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SUMMARY 

The ignition sensitivity of heterogeneous energetic materials subject to shock 

loading is analyzed using both a Lagrangian and Eulerian computational framework. The 

specific focus here is on the various microstructure heterogeneities (including cracks, 

granular anisotropy, voids, and aluminum additives) and their relative contributions to the 

development of critical hotspots and macroscale detonation behavior characteristics, such 

as the run distance to detonation. A probabilistic approach is developed by generating 

statistically equivalent microstructure sample sets (SEMSS) and measuring the ignition 

behavior of each one under similar impact conditions. By varying the material and 

microstructural characteristics in a controlled fashion, the contribution to ignition of each 

specific type of microstructural defects is rank-ordered. Thousands of simulations, using 

dozens of microstructures, are performed on high performance computing (HPC) clusters, 

and all of these results are combined to create predictive, probability maps of material 

response over entire regimes of shock loading. 

The Lagrangian-based cohesive finite element method (CFEM) is used to track 

material response prior to the onset of chemical reaction. Hotspots are categorized as 

critical or non-critical based on chemical kinetics calculations and if a particular density of 

critical hotspots is achieved, the sample is assumed to reach ignition. A probability 

threshold is proposed based on a modified form of the Hugh James and Walker-Wasley 

energy-based ignition criterions. The computations focus on both 100% packed energetic 

grains (HMX) as well as aluminized polymer-bonded explosives (APBXs). It is found that 

increasing the HMX grain size as well as increasing the volume fraction of aluminum 



 xxx 

particulates decreases the material’s sensitivity to ignition. The exact physical mechanisms 

governing the development of hotspots are quantified, and the friction resulting from 

transgranular and intergranular fracture is found to be the dominant dissipation mechanism. 

The Sandia National Laboratories Eulerian hydrocode, CTH, is then used to 

simulate the entire shock to detonation transition (SDT) of pressed HMX, and the material 

sensitivity is ranked based on distance the shock wave travels before the detonation wave 

fully forms. A range of impact velocities are simulated to examine a wide range of potential 

shock pressures and the resulting run-to-detonation distances (RDDs) are predicted as a 

function of this shock pressure (commonly referred to as a Pop plot). The initial probability 

analysis used in the Lagrangian framework is expanded upon to generate a predictive map 

of the SDT threshold. This analysis is carried out in both two dimensions (2D) and three 

dimensions (3D), and it is found that 2D results have a wider variation among data, 

indicating the necessity of both a probabilistic framework and further 3D modeling efforts 

in the future. The probability thresholds proposed in this study serve as a useful design 

metric and may directly influence future shock experimentation as well as the development 

of new insensitive high explosives. 
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CHAPTER 1. INTRODUCTION 

1.1 Background and Motivation 

The study of high impact loading and resulting ignition of energetic materials as a 

field of research has grown substantially over the past few decades. By better 

understanding the nature of energetic initiation, explosives can be custom designed and 

tailored for specific purposes. In particular, the idea for an insensitive high explosive has 

been of great interest to the shock physics community. In order to fully analyze the physics 

governing the ignition of high explosives (HEs) under impulse loading, both experimental 

data and multiscale simulation modeling are required. 

A common type of HE is a polymer-bonded explosive (PBX), which consists of 

energetic crystals mixed with a polymer binder. PBXs were first developed in 1952 at Los 

Alamos National Laboratory (LANL) and have many potential advantages over normal 

HEs. Primarily, the polymer binder can act as a shock absorber, which makes them less 

prone to accidental detonation [1, 2]. This in turn makes them far safer to machine into 

specific shapes. A typical PBX usually consists of anywhere between 5%-40% polymer by 

mass, with the remaining material belong to the explosive crystals. Some common 

energetics used include HMX (Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), RDX 

(1,3,5-Trinitro-1,3,5-triazinane), TATB (1,3,5-triamino-2,4,6-trinitrobenzene), and HNS 

(Hexanitrostilbene). The polymer matrix in the PBX, once cured, can serve as fuel to the 

detonation, however the initial ignition of the PBX stems from the explosive crystals [3]. 

Due to this, there is a trade-off between the benefits associated with PBXs (such as reduced 
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ignition sensitivity) and the costs to performance (since adding more binder means there is 

less room for explosive crystals, thereby lowering the strength of the explosion). Some 

common binders used in PBXs include Estane, HTPB (hydroxyl-terminated 

polybutadiene), and Viton [4]. 

One of the longstanding challenges within the field of energetic materials is making 

accurate predictions of macroscopic ignition safety as well as performance, using 

fundamental material attributes at lower size scales. For a high-speed impact scenario 

(~km/s), it is desirable to know what the likelihood is for ignition to occur – this assessment 

relates to safety and reliability. On the other hand, it is also important to quantify the 

minimum time and distance from the onset of impact to the development of steady state 

detonation – the shock-to-detonation transition (SDT) – this assessment relates to the 

performance of a material. Given the broad range and variability of different impact 

scenarios, these assessments must be carried out under well-characterized conditions to 

allow applications to the varying scenarios via macroscopic state variables such as 

pressure, energy, loading rates, and distance. It is also understood that a heterogeneous 

energetic material (HEM) will exhibit greater sensitivity to shock than a corresponding 

homogeneous material, as material heterogeneities and defects enhance localized 

deformation, heating, failure, and chemical reactivity.  

Specifically, the heterogeneous SDT process [5, 6] is fundamentally different than 

what occurs during the shock initiation of a homogeneous explosive, such as liquid 

nitromethane [7] or hydrogen peroxide [8]. When homogeneous explosives are shocked, 

they are heated to a single bulk temperature immediately following the leading shock wave. 
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When this bulk temperature is sufficiently high (i.e. for a thermal runaway to occur), a 

super-detonation wave forms in the material that was held at elevated temperatures the 

longest [9], usually near the interface between a homogeneous explosive and a 

projectile/impactor. The super-detonation wave must overtake the leading shock before a 

steady detonation is reached. Consequently, this initiation mechanism underlies the reason 

as to why homogeneous explosives appear as relatively shock insensitive compared to 

heterogeneous ones; a critical ignition temperature must be reached during the initial shock 

or impact that is based on the chemical activation energy (and it is typically higher for 

solids than liquids). Over the times and distances associated with the SDT process, 

homogeneous explosives are mostly treated with a continuum modeling approach, using 

the appropriate mixture theories and rate laws [10]. 

In contrast, when a heterogeneous explosive is shocked, the SDT process is 

dominated by the details of the heterogeneous microstructure that lead to heterogeneous 

reactions. A continuum model treatment suffers from a loss of detailed material 

information at scales below the resolution of the computational elements or cells. In this 

case, the average (shocked) bulk temperature is too low for a super-detonation wave (e.g., 

see [11]); however, it is known that material heterogeneities can cause energy to be 

localized into regions known as hot spots [12] – it is at these sites where the chemical 

reaction begins. A successful, heterogeneous SDT results in the more gradual build-up of 

reaction behind the leading shock wave, which then strengthens the leading shock until it 

transitions to a detonation wave without any overshoot. 
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Thus, a pressed, porous explosive is more sensitive to shock and will detonate in less 

time and distance than a pure explosive crystal, or a homogeneous liquid explosive such as 

nitromethane, under similar loading conditions. The increased sensitivity of HEMs is a 

direct result of shock wave interactions with the heterogeneous microstructural features 

such as small cracks, voids, and discontinuities in the forms of boundaries and interfaces 

between constituents (binders, grains, metal particles, and oxidizer granules). These 

heterogeneities cause energy to be localized into regions known as hot spots - it is at these 

sites where the chemical reaction also begins. These microstructural features can be unique 

for certain HEMs, and result from available manufacturing and processing methods that 

must be employed. Typically, microstructural features range in size from tens of nm to 

hundreds of µm, and sometimes even as large as mm. For SDT, these features play a critical 

role in determining the explosive’s shock sensitivity (i.e., safety and reliability) as well as 

performance. For example, Welle et al. [13] showed an empirical link between the 

microstructure and shock initiation behavior of neat HMX via the class of the material 

(class 3 vs. 5). The existence of this kind of a link was previously hypothesized by Baer 

[14] who used realistic three-dimensional HEM microstructures in a hydrocode simulation. 

Hence, both experiments and computations indicate that the overall SDT behavior is 

influenced by the processes occurring at the meso or grain scale. 

Despite such general knowledge that HEM microstructures localize shock wave 

energy to form hot spots, there is little consensus as to the relative importance of the 

different hot spot mechanisms, or as to which mechanisms are active in different loading 

and material regimes. The hydrodynamic hot spot model, as introduced by Mader [15], was 

one of the very first to consider pore collapse and jet impingement following a shock wave; 
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this raises the local temperature higher than the bulk (i.e., Hugoniot) temperature. 

However, more recent pore collapse models by Austin et al. [16] show that the inclusion 

of a viscoplastic crystal model will lead to shear banding and chemical reaction around the 

site of the pore. Regardless of the fidelity and the type of different models used, all direct 

numerical simulations of shock-induced hot spots still require an explicit representation of 

the material microstructure. With current progress in the field, it is now possible to 

calculate the interactions of shocks with a much larger volume of the microstructure, which 

has led to a flurry of recent publications surrounding mesoscale modeling of explosives 

initiation (MMEI) [17-23]. Historically, these mesoscale simulations were carried out at 

the micron-scale, with the aim of predicting the effects that the microstructure has on the 

shock response of the material. However, this scale is much smaller than the scale of the 

full SDT process, which is observed over a few mm and may take several microseconds to 

complete. In addition, this scale is also well below the scale of heterogeneities on the order 

of hundreds of microns or even mm as noted earlier of many common HEMs. 

The necessity of a large-scale SDT simulations with explicitly defined microstructure 

is of paramount importance to fully understanding the ignition sensitivity of an HE. In 

order to achieve such larger scale simulations without them becoming prohibitively 

computationally expensive, there is a strong need to determine which microstructural 

effects are important to consider at various loading intensities or stages of detonation. The 

work presented in this thesis is focused on answering the question of relative importance 

of both microstructural and chemical effects when considering the ignition of HEs. 
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1.2 Process of Ignition 

Understanding the physical mechanisms governing the ignition behavior of high 

explosives (HEs) is a critical challenge when designing insensitive munitions. The most 

commonly accepted ignition theory involves recognizing the development of hotspots, or 

localized areas of high temperatures. These hotspots lead to the onset of chemistry [14, 24-

26] and are often the results of concentrated mechanical energy dissipation, usually due to 

the presence of material defects or microstructure heterogeneities. Some of the most 

common forms of heat generation leading to hotspots are pore collapse, inter-granular and 

trans-granular fracture followed by frictional sliding, shear banding, and bulk shock 

heating [27]. As the temperatures of hotspots rise, they may surpass a critical threshold 

where the heat generation due to exothermic chemical reactions exceeds the rate of heat 

lost to the surrounding material due to conduction [28]. On the other hand, hotspots may 

be quenched by rarefaction waves traveling behind the shock front. Once a hotspot ignites, 

the chemistry leads to thermal runaway, resulting in melting and transformation to gas 

phases. This chemical process is accompanied by intense and rapid pressure increases 

which cause shockwaves to radiate from the hotspot ignition sites, leading to criticality at 

other sites. This avalanche event ultimately results in the formation of a detonation wave 

and the shock-to-detonation transition (SDT) when the detonation front catches up with the 

shock front. The distance the shock wave front travels before overtaken by the detonation 

wave front is known as the run distance to detonation or run-to-detonation distance (RDD) 

and is a common metric used to gauge the sensitivity and explosive potential of an HE in 

the form of a Pop plot [29]. 
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Pore collapse has been studied as one of the main hotspot formation mechanism under 

shock loading. Bourne and Milne [30] studied possible ignition mechanism during pore 

collapse for a shocked material. The focus of their research, however, was not on stress 

concentration at the pore, but rather the temperature rise of the gas encapsulated in the pore. 

Bourne and Field [31] found that the hydrodynamic pressures generated by high-speed 

jetting during cavity collapse causes the ignition. Austin et al. [32] used ALE3D coupled 

with a reactive model, and studied the effect of stress concentration at a pore under shock 

loading, accounting for shear banding on crystallographic planes. Yarrington et al. recently 

studied the detonation or quenching of a continuum HNS based explosive incorporating a 

statistical distribution of randomized void sizes and material locations using CTH [23]. 

Heat generation due to frictional dissipation also affects the material sensitivity. 

Chidester et al. [33] experimentally tested PBX under low velocity impact, and measured 

the threshold velocity for reaction. They obtained the frictional coefficient based on 

frictional work calculation. Chaudhri [34] observed reaction front of β-lead azide using 

high-speed camera, and found that reaction-generated stress wave induces new reaction 

site ahead of the existing reaction front, and the new reaction is caused by frictional 

dissipation. Browning and Scammon [35] coupled three relations: inter-granular frictional 

dissipation model, chemical kinetics model, and heat transfer equation, and obtained time 

to ignition and velocities required for reaction. Gruau et al. [36] performed experimental 

impact tests on PBX and compared the results with numerical results adopted from 

Browning and Scammon [35]. Curtis et al. [37] used a similar test configuration as Gruau 

et al. [36] (Steven Test) in their numerical study, and found that friction substantially 

affects the ignition behavior. Specifically, Barua et al. [38-40] analyzed the energy 
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dissipation in PBX and observed that frictional dissipation is the dominant heating 

mechanism.   

Another type of material heterogeneity that induces hotspot formation comes from a 

microstructure morphology such as grain sizes, shapes, and grain-binder interactions. 

Czerski and Proud [41] studied the effect of grain shapes and size on material sensitivity. 

They performed a Gap test on RDX granules and failed to observe any clear difference of 

sensitivity between the sizes of 10-30 μm and 100-300 μm. However, they found that grain 

shape influences on the sensitivity. Grains that have greater surface roughness with many 

dimple-like features showed more sensitive results. Bardenhagen et al. [42] analyzed 

microstructure morphology of a mock PBX (sucrose/HTPB) in 3D using X-ray 

microtomography, and obtained the bimodal grain size distribution. Skidmore et al. [43] 

compared the grain size distribution of HMX before and after manufacturing PBX 9501, 

and found that the peak volume fraction of large particles among bimodal size particles 

shifted toward smaller diameter, indicating the press processing breaks the large particles. 

Swallowe and Field [44] carried out drop-weight sensitivity tests on PBXs with different 

types of binder, and concluded that the mechanical interactions between a binder and 

energetic crystals influence on the material sensitivity. Rimoli et al. studied potential 

homogeneous ignition mechanisms for hotspots and found that lamellar structures formed 

at the sub-grain level of PETN as the result of slip lines led to higher local temperatures 

than predicted by traditional crystal plasticity models [45]. Welle et al. [13] studied 

microstructural effect on ignition of pressed HMX. The authors measured specific surface 

area and void distance distribution for different types of HMX microstructure, and plotted 
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the ignition criteria on James space (power flux – energy flux). The authors found that the 

energy threshold is influenced by the microstructure.  

 All of these mechanisms play an important role in the generation of hotspots. Once 

the temperature at the hotspot increases enough to overcome the activation energy of the 

exothermic chemical reaction, then the hotspot location becomes an initiation site. 

However, it is also possible that a hotspot may not lead to ignition depending on its 

characteristics. Field et al. [27] used the concept of “critical hotspot” which refer to 

hotspots which become self-sustaining, and provided the variables that determine the 

characteristics of critical hotspots – hotspot size, temperature and duration. If a hotspot 

cannot generate enough heat from its exothermic chemical reactions to cover the loss of 

heat away from the hotspot due to conduction, the result is a quenched hotspot. Bowden 

and Yoffe [12, 46] showed that the hotspot needs to have the size of 0.1-10 μm, the duration 

of 10-5-10-3 s, and the temperature higher than 700K.  

The concept of “criticality threshold” has been further developed by several 

researchers, especially focusing on the hotspot size-temperature threshold for thermal 

runaway. Semenoff [47] obtained a solution of the heat diffusion equation with heat 

generation due to reaction. Frank-Kamenetskii [48] solved the same heat conduction 

equation but with varying temperature distribution. Based on the works from Semenoff 

[47] and Frank-Kamenetzky [48], Thomas [49] studied the effect of surface cooling. The 

author used one-step zero-order Arrhenius reaction equation together with heat diffusion 

equation, assuming steady state. Boddington et al. [50] considered the amount of reactant 

consumption when using chemical reaction, and obtained the critical threshold. Tarver et 
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al. [28] developed 3-step chemical kinetics models for HMX and TATB decomposition, 

and obtained the critical size-temperature relations. Later, Tarver et al. [51] further 

developed the model and proposed 4-step chemical kinetics model for thermal 

decomposition of HMX. Henson et al. [52] compiled experimental data of temperature-

ignition time and obtained a linear relationship on log time-inverse temperature scale over 

a large range of time (from nanoseconds to a day) and proposed a chemical decomposition 

model and parameters are calibrated based on the relationship obtained. Walker and 

Wasley [53] took a different approach to obtain the criticality. Instead of determining 

critical hotspot threshold, they focused on the critical energy flux input on the material, 

and obtained the empirical threshold criteria known as 2P = constant . James [54] further 

developed this empirical threshold by including energy cutoff. 

1.2.1 Effect of Aluminum 

Aluminized HMX/Estane PBX has historically been used because of its higher net 

energy output which increases post-detonation blast performance as compared to 

nonaluminized PBX. Aluminum was first patented to increase explosive performance by 

Roth in 1900 [55], and over time experiments have optimized the volume fraction of 

aluminum particulates required to maximize explosive power [56] at around 20%. Reaction 

of Al is, however, relatively slow due to the oxidized coating of Al particles which have 

high melting point (2300K) that impedes the reactivity [56]. Therefore, aluminium in 

explosive composites behaves like an inert particle in the initial detonation zone. Oxygen-

containing molecules in the reacted products from the decomposition of energetic solids 

undergo a secondary reaction process with aluminium [57]. This two-step process enhances 
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the post-detonation performance of aluminized PBX. Grishkin et al. [57] found that the 

detonation velocity of explosives (RDX and HMX) decreases as aluminium content 

increases, but the propulsion action of the explosives increases with the addition of Al up 

to 7-14% and decreases, indicating there is an optimum range of aluminium content. The 

heat of explosion also increases as aluminum is introduced, which allows the explosive to 

maintain its total output power while still being less sensitive to ignition [58]. Gogulya et 

al. [59] measured pressure and temperature of HMX/Al mixture, and observed two-peak 

structure in pressure profiles. The temperature profiles the authors obtained indicate that 

the energy absorbed for aluminium activation is compensated for by heat release from 

aluminium reaction. Antić and Džingalašević [60] suggested that aluminium does not 

behave as an inert material, but partially oxidises in the detonation wave front, which 

contradicts previously reported observations [57]. However, it is still widely accepted that 

aluminium does not react at the detonation front under moderate or weak shock loading. 

1.2.2 Material Shock Response 

If particle speed of a material is higher than the wave speed of its uncompressed state, 

a shock wave forms. Under shock loading, the response of the material shows interesting 

characteristics that the response under low intensity loading does not. For many solid 

materials, however, these characteristics are often observed even when the particle speed 

is less than its wave speed of uncompressed state. One example of shock characteristics is 

a sharp rise of stress wave front. Even if a gradual impact wave is imposed on the surface, 

the stress wave front becomes stiffer as it propagates [61], because the wave speed of highly 

compressed part is faster than that of less compressed part of the material. Ideally, the 
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stiffening of the wave front becomes infinitely thin, which may result in numerical 

instability during simulations. The concept of adding “artificial viscosity” is proposed by 

von Neumann and Richtmyer [62], to assign a finite width of stress rise at the shock front. 

Introducing a finite width at the shock front provides not only numerical stability but also 

an accurate representation of the propagating shock front [63].  

Modeling of material behavior under high pressure requires an accurate equation 

of state (EOS), which provides a relation between state variables of the material such as 

pressure, specific volume, and temperature. Some of the widely used EOS models in 

modelling shocked material are Mie-Grüneisen EOS [64] and Birch–Murnaghan EOS [65]. 

Measurement of pressure-volume relation called shock Hugoniot curve provides useful 

information for parameter fittings of other EOS models. Hugoniot P V  relation is also a 

simple type of EOS, and it can be transformed to other types of Hugoniot relations with 

different variables such as particle speed or shock speed using the jump conditions [66]. 

The Hugoniot relations commonly used are: P V  (pressure-volume),  PP U  (pressure-

particle speed), and S PU U  (shock speed-particle speed). Using Chapman-Jouguet (CJ) 

theory [67], we can determine the condition of discontinuity at steady 1-D detonation front, 

assuming the detonation reaction zone is infinitesimally thin. The CJ point lies on the 

intersection of Hugoniot P V  curve (Rankine-Hugoniot relation) of reacted material and 

Rayleigh line. A theory of Zel'dovich-von Neumann-Doring (ZND) condition is an 

extension of CJ theory with a consideration of finite reaction zone at the detonation front 

[68]. 
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1.2.3 Chemistry and Reactive Burn Models 

One of the most common HEs is Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine 

(HMX), and is the primary HE studied in the following chapters. Due to this, the chemistry 

discussed here will be limited in scope to HMX in particular.   

Many models have been proposed [69] for the development of hotspots. The effects 

of chemical reactions are often represented by Arrhenius-type kinetics models [70] which 

are calibrated using experimental data [71, 72], DFT/chemical kinetics calculations [73, 

74], and results of molecular dynamics simulations [22]. For example, Mader [75] modeled 

detonation initiation and propagation of homogeneous HEs along surfaces. Once the 

hotspot temperature exceeds the activation energy, the granular HMX in PBX begin to 

decompose. The most common, stable form of HMX is its β-phase, a monoclinic structure 

[76]. Under high pressures and temperature, the β-phase HMX thermally decomposes into 

a stable hexagonal structure state, δ-phase. This transition occurs at pressures above 0.2 

GPa. Karpowicz and Brill [77] found the conversion between β-phase and δ-phase is 

dependent on β-HMX particle size, with β-HMX being more stable at smaller particle sizes. 

