs. This certainly makes a lot of sense in a number of applications, where collisions

have the potential to be catastrophic, e.g., for fleets of unmanned aerial vehicles or platoons

of self-driving trucks. Regardless of the algorithms used, by necessity, collision avoidance

becomes increasingly dominant as the robot density increases. This is because more and

more robots occupy the same space. Consequently, the robots spend more of their time

avoiding each other as opposed to progressing the overall team mission (see Section 2.1.1

for a discussion on this phenomena).

In this chapter, we sidestep this issue completely and embrace collisions as a feature of

the multi-robot system. In fact, as momentum is velocity times mass, collisions become less

of an issue as the robots get smaller and slower. As a consequence, for truly large teams

of small robots, collisions can no longer be considered catastrophic, as observed in [90].

This fact is moreover observed in naturally occurring swarms, where “mild” collisions are

known to happen, as discussed in Chapter 2.

Once one embraces the somewhat unorthodox position that robots are allowed to col-

lide, one can observe that there is actual information to be extracted from the collisions. For

example, if a robot collides frequently with other robots, it should be able to infer some-

thing about the robot density. This chapter aims to demonstrate how inter-robot collisions

can act as an information source in robot swarms and enable the robots to localize them-

selves in a given environment. We consider a scenario where a swarm of robots, equipped

with no sensors other than binary, tactile collision sensors, are moving around somewhat

randomly in a domain which has been partitioned into a set of connected cells. The robots
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are tasked with using the obtained binary collision measurements to establish which cell

they are currently present in.

To develop such a localization technique, we need mobility models to describe the

motion of the robots between the cells and collision models to analyze the likelihood of

a robot experiencing a collision in a given cell. And, it should be noted already at this

point that some of the mathematical models pursued to this end are somewhat simplistic.

However, these simplifications should be understood in light of the underlying ambition

to harness the power of collisions, and they can ultimately be justified by showing that

they can indeed be used as generators of successful, adaptive localization schemes. To

this end, we assume that the motion of each robot from one cell to another is derived

from a static Markov chain, where the set of cells represents the states of the Markov

chain. The Markovian motion model encodes the uncertainty associated with the motion

of the each robot, as well as the interactions between the robots which may affect their

motion in unpredictable ways. Since each robot does not know its current cell, the states of

the Markov chain are hidden. Representing the localization problem in a Hidden Markov

Model (HMM) [101] framework allows each robot to update the probability distribution

over all the states by incorporating sensory collision information at each time step. The

emission probabilities of the HMM correspond to the probability of a robot experiencing a

collision in a given cell. A pointwise maximum a-posteriori probability (PMAP) estimator

[102] is used to compute the best guess of the robot’s current cell based on the updated

probability distributions.

The rest of this chapter is organized as follow: Section 3.1 introduces some results from

stochastic geometry which are required for the development of the collision model. Section

3.2 uses mean-field approximations and a spatial point process to determine the probabil-

ity of a robot experiencing collisions. Section 3.3 subsequently introduces the Markov

chain-based motion model of the robots and develops the localization algorithm. Simula-

tion results illustrate the efficacy of the proposed algorithm itself for robots satisfying the
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Markovian motion model. Section 3.4 extends this idea to a continuous-time setting. Sec-

tion 3.5 concludes the chapter with a deployment of the localization scheme on a team of

real colliding robots.

3.1 Stochastic Geometry

Stochastic geometry is the field of mathematics dealing with random spatial patterns. More

specifically, spatial point processes are used to study random point patterns and the prop-

erties that they satisfy (for e.g., [33]). Point processes are most commonly used as a mech-

anism to interpret patterns of geometrical objects as a system of points in a suitable space,

e.g., for representing trees in a forest (‘statistical ecology’ [103]), the home addresses of

patients with a particular disease (‘spatial epidemiology’ [104]), the positions of stars and

galaxies (‘astrostatistics’ [105]), or the locations of sensors in a sensor network [106]. For

a survey of the applications of spatial point processes, see [107, 108].

In this chapter, we use a homogeneous point process to model the spatial distribution

of a team of robots in a given region. A representative point for each robot (which also

describes its location in the space) is denoted as a point in the point process. By using

existing statistical techniques for computing the density of points and inter-point distance

distributions, we develop a collision model for the robots.

This section introduces some basic notation regarding point processes which will be

used throughout this chapter. First, we discuss spatial Poisson processes, which exhibit the

property of complete spatial randomness, implying that the location of one point has no

influence on the location of another. This is followed by a discussion of hard-core point

processes, where the points face mutual repulsion between each other, and cannot lie closer

than a certain “inhibition” distance. This mutual repulsion property is useful in capturing

the fact that the locations of the robots cannot be closer than a minimum distance owing to

their physical footprint.

Definition 1. A point process Φ in Rd is a random set of points Φ = {x1, x2, . . .}. If B is
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a Borel set, then Φ ∩B represents the random set of points of Φ which also belong to B.

The simplest point process is called the Poisson point process. There is extensive liter-

ature on Poisson processes, e.g., [109, 110], but a basic definition is given below.

Definition 2. A point process Φ is Poisson, if the random number of points of Φ in a

bounded Borel set B, denoted as NΦ(B), has a Poisson distribution with mean λV(B),

NΦ(B) ∼ Poiss(λV(B)), (3.1)

where λ is the intensity of the Poisson process and represents the expected number of points

of the process in a set of unit volume. V(B) denotes the volume of the set B.

Algorithm 1 briefly describes how a Poisson point process within a compact region B

can be generated in simulation. However, the point process used to describe the locations

Algorithm 1 Poisson point process

1: Obtain the number of points to be placed inside B, denoted by NΦ(B), according to
(3.1).

2: Determine the positions of these NΦ(B) points by selecting uniformly random loca-
tions within the set B.

of the robots should capture the fact that the robots have a physical footprint and cannot

inter-penetrate. Consequently, we now provide the definition of a hard-core point process,

which accurately captures this phenomenon.

Definition 3. A hard-core point process is a point process in which the constituent points

are forbidden to lie closer than a certain positive minimum distance. Mathematically, a

point process Φ is hard-core if

Φ = {x1, x2, . . . : ‖xi − xj‖ ≥ δ, ∀i 6= j}, (3.2)

where δ is called the inhibition distance.
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We consider a homogeneous team of robots, each with a circular footprint of certain

radius. This circular footprint can represent the shape of the robots or an impermeable

region around each robot. Consequently, the spatial distribution of the robots is modeled as

a hard-core point process with an inhibition distance equal to twice the radius of the robots.

This ensures that no two robot footprints can overlap.

A common method of generating hard-core point processes is to perform a dependent-

thinning procedure on an underlying “parent” spatial Poisson process, where points are

successively removed until the desired hard-core conditions are satisfied by all the remain-

ing points [33]. In this chapter, we generate the popular Matern II hard-core process [111],

which has an analytically tractable intensity, and whose corresponding thinning procedure

is simple and efficient. Algorithm 2 outlines the steps for generating a Matern II hard-core

point process with an inhibition distance δ. Using the concept of a hard-core point pro-

Algorithm 2 Matern II hard-core point process with inhibition distance δ
1: Generate a parent Poisson point process Φp of intensity λp within the desired set B,

using Algorithm 1.
2: Assign a uniformly independent number in (0, 1) (called as a mark) to each point in

Φp. Denote the mark of a point x in Φp as m(x).
3: Retain a point x of Φp with mark m(x), if the ball B(x, δ) contains no point of Φp with

marks smaller than m(x). A point that has been thinned still has a role to play in the
rest of the thinning process. The intensity of the obtained hard-core process is given
by,

λ =
1− exp(λpVb(δ))

Vb(δ)
, (3.3)

where Vb(δ) is the volume of a ball of radius δ.

cess, the next section develops a mathematical model for the collisions occurring between

robots.

3.2 Collision Model

In order to use collision information to localize the robots, we first must establish a model

for how often collisions occur among the robots. This section introduces both the underly-
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ing localization problem and provides estimates for the probability of a robot experiencing

a collision at a given time as a function of the distribution of robots over the domain of

interest.

Consider a team of robots deployed over a compact and connected planar domain D,

which is divided into M connected and non-overlapping cells D1, D2, . . . , DM , such that,

D =
M⋃
j=1

Dj, (3.4)

with the corresponding environmental index set beingM = {1, . . . ,M}.

In order to mathematically model the spatial distribution of the robots and utilize this to

compute the frequency of collisions, we break our analysis into two parts: for time k = 0

when the robots are deployed, and for times k > 0, when the robots move from one cell to

another based on a motion model.

3.2.1 Deployment at time k = 0

As described in Section 3.1, we model the geometric distribution of the robots as a spatial

point process, which are useful tools for interpreting patterns of objects and studying their

properties. A representative point of each robot denotes a point in the point process.

Definition 4. Within each cell Dj , at time k = 0, the set describing the locations of the

robots, Xj(0), is the intersection of a homogeneous point process Φj and the set Dj ,

Xj(0) = Φj ∩Dj, ∀j ∈ {1, . . . ,M}. (3.5)

Each robot in the domain has a physical footprint, which enforces a minimum sepa-

ration between the points in the point process—since the robots cannot physically inter-

penetrate, the points in the point process cannot be closer than a certain distance. This

physical constraint can be captured by using hard-core point processes [111], where the
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points are separated by a minimum “inhibition” distance (see Section 3.1 for a formal def-

inition).

Definition 5. Let the location of each robot i be xi ∈ D, and let the footprint of the robot

be a ball B(xi, r) centered at xi with radius r. Then, each point process Φj, j = 1, . . . ,M

is a hard-core point process with an inhibition distance 2r (see Fig. 3.1).

Figure 3.1: A mathematical model of the spatial distribution of robots within a cell Dj ⊂
D, which is depicted here as the shaded area. Φj is a hard-core point process consisting
of infinite points in the space R2, illustrated by the dots. As described in Definition 4, the
location of the robots at time k = 0, denoted here by Xj(0) = {x1, x2, . . . , x9}, are points
of the hard-core point process Φj that happen to lie inside the setDj , i.e., Xj(0) = Φj∩Dj .
The robots are depicted by circles of radius r. The inhibition distance of the hard-core point
process is 2r.

Note that in Definition 5, the time dependence of the location of robot i has been hidden

for the sake of notational clarity. Each hard-core point process Φj can be characterized by

an intensity λ̄j , which is a measure of the density of robots within the cell Dj . We now

define the intensity of each point process in terms of the expected number of robots in the

cell.

Definition 6. Let N̄j = NΦj
(Dj) = |Xj(0)| denote the number of robots in cell Dj . The

intensity of the point process Φj , denoted as λ̄j , is the expected number of robots per unit
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area in cell Dj ,

λ̄j =
E[N̄j]

V(Dj)
, (3.6)

where V(Dj) represents the area of cell Dj .

This allows us to define the expected total number of robots deployed at time k = 0.

Definition 7. The expected total number of robots in the arena, denoted as Ntotal, is given

as,

Ntotal =
M∑
j=1

E[N̄j] =
M∑
j=1

λ̄jV(Dj). (3.7)

Note that since hard-core point processes—which represent robot locations— are ob-

tained by performing a probabilistic thinning procedure (see Algorithm 2), the number of

robots deployed in each cell at time k = 0 is a random variable with a known expectation.

3.2.2 Movements at times k > 0

After the deployment of robots at time k = 0, each robot moves from one cell to another, so

that at a given time k, let the number of robots in each cell be denoted by the vectorN(k) =

[N1(k), N2(k), . . . , NM(k)]T , and the intensity of the points within a cell be represented as

λ(k) = [λ1(k), λ2(k), λ3(k), . . . , λM(k)]T . The initial intensities are given by λ(0) = λ̄ =

[λ̄1, . . . , λ̄M ]T , and the number of robots in each cell as N(0) = N̄ = [N̄1, . . . , N̄M ]T ,

which have been defined in Section 3.2.1. For times k > 0, the total number of robots in

the domain does not change, i.e.,

M∑
j=1

Nj(k) =
M∑
j=1

N̄j, ∀k > 0. (3.8)

In each cell, the robots may collide with other robots in that cell. Since the number of

robots in each cell differs, and so does the size of the cell, the rate of collisions experienced

by the robots will be different.

The path planning literature contains several ways in which the probability of collisions
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can be calculated under motion and sensory uncertainty e.g., [112, 113]. In many cases,

Monte Carlo based techniques have been used to obtain estimates of the collision probabil-

ities, e.g., [114, 74], while the majority of the analytical techniques developed compute the

probability of collision along a specific path taken through the workspace in the presence

of stationary or moving obstacles, e.g., [115, 116].

Neither of these approaches quite serve the purpose here, where the collisions experi-

enced by a robot in a given cell will depend on the motion of all the other robots in the

cell. Luckily, mean-field theory [79, 117, 77] provides an elegant way to simplify such

complex interactions by allowing us to replace the effect of other robots on a single robot

by an averaged effect. To perform the mean-field approximation, we simply assume that

the effect of the other robots on a given robot can be approximated with a single collision

probability. Thus, at each time step k, we will compute the probability of a robot experi-

encing a collision in a particular cell Dj , j ∈ M, which we will denote by φj(k). (Note

that the index here only refers to the cell since this probability is the same for all robots

under the mean-field approximation.)

In order to develop a stochastic collision model that is rich enough to be relevant yet

simple enough to be analytically tractable, we make the following assumptions:

Assumption 1. At each time k, the locations of the robots in each cell Dj , described by

the set Xj(k), can be modeled as points belonging to a hard-core point process of intensity

λj(k) and inhibition distance 2r.

Assumption 2. Collisions occur when the footprints of the robots overlap, i.e., when

B(xi, r) ∩ B(xj, r) 6= ∅, i 6= j. This is obviously physically not valid, but it both al-

lows for mathematical simplicity yet is, as we will see, empirically justified using Monte

Carlo simulations.

Assumption 3. [Mean-field approximation] The probability of any robot experiencing a

collision in cellDj at time k, is equal to the probability that an “exogenous” robot dropped

23



Figure 3.2: At time k, the locations of the robots in cell Dj is illustrated by the set
Xj(k) = {x1, . . . , x4}. The probability of collision experienced by an exogenous robot
(whose position is denoted by xe), dropped at a uniformly random location in cell Dj , is
equal to the probability that the random variable denoting the distance between xe and its
first nearest neighbor in the set Xj(k) is less than 2r. Furthermore, as specified in As-
sumption 3, this is also equal to the probability of collision experienced by any robot in
Xj(k).

at a uniformly random location within cell Dj collides with a robot belonging to the set

Xj(k).

Under this model, a collision is said to occur if this exogenous robot, whose position

is denoted as xe, is dropped at an uniformly random location within cell Dj at time k, and

spatially overlaps with a robot in the cell belonging to set Xj(k). The probability of such

an event occurring is equal to the probability that the random variable denoting the distance

between xe and its first nearest neighbor in the set Xj(k) is less than 2r (see Fig. 3.2). We

formalize this distance metric in the following definition.

Definition 8. The contact distance, denoted as d(x,Xj(k)), is a random variable which

denotes the shortest distance from an independently chosen uniformly random point x ∈ Dj

and the set of robot locations Xj(k).

Using the definition of the contact distance, combining this with Assumption 3, and

utilizing results from [118], the following theorem presents an analytical expression for the

probability of collision experienced by a robot in a given cell at time k.
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Theorem 1. The probability of a robot experiencing a collision in cell Dj at time k, is

given by,

φj(k) = 1− exp
(
−
∫ 2r

0

2πλp,j(k)qη(q, 2r)dq
)
, (3.9)

where,

η(q, δ) =
1− exp[−λp,j(k)(πδ2 − l2(q, δ))]

λp,j(k)(πδ2 − l2(q, δ))
, (3.10)

l2(q, δ) =


πq2 : 0 < q < δ

2

q2cos−1(1− δ2

2q2
)+

δ2cos−1( δ
2q

)− 1
2
δ
√

4q2 − δ2 : q ≥ δ
2

, (3.11)

and λp,j(k) is the intensity of the parent Poisson point process which is described in Section

3.1 and can be computed using (3.3) for a desired hard-core process intensity λj(k).

Proof. From Definition 8, we know that the probability of an exogenous robot, whose

position is denoted as xe, colliding with any robot in cell Dj at time k, can be expressed

as the probability that the random variable d(xe,Xj(k)) takes a value less that 2r (see

Fig. 3.2). Furthermore, Assumption 3 states that, given the mean-field approximation, this

probability is equal to the probability of any robot in cell Dj experiencing a collision at

time k. This implies that,

φj(k) = Fe→Xj(k)(2r), (3.12)

where,

Fe→Xj(k)(2r) = Prob(d(xe,Xj(k)) ≤ 2r). (3.13)

Fe→Xj(k)(l) is the cumulative distribution function of the random variable d(xe,Xj(k))
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evaluated at some distance l.

Results presented in [118] give us an analytical expression for the cumulative distri-

bution function of the distance between an independently and uniformly chosen point in

the domain, and its nearest neighbor in a hard-core point process. Since, according to As-

sumption 1, Xj(k) is considered to be part of a hard-core point process, we can directly

utilize this result to compute Fe→Xj(k)(l). Evaluating the function for l = 2r, gives us the

probability of collision experienced by a robot in cell Dj at time k.

We validate (3.9) by comparing the derived expression for the probability of collision

in a given region against a Monte Carlo simulation which computes the collision rate by

repeatedly dropping an exogenous robot, in an uniformly random manner into the region

and then checking for collisions (see Fig. 3.3). For a particular intensity λ, an empirical

collision rate is estimated, along with a 95% confidence interval, which is computed using

the Clopper-Pearson method [119]. The presence of a slight positive bias in the Monte

Carlo estimates in Fig. 3.3, especially at high densities can also be observed in the results

presented in [118], and likely arises from approximations made when analytically deriving

an expression for Fe→Xj(k)(l) (see [118]).

As the robots experience collisions while moving from one cell to another, we fix our

attention on a particular robot—it does not matter which since they are all identical—and

we will in subsequent sections suppress the subscript denoting the identity of the robot. To

this end, we associate a binary variable with the collision events experienced by this robot,

i.e.,

γ(k) =


1 if the robot experiences a collision at time k,

0 otherwise.
(3.14)

The question then becomes, given a string of such observations Γ(k) = [γ(k), . . . , γ(1)],

can the robot figure out which cell it currently is in? In order to answer this question, we

need a motion model, which is developed in the next section.

26



0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1
Empirical collision rates with 95% confidence intervals

Predicted collision rates - hard-core point process

Figure 3.3: Comparison of the collision probabilities predicted by the hard-core point pro-
cess model against the collision rates obtained using a Monte Carlo simulation. For each
hard-core process intensity, an exogenous robot is dropped 5000 times into the cell, and the
number of collisions is recorded to obtain the Monte Carlo estimate of the probability. In
addition, a 95% confidence interval is computed (illustrated by the vertical bars at each data
point) for the estimated probabilities according to the Clopper-Pearson confidence interval
method. As seen, the theoretical probabilities match the simulation data for varying inten-
sities, and serve as good estimates of the true collision probabilities under the developed
collision model.

3.3 Collisions through Hidden Markov Models

3.3.1 The Forward Algorithm

In the previous section, we developed estimates for the probability of a robot experiencing

collisions in a given cell. In order to utilize this information to localize the robots, we

need a mathematical model for the motion of the robots between the cells. Due to the lack

of locational information and detailed sensing, as well as the constant interaction between

robots, the motion of the robots between cells is stochastic.

This lends itself naturally to a Markov chain-based motion model, where the robots

move between the cells based on transition probabilities. This approach is commonly used

when dealing with uncertainty in robot motion since it efficiently models the stochasticity

inherent in the system, e.g., [120, 121]. Thus, the robots move from one cell to another

based on some transition probabilities which are assumed to be time invariant. In this
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section, we exploit this Markovian motion model and develop a corresponding localization

algorithm.

Definition 9. Let the current cell of robot r at time k be denoted by qr(k), i.e., if robot r

is in cell Dj at time k, then qr(k) = j. The motion of the robot from one cell to another is

Markovian, and can be represented by a transition probability matrix Pr, whose elements

are given by,

Pij,r = Prob (qr(k + 1) = i | qr(k) = j) , i, j ∈M. (3.15)

Similar to Section 3.2, we apply the mean-field approximation and assume that all the

robots are subject to the same effects from the environment and other robots. This implies

that all the robots can be assumed to move according to the same transition probabilities.

So, (3.15) can be replaced by the following equation, where we suppress the index of the

robot, since this now holds for all robots,

Pij = Prob (q(k + 1) = i | q(k) = j) . (3.16)

The resulting transition probability matrix P is chosen to reflect the physical accessi-

bility of one cell from another as well as other mobility considerations. In Section 3.3.2,

a particular choice of transition probabilities is made but for now, we simply assume that

these probabilities are somehow made available to us.

In order to complete the definition of the Markov chain, we also define the initial prob-

ability distribution of each robot over the different cells. Owing to the mean-field approxi-

mation made earlier, this initial probability distribution, denoted as µ = [µ1, µ2, . . . , µM ]T

will be the same for all the robots,

µj =
N̄j

Ntotal

=
λ̄jV(Dj)

Ntotal

, j ∈M, (3.17)

where Ntotal, defined in (3.8), represents the expected total number of robots in the domain
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D. The Markov chain is now formally defined using the transition probability matrix P ,

and the initial distribution µ.

We now use this Markovian motion model to derive how the intensities λj(k) evolve

with time.

Lemma 1. As the robots move from one cell to another, let λ(k) = [λ1(k), λ2(k), . . . , λM(k)]T

represent the expected number of robots per unit area in each cell. Given the transition

probability matrix P , the intensities evolve according to the following equation,

λ(k + 1) = (D � P )λ(k), (3.18)

where D is a matrix comprising of elements

Dij =
V(Dj)

V(Di)
, (3.19)

and � symbolizes the Hadamard product.

Proof. At time k + 1, the number of robots in cell Dj will simply depend on how many

robots left and entered the cell in one time step,

Nj(k + 1) = Nj(k) +Nadded −Nremoved, (3.20)

E[Nj(k + 1)] = E[Nj(k)] +
M∑

i=1,i 6=j

PjiE[Ni(k)]−
M∑

i=1,i 6=j

PijE[Nj(k)]. (3.21)

Adding and subtracting the term PjjE[Nj(k)],

E[Nj(k + 1)] = E[Nj(k)](1−
M∑
i=1

Pij) +
M∑
i=1

PjiE[Ni(k)], (3.22)

E[Nj(k + 1)] =
M∑
i=1

PjiE[Ni(k)]. (3.23)
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From (3.6), we know that,

λj(k + 1) =
E[Nj(k + 1)]

V(Dj)
=

1

V(Dj)

M∑
i=1

Pjiλi(k)V(Di). (3.24)

This gives us the desired result.

Note that the states of the Markov chain are hidden, since the robots do not know

which cell they are currently in. However, they are making observations in the form of

collision measurements over the set {Γ1,Γ2} = {0, 1}. The observation probabilities—the

probability of observing a 0 or a 1 in cell Dj—thus becomes,

Glj(k) =Prob (γ(k) = Γl | q(k) = j) , l = 1, 2, j ∈M. (3.25)

Since the robots are homogeneous, we already know that the probability of observing a

collision in cell Dj at time k is φj(k), i.e.,

G1j(k) = 1− φj(k) (3.26)

G2j(k) = φj(k), j ∈M. (3.27)

Note that even though we are focusing our attention on a single robot, all the other robots

are moving around at the same time and it is the statistics of this motion that ultimately

determines the collision probabilities.

We have now finally obtained the hidden Markov modelH = (P,G, µ). This construc-

tion allows each robot to compute and update the probability of being in a particular cell at

time k given observations up to and including time k.

Let δk(i) denote the probability of the chosen robot being in cell Di at time k, given the

sequence of observations Γ(k) = [γ(k), . . . , γ(1)]. This is given by the posterior probabil-
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ity in the context of the hidden Markov modelH,

δk(i) = Prob (q(k) = i | Γ(k),H) . (3.28)

One way to estimate the current cell of the robot is to simply pick the state corresponding

to the highest posterior probability,

q∗(k) = argmax
i∈M

δk(i). (3.29)

Such an estimator is called the pointwise maximum a-posteriori probability (PMAP) esti-

mator [101], since it picks the state with the highest posterior probability. This estimator is

optimally accurate in the sense that it maximizes the expected number of correct estimates,

e.g., [122].

In order to compute δk(i) at each time instant k, we define a variable αk(i) which

denotes the joint probability of obtaining a sequence of observations Γ(k) and being in

state Di at time k,

αk(i) = Prob (Γ(k), q(k) = i | H) . (3.30)

The probability of obtaining a sequence of observations is now simply the sum of αk(i)

over all the states,

Prob (Γ(k) | H) =
M∑
j=1

αk(j). (3.31)

Thus, δk(i) can be expressed as,

δk(i) =
Prob (Γ(k), q(k) = i | H)

Prob (Γ(k) | H)
,

or, equivalently,

δk(i) =
αk(i)∑M
j=1 αk(j)

. (3.32)
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We can now use the recursive forward algorithm [101] to compute values of δi(k). Algo-

rithm 3 outlines the steps required to generate the PMAP estimates.