Both α and γ phases of HMX exist, but are less stable then either β-HMX or δ-HMX at 

ambient and high pressures and temperatures [78]. 

Several different chemical reaction sequences involving the transformation of HMX 

and RDX into their product gases have been proposed [79-81]. McGuire and Tarver [82] 

proposed a 3-step chemical kinetics model based on the slowest reaction rates in the 

system. The first major step involves the breaking of the carbon and nitrogen bonds, which 

leads to molecular reorganization and the creation of 𝑁𝑂2 radicals. Finally the major 
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exothermic part of the reaction comes from the decomposition of HMX into its final gas 

products: 𝐻2𝑂, 𝐶𝑂2, 𝐶𝑂, and 𝑁2. Henson et al. [52] developed a first order chemical 

kinetics model which fits the decomposition of β-HMX to δ-HMX and then to its initial 

intermediaries: 𝑁𝑂2, 𝐶𝐻2𝑂, and 𝐻𝐶𝑂. In his model, these initial reactions account for the 

majority of HMX exothermic chemical heat generation. 

Modeling chemical reaction using simulation is a non-trivial task. Since the time rates 

of changes of physical quantities in a detonation are extremely high and the RDDs for 

different materials are on the order of millimeters, very short times steps and large sample 

sizes are required to capture the full shock loading, development of hotspots, reaction 

initiation, formation of detonation, and the ultimate SDT, making simulations very 

computationally expensive. For heterogeneous materials, the challenge is even more 

formidable because very fine meshes are required to resolve material microstructure and 

defects such as voids. It is because of these reasons, fully resolved mesoscale simulations 

of SDT at overall sample sizes on the order millimeters have been rare. 

To partly circumvent this computational issue, phenomenological models have been 

used. One such model is the Ignition and Growth model of Lee and Tarver [83, 84]. This 

approach relates the chemical reaction rate to the local pressure and reaction progress 

variables. Other common models include the Forest Fire [10, 85] and JTF [11] models. 

These reactive burn models have become a common tool for simulating detonation at 

reasonable computational cost, as they do not account for microstructure morphology. The 

History Variable Reactive Burn (HVRB) model expresses the chemical reaction rate as a 

function of a time integral of the local pressure in the material [86, 87]. These models are 
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just a few examples of the many ways [35, 52, 88-93] to account for the effects of chemical 

reactions on hotspot ignition and growth, formation of detonation waves, and the SDT. 

There is a common tradeoff between accuracy and simulation time or simulation scale. For 

this reason, many attempts to accurately model the ignition of HMX and subsequent 

chemical reaction are generally performed on nanoscale size samples. The Lawrence 

Livermore Nation Lab code ALE3D excels at handling both the mechanical deformation 

due to phase change, as well as the chemical kinetics itself using the program CHEETAH 

[94]. Larger scale simulations have a tendency to trade numerical accuracy for calculation 

size, as trying to implement both becomes computationally unfeasible with modern 

capabilities. 

1.3 Computational modeling of PBXs 

With the ever increasing prominence of high performance computing (HPC) and the 

development of material models, increasingly sophisticated simulations are able to capture 

local material behavior that remain difficult to study experimentally. Some recent 

approaches to mesoscale modeling include work by Jackson et al. [21], which utilizes a 

density-based kinetics model, and a power deposition term in the energy equation to 

phenomenologically represent discrete hot spots. Comparison studies are also given to 

show the relative importance of the number density of hot spots, the microstructure of the 

crystalline pack, and other numerical parameters. In addition, Wood et al. [22] examined 

the role that the constitutive model plays in a mesoscale calculation by using the atomistic 

code, LAMMPS, to train a strain rate-dependent Steinberg-Guinan-Lund (SGL) 

viscoplastic strength model. Two mesoscale simulations were then run with and without 
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the SGL model turned on (i.e., hydrodynamic only), where it was found that an increase in 

the shocked temperature distribution occurs at lower impact velocities (less than ~1 km/s) 

if the SGL model is in use. Hence, strong shock initiation (i.e., several GPa of pressure) is 

most likely a purely hydrodynamic process. Finally, Yarrington et al. [23] have shown the 

full SDT process for a pressed porous explosive with nanoscale features in two dimensions. 

These large Eulerian calculations make use of a representative microstructure and a tuned 

Arrhenius-type burn model to match experimental results. Although the full computational 

domain was never shown in the paper, the run-to-detonation simulations employed a two-

dimensional, 10 µm by 200 µm rectangular mesh with a total aspect ratio of 20:1 (which 

is among the highest aspect ratios ever published). These simulations also consisted of 80 

million finite volume elements. Such large computational domain sizes appear to be more 

accessible in a pure Eulerian hydrocode, rather than one that is Lagrangian or arbitrary 

Lagrangian-Eulerian (ALE). Yet, there are still advantages and disadvantages to all three 

types of numerical methods. 

Mesoscale models, to various degrees, resolve material heterogeneities, defects, and 

hotspot development under conditions of various mechanical, thermal, or electromagnetic 

excitations [19, 95-100]. The energetics community has been developing new ways to 

characterize microstructure and microstructure effects on the ignition and detonation of 

HEs. A few are mentioned here as examples. Wei et al. [101] studied the effects of material 

defects in the forms of interfacial debonding and grain cracks using a cohesive finite-

element based Lagrangian approach. Rai et al. [102] analyzed the collapse of a void under 

shock loading using an Eulerian framework. Austin [16, 32] used an arbitrary Lagrangian-

Eulerian approach (ALE3D) to study melt lines and shear banding following pore collapse. 
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Yarrington et al. [23] studied the SDT in HNS, accounting for a large population of 

randomly distributed nano pores whose statistical attributes track those of an 

experimentally scanned sample. The predicted threshold velocity required to cause 

detonation matches experimental measurement. The success can be partly attributed to the 

resolution of the mesoscale void structure and the calibration of the chemistry model to 

MD data [22]. These models are either 2D or at the overall sample scale of microns or tens 

of microns.    

Baer et al. [103] are the first to carry out such 3D simulations using CTH, the Sandia 

National Labs solid mechanics code. The analysis concerned in the compaction of granular 

HMX in a cubic millimeter volume consisting of approximately 1900 grains under a 

loading piston speed of 1000 m/s. The local pressure based HVRB was used. Due to 

computational cost, the calculations at lower load intensities could not be continued long 

enough to reach SDT. Reaugh et al. [104] used ALE3D to analyze the response of a 300 

µm × 300 µm ×300 µm block of  PBX and found that a pressure-dependent deflagration 

chemistry model yielded better results than an Arrhenius-type hotspot growth model. 

Recently, Rai and Udaykumar [105] modeled the local effects of pore collapse in a 

homogeneous 3D HMX block 1.3 µm × 4 µm × 12 µm in size and found higher sensitivity 

in 3D than in 2D. Jackson et al. [21] used a phenomological model with energy deposition 

representing the effect of voids to study the effects of shock pressure on initiation times in 

a PBX setting. A reactive burn model instead was used. Due to computational cost, much 

of the work in the energetics community so far uses two-dimensional frameworks, are at 

micron/sub-millimeter scales, or involve various degrees of homogenization or 

phenomenological treatment. To more realistically capture the 3D nature of material 
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microstructure and heterogeneity configurations, to resolve the length scale of physical 

events such as the SDT of HE under shock loading, and to directly bridge the mesoscale 

and the macroscale, there is a strong need for fully 3D models that explicitly resolve 

mesoscale material structures (microstructures or material heterogeneities and voids) as 

well as relevant thermo-mechano-chemical processes. Ultimately, such 3D models can also 

shed light on if and how 2D and 3D models differ possible inadequacies of 2D models. 

1.4 Modeling Ignition Thresholds 

Broadly speaking, the modeling of shock ignition at the mesoscale level is typically 

carried out as a part of modeling shock-to-detonation transition (SDT). There are two 

approaches, depending on whether hotspots are explicitly treated or not. In the literature, 

the phrase “shock initiation” is often used to emphasize the transition to detonation [69]. 

The first approach involves treating hotspots explicitly based on a chosen mechanism of 

energy localization [14] (e.g., predominantly plastic pore collapse). The second approach 

does not involve treating hotspots explicitly, instead ignition is treated via a numerical 

switch to a burn model (rate law) in large-scale engineering calculations [83]. Both 

approaches have two basic features. The first is an assumption on the internal energy 

function (equation of state). The most common is a mass-weighted sum of constituent 

internal energies which contains the fraction of reacted explosive mass (called progress 

variable) and heat release from chemical reaction. The second is the rate law that controls 

the evolution of “burn” via the progress variable. This second approach does not describe 

the mechanisms of ignition or hotspot evolution. However, it is known that these burn 

models can be calibrated to match 50% threshold sensitivity of high explosives [106]. 
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To summarize some of the recent MMEI efforts aimed at shock initiation, Handley 

et al. [17] published a review article that encapsulates the mesoscale modeling approach; 

the review also includes many of the advances made through 2017. Yet, in attempting to 

translate all of the lessons learned from mesoscale modeling to the next higher scale (i.e., 

continuum burn models), several gaps were identified that remain unsolved to this day. 

Note that continuum reactive burn models do not currently treat the mechanisms of ignition 

or hot spot evolution directly. Elsewhere, Rai and Udaykumar [18] have demonstrated the 

feasibility of an image to computation approach for mesoscale simulations of HMX, using 

detailed material models and chemistry based on the Henson-Smilowitz multi-step kinetic 

mechanism. Their mesoscale simulations show that hot spots may or may not lead to 

initiation, based on whether the HMX is class 3 or 5. However, this ignition behavior is 

sub-detonative, and it does not yet represent the full SDT process. Browning and Scammon 

[35] established an ignition model based on inter-granular frictional dissipation, chemical 

kinetics, and heat transfer, and obtained the time to ignition and velocities required for 

reaction. Nichols and Tarver [90, 107] have attempted to model the detonation of HMX 

using a statistical approach, rather than explicit modeling of microstructure. While they 

were able to match experimental detonation velocity results, their continuum approach 

makes it difficult to quantify the exact effects of microstructure on the detonation process. 

Due to the fact that material heterogeneity is one of the most important sources of 

stochasticity in material behavior, the quantification of the statistical variations of material 

attributes at the microstructural level, such as grain shape and size distributions, is essential 

in the discussion of reliability-based design of energetic materials and in the determination 

of the ignition probability under given stimuli that lead to violent reactions. In spite of this, 
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the stochasticity of ignition thresholds, especially the influence of microstructural 

variations of material attributes, such as grain size distributions and defects, has not been 

systematically studied [106, 108]. In this study, this issue is addressed in a manner that is 

consistent with experimental quantification of uncertainty via the generation and use of 

multiple statistically similar samples of each material design setting. 

1.5 Objectives of this Study and Thesis Outline 

This research presented in this thesis aims at understanding the effects of 

microstructure morphology and constituents on sensitivity of PBX under a wide range of 

loading intensity  3 11GPa P , and establishing the correlation between microstructure 

characteristics and the initiation of the material. Additionally, the transition from thermo-

mechanical heat generation to chemical initiation and subsequent detonation is modeled 

and analyzed. The main objectives of this work are as follows: 

(a) Analyze the ignition probability for granular HMX as a function of 

experimental loading conditions. 

(b) Thoroughly quantify the physical mechanisms governing the 

desensitization of PBX by the inclusion of aluminum particulates. 

(c) Develop a capability to model detonation of HMX under shock loading in 

both 2D and 3D.  
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(d) Analyze how microstructural features, including grain anisotropy and 

porosity affect the run-to-detonation distance (RDD) under various shock 

pressures. 

This research consists of four main parts, divided into seven chapter. Chapter 1 

provides a background on the topic of shock initiation of energetic materials research, 

including a literature review of important contributions and current work in the field. 

Chapter 2 discusses both the Lagrangian and Eulerian computational frameworks that will 

be employed in Chapters 3-4 and Chapters 5-6 respectively to study ignition. 

In Chapter 3, fully packed HMX samples are simulated under shock loading, and a 

rigorous statistical methodology for quantifying the probability of ignition is developed. 

The response of stochastically similar sets of 2D microstructures will be simulated under 

impact loading with piston velocities ranging from 500 m/s to 1200 m/s and pulse durations 

of 30-280 µs. The local evolution of hotspots are monitored and the relative heat generation 

due to both plastic work and frictional work is analyzed. An ignition probability map is 

generated over the design space of initial loading conditions and the results of 

microstructural alterations are compared. This includes testing samples with large and 

small grain size distributions (220 𝜇𝑚 and 70 𝜇𝑚 respectively). Results are then compared 

with experimental data in the literature. This chapter allows for baseline verification of the 

HMX material model and constitutive properties, as well as new insights into the relative 

effects of plastic work vs frictional work. In addition, the probabilistic analysis developed 

here will serve as a useful tool for to the community at large, offering insight into the 

sensitivity of HEs as a function of experimental loading conditions. 
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Chapter 4 involves simulating PBX with the addition of aluminum particulates. 

Aluminum often serves as a metallic fuel in PBXs, and experiments have reported their 

inclusion decreases the sensitivity of PBX to ignition. The reason behind this phenomena 

is still not well understood. This chapter explores the thermo-mechanical effect that 

aluminum has on the HMX grains and Estane binder, as it relates to the overall probability 

of ignition. Similar to Chapter 3, ignition probability maps are generated for samples 

containing various volume fractions of aluminum, ranging from 0% to 18%. Additionally, 

the effect of aluminum particle size is examined. The generation of hotspots in samples 

both with and without aluminum is compared, and reasons behind any discrepancies are 

addressed. The aluminum used in these simulations is the aluminum alloy Al 7570. 

Chapter 5 involves a probabilistic study of the shock-to-detonation behavior of pressed 

HMX. The current capabilities of the Lagrangian CFEM framework utilized in Chapters 3 

and 4 is incapable of directly modeling the full ignition and evolution of chemistry, which 

is critical for further modeling of the SDT. In order to effectively study the SDT behavior, 

an Eulerian framework is applied to the problem using the Sandia National Laboratories 

solid mechanics code CTH. Using CTH, four 2D microstructure cases are examined: 

homogeneous (H), microstructured (M), homogeneous with voids (V), and microstructured 

with voids (M+V). By simulating the formation of a detonation wave in each of these cases, 

the run distance to detonation (RDD) may be measured as a function of shock pressure to 

generate a Pop plot. The effect each of these microstructure heterogeneities have on the 

Pop plot is rank-ordered, and a new probabilistic model is proposed to predict the 

likelihood of observing the SDT at any input shock pressure and RDD. The results of these 

simulations are then compared to experimental data in the literature.  
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Chapter 6 further builds on the work presented in Chapter 5 by expanding the 

microstructure and void simulations into 3D. 3×3×15 mm samples with realistic grain 

morphology and 50 µm diameter voids are considered. The discrepancies between 2D and 

3D simulations are quantified, and the probabilistic analysis first introduced in Chapter 5 

is further refined to illustrate a pressure dependence in relative sample SDT sensitivity. 

Lastly, Chapter 7 summaries the methodology and results presented in Chapters 2-6 

and provides recommendations for future work.  
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CHAPTER 2. COMPUTATIONAL FRAMEWORK 

This chapter discusses the computational frameworks used to model ignition and 

detonation in Chapters 3-6 of this dissertation. Section 2.1 describes the microstructural 

generation procedure used to create both 2D samples (used in Chapters 3-5) and 3D 

samples (used in Chapter 6). Section 2.2 lays out the framework used for the Lagrangian 

cohesive finite-element code (CODEX), including constitutive relations, contact and 

frictional algorithms, and the critical hotspot ignition criterion. Section 2.3 describes the 

Sandia National Laboratories Eulerian-based solid mechanics code CTH, including the 

relevant constitutive models and chemistry models used. 

2.1 Microstructure Generation 

2.1.1 2D Microstructure Generation 

The grains used in the 2D samples are generated by Voronoi tessellation and have 

random, multifaceted surfaces interlocking with each other. After inserting a numbers of 

“seeds” into a defined area, increasingly larger circles are drawn around each point. The 

radii of these circles increases until they encounter a boundary from another circle 

generated by another seed. Once this occurs, this connected point stops expanding while 

the rest of the boundary continues. After the entire perimeter of a single seed has 

encountered a perimeter from another nearby seed, the grain geometry stops evolving. This 

method of generation creates randomly faceted granular geometries which serve as good 

representations of a pressed microstructure. Wu et al. [109] showed that simulations of 

Brazilian compression of PBX using microstructures generated with this approach match 
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experiments reasonably well. Since frictional dissipation along crack faces under 

compression is an important mechanism for hotspot generation, the Voronoi tessellation 

method for generating microstructures is preferred to ensure well-defined intergranular 

interfaces. This method also allows for the generation of large numbers of microstructures 

with random variations in morphology and a high-degree of statistical similitude in 

microstructure attributes, such as grain shape and grain size distributions. A sample 

Voronoi output is shown in Figure 1. 

 

Figure 1 - Sample Voronoi tessellation output resulting in granular geometries. 

2.1.1.1 CODEX Meshing Scheme 

After the granular microstructure has been generated, a Matlab preprocessor is used 

to identify and pixelate the individual grain shapes, using the binary black and white 

Voronoi diagram. In the case of the CODEX framework, the sample is then meshed 

according to a fixed element scheme. Each grain is subdivided into a number of two-

dimensional constant strain triangular elements arranged in a fixed pattern displayed in 

Figure 2. Between each set of elements, a cohesive element with zero area is inserted. This 

element allows the user to define cohesive strengths for each material-material connection 

and serves as the basis for handling fracture in the microstructure. More information on 

this cohesive finite element framework can be found in Section 2.2.3. 
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Figure 2 - Sample meshing of a randomly generated 3mm x 6mm fully dense 

microstructure.  

2.1.1.2 Aluminized PBX 2D Microstructure Generation 

While the methodology of using a Voronoi tessellation scheme alone is sufficient 

for generating fully-packed microstructures, when samples have multiple different 

constituents (as is the case with PBX), a more elaborate generation method is required. In 

order to generate the aluminized PBX samples discussed in Chapter 4, the procedure 

described here is used to generate these complicated microstructures. First, the HMX grain 

distribution is still generated using Voronoi tessellation. Two monomodal distributions of 

grains are generated: one large (200-400 µm diameter) and one small (50-200 µm 

diameter). Appropriately sized grains from each distribution are saved to a library, and 

randomly redistributed into microstructures until the appropriate volume fraction of HMX 
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is met to create a microstructure of desired attributes. In particular, the grains from the two 

monomodal distributions are combined to create microstructures with bimodal 

distributions of grains of different volume fractions. Following this, 50 µm diameter 

aluminum particles (Al 7075 alloy) are randomly inserted into the empty space not already 

occupied by HMX, until a total volume fraction of 81% has been achieved. Any remaining 

empty space is assigned to binder. This method of microstructure generation results in 

realistic, randomized, and stochastically similar microstructures, which allow for 

statistically similar testing - necessary for studying initiation probability. Figure 3 shows a 

sample APBX microstructure. 

 

Figure 3 - Sample PBX Microstructure with HMX grains, Estane binder, and Al 7075 

particulate. 

2.1.2 3D Microstructure Generation 

The three-dimensional microstructures used in Chapter 6 consist of four material 

cases: homogeneous (H), microstructured (M), homogeneous with voids (V), and 

microstructured with voids (M+V). The granular distribution used in the M and M+V cases 

is generated using a similar Voronoi tessellation procedure as 2D (discussed in Section 
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2.1.1), but expanded into 3D space. For the homogenous or microstructured samples with 

voids, the individual voids are inserted randomly until a total desired void volume fraction 

has been reached. No two voids overlap, ensuring a constant void size and random void 

distribution. A sample microstructure and void layout is shown in Figure 4. For visual 

clarity, a void volume fraction of 0.5% is shown in Figure 4 (b). In CTH, the microstructure 

geometry is input using the DIATOM subsection, which inserts all the grains first, and then 

replaces the void location material with air (thereby replacing the HE). More information 

about the DIATOM subsection is outlined in Section 2.3.1. 

 

 

Figure 4 -(a) A sample 3D Voronoi tessellation microstructure. (b) A sample void 

distribution consisting of 50 µm diameter voids. The void volume fraction is 0.5%. 
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2.2 Lagrangian Framework 

The computational analysis in Chapters 3 and 4 are performed using CODEX 

(Cohesive Dynamics for Explosives), a recently developed Lagrangian cohesive finite 

element code. The overall CFEM framework, including constitutive models, are discussed 

in this section. 

2.2.1 CODEX Overview 

The CODEX framework allows for quantification of the effects of microstructure 

and thermal-mechanical processes, including bulk deformation, interfacial debonding, 

fracture of grains, and subsequent frictional heating [39, 95, 96, 110]. The constitutive 

relations for the grains and aluminum are those of a hydrostatic stress-dependent elasto-

viscoplastic material. Specifically, the deviatoric part of the stress tensor carried by the 

material follows an elasto-viscoplastic constitutive law and the hydrostatic part of the stress 

tensor carried by the material follows either a Birch-Murnaghan equation of state (B-M 

EOS) or a Mie-Grüneisen EOS, depending on the user preference. Additionally, an 

artificial viscosity model is used in association with the EOS to ensure numerical stability. 

The behavior of the binder in the PBX simulations follows the generalized Maxwell model 

for viscoelastic binders. A bi-linear traction-separation model is used for the cohesive 

elements to account for normal and tangential separations and fracture in grains. Details of 

the cohesive models and the parameters for transgranular separations are discussed further 

in Section 2.2.3. The cohesive strength at the grain-grain interfaces is set to zero. A contact 

detection algorithm and a subsequent contact force model are used for surfaces after 

fracture. The Coulomb friction damping model is used for surface elements that are in 
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contact. The coefficient of friction is 0.5 at the contact points between initially debonded 

surfaces as well as surfaces newly generated as a result of transgranular fracture. Fourier’s 

heat conduction model is coupled with mechanical deformation and failure models to 

account for thermal conduction in the material. Details of the algorithm and models can be 

found in Ref. [95]. An outline of the constitutive and interfacial relations is given in the 

following section. 

2.2.2 Constitutive Relations 

2.2.2.1 HMX and Aluminum Deviatoric Stress-Strain Model  

The deviatoric part of the constitutive behavior of both the HMX grains and Al 

particles is described by an elasto-viscoplastic model. The specific form of the constitutive 

relation used is 

  ˆ :   pL D D    (1) 

where L is the tensor of elastic moduli and ˆ   is the deviatoric part of the Jaumann rate of 

the Kirchhoff stress. For isotropic elastic response, 

 2μ λ . L I + I I   (2) 

Here, I  is the fourth order identity tensor, λ and μ are Lamé’s first and second constants. 

D  in Eq. (1) is the deviatoric part of the rate of deformation, which can be decomposed 

into an elastic part and a viscoplastic part as 

     e pD D D   (3) 
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where 
pD  is the viscoplastic part of D  in the form of 
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where 
0

  
t

dt  is the equivalent plastic strain, 0  and m  are reference strain rates, m and 

a are rate sensitivity parameters for strain rates below 3 1
10  s

  and above 4 1
5 10  s


 , 

respectively, 0
  is the quasi-static yield stress, 

0
  is a reference strain, N is the strain 

hardening exponent, 
0

T  is a reference temperature, and  and    are thermal softening 

parameters. The function ( , )g T  represents the quasi-static stress-strain response at 

ambient temperature. The above relations consider strain hardening and strain-rate 

dependence of plasticity. The details of the above constitutive relations and descriptions of 

the parameters can be found in Ref. [111]. The material constants used in Eq. (5) for HMX 

are listed in Table 1 and the constants used for Al 7075 are listed in Table 2 [112]. 
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Table 1. HMX material parameters for viscoplastic constitutive behavior 

0  

(MPa) 
0  N 0T  (K) β 

260 5.88×10-

4 

0.0 293 0.0 

0  ( 1s ) m m  ( 1s ) 
a 

(1 MPa ) 
κ 

1×10-4 100.0 8.0×1012 22.5 0.0 

 

Table 2. Al 7075 material parameters for viscoplastic constitutive behavior 

0  

(MPa) 
0  N 0T  (K) β 

415 6×10-3 0.07 293 0.035 

0  ( 1s ) m m  ( 1s ) 
a 

(1 MPa ) 
κ 

1×10-4 50.0 8.0×108 5 3.0 

 

2.2.2.2 Equation of State (EOS) 

The volumetric part of the response is described by the Birch-Murnaghan equation 

of state (B-M EOS). The specific form of the equation is 
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3 3 3
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h

dV dV dV dV
K K

dV dV dV dV
  (6) 

where 11 22 33      h ii  is the hydrostatic part of the Kirchoff stress which is the 

product of the Jacobian and the negative of the hydrostatic pressure. 𝐾0 is the bulk modulus, 
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and 𝐾0
′ = (𝜕𝐾0 𝜕𝑃⁄ )𝑃=0. 0/dV dV  is the volume ratio of an initial volume element (dV0) and 

the current volume element (dV), which is equal to the Jacobian ( det( )J F  with F being 

the deformation gradient). For the implementation of the B-M EOS, a time incremental 

form is used. The time rate of change of the Jacobian is 

 
0 0

dV dV
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D   (7) 

and the rate of change of the hydrostatic Kirchhoff stress is a function of the Jacobian and 

rate of deformation, i.e., 
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D   (8) 

Previous studies [113-115] show discrepancies in the parameters of B-M EOS for 

HMX. Landerville et al. [115] reported that the parameters vary to a large degree among 

experiments due to inherent noise of experiments and inconsistencies in fitting ranges and 

schemes. The parameter values used for HMX are 𝐾0 = 16.71 𝐺𝑃𝑎 and 𝐾0
′ = 7.79 as 

reported in Ref. [115] which lie in between the values of Gump et al. [113] and Yoo et al. 

[114]. The B-M EOS is also used to model the aluminum particles, with values of are 𝐾0 =

72.7 𝐺𝑃𝑎 and 𝐾0
′ = 5.262, as reported in Ref. [116]. Figure 7 shows the pressure – volume 

relations from HMX models with and without the B-M EOS. 
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Figure 5 - Pressure - volume relations with the Birch-Murnaghan EOS and without 

the EOS. 

2.2.2.3 Estane Viscoelastic Model 

The Estane binder is modeled following the generalized Maxwell model (GMM) 

[117] for viscoelastic binders, shown below in Eq. (9). 
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 Here, σ represents the Cauchy stress, 𝜀𝐷 and 𝜀𝐻 refer to the deviatoric and hydrostatic 

portions of the Eulerian strain tensor, and t and τ refer to the physical and reduced times, 

respectively. The shear modulus G is assumed to vary with the reduced or relaxation time 

τ according to a Prony series formulation [117] of the form 
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where 
0 1

pN

ii
G G G 

   and represents the instantaneous shear modulus at reference 

temperature 𝑇0, 𝐺∞ represents the steady-state shear modulus, 
0i ig G G  is the relative 

modulus of the 𝑖 th term, 𝑁𝑝 represents the number of terms in the Prony series and 𝜏𝑖
𝑝
 are 

the relaxation times. Further details regarding the binder constitutive model, including the 

parameters and calibration techniques used in this simulation, can be found in reference 

[95] 

2.2.3 Cohesive Finite Element Framework 

The fracture of the microstructure under high-impact loading is modeled using a 

cohesive finite element framework. The cohesive elements are inserted between every bulk 

element and are initially assigned zero area (Figure 6(a)). In this way, cohesive strength 

may be assigned to each bulk material, or combination thereof, without modifying the 

microstructure geometry itself. These cohesive elements allow for arbitrary crack initiation 

and propagation, while also giving CODEX the ability to explicitly model initial debonding 

between the grains, commonly observed in experimental samples. 

The fracture follows a bilinear traction separation law described by Zhai et al [118] 

(Figure 6(b)). Until the displacement (δ) between two bulk elements reaches a critical 

distance (δ0), the cohesive elements are considered elastic. Once this critical displacement 

is exceeded, the cohesive element will begin to lose energy, and a resulting reduction in 

element stiffness occurs. If the element passes a second critical displacement (δc), the total 

energy lost equals the critical energy release rate and the interface between its two 

connecting bulk elements is considered fractured. Once this point is reached, the strength 

parameters of the cohesive element connecting the two bulk elements are set to zero. The 



 36 

cohesive parameter values for each pair of possible bulk element connections are listed in 

Table 3. Further details on this cohesive model can be found in reference [95]. 

 

Figure 6 - (a) Illustration of the connectivity between cohesive elements and bulk 

elements. (b) Bilinear traction separation law. 

 

Table 3. Cohesive Parameters for each bulk element combination 

Element Type δ
c 
(µm) δ

0
(µm) S

max
 (MPa) 

Estane-Estane 10 0.1 557 

HMX-HMX 5.0 0.005 101 

Al-Al 15.4 0.0154 345 

HMX-Al 4.66 0.00466 70 

Al-Estane 4.71 0.00471 70 

HMX-Estane 4.62 0.00924 35 

    

2.2.4 Contact, repulsion, and friction algorithm 

Detection of contact is a computationally expensive procedure, as described by 

Burago [119]. This CFEM framework utilizes a Lagrangian penalty-based repulsion 

algorithm. If a cohesive element is failed, the adjacent bulk elements are added to a list. 

The contact detection is performed for bulk elements in this list at each computational time 

step. The calculation time of this algorithm is proportional to second power of the number 
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of failed elements. To reduce the computational time, a coarse grid is placed on a fine mesh, 

and the contact search algorithm only considers elements that lie within the same cell of 

the grid. Initially, each cell expands its size to have overlaps with neighbor cells, so that 

searching process does not miss the contact of elements at the grid boundary. A penalty 

force is applied to each node of failed surfaces to strongly discourage interpenetration and 

maintain proper contact of the surfaces. The direction of the repulsion force is normal to 

the contact surface, and the magnitude is determined based on relative acceleration, 

velocity and penetration depth of two elements that are in contact. Detailed descriptions of 

the multi-step contact algorithm and the penalty forces are given in Ref. [120]. Frictional 

heating due to sliding along surfaces in contact is assessed using the Coulomb friction law. 

The stick-slip state is determined by the normal force between contact surface pairs. 

2.2.5 Ignition Criterion 

In order to determine whether a sample reaches ignition, a simplified critical hotspot 

theory is employed. The focus of this Lagrangian framework is not to explicitly model the 

entire onset of chemistry, but rather identify the initiation of hotspots. This hotspot 

criticality condition is based on the assumption that once the rate of heat generation due to 

chemical decomposition overtakes the rate at which heat can be conducted away to the 

surrounding, cooler material, then the hotspot has become critical. As the temperature of 

the hotspot rises, the rate of heat generation due to chemistry also increases. This criticality 

condition is listed below. 

 chem lossQ Q   (11) 
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To determine whether or not a hotspot has gone critical in CODEX, a temperature 

analysis is performed. The temperature field of a sample from the CFEM calculation is 

scanned for localized temperature rises above a given temperature threshold (Tthres). Areas 

of a temperature field with temperatures above the threshold are analyzed for hotspots. 

Successively varying Tthres values allow the characteristics of a temperature field to be fully 

analyzed.  

After all hotspots in a sample are quantified in terms of size and temperature, a 

recently developed criterion for ignition [96] is used to determine the onset of irreversible 

chemical decomposition of the HMX phase in the samples. This criterion provides a 

relationship between the size and the temperature states of critical hotspots. Specifically,   

    c ,d T d T   (12) 

where d is the diameter of a hotspot resulting from a loading event whose interior 

temperatures are at or above temperature T. dc is the minimal diameter of a hotspot required 

for thermal runaway at temperature T. The quantitative information regarding the right-

hand side of Eq. (12) is taken from the work of Tarver et al. [28] who performed chemical 

kinetics calculations to analyze the criticality issue for HMX and TATB explosives. The 

calculations consider multistep reaction mechanisms and the pressure and temperature 

dependence of reactants and products. More details about the ignition criterion can be 

found in Ref. [96]. 
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The left-hand side of Eq. (12) is obtained by analyzing the temperature fields in the 

microstructures from CFEM calculations. To account for the variations of temperature 

within a hotspot (note that temperatures at different spatial locations within a hotspot are 

different and the temperature threshold is the lowest temperature at the periphery), the 

hotspot threshold of Tarver et al. is treated as a band of ± 10% about the mean value, as in 

Ref. [96]. A hotspot is considered to be critical when it crosses the lower threshold limit 

(90% of the average value). The initiation of the material is regarded as being reached if 

the critical hotspot density is equal to or greater than 
20.22 mm  which corresponds to two 

critical hotspots in a 3 mm square domain. The specific choice of the current critical hotspot 

density (0.22 mm-2 ) is based on the observation of Barua et al. [96] who observed a 

negligible difference on the criticality results by changing the critical hotspot density 

between 0.11 mm-2 (single hotspot in the whole sample) to 0.44 mm-2 (4 hotspots in the 

whole sample). This consistency is primarily because many hotspots develop 

simultaneously and reach the threshold within very short time intervals from each other. It 

has been contemplated that interactions among subcritical hotspots in close proximity of 

each other might lead to one critical hotspot or sample criticality. If a critical hotspot is to 

emerge from the interactions of multiple hotspot, it would be detected by the approach used 

here and accounted for by the ignition criterion.  

2.3 Eulerian Framework 

2.3.1 CTH Overview 

While the Lagrangian framework of CODEX is a useful tool for predicting the 

ignition threshold due to its explicit ability to track frictional heat generation at low impact 
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velocities, a new framework is needed to explicitly model the shock-to-detonation 

transition (SDT). In Chapters 5 and 6, the shock physics hydrocode from Sandia National 

Laboratories, CTH, is used to model the detonation behavior of pressed HMX. This section 

will only discuss a few of the key elements and constitutive relations chosen for these 

simulations. For further information regarding CTH, see References [86, 87, 121]. 

In CTH, a Lagrangian step with zero mass flux into or out of the element is used to 

initially track the deformation followed by a subsequent Eulerian remap step to return the 

mesh to its original position. During the Lagrangian step, mass, momentum, and energy 

are all conserved. Once the material has deformed as far as it can (as constrained by the 

time step), a second order accurate advection scheme is implemented to calculate the new 

material state properties in each of the reformed elements. During the remap step, CTH is 

unable to conserve both kinetic energy and momentum. Due to this, momentum is chosen 

to be conserved, while the internal energy is convected. Any kinetic energy discrepancy is 

discarded, meaning that the total energy in the system is not technically conserved. This 

may lead to potentially erroneous temperature measurements in areas with particularly 

strong deformation. 

CTH is able to run in parallel on multiple processors, making large scale 

simulations feasible. The primary inputs for CTH include defining the material geometry, 

an EOS model, a strength model for each material, and a chemistry model if the material 

is reactive. The specifics of these models used for the HMX SDT modeling in this thesis 

are provided in Sections 2.3.2-2.3.4. Further details on CTH can be found in references 

[86, 87, 121, 122] 
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2.3.2 Material Geometry Input 

Generated 2D and 3D microstructures (as described in Section 2.1) are defined in 

CTH using the DIATOM subroutine. Geometries defined as the microstructure are inserted 

in the same order they are listed in the input deck. If two geometries overlap (e.g. two 

grains), the DIATOM subsection will insert whichever one was listed first, and then 

attempt to insert the second one. Any volume of the second geometry which overlaps with 

the first is ignored. In order to generate the voids used in Chapters 5 and 6, the DIATOM 

subsection features a “replace” command, which allows one to redefine the material in a 

previously defined material volume. Using these insertion and replacement commands, in 

addition to the STL files defining each grain in the Voronoi generated microstructure, 

complicated and realistic looking microstructures may be accurately modelled in CTH. 

Figure 7 depicts a cartoon illustrating how CTH generates different geometries depending 

on their order in the CTH input deck. 
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Figure 7 – Cartoon illustrating the importance of DIATOM ordering when defining 

geometries in CTH. 

2.3.3 Constitutive Relations 

A simplified Steinberg-Guinan-Lund strain-dependent flow stress model (SGL) is 

used to account for the viscoplastic behavior of HMX. This strain-rate dependent model is 

well-suited for high strain-rate deformation and accounts for the effects of thermal 

softening. The material yield stress is calculated via 

    , , ,       Y P A T PT T  with (13) 
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In the above relations, A  is the athermal component of the flow stress, T  is the thermally 

activated component of the flow stress, and 1C , 2C , KU , and P  are material parameters. 

The model has been calibrated to match the elasto-viscoplastic model used for HMX as 
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described in Section 2.2.2.1, which in turn was based on available experimental data. The 

values of the material parameters in the model are listed below in Table 4. 

Table 4. HMX material parameters for the SGL flow stress model 

1C  2C  KU  P  

3.79 × 1011 s-1 1.45 Pa‧s 3000 K 650 MPa 

 

The bulk response to hydrostatic pressure is modeled using the first order Mie–

Grüneisen EOS 
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where p  is the pressure,  0  is the initial density of HMX,   is the current density of 

HMX, 0  is the Grüneisen parameter, 0C  is the bulk sound speed, and s  is the slope of the 

Hugoniot. E  is the internal energy which is found by integrating the specific heat with 

respect to temperature at constant volume, i.e., 
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https://en.wikipedia.org/wiki/Gustav_Mie
https://en.wikipedia.org/wiki/Eduard_Gr%C3%BCneisen
https://en.wikipedia.org/wiki/Eduard_Gr%C3%BCneisen
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Table 5. HMX material parameters for the Mie–Grüneisen EOS model 

0  0C  s  0  

1.33 g/cm3 or 

1.90 g/cm3   or 

2.47 g/cm3 

2900 m/s 2.0 1.0 

 

2.3.4 Chemistry Model 

The process of chemical reaction initiation and progression follows the history 

variable reactive burn model (HVRB) in the form of  

 1 1 ,
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In the above relations,   is the extent of reaction,  0  is a scaling constant, p  is 

the current pressure, ip  is the threshold pressure for reaction, and Rp , X , M , and Z are 

reaction rate parameters. Reactive burn models have been widely used to simulate the 

ignition and detonation of HEMs [14, 83, 84]. These empirical models are often calibrated 

to Pop plot data. As a result, the localized extent of reaction behind the shock front may 

not be perfectly resolved (which is a known limitation for the HVRB model). However, 

with available data and models, this is a reasonable trade-off in order to reach the 

macroscale from the mesoscale, since the focus here is on analyzing macroscale material 
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behavior. The HVRB model provides a straightforward method of accounting for chemical 

reaction at larger size scales which would otherwise prove more computationally intensive 

if an Arrhenius-based chemical reaction rate model is used. Still, it is worthwhile to note 

that if and when a more useful chemistry model is made available, it can be easily used in 

the current framework – there is no fundamental impediment to the use of other, especially 

more mechanisms-based, reaction models. The calibration parameters shown in Table 6 

have been fit to the average state data of HMX and are found in the CTH material properties 

library. Once the chemical extent of reaction for the solid HMX reaches 100%, the material 

behaviors following an internal equation of state reference table, also known as a 

SEASAME table. 

Table 6. HMX material parameters for the HVRB chemistry model 

0  ip  Rp  X  M  Z  

1 × 10-6 s 500 MPa 6 GPa 1 1.5 2.36 
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CHAPTER 3. COMPUTATIONAL PREDICTION OF 

PROBABILISTIC IGNITION THRESHOLD OF PRESSED 

GRANULAR HMX UNDER SHOCK LOADING 

This chapter is based on the work published in Ref. [19] in collaboration with Seokpum 

Kim. 

3.1 Introduction 

The subject of ignition (go or no-go) occupies a central place in consideration of 

explosives’ safety and performance. As a result, there exists a large body of literature 

covering a wide range of scenarios, from loading and environment, spatial and time scales, 

to material composition and microstructure. In particular, the establishment of precise 

conditions for the ignition of real energetic materials is especially important. The threshold 

conditions are commonly expressed by simple analytic functions. Solov’ev [123] reviewed 

several such thresholds, each of which focuses on a different initiation mechanism. One of 

the newer and most commonly used thresholds is the James relation [54]. This threshold is 

chosen for use in this Chapter not only because it accurately describes experimental data, 

but also because it considers two macroscopic state variables, one is the rate at which 

energy is imparted to a sample (energy flux) and the other is the total energy imparted to a 

sample (energy fluence). So far, the establishment of ignition thresholds has been 

exclusively an experimental endeavor. In this Chapter, a methodology is developed for 

predicting the James type ignition thresholds through microstructural level simulations of 

real explosive systems. The method is an extension of a novel computational capability 
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based on the Lagrangian cohesive finite element method (CFEM) and represents a pathway 

toward building predictive tools for evaluating and comparing solid explosives at the grain 

scale and for establishing relations between macroscopic safety/performance and 

microscopic structures of the materials. The method and the relations it yields are such that 

they can be used in the design of new explosives via heuristic improvement of performance 

through microstructural, constituent and compositional engineering.  In the pursuit of this 

objective, emphasis is placed on (1) quantification of conditions of ignition under well-

understood planar shock wave stimuli typically applied in experiments, (2) capture of 

essential material attributes and physical processes that control ignition, (3) recognition of 

the probabilistic nature of the ignition phenomenon, and (4) comparison with independent 

experimental measurements. 

This chapter consists of three parts. The first part describes the computational 

framework used to study shock ignition and includes discussion on microstructure 

representation, loading configuration, and constitutive relations. The second part discusses 

simulation results with focus on shock ignition thresholds in terms of the modified James 

function and a probabilistic quantification of the thresholds. Normalized hotspot 

temperature as a measure for the ignition risk of individual hotspots is then introduced 

[referred to as the hotspot ignition risk determinant (HIRD) or R]. The third part focuses 

on the major findings, which include predicted James type ignition thresholds for pressed 

HMX powders, the effect of particle size on the James ignition thresholds, comparison with 

experimental measurements, and the probability distribution of the thresholds as a function 

of the James number (J) as introduced by Gresshoff and Hrousis [106]. 
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3.2 Framework of Analysis 

3.2.1 Material 

The material considered here is pressed granular HMX (Octahydro-1,3,5,7-

tetranitro-1,3,5,7-tetrazocine) with microstructures consisting of HMX grains without 

binder. In the experiments, materials with different grain sizes are referred to as different 

“classes”. Of particular interest are Class 3, which has an average grain size of 
avgd  = 358 

μm, and Class 5, which has an average grain size of 
avgd  = 6.7 μm initially. These HMX 

grains are then pressed, causing the grain sizes to become somewhat smaller than their 

original sizes (see Figure 4 in Ref. [124]) due to fracture. Both classes have a density that 

is 94% the theoretical maximum density (TMD). Figure 8 shows scanning electron 

microscope (SEM) images of the microstructures of these two classes of HMX. A small 

number of abnormally large grains (referred to as “boulders”) are present in the Class 5 

material. Samples prepared for shocked experiments are cylindrical pellets with a diameter 

of 0.5 inches and a height of 0.5 inches.  
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Figure 8 – SEM images of materials used in experiments, (a) Class 3 HMX and (b) 

Class 5 HMX. Images in the upper row show HMX crystals and images in the lower 

row show the microstructures made out of the corresponding HMX Classes after 

pressing. The images are provided courtesy of R. R. Wixom at Sandia National 

Laboratories. 