Algorithm 3 PMAP Estimation - The Forward Algorithm

1: k = 0, α0(i) = Gγ(0)i(0)µi, i ∈M
2: while true do
3: δk(i) = αk(i)∑M

j=1 αk(j)
, i ∈M

4: q∗(k) = argmaxi∈M δk(i)
5: γ(k + 1)← {0, 1} (collision measurement)
6: αk+1(i) = (

∑M
j=1 αk(j)Pij)Gγ(k+1)i(k + 1), i ∈M

7: k = k + 1
8: end while

Step 1 initializes the forward probabilities at time k = 0, as the joint probability of

being in cell Di and making an observation γ(0). The posterior probabilities are computed

in step 3 using (3.32). The PMAP estimator simply picks the state with the highest posterior

probability in step 4. Step 6 outlines the induction step of the forward algorithm. The

product αk(j)Pij gives the joint probability of reaching cell Di at time k + 1 via cell Dj

at time k and making the partial observation Γ(k). By summing over all the possible

states,
∑M

j=1 αk(j)Pij gives us the joint probability of reaching cell Di at time k + 1 and

making observations Γ(k). Finally, αk+1(i) is obtained by multiplying
∑M

j=1 αk(j)Pij with

Gγ(k+1)i(k + 1), which takes into account the latest collision measurement γ(k + 1).

Algorithm 3 assumes that all robots know the initial distribution of robots µ, the initial

hard-core intensities λ̄, the size of each cell V(Dj), j ∈ M, and the Markov transition

matrix P . There is no communication needed between the robots before or during the

execution of the algorithm.

3.3.2 Simulation Results

In order to illustrate the capabilities of Algorithm 3, we consider a scenario where robots

are moving around a circular track comprised of M segments each of width wj , j ∈ M

(see Fig. 3.4). The Markov matrix P is chosen in such a way that at each time step k,
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the robots can either remain in the same segment or move to the next segment. Assuming

that the transition between cells occurs in only one direction, the width of each segment wj

not only affects the collision probabilities but also the congestion in each cell. We model

this congestion by letting the probability of a robot staying in the same cell be inversely

proportional to the width of the cell: the narrower the segment, the higher is the probability

of getting stuck,

P (i, i) = ε
1

wi
, P (i+ 1, i) = 1− P (i, i), i = 1, ..,M − 1 (3.33)

P (M,M) = ε
1

wM
, P (1,M) = 1− P (M,M), (3.34)

where ε is chosen so as to restrict the probabilities between 0 and 1.

At time k = 0, based on the hard-core process intensities λ̄ = [λ̄1, . . . , λ̄M ]T , we first

generate the corresponding Poisson point process in each cell, and use the probabilistic

dependent thinning procedure shown in Algorithm 2, to simulate the locations of the robots

in each cell. Thus, the total number of robots deployed at time k = 0, is a random number

with an expectation Nt, as described in Section 3.2.

For times k > 0, each robot moves from one cell to another according to the Markov

chain, and is placed at a random non-overlapping position within the cell. The resulting

spatial disribution of robots in a cell is not a strict hard-core point process—however, as

stated in Assumption 1, it is explicitly assumed that the spatial distribution can be modeled

as a hard-core point process. The assumed equivalence between the simulated distribution

of robots and a true hard-core point process within the cell is justified in that it allows

the total number of robots in the domain to be constant for all times k > 0. Moreover,

the collision probabilities experienced by the robots in the simulation and the collision

probabilities corresponding to an equivalent true hard-core point process as prescribed by

Theorem 1, are sufficiently similar.

In the simulation scenario, we developed a circular track with 10 individual cells of
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Figure 3.4: A circular track with 10 cells of varying widths. In each cell, at time k = 0,
robots are deployed according to a hard-core point process of intensity λ̄j . For times k > 0,
each robot moves from one cell to another according to a Markovian motion model.

widths [0.18, 0.25, 0.47, 0.32, 0.39, 0.15, 0.22, 0.29, 0.36, 0.43], and ε = 0.07 (see Fig. 3.4).

The simulations were conducted for 300 iterations, and the true cell of each robot along

with the estimated cell was recorded.

Figure 3.5a shows the true cell and the cell estimates for a randomly chosen robot in the

team of robots traversing the circular track. As seen, using only collision measurements,

the PMAP estimator generates estimates which closely track the true cell of the robot as

the robot moves around the domain.

In order to rigorously analyze the tracking capabilities of the developed localization

filter, we ran multiple simulations keeping the initial hard-core process intensities λ̄ and

the Markov probabilities P fixed. Figure 3.5b quantitatively analyzes the localization error

for all the robots over the multiple simulations. At any given time k, the localization error

of the filter for a given robot is computed as the difference between the true cell index of the

robot q(k), and its PMAP estimate q∗(k). Thus, an error of 0 implies perfect localization,

{+1,−1} implies that the cell adjacent to the true cell was picked, etc. As seen, for majority

of the time, the estimator either performs perfect localization, or localizes the robot to a cell

adjacent to the true one.
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Figure 3.5: Simulation results of the probabilistic localization technique for a team of
robots moving in a 10-cell domain. Figure 3.5a shows the true cell and localization esti-
mates for a randomly chosen robot in the domain. As seen, within a few iterations, the
estimates closely track the true cell of the robot. Figure 3.5b illustrates the distribution of
the quantized localization error for all the robots, collected over multiple simulation runs.
Each simulation was initialized with the same hard-core process intensities λ̄, and the same
Markov transition probabilities P . The localization error is the difference in the cell index
between the true cell of the robot q(k) and its PMAP estimate q∗(k). As seen, the estimator
perfectly localizes the robot 47% of the time, and the estimate is within one cell of true cell
77% of the time. Note that a localization error of 5 and−5 correspond to the same cell (see
Fig. 3.4).

3.3.3 Connections with Continuous-time Motion of Robots

Until now, we considered a discrete-time motion model for the robots, where each robot

transitioned between cells at discrete time steps. At each time k, we computed the prob-

ability of a robot experiencing a collision. It is worth noting that the developed collision

model is agnostic to the underlying motion of the robots as long as the spatial distribu-

tion of the robots in each cell at discrete time epochs k can be described by a hard-core

point process. Thus, the discrete-time formulation significantly reduces the complexity of

modeling interactions between robots, and allows us to develop a collision model which

applies to any motion pattern satisfying this spatial distribution constraint. To illustrate this

point, we now introduce a particular continuous-time motion model which yields a spatial

distribution of robots that can be well-approximated as a hard-core point process.
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We model the planar motion of each robot using single-integrator dynamics,

ẋ = u, (3.35)

where u is the applied control velocity, and as before, the index of the robot is suppressed.

Since the robots do not know where they are based on traditional sensing modalities, we

simply let each robot travel with a fixed speed v in a randomly chosen direction until it col-

lides with another robot or with the walls of the domain. Essentially, each robot performs

a Brownian-like random walk in the domain [96].
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Figure 3.6: Comparison of the empirically obtained pair-correlation function for a given
team of robots executing a random walk motion model (λ = 30, r = 0.04, τ = 0.1)
against the theoretical pair-correlation function for a hard-core point process of the same
intensity. The empirical pair correlation was evaluated by noting the positions of the robots
at regular intervals of time tk, k = 1, 2, . . . and computing the average pair correlation
between the points. The similarity in the two curves demonstrates how the random walk
motion model yields a spatial distribution of robots which is well-represented by a hard-
core point process.

We demonstrate that the resulting spatial distribution of robots executing the random

walk motion is well-approximated by a hard-core point process. For a simulated team

of robots executing the random walk, we note the locations of the robots at time epochs

tk, k = 1, 2, . . ., and analyze the resulting spatial distribution of the set of points. This is

done by empirically computing the average pair-correlation function [33] corresponding to

the set of robot locations. The pair-correlation function measures the relative likelihood

of finding another point at a certain distance with respect to a given point and is used

36



to identify the spatial point process which best represents a given set of points. Fig. 3.6

plots the average pair-correlation function empirically computed from the simulation (λ =

30, r = 0.04, τ = 0.1) and plots it against the theoretical pair correlation function of a

Matern Type-II hard core point process of the same intensity (see [123] for the analytical

expression). The similarity in the two curves illustrates that the spatial distribution of robots

executing the random walk motion is well represented by a hard-core point process. In

general, a variety of factors such as changes in the motion of a robot following a collision,

spatio-temporal properties of the trajectories followed by the robots, and the discretization

time interval will determine whether a particular motion model can be abstracted by a hard-

core point process model.

3.4 Continuous-time Extension

We now demonstrate how the localization algorithm developed in the previous section can

be applied to the continuous-time motion of robots in the domain. As introduced in Section

3.3.3, we allow the robots to perform a random walk motion in the domain. This random

walk implies that the transitions between cells is stochastic in nature. Consequently, we

model these transitions as a particular realization of a stationary Markov chain with transi-

tion probability matrix P , where the states of the chain are the different cells of the domain.

At regular intervals of time tk = kτ, k = 1, 2, . . ., the cell occupied by each robot is noted,

and this information is used to generate the transition probability matrix P. Similar to the

approach described in [124] and applied in [121], we compute a maximum likelihood es-

timate of the transition matrix, denoted as P̂ , by conducting repeated simulations of the

random walk of the robots in the domain and noting the cell transitions made by the robots.

We have now obtained a discrete Markov chain, evaluated at discrete times tk, k =

1, 2, . . ., which is used as a simplified and abstract representation of the motion of the

robots between the cells. Similar to Section 3.3, the states of the Markov chain are hidden

since the robots do not know which cell they currently occupy. Let q(tk) represent the cell
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of a chosen robot at time tk—again, the index of the robot is suppressed. Let c(t) denote a

binary variable associated with the collision faced by the robot at time t,

c(t) =


1 if the robot experiences collision at time t,

0 otherwise
. (3.36)

Thus, the observations from the Markov chain can be redefined as,

γ(tk) =


1, if ∃ t ∈ [tk, tk+1) s.t. c(t) = 1,

0, otherwise
. (3.37)

As a result, γ(tk) encodes whether the robot experienced any collisions over the time inter-

val [tk, tk+1) and can be used as an observation variable in the hidden Markov model. We

now compute the observation probabilitiesGlj(tk), l = 1, 2, as defined in (3.25). Similar to

Section 3.2, collisions occur between robots when their footprints overlap. In order to com-

pute the collision probabilities, we draw parallels between our problem setup and kinetic

theory of gases, where the frequency of collisions between randomly moving molecules

has been rigorously analyzed, e.g., [98, 125].

For a robot with radius r, the collision cross-section is a circle of radius 2r centered

at the robot (see Fig. 3.7). If we assume that all robots except robot i are stationary, the

number of collisions experienced by robot i in a time duration τ , would be equal to the

number of robots which lie in the area swept by the robot in the time interval τ , as illustrated

in Fig. 3.7. This region can be approximated as a rectangle of area,

Ac = 2(2r)vτ, (3.38)

where v is the fixed speed of the robot. But, in order to adjust for the fact that all other

robots are also moving with the same speed v, we replace the velocity magnitude v in

(3.38) with the mean relative speed between the robots [98].
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Figure 3.7: Illustration of the rationale behind the computation of continuous-time col-
lision probabilities, inspired from the kinetic theory of gases. The number of collisions
experienced by robot i in a time interval τ , is equal to the number of robots which happen
to lie inside the area Ac swept by the robot, as illustrated. To account for the fact that all
the other robots are also moving, we assume that robot i is moving with the relative mean
speed between the robots, denoted as vmean. This allows us to compute the probability that
robot i will collide with another robot in a time interval τ .

Lemma 2. Given a team of robots, which move in (uniformly) random directions, with a

constant velocity magnitude v, the average relative speed between any given robot, and all

other robots is,

vmean =
4v

π
. (3.39)

Proof. Let ~vj(t) represent the velocity vector corresponding to robot j at any given time t.

Since the obtained result holds for all times, we suppress the time index for the rest of the

proof.

For a given robot i, the relative mean speed, with respect to all other robots j, is given

as

vmean = E[
√
< ~vij, ~vij >], (3.40)
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where ~vij = ~vi - ~vj . This gives us,

vmean = E[
√
< ~vi − ~vj, ~vi − ~vj >] (3.41)

vmean = E[
√
< ~vi, ~vi > + < ~vj, ~vj > −2 < ~vi, ~vj >] (3.42)

vmean =
√

2vE[
√

1− cos θ]. (3.43)

Here, θ represents the angle between two uncorrelated random vectors ~vi and ~vj , and thus,

is a uniform random variable in the range [0, 2π). Taking the mean over this range, we get

the desired result.

This result holds for all robots, since they are all identical, and it does not matter which

robot we pick. So, the effective area swept by a chosen robot in time τ is now given as,

Ac = 4r
4

π
vτ. (3.44)

Consequently, under this model, the number of collisions experienced by any robot in a

time interval τ is the number of robots which lie in the corresponding collision area Ac.

The probability of collision experienced by any robot in cell Dj , in any time horizon of

length τ , is the probability that at least one other robot is present in an area Ac swept by the

robot in the time horizon τ .

These constructions give us both the transition probability matrix P and the emission

probability matrix G. As a result, we have constructed the hidden Markov model as H =

(P,G, µ̄). Proceeding as described in Section 3.3, we can utilize Algorithm 3 to obtain

estimates q∗(tk) of the cell that the robot is occupying in the time interval [tk, tk+1).

It is worth noting that the steady-state distribution of robots in each cell will be directly

impacted by how the domain is partitioned into the different cells. This in-turn has a direct

impact on the performance of the localization algorithm. The more distinguishable the
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steady-state robot densities within the different cells are from each other, the better the

localization algorithm can be expected to perform. For example, if the domain is divided

into a large number of similar looking smaller cells, the localization algorithm might not

be able to distinguish between cells whose stationary density and physical accessibility are

very similar to each other.

3.5 Experimental Results

In this section, we deploy the collision-based localization algorithm on a team of real-world

robots, and quantitatively analyze the accuracy of localization obtained. We consider a

scenario where a team of robots are operating in an interconnected system of pipes. The

domain is divided into 4 distinct cells, illustrated in Fig. 3.8. Each robot in the team in-

dependently determines which cell it is currently operating in using only collisions as a

sensing mechanism.

As described in Section 3.4, the robots travel in straight lines until they collide with an-

other robot or with the walls of the domain. The Markov transition matrix P corresponding

to the motion of the robots is estimated by conducting extensive simulations of the robots

operating in the domain.

3.5.1 Evaluation Methodology

In order to investigate the information content provided by collisions towards localization,

we introduce a Markov filter which ignores collision measurements and generates estimates

solely based on the state distribution of the Markov chain describing the motion of the

robots (see Section 3.3). The Markov filter, denoted byM, is defined as follows.

Definition 10. Let P denote the known transition probability matrix corresponding to the

motion of the robots, as described in Definition 9, and let µ = [µ1, . . . , µM ]T denote the

initial distribution of the robots. Then, for each robot i, the Markov filterM generates cell

estimates by picking a random cell based on the state distribution of the Markov chain at
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(a) (b)

Figure 3.8: Experimental Setup: 18 differential-drive mobile robots are traversing a 4-cell
domain on the Robotarium—a remotely accessible multi-robot testbed [46]. The cells of
the domain, shown as shaded polygonal areas, are interconnected, allowing the robots to
move between them. Each robot executes the random walk algorithm outlined in Sec-
tion 3.4 and by detecting and utilizing inter-robot collisions, generates estimates of the
current cell that it is occupying. We qualitatively demonstrate that collisions among the
robots are useful sources of information which can be used for localization.

time tk,

q∗i,m(tk) ∼ dist(π(tk)), (3.45)

where π(tk) = [π1(tk), . . . , πM(tk)]
T represents the state distribution of the Markov chain

at time tk. Under the mean-field approximation, for any robot r,

πj(tk) = Prob (qr(tk) = j) , j ∈M, (3.46)

where π(tk) evolves according to π(tk) = Pπ(tk−1) with π(0) = µ.

Let C denote the collision-based localization filter (see Algorithm 3) developed in Sec-

tion 3.3. The collision filter utilizes information from both the Markovian motion of the

robots and inter-robot collisions to generate an estimate of the cell a robot is present in.

On the other hand, the Markov filterM ignores collisional information and generates esti-

mates only based on the Markovian motion of the robots. Thus, comparing the performance

of the two filters provides an insight into the information content provided by inter-robot

collisions and whether collisions help the robots localize better in the domain.
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The following definition introduces a metric to help evaluate the performance of the

collision filter C and compare it against the performance of the Markov filterM.

Definition 11. The non-negative localization error experienced by robot i at time tk, rep-

resented as d(qi(tk), q
∗
i (tk)) is defined as the number of cell transitions that are required in

order to reach robot i’s true cell qi(tk) from its cell estimate q∗i (tk). Using this metric, the

average localization error of the robot team at time tk is given as,

L(tk) =
1

N

N∑
i=1

d(qi(tk), q
∗
i (tk)), (3.47)

where N is the number of robots in the swarm.

We now present the localization results for a team of real robots operating on a multi-

robot testbed. The results are compared against the performance of the Markov filterM.

3.5.2 Robot Experiments

The probabilistic localization algorithm was implemented on actual, physical robots on

the Robotarium [46], which is a remotely accessible swarm robotics testbed where code is

uploaded via a web-interface and the experimental data is returned after the experiments.

The experiment involved 18 differential-drive mobile robots traversing a 4-cell domain,

which was overlayed onto the Robotarium arena floor (see Fig. 3.8). Position data of the

robots was collected using an overhead tracking system. Robots were distributed among

the cells according to an initial distribution at time t = 0.

Figure 3.9 depicts a sample path of a robot as it traverses the domain. As seen, the

collision filter C—which incorporates collision information at regular intervals of time—

actively tracks the true cell of the robot, and performs significantly better than the Markov

filterM.

As seen in Fig. 3.10c, the average localization error L(tk) corresponding to the collision

filter C decreases with time, as the robots move around the domain and use collisions to
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Figure 3.9: Performance of the collision filter C compared to the Markov filter M in a
real-robot experiment. As seen, the tracking performance of the dotted line, denoting the
estimate, is significantly better in Fig. 3.9a indicating that collisions are helping the robots
localize better in the domain.

estimate their current location. In particular, the average localization error for the filter C

drops below 1 cell within a few seconds.

Figures 3.10a and 3.10b depict a histogram of the quantized localization error d(qi, q
∗
i ),

as introduced in Definition 11, averaged over all the robots. The statistics in Fig. 3.10a con-

siders the average errors over the entire duration of the experiment. As seen, the collision

filter correctly predicts the true cell of the robot 63% of the time. Furthermore, if we only

consider the data from the last 30% of the experiment, this performance measure improves

to 70% indicating that additional collision information is helping the robots localize better

as the experiment progresses (see Fig. 3.10b). In both cases, the percentage of correct pre-

dictions are higher compared to the baseline Markov filter. Figures 3.9 and 3.10 illustrate

that collisions provide the robots with information which can be utilized for localization.
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Figure 3.10: Quantitative analysis of the performance of the collision-based localization
filter for a real-robot experiment consisting of 18 robots moving in a 4-cell domain for 250
seconds. Figures 3.10a and 3.10b illustrate the distribution of the quantized localization
errors of the team for the entire duration of the experiment and the last 30% of the experi-
ment respectively. As seen, the collision filter C correctly predicts the true cell of the robot
more often than the Markov filter, and as shown by Fig. 3.10b, this performance improves
as more collision information is incorporated into the estimate. Fig. 3.10c illustrates the
average localization error L(tk), detailed in Definition 11. As the experiment progresses,
the collision filter C performs significantly better than the Markov filterM, illustrating that
inter-robot collisions can indeed help robots localize in a densely-packed swarm of robots.
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3.6 Conclusions

In this chapter, we took the first steps towards analyzing inter-robot encounters in robot

swarms, which is one of the primary goals of this thesis. We argued that for certain classes

of robot swarms, physical collisions among robots can not only be considered as a feature,

but can also be viewed as a sensing modality. To this end, we used ideas from stochastic

geometry to compute the probability of a robot experiencing a collision at a given point

in time. This model was developed in the context of a localization scheme, where a team

of robots moved around a partitioned domain equipped with only binary tactile collision

sensors, and used the information derived from these sensors to localize themselves in the

domain.

46



CHAPTER 4

ENCOUNTER RATES AS INFORMATION SOURCES

The previous chapter illustrated how physical inter-robot collisions can act as a source of

information which can be utilized by a robot swarm. In this chapter, we demonstrate that

not just physical inter-robot collisions but also proximity encounters among the robots can

act as a source of information. Furthermore, we develop a continuous-time characterization

of the nature and frequency of encounters experienced by robots in the environment.

Since the analytical development of such an encounter model is heavily dependent on

the motion of the robots, Section 4.1 specifies a motion model for the robots, which, al-

though somewhat restrictive, allows us to make mathematical statements regarding encoun-

ters. Following this, Section 4.2 provides the formal definition of an inter-robot encounter,

and then develops a continuous-time model to describe the rate of inter-robot encounters.

In Section 4.3, we demonstrate how the developed encounter model enables an analytical

characterization of the effects of spatial interference on a robot swarm performing a dis-

tributed collection task. In particular, our model analytically captures the sublinearity in the

increase of overall productivity of the swarm with increasing density, which is precipitated

by the increasing amount of time spent by robots avoiding collisions with each other as op-

posed to performing the task at hand. We develop a decentralized algorithm which allows

the swarm to achieve an optimal density which represents a desired trade-off between team

size and productivity.

4.1 Motion Model

The rate of encounters experienced by the robots will depend on their motion in the domain.

In order to make concrete statements regarding inter-robot encounters, we first restrict the

motion characteristics of the robots in the environment. Consider a swarm of N identi-
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cal robots operating in a planar and compact domain D ⊂ R2. The following definition

characterizes the motion of the robots.

Definition 12. For any given robot i ∈ {1, . . . , N}, let pi(t) ∈ D denote the position of the

robot at time t. Then, for any given set S ⊆ D, the average time spent by the robot in that

set is equal to the measure of the set, i.e.,

lim
T→∞

∫ T

t=0

1

T
1 (pi(t) ∈ S) dt =

|S|
|D|

, ∀i ∈ {1, . . . , N}, (4.1)

where 1 is the indicator function and |D| denotes the area of domain D. Such a uniformly

ergodic trajectory of the robot implies that all regions of the domain are equally visited by

the robot over long time horizons.

The restrictiveness of the uniform ergodicity assumption is justified by demonstrating

that it allows us to systematically analyze inter-robot encounters which ultimately enables

successful decentralized density regulation and task allocation schemes as outlined in this

chapter and in Chapter 5. This ergodic model allows us to be general about the kinds of

motion patterns that result from the execution of the task—the developed encounter model

is applicable as long as the ergodicity assumptions are satisfied. Notably, the uniformly

ergodic trajectories of the robots will imply that their density over the domain D at any

given time is also uniform.

4.2 Modeling the Encounter Rate

Analyzing the frequency of encounters between robots by tracking the positions of all the

robots at all times is a computationally intensive task. Consequently, similar to the ap-

proach taken in Chapter 3, we simplify this problem by performing a mean-field approxi-

mation. This allows us to replace the effect of all the other robots on a single robot with an

averaged effect. Consequently, we study the encounter characteristics of a single robot—it

does not matter which one since they are all identical under the mean-field approximation.
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Let r denote the physical radius of each robot and δ > r denote the sensory radius of

each robot. This is the maximum distance until which the robot can detect the presence of

another robot (see Fig. 4.1). We define two robots i and j as having an encounter when

each robot is detected within the other’s sensing radius, i.e., ‖pi − pj‖ < r + δ where pi

represents the position of robot i. Upon encountering another robot, each robot executes

a collision avoidance maneuver to resolve the encounter and continue along its trajectory.

We assume that all robots traverse the environment with an average speed v.

As seen in Fig. 4.1, the effective “proximity” cross-section of each robot is a circle

of radius r + δ centered at the robot. Similar to the ideas developed for the molecular

analogue of our problem [125], if we assume that all the other robots are stationary, the

number of encounters experienced by a robot in a time window T is the number of robots

which happen to fall in the sensory area swept by the robot in time window T , given by

Ae(T ) = 2(r + δ)vT, (4.2)

where v is the average speed of the robot (see Fig. 4.1). But, in order to account for the

fact that all other robots are also moving with the same average speed v, we replace the

velocity magnitude v in (4.2) with the mean relative speed between the robots, denoted as

vr, as defined in (3.39).