The materials and the experimental procedure of Welle et al. [13] serve as a basis 

and starting point for the computational analysis. In the experiments, multiple samples for 

each material class and load condition are tested to quantify the ignition threshold 

distribution. Similarly, for systematic computational quantification of the probabilistic 

ignition behavior, statistically similar sample sets with multiple (5) samples are 

computationally generated and tested under identical loading conditions. The 

computationally generated microstructures mimic the attributes of the experimental 

microstructures. The generation uses 2D Voronoi tessellation [110]. The computationally 

generated samples are designed to achieve two objectives: (1) maintain statistical 

consistency among samples for each material setting (e.g., consistency in grain size 
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distributions, grain volume fraction, and grain shapes for a given average grain size) and 

(2) focus on trends in key microstructure attribute (grain size) among the different classes 

of materials. To this end, each sample set follows a mono-modal grain size distribution 

with a specific average grain size that lies between the average grain sizes of Class 3 and 

Class 5. This approach allows primary trends in material behavior-microstructure relations 

to be identified and quantified while a significant degree of similitude is maintained 

between the experiments and simulations for relative comparison. Further information 

regarding the generation of these microstructures in found in Section 2.1.1. 

The differences between the experimental samples and computationally generated 

samples are as follows. First, the large “boulders” in the Class 5 experimental samples are 

not considered in the computationally generated microstructures, as their percentage is 

small (<10%) and accounting for such large grains would require much larger 

representative volumes which are computationally prohibitive for the large number of 

statistical calculations pursued here. The second difference between the experimental 

samples and computationally generated samples is that the experimental samples have a 

density that is 94% of the TMD and, more importantly, the voids are too small ([125]) to 

be resolved explicitly via finite element meshing at the overall size scale of samples 

analyzed. Therefore, a phenomenological approach for accounting for the effects of voids 

is taken in the simulations. Specifically, the effects of the voids are considered through 

variations in the bulk properties of the grains based on the fact that small-scale voids 

weaken the stiffness and strength of materials. This treatment applies to heterogeneous 

characteristics including micro and nano scale voids, microcracks, variations in material 

properties of the HMX grains, and directionality of constituent behavior due to crystalline 
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anisotropy. Here, these heterogeneities are phenomenologically accounted for in a unified 

manner via random variations in the elastic modulus of the grains. Researchers have 

analyzed the variations of the elastic moduli due to various factors including defects 

through experiments and computation. Yang et al. [126] performed a MD simulation of a 

copper plate with a void and found that the elastic modulus decreases as the volume fraction 

of the void increases. Hudson et al. [127, 128] quantified the voids in RDX crystals and 

assigned a defect score to each grain. By using nano-indentation, they measured the elastic 

modulus and found grains with more defects (high defect scores) have a lower elastic 

modulus. These findings provide justification and serve as a guide for the use of varying 

elastic modulus values of HMX to phenomenologically account for heterogeneities in the 

microstructures analyzed here. Three levels of elastic modulus (E = 30.3, 20.0, and 12.9 

GPa) are randomly assigned to the HMX grains. These levels are determined based on a 

study of the anisotropy of the elastic behavior of HMX and data in the literature on how 

voids affect elastic moduli. Specifically, the maximum and minimum values of the 

Young’s modulus of HMX are determined from the stiffness tensor provided by Sewell at 

al. [129]. The intermediate value is taken to be the Voigt Ruess Hill (VRH) average of the 

stiffness tensor. A similar case has been studied by Dimas et al. [130] who randomly 

distribute the Young’s modulus in the microstructure. The random variations in their study 

follow a lognormal distribution, with the mean value representing the effective modulus of 

the simplified homogeneous material. Similarly, in our study, the effective modulus 

corresponds to the VRH average (E = 20.0 GPa) of the stiffness tensor. The grains with the 

high level of Young’s modulus (E = 30.3 GPa) are assumed to lie in orientations that have 

the highest stiffness. The high level of bulk modulus of these grains represents ideal 
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crystals without voids or defects. The grains with the low level of Young’s modulus (E = 

12.9 GPa) are assumed to lie in an orientation that have a lower stiffness. The low level of 

bulk modulus of these grains represents the crystals with significant amounts of voids or 

defects. A parametric study is carried out with further variations from these values. It is 

found that the changes do not have a significant influence on the ignition behavior of the 

materials. Part of the reason lies in the fact that heating is primarily an outcome of fracture 

and inelasticity (see Figure 28 in Ref.[120]). Isotropic constitutive relations are 

implemented in our framework. Anisotropy in the Young’s modulus provides a guideline 

for choosing maximum and minimum values for the isotropic model. Specifically, the 

maximum and minimum bulk modulus and shear modulus values used differ by the same 

ratio as the maximum and minimum values of Young’s modulus described above. 

Although the computationally generated microstructures are not “exact” representations or 

reproductions of the experimental samples, major attributes are captured, allowing trends 

in the effects of grain size on ignition behavior to be delineated. It is worth pointing out 

that what is pursued here is not meant to be an “all-inclusive” effort that explicitly accounts 

for all possible effects of microstructure on the ignition of the materials. Rather, it is meant 

to be a novel effort aimed at the computational prediction of ignition thresholds, explicitly 

accounting for major dissipation mechanisms other than heating due to voids. The effect 

of voids on ignition and detonation behavior is examined in Chapters 5 and 6 in 2D and 

3D space respectively. 
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Figure 9 - Computationally generated microstructures and the size distributions of 

HMX grains in the microstructures for 
avg

d = 70, 130, and 220 μm. Each 

microstructure image shown represents one sample in a set of five statistically similar 

samples which are random instantiations of the same microstructure conditions. 

The average grain size of the experimental samples for Class 3 (
avgd = 358 μm) is 

around 50 times larger than the average grain size of Class 5 (
avgd = 6.7 μm). Since larger 

grains require a proportionally larger sample size or representative volume element (RVE), 

to resolve the large Class 3 grain size with the same fine mesh resolution as required for 

the small Class 5 grain size, computational models with an extremely large number of 

degrees of freedom (DoF) would be needed. To keep the overall DoF at a reasonable level 

for the large number of statistical runs, a parametric approach is taken, focusing on the 

trend in the size effect rather than the absolute size itself. Specifically, we consider the 

average grain sizes range of 
avgd = 70 – 220 μm, which lie between the sizes of the Class 3 
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and Class 5 HMX. The resulting microstructural domain of each sample is 3 × 6mm.  

Although the computationally generated samples have much smaller domain size than the 

size of experimental samples, the size of 3 mm of the computational samples is at least one 

order of magnitude larger than the length scale of the largest average grain size (
avgd = 220 

μm) considered, giving sufficient volumetric representation of the microstructures. Liu 

[131] reported the minimum size of the RVE to be 1.5 mm for a sample with an average 

grain size of 125 μm. His finding supports the choice of sample size here for the range of 

grain sizes considered. Indeed, we have shown that the stress-strain behavior predicted with 

the current choice of domain size (3 mm) matches the experimental measurements, as seen 

in Figure 10 of Ref. [95]. In addition, as it will be clarified in Section 3.3.1., the height of 

6 mm is long enough so that the stress attenuates significantly when it reaches the bottom 

of the domain, such that the ignition is determined by material events near the impact face 

and materials and boundaries far away from the impact face have no influence on the 

ignition outcome under the conditions considered here.  
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Figure 10 - Multiple samples of computationally generated, statistically similar 

microstructures with the average grain size of 
avg

d = 220 μm. 

Three sets of microstructures are generated with average grain sizes of 
avgd = 70, 

130, and 220 μm, respectively. Each set consists of five samples which have statistically 

the same attributes in terms of grain size distribution and specific grain boundary surface 

area. In total, 15 samples (3 sizes x 5 samples for each size) are generated and used. The 

microstructure sets and corresponding grain size distributions are shown in Figure 9. To 

illustrate the random variations in microstructure morphology within a particular 

microstructure set, Figure 10 shows the five samples having the same average grain size of 

avgd = 220 μm. 

The HMX grains of the samples in the experiments are simply pressed 

mechanically, leading to very weak or no bonding along the grain boundaries. In the 

simulations, the bonding strength along the grain boundaries is assumed to be zero. 

3.2.2 Loading Configuration 
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The shock experiments carried out use an Electric Gun to launch thin flyers, 

generating a planar shockwave in the HMX samples [13]. Each sample is placed in a steel 

cup that only allows one face to be exposed to receive the flyer impact. The samples are 

subjected to shock loading with various combinations of pulse intensities and durations (as 

determined by the velocity and thickness of the flyer, respectively). Four different flyer 

thicknesses ranging from 23 μm to 183 μm are used. For each flyer thickness 

(corresponding to a specific pulse duration), different shots with different flyer velocities 

are conducted on the same material. The ignition response of a sample is recorded as “go” 

if the sample explodes and as “no go” if the sample does not explode. The results of the 

experiments are plotted in Figure 11(a-b).  

 

Figure 11 - Ignition threshold determination from experiments using multiple 

samples of a material with different flyer velocities at each flyer thickness (or pulse 

duration), (a) Class 3, and (b) Class 5. 

 

The simulations emulate the experiments directly. The computationally generated 

specimens are initially stress-free and at rest. Impact loading is effected by applying a 

prescribed boundary velocity at the impact face (top boundary of the sample), as shown in 
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Figure 12(a). The left and right boundaries are constrained such that lateral expansion does 

not occur. This confinement mimics the effect of the steel cup holding the experimental 

sample. This is a 2D model and the conditions of plane-strain prevail. This configuration 

approximates the shock pulse loading of a sample driven by a thin flyer under conditions 

of approximate macroscopic uniaxial strain. The pulse intensity and duration are chosen to 

correspond to the loading characteristics in the experiments. The experiment conditions 

and relevant parameters are given in Table 7.  

 

Figure 12 - (a) Configuration of computational model of shock experiments, loading, 

and boundary conditions considered, and (b) load history imposed on the top 

boundary of the domain. 
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Table 7. Material properties of flyer and specimen and conditions of experiments 

  Parameters  Flyer 1 Flyer 2 Specimen 

Material 

properties 

 Parylene-C 

[132] 
Kapton [132] HMX 

Longitudinal wave 

Speed c (m/s) 

 

2,228 2,741 3,750 

Density ρ (kg/m3) 1,286 1.414 1,910 

Experimental 

condition 

Flyer velocity vfly 2 – 4.2 km/s 1.5 – 2 km/s Stationary 

Thickness H 23 – 37 μm 111 – 183 μm 12.7 mm 

 

The imposed velocity at the top boundary ( pU ) of the sample is determined by the 

ratio between the longitudinal wave impedances (ρc) of the flyer and the HMX sample as 

 ,



 

fly fly

p fly

fly fly HMX HMX

c
U V

c c
  (19) 

where  fly  is density of the flyer, flyc is wave speed in the flyer, HMX  is density of HMX, 

HMXc  is wave speed of HMX, and flyV  is the launching velocity of the flyer. The range of 

loading analyzed in the experiment corresponds to the imposed particle velocity range of 

500 1200m/s PU  (approximate flyer velocity range of 1.5 - 4 km/s) and the range of 

pulse duration of 20 130   ns. The specific particle velocity levels considered in the 

computational analysis are PU 500, 700, 900, and 1200 m/s and the range of pulse 

duration analyzed is 10 280   ns. The pulse duration increment between successive 

durations depends on load intensity and varies between 1 12   ns, as listed in Table 8. 

The pulse duration is the time it takes the longitudinal wave to traverse a round trip in the 
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flyer. For each velocity and sample, 10 different pulse durations are considered, yielding 

600 microstructure-loading combinations (4 velocities × 10 pulse durations × 3 grain sizes 

× 5 microstructures). The profile of the imposed shock pulse at the boundary is shown in 

Figure 12(b). The velocity rapidly increases from zero to the particle velocity of UP during 

the ramp time of rampt = 10 ns. This velocity is kept constant until the pulse time τ is reached. 

After the pulse time ( t ), the top boundary is released and no external loading is applied, 

while the boundaries on the left, right, and the bottom remain constrained in their normal 

directions. The computational prediction of the “go” and “no go” threshold in this chapter 

follows the same procedure as used in experiments of Figure 11(a-b). As an example of the 

results, the “go” and “no go” thresholds from each microstructure of grain sizes of 70 – 

220 μm are plotted in Figure 13(a-c). The symbols represent either “go” or “no-go” for 

each combination of flyer velocity and pulse duration. The data points are along vertical 

lines in Figure 13 because the simulations are performed for different pulse durations at 

each flyer velocity, which determines the energy flux. On the other hand, experiments are 

performed at different flyer velocities for each flyer thickness which determines pulse 

duration, resulting in the data points to line up along diagonal lines in the energy fluence-

power flux space. This slight difference in how the computational and experimental data 

points populate the domain of analysis does not affect comparison of the two data sets in 

any way. A total of five microstructures for each grain size are used for the computational 

analysis, and Figure 13(a-c) show the results from only one microstructure of each grain 

size.  
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Table 8. Load conditions and load increments analyzed 

pU  (m/s)  500 700 900 1200 

 pP U  (GW/cm2) 0.173 0.366 0.65 1.273 

Range of E (kJ/cm2) 
0.0169 - 

0.0507 

0.0132 - 

0.0416 

0.0094 - 

0.042 

0.0045 - 

0.0429 

Range of pulse duration  τ (ns) 
100 - 

280 
40 - 112 20 - 65 10 - 34 

minimum  τ interval (ns) 12 6 3 1 

 

 

Figure 13 - Ignition threshold determination from computation using one 

microstructure of each grain size, (a) avg
d = 220 µm, (b) avg

d = 130 µm, and (c) avg
d = 

70 µm. Multiple pulse durations are used for each load intensity. 

3.2.3 Constitutive Relations 

The simulations are performed using a recently developed Lagrangian cohesive 

finite element framework [39, 95, 96, 110]. This framework allows quantification of the 

effects of microstructure and thermal-mechanical processes, including bulk deformation, 

interfacial debonding, fracture of grains, and subsequent frictional heating. The 

constitutive relations for the grains are those of a hydrostatic stress-dependent elasto-

viscoplastic material. Specifically, the deviatoric part of the stress tensor carried by the 
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material follows an elasto-viscoplastic constitutive law and the hydrostatic part of the stress 

tensor carried by the material follows the Birch-Murnaghan equation of state (B-M EOS). 

The term “pressure” and the variable “P” refer to the hydrostatic part of the stress in the 

following discussion. Additionally, an artificial viscosity model for numerical stability is 

used in association with the EOS. A bi-linear traction-separation model is used for the 

cohesive elements to account for normal and tangential separations and fracture in grains. 

Details of the cohesive models and the parameters for transgranular separations are given 

in Ref. [95]. The cohesive strength at the grain-grain interfaces is set to zero. A contact 

detection algorithm and a subsequent contact force model are used for surfaces after 

fracture. The Coulomb friction damping model is used for surface elements that are in 

contact. The coefficient of friction is 0.5 at the contact points between initially debonded 

surfaces as well as surfaces newly generated as a result of transgranular fracture. Although 

the coefficient of sliding friction is usually lower than the coefficient of static friction, the 

same value of 0.5 is used for both, for the lack of measured data. The value chosen is based 

on the work of Green et al. [133] who reported the range of 0.3-0.7 for PBX 9404. Dickson 

et al. [134] reported that the frictional coefficient for PBX 9501 is between 0.4 and 0.5. 

Chidester et al. [33] used a value of 0.5 for LX-10 based on the experiments of Green et al. 

[133].  Details of the friction model and the coefficients are provided in Ref. [135]. 

Fourier’s heat conduction model is coupled with mechanical deformation and failure 

models to account for thermal conduction in the material. Details of the algorithm and 

models can be found in Ref. [95]. A more complete summary of the constitutive models 

used in CODEX, including all relevant equations, is provided in Chapter 2. 
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An artificial viscosity scheme is implemented to obtain stable shock response under 

high-intensity loading. The artificial viscosity is a commonly used practical approach to 

solve issues associated with overshoot of stress at shock wave fronts and spurious 

oscillations behind the front. von Neuman and Richtmyer [136] first introduced the 

artificial viscosity method with a quadratic term of velocity gradient for 1-D wave 

propagations. Later, Landshoff [137] proposed a linear term for the velocity gradient. 

Campbell et al. [138] explained the effect of each term. The specific form used in this study 

is 
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In the above relations, q is a pressure correction associated the artificial viscosity,                                                                                                                                                                      

ρ is mass density of the material, l is a characteristic grid length taken as the square root of 

the element area (√𝐴), and 11 22 33tr( )   D D DD  is the trace of the rate of deformation 

tensor. 𝑐𝐿 and 𝑐𝑄 are viscous parameters for the linear term and the quadratic term, 

respectively. The values are 𝑐𝐿 = 0.06 and 𝑐𝑄 = 1.5, as reported in Ref. [139]. A material 

with behavior described by the elasto-viscoplastic model under shock loading shows less 

significant overshoot and oscillations of stress compared with a material with elastic 

behavior due to energy dissipation associated with plastic deformation. Stability analyses 

are carried out not only for conditions of viscoplasticity, but also for the conditions of the 

more challenging elasticity. Figure 14 shows a comparison between the pressure profiles 

of a shock wave with artificial viscosity and without artificial viscosity for an elastic model 

of HMX under loading with 400m/s.PU  The algorithm with the artificial viscosity allows 
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stable shock profiles without stress overshoot and spurious oscillations to be obtained. The 

introduction of an artificial viscosity may lower the shock velocity. Therefore, the 

parameters need to be calibrated such that the effect of the artificial viscosity on the shock 

velocity is negligible. To verify the implementation of the B-M EOS along with the 

artificial viscosity, the calculated Hugoniot or relation between shock velocity and particle 

velocity (𝑈𝑆 − 𝑈𝑃) is compared to that from experiments [140], as shown in Figure 15. The 

black dotted line is from the analytical solution of B-M EOS, and the red dots are from 

CFEM calculations with the B-M EOS and the artificial viscosity. A slight decrease in 

shock velocity from the CFEM calculations (red dots) is seen as compared to the 

analytically obtained shock velocity from the B-M EOS (black line), but the difference is 

negligible. The numerical result agrees with the experimental data (blue marks). 

 

Figure 14 - Comparison between the pressure profiles of a shock wave, (a) without 

artificial viscosity and (b) with artificial viscosity for an elastic model of HMX under 

a shock intensity of   P
U  = 400m/s. 
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Figure 15 - Comparison of calculated Hugoniot ( 
S P

U U   relation) and experimental 

data (Ref. [49]) of HMX. 

Interfacial debonding and arbitrary fracture patterns are explicitly captured by the 

use of cohesive elements embedded throughout the finite element model. The cohesive 

elements follow a bilinear traction separation law described by Zhai et al [118]. The 

cohesive relation embodies an initial reversible separation processes with a certain 

separation limit, followed by irreversible damage and separation beyond the limit. A 

cohesive surface pair is considered as failed and, therefore, has no further tensile strength 

if the separation reaches a critical distance. A verification of the cohesive element 

framework is provided in Ref. [95].  

The formation of a crack (inside a gain or along a grain boundary) results in the 

creation of two surfaces. At each computational time step, the entire domain is scanned 

and such surfaces are identified. The corresponding nodal coordinates of all possible pairs 

of surfaces are compared to detect surface contact and overlap. Penalty forces are applied 
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to strongly discourage interpenetration and maintain proper contact of the surfaces. 

Detailed descriptions of the multi-step contact algorithm and the penalty forces are given 

in Ref. [120]. Frictional heating due to sliding along surfaces in contact is assessed using 

the Coulomb friction law. The stick-slip state is determined by the normal force between 

contact surface pairs. 

Temperature in the material under dynamic loading rises locally due to inelastic 

bulk dissipation and frictional dissipation along interfaces. Heat conduction is considered. 

The specific form of the heat equation is 

 2
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where 
v

c  is specific heat, T is temperature, t is time, k is thermal conductivity, η is the 

fraction of plastic work that is converted into heat, p
W  is the rate of plastic work, and fric

W  

is the rate of frictional dissipation. 

3.2.4 Initiation vs. Growth of Reaction 

This chapter focuses on the establishment of an ignition threshold associated with 

the development of critical hotspots. The analysis does not attempt to address the issue of 

growth to detonation transition that critical hotspots undergo. The model considers the 

attenuation of the shock wave as it travels through the sample, without considering the 

detonation waves from critical hotspots behind the shock front. This approach is quite 

reasonable as the process leading up to the formation of critical hotspots does not involve 

detonation, which occurs later. Since of the relevant and dominant mechanisms of heat 



 66 

generation during this stage are mechanical irreversibilities (plastic deformation and 

fracture/friction), the only mechanism of heat loss from hotspots is thermal conduction 

which is accounted for in this model.  

The criticality condition for thermal explosion is identified as the ignition 

thresholds (boundaries between go and no-go). The justification for this assumption is 

based on the careful analysis of in-material gauge records of HMX and TATB based 

explosives by James and Lambourn [141]. They showed that the reaction (behind the shock 

wave front) is a function of shock strength and time along the particle path, and is 

independent of local flow variables behind the shock such as pressure and temperature. In 

other words, “the growth in the pressure or temperature fields does not feed back to the 

reaction rate”. This observation is fundamental to the present study because it implies that 

the criticality of hotspots in the sense of thermal explosion [142] directly correlates to the 

initiation of detonation. It also implies that the collective behavior of hotspots may 

influence the time to detonation, but may not affect the minimum shock threshold condition 

for initiating detonation, at least to first order. However, the role of distributed hotspots on 

the go-no-go criticality is not yet well understood [143]. Based on the observations above, 

we assume that there is a one-to-one correlation between the existence of critical hotspots 

which lead to local thermal runaway and the occurrence of eventual detonation. 