Consequently, the expected number of encounters experienced by any robot in unit

time, denoted by Ω, is the number of robots which are expected to lie in a region of area

Ae(1):

Ω(λ) = Ae(1)λ = 2(r + δ)vrλ = 2(r + δ)
4

π
vλ, (4.3)

where λ = N/|D| is the density of the robots in the domain D, and |D| denotes the area of

the domain.

While Ω tells us how many encounters a robot can expect, it does not tell us anything

about when the encounters occur. Luckily for us, models of inter-collision times in gaseous
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Figure 4.1: The sensory encounter cross-section area swept by robot i in a time window
T . Any robot whose center falls within this region will experience an encounter with robot
i. Such robots are marked by the dashed circular outlines. Consequently, the expected
number of encounters experienced by robot i in the time window T will be equal to the
expected number of robots which happen to fall in this green shaded region, whose area is
given by Ae(T ). To account for the fact that all robots are moving, the average speed v of
robot i is replaced with the mean relative speed vr.

systems have been extensively studied, e.g., [34, 98]. Directly applying methods from [34],

the following observation derives the distribution of a random variable denoting the time

between encounters experienced by a robot in the swarm.

Observation 1 ([34]). Let τ(λ) be the random variable denoting the time duration between

encountering robots in a swarm of density λ within domainD. Under the uniformly ergodic

motion model of the robots, and using the assumption that inter-robot encounters are in-

dependent events (similar to [126]), τ(λ) can be modeled as an exponentially distributed

random variable with mean,

E[τ(λ)] =
1

Ω(λ)
, (4.4)

where Ω is the expected number of encounters in unit time, given by (4.3).

Proof. Under the conditions mentioned in the statement of the observation, a robot can stay

encounter free for a time duration t+ δt if it stays encounter free for a time duration t and

does not encounter another robot in the time δt,

Prob(τ(λ) ≥ t+ δt) = Prob(τ(λ) ≥ t) Prob(no encounter in time δt). (4.5)
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For convenience of notation, we denote Prob(τ(λ) ≥ t) = Pλ(t). Note that (4.3)

represents the encounter rate of the swarm, i.e.,

Ω(λ)δt = Prob(collision in a small time interval δt). (4.6)

Plugging this into (4.5), we get,

Pλ(t+ δt) = Pλ(t)(1− Ω(λ)δt). (4.7)

This gives us,

Pλ(t) +
dPλ
dt

(t)δt = Pλ(t)(1− Ω(λ)δt), (4.8)

1

Pλ(t)

dPλ
dt

(t) = −Ω(λ). (4.9)

Solving this differential equation, and applying the boundary condition Pλ(0) = 1, we get,

Prob(τ(λ) ≥ t) = e−Ω(λ)t. (4.10)

This proves Observation 1.

We have now obtained an analytical expression for the expected rate of inter-robot en-

counters as well as a characterization of the time-interval between encounters among a

team of robots obeying a specific motion model. In the next section, we consider a moti-

vating application which illustrates how the developed encounter model can help analyti-

cally characterize the effect of inter-robot spatial interference on the productivity of a robot

swarm.
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4.3 Motivating Application: Interference Reduction Using Encounters

As discussed in Section 2.1, swarm robotics systems are being increasingly deployed in

dynamic real-world environments without the need for a central coordinator overseeing the

mission. As the size of these swarms increases, robots tend to spend more time and ef-

fort avoiding collisions between each other, thereby hurting the overall performance of the

swarm [21]. This phenomenon—an inevitable consequence of the competition for phys-

ical space—is called multi-robot interference and has been studied in a wide number of

contexts (see Section 2.1 for a review of relevant literature on this subject).

In the context of multi-robot foraging [35, 55] and collection tasks [36, 37], it has been

shown that while adding more robots to the swarm at intermediate robot densities increases

the total number of objects collected, the increase in performance is sub-linear—caused

by a significant decrease in individual robot performance, e.g., [56, 65]. Owing to the

increased operational cost of deploying large robot teams, one would like to obtain the

desired overall productivity while utilizing as few robots as possible [38]. Achieving such

a trade-off is especially challenging in situations where relatively simplistic robots operate

in dynamic environments without a central coordinator.

For a swarm of robots executing a distributed collection task, this section develops

a decentralized algorithm which enables individual robots to decide between staying in

the region and contributing to the task, or retreating from the region when the negative

effects of interference outweigh the increased productivity of a larger swarm. In order to

allow individual robots to make these decisions, we first develop an analytical model which

describes the fraction of time that a robot spends performing the primary task as opposed to

avoiding collisions with other robots. This allows us to compute an optimal robot density

that minimizes a cost function in order to achieve a trade-off between the deployed team

size and the overall performance of the swarm.

We envision a team of robots collecting objects from randomly scattered “pick-up”
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points and depositing them at “drop-off” points. The locations of these points are unknown

to the robots. Such a distributed collection task is of relevance to multi-robot applications

such as search & rescue, mine-clearing, moving waste to recycling stations, transporting

passengers to destinations, etc. Furthermore, we assume (i) a constant influx of robots

which join the collection task, and (ii) no explicit communication between the robots, thus

inspiring the need for a dynamic, yet decentralized mechanism to regulate interference in

the domain.

As discussed in Section 2.2, entomological studies have shown that many social in-

sect colonies possess the ability to regulate interference using decentralized techniques,

e.g. [127, 128]. In [11], the authors study the ability of Solenopsis Invicta ants to regulate

densities in narrow tunnels and prevent the formation of flow-stopping clogs. This is par-

tially attributed to the tendency of individual ants to reverse out of crowded tunnels thus

reducing the density. Crucially, it has been shown that ants use inter-ant encounters as the

primary sensory mechanism to regulate density and perform functions like task allocation

and division of labor [26].

Inspired by these observations from biology, we allow robots to use local inter-robot

encounter measurements as the only sensory mechanism to regulate interference. Using

the analytical encounter model developed in Section 4.2, we allow robots to measure the

density of the swarm by counting interactions. The rest of this chapter is organized as

follows. Section 4.3.1 introduces the distributed collection task and characterizes the rate

of encountering objects and other robots in the domain. Section 4.3.2 leverages these an-

alytical models to compute the optimal density of robots for achieving a desired trade-off

between the size of the swarm and the overall performance. In Section 4.3.3, we develop

an algorithm which allows each robot to leave the domain if the measured density of robots

in the swarm is above the optimal value. In Section 4.3.4, the algorithm is deployed on a

team of real robots. Section 4.4 concludes the chapter.
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Figure 4.2: Distributed Collection Task: A team of robots pick up objects from randomly
scattered pick-up locations (denoted by �) and deliver them to drop-off locations (denoted
by ×). An object can be delivered to any drop-off location. Pick-up and drop-off loca-
tions are uniformly and independently distributed with densities λp and λd, respectively.
New robots are stationed outside the domain and enter the domain at a constant rate λin,
symbolized by the arrows.

4.3.1 Problem Setup

We consider a homogeneous group of robots—each with a circular footprint of radius r and

a sensing skirt of radius δ ≥ r around it to detect objects and other robots (see Fig. 4.2).

Let v denote the average speed of the robots as they move through the domain.

As illustrated in Fig. 4.2, the domainD ⊂ R2 contains a set of randomly, but uniformly

distributed pick-up locations (marked as �) and drop-off locations (marked as ×) from

where robots can pick up objects and deliver them, respectively. Each robot picks up or

drops off an object if it gets within the sensing distance δ of the corresponding location.

We consider the scenario where picked up objects do not have a specific destination but

can be dropped off at any of the drop-off locations. A robot picks up only one object at a

time, and delivers it to a destination before picking up another object. We assume that the

positions of the pick-up and drop-off points are unknown to the robots, but they know the

corresponding non-zero uniform densities, denoted as λp and λd. Furthermore, new robots

initially outside domain D join the collection task at a constant rate λin, as illustrated in

Fig. 4.2.
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Encounter Models

As robots explore the domain, they cross paths with each other. Similar to the encounter

model described in Section 4.2, we define two robots i and j as having an “encounter”

when they come within each other’s sensing radius, i.e., when ‖pi − pj‖ ≤ r + δ where pi

represents the location of robot i. At this point, each robot executes a collision avoidance

maneuver (e.g., [129, 130]) to resolve the encounter and continues on its intended path.

There are two relevant questions which arise in this context: how often does a given robot

encounter other robots in the domain and how long does it take to resolve an encounter?

Since the models concerning the first question were developed in Section 4.2, we focus on

the second question next.

When robots encounter each other, they execute collision avoidance maneuvers. Let

τr be the random variable which denotes the time it takes for a robot to resolve an en-

counter with another robot. τr will depend on a variety of factors such as the collision

avoidance maneuvers used by the robots, velocities before collision, presence of domain

boundaries, congestion, etc. The uncertainty associated with performing multiple sub-tasks

in robotic/vehicular systems has been modeled using sums of exponential random vari-

ables [79, 131]. Similar to these formulations, we model τr as an exponentially distributed

random variable with a parameter ρ that will vary based on the type of robots and collision

avoidance mechanisms used,

τr ∼ exp(ρ). (4.11)

In practice, the parameter ρ can be estimated by fitting the empirical encounter resolution

times to the distribution in (4.11). Later in the section, we illustrate using simulations that τr

is indeed well-approximated by an exponential distribution for a given collision avoidance

algorithm.
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Object Pick-Up and Drop-Off Rates

Let λp and λd denote the uniform density of object pick-up and drop-off locations in the

domain, respectively. As the robots move through the domain, they pick-up/drop-off ob-

jects when they enter within a sensing distance δ of the respective location. Similar to the

analysis done in Section 4.2, the expected number of locations encountered per unit time

will be,

Ωp(λp) = 2δvλp ; Ωd(λd) = 2δvλd, (4.12)

where Ωp and Ωd correspond to the expectations for pick-up and drop-off locations, re-

spectively. Furthermore, since transport locations are uniformly random, the time elapsed

between encountering two such locations can be modeled as an exponentially distributed

random variable. Let τp and τd denote the time between encountering two successive pick-

up and drop-off locations, respectively,

τp(λp) ∼ exp(Ωp(λp)) ; τd(λd) ∼ exp(Ωd(λd)). (4.13)

The above developed models play a crucial role in the development of a decentralized

mechanism to regulate interference, which is the ultimate goal of this section. We now

introduce a simulation setup where the robots solve the distributed collection task while

using a particular collision avoidance algorithm.

Simulation Setup

We validate the theoretical encounter models developed in this chapter using a simulated

team of differential-drive robots solving the distributed collection task while performing

a uniformly ergodic random walk in the domain. The robots deploy minimally-invasive

barrier certificates [130] to compute safe velocities when they encounter other robots in the

domain.
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Figure 4.3: Histogram of the inter-encounter time τc and the encounter resolution time τr
for a team of simulated robots performing the distributed collection task. In Fig. 4.3a, the
inter-encounter time distribution is well-approximated by an exponential random variable
with mean given in (4.2). Figure 4.3b shows the best-fit exponential distribution to the
encounter resolution times. Best-fit exponential parameter: ρ = 2.44.

For a set of simulation parameters (λ = 0.99, δ = 0.11, v = 1), Fig. 4.3a plots

the histogram of the empirically obtained inter-encounter times, alongside the theoretical

values corresponding to the same density given by (4.4). Figure 4.3b plots a histogram of

the time taken by robots to resolve encounters and plots that against a best-fit exponential

curve (MATLAB fitdist: ρ = 2.44). As seen in both cases, for the given choice

of collision-avoidance algorithm, the empirical distributions are well-approximated by the

developed encounter models.

4.3.2 Continuous-time Markov Chain

At a particular time t, any robot can be described as belonging to one of four distinct states

defined by V = {f, l, fe, le}: free and ready to pick-up an object (f ), free and encountering

another robot (fe), carrying an object (l), and experiencing an inter-robot encounter while

carrying an object (le). The possible transitions between states is illustrated in Fig. 4.4.

Owing to the stochastic nature of the motion of robots and distribution of transport

locations, the transition of a robot from one state to another will be stochastic. Let X(t)

be the stochastic variable which represents the current state of a chosen robot at time t.
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Figure 4.4: Each robot can be in four different states when performing the collection task:
free (f ), free and encountering another robot (fe), loaded with an object (l), loaded and
encountering a robot (le). State transitions are characterized by a continuous-time Markov
chain whose transition rates are illustrated.

It does not matter which robot we pick since they are all identical under the mean-field

approximation (see Section 4.2). The memoryless properties of the inter-robot encounter

and object-transport models developed in (4.4), (4.11), and (4.13) imply that the stochas-

tic variable X(t) evolves according to a continuous-time Markov process [132] over the

possible states V = {f, l, fe, le}.

The probability per unit time of making a transition from state i → j, i, j ∈ V is

characterized by the transition rate qi→j . Impossible transitions are characterized by qi→j =

0. The following theorem derives expressions for the transition rates and computes the

fraction of time spent by each robot in the different states V .

Theorem 2. Consider a team of robots performing the distributed collection task as defined

in Section 4.3.1. Let X(t) ∈ V be the stochastic variable denoting the current state of a

given robot at time t. Utilizing the encounter as well as object transport models developed

in (4.4), (4.11), and (4.13), the fraction of time spent by each robot in a state j ∈ V can be

computed by evaluating the unique stationary distributions

πj = lim
t→∞

Prob(X(t) = j), j ∈ V , (4.14)
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whose expressions are given as,

πf =
λd/λp

(1 + λd/λp)
(

1 + cλ
ρ

) , (4.15)

πl =
λp
λd
πf ; πfe =

cλ

ρ
πf ; πle =

cλ

ρ
πl, (4.16)

where c = 2(r + δ)vr.

Proof. The transition rates characterizing the CTMC illustrated in Fig. 4.4 can be defined

as follows.

• qf→fe and ql→le represent the rates at which a free (or loaded) robot encounters an-

other robot in the domain, which is given by (4.3).

• qfe→f and qle→l represent the rates at which a robot resolves an encounter when it is

either free or loaded. From (4.11), this is simply the parameter ρ.

• qf→l and ql→f represent the rate at which a robot picks up objects and drops them

off, respectively, given by (4.12).

Given the transition rates qi→j, i, j ∈ V , we can compute the stationary distribution of the

CTMC by constructing the generator matrix G [132], which is given as,

G =



−(cλ+mλp) mλp cλ 0

mλd −(cλ+mλd) 0 cλ

ρ 0 −ρ 0

0 ρ 0 −ρ


, (4.17)

where c = 2(r + δ)vr and m = 2δv. The stationary distribution π = (πf , πl, πfe, πle)
T can

be computed by solving the equation πTG = 0. The uniqueness of the stationary distribu-

tion π follows from the irreducibility and positive-recurrence properties of the embedded

discrete-time Markov chain corresponding to the CTMC illustrated in Fig. 4.4.
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Figure 4.5: The theoretical evolution of T (λ)λ as the density of robots (measured in
robots/m2) increases is closely matched with the values obtained from simulations with
robots employing barrier certificates for collision avoidance. As seen, beyond a certain
density, the total output of the swarm increases sub-linearly with the robot density since
individual robots spend more time avoiding collisions than transporting objects. Here, we
are primarily concerned with the performance of the swarm at intermediate densities—the
catastrophic jamming occurring at higher densities is not discussed.

Since ql→f represents the rate at which robots deliver objects and become free, the

expected number of objects delivered per robot per unit time, denoted by T , is given as,

T (λ) = ql→fπl = 2δvλdπl(λ). (4.18)

For the simulation setup introduced in Section 4.3.1, Fig. 4.5 plots the total number of

objects delivered by the robots per unit time per unit area T (λ)λ, against the density λ

(parameters: v = 0.1, δ = 0.11, λp = 0.82, λd = 0.66, ρ = 2.44). As seen, the actual

productivity of the swarm closely matches the theoretically expected output, barring devia-

tions due to edge effects and the stochastic nature of inter-robot encounters. This section is

primarily concerned with the performance of the swarm at intermediate densities—Fig. 4.5

does not consider very large densities where complete robot jamming can be expected,

e.g., [64].

Inspired by the sub-linearity in the total output of the swarm at intermediate densities
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(see Fig. 4.5), we would like to compute the optimal density of deployed robots so as

to achieve a balance between the swarm size (characterized by λ) and the total output of

the swarm (characterized by T (λ)λ). Such a trade-off can be encoded in the following

optimization problem,

argmin
λ≥0

J(λ) =
C

T (λ)λ
+ λ, (4.19)

where λ is the density of robots deployed in the domain, and C is chosen to trade-off the

cost of deploying robots and the effectiveness of the swarm at performing the task. Setting

the gradient of J(λ) to zero and solving analytically, we get the optimal density of robots,

λ∗ = argmin
λ≥0

J(λ) =

√
C(1 + λd

λp
)

2δvλd
. (4.20)

In the next section, we allow a robot swarm to autonomously regulate its density to the

optimal value by enabling individual robots to retreat from the domain when they sense a

higher-than-optimal density.

4.3.3 Decentralized Density Control

The primary aim of this section is to develop an algorithm that allows individual robots to

retreat from the domain when they detect a higher-than-optimal density. The first part of

this section develops an ensemble-level control framework for reducing the robot density.

A decentralized implementation is later discussed. We also develop an estimation algorithm

that allows each robot in the domain to measure the time-varying density of robots λ(t).

We assume that robots enter and exit the domain by driving through any section of the

boundary of domain D (as depicted in Fig. 4.2).

Ensemble Closed-Loop Control

Given the density of pick-up and drop-off locations λp and λd, if the density of robots at

time t, denoted as λ(t), is higher than the optimal λ∗, we would like a certain fraction of
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the robots to leave the domain (we ignore the degenerate case when λ∗ = 0). Let ελ be the

number of robots leaving per unit area per unit time. Then, the population dynamics in the

domain can be expressed as,

λ̇(t) = λin − ε(λ(t))λ(t), (4.21)

where λin denotes the known and constant number of robots added to the swarm per unit

area per unit time (as discussed in Section 4.3.1). The following choice of ε feedback-

linearizes the above system while driving the density of the swarm to λ∗ using a “one-sided”

proportional controller,

ε(λ(t)) =


1
λ(t)

[λin −Kp(λ
∗ − λ(t))], λ > λ∗

0 , otherwise
, (4.22)

where Kp is an appropriately chosen proportional gain. A proportional controller was

chosen primarily as a simple demonstration of the control mechanism; in general, based

on the desired performance requirements, any controller can be used. Applying (4.22)

in (4.21), we get the ensemble closed loop population dynamics,

λ̇(t) ≡


Kp(λ

∗ − λ(t)), λ(t) > λ∗

λin , otherwise
. (4.23)

The control parameter ε(λ(t)) can be interpreted as the probability per unit time with which

a robot should leave the domain as a function of the density λ(t). Thus, in order for each

robot to individually compute ε, it must estimate the density of robots in the domain.
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Estimation

The robots performing the distributed collection task are not equipped with sophisticated

sensors, but can detect encounters with other robots as they move through the domain,

as defined in Section 4.3.1. Let ei(t) denote the total number of robots currently in an

encounter with robot i. New encounters experienced by robot i can be characterized by an

index variable,

Hi(t) =


1, if ∃ t1 < t s.t., ∀x ∈ [t1, t), ei(x) < ei(t)

0, otherwise
. (4.24)

Denote yiL(t) as the total number of encounters experienced by robot i in a time interval

[t− L, t], t ≥ L,

yiL(t) =

∫ L

t−L
Hi(t)dt. (4.25)

Given this measurement and the encounter model described by (4.4), the Maximum-likelihood

Estimate (MLE) [133] of the swarm density for robot i at time t > L is,

λ̂i(t) =
yiL(t)

2(r + δ) 4
π
vL

. (4.26)

The measurement horizon L should be chosen so as to achieve a trade-off between accuracy

of estimate and the ability of the robot to track changing densities.

Decentralized Implementation

Using the maximum likelihood density estimate λ̂i(t), each robot computes its probability

of leaving the domain ε(λ̂i(t)) using (4.22). The operations of each robot, executed every

dt seconds in software, is illustrated in Algorithm 4.

Before deployment, each robot computes the optimal density λ∗ using the density of

transport locations and influx rate of robots. After an initial wait of L seconds (during
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Algorithm 4 Voluntary Retreat Algorithm

1: Initialize λ̂i = 0, k = 0
2: Given λp, λd, λin, and C, compute λ∗

3: for each time t = kdt, t > L do
4: Compute yiL(t) from (4.25)← detecting encounters
5: Compute λ̂i(t) from (4.26)
6: Compute ε(λ̂i(t)) from (4.22)
7: Leave the domain with probability ε(λ̂i(t))dt
8: k = k + 1
9: end for

which time robots are collecting encounter information), each robot computes the MLE

estimate in step 5 and the resulting ε in step 6. Finally, the robot flips a biased coin to leave

the domain with a probability ε(λ̂i(t))dt.

Each robot i will have a different estimate of the density; consequently, ε(λ̂i(t)) will

vary from one robot to another. While this implies that robots behave differently from each

other, we demonstrate in the next section that, for a team of real world robots, the algorithm

indeed allows the robots to regulate the density of the swarm to the optimal value.

4.3.4 Experimental Results

The developed algorithm was deployed on the Robotarium [46], a remotely accessible

swarm robotics testbed. The experiment was initialized with 8 robots starting inside the el-

liptical domain (with 1.2m and 0.8m as the semi-major and semi-minor axis length) shown

in Fig. 4.6a, deploying minimally-invasive barrier certificates [130] for collision avoidance.

An additional 4 robots were initially placed outside and entered the domain at a steady rate.

Pick-up (�) and drop-off (×) locations are marked on the domain.

For the following parameters: λp = 1.32, λd = 1.32, C = 0.03, δ = 0.1, v = 0.1, each

robot computes the optimal swarm density using (4.20). The robots perform an unbiased

random walk in the domain while encountering other robots. Using Algorithm 4 (with

parameters L = 90, dt = 0.03, Kp = 0.03, λin = 0.02), each robot flips a biased coin to

decide whether it should stay or retreat.
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The experiment was repeated 5 times to average the results, and demonstrate the consis-

tent performance of the voluntary retreat algorithm. Figure 4.6b plots the mean of the true

robot population against the optimal value, along with the standard deviation (represented

by the shaded region). As seen, the rate at which robots retreat reduces as the true pop-

ulation approaches the optimal value, in accordance with the closed-loop dynamics given

in (4.23). Even with variations in the density estimates of the robots as well as the constant

influx of new robots (indicated with upwards jumps in Fig. 4.6b), the closed loop algorithm

allows the population to settle around the optimal value.

4.4 Conclusion

In this chapter we saw that the proximity encounters naturally occurring among robots

operating in a given environment can help characterize the efficiency of the robot swarm

at performing a distributed collection task, while also enabling the swarm to maximize this

efficiency in a decentralized and communication-free manner. To this end, we allowed

individual robots to estimate the current robot density using encounter measurements and

voluntarily leave the domain if the density was higher than the optimal value.

Using ideas from the kinetic theory of gases, we saw the development of a higher-

fidelity continuous-time encounter model as compared to the discrete-time version devel-

oped in Chapter 3. The uniform ergodicity assumption—upon which the validity of the

encounter model hinges—allows us to remain general about the exact motion of the robots

in the environment; the developed models work as long as the uniform ergodicity assump-

tion is satisfied.
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Figure 4.6: Experimental verification of the Voluntary Retreat Algorithm on a team of 12
real robots operating on the Robotarium. An overhead projector is used to project additional
information onto the robot arena. The experiment begins with 8 robots inside the elliptical
domain seen in Fig. 4.6a. Robots stationed outside enter at a steady rate λin. Blue and
red circles projected around each robot signify free (f) and loaded (l) robots, respectively.
Green circles indicate that a robot has decided to retreat from the domain. These robots
drive out of the elliptical domain via any section of the boundary. The robot population data
in Fig. 4.6b is averaged over 5 experimental runs to demonstrate the consistent performance
of the algorithm, with one standard deviation depicted by the shaded region. For a different
set of initial conditions and simulation parameters, Fig. 4.6c highlights the ability of the
Voluntary Retreat Algorithm to maintain the population of robots at the optimal value.
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CHAPTER 5

ENCOUNTERS IN HIGH-DENSITY ROBOT SWARMS

The previous chapter saw the development of a continuous-time encounter model which

characterized the expected rate of inter-robot encounters as a function of the robot size,

speed and swarm density. Central to this model, was the notion of an effective encounter

area swept by a given robot as it traversed the environment (see Fig. 4.1). Under the as-

sumption that robots were uniformly distributed in a given region, we computed the ex-

pected number of encounters per unit time for each robot.