3.3 Results and Discussion 

A systematic quantification of the ignition of the HMX samples is carried out, 

focusing on the shock intensity, shock pulse duration, and the average grain size of the 

microstructure. The overall procedure is illustrated in Figure 16. The analysis is performed 
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in the following steps. First, three sets of microstructures with three average grain sizes are 

generated, with samples in each set having similar statistical attributes (e.g., average grain 

size and grain size distribution), as shown in Figure 9 and Figure 10. Second, CFEM 

calculations are carried out using the samples under the loading conditions as discussed in 

Section 3.2.2 and shown in Figure 16(a). Temperature fields are obtained from the 

simulations as illustrated in Figure 16(b). To ascertain the validity of the results relative to 

experiments, the attenuation of the stress waves as it traverses the samples is analyzed. 

Third, temperature fields and the size-temperature state of each hotspot is determined, as 

illustrated in Figure 16(c). The ignition criterion described in Chapter 2.2.5 is used to 

identify critical hotspots that have reached the size-temperature threshold. The ignition of 

the sample is determined by the existence of sufficient critical hotspots. Fourth, the ignition 

(go) or no ignition (no-go) condition in terms of the power flux and the energy fluence 

(measures for loading) for each sample is recorded, as illustrated in Figure 16(d). The 

overall probability of ignition for each material set is determined using the aggregate data 

set of go-no go states of all samples in the power flux - energy fluence    E  space. 

Detailed discussions on the probability of ignition will be given in Section 3.3.3. 
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Figure 16 - Illustration of the hotspot-based approach for ignition threshold 

prediction. (a) Microstructure generation and CFEM simulation, (b) Temperature 

field, (c) Hotspot characterization from the temperature field and determination of 

the criticality of the sample via hotspot size-temperature states, and (d) determination 

of the “go” or “no-go” condition for each sample in the E –Π space. 
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3.3.1 Analysis of Stress and Temperature 

 

Figure 17 - (a) The calculated trajectory of peak pressure and (b) corresponding 

temperature profile under shock pulse loading with    for a sample of avg
d = 220 µm. 

The temperature of the material increases due to energy dissipation from material 

inelasticity and friction along crack faces under high stress. The dissipation also causes the 

shock wave to attenuate as it propagates. The peak pressure trajectory from the calculations 

and the corresponding temperature profile under loading with 900m/sPU  and 38ns   

are shown in Figure 17. Note that the peak pressure as well as the average and peak 

temperatures decrease spatially as the shock wave propagates into the material. 
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Figure 18 - Effect of pulse duration on stress attenuation under shock pulse loading 

with   for a sample of avg
d = 220 µm, (a) profiles of pressure for the durations of   = 

29, 38, and 47 ns and (b) corresponding rarefaction point ( c
x ) and decay distance 

scaling parameter ( r
x ). 

Impact by a thin flyer creates a short duration pulse, which attenuates as the shock 

wave propagates through the material, as described in Ref. [144]. Initially, the peak 

pressure remains constant from the impact face to the rarefaction point (xc), after which 

release waves from the impact face overtake the shock wave, causing attenuation of the 

peak pressure. The distance (xc) and the degree of attenuation vary depending on the 

material and initial pulse duration (which depends on flyer thickness), as described in Ref. 

[145]. The attenuation of pressure is often quantified with an exponential form in terms of 

distance from the impact face, as discussed in Ref. [146]. The exponential form has been 

shown to model the dependence of particle velocity ( PU ) on the shock velocity ( SU ) [147]. 

The trajectories of peak pressure for different pulse durations between 29 47 s  n  are 

shown in Figure 18(a). The trend can be described by 
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where the rarefaction point is at x = xc at which the peak pressure begins to attenuate. xr is 

a scaling parameter that defines the slope of the attenuation. 2P  is the asymptotic pressure 

at far distances and 1 2( )P P is the peak plateau pressure on the interval 0   cx x . The 

trajectories of the peak pressure as shown in Figure 18(a) are fitted to Eq. (22) for the range 

of 3mmx . Figure 12(b) shows the dependence of xr and xc on pulse duration τ. As the 

pulse duration (τ) increases, the rarefaction distance (xc) increases, indicating that the peak 

pressure plateaus for a longer distance before it starts to attenuate. Likewise, as the pulse 

duration (τ) increases, the distance scaling parameter (xr) decreases, indicating that the 

pressure attenuates more slowly as it propagates through the material. Figure 19 shows the 

relationship between the pulse duration and the distance parameters (xr and xc) over the 

range of 700 1200m/s. PU The relationships between the pulse duration and distance 

parameters, xr and xc, are linear. The distance parameters for all shock intensities 

considered fall along the same lines, indicating that they are highly dependent on pulse 

duration but are not strong functions of the load intensity. The effect of shock intensity on 

attenuation is captured by 1P  and 2P . The values of the parameters for the linear 

relationships between pulse duration τ and the distance parameters, xr and xc, are listed in 

Table 9. The threshold time ( 0

ct ) for xc in Figure 19 and Table 9 is 10 ns which is equal to 

the ramp time of the applied boundary loading (Figure 12(b)). This coincidence indicates 

that if the pulse duration is as short as the ramp time, the shock wave begins to attenuate 

instantly without staying at plateau 
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Figure 19 - Relationship between pulse duration and distance parameters ( and )
r c

x x  

over the loading range of  P
U   = 700-1200 m/s. 

 

Table 9. Coefficients of the linear relations between r
x  and pulse

t  and between c
x  and 

pulse
t  

 

 

3.3.2 Ignition Threshold 

The samples in the experiments are 12.7 mm in length, which is a sufficient distance 

to see the stress attenuate to very low levels as the loading pulse reaches the bottom of the 

samples. The attenuation is so pronounced, that only a small portion of the samples close 

to the impact face experience severe enough loading over the duration of the experiments 

0( )  r

r rx a t  0.0118mm/nsra  0 0nsrt  

0( )  c

c cx a t  0.0080mm/nsca  0 10nsct  
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to yield hotspots having the potential to cause ignition. Indeed, the computational results 

show that most hotspots are generated within a distance of 0 1-2 times  cx x  from 

impact face and no hotspots are seen for any distance 4-5 times of . cx x  Therefore, the 

shock pressure significantly diminishes as the wave reaches x = 6 mm. Specifically at this 

distance, the pressure of a sample subjected to loading with 700m/spU  and 

900m/spU  decreases to 10% and 5% of the initial shock pressure, respectively. Welle 

et al. [148] investigated the effect of sample height and found no significant variations in 

the ignition threshold for a height range of 6 -19 mm. Because of this, we stop our 

calculations when the stress wave reaches the bottom of the samples and analyze the 

temperature field for hotspots, knowing that further propagation and reflection of the wave 

from the bottom have negligible effects on hotspot formation. This approach is essentially 

equivalent to using an infinitely long sample in which the stress wave does not reflect.  
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Figure 20 - Minimum energy required for ignition from five samples and 50% 

probability. The samples used here have statistically similar microstructures with the 

average grain size of avg
d = 220 μm as shown in Figure 10. 

The critical energy threshold for ignition is analyzed using the hotspot ignition 

criterion discussed in Chapter 2.2.5. Figure 20 shows the minimum energy input E required 

for ignition (or energy fluence). Five statistically equivalent samples are computationally 

analyzed at each energy input rate (or energy flux). The different samples, just like different 

samples of the same material in experiments, require slightly different levels of energy 

fluence (as reflected in slightly different pulse durations they require for reaching ignition) 

under the same load intensity or energy flux (energy input rate). Here, the shock intensity 

is expressed in a power flux form (i.e.,   PPU ). Although the individual samples have 

the same overall statistical microstructural attributes therefore mimicking multiple samples 

of the same material batch in experiments, the random grain shapes and grain distributions 

cause the samples to have local fields that fluctuate, thereby giving rise to slightly different 
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behaviors and slightly different energy fluence values even under the same overall loading 

condition. The asterisk in the figure demarcates the threshold for 50% probability of 

ignition as determined by all samples over the entire load regime analyzed. To determine 

this 50% threshold, the following James-type relation is used to provide an overall fit.  

 1 ,



 c cE

E
  (23) 

where the cutoff energy fluence cE  and the cutoff power flux c  are fitting parameters 

which represent asymptotic thresholds for the critical energy fluence and the critical power 

flux, respectively. This relation is based on the James relation [54] and is obtained by 

replacing the specific kinetic energy (
20.5  PU ) in the James relation by the power flux 

(  PPU ), see Welle et al. [13]. The data points above the 50% threshold curve 

correspond to ignition probabilities higher than 50%, and the points below the 50% 

threshold curve represent correspond to ignition probabilities lower than 50%. 
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Figure 21 - Computationally predicted 50% ignition thresholds from all grain sizes 

analyzed ( avg
d = 70, 130, and 220 µm) and experimentally measured thresholds for 

Class 3 and Class 5 HMX. 

 

Table 10. Parameters in the modified James relation for materials with different 

grains sizes 

 avgd  (µm) 𝐸𝑐 (kJ/cm2) 
𝛱𝑐 

(GW/cm2) 

Experiments 
358 (Class 3) 0.01157 0.2072 

6.7 (Class 5) 0.00377 0.2776 

 220 0.0205 0.0798 

Computations 130 0.0163 0.0919 

 70 0.0135 0.0683 

 

The 50% ignition thresholds for the three materials with the average grain sizes of 

70,130, and 220 m avgd  are shown in Figure 21. The corresponding parameters for the 
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modified James relation (Eq. (23)) for these three cases are listed in Table 10. In general, 

a higher loading rate (power flux) results in a lower energy required for ignition (lower 

energy fluence) as indicated by Eq. (23). For a given loading rate (power flux), smaller 

grain sizes lead to lower ignition thresholds. This effect is more pronounced under strong 

shock loading (power flux greater than 0.5 GW/cm2). Khasainov et al. [149] mentioned 

that heterogeneous explosives with high surface area (corresponding to smaller grains) are 

more sensitive than those with less surface area (corresponding to larger grains). They 

observed this trend only at high intensity regime (P/Pc >> 1). As shown in Figure 21, the 

discrepancy in the sensitivity levels of different grain sizes increases as the power flux 

increases, whereas the sensitivity level discrepancy converge as the power flux decreases 

until its critical value is reached. The trends observed in the computational predictions are 

in good agreement with those observed in experimental data, as overlaid in Figure 21. 

Moreover, the computationally predicted thresholds for grain sizes of 

70,130, and 220 m avgd  lie in the same range as the thresholds obtained by experiments 

for Class 3 ( 360 m avgd ) and Class 5 ( 6.7 m avgd ) samples with a marginal degree of 

deviation. Overall, the experimentally measured thresholds are lower than the 

computational predictions. The difference between the experimental observations and 

computational predictions may be attributed to the following factors. First, the average 

grain sizes for Class 3 and Class 5 HMX in the experiments become smaller during the 

pressing process. So, the actual grain sizes are somewhat smaller than the nominal values 

stated here. Molek et al. [124] reported that the grain sizes of Class 3 and fluid-energy-

milled HMX ( 4 m avgd ) decrease by roughly one or two orders of magnitude after 

sample preparation. Similar results can also be found in Ref. [43]. Therefore, the ignition 
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thresholds of Class 3 and Class 5 HMX shown in Figure 21 are actually for grains sizes 

smaller than nominal values stated in the figure. Second, the computational model is based 

on a relative density of 100% (fully packed HMX) and provides only a phenomenological 

account of voids and other defects in the material, whereas the experimental samples have 

a relative density of less than 100% (94% TMD). Christensen et al. [150] observed that 

LX-17 PBX samples with higher relative densities are less sensitive (having higher ignition 

thresholds) than samples with lower relative densities. Third, large “boulders” in the 

experimental samples are not considered in the simulations, as pointed out earlier. What is 

important to note is that the overall trends are consistent, with smaller grain yielding lower 

ignition thresholds. Note that this sensitivity analysis does not account for subcritical 

hotspots. More information illustrating the effect of subcritical hotspots is presented in 

Section 3.3.4. 

 

Figure 22 - Fifty percent (50%) ignition probability thresholds in the Π - τ space and 

the equivalent James relation. 
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In the modified James relation (Eq. (23)), the power flux (  PPU ) is related to 

the shock intensity, similar to the specific kinetic energy (
20.5  PU ). It also represents 

the rate of energy imparted to the material ( /  dE dt ) per unit area of material surface. 

The ignition threshold between input energy E and power flux Π in the E - Π space can 

also be represented in the Π - τ space. Specifically, the modified James relation as expressed 

in the Π - τ space is 

 1 ,


 
 

     
 

c c
P c

E
P U   (24) 

where cE  and c  are the same parameters as in Eq. (23). This equation in the Π - τ space 

is an equivalent form of the modified James relation (Eq. (23)). The details of the derivation 

of the modified James relation and the equivalent modified James relation are given in 

Appendix A. Figure 22 shows the 50% ignition thresholds (data points denoted by the 

symbols) for the three grain sizes in the Π - τ space and the corresponding equivalent James 

relations obtained via curve fitting. To study the application of the equivalent James 

relation to experimental data, we examine the shock initiation threshold of TATB obtained 

by Honodel et al. [151]. Figure 23 shows a comparison of the fits with the equivalent James 

relation (Eq. (24)) and the Walker-Wasley relation ( )nP C [53]. Both the Walker-Wasley 

relation and the equivalent James relation have two fitting parameters. The equivalent 

James relation follows more closely the data points over the entire range, while the Walker-

Wasley relation deviates from the experiments in the longer pulse (lower load intensity) 

regime. The closeness of the fit in the Π - τ space using the equivalent James relation (Eq. 

(24)) is the same as the closeness of the fit in the E - Π space using the modified James 
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relation (Eq. (23)), because Eq. (23) and Eq. (24) are algebraically equivalent. The 

difference is that the Π - τ space directly relates to the physical conditions of the 

experiments (thickness of the flyer required for ignition at given flyer velocity implied by 

the energy flux), whereas the E - Π space emphasizes the amount of energy required for 

ignition at given energy input rate into the material. 

 

Figure 23 - Comparison of the ignition threshold characterizations using (a) the 

Walker-Wasley relation and (b) the equivalent James relation. The ignition data of 

LX-17 and TATB is from Ref. [60]. 

 

3.3.3 Probabilistic Quantification: Ignition Threshold for any given Probability of 

Ignition 

The ignition threshold represented by Eq. (23) indicates the shock loading 

conditions for 50% probability of ignition. To incorporate the energy and power flux 

conditions required for greater than or less than 50% ignition probability, Gresshoff and 

Hrousis [106] expanded on the modified James relation by introducing a James number, J. 

The specific form of the equation is 
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where J = 1 is the modified James relation, J > 1 corresponds to shock loading conditions 

resulting in greater than 50% ignition probability, and  J < 1 corresponds to shock loading 

conditions resulting in less than 50% ignition probability. As an example of the application 

of Eq. (25), Figure 24 shows the modified James relation with 0.75, 1.0, and1.25J  using 

the data for microstructures with 220 m. avgd  Each J number accounts for all 

combinations of loading conditions (i.e., energy fluence and power flux) which results in 

a certain probability of ignition. The three lines in Figure 24 for 0.75, 1.0, and1.25J  

correspond to the three probability fits of 10%, 50%, and 90%, respectively.   

 

Figure 24 - Modified James relation with 0.75, 1.0, and 1.25J  for the material with 

220 m. 
avg

d  

Figure 25 shows the relationship between J (James number) and the ignition 

probability from the experiment and the computational prediction for all samples. The 
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truncated normal probability distribution function ( ( )JP ) is used to fit the ignition 

probability around a mean value of 1.J  The specific form of the function is  

 ( ) (0)
( ) ,

( ) (0)




 

Φ J Φ
J

Φ Φ
P   (26) 

where ( )Φ J  is cumulative normal probability distribution [106] in the form of 
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where μ is the mean value, σ is the standard deviation. Note that ( ) 1. Φ The parameters 

used to represent the ignition probability of the samples are listed in Table 11. By 

combining Eqs. (25), (26) and (27), we can obtain a direct relation between the ignition 

probability P and the shock loading condition parameters E and Π in the form of 
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where  erf   is the Gauss error function. Under the conditions of the current analysis,

5(0) 2 10 Φ , therefore, for the range of 0 ,  J  the difference between ( )Φ J  and 

( )JP  is on the order of 52 10 , which is negligible. As a result, with 1  J  

representing an ignition probability of 50%, Eq. (28) simplifies to 
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In the above relation, the standard deviation σ, cutoff energy fluence cE  and cutoff power 

flux c  are material constants whose values are determined by experiments or 

computations reported here (see Table 10 and Table 11). Once these parameters are 

determined for a material, the probability of ignition P under any loading condition as 

measured by E and Π can be calculated directly from Eqs. (28) or (29). The probability P 

as a function of E and Π can also be represented as a function of the pulse duration  and 

either power flux Π or input energy E. In the previous section, we have shown that the 

ignition threshold between input energy E and power flux Π in the E - Π space can be 

represented in the Π - τ space (see Figure 21 and Figure 22). Similarly, the ignition 

probability P in Eq. (29) can be recast in the Π - τ space and in the E - τ space as, 

respectively,   
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where the  c c cE  is a material-dependent time-scale constant. The values of c  from 

experiments and computations are listed in Table 12. Note that although c  can be used as 

a reference time, is not a measure related to the pulse duration required for ignition in any 

sense. For high-intensity loading, the pulse duration required for ignition τ can be smaller 

than c . Likewise, for low-intensity loading, τ can be larger than c . 
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Figure 25 - Relationship between J and the ignition probability from (a) experimental 

results of Class 3 and Class 5 HMX and (b) computational results of grains sizes of 

70, 130, and 220 m. 
avg

d  

 

Table 11. Mean value and standard deviation for the ignition probability distributions 

 avgd  (µm) µ σ 

Experiments 
358 (Class 3) 1.0 0.143 

6.7 (Class 5) 1.0 0.048 

 220 1.0 0.18 

Computations 130 1.0 0.19 

 70 1.0 0.24 
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Table 12. Time scale parameter c
  obtained from experiments and computations 

 avgd  (µm) c  (ns) 

Experiments 
358 (Class 3) 55.8 

6.7 (Class 5) 13.6 

 220 257 

Computations 130 177 

 70 198 

 

The J-probability distribution for Class 3 samples from the experiments has a wider 

spread than that for the Class 5 samples, as shown in Figure 25(a). This trend is consistent 

with what is reported by with Schwarz [108, 152] who found that samples with lower 

specific interface areas (SIA) demonstrate a wider spread of ignition probability. The 

computational predictions for the three average grain sizes  70, 130 and 220 m avgd  in 

Figure 25(b) have similar J-probability distributions. The difference between the 

experimental and computational results may be attributed to the following factors. First, 

the grain size distribution of the experimental Class 5 samples is much wider than that of 

the Class 3 samples (see Table 1 in Ref. [148]).  On the other hand, the grain size 

distributions of the computational microstructures have the same spread (see Figure 9). 

Second, the experimental samples have a much larger average grain size difference while 

the differences between the average grain sizes of the computational microstructure sets 

are much smaller. The difference between Class 3 and Class 5 is 53 times, whereas the 

differences among the computational sets are at most 3 times. The similarity in the 

distributions of ignition probability among the three computational sets does not mean that 
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average grain size does not significantly affect ignition. On the contrary, the average grain 

size significantly affects the ignition thresholds for all ignition probability levels (as seen 

in Section 3.3.2). For example, the thresholds for 1J  (or 50% ignition probability) for 

the different grain sizes are significantly different, as shown in Figure 21 and by the 

parameters cE  and c  in Table 10.  

The distributions of ignition probability from the experiments have standard 

deviations of σ = 0.048 - 0.14 and the calculated distributions have standard deviations of 

σ = 0.18 - 0.24.  As mentioned earlier, samples with larger specific interface areas (SIA) 

result in narrower distributions of ignition probability. The experimental samples have 

much larger SIAs than the computational samples. Specifically, the SIAs of the 

computationally-generated microstructures are 0.03 – 0.09 m2/g ± 0.0014 m2/g, one order 

of magnitude smaller than the SIAs of the samples used in the experiments 

2(0.866 1.62m /g) [13]. One reason for this difference is that the computational samples 

do not explicitly resolve very small voids and defects inside the grains as well as the surface 

roughness of the grains. For example, the same order of magnitude of SIA with minimal 

roughness on surfaces of Al particles is attainable for average particle sizes of a few 

hundred nanometers (see Table 1 and the SEM images in Yarrington et al. [153]). It is 

possible to explicitly consider these features in the model in the future, but such an analysis 

is beyond the scope of the current work in this chapter, which focuses on a new method for 

predicting ignition thresholds. The  differences in experimentally measured and 

theoretically calculated SIA are discussed by Sánchez et al. [154] who compared measured 

SIA values and theoretically obtained SIA values based on particle size distributions. They 
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reported that measured SIA values are an order of magnitude higher than theoretical SIA 

values due to particle morphology (roughness) and internal micro porosity.  

Overall, the similarity in the distribution curves in Figure 25 shows is that (1) J 

serves as an effective normalizing parameter for the examination of the probability of 

ignition distribution around a given reference probability level (which is taken as J = 1 or 

50% of ignition probability here) for samples with different microstructural attributes, and 

(2) the ignition probability spread or the distribution around a given reference probability 

level depends on the microstructure heterogeneity fluctuations in the samples of a given 

sample set – or, simply put, how “similar to” or “different from” each other the multiple 

samples in a set are statistically. Specifically, the material-dependent 50% ignition 

threshold can be analyzed in the E – Π space as seen in Figure 21, and the ignition 

probability around this 50% threshold can be analyzed through the relation between J and 

the probability P given in Figure 25. By combining these two relations, we can obtain the 

material-dependent ignition probability map as shown in Figure 26. This process is 

equivalent to obtaining Eq. (29) by combining Eq. (25) and Eq. (27). As Figure 26 shows, 

the ignition probability level in the E – Π space is highly dependent on microstructure. 