In this section we highlight how, due to the fact that individual robots have a finite

footprint area, such an assumption may introduce inaccuracies in the encounter model—

especially at higher robot densities. As also discussed in Chapter 3, such inaccuracies

can negatively affect the performance of the encounter-based algorithms developed in this

thesis, particularly in the context of densely packed swarms. In order to explicitly capture

the fact that real robots have a finite footprint which cannot overlap with other robots,

we use ideas from the Enskog theory of high-density gases [39] to analytically derive a

correction factor accounting for the area occupied by each robot. The efficacy of this

continuous-time encounter model is then demonstrated by developing an encounter-based

task allocation algorithm where the swarm achieves a desired task distribution by switching

between tasks when they encounter other robots.

5.1 Enksog Model

For a team of N robots moving in a planar and compact domain D with uniformly ergodic

trajectories, Section 4.2 used ideas from the kinetic theory of gases to characterize the

encounter rates experienced by the robots. However, as observed in many studies on the

nature of inter-particle collisions (for e.g., see [134, 135]), the expression for the encounter
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rates given in (4.3) is not accurate when the total area occupied by the robots is a significant

fraction of the domain D. This phenomenon is attributed to the fact that, in situations

of high density, it is incorrect to assume that the local density of robots in the effective

encounter area represented by Ae is λ (see Fig. 4.1). The following two factors contribute

to a variation in the local density within Ae, as observed in [40]:

1. Given one robot, it is unlikely to find another robot center within a distance of (r+δ)

since, as discussed in Chapter 4, the robots execute collision avoidance maneuvers

when their sensors detect each other.

2. For a slightly larger separation distance than (r+δ), there is an increased probability

of finding another robot (compared to examining a random section of the domain).

This is due to the fact that two nearby robots encounter other robots from all sides

except the sides facing each other, resulting in an effective “attraction” that tends to

keep the robots from separating.

Since the encounter-based algorithms developed so far rely on some form of comparison

between encounter measurements and what is predicted by the encounter model, an inac-

curate model will affect the performance of such an algorithm.

In order to account for these inaccuracies, the molecular physics literature has intro-

duced a multiplicative density correction factor X (λ) > 1 [39], which theoretically mod-

els these variations in local density and can be used to address the same phenomena in a

swarm of robots. Using this correction factor, the density λ in (4.3) would be replaced with

X (λ)λ. Note that the correction factor applies for the robot density measured in the small

region with area Ae (as depicted in Fig. 4.1), and not for the average density in the entire

domain D.

The Enskog correction factor X (λ) represents the ratio of the local density of robots

centers at the point of inter-robot contact, to the average density in the domain [135]. A

crucial result shown in [136] allows the interpretation of X as the pair correlation func-
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tion [123] for a pair of disks, evaluated just outside their point of contact. Given a set of

points (representing robot centers in this thesis), the pair correlation function g(d) evaluates

the relative likelihood of finding a point at a distance d from a given point when compared

to a completely uniform distribution of points.

Under this interpretation, we obtain an analytical expression for X (λ) by analyzing the

spatial distribution of robots at any time instant t using ideas from stochastic geometry—the

study of random point patterns and the properties that they satisfy (e.g. [33, 110]). Similar

to the models developed in Chapter 3, we use hard-core point processes to capture the fact

that the robots always maintain a distance r + δ with other robots (see Definition 3 for a

formal description of hard-core point processes). Motivated by the empirical simulations

presented in Section 3.3.3, we make the following observation about the instantaneous

spatial distribution of robot centers in the domain.

Observation 2. For a swarm of N robots operating in domain D under the uniformly

ergodic motion model given in Section 4.1, the robot locations at any time t can be well-

approximated by a Matern type-II hard-core point process [111] within domain D with

density λ = N/|D|, and an inhibition distance equal to the distance maintained between

the robots, i.e., ∆ = r + δ.

The above observation allows for the derivation of an analytical expression for X (λ) as

seen in the following theorem. Furthermore, when applied as a correction factor for com-

puting mean inter-encounter times, it yields valid results compared to empirical estimates

obtained from swarm robot simulations.

Theorem 3. For a swarm of N robots each with a physical footprint of radius r and a

sensory radius δ operating in a domain D, variations in the local density of robots in the

region represented by area Ae (see Fig. 4.1) can be modeled using the Enskog correction
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factor which is parameterized by the average density λ = N/D, and is given as,

X (λ) =
2c

(c− kd)(1− e−λpc)

[
1− 1− e−λp(2c−kd)

(2c− kd)(1− e−λpc)
c

]
, (5.1)

where

c =π(r + δ)2, kd =

(
8π

3
−
√

3

)
(r + δ)2, λp =

1− e−λc

c
. (5.2)

Proof. Similar to [136], the Enskog correction factor can be interpreted as the pair corre-

lation function between two robots evaluated just outside their point of contact. Utilizing

Observation 2, the correction factor can be given as,

X (λ) = lim
dr→0

gλ(r + δ + dr), (5.3)

where gλ(·) is the pair correlation function for a Matern type-II hard-core point process.

Plugging the expression for the pair correlation function of a Matern type-II hard core

process from [123] into (5.3), we obtain the expression in (5.1).

Theorem 3 allows us to redefine the expected number of encounters per unit time and

the inter-encounter times to account for the non-zero area covered by the footprint of the

robots. The corresponding corrected variables are now represented using bold characters

Ω and τ respectively. Thus,

Ω(λ) = 2(r + δ)
4

π
vX (λ)λ, (5.4)

and the time between encountering robots in the domain is an exponentially distributed

random variable τ (λ) with an adjusted mean

E[τ (λ)] =
1

Ω(λ)
. (5.5)
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5.1.1 Simulation

In this section, we demonstrate the validity of the Enskog-corrected encounter model de-

veloped on a swarm of simulated robots operating in a rectangular domain D. The planar

motion of each robot is modeled using single-integrator dynamics:

ẋ = u, (5.6)

where u is the control velocity applied to the robot. These dynamics are propagated for-

ward using standard Euler integration techniques. As specified by the motion model in

Section 4.1, the robots perform a uniformly ergodic random walk in the domain. More

specifically, the robots travel in straight lines at constant speed until they encounter other

robots or the walls of the domain. When an encounter is detected between robots, their

velocity components along the axis of collision are exchanged. When robots encounter a

wall, they turn around with a reflected velocity vector. For all the robots, the mean time

between encountering other robots is measured.

For a set of simulation parameters (v = 0.1, δ = 0.012, r = 0.018) and for a range

of robot densities λ, Fig. 5.1 compares the mean of the inter-encounter time intervals pre-

dicted by the density-corrected version in (5.5) and the uncorrected version in (4.4) against

the empirically measured mean of inter-encounter times experienced by the robots. As

seen, inclusion of the Enskog correction factor in the calculations leads to a more accu-

rate prediction of the true encounter rates experienced by the robots. The accuracy of the

resulting model is higher than what is typical in molecular system simulations (see [135]).

5.2 Task Allocation Using Encounters

As a motivating application to highlight the salient features of the developed encounter

model, this section formulates a stochastic task-switching policy which allows a swarm of

robots to autonomously allocate themselves among a set of pre-defined tasks using inter-
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Figure 5.1: Comparison of empirically obtained estimates of mean inter-encounter times
in a robot swarm of varying density against the predictions of two different theoretical
models—with and without the Enskog correction factor X (λ) as given by (5.5) and (4.4),
respectively. Each robot performs a constant-velocity uniformly ergodic random walk in
the domain, while encountering other robots. For the simulation parameters (v = 0.1, δ =
0.012, r = 0.018), the empirical inter-encounter times are obtained by averaging the en-
counter rates over all the robots in the swarm. As seen, the Enskog correction factor leads
to a more accurate prediction of the true encounter rates experienced by the robots.

robot encounters as the trigger for switching between tasks. We assume that each robot has

the sensory capability to detect an encounter as well as the current task assigned to the robot

that it is encountering. This form of local information exchange is frequently seen in insect

colonies [137], and can be realized in many ways, e.g., using near-field communication,

color/infrared sensors, chemical signaling, etc.

In order to allow robots to transition from performing one task to another while only

being equipped with such short-range parsimonious sensors, we allow some robots in the

domain to be idle—they move around the domain but do not perform a designated task—

instead they act as a resource. Idle robots can take on new tasks when they encounter robots

performing active tasks and active robots can enter this idle state when they encounter other

robots performing the same task. This task-transition mechanism was partially inspired by

similar observations in ant-colonies [138], where idle ants take up tasks based on local

interactions with other ants.

The transition of each robot between tasks is regulated via a set of probabilities which

act as control knobs. More specifically, for each task, we assign two transition probabil-
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ities: one which determines the affinity of the robot to take up the task and one which

determines the affinity of the robot to stop performing the task and become idle. These

transition probabilities affect the system performance in two ways—the ratio of the prob-

abilities determine the final allocation of the swarm while their magnitudes determine the

rate at which the swarm approaches a given allocation.

We now focus on the first of these two aspects—we illustrate how the ratio of the tran-

sition probabilities can be chosen to determine the equilibrium allocation levels achieved

by the swarm. To that end, we derive the dynamics for the expected number of robots per-

forming each task, and demonstrate how the desired equilibrium allocation levels can be

attained by appropriately choosing the ratio of these transition probabilities.

5.2.1 Transition Rules

Consider a swarm of N robots operating in a planar and compact domain D ⊂ R2. The

swarm has to be allocated to K tasks denoted as T1, T2, . . . , TK according to a desired

allocation, which is specified by ρ∗ = [ρ∗1, . . . , ρ
∗
K ] where ρ∗j represents the desired fraction

of robots performing task Tj . At any given time, some robots in the swarm are not assigned

to any task, but are simply moving around the domain, waiting to take up a task. We

categorize these idle robots under the “task” T0. The following definition specifies the

rules according to which robots switch between tasks.

Definition 13. The transition of each robot between tasks is triggered by encounters with

other robots. An encounter between robot i and j is said to occur when they are detected

within each other’s sensing radius, i.e., when ‖pi − pj‖ ≤ r + δ, where pi represents the

position of robot i. At this point, each robot is able to detect an encounter as well as

detect the current task allocated to the robot it is encountering. The task transitions occur

according to the following rules:

1. When an idle robot i encounters an active robot j executing task Tm, m ∈ {1, . . . , K},

robot i takes up task Tm with probability 0 ≤ pm0 ≤ 1.
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2. If robot i encounters robot j, and they are both assigned to the same task Tm, m ∈

{1, . . . , K}, both robots choose to leave their tasks, independently of one another,

and become idle with probability 0 < p0m ≤ 1.

3. All other encounters result in no task switching.

The control probabilities pm0 and p0m, m ∈ {1, . . . , K} determine the task allocation

levels as well as the rate of task-transitions occurring in the swarm. In particular, we will

demonstrate how the ratio of the control probabilities pm0 and p0m determines the desired

allocation levels for task Tm. These ratios are transmitted to the robots prior to deployment.

It should be noted that the presence of idle robots is necessary to allow the swarm to achieve

a desired allocation ratio, i.e. the condition p0m > 0 must hold for all m ∈ {1, . . . , K}.

Next, we study how the task allocation of the swarm evolves based on the transition prob-

abilities and the encounters occurring among the robots.

5.2.2 Task Allocation Dynamics

As described above, task switching between the robots is triggered by inter-robot encoun-

ters. The switching is determined based on the task of the encountering robots and certain

transition probabilities, as described in Definition 13. Since the occurrence of inter-robot

encounters is stochastic in nature, the number of robots performing a task at any given time

is a random number. However, by leveraging the encounter model developed in Section

5.1, we can derive dynamical equations for the expected number of robots performing a

task at any given time.

LetNj(t) represent the expected number of robots assigned to task Tj, j ∈ {0, . . . , K}

at time t. Here, the bold character represents the expectation of a random variable. In this

chapter, we assume that no robots enter or leave the collective, and hence, the total number

of robots is conserved:
K∑
j=0

Nj(t) = N, ∀ t ≥ 0. (5.7)
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The expected density of robots performing each task isλj(t) = Nj(t)/|D|, j ∈ {0, . . . , K}.

Denote λ̄ = N/|D| to be the total density of robots in the domain.

We assume that at time t = 0, the robots are randomly assigned some task Tj, j ∈

{0, . . . , K}, according to an initial distribution µ = [µ0, . . . , µK ] where
∑K

j=0 µj = 1, and

µj > 0,∀j ∈ {0, . . . , K} ensuring that each task is allocated to at least one robot within

the swarm. Thus, the expected densities of robots assigned to each task at time t = 0 are,

λj(0) = µjλ̄, ∀j ∈ {0, . . . , K}. (5.8)

The following theorem derives a differential equation for the expected density of robots

executing task Tj at any given time t, given the initial conditions in (5.8).

Theorem 4. The evolution of the expected density of robots performing tasks Tj, j ∈

{1, . . . , K} is given by the system of differential equations

λ̇j(t) = 2(r + δ)
4

π
vX (λj(t))λj(t)p0j [rjλ0(t)− λj(t)] , j ∈ {1, . . . , K} (5.9)

where rj is the ratio of control probabilities corresponding to task Tj:

rj =
pj0
p0j

, (5.10)

and the initial conditions are given by (5.8).

Proof. According to the task transition rules described in Definition 13, the expected num-

ber of robots assigned to task Tj, j ∈ {1, . . . , K} at time t + dt is given by the equation,

Nj(t+ dt) = Nj(t) +N0→j(dt)−Nj→0(dt), j ∈ {1, . . . , K}, (5.11)

where Ni→j(dt) denotes the expected number of robots which switch from task Ti to task

Tj in time dt.
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At time t, under the mean-field approximation and the motion model developed in

Section 4.1, the time duration between encountering two robots which are allocated to task

Tj is characterized by the exponential random variable τ (λj(t)),∀j ∈ {0, . . . , K} (see

Observation 1 and Theorem 3).

Applying the rules from Definition 13, ∀j ∈ {1, . . . , K}, we get,

N0→j(dt) = Prob(τ (λj) ≤ dt) pj0N0(t), (5.12)

Nj→0(dt) = Prob(τ (λj) ≤ dt) p0jNj(t). (5.13)

Invoking (4.10) with the density-corrected terms from (5.4),

Prob(τ (λj) ≤ dt) = 1− exp(−Ω(λj)dt). (5.14)

Substituting (5.12), (5.13), (5.14) in (5.11) we get,

Nj(t+ dt)−Nj(t) = (1− exp(−Ω(λj)dt))pj0N0(t)

− (1− exp(−Ω(λj)dt))p0jNj(t). (5.15)

Dividing by dt and taking the limit dt→ 0,

Ṅj(t) = lim
dt→0

(1− exp(−Ω(λj)dt))

dt
pj0N0(t)

− lim
dt→0

(1− exp(−Ω(λj)dt))

dt
p0jNj(t), (5.16)

we get,

Ṅj(t) = Ω(λj)pj0N0(t)−Ω(λj)p0jNj(t). (5.17)
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Dividing this equation by |D|, we get,

λ̇j(t) = Ω(λj)(pj0λ0(t)− p0jλj(t)),∀j ∈ {1, . . . , K}. (5.18)

Denoting the ratio of the control probabilities as in (5.10), we get

λ̇j(t) = Ω(λj)p0j

[
rjλ0(t)− λj(t)

]
, (5.19)

which proves Theorem 4.

Note that, since the total number of robots is conserved, the expected density of idle

robots is simply given by

λ0(t) = λ̄−
K∑
j=1

λj(t), (5.20)

where λ̄ = N/|D|. Equation 5.9 describes the evolution of the expected density of robots

performing each task under the developed task allocation paradigm. By deriving the equi-

librium points of this dynamical system, and analyzing their stability, we can allow the

swarm to achieve any desired task allocation ratio by modifying the transition probabili-

ties.

5.2.3 Equilibrium Analysis

We now derive the equilibrium densities for the dynamical system presented in Theorem 4.

This allows us to choose the transition probabilities described in Definition 13 based on a

desired task allocation ρ∗.

Theorem 5. The task allocation algorithm is said to have reached an equilibrium al-

location, represented by expected equilibrium densities λj,eq, when λ̇j(t) = 0,∀j ∈

{0, . . . , K}. If the system has achieved equilibrium allocation, then for each j ∈ {1, . . . , K},

λj,eq = 0, or λj,eq = rjλ0,eq (5.21)
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where rj is given by (5.10). Furthermore, the first equilibrium point in (5.21) is unstable

and the second one is locally asymptotically stable.

Proof. For an active task j ∈ {1, . . . , K}, setting the derivative in (5.17) to zero, we get,

X (λj,eq)λj,eq

[
pj0λ0,eq − p0jλj,eq

]
= 0, (5.22)

giving us the equilibrium points in (5.21).

Next, we analyze the stability of the equilibrium points, by linearizing the non-linear

dynamics in (5.17) around the equilibrium points, and analyzing the stability of the ob-

tained linear system. For the system of dynamical equations λ̇j = f(λj), a small perturba-

tion from the equilibrium can be approximated as,

f(λj,eq + ε) = f(λj,eq) +
∂f

∂λj
(λj,eq)ε. (5.23)

Since the Enskog correction factor X (λj) > 1 varies very slowly with λj (see [123]),

∂X
∂λj

(λj) ≈ 0, (5.24)

we treat the term 2(r + δ)vrX (λj,eq) > 0 as a constant denoted by c̄. Then,

∂f

∂λj
(λj,eq) = c̄

[
pj0λ0,eq − 2p0jλj,eq

]
. (5.25)

As discussed in Section 5.2.1, the presence of idle robots is necessary for the proper func-

tioning of the developed method, i.e., λ0,eq > 0. Thus, for the first equilibrium point, we

get,
∂f

∂λj
(0) = c̄pj0λ0,eq > 0, (5.26)
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implying instability, and for the second equilibrium point we get,

∂f

∂λj

(pj0
p0j

λ0,eq

)
= −c̄pj0λ0,eq < 0, (5.27)

implying local asymptotic stability. This proves the theorem.

The second equilibrium point in (5.21) demonstrates the relation via which we can

achieve a desired task allocation of the swarm by appropriately selecting the ratio of the

control probabilities p0j and pj0, j ∈ {1, . . . , K}.

5.2.4 Simulation Results

We first demonstrate the performance of the developed task allocation strategy on a swarm

of simulated robots operating in a rectangular domain D. The robots are to be allo-

cated among three different tasks T1, T2, and T3, with the following distribution: ρ∗ =

[0.3, 0.1, 0.4]T . This implies that the remaining 20% of the robots are expected to remain

idle at any given time, waiting to take up tasks. Each task satisfies the uniform ergodic-

ity conditions laid out in Chapter 4.1. When robots encounter each other, they deploy a

collision avoidance algorithm to resolve the encounter and continue along their intended

trajectories. We use control barrier certificates [130] as the collision avoidance algorithm

since they minimally alter the control inputs of the robots to ensure safety and can be exe-

cuted in real time.

Given the desired allocation specifications ρ∗ and the total density of robots in the do-

main λ̄, we can express the desired density of robots performing active tasks and remaining
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idle (indicated by task T0),



λ0,des

λ1,des

λ2,des

λ3,des


=

1− 1Tρ∗

ρ∗

 λ̄, (5.28)

where 1 represents a vector of ones. In this equation, λ0,des is the expected density of

robots that are idle in the swarm and are acting like a resource.

We can now use (5.21) to compute the desired ratio of the control probabilities

rj =
pj0
p0j

=
λj,des

λ0,des

, j = 1, 2, 3. (5.29)

These ratios corresponding to the desired allocation are transmitted to all the robots prior

to deployment. As an example, each robot can then compute the control probabilities as

follows: let p0j = 0.9, and compute pj0 = rjp0j, j = 1, 2, 3. In the next section, we

demonstrate how each robot can select appropriate values for the control probabilities to

regulate the rate at which robots switch between different tasks.

Once deployed, the robots achieve the desired distribution among the tasks by using

inter-robot encounters as the trigger for switching between tasks and simply applying the

rules presented in Definition 13. For a chosen set of parameters δ = 0.02, r = 1.5δ, v =

0.1, Fig. 5.2 shows the evolution of the task allocation ratios for a swarm with density

λ̄ = 50 robots/m2. On average, the swarm achieves the allocation ratios predicted by the

theoretical curves plotted alongside (see Theorem 4). It is worth noting that the simulation

results in Fig. 5.2 correspond to a single simulation run.

In order to illustrate the self-regulatory nature of this algorithm, Fig. 5.3 considers

a scenario where 40% of the robots currently allocated to task T3 suddenly experience

failure. At a certain point in time, these robots are removed from the simulation. This
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Figure 5.2: Performance of the developed task allocation algorithm in a swarm of simulated
robots executing three different tasks. For a desired allocation of robots performing active
tasks ρ∗ = [0.3, 0.1, 0.4]T and parameters λ̄ = 50 robots/m2, δ = 0.02, r = 1.5δ, v =
0.1, the solid lines depict the expectation of the allocation percentages as predicted by
Theorem 4, and the three different dashed lines depict the percentage of robots allocated to
each task as the simulation progresses. As seen, the swarm achieves the desired allocation,
with an expectation predicted by the theoretical curve. The illustrated graphs correspond
to a single simulation run.

implies that the allocation ratios are disturbed. Fig. 5.3a illustrates the performance of the

task allocation algorithm for one simulation run, and Fig. 5.3b averages the performance of

the swarm over 20 simulations to better highlight the response of the allocation algorithm

to the failure. As seen, the swarm autonomously regulates the task allocation back to the

designed levels, and is robust to changes in the number of robots operating at any given

time, as long as a high enough population is maintained. While Fig. 5.3 illustrates the

average performance of the task allocation algorithm over 20 simulation runs, it does not

provide any information about the distribution of the performance over individual runs.

To this end, Fig. 5.4 presents errors bars corresponding to one standard deviation of the

data collected over 20 simulation runs. These are overlayed on the graphs for the average

allocation of robots in each task.
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(b) 20 simulation runs

Figure 5.3: Robustness of the developed encounter-based task allocation policy to individ-
ual robot failures. At time t = 120s, 40% of the robots in task T3 experience failure, and are
removed from the simulation. As seen in both Fig. 5.3a and Fig. 5.3b, this disrupts the task
allocation of the swarm. The swarm then autonomously regulates the allocation ratios back
to the desired levels demonstrating that this strategy is robust to changes in the number of
robots. While Fig. 5.3a illustrates the performance of the swarm over one simulation run,
Fig. 5.3b averages the allocation over 20 simulations to highlight the effect of the swarm
failure at time t = 120s.

5.2.5 Adaptive Transition Rates

So far, we developed a decentralized task allocation algorithm which allowed the robot

swarm to divide itself among a set of tasks using inter-robot encounters as a trigger for

switching between tasks. Since no robot knows the global allocation state of the swarm,

robots continue to switch between tasks—as a function of the steady rate of inter-robot

encounters—even after the desired allocation has been reached. Consequently, this con-

stant task-switching reduces the effectiveness of the robots at performing any one task. For

example, frequent switching between a transportation task and a surveillance task might

render the robot ineffective at performing either function. Partially, this behavior is at-

tributed to the open-loop nature of the task allocation algorithm—robots switch between

tasks regardless of the current state of the allocation.

We now demonstrate that inter-robot encounters can enable the robots to measure the

current allocation of the swarm and enable a closed-loop control of the rate of task transi-

tions. We develop a feedback mechanism which allows each robot to measure the current

allocation of the swarm and then regulate the transition rates pj0 and p0j while maintaining
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(c) Errorbars for task T3

Figure 5.4: Standard deviations of the swarm task allocation in the presence of individual
robot failures. The error bars in Fig. 5.4a-5.4c correspond to one standard deviation (on
each side) of the task allocation levels collected over 20 simulation runs for tasks T1, T2,
and T3, respectively. These error bars are overlayed on the averaged task allocation values
which were presented in Fig. 5.3b.

a constant allocation ratio rj (see (5.10)). Thus, the robots can regulate the ingress and

egress from each task without affecting the overall task allocation specifications. Such a

mechanism allows the swarm to prioritize uninterrupted task execution when the desired

allocation levels have been reached—by reducing the task-transition probabilities.

On the other hand, when the current allocation is far from the desired, this feedback

mechanism can allow the robots to transition between tasks at a higher rate, thus helping the

swarm achieve the desired task allocation faster. This also helps the disturbance rejection

capabilities of the algorithm, by allowing the swarm to increase task transition rates in

response to a detected deviation in the allocation levels. By adaptively varying the task-

transition rates as a function of the measured task allocation of the swarm, we achieve a

faster response of the task allocation algorithm as well as better steady state tracking of the

desired task allocation.

The first part of this section develops an ensemble level controller which regulates the

rate of task transitions occurring in the swarm as a function of the current allocation. A

decentralized implementation of the controller is later discussed, for which we develop an

estimation algorithm to allow each robot to measure the current allocation of the swarm

using inter-robot encounters.
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Swarm-level Control

Let ρ(t) = [ρ1, . . . , ρK ] represent the task allocation ratios of the robot swarm at a given

time t:

ρj(t) =
λj(t)

λ̄
, j ∈ {1, . . . , K}. (5.30)

Given a desired allocation ρ∗, it would be desirable to increase the rate of transitions be-

tween tasks when ρ(t) is farther away from ρ∗ and reduce it when ρ(t) is closer to ρ∗. One

way to achieve this behavior is to use a proportional controller which modifies the rate

according to the error in the allocation. However, instead of modifying the rate linearly

with the Euclidean distance between the true and the desired allocation, we use a logistic

function mapping [139], F : [0, 1]→ R+, defined as,

F(x) =
L

1 + e−k(x−m)
(5.31)

where L > 0 denotes the maximum value achieved by the function, m ∈ [0, 1] denotes

the x-axis point at which the function achieves its mid-point value, and k modifies the

slope of the curve (see Fig. 5.5). The logistic curve formulation allows for a high-degree

of flexibility in adjusting the sensitivity of the controller to noise in the error as well as

deciding the response characteristic of the controller itself.

Using the logistic functional, we define a logistic-proportional controller for each task

Tj , j ∈ {1, . . . , K} as,

p0j = Fj(|ρ∗j − ρj|), j ∈ {1, . . . , K}, (5.32)

with parameters Lj,mj and kj which can be adjusted for each task. Once the value of p0j

has been selected, the transition probability pj0 can be simply computed using (5.10):

pj0 = rjp0j. (5.33)
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Figure 5.5: The logistic function mapping F described in (5.31), for a varying set of k,m
parameter values and L = 2. This mapping is used to specify the response of the controller
which modifies the task transition probabilities of the robots based on the difference be-
tween the desired and the true allocation ratios. The parameter L modifies the maximum
value achieved by the function, m signifies the x-axis point at which the mid-point value
of the function is attained, and k modifies the maximum slope of the curve. This gives a
high degree of flexibility in designing the response of the controller which can be adjusted
based on the size of the swarm, task requirements, noise levels in the allocation estimates
etc.

From (5.33), the following relation holds, and ensures that p0j and pj0 are valid transition

probabilities satisfying the conditions given in Definition 13:

p0j ∈
[
0,min(

1

rj
, 1)
]

=⇒ pj0 ∈ [0, 1]. (5.34)

For (5.34) to hold true, the parameterLj in the logistic-proportional controller given in (5.32)

is constrained as,

Lj ∈
[
0,min(

1

rj
, 1)
]
, j ∈ {1, . . . , K}. (5.35)

Note that a proportional controller was used primarily for simplicity; in general, more

complex control algorithms can be used to regulate the transition probabilities.

Estimating Current Allocation

Executing the control law given by (5.32) requires the robots to have knowledge of the

current allocation ratios of the swarm. We now develop an estimation algorithm which
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allows individual robots to use the mean-field dynamics given in (5.9) and measurements

made via inter-robot encounters to generate estimates of the current allocation of the swarm.

This ultimately facilitates a decentralized implementation of the control law given in (5.32).

The robots are interested in estimating λ(t) = [λ0(t), . . . , λK(t)] which represents the

true density of the robots allocated to each task at time t. Estimating the density of robots

allocated to each task will allow the robots to estimate the allocation ratios directly. Let

λ∗i (t) = [λ∗i,0(t), . . . , λ∗i,K(t)] denote the estimate generated by robot i at time t. Further-

more, let pi0j(t) and pij0(t), j ∈ {1, . . . , K} represent the transition probabilities obtained

by robot i from applying the controller in (5.32) as a function of the allocation ratios ob-

tained from λ∗i (t).

As described in the beginning of this section, individual robots can measure the task

allocated to the robots they encounter in the domain. Since inter-robot encounters occur in

a random fashion, these measurements are inherently stochastic in nature (see Section 5.1).

Additionally, the robots know the non-linear mean-field dynamics obeyed by the density

of robots executing each task, as specified in (5.9). One way to estimate a variable of

interest—especially in the presence of non-linear dynamics and measurement noise which

does not obey a Gaussian distribution—is to use a particle filter, e.g., [140, 141]. A particle

filter approximates the posteriori distribution of interest using a set of weighted samples. At

each iteration, the particles are updated based on a given prediction model and are assigned

weights based on the measurements.

Each robot i deploys a particle filter to track the density of robots performing tasks

Tj, j ∈ {0, . . . , K}. For the particle filter corresponding to robot i, let
(
λ̂hi ∈ RK+1, whi ∈

[0, 1]
)

be a tuple representing the hth particle in the filter, where h = {1, . . . , H}. A particle

is represented by the sample estimate λ̂hi = [λ̂hi,0, λ̂
h
i,1, . . . , λ̂

h
i,K ]T and its corresponding

weight whi which is a relative measure of the importance of the particle. Here, H denotes

the total number of particles in the filter. Computing an estimate for the density of robots

allocated to each task can be broken down into two phases: predict and update. In the
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predict phase, the particles evolve according to the model given by (5.9). This is followed

by the update phase which uses the encounter measurements to update the weights of the

different particles.

Owing to the stochastic nature of the task allocation algorithm, the true density of robots

allocated to each task will vary from the expected densities given by the mean-field model

in (5.9). Thus, in the predict phase, we model the evolution of the true robot densities by

adding a noise term to (5.9). For robot i, the jth component of particle h ∈ {1, . . . , H}

evolves as

˙̂
λhi,j(t) = Ω(λ̂hi,j(t))p

i
0j(t)[rjλ̂i,0(t)− λ̂hi,j(t)] + n(t), j ∈ {1, . . . , K}, (5.36)

where n(t) is a zero-mean noise signal representing the deviation of the true intensities

from the mean-field model, and similar to (5.20), the density λ̂hi,0 evolves as,

˙̂
λhi,0(t) = −

K∑
j=1

˙̂
λhi,j(t). (5.37)

In Section 5.2.5, we make specific design choices for the distribution and variance of n(t),

but for now, we simply assume that a noise model is available to us. Note that while

the transition probabilities pi0j(t) and pij0(t) are chosen by robot i at each point in time,

their ratio, represented by rj is fixed before deployment and remains constant for all tasks

T1, . . . , TK .

As mentioned earlier, robots encounter other robots as they traverse the domain and are

able to measure the current task allocated to the robots they are encountering. For robot i,

let eji (t) be the binary variable denoting an encounter with another robot which is currently
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allocated to task Tj:

eji (t) =


1, if robot i encounters a robot allocated to task Tj

0, otherwise
(5.38)

For robot i, let yji (t) denote the total number of encounters with robots executing task Tj

over the time interval [t− T, t], t ≥ T :

yji (t) =

∫ t

t−T
eji (t)dt. (5.39)

Thus, via encounters, each robot obtains the measurement vector yi(t) = [y0
i , y

1
i , . . . , y

M
i ]

representing the encounters experienced over the time interval [t− T, t], t ≥ T . Given the

encounter model developed in Section 5.1, the probability that robot i makes a measure-

ment yji (t) given the density λ̂hi,j(t) represented by particle h ∈ {1, . . . , H} is,

Lhi,j(t) = Prob(yji (t)|λ̂hi,j(t)) =
Ω(λ̂hi,j(t)T )y

j
i (t)exp

(
−Ω(λ̂hi,j(t)T )

)
yji (t)!

. (5.40)

These posteriori probabilities are used to update the weights corresponding to each particle

in the update phase.

Algorithm 5 illustrates the operations of the particle filter on each robot executed ev-

ery dt seconds in software. The step-by-step descriptions of the different operations are

as follows. In Step 1, the particles are initialized with the density of robots allocated to

each task at time t = 0, as given by (5.8). For each particle, a noise term is added to the

density estimate to spread out the particles. The noise term also represents stochasticity

in the allocation process. All particles are initially assigned an equal weight of 1/H . As

the robots move around performing tasks, Step 5 illustrates how each robot accumulates

encounter measurements over a time window T . As specified by the predict phase, the

density estimates represented by the particles are updated in Step 8 according to the dy-
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Algorithm 5 Particle Filter for Estimating Current Allocation – Robot i

1: Initialize H particles: λ̂hi (0) = λ0 + n(0) and the weights whi (0) = 1/H , h =
{1, . . . , H}.

2: Iteration variable: k = 1
3: for time t = kdt do
4: if t > T then
5: Compute yji (t) from (5.39) ∀j ∈ {0, . . . , K} ← measurements
6: end if
7: for each particle h ∈ {1, . . . , H} do
8: Compute λ̂hi,j(t) using (5.36) and (5.37), ∀j ∈ {0, . . . , K} ← predict
9: if t > T then

10: Compute whi (t) = whi (t− dt)
∏K

m=0 Lhi,m(t− dt) using (5.40)← update
11: end if
12: end for
13: Normalize weights so that

∑H
h=1 w

h
i (t) = 1

14: Best particle: h∗i (t) = argmaxh∈{1,...,H}w
h
i (t)

15: Estimate for density of robots allocated to task T0, . . . , TK : λ∗i (t) = λ̂
h∗i
i (t)

16: k = k + 1
17: end for

namical model given in (5.36), along with the added noise term. Following this, in the

update phase, the weights corresponding to each particle are updated using the encounter

measurements stored in yi(t) (see Step 10). More specifically, the particle weights are re-

cursively multiplied with the likelihood of making encounter measurements corresponding

to each of the density estimates λ̂hi,j(t), j ∈ {0, . . . , K}. Robot i’s estimate for the density

of robots allocated to each task at time t, denoted as λ∗i (t), is computed in step 15 as the

value of the particle corresponding to the highest weight. The measurement time horizon

T is chosen so as to achieve a trade-off between accuracy of measurements and the ability

of the filter to track time-varying densities of robots in each task. Furthermore, to tackle

issues of sample degeneracy, common to particle filters [142], we implement a re-sampling

strategy to draw new particles at regular intervals of time.

As mentioned above, given an estimate of the density of robots performing different

tasks λ∗i (t), each robot i ∈ {1, . . . , N} computes a local version of the control probabilities

pij0(t) and pi0j(t) using the controller described in (5.32). These are used by the robots
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to switch roles when they encounter other robots in the swarm. In the next section, we

illustrate the efficacy of the proposed rate-controlled task allocation algorithm.

Simulations

We now illustrate the deployment of the feedback-based task allocation algorithm on a

swarm of simulated robots operating on a rectangular domain D. The robots are to be

divided among three tasks (denoted as T1, T2, T3) with specifications ρ∗ = [0.3; 0.1; 0.4]T ,

each of which involves the robots executing a uniformly ergodic trajectory in the domain.

This implies that 20% of the robots are expected to be idle at any time, waiting to take up

a task. The total density of robots is λ̄ = 50 robots/m2. Similar to Section 5.2.4, the robots

deploy minimally-invasive barrier certificates [130] to avoid collisions between each other.

The desired ratio of control probabilities, computed using (5.28) and (5.29) is trans-

mitted to all the robots before deployment. Once the swarm is deployed, each robot uses

inter-robot encounters to generate estimates of the current allocation of the swarm using Al-

gorithm 5, and computes the control probabilities pj0 and p0j using the logistic-proportional

controller given by (5.32) while ensuring that the ratio of the control probabilities rj re-

mains constant. The process noise n(t) is modeled as a Gaussian signal with zero-mean

and a variance experimentally chosen according to the total density of robots in the domain.

The parameters of the logistic-proportional controller are chosen based on the noise-levels

in the estimates, the requirements on the controller performance, and size of the swarm.

For the simulation parameters (δ = 0.02, r = 1.5δ, v = 0.1, kj = 50,mj = 0.16, Lj =

1
rj
, j ∈ {1, . . . , K}), Fig. 5.6 illustrates the performance of the task allocation algorithm

with the encounter-based time-varying transition rates. As the true allocation of the swarm

approaches the desired levels, the number of task-transitions per robot per unit time occur-

ring in the swarm reduces as illustrated in Fig. 5.6b.

Next, we demonstrate the adaptive nature of the task-transition rates during individual

robot failures occurring in the swarm. As before, at time t = 200s, 40% of the robots
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currently performing task T3 experience a failure and are removed from the simulation. As

seen in Fig. 5.7a, the swarm regulates the task allocation levels back to the desired values.

Furthermore, following the failure at time t = 200s, the closed-loop rate controllers on the

robots increase the task-transition rate temporarily so as to re-attain the desired allocation

levels, as seen in Fig. 5.7b. Note that the plots in Fig. 5.7 have been averaged over 5

simulation runs to better illustrate the effect of the failure.

For the same simulation, Fig. 5.8 illustrates the performance of the particle filters during

and after the individual robot failures occur. The estimates of all the particle filters on

the robots have been averaged (solid lines) and plotted against the true allocation (three

different dashed lines). The estimates track the true values illustrating that the inter-robot

encounters allow the robots to obtain reliable estimates of the current allocation levels in

the swarm. This in turn enables the closed-loop control of task transition rates.

5.2.6 Experimental Results

The closed-loop task allocation algorithm was implemented on the Robotarium, which is

a remotely accessible swarm robotics testbed where code is uploaded via a web-interface

and experimental data is returned after the experiments [46]. As seen in Fig. 5.9, the robot

swarm consists of 12 robots which are to be allocated among two different tasks T1 and T2

according to the specifications ρ∗ = [0.5, 0.25]T . The rest of the robots are idle, waiting to

take up an active task, as specified in Section 5.2.1. A colored circle is projected over each

robot using an overhead projector to designate the current task that it is performing: green

signifies task T1, blue signifies task T2, and red circles designate robots which are idle. In

Fig. 5.9b, robots overlayed with black circles and designated with red arrows experience a

failure and remain stationary in the domain for the rest of the experiment.

The tasks to be performed satisfy the assumptions stated in Section 4.1 and result in

uniformly ergodic trajectories of the robots. The robots detect an encounter when they

come with a certain distance of each other. At this point, they deploy minimally-invasive
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control barrier certificates [130] to avoid collisions among each other, and continue along

their trajectories. The robots switch tasks during encounters as described in Sections 5.2.1

and 5.2.5. We perform two different experiments to illustrate the salient features of the

developed task allocation algorithm.

Case 1: Comparison with and without closed-loop rate control: In this scenario, we allow

the robots to deploy the task allocation algorithm with and without the feedback-based rate

control mechanism developed in Section 5.2.5. In particular, the transition probabilities

corresponding to the maximum error in the rate controller (given in (5.32)) is set to be

equal to the constant time-invariant rate corresponding to the open-loop controller. For a

chosen set of parameters (k = 50,m = 0.22, Lj = 1
rj
, j ∈ {1, . . . , K}), Fig. 5.10 plots

the allocation ratios of the swarm corresponding to the closed-loop task allocation run. As

seen, the swarm achieves and maintains the desired allocation ratio. Figure 5.10b com-

pares the number of transitions per robot per unit time in the case with and without the

closed-loop rate control. Once the swarm is closer to the desired allocation, the number of

transitions are significantly lower in the case of closed-loop rate control. This illustrates the

efficacy of the algorithm in regulating the task-transition rates based on how far the swarm

is from the desired allocation.

Case 2: Closed-loop task allocation with robot failures: In this scenario, 3 robots perform-

ing task T1 experience a failure and stop moving in the domain. They remain as stationary

obstacles in the domain and are not counted towards the task allocation. This failure occurs

at time t = 100s and disturbs the allocation ratios in the swarm as seen in Fig. 5.11a. The

inherently stable task allocation algorithm then re-attains the desired allocation ratios. Fig-

ure 5.11b plots the allocation estimates generated by the particle filters averaged over all the

robots against the true allocation. As seen, the inter-robot encounters enable the robots to

estimate the current allocation of the swarm, in order to regulate the rate of task-transitions.

The transition rates decrease after the allocation has been achieved, diminishing the role of

the task allocation and allowing task execution to occur (see Fig. 5.11c). To better illus-
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trate the effect of the failure, the results shown in Fig. 5.11 have been averaged over 3

experimental runs.

The experiments demonstrate the inherently-stable as well as adaptive nature of the

developed task allocation algorithm. By constantly tracking the current allocation of the

swarm using inter-robot encounters, each robot is able to switch between tasks at a rate pro-

portional to the discrepancy between desired and current allocation levels. The robots use

local encounter measurements to facilitate the task allocation without the need for extensive

communication or a central coordinator.

5.3 Conclusions

In this chapter, we developed a stochastic task allocation policy which allows a swarm

of robots to autonomously distribute themselves among a set of tasks using inter-robot

encounters as the primary interaction modality. The developed method allows individual

robots to switch between tasks with certain transition probabilities when they encounter

other robots in the domain. By appropriately choosing these transition probabilities, we

demonstrate that the swarm can achieve a desired allocation in an inherently stable manner.

Building upon the encounter model developed in Chapter 4, we used ideas from the

Enskog theory of high density gases to explicitly take into account the footprint area of the

robots. This leads to a more accurate prediction of encounter rates in a swarm of robots.
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(a) Rate Controlled Task Allocation
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Figure 5.6: Effect of the closed-loop control of task-transition rates in the developed task
allocation algorithm for a swarm of simulated robots with density λ̄ = 50 robots/m2 in
a domain D with robot parameters (δ = 0.02, r = 1.5δ, v = 0.1). Figure 5.6a illustrates
the true allocation ratios converging to the desired values. Figure 5.6b illustrates how the
number of task-transitions per robot per unit time reduces as the true allocation approaches
the desired value, indicating that the robots are able to measure the current allocation of the
swarm and regulate the transition rates accordingly.
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(a) Rate Controlled Task Allocation during failure
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Figure 5.7: Performance of the closed-loop task allocation algorithm for a swarm of simu-
lated robots in the presence of robot failures. At time t = 200s, 40% of the robots allocated
to task T3 experience a failure and are removed from the simulation. As seen in Fig. 5.7a,
the swarm regulates the task allocation ratios back to the desired levels. In Fig. 5.7b, the
number of transitions reduce as the swarm approaches the desired allocation ratio, but after
the failure, the robots detect an increase in the allocation error, leading to a slight increase
in the number of transitions after time t = 200s. This illustrates the closed-loop nature of
the developed task allocation strategy. These results have been averaged over 5 simulation
runs to better highlight the effect of the failure.
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Figure 5.8: Performance of the particle filter algorithm in the event of robot failures. The
solid lines represent the averaged particle filter estimates of all the robots in the swarm
which did not experience a failure. The different dashed lines depict the true allocation
levels in the swarm corresponding to each of the three tasks. When 40% of the robots allo-
cated to task T3 experience a failure, the encounter-based particle filter tracks the changing
task allocation levels, thus enabling a closed-loop control of the transition rates.

(a) (b)

Figure 5.9: A swarm of 12 robots are allocated among two tasks on the Robotarium [46],
a remotely-accessible swarm robotics testbed. An overhead projector is used to overlay
colored circles around each robot depicting the current task being performed by the robot.
Green and blue circles represent a robot performing task T1 and T2, respectively. Red
robots are idle, and waiting to take up a task. In Fig. 5.9b, some robots experience a
failure and remain stationary in the domain. These robots are annotated by arrows, and are
treated as stationary obstacles. The robots detect encounters when the physical footprint
of another robot overlaps with their sensory footprint. The robots use minimally-invasive
control barrier certificates [130] for collision avoidance.
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Figure 5.10: Experimental Results for Case 1: Comparison with and without closed-loop
rate control. For a swarm of 12 robots operating on the Robotarium, Fig. 5.10a plots
the allocation results corresponding to the closed-loop task allocation case. As seen, the
swarm achieves and maintains the desired allocation ratio. Fig. 5.10b compares the number
of task-transitions per robot per unit time for the closed-loop rate controlled allocation
algorithm and the open-loop variant. As seen, the inter-robot encounters allow the robots
to estimate the current allocation of the swarm and correspondingly reduce the number of
task-transitions.
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Figure 5.11: Experimental Results for Case 2: Closed-loop task allocation with robot
failures. At time t = 100s, 3 robots allocated to task T1 experience a failure and remain
stationary in the domain (see robots overlayed with gray circles and annotated with arrows
in Fig. 5.9b). As seen in Fig. 5.11a, this failure disturbs the allocation ratios, which is then
reattained by the task allocation algorithm. The performance of the particle filters used to
estimate the current allocation of the swarm is plotted in Fig. 5.11b averaged over all the
robots. The solid lines represent the average estimate whereas the dotted lines represent
the true allocation of the swarm in the two tasks T1 and T2. As seen, the estimates track
the true allocations allowing the swarm to react to changes in the task allocation. Lastly,
Fig. 5.11c plots the number of task-transitions corresponding to the closed-loop and open-
loop task allocation algorithms. These results were averaged over 3 experimental runs to
better illustrate the effect of the failure.
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CHAPTER 6

LEVERAGING THE PHYSICS OF INTER-ROBOT ENCOUNTERS

Motivated by the multitude of examples where animal swarms use encounters to trigger

different behaviors, Chapters 3, 4, and 5 used inter-robot encounters as an explicit source

of information—measured either via contact-based or proximity sensors on the robots—

which was incorporated into the function or task being performed by the robots. In con-

trast, the fundamental macro-scale properties exhibited by non-living collectives in nature

are partially attributed to the physical forces experienced by individual particles during

encounters [14].

In this chapter, we highlight a mechanism where robots swarms can implicitly lever-

age the forces experienced during inter-robot collisions to predictably achieve coexisting

regions of low and high robot density. This work is motivated by the scenario where robots

with extremely limited sensing and communication capabilities perform tasks which re-

quire them to spread across an environment, e.g., for distributed sensing or environmental

surveillance applications [42, 143]. Under these circumstances, the robots might require

spatial proximity to facilitate information exchange, while simultaneously performing task

related actions [43, 144].

We demonstrate these behaviors on a team of vibration-driven robots, called brushbots

[45] (see Chapter 7 for a detailed discussion on the brushbots). In particular, these robots

do not possess sensors to detect other robots and simply traverse the environment while

colliding with other robots. We illustrate that the mechanisms underlying the obtained

density distributions can be explained using results from statistical mechanics, which in-

vestigates how macroscopic phenomena observed in physical systems can be related to the

microscopic behaviors of constituent particles [14].

While equilibrium statistical mechanics provides an extensive vocabulary to describe
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macroscopic behaviors, much of the classical theory deals with idealized interactions among

particles, limiting its applicability in swarm robotics systems [145]. However, the study of

physical systems that are far from equilibrium has shown promise in systematically analyz-

ing complex collectives in nature [18]. In these active matter systems, an interplay between

self-propulsion, inter-particle effects, and environmental forces leads to a wide-variety of

emergent behaviors [15, 96]. This chapter takes advantage of a lesser-known formal con-

nection between certain types of active matter systems and equilibrium thermodynamics to

develop a microscopic description for a group of self-propelled brushbots, while retaining

the extensive benefits of the classical thermodynamic theory.

We envision a team of brushbots moving randomly within a closed domain, while col-

liding with each other. The simultaneous formation of regions with lower and higher robot

density is intuitively supported by two observations. Firstly, a given robot’s speed decreases

with increasing robot density around it—a direct consequence of the inter-robot collisions

experienced by the robot. Secondly, a system of particles—which are embodied by robots

in this context—tend to accumulate in regions where they move more slowly [146]. This

phenomenon, known as motility induced phase separation (MIPS) in the physics litera-

ture [97], allows us to explore the conditions on the motion characteristics of the robots

required to display such behaviors [44].

A team of brushbots provides an ideal platform for achieving such variable density be-

haviors, since their minimalist construction makes them robust to the force experienced

during inter-robot collisions even at relatively high speeds (see Chapter 7). Addition-

ally, the inherently noisy dynamics of the brushbots ensures that—similar to active matter

systems—high-density robot clusters do not persist forever.

The outline of the rest of this chapter is as follows. Section 6.1 first introduces the

stochastic differential equation describing the dynamics of each brushbot and uses the en-

counter models developed in Chapter 4 to derive a density-dependent speed profile for each

robot. In Section 6.2, this model is leveraged to discuss the conditions under which motility
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Figure 6.1: A differential-drive-like brushbot [45], actuated using two vibration motors and
moving on two separate flexible bundles of bristles. Given this construction, we model the
dynamics of the robot using unicycle dynamics, with translational and rotational additive
noise to represent the unpredictability in the motion of the robot.

induced phase separation can occur by drawing connections with an equivalent system of

particles at thermal equilibrium. Simulations confirm the formation of robot aggregations

for varying parameter ranges. In Section 6.3, the mechanism is deployed on a team of real

differential-drive–like brushbots to illustrate the formation of high and low robot densities.

6.1 Motion and Collision Model

6.1.1 Motion Model

In this section, we first briefly motivate the dynamical model for the brushbot operating

in an environment with no other robots present. Following this, we analyze the effects of

collisional interactions between multiple robots and characterize the velocity of the robots

as a function of swarm density.

The differential-drive–like construction of our brushbots (see Fig. 6.1) allows the mo-

tion of the robot to be expressed using unicycle dynamics with linear and angular velocity

as the inputs. For a group of N robots, let zi = (xi, yi) and θi denote the position and

orientation of robot i ∈ {1, . . . , N} , N , respectively. Each robot has a circular footprint

of radius r and operates in a closed and bounded domain V ⊂ R2.