 88 

 

Figure 26 - Ignition probability distribution maps, (a-b) obtained from experiments 

for (a) Class 3 and (b) Class 5 pressed HMX, and (c-e) predicted from simulations for 

samples with (c) 220 m, 
avg

d (d) 130 m, 
avg

d and (e) 70 m. 
avg

d  The vertical 

axes of all figures have the same scale and unit as shown in the left most plot in the 

top and bottom rows. 

 

3.3.4 Macroscopic and Microscopic Ignition Risk Factors 

While J allows overall, macroscopic, material level ignition risk to be quantified, it 

is also possible and desirable to assess the ignition risk at the microscopic, individual 

sample level by studying its unique hotspot evolution. In the end, a relationship between 

the ignition of individual samples and the ignition risk of a material can emerge from such 

an analysis. To this end, this section focuses on the state of individual hotspots in a sample 
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and introduces a quantitative measure to assess the risk for ignition of each individual 

hotspot, with the understanding that the most dominant hotspots with the highest risk 

factors determine the ignition risk of a sample. The specific risk factor we define here is 

the R-value, or “risk” value for an individual hotspot. It can also be referred to as the 

hotspot ignition risk determinant (HIRD) and depends on the proximity of a hotspot’s size-

temperature state to the criticality condition embodied in Eq. (12). R is a measure for the 

proximity of a hotspot to the ignition threshold defined as  

 
( )

( )
,






i

c i

T T
R

T T
  (32) 

where 𝑇 is the temperature of a hotspot of diameter d, 𝑇𝑐 is the critical threshold 

temperature for ignition for a hotspot of diameter d, and 𝑇𝑖 is an initial reference 

temperature (chosen here as 300 K). Since the temperature and size combination of a 

hotspot depends on the area chosen to be analyzed (smaller cores of a hotspot have higher 

temperatures), the hotspot core size and R-value are calculated for different temperature 

levels (see  Figure 27 – “Step 1”). The maximum value of R for each hotspot is taken as 

the R-value for that particular hotspot (Figure 27 – “Step 2”). This definition of R is a direct 

measure of how close a hotspot is to the ignition threshold. If R = 0, the hotspot is at the 

initial temperature (  iT T ) of the material at the beginning of loading. If R = 1, the hotspot 

is deemed critical (  cT T ) or has reached criticality (as defined in Section 2.2.5). 

Subcritical hotspots have 0 < R < 1. The R value of a hotspot is the maximum value of R 

calculated using different cutoff temperatures in the analysis of the size-temperature state 

of that hotspot. The R-value allows hotspots to be grouped and analyzed via an R-curve, 
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based on a histogram of all the R values for a sample. Figure 27 illustrates the number and 

states of critical and subcritical hotspots in a sample (see “Step 3”). It is important to note 

that 1R  indicates hotspot states that are above the ignition threshold. Since the focus of 

the analysis here is only on the attainment of the threshold, such values are rounded down 

to 1 in the analysis carried out here. This treatment simply means that R ≥ 1 indicates 

ignition, and since the ignition threshold is the sole concern here, no post ignition analysis 

is carried out.  

 

Figure 27 - The evaluation of R-value from a single hotspot and the R-Curve from a 

temperature field. 
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Characterizing each sample with an R-curve makes it possible to compare the 

relative states of multiple samples in a holistic manner, accounting for the influence of all 

dominant hotspots. Figure 28 shows the average R-curves for the samples with the average 

grain sizes of 70, 130, and 220 m avgd under identical loading conditions (Up = 900 m/s 

and τ = 35 ns). Each R-curve shows the average hotspot count of the five statistically similar 

samples in the set. The error bars show the extent of variations among the five samples. 

When compared to the experimental results for varying grain sizes, these R-curves 

demonstrate the correlation of hotspot quantity to overall sample sensitivity, which has 

been demonstrated to be related to the average grain size in Section 3.3.2. Samples with 

increased sensitivity to ignition are found to have a higher number of subcritical hotspots. 

In other words, for any given R value, the samples with lower average grain sizes have, on 

average, greater than or equal to the number of hotspots as samples with larger average 

grain sizes. 
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Figure 28 - Comparison of R-curves between sample sets with average grain sizes of 

70, 130, and 220 m. 
avg

d  The error bars indicate degree of variations among 

multiple samples in each material set. 

As a practical matter in the analysis reported here, in order to obtain a single R-

value for each loading condition and sample, the average of the top two R-values in the 

sample is used. Two hotspots in the RVE correspond to a hotspot density of 
20.22 mm

. 

Ten R-values are used for each loading condition: five samples and the highest two R-

values per sample. Since 300 K,iT  R = 0 corresponds to J = 0. This makes intuitive sense 

because the only way for J to remain zero is if the sample has not been subjected to loading 

and no temperature increase is observed. 

The R-value and R-curve focus on the local conditions of individual hotspots in a 

particular sample. Both the R-value and the J-value (discussed in Section 3.3.3) measure 

the likelihood of ignition. Note that for a given J value, some samples in a material set have 
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ignited (with R ≥ J) while other samples have not ignited (with R < J).  For example, for J 

= 1 or an ignition probability of 0.5, 50% of all samples in a material set have reached 

criticality by definition (with R ≥ 1) and 50% of the samples have not reached criticality 

(with R < 1). Therefore, R is inherently related to J with some statistical deviation due to 

microstructure stochasticity, reflecting the fact that J measures the aggregate statistical 

behavior of a material sample set and R measures the behavior of individual samples in the 

set. A practical difference between R and J is that R can be calculated from the outcome of 

a single simulation after analyzing the hotspot map of the sample, while J requires 

analyzing the results from multiple samples (experimentally or computationally). R can be 

used to predict and relate to the ignition probability of a material under given loading 

conditions. While J quantifies the result of this analysis and does not have the predictive 

power or usage – its ability to “tell” or measure the ignition probability of a material only 

exists after the outcomes of a set of experiments or simulations have been analyzed and 

tabulated. Figure 29 shows the correlation between R and J and the 95% probability 

envelop for the three grain sizes. The standard deviation of the data points about J = R in 

Figure 29 is σ = 0.17, 0.12, and 0.14 for the three cases, respectively. By studying the 

relationship between J and R, the inherent connection between loading conditions and 

hotspot development may be further understood. Since there is a strong correlation between 

R and J, it is possible to calculate the probability of ignition from a smaller number of 

samples without having to run a large number of tests or calculations to determine where 

the ignition threshold for J =1 lies. 
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Figure 29 - Correlation between J and R for average grain sizes of 

70, 130, and 220 m. 
avg

d  

3.4 Conclusion 

The ignition thresholds of energetic materials have so far been exclusively 

determined through experiments. In this chapter, a computational approach for predicating 

the James-type ignition thresholds via multiphysics simulations is presented. The 

prediction does not involve calibration or curve fitting with respect to the predicted 

behavior (ignition threshold), nor does it require prior information about the predicted 

behavior. Rather, the prediction is based on material microstructural attributes and 

fundamental constituent as well as interfacial properties. The ignition thresholds are 

determined via an explicit analysis of the size and temperature states of hotspots in the 

materials and a hotspot based ignition criterion. The simulations consider the configuration 

and conditions of actual experiments. Specifically, the simulations account for the 

controlled loading of thin-flyer shock experiments with flyer velocities between 1.5 and 

4.0 km/s on pressed granular HMX explosives with average grains sizes between 70 µm 

and 220 µm. The choice reflects the interest in comparing the computational predictions 
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with experimental results. James-type relations between the energy flux and energy fluence 

for different probabilities of ignition are predicted. To this end, statistically similar 

microstructure sample sets are computationally generated based on features of micrographs 

of materials used in actual experiments. 

The results show that the grain size significantly affects the ignition sensitivity of the 

materials at higher energy fluxes, with smaller sizes leading to lower energy thresholds 

required for ignition. Specifically, the 50% ignition threshold of the material with an 

average grain size of 220 µm is approximately 1.4-1.6 times that of the material with an 

average grain size of 70 µm in terms of energy fluence. The predicted thresholds are in 

general agreement with measurements from shock experiments in terms of trends. The 

statistical analysis on the ignition threshold lead to a probability-ignition map with respect 

to loading intensity and energy input. Once the material dependent parameters are 

determined, the probability of ignition under any loading condition can be calculated. This 

approach for the probability of ignition leads to the definition of a macroscopic ignition 

parameter J based on the loading conditions of the sample. A microscopic ignition risk 

parameter R is proposed based on the evolution of individual hotspots within the sample. 

The ignition risk parameter R represents the likelihood of ignition of individual hotspots at 

the microstructural-level, whereas the ignition parameter J concerns the loading intensities 

and energy input at the macroscopic level. The relationship between the two parameters is 

obtained. Specifically, it is found that R and J are strongly correlated (J = R) with some 

statistical deviation, reflecting the fact that J measures the aggregate statistical behavior of 

a material sample set and R measures the behavior of individual samples in the set. This 

chapter has focused on pressed HMX only. However, the approach, relations, and 
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capabilities developed here are useful for the analysis and design of heterogeneous 

energetic materials such as polymer-bonded explosives (PBX) and granular explosives in 

general.  
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CHAPTER 4. IGNITION THRESHOLDS OF ALUMINIZED 

HMX-BASED POLYMER-BONDED EXPLOSIVES 

This chapter is based on the work published in Ref. [155]. 

4.1 Introduction 

A common practice in designing high-performance insensitive energetic materials is to 

incorporate initially inert constituents, which serve as fuel following detonation, but does 

not directly participate in the detonation process. Aluminum is one such constituent and is 

commonly combined with a mixture of energetic grains and some form of polymer binder 

to form an aluminized polymer-bonded explosive (APBX) [60, 156]. Aluminum was first 

patented to increase explosive performance by Roth in 1900 [55], and over time 

experiments have optimized the volume fraction of aluminum required to maximize 

explosive power [56] at around 20%. Experiments show that the addition of aluminum 

particles decreases detonation velocity while increasing the chemical reaction time [60]. 

The heat of explosion also increases as aluminum is introduced, which allows the explosive 

to maintain its total output power while still being less sensitive to ignition [58]. The 

localized mechanical effects of aluminum particles in PBX during shock loading have yet 

to be thoroughly analyzed. Since hotspots are localized phenomena, understanding the 

effects of aluminum and how it interacts with energetic granules on a microscale is critical 

to the development of insensitive energetic materials. So far, there is a lack of systematic 

and quantitative study on the effects of aluminum on the ignition and detonation behaviors 

of polymer-bonded explosives (PBXs).  
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In this chapter, we quantify the effects of aluminization by simulating the 

thermomechanical processes in the microstructures of PBXs under shock loading from 

impact by thin flyers using a recently developed Lagrangian cohesive finite element 

method (CFEM) [95, 96, 110, 157]. The focus is on the ignition behavior. The PBXs 

studied are a combination of Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) 

grains, Estane binder, and Al 7075 alloy particles. The CFEM model accounts for 

constituent elasto-vicoplasticity, viscoelasticity, bulk compressibility, fracture, interfacial 

debonding, internal contact, bulk and frictional heating, and heat conduction. This 

framework allows for explicit tracking of frictional heating, which is an often overlooked 

source of heat generation in many models and codes and can significantly affect the 

generation of hotspots in fully packed HMX (as shown in Chapter 3) [19] and PBXs [38, 

40, 157]. The formation of hotspots is extremely microstructure-dependent. In this chapter, 

multiple samples are analyzed in order to represent the natural stochasticity present in real 

experimental microstructures. The sample sets have aluminum concentrations of 0%, 6%, 

10%, and 18% by volume. The volume fraction of the polymer binder is 19% in all cases, 

and the remaining volume of the microstructures are occupied by a bimodal distribution of 

randomly distributed HMX grains. This bimodal size distribution of HMX grains include 

both large and small grains similar to those commonly seen in PBXs in experiments. At 

different stages of shock loading, analyses are carried out to identify critical hotspots using 

an ignition criterion (see Chapter 2.2.5) that factors in hotspot size and temperature 

distribution and accounts for thermal and chemical effects [96]. If a specified critical 

hotspot density threshold is exceeded, the sample is assumed to reach criticality. 
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As far as what can be found in the open literature, the first reported attempt to 

quantitatively characterize the desensitization effect of aluminum on the ignition of 

aluminized PBX [112] focused on delineating the relative importance of each heating 

mechanism by directly correlating the loading conditions with time to criticality after onset 

of loading. While the analysis is insightful, the use of the time to criticality as the measure 

for material behavior represents only an indirect approach as this quantity is not directly 

measurable in experiments and is not normally used in application. Here, we adopt a more 

direct approach by using a probabilistic ignition criterion in the forms of the modified 

James criterion proposed by Gresshoff and Hrousis [106] and Welle et al. [13] and the 

Walker-Wasley criterion [53]. Since the criteria use macroscopically measurable quantities 

that are routinely used in engineering and material analyses, the work presented in this 

chapter can be regarded as one of the first successful attempts at linking the microstructural 

attributes of APBXs to practically useful engineering performance measures. Furthermore, 

quantitative analytical expressions for the probability of ignition as functions of loading 

are explicitly established. Conversely, these relations also yield the macroscopic ignition 

thresholds in the James space and Walker-Wasley space for any given level of ignition 

probability. It is important to note that this analysis only examines the hotspot heating up 

until the point of criticality; the focus here is not to analyze the subsequent effects of 

chemistry following hotspot criticality and the resulting thermal explosion. By definition, 

once a hotspot reaches criticality, the heat generation due to chemistry occurs more rapidly 

than heat loss due to conduction (Eq. (11)) which implies the sample will eventually reach 

ignition. Studying the governing physics leading to hotspot criticality is sufficient for the 

sensitivity analysis presented in this work. Future work studying the effects of hotspots 
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post criticality, including the entire shock to detonation (SDT) is presented in Chapters 5 

and 6. 

4.2 Framework of Analysis 

In this analysis, we focus on the ignition behavior of aluminized HMX-based PBX 

under shock pulse loading. The microstructure generation, physical models, and initiation 

prediction models are outlined in this section.  

4.2.1 Microstructure 

The microstructures used in these simulations consist of HMX grains and 

aluminum particulates distributed in an Estane matrix. The volume fraction of the Estane 

binder remains a constant 19% volume fraction of an entire microstructure. The aluminum 

and HMX combined constitute the remaining 81% of the volume fraction in the following 

four concentrations: 1) 0% Al, 81% HMX; 2) 6% Al, 75% HMX; 3) 10% Al, 71% HMX; 

and 4) 18% Al, 63% HMX. Samples of these microstructures are on display in Figure 30. 

A statistical analysis of the stochasticity among the generated samples is presented in 

Figure 31. For more information regarding how these microstructures were generated, see 

Chapter 2.1.1.2. 
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Figure 30 - Samples of computationally generated, statistically similar 

microstructures for four levels of aluminization: 0 % Al, 6 % Al, 10% Al, and 18% 

Al. Estane binder has a constant volume fraction of 19%. 

 

Figure 31 - Bimodal HMX grain distributions for the samples shown in Figure 30. 

The error bars indicate the maximum and minimum values among the samples in 

each set; (a) 0% Al; (b) 6% Al; (c) 10% Al; (d) 18% Al. 
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Experimental samples have inherently heterogeneous properties, including nano and 

micro scale voids, microcracks, and directionality of stiffness due to the anisotropic nature 

of the HMX crystal. The heterogeneities are phenomenologically accounted for by 

randomly varying the elastic modulus of the HMX grains. Both computational and 

experimental results have previously shown how microstructure heterogeneity and defects 

alter the effective elastic modulus of the grain. Yang et al. [126] performed MD simulations 

of a void in a copper plate, and demonstrated a negative correlation between the elastic 

modulus of the plate and the volume fraction of the void. Hudson et al. [128] found that 

grains with higher defects have a lower elastic modulus. Using the stiffness tensor provided 

by Sewell et al. [129], the minimum, maximum, and Voigt-Reuss-Hill average of the 

Young’s modulus are calculated to be 12.9, 30.3, and 20.0 GPa respectively. Each HMX 

grain is randomly assigned one of these values. For simplicity, the aluminum particles are 

assumed to be homogeneous and isotropic. For the purposes of this study, no initial 

interfacial defects in the forms debonding between different constituents are considered. 

4.2.2 Loading Configurations 

The specimen is initially stress-free and at rest. Impact loading is effected by 

applying a short-duration velocity on the top boundary of the sample. The left and right 

boundaries are constrained such that lateral expansion does not occur. This is a 2D model 

and the conditions of plane-strain are applied. The pulse intensity (𝑈𝑃) and duration ( pulset

) are chosen to represent the loading characteristics of given combinations of flyer velocity 

and thickness. For simplicity, a single imposed velocity is applied on the top of the sample 

for the specified pulse width (see Figure 32(a)). In real PBX microstructures, different 
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materials have varying impedances, which would lead to non-uniform velocities along the 

sample boundary from a single flyer. This discrepancy is assumed negligible when the flyer 

and the confinement materials are significantly harder than the PBX. The specific loading 

conditions used in the computational analysis are the particle velocities of 

P 400, 500, 600, 800, 1000m/sU  and the pulse duration of pulse 40 640 s t n , as listed in 

Table 13. For each velocity, seven different pulse durations are applied to each sample, 

yielding 700 microstructure - loading combinations (5 velocities × 7 pulse durations × 4 

aluminum concentrations × 5 samples). The shock pulse profile imparted onto the sample 

at the upper boundary is shown in Figure 32(b). The velocity increases from 0m/s  to PU  

over the period of a 10 ns ramp time. This velocity is maintained until the downward ramp 

is reached at 2rampt , after which the pulse velocity linearly decreases to zero over the course 

of 10 ns. After the final time, τ, the velocity constraint is removed. The side boundaries are 

constrained in the x-direction, while the bottom boundary is constrained in the y-direction. 

These three boundaries serve as frictionless walls during the simulation. 
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Figure 32 - (a) Loading configuration of an arbitrary microstructure sample with an 

imposed particle velocity of P
U  at the upper end. Only the top half of the sample 

traversed by the downward stress wave is analyzed to avoid the effects of wave 

reflection. (b) Particle velocity profile imposed with a magnitude of P
U  for a pulse 

duration of  . In all cases, 1ramp
t  = 10 ns and 2ramp

t   = (   -10 ns). 

 

Table 13. APBX loading conditions 

% Al   /    Up 400 m/s 500 m/s 600 m/s 800 m/s 1000 m/s 

0%, 6%, 10%, 18% Al 520 – 640 ns 220 - 340 ns 
130 – 190 

ns 
50 – 110 ns 40 – 70 ns 

 

4.2.3 Constitutive Relations 

The computational analysis is performed using CODEX (Cohesive Dynamics for 

Explosives), a recently developed Lagrangian cohesive finite element code. This 

framework accounts for the dominant thermo-mechanical processes including constituent 
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elasto-vicoplasticity, viscoelasticity, bulk compressibility, fracture, interfacial debonding, 

internal contact, bulk and frictional heating, and heat conduction. The aluminum follows 

the same constitutive model as the HMX grains, and uses different material parameters. It 

is assumed HMX grains and the Al particles undergo elasto-viscoplastic deformations. A 

detailed description of the constitutive models used is in Ref. [19]. The viscoplastic 

relations take into account strain hardening as well as the strain rate dependence. Table 1 

and Table 2 detail the material parameters used for the viscoplastic relation of HMX and 

aluminum respectively. The evolution of the hydrostatic part of the stress tensor is 

governed by a Birch-Murnaghan equation of state. The Estane binder follows a generalized 

Maxwell model with shear modulus varying based on relaxation as described by a Prony 

series formulation. Further details on the constitutive models used in this chapter, including 

the parameters and calibration techniques used in this simulation, can be found in Chapter 

2.  

4.2.4 Cohesive Element Framework 

The fracture of the microstructure under high-impact loading is modeled using a 

cohesive finite element framework. The fracture follows a bilinear traction separation law 

illustrated in Figure 33. These cohesive elements allow for arbitrary crack initiation and 

propagation, while also giving CODEX the ability to explicitly model initial debonding 

between grains and binder, commonly observed in experimental samples. The effect of 

initial debonding on ignition sensitivity is outside the scope of this thesis and may serve as 

the subject of future work for aluminized PBX samples. Such studies were previously 

carried out for PBX without aluminum [20, 101]. Further details on this cohesive model 
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can be found Chapter 2.2.3 and the parameters for the cohesive model between each 

material combination (HMX-HMX, HMX-Al, HMX-Estane, Al-Estane, Al-Al, and 

Estane-Estane) are listed in Table 3 in Chapter 2. The determination of the cohesive 

parameters for the binder-HMX, aluminum-binder, and aluminum-HMX interfaces follow 

that in Ref. [112]. In particular, the cohesive parameters for the aluminum-binder interfaces 

are determined based on experimental data in Ref. [158]. It is understood that there is an 

oxidized layer with a thickness on the order of a few nanometers on the surface of the 

aluminum particles. The cohesive parameters used here account for the effects of this layer 

since the experimental samples themselves contained such a layer on the surface of the 

aluminum. 

 

Figure 33 - Bilinear traction-separation law for potential cracks. 
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4.2.5 Hotspot Characterization 

An ignition criterion developed by Barua et al. [96] is used in this study to provide a 

standard for determination of hotspot criticality. This model is described in full in Chapter 

2.2.5, and only a brief summary will be given here.  

The ignition criterion assumes that a hotspot reaches criticality if its rate of heat 

generation by means of chemical decomposition exceeds the rate of heat lost to its 

surrounds, primarily through conduction. For this to occur, a certain amount of thermal 

energy is required to overcome the activation energy of the chemical decomposition. When 

a hotspot reaches a certain temperature, there is a minimum diameter it must have in order 

to obtain the necessary energy. If any part of the hotspot exceed this critical diameter, 𝑑𝑐, 

during the simulation, the hotspot is treated as a critical hotspot. This condition is 

represented by Eq. (33). 