As will be elaborated in more detail in Chapter 7, the presence of manufacturing differ-

ences as well as the nature of bristle-based movement underline the need for a stochastic
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model to describe the motion of the brushbots. To this end, we introduce additive noise

terms which affect the translational and rotational motion of the robots, with diffusive co-

efficients Dt and Dr, respectively. Under this model, the state (zi, θi) evolves according to

standard Langevin dynamics, which is a stochastic differential equation, given componen-

twise as

dxi = v0 cos θi +
√

2Dt∆Wx,

dyi = v0 sin θi +
√

2Dt∆Wy, (6.1)

dθi =
√

2Dr∆Wθ,

where v0 is the constant self-propelled speed of the robot and ∆Wx,∆Wy,∆Wθ denote

Wiener process increments representing white Gaussian noise. The total distance traveled

by the robot will depend on the diffusion parameters (Dt, Dr) and the speed v0 [147]. The

effective diffusion coefficient of the robot [18], measured on time scales longer than the

time required for the orientation of the robot to uncorrelate (defined as τr = D−1
r ), can be

quantified as,

D =
v2

0

2Dr

+Dt. (6.2)

An important predictor of phase separation behavior in interacting systems is the activ-

ity parameter, e.g., [99, 100], which we define here as

A =
v0

2rDr

. (6.3)

The activity parameter is proportional to the distance traveled by a robot before its direction

uncorrelates completely [99] and will be used to characterize the proportion of high and

low robot density regions in Section 6.2. In Section 6.3, we use robotic experiments to

empirically determine the diffusion coefficients Dt and Dr of the brushbot, but for now, we

simply assume that these parameters are available to us and are constant in the swarm.
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6.1.2 Inter-Robot Interaction Models

In the previous section, we described the dynamics of a single robot moving with a self-

propelled speed v0 through the domain. Given a group of N brushbots moving randomly

according to these dynamics in the domain V , we now develop a model to describe the

effects of inter-robot collisions on the average speed of the robots.

For a team of colliding robots, average robot speeds reduce with increasing density

in the region around the robot—a direct consequence of the density-dependent collision

rates [23]. The distribution of robots over the domain can be described in terms of the

coarse-grained density λ : V → R+, obtained by overlaying a suitable smoothing function,

e.g. [99], over the microscopic density measure,

N∑
k=1

δ(z − zk), (6.4)

defined at each point z ∈ V . Here δ denotes the Dirac delta measure. We defer the actual

computational details of the coarse-grained density to Section 6.2.2, which discusses the

simulation results.

A given robot i will experience varying collision rates depending on the density of

robots surrounding it. The developed model is agnostic to which robot we pick since the

following mean-field analysis applies to any robot in the domain. Then, the speed of a given

robot i is a function of its location as well as the robot density in the environment λ. The

following assumption simplifies the dependence of the robot speed on the robot density.

Assumption 4. Assume that the coarse-grained density of robots λ varies slowly over the

domain, ∥∥∥∥∂λ∂z
∥∥∥∥� 1,∀z ∈ V . (6.5)

Furthermore, let the speed of robot i depend only on the densities in some neighborhood

of the robot location zi. Then, the speed of the robot can be assumed to depend only on the
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density at the robot’s location.

Consequently, we denote the speed of robot i as v(λ(zi)). This assumption allows us to

develop an analytical expression for the speed of a robot at a given location, as a function of

the robot density at that location. Using the inter-robot collision model developed in Chap-

ter 4, the expected time between collisions experienced by robot i at its current location zi

is given as,

τc(λ(zi))
−1 = 4r

4

π
v0λ(zi), (6.6)

where r denotes the radius of each robot. The modified speed term (4/π)v0 is equal to the

mean relative speed between all the robots (see Lemma 2).

Furthermore, let τm denote the expected time spent by a robot in a collision with another

robot before re-attaining its self-propelled speed v0. This process occurs via forces acting

on the robots as well as the rotational diffusion of each robot (as dictated by the rotational

diffusion coefficient Dr in (6.1)). For instance, the rotational diffusion might cause the

robots to eventually move in different directions, effectively resolving the collision. In

Section 6.1.3, for a choice of diffusion parameters, we use a team of simulated brushbots to

determine the average speed empirically and to estimate τm as the parameter value which

best fits the speed data.

With the robot traveling at speed v0 between collisions and effectively remaining sta-

tionary during a collision, the average speed may be expressed as

v(λ(zi)) = v0

(
1− τm

τc(λ(zi)) + τm

)
. (6.7)

Under the simplifying assumption that the time to resolve collisions is smaller than inter-

collision time intervals, i.e., τm � τc, (which is valid at low as well as intermediate den-

sities), and substituting from (6.6) the expression for τc, (6.7) can be cast into the general
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form

v(λ(zi)) = v0

(
1− λ(zi)

λ∗

)
, (6.8)

where

λ∗ =

(
4r

4

π
v0τm

)−1

(6.9)

represents the extrapolated density at which the speed becomes zero, and can be interpreted

as the packing density of robots in the domain [97]. Next, we introduce a simulation setup

which verifies the linear dependency of velocity on local robot density (as predicted by

(6.6), (6.8) and (6.9)), and gives numerical estimates for the collision resolution time τm.

6.1.3 Simulation Setup

We validate the density-dependent speed model using a simulated team of brushbots operat-

ing in a closed and bounded rectangular domain V . The simulation consists of N disks of a

fixed radius r moving according to the dynamics described by (6.1). During collisions, ex-

cluded volume constraints—a consequence of the fact that robots are not inter-penetrable—

are imposed via a force acting on the robots, as is common in the physics literature, e.g.,

[100]. In order to avoid the influence of boundary effects, periodic boundary conditions are

applied, i.e., when robots exit from one side of the domain, they reappear on the other side.

In Section 6.3, when performing experiments on the actual brushbots, we allow the robots

to turn around when they reach the boundaries of the domain.

The simulation is performed for a uniform distribution of robots over the domain to

prevent the averages from being affected by variable high and low density regions. A

uniform distribution was ensured by selecting the activity parameter A, defined in (6.3),

to be well below the values which would lead to phase separation (see supplementary

material for [99]). The average speed of the swarm at each point in time was computed

by projecting the instantaneous velocity of each robot along its current orientation vector
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Figure 6.2: Validation of the relation between the average speed of robots and the swarm
density using the simulation setup described in Section 6.1.3. Average speed measurements
are plotted with red dots, while the best-fit line is shown in blue. At low densities, the
average speed equals the self-propelled speed of the robots (set at v0 = 4 in this simulation).
As the density increases, robots experience higher collision rates which slows them down.
Best-fit collision resolution time τm = 0.177s (see (6.8)).

Θi = [cos θi, sin θi]
T ,

v̂(t) =
1

N

N∑
i=1

żi(t)
TΘi(t). (6.10)

For different robot densities, Fig. 6.2 depicts the average robot speeds empirically com-

puted over the duration of a simulation. As seen, the average robot speed decreases linearly

with density, as predicted by (6.6) and (6.8). Deviations at high densities can be justified

by the violation of the assumption that τm � τc. In the next section, we illustrate how the

slowdown of robots due to collisions can actually lead to phase separated regions of high

and low robot densities, as predicted by equilibrium thermodynamics.

6.2 Motility-Induced Phase Separation

In the previous section, we analyzed the velocity profile of robots interacting purely via

inter-robot collisions. In this section, we provide a brief summary of important results in

the active matter literature that establish an equivalence between such a swarm of robots

and a passive Brownian molecular system at equilibrium (see [97] for further details). Such

an equivalence allows us to specify the system parameters under which the swarm can be
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expected to phase separate and form regions of unequal robot density.

6.2.1 Theoretical Analysis

We begin the analysis by studying the probability distribution of a single particle whose

speed, denoted as v(λ(z)), varies spatially over the domain according to the robot den-

sity. For a single robot obeying the Langevin dynamics in (6.1), the probability density

φ describing the location of a robot over the domain evolves according to the following

equation, as given in [148],

φ̇(z) = ∇ · J, (6.11)

J = −D(λ(z))∇φ(z) + V (λ(z))φ(z),∀z ∈ V , (6.12)

where ∇· denotes the divergence operator, ∇ denotes the gradient, and D is now the spa-

tially varying diffusion coefficient of the robot, modified from (6.2) as

D(λ(z)) =
v2(λ(z))

2Dr

+Dt. (6.13)

The drift-velocity V satisfies the relation

V (λ(z))

D(λ(z))
= −

(
1 +

2DtDr

v2(λ(z))

)−1

∇ ln v(λ(z)). (6.14)

From these equations, the coarse-grain density of robots interacting with each other has

been shown [97] to evolve according to the following stochastic differential equation

λ̇(z) = −∇ ·
(
−D∇λ(z) + V λ(z) +

√
2Dλ(z)Λ

)
, (6.15)

where Λ represents white Gaussian noise interpreted in the Itô sense [97]. We suppress the

explicit dependence of D and V on λ(z) for readability.
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The steady state probability distribution of the density, Peq(λ), can be obtained by

solving for the equilibrium solution of the corresponding Fokker–Planck equation,

[
V λ−D∇λ−Dλ

(
∇ ∂

∂λ

)]
Peq(λ) = 0. (6.16)

The following theorem, initially presented in [149] and summarized in [97], illustrates

how a swarm of robots interacting via collision interactions can be mapped to a system of

passive Brownian particles at equilibrium.

Theorem 6. ([97]) A team of robots operating in a domain V , satisfying the dynamics

in (6.1) and interacting purely via inter-robot collisions, can be expressed as a system

of passive Brownian particles with an attractive potential if the following conditions are

satisfied:

1. Assumption 4 is valid.

2. The coarse-graining of the microscopic density measure given by (6.4) is valid.

Under these conditions, the free energy density of the system can be expressed as,

f(λ(z)) = λ(z)(ln(λ(z))− 1) +

∫ λ(z)

0

1

2
ln
(v2(s)

Dr

+ 2Dt

)
ds, λ(z) ≤ λ∗ (6.17)

where λ∗ is given by (6.9).

Proof. An equivalence between the self-propelled robot swarm and a passive Brownian

particle system at equilibrium is made by expressing the steady-state solution of (6.16) as

obeying the equilibrium Boltzmann distribution [98] over the domain, given as

Peq ∝ exp(−F), (6.18)

where F = Fent + Fvel is the free energy of the system, expressed in terms of the free
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energy density functional f ,

F =

∫
z∈V

f(λ(z)) dz. (6.19)

The free energy density, given by,

f(λ(z)) = λ(z)(lnλ(z)− 1) + fvel(λ(z)), (6.20)

comprises of two parts: an ideal entropy contribution (contributing to Fent) and an excess

energy density fvel (contributing to Fvel). The latter, which would stem from the attractive

potential in a passive Brownian system, in fact stems from the density dependent veloc-

ity profiles of the robots. To satisfy (6.18), the following integrability condition results

(discussed in [149]),
V (λ(z))

D(λ(z))
= −∇∂Fvel

∂λ
. (6.21)

Substituting from (6.14), and observing that ∇ ln v = v−1∇v, this condition can be re-

written as,
v∇vτr

v2τr + 2Dt

=
∂Fvel

∂λ
, (6.22)

where τr = D−1
r . Given Assumption 4, which implies that the speed of each robot only

depends on the local density, (6.22) is satisfied by the following speed-derived free energy

density

fvel(λ) =

∫ λ

0

1

2
ln
(v2(s)

Dr

+ 2Dt

)
ds, (6.23)

under the constraint that the density λ can never exceed the close packed value given by

(6.9). This leads to the desired result.

Given the equivalence established by Theorem 6, we can analyze the phase separation

properties of the robot swarm by analyzing the free-energy density functional in (6.17).

The following observations summarize the conditions under which such a system can be

expected to phase separate.
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Observation 3. In classical thermodynamics [98], spontaneous separation of a particle

system into regions of high and low density occurs when concavities exist in the free energy

density f defined in (6.17). More specifically, when the local density λ(z) at a point z ∈ V

is such that f ′′(λ(z)) < 0 where ′ denotes a derivative with respect to the density λ, small

fluctuations cause the system to phase separate into regions with densities which result in

a reduction in free energy density. This process is called spinodal decomposition.

Given (6.17), it is a simple exercise to verify the conditions on the density-dependent

velocity of the robots which favor occurrence of spinodal decomposition in the system [97],

f ′′(λ(z)) < 0 ⇐⇒ v(λ(z))2

Dr

(
1 + λ(z)

v′(λ(z))

v(λ(z))

)
< −2Dt. (6.24)

Substituting the expression of density dependent speed from (6.8), we can make the fol-

lowing further observation with regards to the conditions on robot density and parameters

under which the swarm can be expected to achieve non-uniform density distributions.

Observation 4. For a team of brushbots with velocity dependent speed given in (6.8), the

spinodal densities (at which f ′′(λ) = 0), represented as λ±s , are given as

λ±s =
λ∗

4

(
3±

√
1− 16DtDr/v2

0

)
, (6.25)

where λ∗ is specified in (6.9). Consequently, these spinodal points only exist when the

following condition is satisfied by the robot parameters:

v0 >
√

16DtDr. (6.26)

Because robot densities cannot exceed the packing density λ∗, the following ranges of den-

sities,

λ−s ≤ λ(z) ≤ min(λ+
s , λ

∗), z ∈ V (6.27)

favor spontaneous phase separation.
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(a) t = 0s (b) t = 15s

Figure 6.3: Snapshots illustrating the formation of high as well as low density regions
concurrently in a team of simulated robots operating in a domain with periodic boundary
conditions. For a set of simulation parameters (N = 292, r = 1, v0 = 4, Dr = 1e−4, Dt =
1e−5), each snapshot represents the configuration of the system at different times. Inter-
robot collisions slow down the robots, which cause additional robots to join the clusters.
This leads to the formation of dynamic high-density clusters along with the existence of
lower density regions in the domain.

This implies that, when the local density in a region of the domain lies in the range

specified by (6.27), the swarm can be expected to spontaneously phase separate into regions

with low and high robot densities.

6.2.2 Simulations

We observe the formation of dynamic robot clusters in a rectangular domain with periodic

boundary conditions using the simulation setup described in Section 6.1.3. Figure 6.3 il-

lustrates the intermediate-time snapshots of the phase separating swarm robotic system.

The robots are placed according to a uniform distribution in the domain at time t = 0 (see

Fig. 6.3a) and simply move according to the Langevin dynamics described in Section 6.1

while experiencing collisions among each other. Figure 6.3b depicts how an initially uni-

formly distributed swarm of robots can form regions of high and low robot density, primar-

ily caused by the density-dependent slow down of robots which precipitates the formation

of dynamic high-density robot clusters.
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We characterize the simultaneous existence of regions with higher and lower robot den-

sities by computing the coarse-grained density λ over the domain,

λ(z) =
N∑
i=1

w(‖z − zi‖),∀z ∈ V , (6.28)

where the weighting function w is given as,

w(d) = exp
(
− d2

c/(d
2
c − d2)

)
. (6.29)

Here, dc is the cutoff distance at which w(r) → 0. In simulation, the coarse-grained

density was evaluated on a grid of l2 lattice points, with cutoff distance dc = 0.8l. For a

grid size l = 10, Fig. 6.4 plots the empirically obtained distribution of the coarse-grained

densities evaluated at the lattice points. These values were obtained by applying Gaussian

kernel-smoothing on the histogram of coarse-grained densities over the grid. For each set

of activity parameters, data points were collected from multiple simulations of the robot

swarm, to average out spurious effects caused by initial conditions. As seen, the distribution

of robot densities is unimodal at low activity levels and becomes distinctly bimodal at

higher activities, indicating the formation of low and high robot densities in the domain.

To quantify the formation of clusters in the swarm, we measure the time-averaged frac-

tion of robots that belong to high-density aggregations in the swarm. An aggregation is

defined as robots in physical contact with each other, whose total size exceeds a minimum

cut-off value Nc. Figure 6.5 illustrates the impact of the activity parameterA of the robots,

by plotting the average aggregation fraction for increasing activity values and for different

mean robot densities in the domain (denoted as λ̄ = N/|V| where |V| denotes the area

of domain V). As seen, no significant robot aggregation occurs below a certain activity

threshold of the robots, regardless of the density. This observation is in agreement with

the lower activity thresholds for observed phase separation in studies, e.g., [97]. Figure

6.6 illustrates the need for a sufficient robot density to see phase separation behaviors, as
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Figure 6.4: Empirically obtained distribution of robot densities evaluated over a grid of size
l2 with l = 10. Gaussian kernel-smoothing was applied on the histogram of robot densi-
ties collected over multiple simulations at a constant robot density (simulation parameters:
r = 1, Dt = 1e−5, N = 382). For high activity parameters, the distribution is seen to be
distinctly bimodal, due to the formation of high and low robot density regions as predicted
in Section 6.2. For lower activity parameters, the swarm does not phase separate and the
density distribution over the grid remains unimodal. This presents a mechanism to charac-
terize the simultaneous existence of higher and lower robot densities in the domain. The
displayed data were collected over multiple simulation runs.

predicted by (6.27).

6.3 Deployment and Experiments

In this section, we first identify the noise parameters of a single brushbot and discuss the

implications of these parameters on the phase separation properties of the swarm. Follow-

ing this, we illustrate the emergence of dynamic regions of low and high robot density using

a team of 26 brushbots operating in a confined rectangular environment.

In order to identify the translational and rotational diffusion coefficient of the brushbots,

we excited one brushbot with a constant self-propelled linear speed and zero angular veloc-

ity in a confined rectangular space. Position and orientation data were collected using an

overhead tracking system. When a robot encountered the walls of the environment, the data

collection was terminated until the robot turned around to traverse the environment again.

Data were collected for a total time of 300 sec at a self-propelled speed v0 = 6 cm/sec.

The rotational diffusion coefficient can be computed by measuring the mean-square
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Figure 6.5: Dependence of the average aggregation fraction on the activity parameter of the
robots (simulation constants: r = 1, Dt = 1e−5). The aggregation fraction measures the
fraction of robots which belong to high-density clusters (chosen with a cut-off sizeNc = 4)
averaged over time. As seen, at low activity levels, the extent of aggregation remains low
regardless of the density of robots in the domain. As the activity is increased, the fraction
of robots in high density clusters increases. In the legend, λ̄ denotes the mean density of
robots in the domain.

variation in the orientation of a robot [150]. We numerically estimate Dr by performing a

linear regression on the mean-square variations in the orientation of the robot for varying

time-intervals (estimated value Dr = 0.0041). It is noteworthy that the value for the trans-

lational diffusion coefficient Dt as computed from these experiments was negligible within

numerical precision (computed using the Green–Kubo method [150]).

These estimates of the noise characteristics of a brushbot, allow us to make the fol-

lowing observation regarding the ability of a swarm of brushbots to spontaneously phase

separate

Observation 5. Based on the robot noise parameters identified (Dr = 0.014, Dt = 0),

(6.26) is satisfied always. Consequently, a swarm of brushbots can be expected to spon-

taneously form regions of low and high robot density as long as the number of robots are

high enough to achieve the local densities described in (6.27).

It should be noted that the identification of diffusion parameters for the brushbots per-

formed above is not meant to serve as a quantitative analysis of the noise properties of the

brushbots, but to understand the qualitative effects of these values on the formation of lower
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Figure 6.6: Dependence of the aggregation behaviors on the mean density of robots in the
domain, as predicted by (6.27). Below a certain density, no significant aggregation is seen
in the robots regardless of the activity parameter of the robots (simulation constants: r =
1, Dt = 1e−5). This is primarily because robots are able to resolve collisions (therefore
dissolving clusters) before other robots can join the cluster.

and higher density regions in the swarm. Indeed, since the effects from translational noise

are minimal, the exact values of the noise parameters do not play a role in the prediction of

motility-induced phase separation.

Figure 6.7 illustrates intermediate-time snapshots of 26 brushbots achieving regions of

varying robot density in an enclosed square domain. As expected, collisions caused the

robots to slow down, which precipitated the formation of high density regions. Robot clus-

ters were identified based on physical contact among the robots, beyond a minimum thresh-

old size (Nc was chosen as 4). We quantitatively analyzed the formation of these clusters

by plotting the aggregation fraction in the swarm over time. This represents the fraction

of robots which belong to a cluster. As seen in Fig. 6.8, at least 20% of the robots were

clustered in aggregations throughout the experiment, while the rest of the robots moved

freely through the domain.

6.4 Conclusions

This chapter differentiates itself from the previous chapters by implicitly taking advantage

of the physics of inter-robot collisions to achieve a desirable emergent property. We envi-
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Figure 6.7: Snapshots for a team of 26 brushbots propelled at a constant speed in a square
environment. Reflective boundary conditions were applied by injecting an angular velocity
to the robots when they hit the boundaries. As predicted by phase separation theory, col-
lisions cause the robots to slow down which leads to the formation of high density robot
clusters that co-exist along with regions of lower robot density. These clusters form and
dissolve over time in different places.

sion a scenario where a swarm of colliding vibration-driven brushbots form high-density

robot aggregates that coexist with lower robot densities in space. Theoretical techniques

from the study of far-from-equilibrium collectives and statistical mechanics clarify the

mechanisms underlying the formation of these high and low density regions. Specifically,

we capitalize on a transformation that connects the collective properties of a system of

self-propelled particles with that of a well-studied molecular fluid system, thereby inher-

iting the rich theory of equilibrium thermodynamics. This connection is a relatively new

one, and is previous unexplored in the context of robotics. We use real robot experiments

as well as simulations to illustrate how inter-robot collisions can precipitate the formation

of non-uniform robot densities in a closed and bounded region.
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Figure 6.8: The fraction of robots belonging to high density robot aggregations for a team
of real brushbots. An aggregation is defined as a collection of robots beyond a cut-off
size in physical contact with each other. The robots travel randomly in the domain while
colliding with each other. The reduction in speed caused due to collisions precipitates the
formation of simultaneous regions of low and high robot density as predicted by the phase
separation theory in Section 6.2. As seen, the fraction of robots in aggregations remains
fairly significant throughout the experiments.
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CHAPTER 7

DEVELOPING SWARM ROBOTICS PLATFORMS

The encounter-based methods developed throughout this thesis have been validated and

tested on two robotic platforms: (i) the Robotarium [46, 151] and (ii) the brushbots [45].

The Robotarium—which is a remotely accessible swarm robotics testbed, where code is

uploaded remotely and experimental results are returned to the user—is occupied by a team

of wheeled differential-drive robots. In contrast, the brushbots achieve directed motion by

vibrating flexible bundles of bristles. Their locomotion modality and construction makes

them ideal for experiments which involve collisions among the robots even at relatively

high speeds. This chapter details the design and development of both these swarm robotics

platforms, which have been conceptualized and built at the Georgia Institute of Technology.

Given the larger purpose served by the Robotarium as an open-access robotics testbed,

Section 7.1.2 highlights some measures taken to ensure the reliable and safe operations of

its constituent robots.

7.1 Robotarium

The Robotarium is a remotely accessible swarm-robotics testbed, designed to help users

from all across the world quickly prototype and validate their distributed control strategies

through implementation on physical robots without the overhead of setting up their own

hardware [151]. With an explicit ambition to democratize access to world-class research

infrastructure, the platform is free to be used by anyone from anywhere in the world for

academic research or educational purposes. The testbed also serves to facilitate the perfor-

mance comparison of different algorithms by deploying them on a standardized hardware

environment.

The Robotarium, pictured in Fig. 7.1, resides in a refurbished classroom on the cam-
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Figure 7.1: The Robotarium, a remotely accessible swarm robotics tested, allows users to
remotely upload code which gets executed on a team of physical differential-drive robots
[151]. In addition to these robots, the hardware infrastructure of the Robotarium consists
of an elevated arena where the robots operate, a motion capture system seen attached to the
roof above the arena, and wireless chargers embedded into the walls of the arena.

pus of the Georgia Institute of Technology, consisting of a 12 ft × 14 ft elevated platform

where the robots operate. The walls of the platform are outfitted with wireless chargers

which allow the robots to charge without human supervision. Eight motion capture cam-

eras are mounted above the perimeter of the testbed that provide position and orientation

information of the robots for data acquisition and control purposes. Each robot is tracked

through a unique, nonsymmetrical pattern of reflective markers. While ensuring the robust

and reliable operation of the Robotarium involved closely-intertwined developments on the

hardware, software and theory front, the remainder of this section focuses on the robots

which operate on the Robotarium, and highlights some theory which has been developed

to improve the safe and reliable operations of the robots.