    , cd T d T   (33) 

If two or more hotspots in a 3 mm2 domain reach criticality, the entire sample is assumed 

to proceed to ignition. This hotspot density threshold for ignition (0.22 mm2) was chosen 

based on the work of Barua et al., and further information can be found in Ref. [96].   

4.3 Results and Discussion 

A systematic quantification of the ignition of aluminized PBX is carried out, focusing 

on the shock intensity and shock pulse duration. Five samples of each aluminum 

concentration are tested at various loading intensities and pulse durations in order to 
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determine the 50% ignition threshold. This threshold is modeled using a modified James 

relation in addition to a modified Walker-Wasley relation, and a probability spectrum is 

quantified by introducing the James number, J, first proposed by Gresshoff and Hrousis 

[106] and Walker Wasley number, W, first proposed by Kim et al [20]. The physical 

mechanisms responsible for the decreased sensitivity to ignition in samples with higher 

aluminum concentrations are delineated in section 4.3.3. 

4.3.1  Ignition Sensitivity Threshold 

The ignition threshold of PBX is fit using two models, the modified Hugh James 

relation (as first introduced in Chapter 3) and the modified Walker-Wasley relation. Each 

model provides a different way of understanding the ignition sensitivity of energetic 

materials using different loading parameters. It is possible to derive an equivalent James 

relation from the Walker-Wasley relation. This derivation can be found in the appendix A. 

4.3.1.1 Hugh James Ignition Threshold 

The critical energy threshold is analyzed using the hotspot ignition criterion 

described in Section 4.2.5. Figure 34 shows the minimum energy required for ignition from 

five samples subjected to various shock intensities. The shock intensities are represented 

in a power flux form,  , which is calculated as  

 ,  pPU   (34) 
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where P is the average hydrostatic part of the stress tensor at the impact face, and PU  is 

the particle velocity at the impact face. The energy fluence, 
0

 
t

E dt , represents the total 

energy transferred to the material by the shock loading per unit area of the impact face. For 

each loading velocity tested, the power flux is found to be nearly constant, while each 

successive test was carried out with an incrementally higher energy fluence, which is 

analogous to impacting the samples with increasingly thicker flyers at the same velocity. 

The red circles in Figure 34 represent samples that did not achieve criticality, and the black 

crosses represent samples that did reach criticality. The 50% ignition probability data 

points were calculated by averaging the energy fluences required for two and three samples 

to reach criticality for a given power flux.  

Due to the stochastic nature of the random microstructures, each sample requires a 

different amount of minimum energy to ignite. A common way to model the probabilistic 

nature of the ignition behavior is to consider the 50% ignition threshold. Take the James 

relation [54], which is based on a minimum critical energy required for ignition, as example 

first here. Gresshoff and Hrousis [106] expanded on the James relation by introducing a 

James number, J, which allows for extrapolation of the ignition probability above and 

below the 50% threshold. The form of the modified James relation is 

 
1

,



 c cE

J E
  (35) 

where Ec and Πc are fitting parameters which represent asymptotic thresholds for the 

critical energy and the critical power flux, respectively. This relation originates from the 
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James relation [54], but uses the power flux (  PPU ) introduced by Welle et al. [13] to 

replace the specific kinetic energy (
20.5  PU ). By definition, the threshold where 50% 

of the samples ignite (i.e. 50% probability of ignition) occurs when J = 1. Any combination 

of power flux and energy fluence above the threshold (J > 1) would lead to a greater than 

50% probability of ignition. Similarly, any combination of power flux and energy fluence 

below the threshold (J < 1) would lead to a probability ignition less than 50%. A similar 

probabilistic quantification can be carried out using the modified Walker-Wasley relation 

in the pressure-loading pulse duration (P-τ) space [53], as discussed later.  
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Figure 34 - Go/no go results of individual samples of APBX with different levels of 

aluminum: (a) 0% Al; (b) 6% Al; (c) 10% Al; (d) 18% Al. 

The 50% ignition thresholds for all aluminum concentrations (0%, 6%, 10%, and 

18% aluminum by volume) are shown in Figure 35, and the corresponding parameters for 

the modified James relation are listed in Table 14. For any given microstructure, a higher 

loading rate (power flux) corresponds to a lower energy fluence for ignition. As the 

aluminum concentration increases, the energy fluence required for 50% of the samples to 

reach criticality also increases, demonstrating that adding aluminum reduces the overall 

sensitivity of the PBX to ignition. This trend matches the experimental observations of the 

relative sensitivity of aluminized PBX as compared to non-aluminized PBX of Prakash et 

al., who measured the relative sensitivities using the standard fall hammer method [156]. 

Figure 35 presents a clear trend of increasing critical energy fluence as the volume fraction 
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of aluminum increases, however the trend in the power flux parameter is not monotonous. 

This is explained by the relatively fewer 50% ignition sensitivity data points available to 

fit the vertical asymptote at lower impact velocities, as calculations at a lower piston 

velocities require extremely long computation times.    

 

Figure 35 - 50% ignition thresholds of APBX with different levels (0%, 6%, 10%, 

18%) of aluminization analyzed in the James space. 
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Table 14. Modified James Parameter values from Figure 35 

Aluminum Volume 

Fraction cE  (kJ/cm2) c  (GW/cm2) 

0% Al 0.0263 0.0570 

6% Al 0.0320 0.0452 

10% Al 0.0351 0.0376 

18% Al 0.0357 0.0479 

 

The ignition sensitivities are easily distinguished at high power fluxes, and 

relatively indistinguishable at lower power fluxes. As the aluminum concentration 

increases the variation in energy fluence required for ignition decreases, which may imply 

there is an optimal volume fraction of aluminum that corresponds to a minimized 

sensitivity for ignition while maximizing power output. Various experiments testing 

TNT/HMX/RDX based PBXs have suggested a 15-20% volume fraction of aluminum as 

an optimal amount to maximize explosive power due to Al increasing the heat of explosion 

while decreasing the volume of gaseous products [56]. 

4.3.1.2 Walker-Wasley Ignition Threshold 

An alternative method of mapping the ignition threshold uses the Walker-Wasley 

relation [53]. First proposed in 1969, the Walker-Wasley relation uses a power law fitting 

to relate the average hydrostatic part of the input stress (P) and pulse duration (τ) required 

to reach ignition. A modified form of this relation is 

 ,



nP
W

C
  (36) 
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where C is a material-dependent parameter and the exponential fitting parameter, n, is often 

set to the value of 2. This relationship provides a non-dimensional Walker-Wasley number, 

W, which relates to the probability of ignition. Similar to the J parameter in Eq. (35), W =1 

represents the threshold where 50% of the samples reach ignition. W >1 and W <1 

correspond to ignition probabilities greater than 50% and less than 50%, respectively. 

The aluminized PBX initiation data is fit to the Walker-Wasley relation (Eq. (36)) 

in the P-τ space and the result is shown in Figure 36. The corresponding parameters used 

are listed in Table 15. As the volume fraction of aluminum increases, material-dependent 

parameter C also increases, indicating a lower sensitivity to ignition under similar loading 

conditions. At lower load intensities, the Walker-Wasley fits, when ploted on the log-log 

scale, do not distinguish the cases for different aluminum levels as well as the Hugh James 

relation. 

 

Figure 36 - 50% ignition thresholds of APBX with different levels (0%, 6%, 10%, 

18%) of aluminization analyzed in the Walker-Wasley space. 
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Table 15. Walker-Wasley Parameter values from Figure 36 

Aluminum Volume 

Fraction 
C W 

0% Al 2.507 1 

6% Al 3.187 1 

10% Al 3.489 1 

18% Al 3.781 1 

 

4.3.2  Ignition Probability Mapping 

For the 50% ignition probability analysis above, J is taken to be 1 in the Hugh 

James space and Eq. (35), with the understanding that if J is greater than or less than 1, the 

corresponding probability of ignition is greater than or less than 50%, respectively. The 

probability of ignition as a function of J is shown in Figure 37(a). By the same token, using 

the Walker-Wasley framework, the results of the ignition probability as a function of W is 

shown in Figure 37(b).  
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Figure 37 - Ignition probability as a function of J (a) and W (b) for APBX with 

different levels of aluminization, shown in terms of the cumulative distribution 

function (CDF) of the Gaussian distribution. 

The relationship between the probability of ignition and J is fit using a cumulative 

Gaussian distribution, with a mean value of 1.J  The standard deviations σ = 0.081, 

0.087, and 0.102 for sample sets with 6%, 10%, and 18% of aluminum, respectively. 

Written in terms of the loading parameters in the James space, the ignition probability is 

  
1 1 1

, erf 1 ,
2 2 2

  
     

    c c

E
E

E E
  (37) 

where erf () is the error function. In the Walker-Wasley space, the probability of ignition 

as a function of W with a mean of 1W  has the standard deviation of σ = 0.219, 0.168, 

0.187 for microstructures with 6%, 10%, and 18% of aluminum, respectively. Written in 

terms of shock pressure, P, and pulse duration, τ, the probability of ignition has the form 

     21 1 1
, erf ln ln ,

2 2 2

 
     

 
P P C   (38) 
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Figure 38 and Figure 39 provide the probability of ignition as functions of loading 

in the entire loading condition spectra in the James and Walker-Wasley spaces, 

respectively. In each figure, the black line corresponds to all possible combinations of 

loading conditions where 50% of samples reach ignition. The upper and lower red dashed 

lines represent, respectively, the loading conditions for which 90% and 10% of samples 

reach ignition. 

 

Figure 38 - Ignition probability distribution maps for the four levels of aluminization 

analyzed; (a) 0% Al; (b) 6% Al; (c) 10% Al; (d) 18% Al in the energy fluence - power 

flux (E-Π) space. 
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Figure 39 - Ignition probability distribution maps for the four levels of aluminization 

analyzed; (a) 0% Al; (b) 6% Al; (c) 10% Al; (d) 18% Al in the pressure - pulse 

duration ( ) P  space. 

The reason that the standard deviations of ignition probability in Figure 37 for the different 

levels of aluminization are similar to each other is that the degree of microsctructure 

variations among the samples in the sets relative to their respective averages are similar. 

This can be partly seen from the similar standard deviations of grain size distributions of 

the samples in Figure 31.  The effect of aluminization on ignition probability is primarily 

on the 50% ignition thresholds, as shown in Figure 35, Figure 36, Figure 38, and Figure 

39. On the other hand, the probability spread relative to the 50% thresholds is a reflection 

of how different the samples in each material set are from each other. Indeed, the fact that 

samples of each material behave somewhat differently (statistical variations) because of 

inherent materials heterogeneities, and the probabilistic analyses here using J and W 
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captures these effects. To simply put, if all samples in a material set were identical to each 

other (no material hetergenity, which is impossible), there wouldn’t be statistical variation 

in behavior.  

It is likely that the standard deviations of the J-𝒫 and W-𝒫 relations obtained here 

are smaller than what would be seen in experiments. Although the samples used in this 

study are statistically similar, variability among experimental samples cannot be controlled 

as rigidly. In addition, there are additional sources of variation in real experimental samples 

not explicitly modeled computationally. Specifically microstructure voids, which are 

known to play a significant role in the generation of hotspots, are not explicitly modeled in 

this chapter. For more information on the effect of voids, see Chapters 5 and 6. Other 

factors can also contribute to measured property variations in experiments, including 

loading uncertainties and instrument error.  

The correlation between the aluminum concentration and the modified James 

parameters, Ec and Πc, as well as the modified Walker Wasley parameter, C, are shown 

below in Figure 40. The data is fit to a simple linear model to outline the trend, with α 

being the concentration of aluminum. The resulting material parameters are listed in Table 

16. It can be seen that increasing from 10% to 18% volume fraction of aluminum has less 

effect on sensitivity than the increase from 0% to 6%. This coincides with the observation 

of optimum PBX performance (as measured by the velocity of detonation or heat of 

explosion) [56]. This coincidence of optimum effects on the ignition threshold studied here 

and performance in general may be a just coincidence, or there may be an intrinsic link. In 

this chapter, only the ignition sensitivity, as measured by the minimum amount of energy 
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required to cause ignition at a given energy input rate (the James threshold), is analyzed. 

To draw comparisons to overall explosive performance, analysis of the process beyond the 

point of critical hotspot initiation into detonation is required. 

 

Figure 40 - Correlation between aluminum volume fraction and (a) critical power 

flux, (b) critical energy fluence, and (c) material-dependent parameter C. 

 

Table 16. Material Properties for the linear relationships shown in Figure 40 

Material Properties 𝛱 (
𝐺𝑊

𝑐𝑚2
) 𝐸 (

𝑘𝐽

𝑐𝑚2
) 𝐶 (

𝐺𝑃𝑎2

µ𝑠
) 

Slope 𝛱𝐴𝑙 = −0.050 𝐸𝐴𝑙 = 0.052 𝐶𝐴𝑙 = 6.95 

Intercept 𝛱0 = 0.051 𝐸0 = 0.028 𝐶0 = 2.65 

 

By combining the relations above with the probability functions in Eqs. (37) and 

(38), we can write the probability of ignition directly as a function of the aluminum 

concentration, α, as well as the loading conditions as 
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Conversely, the ignition thresholds as functions of the aluminum concentration are 
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4.3.3  Effect of Aluminum on Hotspot Criticality  

The physics governing the effect of aluminum incorporated into PBX are outlined in 

this section. Section 4.3.3.1 discusses the predominant mechanisms of heat generation, and 

how they are influenced by the inclusion of aluminum. Section 4.3.3.2 discusses the 

resulting effect of increasing the diameter of the aluminum particles from 50 μm to 100 

μm. 

4.3.3.1 Heat Generation in Aluminized Samples 

In this analysis, three forms of heat generation due to energy dissipation are 

accounted for: frictional heating, plastic work in the HMX grains, and viscous dissipation 

in the binder. The relative effects of frictional work and plastic work in the HMX grains 

are analyzed in Figure 41. The heat generation from the viscoelastic dissipation in the 

binder is not analyzed here since its contribution to heating is mostly in the Estane matrix 

and the effect of heat transfer via conduction is minimal in the examined time scale. 

Additionally, it is found that shock heating is essentially negligible under the conditons of 
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the pulse loading considered, primarily due to the fact that decompression occurs quickly. 

Specifically, calculations show that shock heating raises the residual temperature (after 

decompression) by less than 1 K in most grains. This is in contrast to what happens under 

monotonic loading at high flyer velocities. It is important to study the effects of localized 

heat generation, rather than total heat generation, since hotspots only initialize from 

localized heating. 

 

Figure 41 - Breakdown of heat generation in HMX grains due to frictional work and 

plastic work. 

As seen in Figure 41, there is a greater amount of localized heat generation in HMX 

grains in samples with no aluminum as compared to samples with 18% aluminum (by 

volume). This difference is a direct result of the increased levels of frictional work 
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occurring in the HMX when no aluminum is present. The plastic work density and resultant 

heat generation from it remains relatively constant between samples regardless of the total 

energy fluence.  

The crack density for three aluminum levels is shown in Figure 42 for Up = 1000 

m/s. This high piston velocity is chosen because the largest difference in ignition thresholds 

occurs at higher power flux values. The data for 6% Al is not shown to keep the plot less 

cluttered and easier to visualize. As the amount of aluminum is increased, the total amount 

of cracking remains nearly constant (Figure 42(a)), but the number of cracks associated 

with HMX decreases (Figure 42(b)). More cracks are forming between the aluminum and 

the binder or between the HMX and the binder, instead of in the HMX grains in the form 

of intergranular cracks. Since the main source of localized heat generation is frictional 

dissipation stemming from fracture and subsequent material interfacial movement, this 

means part of the heat generation in the material is moving away from HMX, and towards 

the Al particles instead. This phenomenon is examined more thoroughly in section 4.3.3.2. 
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Figure 42 - Effect of Al volume fraction on crack density in relation to the imparted 

energy fluence when the particle velocity is 1000 m/s; (a) total crack density; (b) 

density of cracks associated with HMX. The crack density in (b) has been normalized 

to the volume fraction of the HMX. 

4.3.3.2 Aluminum Particle Size Effect on Initiation 

In addition to the above analysis with d = 50 µm, the analysis is repeated using a 

larger aluminum particle diameter of d = 100 µm. In both cases, the aluminum volume 

fraction is constant at 10%. The results are shown in Figure 43, with the corresponding 

James equation parameters listed in Table 17. Figure 44 shows the corresponding 

probability variation as J varies.  

Table 17. Modified James Parameter values from Figure 43 

Aluminum Diameter cE  (kJ/cm2) c  (GW/cm2) 

50 µm 0.0351 0.0376 

100 µm 0.0320 0.0306 
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Figure 43 - ignition thresholds of 10% Al samples with 50 μm and 100 μm diameter 

aluminum particles. 

 

 

Figure 44 - Cumulative ignition probability as a function of J for APBX with 50 and 

100 μm aluminum particles. In both cases, the aluminum volume fraction is 10%. 



 126 

The larger particle diameter lowers the ignition threshold and increases the ignition 

sensitivity. Over the entire range of input power flux analyzed (0.2 – 1 GW/cm2), the larger 

aluminum particle diameter consistently corresponds to lower energy fluence for the 50% 

ignition threshold. This is qualitatively consistent with experimental observations recorded 

by Gogulya et al. [159] showing that the detonation velocities of HMX based explosives 

decreased as aluminum particle size decreased (while the mass fraction of aluminum 

particles was held constant at 15%).  As shown in Figure 44, the variation of the ignition 

threshold as J varies is essentially the same for the two aluminum particle sizes. As is the 

case for different aluminum concentrations (volume fractions) discussed earlier, Figure 44 

does not imply that the ignition sensitivity thresholds for the two Al particle sizes are the 

same, but rather that the probability variations relative to the corresponding 50% thresholds 

essentially coincide.  

First, as discussed in section 4.3.3.1, interfacial friction plays a more dominant role 

in heat generation than bulk inelastic deformation. Any fracture energy spent on crack 

propagation between the aluminum and binder is less energy available to the HMX grains, 

where the development of hotspots is key to ignition. Therefore, an increased amount of 

fracture on the aluminum surfaces results in desensitization. When comparing the crack 

density associated with aluminum particles (for both the 50 μm and 100 μm cases), over 

98% of the cracks associated with aluminum are surface cracks. This implies that the total 

aluminum surface area has a more significant effect on sensitivity than aluminum 

concentration or volume fraction. Note also that smaller particles have higher surface-to-

volume ratios, therefore, for the same volume fraction of aluminum the materials with 

smaller particles have more overall aluminum surfaces. Figure 45(a) shows how the 
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aluminum surface crack density compares between the 10% aluminum cases with large 

and small aluminum particle diameters. It is important to remember that no initial 

debonding exists in any sample. The crack density is significantly higher for the smaller 

particle cases, due to higher total surface area. When the total Al cracking is normalized to 

the total amount of Al surface area (Figure 45 (b)), the Al particle size becomes irrelevant. 

This evidence supports the claim that Al surface area plays a dominant role in ignition 

sensitivity. 

The second reason why smaller aluminum particles lead to lower sensitivity to 

ignition is because a greater number of smaller particulates can be more spread out 

throughout the microstructure than fewer, larger ones. This allows for a more even 

dissipation of energy via aluminum debonding, which lowers the total potential energy 

available to the HMX phase. Since the aluminum particles are scattered randomly 

throughout the microstructure, decreasing their size while simultaneously increasing their 

quantity (to maintain the 10% Al volume fraction), increases the likelihood of an aluminum 

particle ending up near a potential hotspot location. The aluminum debonding can then 

function as an energy “sink”, preventing critical temperature rise in the nearby HMX.  

It is important to note that this study is only focused on the mechanical effects that 

lead to hotspot formation, with aluminum particles in the micron scale. It is likely that 

smaller aluminum particles play a larger role in detonation when chemistry is considered, 

especially when dealing with Al particles in the nanoscale regime, but that is outside the 

scope of this chapter. 
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Figure 45 - (a) Surface crack density as a function of energy fluence in 10% Al samples 

with 50 μm and 100 μm diameter aluminum particles. (b) Percentage of total 

aluminum surface area that has fractured. 

 

4.3.4  Experimental Validation  

So far in the open literature, there is no direct experimental measurement of the 

quantities predicted here. As a result, direct comparison with experiments is not possible 

at this time. However, general trends seen in experiments concerning the ignition and 

detonation of aluminized PBX are consistent with the trends reported in this chapter, as 

stated in the discussions above. When studying HMX samples mixed with Al and 

ammonium perchlorate (AP), Li et al. [160] noticed that ignition sensitivity decreased with 

the addition of aluminum, and concluded, “…a plentiful [amount] of Al decentralizes the 

impact stress on explosive, accordingly diminishes the probability of hot-spots formation. 

Simultaneously, a vast [amount] of Al can improve heat transmit which hamper explosion 

propagation from hot-spots”. A number of studies report decreasing detonation velocities 

as the aluminum volume fraction increases. Gogulya et al. [59, 161] found that the 
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detonation velocity decreased as the size of the aluminum particles decreased, while the 

volume fraction was held constant. It should be noted that nano-size aluminum particles 

may also significantly alter the detonation phase, which this study does not directly 

simulate. It is hoped that more direct experimental measurement concerning ignition 

thresholds will become available in the future.  

4.4 Conclusion 

The ignition behavior of APBX with microstructures containing 6%, 10%, and 18% 

Al by volume is analyzed and compared to that of the corresponding unaluminized PBX. 