7.1.1 The GRITSBot X

The original robot that inhabited the Robotarium was the GRITSBot, whose design focused

on minimizing cost and form factor [152]. More recently, these robots were replaced with

the GRITSBot X, whose design explicitly focuses on reliable long-term operations, ease of

manufacturing as well as maintenance. Below we outline some of these design considera-
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Figure 7.2: The GRITSBot (pictured on the left) was the first robot to operate on the Rob-
otarium and was designed with a focus on low-cost manufacturing and small form factor
[152]. It has now been replaced with the GRITSBot X (pictured on the right), which is
designed to provide reliable and robust operations for long periods of time without direct
human supervision [151].

tions in further detail, and highlight the actions taken to address them. Figure 7.2 illustrates

the GRITSBot and its newer variant, the GRITSBot X, on the Robotarium arena.

Standardized Manufacturing With the aim of reducing manufacturing time and improv-

ing the ease of manufacturing, the GRITSBot X chassis is comprised of two custom, laser-

cut 0.31 cm thick acrylic plates. This chassis is robust enough to handle limited collisions

and can be rapidly replicated using a laser cutter. The motors, custom PCB, battery, and

tracking markers are attached to the acrylic chassis through screws and threaded standoffs.

All electronics are attached through standard Japan Solderless Terminal (JST) connectors.

Together, these choices enable rapid production of the GRITSBot X with low variance

between the quality of each robot’s mechanical assembly and electrical connections.

Robust Actuation To achieve reliable actuation, the GRITSBot X is equipped with micro

metal gear motors, which dictate the 9.5cm × 8cm footprint of the GRITSBot X. These

motors are widely available commercially with quadrature encoders (0.25◦ resolution)

mounted directly to the motor shaft. This hardware enables a sufficiently high-resolution
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feedback to maintain reliable actuator performance even when constant use degrades the

hardware and unknown disturbances, like foreign particles, perturb the ideal output.

Repairability Since extended use of the robots will inevitably lead to failure among indi-

vidual components, the two motors of the GRITSBot X are attached to the robot electron-

ically through JST connections and mechanically by two mounting screws. These design

choices allow for a quick replacement of the motors when they fail. The laser cut acrylic

chassis, battery holder, and charging plate, may be quickly and inexpensively replicated

and replaced with the removal of a few screws and plugs.

Autonomous Charging Crucial to the continuous operations of the Robotarium is the abil-

ity of the robots to charge autonomously without direct human supervision. The GRITSBot

X is equipped with a 1A Qi wireless charger attached to its backplate. By autonomously

navigating to the charging transmitters fitted on the walls of the arena, the team of GRITS-

Bot X robots can recharge their batteries in between experiments.

Over-the-air Interfacing The GRITSBot X’s computing hardware was chosen specifi-

cally keeping in mind easy interfacing and rapid prototyping of software. The main micro

controller on the robot is a Teensy 3.2 and the main micro processor is a Raspberry Pi

Zero W. The latter enables over the air interfacing and a Linux operating system for the

robot while having small form factor. It is connected via USB to the Teensy 3.2 which

provides real-time commands to the motors and receives data from sensors located across

the robot.

7.1.2 Safely Handling Intermittent Communication Failures

Wireless communication plays an integral role in the daily operations of the Robotarium.

Indeed, the robots wirelessly receive velocity commands from the central server in real-

time. However, with an increasing number of robots operating on the testbed, there is an

increase in the traffic flowing through the communication network and occasional failures
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are expected. These may be caused due to transmitted packets getting lost [153] or cor-

rupted [154], saturation of the communication channels [155] or hardware failures on the

robots or the host. This raises the following question: What should a robot do in case a

communication failure prevents it from receiving critical motion commands from a central

decision maker?

Many different techniques have been explored to handle communication uncertainties

in multi-robot teams [156, 157, 158]. In many cases, the robots are assumed to have sig-

nificant decision making capability, have sensors to maneuver around obstacles, or have

knowledge about the positions of other robots. Furthermore, some developed communica-

tion recovery techniques do not provide formal collision-avoidance guarantees in case of

unforeseen communication failures.

An existing technique used to handle communication failures, mentioned in [158], is

to stop the robot when critical data is not received. While this behavior preserves safety, it

could cause the robot to behave erratically. For example, if only intermittent velocity com-

mands are received, the robot could move in a jerky “start-stop” fashion. This behavior

was observed on the Robotarium, where failures in the communication channels prevented

robots from receiving velocity or position commands which caused them to abruptly stop

moving. This lead to a disruption in the coordination algorithm being executed, and af-

fected the ability of the Robotarium to faithfully reproduce the behavior specified by the

user.

Motivated by the need to alleviate such problems in general, and resolve issues with

the Robotarium in particular, this section proposes a strategy that allows differential-drive

robots without sensory or decision-making capabilities, to continue moving safely for a

specific amount of time even when velocity commands from a central decision maker are

not received. For each robot, the central decision maker computes a time horizon over

which collisions with other robots are guaranteed not to occur. This is called the safe time

horizon. During normal operations, the desired velocity and the safe time horizon are trans-
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mitted to the robots periodically. If a robot stops receiving data due to a communication

failure, it executes the last received velocity command for the duration of the last received

safe time horizon. This allows the robot to continue moving in a provably collision-free

manner despite having no updated information about the environment. The robot can fol-

low this open-loop trajectory for the entire duration of the safe time horizon, beyond which

it stops moving [159].

In order to calculate the safe time horizon, we first compute the set of all possible loca-

tions that can be reached by a robot within a given time (i.e., the reachable set [160, 161]).

This is followed by computing the time horizon for which each robot lies outside the reach-

able set of other robots. But, for the differential-drive robots considered here, performing

such set-membership tests is computationally expensive owing to the non-convexity of the

reachable set. Consequently, the reachable set is over-approximated by enclosing it within

an ellipse whose convex structure allows for simpler set-membership tests and finite rep-

resentation [162]. By minimizing the area of the ellipse enclosing the convex hull of the

reachable set, we obtain the best ellipsoidal over-approximation of the reachable set in

terms of the accuracy and effectiveness of set-membership tests.

Reachability Analysis

Consider a dynamical system whose state evolves according to the following differential

equation,

ẋ = f(x,u), y = h(x), x(0) = x0, u ∈ U ,

where x is the state of the system, y represents the output of the system, u is the control

input, and U is the set of admissible control inputs. The reachable set of outputs at time t

can be defined as

R(t; x0) =
⋃

u(·)∈U

Y(t,x0,u(·)),
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where Y(t,x0,u(·)) represents the output of the dynamical system at time t under control

action u(·) with an initial condition x0.

Since the Robotarium, in its current form, is populated with differential-drive mobile

robots, we investigate the reachability of two-wheeled differential-drive robots with non-

holonomic dynamics. For such systems, let z = (x, y) ∈ R2 denote the position of the robot

in the 2D plane, and let φ ∈ [−π, π] denote its orientation with respect to the horizontal

axis. As such, the robot is described as a point (z, φ) in the configuration space R2 × S1.

The motion of the robots can be captured using the unicycle dynamics model:

ẋ = v cos(φ), ẏ = v sin(φ), φ̇ = ω, (7.1)

|v| ≤ 1, |ω| ≤ 1.

The bounds on the linear velocity v and the angular velocity ω represent the physical limi-

tations of the robots, and are normalized to 1 without loss of generality.

Since collisions are ultimately defined by positions rather than orientations, we consider

the output of the system to be z. Relative to this output, the reachable setR(t; z0, φ0) is the

set of all positions in the 2D plane that can be reached at time t by a robot starting in the

configuration (z0, φ0) at t = 0. For z0 = (0, 0), φ0 = 0, denote the reachable set as R(t).

Since the dynamics in (7.1) is drift-free, the structure of the reachable set does not depend

on z0 and φ0, i.e.,

R(t; z0, φ0) = z0 + Πφ0R(t), (7.2)

where Πφ0 is a rotation by φ0. Therefore, the study of reachable sets can be restricted to

the case when z0 = (0, 0) and φ0 = 0.

In order to reach the boundary of the reachable set, a robot must travel in a time-optimal

manner [163]. If this was not true, a point even farther away would be reachable in the same

amount of time. A closely related motion model for which the structure of time-optimal

paths has been extensively studied is the Reeds-Shepp car [164].
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The motion model of a Reeds-Shepp car is similar to (7.1), except that the set of ad-

missible inputs is |v| = 1, |ω| ≤ 1. In [165], the authors compute a family of trajectories

rich enough to contain a time-optimal path between any two configurations for a robot with

dynamics given in (7.1). It is shown that every trajectory in this family is also time-optimal

for a Reeds-Shepp car, and furthermore, this family of trajectories is sufficient for time-

optimality of a Reeds-Shepp car. Another way to view this result is that, when moving in

a time-optimal manner, the robot behaves like a Reeds-Shepp car. As mentioned earlier,

any path reaching the boundary of the reachable set has to be time-optimal. Therefore, the

reachable set for the Reeds-Shepp car and for the differential-drive robot considered here

are identical. By utilizing expressions for the reachable set of a Reeds-Shepp car given in

[161] and summarized in [166], Fig. 7.3 portrays the reachable set for a robot with dynam-

ics given in (7.1).

t = 2

t = 3

t = 4

Figure 7.3: The reachable set R(t) of a robot with dynamics given in (7.1), is depicted for
varying time horizons. The robot is represented as a circle at the center.

The complexity of performing set-membership tests with respect to the non-convex set

R(t) increases the computational burden associated with the safe time horizon algorithm.

Consequently, we next derive an ellipsoidal approximation of the reachable set.

Given any convex set K ⊂ Rn, there exists a unique ellipsoid of minimum volume

circumscribing it [167]. This ellipsoid is denoted as ξ(K). One way to derive an el-

lipsoidal approximation of the reachable set would be to compute the minimum area el-

lipse ξ(conv(R(t))), where conv(R(t)) denotes the convex hull ofR(t). Additionally, the
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derivation of analytical expressions for the ellipse ξ(conv(R(t))), if at all possible, will

enable its efficient and fast computation in the safe time horizon algorithm.

The feasibility of the derivation of analytical expressions for the ellipses, is closely

linked to the symmetry properties of the underlying set as well as the equations describing it

[168]. Consequently, in order to allow for analytical solutions, we introduce a new setK(t)

enclosing conv(R(t)), which allows for an easier computation of ξ(K(t)). Essentially, this

enables us to swap the problem of computing ξ(conv(R(t))) with the simpler problem of

computing ξ(K(t)).

Furthermore, this approximation is justified by showing that the dissimilarity between

conv(R(t)) and K(t), as measured by the Jaccard distance metric [169], asymptotically

goes to zero over time. For the sets X, Y ⊂ R2, the Jaccard distance based on the area

measure is given by,

dJ(X, Y ) = 1− A(X ∩ Y )

A(X ∪ Y )
, (7.3)

where A(·) denotes the area of the set. The following proposition formally introduces the

set K(t).

Proposition 1. Let K(t) be given by,

K(t) =

{
p =

px
py

 ∈ R2 : ‖p‖2 ≤ t, |py| ≤

1− cos(t), if 0 < t ≤ π/2

t− π/2 + 1, if t > π/2

}
. (7.4)

Then, conv(R(t)) ⊂ K(t) and

lim
t→∞

dJ(conv(R(t)),K(t)) = 0, (7.5)

where dJ is the Jaccard distance.

Proof. Denote C++(t) as the curved outer boundary of conv(R(t)) in the first quadrant
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(see Fig. 7.4). From [161], we know that, C++(t) can be expressed as,

C++(t) =

{
p ∈ R2

++ :

px = sinψ + γ cosψ

py = − cosψ + γ sinψ + 1

}
, (7.6)

where ψ ∈ [0,min(t, π/2)], and γ = t− ψ.

In order to prove that conv(R(t)) ⊂ K(t), we first show that all points on C++(t) are closer

to the origin than points on the outer boundary of K(t), which is a circular arc of radius t.

Let p(t, ψ) = (px(t, ψ), py(t, ψ)) denote a point on the curve C++(t). The squared l2-norm

of p(t, ψ) is given as,

‖p(t, ψ)‖2
2 = (t− ψ)2 + 2− 2 cos(ψ) + 2(t− ψ) sin(ψ),

where ψ ∈ [0,min(t, π/2)]. The derivative of ‖p(t, ψ)‖2
2 with respect to the parameter ψ,

is always non-positive:

∂‖p(t, ψ)‖2
2

∂ψ
= 2(t− ψ)(cos(ψ)− 1) ≤ 0,∀ ψ ∈ [0,min(t, π/2)]. (7.7)

Since p(t, 0) = (t, 0), this point lies on the circular arc of radius t. Then, the fact that
∂‖p(t,ψ)‖22

∂ψ
≤ 0, implies that, as ψ increases, the curve either overlaps with the circular arc

of radius t, or gets closer to the origin. This proves that, a part of the outer boundary of

conv(R(t)), represented by the curve C++(t), can be over-approximated by a circular arc

of radius t (see Fig. 7.4). Also, the definition of py(t, ψ) gives us the y-axis bounds of

conv(R(t)):

max
ψ∈[0,min(t,π/2)]

py(t, ψ) =


1− cos(t), if 0 < t ≤ π/2

t− π/2 + 1, if t > π/2

. (7.8)
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Figure 7.4: The set conv(R(t)) is shown enclosed withinK(t). In particular, it is illustrated
how the curve C++(t), which represents the curved boundary of conv(R(t)) in the first
quadrant, can be over-approximated by a circular arc of radius t, which forms the boundary
of K(t) in the first quadrant.

By symmetry, these results hold in all the 4 quadrants and it follows that conv(R(t)) ⊂

K(t).

Next, it is shown that, as t grows larger, the dissimilarity between the two sets asymp-

totically goes to zero. Due to the asymptotic nature of the result, only values of time greater

than π/2 are considered. Since conv(R(t)) ⊂ K(t), conv(R(t)) ∩ K(t) = conv(R(t))

and conv(R(t)) ∪ K(t) = K(t). So, the Jaccard distance can be computed as,

dJ
(
conv(R(t)),K(t)

)
= 1− A(conv(R(t)))

A(K(t))
. (7.9)

Since both the sets are symmetric with respect to the x and y axes, the areas are com-

puted in the first quadrant alone. After integrating over the boundary of conv(R(t)),

A(conv(R(t))) is given by,

A(conv(R(t))) =
1

48
(12π(t2 − 1) + t(48− 6π2) + π3). (7.10)

Similarly, computing the area of K(t) in the first quadrant,

A(K(t)) =
t2

2

(
sin−1 (1− δ(t)) +

1

2
sin(2 sin−1 (1− δ(t)))

)
, (7.11)
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where δ(t) = (π/2 − 1)/t. As t → ∞, the term t2 in (7.10) dominates and δ(t) → 0 in

(7.11). So, for large values of t,

A(conv(R(t))) ≈ π

4
t2, A(K(t)) ≈ π

4
t2. (7.12)

Evaluating limt→∞ dJ(conv(R(t)),K(t)) using (7.12), the desired result is obtained.

The set K(t) not only allows us to derive analytical expressions for the minimum

area ellipse enclosing it, the asymptotic reduction in the dissimilarity between K(t) and

conv(R(t)) implies that, the impact of using ξ(K(t)) instead of ξ(conv(R(t))) on the ac-

curacy of set-membership tests in the safe time horizon algorithm, is minimal.

In Rn, an ellipsoid can be represented uniquely by its center c and a positive-definite

matrix H: E(c,H) = {x ∈ Rn : (x−c)TH(x−c) ≤ 1}. According to results presented in

[167], at any given time t, the minimum area ellipse circumscribing K(t) can be obtained

by solving the following semi-infinite programming problem:

min
c,H
− log det(H) (7.13)

s.t. (z − c)TH(z − c) ≤ 1, ∀z ∈ K(t).

The rest of this section formulates an analytical solution to this semi-infinite program-

ming problem. In Lemma 3, we utilize the symmetry properties of K(t) to determine the

center and orientation of the ellipse ξ(K(t)). Following this, Lemma 4 and Lemma 5 pose

the semi-infinite programming problem as a convex optimization problem. By solving this,

we present analytical expressions for the ellipse ξ(K(t)) in Theorem 7.

Lemma 3. The ellipse ξ(K(t)) has the form E(c,H(t)), where c = (0, 0) and H(t) =

diag(A(t), B(t)) for some A(t), B(t) ∈ R, such that A(t) > 0, B(t) > 0,∀t > 0.

Proof. For a convex set K ⊂ Rn, denote O(K) as a set of affine transformations which
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leave the set K invariant:

O(K) = {T(x) = a+ Px : T(K) = K}. (7.14)

This set is called the automorphism group of K. Applying results from [168], we know

that, O(K) ⊆ O(ξ(K)). Since K(t) is symmetric about both the x and y axes, the trans-

formation T(x) = −I2x, where I2 is the identity matrix, lies in O(K(t)), and hence in

O(ξ(K(t))). Furthermore, if T ∈ O(ξ(K(t))) then T(c) = c. Applying this result with the

transformation T(x) = −I2x, we get c = (0, 0).

We know from [168], that T ∈ O(ξ(K(t))) =⇒ P TH(t)P = H(t). The structure of

H(t) appears by applying

P =

1 0

0 −1

 , (7.15)

and the fact that H(t) is always positive definite.

Applying results from [167] for the case ofK(t) ⊂ R2, we know that, there exist contact

points {qi}h1 , 0 < h ≤ 5 satisfying qi ∈ ∂K(t)∩∂ξ(K(t)), i = 1, . . . , h. Furthermore, these

contact points cannot all lie in any closed halfspace whose bounding hyperplane passes

through the center of ξ(K(t)). Using these facts, the following lemma can be stated.

Lemma 4. There are 4 contact points between K(t) and ξ(K(t)).

Proof. We seek to find the number of contact points h. Since K(t) and ξ(K(t)) are sym-

metric about the x and y axes (see Lemma 3), and 0 < h ≤ 5, h can only take values 2 or

4. If h = 2, both contact points must lie on the x or y axes (otherwise symmetry in all the 4

quadrants is not possible). But, the contact points cannot lie in any closed halfspace whose

bounding hyperplane passes through the center of ξ(K(t)). Hence h = 4.

Given the structure of H(t) from Lemma 3, and the number of contact points from

Lemma 4, the semi-infinite programming problem (7.13) will now be re-formulated as a
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convex optimization problem.

Lemma 5. The matrix H(t) = diag(A(t), B(t)) can be expressed as the solution of a

convex optimization problem. At any given time t > 0, A(t) is given as,

A(t) = argmin
Xt

− log Xt − log
1−Xt(t

2 − α(t)2)

α(t)2
(7.16)

s.t. 0 < Xt ≤
1

t2
.

Furthermore,

B(t) =
1− A(t)(t2 − α(t)2)

α(t)2
(7.17)

where α(t) =


1− cos(t), if 0 < t ≤ π/2

t− π/2 + 1, if t > π/2

.

Proof. As outlined in the semi-infinite programming problem given by (7.13), we aim to

derive expressions for A(t) and B(t) which minimize the cost function,

− log det(H(t)) = − log(A(t))− log(B(t)), (7.18)

subject to the constraint that K(t) ⊂ E((0, 0), H(t)). This constraint can be translated into

the condition that the quadratic function,

g(y) = A(t)(t2 − y2) +B(t)(y2)− 1, (7.19)

is non-positive for |y| ≤ α(t).

As outlined in Lemma 4, there are a total of four contact points, one in each quadrant.

Thus, there must be at least two distinct points at which g(y) is zero. The roots of the

quadratic function g(y) must lie at y = ±α(t) (in no other situation can g(y) take non-
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positive values in the given interval). So g(y) can be alternatively expressed as,

g(y) = λ(y − α(t))(y + α(t)), for some λ ≥ 0. (7.20)

By equating the coefficients in (7.19) and (7.20), the following constraints emerge,

B(t)− A(t) = λ ≥ 0, A(t)t2 − 1 + λα(t)2 = 0.

Eliminating λ from the equations, the two constraints are reduced to B(t) ≥ A(t) and

A(t)t2 − 1 + (B(t)− A(t))α(t)2 = 0. Expressing B(t) in terms of A(t) using the second

constraint, we get,

A(t) ≤ 1

t2
, B(t) =

1− A(t)(t2 − α(t)2)

α(t)2
. (7.21)

Substituting B(t) from equation (7.21) into the cost function (7.18), and denoting Xt as

the value taken by the function A(·) at time t, we obtain the optimization problem given in

(7.16), whose point-wise minimizer in time gives the value of A(t).

The next theorem solves the convex optimization problem outlined above to obtain

analytical expressions for the minimum area ellipses enclosing K(t) (see Fig. 7.5).

Theorem 7. The minimum area ellipse ξ(K(t)) has the form E(c,H(t)), where c = (0, 0)

and H(t) = diag(A(t), B(t)). A(t) and B(t) are given by the following expressions:

1. If 0 < t ≤ π/2, then

A(t) =
1

2(t2 − α(t)2)
and B(t) =

1

2α(t)2
, (7.22)

where α(t) = 1− cos(t).
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2. If π/2 < t ≤ (1 + 1√
2
)(π − 2), then

A(t) =
1

2(t2 − α(t)2)
and B(t) =

1

2α(t)2
, (7.23)

where α(t) = t− π/2 + 1.

3. If t > (1 + 1√
2
)(π − 2),

A(t) =
1

t2
and B(t) =

1

t2
(7.24)

Proof. We seek to calculate the minimizer to the convex cost function f(Xt) given in

(7.16). In the interior of the constraint set, i.e., when Xt <
1
t2

, the minimizer can be found

by setting the gradient to zero and solving for Xt:

∇f(Xt) = − 1

Xt

+
t2 − α(t)2

1−Xt(t2 − α2)
= 0,

Xt =
1

2(t2 − α(t)2)

For this expression to satisfy the constraint, the inequality t2 > 2α(t)2 must be satisfied.

This is true for all values of t in the interval (0, π/2]. For t > π/2, this holds whenever the

function t2 + 4(1−π/2)t+ 2(1−π/2)2 takes non-positive values. This is true for the time

interval 0 < t ≤ (1 + 1√
2
)(π − 2). For all values of t > (1 + 1√

2
)(π − 2), the minimum in

the feasible set is achieved when Xt = 1/t2. Evaluating A(t) from (7.16) and B(t) from

(7.21), we get the desired result.

The following theorem justifies the ellipsoidal approximation by showing that the dis-

similarity between conv(R(t)) and ξ(K(t)) asymptotically goes to zero as time grows

larger.

Theorem 8. Let R(t) denote the reachable set of a differential-drive robot with dynamics

given in (7.1), conv(R(t)) denote its convex hull,K(t) denote an approximation of the con-
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Figure 7.5: Minimum area ellipse enclosing K(t)

vex hull as defined in Proposition 1 and let ξ(t) be the minimum area ellipse circumscribing

K(t). Then,

lim
t→∞

dJ(conv(R(t)), ξ(t)) = 0,

where dJ is the Jaccard distance.

Proof. We first compute dJ(K(t), ξ(t)). Since K(t) ⊆ ξ(t), K(t)∪ ξ(t) = ξ(t) and K(t)∩

ξ(t) = K(t). So,

dJ(K(t), ξ(t)) = 1− A(K(t))

A(ξ(t))
. (7.25)

Due to the asymptotic nature of the result, only values of time greater than (1+ 1√
2
)(π−

2) are considered. For these values of time, ξ(t) is a circle of radius t (see Theorem 7). Also,

since both ξ(t) and K(t) are symmetric about the x and y axes, it suffices to compute areas

in the first quadrant. So, A(ξ(t)) = πt2/4. From (7.12), we know that, for large values of

t, A(K(t)) ≈ πt2/4 which is equal to the area of ξ(t) in the first quadrant. Thus,

lim
t→∞

dJ(K(t), ξ(t)) = 0. (7.26)
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Since the Jaccard distance is a metric distance, it obeys the triangle inequality,

dJ(conv(R(t)), ξ(t)) ≤ dJ(conv(R(t)),K(t)) + dJ(K(t), ξ(t)). (7.27)

Applying Proposition 1 and (7.26), the desired result is obtained.

Figure 7.6 shows the evolution of R(t), conv(R(t)),K(t) and ξ(K(t)) for different

values of time. As predicted by the result, the dissimilarity between conv(R(t)), K(t) and

ξ(K(t)) asymptotically goes to zero. Using the ellipsoidal approximation of the reachable

Figure 7.6: Evolution of R(t), conv(R(t)),K(t) and ξ(K(t)) for t = 2, 5, 12, 25. As pre-
dicted by Theorem 8, the dissimilarity between conv(R(t) and ξ(K(t)) asymptotically goes
to zero. The scale for each figure is different.

set developed in this section, the next section outlines a safe time horizon based open-loop

motion strategy for the robots.

A Safe Open-Loop Motion Strategy

Let M = {1, . . . , N} be a set of N differential-drive robots, where each robot moves

according to the dynamics specified in (7.1). Let (zi(t), φi(t)) denote the configuration of

robot i ∈ M at time t. At regular intervals of time tk = kδ, k ∈ N, the central decision

maker transmits the desired velocities ui(tk) = (vi(tk), ωi(tk)) and the corresponding safe

time horizon si(tk) to each robot i ∈ M via a wireless communication channel. 1/δ is

called the update frequency.
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When a robot experiences communication failure, it executes the last received velocity

command repeatedly for the duration of the corresponding safe time horizon. This causes

the robot to follow a circular trajectory. Let Zi(µ, tk) denote the position of robot i along

this circular trajectory, where tk is the time of the last received command and µ is the time

elapsed since the communication failure. The expressions for Zi(µ, tk) are obtained by

integrating (7.1) for constant velocity inputs. If ωi(tk) 6= 0,

Zi(µ, tk) = zi(tk) +
vi(tk)

ωi(tk)

sin(ωi(tk)µ+ φi(tk))− sin(φi(tk))

cos(φi(tk))− cos(ωi(tk)µ+ φi(tk))

 (7.28)

and if ωi(tk) = 0,

Zi(µ, tk) = zi(tk) + µvi(tk)

cos(φi(tk))

sin(φi(tk))

 . (7.29)

In order to ensure the scalability and computational tractability of the safe time horizon

algorithm, we introduce the notion of a neighborhood set for each robot. To do this, the

safe time horizon for each robot is upper-bounded by a pre-specified value L. This allows

us to introduce the neighborhood set of robot i at time t as:

Ni(t) =
{
j ∈M, j 6= i : ‖zi(t)− zj(t)‖ < 2L

}
, (7.30)

where ‖.‖ denotes the l2 norm. If robot i and robot j are not neighbors, they cannot collide

within the maximum safe time horizon L.

The safe time horizon si(tk) can be defined as,

si(tk) = min
j∈Ni

sij(tk), (7.31)
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where sij(tk) is called the pair-wise safe time and is defined as,

sij(tk) = max
λ

λ∫
0

1 dλ (7.32)

s.t. Zi(µ, tk) /∈ R(µ; zj(tk), φj(tk)),∀µ ∈ [0, λ]

and λ ≤ L.

Thus, the safe time horizon is the longest amount of time for which the trajectory of the

robot after communication failure, does not intersect the reachable sets of its neighbors.

But, as discussed earlier in this section, an ellipsoidal approximation of the reachable set

can be used to simplify set-membership tests. Thus, the definition of sij(tk) can be mod-

ified by replacing R(µ; zj(tk), φj(tk)) with ξj(µ, tk) in (7.32), where ξj(µ, tk) denotes the

ellipsoidal approximation corresponding toR(µ; zj(tk), φj(tk)). Next, we discuss how the

safe time horizon is incorporated into the motion strategy of the robots.

As discussed earlier, the central decision maker transmits ui(tk) and si(tk) to all the

robots i ∈ M at regular time intervals tk, k ∈ N. Let ci represent the status of the

communication link of robot i:

ci(tk) =


1, if (ui(tk), si(tk)) was received

0, if (ui(tk), si(tk)) was not received.
(7.33)

Algorithm 6 outlines the motion strategy that robot i employs.

Figure 7.7 illustrates the rationale behind the safe time horizon algorithm. As long as

the robot experiencing communication failure is outside the ellipsoidal reachable sets of its

neighbors, it can safely move. The end of the safe time horizon corresponds to the time

when the robot reaches the boundary of one of the ellipses. At this point, the robot stops

moving.

In order to state formal safety guarantees regarding Algorithm 6, we make mild assump-
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Algorithm 6 Safe Time Horizon based Open-Loop Motion Strategy

k = 1, l = 1; ui(0) = 0, si(0) = 0
while true do

if ci(tk) = 1 then
Execute ui(tk)
l = k

else if tk − tl < si(tl) then
Execute ui(tl)

else
Stop Moving

end if
k = k + 1

end while

tions on the capability of the control algorithm executing on the central decision maker.

We assume that, the control algorithm ensures collision avoidance between communicat-

ing robots as well as between communicating robots and stationary obstacles. In particular,

if ∃i, j ∈M such that ci(tk) = 1 and cj(tk) = 1, then ui(tk) and uj(tk) guarantee that,

‖zi(tk)− zj(tk)‖ > 0 =⇒ ‖zi(tk+1)− zj(tk+1)‖ > 0. (7.34)

Let zO denote the position of a stationary obstacle. If ci(tk) = 1 for any i ∈M,

‖zi(tk)− zO‖ > 0 =⇒ ‖zi(tk+1)− zO‖ > 0. (7.35)

Utilizing these assumptions, the following theorem outlines the safety guarantees pro-

vided by Algorithm 6.

Theorem 9. If robot i does not receive any commands from the central decision maker

after time tk, i.e., ci(tk) = 1 and ci(tm) = 0 ∀m > k, then Algorithm 6 ensures that,

‖zi(tk)− zj(tk)‖ > 0 =⇒ ‖zi(tk + µ)− zj(tk + µ)‖ > 0,

∀µ ∈ [0, si(tk)], ∀j ∈M, j 6= i.
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*
Position of robot when the communication failure occured 

Current position of the robot 

Safe Open-Loop trajectory followed by robot 

Ellipsoidal reachable sets of neighboring robots 

(a) t = 0.005 (b) t = 3

(c) t = 5 (d) t = 5.96

Figure 7.7: The safe time horizon represents the longest time duration for which the robot
lies outside the ellipsoidal reachable sets of other robots. Thus, the robot experiencing
communication failure can execute its last received velocity command for the correspond-
ing safe time horizon and remain safe. Beyond this, the robot stops moving.

Proof. Since ‖zi(tk) − zj(tk)‖ > 0 ∀j ∈ M, si(tk) > 0. As seen in (7.30), if j /∈

Ni, then a collision is not possible between robot i and j within the safe time horizon.

Next, we consider the case when j ∈ Ni. From the definition of si(tk), we know that,

zi(tk + µ) /∈ ξj(µ, tk), ∀µ ∈ [0, si(tk)]. Furthermore, from the definition of reachable sets,

zj(tk + µ) ∈ ξj(µ, tk), ∀µ ∈ [0, si(tk)]. From the previous two statements, it is clear that

zi(tk + µ) 6= zj(tk + µ), ∀µ ∈ [0, si(tk)]. Hence,

‖zi(tk + µ)− zj(tk + µ)‖ > 0, ∀µ ∈ [0, si(tk)], ∀j ∈ Ni. (7.36)

This completes the proof.
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Beyond the safe time horizon, the robot stops moving, and (7.35) ensures that no col-

lisions occur with the stationary robot. Thus, the original safety guarantee of the control

algorithm is extended to situations where the robot is moving without commands from the

central decision maker within the safe time horizon.

Simulations

We now present simulation results of the safe time horizon algorithm implemented on a

team of 6 robots. Figure 7.8 compares the motion of the robots during a communication

failure with and without the safe time horizon algorithm. A communication failure is sim-

ulated lasting from t = 3.1s to t = 8.3s. In the case where safe time horizons are not

utilized, shown by Fig. 7.8a and Fig. 7.8b, the robots experiencing communication failure

abruptly stop moving, thus exhibiting a jerky motion pattern. When safe time horizons are

utilized, the robots experiencing communication failure execute their last received velocity

command for the duration of the safe time horizon (Fig. 7.8c and Fig. 7.8d). This allows

them to keep moving during the communication failure, thereby avoiding jerky “start-stop”

motion behaviors and reducing the disruption caused to the multi-robot system.

7.2 Brushbots

The brushbots are vibration-driven robots which employ elastic elements, referred to as

brushes, to convert the energy of a vibration source into directed locomotion (see Fig. 7.9).

In Chapter 6, we demonstrated how a swarm of colliding differential-drive–like brushbots

equipped with no sensors can spontaneously form regions of non-uniform density. These

experiments were, in part, enabled by the ability of brushbots to withstand collisions even at

relatively high speeds, and in part by their ability to resolve collision-induced deadlocks due

to the random nature of their movement. The use of vibration-driven robots as a platform

for swarm robotics experiments has also been explored in [170], where the authors present

the Kilobot, a small scale brushbot equipped with an infrared and a light sensor that enable
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Robot under normal operation 

Current Position of robot experiencing communication failure

Safe Open-Loop trajectory followed by robot 

*
Position of robot when the communication failure occured 

(a) No Safe Times: t =
3.1s

(b) No Safe Times: t =
8.3s

(c) With Safe Times: t =
3.1s

(d) With Safe Times: t =
8.3s

Figure 7.8: Comparison of the motion of robots with and without safe time horizons. Two
robots experience communication failure from t = 3.1s to t = 8.3s. In the case when
safe time horizons are not used (Fig. 7.8a and Fig. 7.8b), the robots exhibit jerky motion
behavior, since they abruptly stop during the communication failure. When safe time hori-
zons are used (Fig. 7.8c and Fig. 7.8d), the robots continue moving by executing their last
received velocity command for the corresponding safe time horizon, thus demonstrating
the ability of the safe time horizon algorithm to effectively handle communication failures.

the execution of decentralized swarming algorithms. Collective behaviors of brushbots are

investigated in [171], where the authors analyze the parameters governing the transition

from a disordered motion to an organized collective motion.

With a specific focus on brushbots operating on planar smooth surfaces, the first part

of this section briefly discusses some details on the locomotion modality of the brushbots.

For a more in-depth and mathematical treatment, the reader is referred to [45]. Following

this, we present the design of the differential-drive–like brushbot whose design simplicity

and resulting robustness makes it ideal for swarm robotics applications.

7.2.1 Modeling of Vibration-based Locomotion

As in many types of locomotion, brushbots move by exploiting friction [172]. The source of

energy for the system is given by vibration motors: these can be in the form of piezoelectric

actuators as well as eccentric rotating mass motors. In the latter, a mass is mounted with
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Figure 7.9: Examples of brushbots: metallic rods, brushes and toothbrushes are employed
to convert energy of vibrations into directed locomotion.

an eccentricity with respect to the axle of a DC motor; when rotating, the mass produces

a rotating centrifugal force which induces vibration in the robot body on which the motor

is mounted. This kind of vibration motors are the ones considered here. The produced

vibrations are transformed into net motion by alternating a stick phase and a slip phase.

Figure 7.10 shows the sequence of stick-slip phases for two regimes in which brushbots

can operate. Figure 7.10a depicts regime I: on the left (stick phase), a schematic represen-

tation of the brushbot moves from the position depicted in black to the one depicted in gray.

This is obtained by deforming the long flexible brush. On the right of the figure, the slip

phase is shown: here the brush slides on the ground until the robot reaches the position de-

picted in gray. At this point, the robot has experienced a net displacement towards the right

compared to the initial position (dashed contour). During these two steps, the robot body

always remains parallel to the ground and the motion is achieved thanks to the deformation

of the brush.

In Fig. 7.10b, regime II is depicted. This regime is characterized by the fact that stiff

short brushes do not deform, but rather act as pivot points for the robot to rotate. During the

stick phase (on the left of the figure), the robot body rotates about a pivot point, whereas,

in the slip phase (on the right), the robot body rotates back to its initial orientation while

sliding towards the right. The two regimes can be more or less predominant depending on

the physical characteristics of the robot. For a detailed dynamic model of the brushbots
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(a) Regime I: robots operating in this regime are char-
acterized by a high flexibility of the brushes. The
vibrations are modeled as alternating vertical forces
which deform the brushes during the stick phase and
pull the robot up during the slip phase. At this mo-
ment, the friction reduces proportionally to the reduc-
tion of normal force, allowing the brush to slide and
the robot to step forward.

(b) Regime II: light robots with stiff brushes can op-
erate in this regime. As the flexibility of the brushes
cannot be exploited, locomotion is achieved by the
sequence of two rigid body rotations happening in se-
quence. The first one in the stick phase and the second
in the slip phase, during which the brushbot experi-
ences a net displacement.

Figure 7.10: Two regimes of operation of the brushbot: locomotion is achieved by ex-
ploiting vibrations in two different ways, depending on the physical characteristics of the
robot.

operating in the two described regimes, see [45].

7.2.2 Brushbots in Swarm Robotics

Leveraging the knowledge of regimes in which the brushbots can operate, this section

presents the design of a simple and robust brushbot. The time to build the brushbot that

is presented in this section is, in fact, less than three hours, which include 3D printing,

soldering and preparation of the brushes. The unit cost is kept below 30$, which can be

significantly reduced if the number of robots to produce increases. The design of simple,

easy and fast-to-build, robust brushbots makes it very appealing and suitable for swarm

robotics applications, which deals with the coordination and interactions of a large number

of robots.

Figure 7.11 shows the schematic design of the brushbot presented in this section: it is a

differential-drive-like brushbot, which consists of two sets of brushes mounted parallel to

each other on two opposite sides of a rigid platform. Two motors (shown in Fig. 7.12) are

mounted on top of each of the brushes. The motion of the differential-drive brushbot can

be described as follows:
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Figure 7.11: Differential-drive-like brushbot: two sets of brushes are mounted on the oppo-
site sides of the robot body. Desired linear and angular velocities of the robot body can be
achieved by varying the speed of vibration motors mounted on top of each set of brushes.

(a) (b)

Figure 7.12: Differential-drive-like brushbot. In Fig. 7.12a, the exploded view of the CAD
model shows, from top to bottom: PCB and battery support (black), top body (orange),
vibration motors (brown), bottom body (orange), brushes (purple). Figure 7.12b shows
a 3D printed prototype of the brushbot: infrared-reflective balls are mounted on top for
tracking its pose.
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Figure 7.13: A swarm of 26 differential-drive-like brushbots (like the one shown in
Fig. 7.12) performing coverage control [7]. The boundaries of the Voronoi cells corre-
sponding to each robot are shown in grey.

• actuating the left motor produces a velocity, indicated as vL in Fig. 7.11, at the left

set of brushes (as described by regime I)

• at the same time, due to the actuation of the left motor, the robot pivots about the right

set of brushes, which induces a net angular velocity, ωr, of the robot (as predicted by

regime II)

The rigid body dynamics of the robot are then:

vL,R = vr − ωr × (PL,R −O) (7.37)

From (7.37), the expressions of linear and angular velocities of the differential-drive-like

brushbot can be obtained:

vr =
vL + vR

2
, ωr =

vR − vL
W

, (7.38)

where, with abuse of notation, all symbols have been used to denote the signed magnitudes

of the vector quantities used in (7.37), their directions being given in Fig. 7.11.

Considering the brushbot as a unicycle, one can use controllers such as the one devel-
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oped in [173] to implement swarm-robotics algorithms. As an example, here we consider

the coverage control algorithm developed in [7]. Figure 7.13 shows 26 differential-drive-

like brushbots running the coverage-control algorithm in order to evenly spread out over

the shown rectangular domain. The boundaries of the Voronoi cells of the brushbots are

depicted as grey lines.

Observation 6. As pointed out above, the advantages related to design simplicity and ease

of assembly of the brushbots presented in this section, lead to robustness properties which

are desirable for swarm robotics applications. In particular, the fact that the vibration

motors do not have to be directly coupled with the brushes lets us design the robots in such

a way that all the moving parts are contained in the convex hull of the robot main body (as

can be seen in Fig. 7.12). This allows brushbots to tolerate collisions, even of significant

magnitude, with other robots and obstacles present in the environment.

7.3 Conclusions

In this chapter, we outlined the design and development of two swarm robotics platforms

which were used throughout this thesis to validate the developed encounter-based behav-

iors. The Robotarium has been designed to reliably and reproducably execute experiments

submitted from users all across the world. The testbed is populated by a team of wheeled

differential drive robots, which can autonomously recharge their batteries and have been

specifically designed for reliability and ease of maintenance.

A swarm of brushbots, whose simple design makes them robust to collisions even at

high speeds, were used to validate the inhomogeneous spatial density behaviors developed

in Chapter 6. The design and locomotion principles of these robots, which achieve directed

motion by vibrating flexible bristles, was highlighted in Section 7.2.
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CHAPTER 8

CONCLUSIONS AND FUTURE DIRECTIONS

As robot swarms move from curated laboratory environments to the real world, deployment

scenarios can present significant challenges to the coordinated actions of large swarms,

e.g., by limiting their capabilities to sense and react to robots around them, or precluding

the presence of a central coordinator. One need not look far to be convinced that leader-

less and short range interactions among individuals can lead to useful behaviors—nature

presents a plethora of evidence to this effect. Local interactions, often manifested as prox-

imity encounters among individuals (or particles) in a living (or non-living) collective, play

a crucial role in the emergence of phenomena like directed motion, predator avoidance,

density regulation, and phase separation.

This thesis demonstrates that inter-robot encounters can act as a useful modality via

which minimally equipped robot swarms can achieve desired objectives. Chapters 3, 4,

and 5 envision a situation where individual robots can explicitly measure the proximity

inter-robot encounters occurring as a by-product of their motion in the environment. In

order to allow such measurements to be useful for the task at hand, we develop mathe-

matical models to characterize the encounters as a function of swarm motion and density

parameters. We use ideas from stochastic geometry and the molecular physics literature to

develop a series of models which increase in their fidelity to systematically analyze real-

world inter-robot encounters. The efficacy of these models is demonstrated by considering

a different motivating application in each chapter.

In Chapter 3, we demonstrated how the information obtained from physical inter-robot

collisions can allow robots in a swarm to localize themselves under certain conditions.

This highlighted the ability of collisions to facilitate useful behaviors in certain classes of

robot swarms where the physical impacts of such collisions can be tolerated. In Chapters
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4 and 5, proximity encounters replaced physical collisions as the detected event—robots

only needed to sense the presence of other robots around them, for e.g., during collision

avoidance maneuvers. Inspired by the ability of ants to regulate densities and avoid clog

formations in narrow tunnels, Chapter 4 developed a decentralized mechanism by which

robots could regulate the density in a region to achieve a desired trade-off between the

deployed team size and the productivity of the swarm at a distributed collection task. In

particular, we provided an analytical characterization of the time effectiveness of the robots

at performing the tasks as opposed to navigating around other robots.

One of the key features of the developed leaderless encounter-based algorithms is the

robustness to failures among the individual robots—since no single robot or entity is in

charge, the functioning of the swarm is not affected by failures among a few robots. Chap-

ter 5 demonstrated this via a motivating application, where a swarm of robots autonomously

distribute themselves among a set of tasks using inter-robot encounters as the primary in-

teraction modality. To this end, we developed a decentralized closed-loop task allocation

mechanism, where the swarm regulates to the desired allocation while also regulating the

rate of task switching, with the ultimate aim of converging faster to the desired allocation

and facilitating uninterrupted task execution by the robots. Chapter 5 also leverages ideas

from the Enskog theory of high density gases to develop an improved encounter model;

one which explicitly accounts for the non-zero footprint area occupied by each robot.

While the developed task allocation framework is decentralized, it relies on the uni-

formly ergodic motion of the robots in the environment irrespective of the task they are

performing. One possible direction of future work would be to explore situations where

individual tasks generate varying (and known) spatial distributions of robots, which could

be accounted for in the developed encounter model. This would result in the applicabil-

ity of the algorithm for a wider range of tasks. In such a scenario, the encounter model

would likely have to explicitly account for gradients in the density distribution of robots—

enabling further novel applications. For instance, how could the density regulation tech-
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nique developed in Chapter 4 be generalized to account for local crowding of robots in an

environment, e.g., when precipitated by the presence of obstacles or corners?

In Chapter 6, we switched gears and demonstrated how the persistent collisional in-

teractions occurring among robots can implicitly lead to the predictable formation of non-

uniform density regions in the environment. By viewing the swarm as a far-from-equilibrium

physical system composed of self-propelled particles, we analytically formulated condi-

tions on the motion parameters of the robots to achieve such behaviors. Results from

motility-induced phase separation illustrated how the density-dependent speed profile of

the robots ultimately resulted in the formation of high-density aggregates which coexist

with regions of lower density. This algorithm was deployed on a swarm of vibration-driven

robots called brushbots, which presented an ideal platform to validate collision-based in-

teractions among robots.

This phase separation-based framework was formulated for scenarios where robots with

extremely limited sensing and communication capabilities need to spread out in the en-

vironment, e.g., to perform a surveillance task, while requiring physical proximity to ex-

change information. A possible extension of the ideas developed in Chapter 6 could involve

analyzing the spread of information across a swarm with and without phase separating

behaviors—to study its efficacy while balancing spatially conflicting objectives. Deploy-

ment of such algorithms on micro-robotics platforms can help us better understand how

statistical mechanics abstractions can enable novel swarm robotics applications.

To conclude, this thesis presented bio-physics inspired approaches for the decentralized

coordination of robot swarms. Mean-field approximations allowed for a systematic anal-

ysis of inter-robot encounters, which were leveraged in illustrative applications presented

throughout the thesis.
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[8] E. Şahin, “Swarm Robotics: From Sources of Inspiration to Domains of Applica-
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[79] S. Berman, Á. Halász, M. A. Hsieh, and V. Kumar, “Optimized stochastic policies
for task allocation in swarms of robots,” IEEE Transactions on Robotics, vol. 25,
no. 4, pp. 927–937, 2009.

[80] N. Shlyakhov, I. Vatamaniuk, and A. Ronzhin, “Survey of methods and algorithms
of robot swarm aggregation,” in Journal of Physics: Conference Series, IOP Pub-
lishing, vol. 803, 2017, p. 012 146.

156



[81] M. Kumar, D. P. Garg, and V. Kumar, “Segregation of heterogeneous units in a
swarm of robotic agents,” IEEE transactions on automatic control, vol. 55, no. 3,
pp. 743–748, 2010.

[82] M. Gauci, J. Chen, W. Li, T. J. Dodd, and R. Gross, “Clustering objects with
robots that do not compute,” in Proceedings of the 2014 international conference
on Autonomous agents and multi-agent systems, International Foundation for Au-
tonomous Agents and Multiagent Systems, 2014, pp. 421–428.

[83] R. Groß and M. Dorigo, “Self-assembly at the macroscopic scale,” Proceedings of
the IEEE, vol. 96, no. ARTICLE, pp. 1490–1508, 2008.

[84] A. Martinoli, A. J. Ijspeert, and F. Mondada, “Understanding collective aggrega-
tion mechanisms: From probabilistic modelling to experiments with real robots,”
Robotics and Autonomous Systems, vol. 29, no. 1, pp. 51–63, 1999.

[85] M. Gauci, J. Chen, W. Li, T. J. Dodd, and R. Groß, “Self-organized aggregation
without computation,” International Journal of Robotics Research, vol. 33, no. 8,
pp. 1145–1161, Jul. 2014.

[86] J. Chen, M. Gauci, M. J. Price, and R. Groß, “Segregation in swarms of e-puck
robots based on the Brazil nut effect,” in International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), Jun. 2012, pp. 163–170.

[87] P. Mitrano, J. Burklund, M. Giancola, and C. Pinciroli, “A minimalistic approach
to segregation in robot swarms,” arXiv preprint arXiv:1901.10423, 2019.

[88] D. S. Brown, R. Turner, O. Hennigh, and S. Loscalzo, “Discovery and explo-
ration of novel swarm behaviors given limited robot capabilities,” in Distributed
Autonomous Robotic Systems, Springer, 2018, pp. 447–460.

[89] W. Savoie, S. Cannon, J. J. Daymude, R. Warkentin, S. Li, A. W. Richa, D. Ran-
dall, and D. I. Goldman, “Phototactic supersmarticles,” Artificial Life and Robotics,
vol. 23, no. 4, pp. 459–468, 2018.

[90] Y. Mulgaonkar, G. Cross, and V. Kumar, “Design of small, safe and robust quadro-
tor swarms,” in IEEE International Conference on Robotics and Automation (ICRA),
2015, IEEE, 2015, pp. 2208–2215.

[91] T. Alam, L. Bobadilla, and D. A. Shell, “Space-efficient filters for mobile robot
localization from discrete limit cycles,” IEEE Robotics and Automation Letters,
vol. 3, no. 1, pp. 257–264, 2018.

[92] P. E. Schiebel, J. M. Rieser, A. M. Hubbard, L. Chen, D. Z. Rocklin, and D. I.
Goldman, “Mechanical diffraction reveals the role of passive dynamics in a slith-

157

https://www.researchgate.net/publication/279804375_Design_of_small_safe_and_robust_quadrotor_swarms
https://www.researchgate.net/publication/279804375_Design_of_small_safe_and_robust_quadrotor_swarms


ering snake,” Proceedings of the National Academy of Sciences, vol. 116, no. 11,
pp. 4798–4803, 2019.

[93] J. C. Spagna, D. I. Goldman, P.-C. Lin, D. E. Koditschek, and R. J. Full, “Dis-
tributed mechanical feedback in arthropods and robots simplifies control of rapid
running on challenging terrain,” Bioinspiration & biomimetics, vol. 2, no. 1, p. 9,
2007.

[94] D. M. Gordon, “The organization of work in social insect colonies,” Nature, vol. 380,
p. 14, 1996.

[95] J. K. Parrish and W. M. Hamner, Animal groups in three dimensions: how species
aggregate. Cambridge University Press, 1997.
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