The 50% ignition threshold for each Al concentration are mapped as a function of the 

power flux and energy fluence which are measures for loading condition. A probabilistic 

map is created to quantify the likelihood of ignition of the materials. The results show that, 

relative to the unaluminized PBX, the addition of aluminum reduces the 50% ignition 

threshold sensitivity by 21.7%, 33.5%, and 35.7% for APBXs with 6%, 10%, and 18% Al, 

respectively. In terms of the mechanisms responsible for the trend, the frictional dissipation 

between sliding crack surfaces plays a much more significant role in the development of 

critical hotspots than plastic deformation. At higher load intensities, the addition of 

aluminum does not significantly change the total amount of cracking in the materials, but 

it does encourage crack initiation in locations away from HMX, resulting in lower ignition 

sensitivity of the materials. The reason is that more energy is dissipated in the debonding 

of aluminum due to the lower cohesive strength between the Al particles and Estane binder, 

causing less localized heating in HMX. As the aluminum particle size is increased, the 

materials are more likely to generate critical hotspots for the same reason. Since larger Al 
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particles result in less total Al surface area (as compared to an equal volume of smaller Al 

particles), less energy is required to debond a majority of the Al particles, allowing more 

cracks to form in HMX grains, leading to higher ignition sensitivity. 

Finally, it is useful to point out that the goal of this chapter is to illustrate the 

important micromechanical effects aluminum constituents have on the ignition sensitivity 

of PBXs. Through a thorough computational analysis, friction is identified as playing a 

dominant role in hotspot generation. These findings can help guide the direction of future 

experiments to focus on studying the importance of frictional heat dissipation under shock 

loading and efforts to modify the ignition sensitivity through material synthesis. A possible 

mechanism is to enhance the bonding strengths between different binders and constituents 

via design of the microstructure and change of synthesis routes.  
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CHAPTER 5. PREDICTION OF PROBABILISTIC 

DETONATION THRESHOLD VIA MILLIMETER-SCALE 

MICROSTRUCTURE-EXPLICIT AND VOID-EXPLICIT 

SIMULATIONS 

This chapter is based on work currently in submission to Propellants, Explosives, 

Pyrotechnics (PEP). The work in this chapter was performed in collaboration with Drs. 

David Kittell and Cole Yarrington from Sandia National Laboratories. 

5.1 Introduction 

In this chapter, the dual nature of HEM shock initiation safety/performance is 

explored for HMX using a new computational framework; one that explicitly resolves 

microstructures, voids, and chemical reaction at the millimeter scale. These are mesoscale 

microstructure-explicit (ME), void-explicit (VE), and chemical-reaction-explicit (CRE) 

simulations performed with the Eulerian hydrocode CTH [87]. The objective is to show 

the SDT transition for the first time as a probability distribution map overlaid on a Pop 

plot, with the source of uncertainty being material heterogeneities. As described by Dick 

et al. [162], the Pop plot originated from shock initiation studies which varied the shock 

pressure input to a HEM with an explosive lens/attenuator. The response measure is the 

run distance to detonation recorded via a streak camera. The shock pressure vs run distance 

plot is usually in the log-log space and called the Pop plot (PP). Here, the probabilistic Pop 

plot (PPP) represents a further step beyond the previous work in Chapters 3 and 4 that have 

predicted a probabilistic ignition threshold in the James space [19, 20]. Randomized 
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microstructural generation is employed in addition to explicit modeling of the void 

distributions in order to quantify their rank-order effects on the total run distance to 

detonation. The probabilistic analysis is made possible via the generation and use of 

statistically equivalent microstructure sample sets (SEMSS). The multiple samples in a 

specific material set directly mimic the multiple samples in experiments, allowing 

statistical variations in material and material response to be studied [19, 20].   

The microstructure-explicit (ME) and void-explicit (VE) simulations shown in this 

work not only resolve the material heterogeneities at the millimeter scale, they also capture 

the probabilistic nature of the SDT process. In these simulations, the constitutive relations 

are based on a simplified form of the SGL model, following recent success at calibrating 

this model in CTH [22]. Finally, a simplified reaction model is used to represent each of 

the individual HMX grains. This preliminary reaction model follows the work of Baer [14], 

which has been used in the absence of a more physically-relevant reaction model and 

equation of state (EOS) that are not currently available in CTH. The two-state history 

variable reactive burn model (HVRB), used here, has led to good agreement with 

experimental run distance to detonation and other continuum-level measurements in the 

past [14], and features a reaction rate that is based on local pressure. With these model 

assumptions, the shock to detonation transition events are set in motion by loading effected 

with an imposed piston velocity. This approach is often used to analyze the full SDT events 

on modern computing resources [163, 164]. 

Overall, the objectives of this work seeks to develop a novel probabilistic 

representation for quantifying both the shock sensitivity and performance of HEMs. While 
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the data sets used here to determine the parameters in the probabilistic representation come 

from computational simulations with the SEMSS, the probabilistic formulation can also be 

parameterized using independent experimental data sets. The results allow for the 

determination of the likelihood of observing SDT at a particular run distance under a given 

shock pressure. This further advance is based on, but goes beyond the work presented in 

Chapters 3 and 4 on thermal runaway and probabilistic ignition thresholds [19, 20]. In order 

to achieve this desired outcome, a new non-dimensionalized Pop plot characteristic 

parameter (called the Pop plot number) is proposed. The different effects of microstructure 

and voids on the probabilistic Pop plots are given in rank-order to gain insight into the 

meso (grain) scale mechanisms that underlie the SDT process. While current results pertain 

only to HMX, this approach could easily be repeated for other HEMs, including PBXs, 

which are either synthesized in a traditional manner or additively manufactured. 

This chapter consists of two parts. The first part describes the computational 

framework used to study SDT at the mesoscale, including the design of the HMX 

microstructures, and a brief summary of the constitutive relationships and reaction model. 

The second part discusses the simulation results, focusing on the rank-order of the effects 

of different microstructural features as well as the development of the probabilistic Pop 

plot. This chapter concludes with major findings as well as directions for future work. 

5.2 Framework of Analysis   

Two-dimensional microstructures are generated and used. The impact loading is 

effected with a rigid piston traveling at different velocities. The run distance to detonation 

is calculated as the simulation progresses. The Sandia National Labs Eulerian hydrocode, 



 134 

CTH, is used to simulate the full shock-to-detonation transition (SDT) process. The 

microstructure generation, constitutive relations, and computational framework are 

outlined in this section.  

5.2.1  Material, Model and Microstructure 

The material of interest is approximately based on class 3 pressed granular HMX 

[13]. Four types of models are considered: homogenous (H), microstructured without voids 

(M), homogenous with voids (V), and microstructured with voids (M+V), as shown in 

Figure 46. The homogeneous (H) and microstructured (M) samples are fully-dense (100% 

TMD). The voids in the V and M+V samples are circular in shape and have diameters of 

50 µm. This void size is chosen to allow explicit resolution of each void in the 3×15 mm 

samples without rendering the already very intensive computations prohibitively expensive 

using 10,000-20,000 processor hours on supercomputers. Further discussions on mesh size 

and computational cost are in section 5.2.4. Section 5.3.1 studies the effect of void volume 

fractions ranging from 0% to 20%, while section 5.3.2 compares the effects of granular 

microstructure without voids relative to samples with 5% volume fraction of voids.  

A set of five random but statistically similar granular HMX microstructures is 

generated using Voronoi tessellation. These samples conform to the statistical grain size 

distribution in Figure 47. This grain size distribution is monomodal, with a mean grain 

diameter of 220 µm. This method of microstructure generation results in realistic, 

randomized, and statistically equivalent microstructure sample sets (SEMSS). For samples 

with voids, individual voids are inserted randomly into either the homogenous or 

microstructure samples until the overall desired void volume fraction (0%, 5%, 10%, or 
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20%) has been reached. No two voids overlap, ensuring a constant void size and random 

void distribution. For further details on the microstructure generation process, see Chapter 

2. 

 

Figure 46 - Four HMX material cases considered in this study: homogeneous (H), 

microstructured (M), homogeneous with voids (V), and microstructured with voids 

(M+V). Multiple, randomized grain morphologies and void placements were 

generated to create the four statistically equivalent microstructure samples sets 

(SEMSS) for analysis. 

 

Figure 47 - Monomodal HMX grain size distribution used in the granular 

microstructures with and without voids. 
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Actual samples in experiments have more heterogeneous characteristics than those 

in the four sets of samples presented here.  For example, nano- and micro-scale voids, 

microcracks, and directionality of the material properties due to the anisotropic nature of 

the HMX crystal all play roles in the response of the materials to shock loading. These 

factors are too small and computationally expensive to be explicitly resolved in the current 

model setting. To account for the effects of these factors via grain-level heterogeneities, 

the density of the HMX for each grain is set to one of three possible values: 70% TMD 

(1.33 g/cm3), 100% TMD (1.90 g/cm3), and 130% TMD (2.47 g/cm3). These density 

variations emulate the effects of local variations in the material and represent one source 

of variations in fields behind the shock front normally attributed to localized material 

heterogeneities. It is important to note that even though 130% TMD is a nonphysical 

description of a material, the variations in density are employed here as a modeling tool to 

introduce the heterogeneous reactive behavior. More specifically, the Mie-Grüneisen EOS 

returns a different shock pressure for each initial density; and since the HVRB chemistry 

model used here is pressure dependent (further detailed in Section 5.2.2), even the explicit 

microstructure case (M) has spatial variations in the reaction rate. Such variations lead to 

the heterogeneous behavior as seen in actual samples, while keeping the overall HMX 

density consistent at 100% TMD. A variation of 30% about the 100% TMD was calibrated 

based on the work of Hardin et al. [165] who found the coefficient of variation in the 

longitudinal stress field in the quasi-steady region behind the stress wave front in 

polycrystalline HMX varies from 0.08 to 0.16 at piston velocities around 400 m/s. In this 

study, the grains are assumed to be perfectly bonded to one another.  If two grains with the 
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same density are positioned next to one another, they behave as a single grain of the same 

density. For the H and V samples, the standard HMX 100% TMD (1.90 g/cm3) is used. 

The present framework represents a simplified approach toward explicitly resolving 

various microstructures commonly seen in HEM. While the method of varying the density 

of the HMX grains may replicate the trends seen in experiments, it is difficult to fully 

quantify the effect of heterogeneity into a single parameter. Actual experimental samples 

have clear defects not accounted for here, which are known to contribute to hotspot 

initiation and subsequent detonation [20, 101, 166, 167]. Other HEMs have binder and 

additive components, such as aluminum, which can affect the sensitivity of the material to 

ignition [155]. It is entirely possible that microstructure heterogeneity plays an even larger 

role than what is presented in the results of this study. However, the current framework 

should be regarded as a step toward fully accounting for the most essential material 

heterogeneities up to the overall mm macroscopic size scale.  

5.2.2 Constitutive Relations 

The elastic-viscoplastic model, equation of state (EOS), and chemistry model are 

most relevant to the community and the analyses here. Consequently, they are discussed in 

this section. Only a brief summary is provided here, as the full details of these models have 

already been described in Chapter 2.3. The specimen is initially stress-free and at rest. This 

is a 2D model and the conditions of plane-strain prevail. A single piston velocity (𝑈𝑃) is 

applied on one end of the sample to effect shock loading. The side (lateral) boundaries are 

constrained in a frictionless manner to maintain the overall conditions of sample-level 

uniaxial strain typical of planar impact experiments.   
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A simplified Steinberg-Guinan-Lund strain-dependent flow stress model (SGL) is 

used to account for the viscoplastic behavior of HMX. This model has been calibrated to 

match the elasto-viscoplastic model used for HMX in Chapters 3 and 4 of this thesis which 

in turn was based on available experimental data. The values of the material parameters in 

the model are listed in Table 4 in Chapter 2. The bulk response to hydrostatic pressure is 

modeled using the first order Mie–Grüneisen EOS. This is a common EOS used to model 

material subjected to shock loading. Unlike the Birch-Murnaghan EOS used in the 

Lagrangian framework in Chapters 2 and 3, the Mie–Grüneisen EOS includes an internal 

energy dependence that is estimated at each time step by integrating the specific heat with 

respect to temperature as described in Eq. (16). The values of the material parameters in 

the EOS model are listed in Table 5 in Chapter 2.  

The process of chemical reaction initiation and progression follows the history 

variable reactive burn model (HVRB). This is a pressure dependent burn model which does 

not explicitly track species of reactants or products. Reactive burn models have been 

widely used to simulate the ignition and detonation of HEMs [14, 83, 84]. These empirical 

models are often calibrated to Pop plot data. As a result, the localized extent of reaction 

behind the shock front may not be perfectly resolved (which is a known limitation for the 

HVRB model). However, with available data and models, this is a reasonable trade-off in 

order to reach the macroscale from the mesoscale, since the focus here is on analyzing 

macroscale material behavior. The HVRB model provides a straightforward method of 

accounting for chemical reaction at larger size scales which would otherwise prove more 

computationally intensive if an Arrhenius-based chemical reaction rate model is used. Still, 

it is worthwhile to note that if and when a more useful chemistry model is made available, 

https://en.wikipedia.org/wiki/Gustav_Mie
https://en.wikipedia.org/wiki/Eduard_Gr%C3%BCneisen
https://en.wikipedia.org/wiki/Gustav_Mie
https://en.wikipedia.org/wiki/Eduard_Gr%C3%BCneisen
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it can be easily used in the current framework – there is no fundamental impediment to the 

use of other, especially more mechanisms-based, reaction models.  

5.2.3 Shock Pressure and Run Distance Calculation 

Run distance to detonation (RDD) is a common performance metric used to measure 

SDT sensitivity and performance of an energetic material. In this analysis, the RDD is 

defined as the longitudinal distance the shock wave travels into the explosive before the 

detonation wave front is established. Initially, the stress field following the shockwave is 

relatively uniform (in the homogeneous samples), due to the monotonic loading applied. 

When voids or microstructure are introduced, the stress field deviates from this idealized 

scenario as the shock front encounters material heterogeneity. The reaction builds up 

behind the shock front, and at later times strengthens it before eventually overtaking the 

shock front and propagating through the uncompressed material as a detonation wave. 

The relationship between the RDD and pressure of imposed shock loading, or the 

Pop plot, can be used to compare the relative performance of different materials. In the 

analysis here, the relations are used to quantify the differences in performance due to 

microstructure and voids of the four HMX cases. The shock pressure is calculated based 

on the spatially averaged pressure profile of each sample. The initial plateau of the stress 

wave is measured and averaged over both sample distance and time in order to determine 

the most accurate monotonic shock pressure for a given impact velocity. In order to 

calculate the run distance, the location of the shock front in the sample is recorded as a 

function of time. Since the detonation wave propagates faster than the inert shock wave, 

the run distance is easily measured by examining the change in velocity of the shock front 
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itself. An example pressure profile and shock front location of a granular microstructure 

without voids under loading by a piston velocity of P 800m/sU  is shown in Figure 48. 

 

Figure 48 - (a) Pressure profile behind the shock front at multiple time steps for a 

microstructure sample impacted at 800
P

U  m/s. (b) Distance traversed by the 

shock front as a function of time for the same microstructure sample impacted at 

800
P

U  m/s. 

The fields of pressure, temperature, and the extent of reaction (λ) are analyzed to 

delineate the effects of voids and granular heterogeneity. Figure 49 shows the pressure 

fields at different stages of the SDT process for a microstructured HMX sample with voids 

impacted by an aluminum flyer at 400 m/s. The fields cover hotspot initiation to full 

detonation completion. 
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Figure 49 - Pressure fields for an HMX sample containing both microstructure and 

voids impacted by an aluminum flyer at 400
P

U  m/s. 

5.2.4 Mesh and Size Convergence 

To ensure accurate results, a mesh convergence study is carried out to determine the 

proper mesh size necessary to explicitly resolve both the grains and voids and ensure 

convergence of solution of interest. To this end, shock pressure and RDD are calculated 

for samples including both microstructure and voids at mesh sizes ranging from 30 µm to 

500 nm. The M+V sample set was chosen for this purpose because it accounts for both 

kinds of heterogeneities. Naturally, the mesh sufficient for modeling the most complicated 

HMX microstructures should be sufficient for the less complicated microstructures as well. 

As shown in Figure 50, the shock pressure is found to converge at any resolution finer than 
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20 µm, while the run distance converges for any mesh size finer than 5 µm. For this reason, 

a final mesh size of 5 µm is chosen for all subsequent tests. It is important to note that this 

study is focused on the macroscale detonation properties of the material. A finer mesh 

resolution would likely be required to accurately resolve local temperatures which may be 

required for an Arrhenius-based chemical reaction rate model, as is commonly used for 

small scale simulations in the literature. The HVRB chemical reaction model used here (as 

outlined in section 5.2.2) is a pressure-dependent model that does not require direct use of 

temperature. For this reason, the convergence study here also provides a validation of the 

average shock pressure. 

 

Figure 50 - (a) Shock pressure and (b) run distance to detonation for a sample with 

granular microstructure and voids at mesh resolutions ranging from 30 µm elements 

to 500 nm elements. 

In addition to a mesh resolution study, it is important to determine whether the 

sample size chosen serves as an acceptable representative volume element (RVE) for the 

microstructure as a whole. While the smallest microstructure feature (voids) dictates the 

necessary mesh resolution, the largest microstructure feature (grains) dictates the necessary 

RVE size of the sample. To this end, five 1 mm × 5 mm samples, with the same randomized 
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grain distributions as in the 3 mm × 15 mm samples (see Figure 47), are subject to the same 

impact loading and the detonation process is analyzed in the same as manner as that in the 

3 mm × 15 mm samples. The resulting shock pressure prior to detonation and the run 

distance to detonation are calculated. The results are shown in Figure 51. The overlap and 

near full coincidence of the data points from the two sets of samples indicate that the 1 mm 

× 5 mm sample size yields practically the same results as the 3 mm × 15 mm sample size, 

and therefore the 1×5 mm samples are large enough to be RVEs. For the remainder of this 

analysis, calculations are conducted using 1 mm × 5 mm samples to minimize 

computational cost. 

 

Figure 51 - Run distance to detonation as a function of shock pressure for five 1×5 

mm samples (black circles) and five 3×15 mm samples (blue squares) with 

randomized grain distributions and no voids. Piston velocities ranging from 600 m/s 

– 1000 m/s are used to generate the range of shock pressures seen here. 
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5.3   Results and Discussion 

A systematic quantification of the effect of granular microstructure and void volume 

fraction on the performance and sensitivity of pressed HMX is carried out. Section 5.3.1 

compares the effects of homogenous samples with four volume fractions of 50 µm circular 

voids (0%, 5%, 10%, and 20%) on the Pop plot. Section 5.3.2 discusses the differences in 

samples with and without voids and granular microstructure; a comparative rank-ordering 

of the Pop plot results is also given. A probabilistic model for the SDT transition is 

developed in section 5.3.3, using the results presented in section 5.3.2. This formulation 

allows the likelihood of achieving run to detonation at a given distance to be mapped over 

the entire range of loading pressures studied. Finally, in section 5.3.4 the prediction 

obtained in section 5.3.2 is compared with available experimental data. 

5.3.1  Effects of Void Volume Fraction 

It is well known that microstructural heterogeneities contribute to increased 

sensitivities of energetic materials to ignition. The presence of voids in the material results 

in extreme shear stress and local plastic deformation at the defect locations under shock 

loading conditions. The hotspot formations due to pore collapse are considered to play a 

dominate role in the sensitivity, and subsequent detonation of HEMs. Accurately 

characterizing the effects of voids is essential in mesoscale simulations [168]. In this 

section, we examine the effect of increasing the volume fraction of voids on the run 

distance to detonation of HMX samples without microstructure or other forms of 

heterogeneity.  
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Homogeneous HMX samples with four levels of void volume fractions are analyzed: 

0% (homogeneous), 5%, 10%, and 20%. These values are chosen to track void volume 

fractions commonly observed in experiments of pressed HMX [43]. All voids are initially 

circular with the same diameter of 50 µm. The voids are placed randomly so that no two 

voids initially overlap or directly contact the edges of the sample. For each of the four void 

volume fractions, five statistically equivalent random samples are generated, resulting in 

five 5% void samples, five 10% void samples, and five 20% void samples. Each sample is 

subjected to loading at each of the following piston velocities: PU  = 600, 700, 800, 900, 

and 1,000 m/s. The use of multiple statistically equivalent samples over a range of piston 

velocities allows for measurement of both shock pressure and run distance in a manner that 

captures the stochastic variations in the material behavior. The results of this analysis are 

shown in Figure 52. Clearly, the run distance decreases as the void volume fraction 

increases. The average decrease in run distance with void volume fraction is normalized 

with respect to the 0% void case and is listed in Table 18. 
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Figure 52 - Pop plots of samples with 0% void (black), 5% voids (blue), 10% voids 

(red), and 20% voids (green) by volume. All voids are initially 50 µm in diameter. 

Other than the voids, the samples contain no other heterogeneities. 

 

Table 18. Effect of void volume fraction on normalized run distance 

Void Volume Fraction 
Average Decrease in Run 

Distance 

0% 0% 

5% 20.6% 

10% 28.8% 

20% 37.2% 

 

For a given shock pressure, increasing the volume fraction of voids in turn causes 

the run distance to detonation to decrease (and therefore lowers the PP line). Table 18 

shows that the rate of decrease in the run distance decreases at higher void volume 
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fractions. Specifically, a 5% volume fraction of voids causes the run distance to decrease 

on average by 20.6% relative to the homogeneous material case over the entire range of 

shock pressure. Increasing the void volume fraction from 5% to 20%, on the other hand, 

causes the run distance decrease relative to the 0% case to change from 20.6% to 37.2%, a 

smaller 16.6% change. While increasing the volume fraction of voids lowers the Pop plot 

line, a trend that is associated with better detonation performance of a HEM by itself, trade 

off must also be considered. Specifically, voids cause the overall effective density of the 

material to decrease, which leads to lower shock pressure under the same impact velocity. 

This means a higher, more severe loading might be required to generate the same 

performance or effect. In addition, voids also decrease the overall energy content in a HEM, 

causing the overall energy output per unit macroscopic volume of the material to be lower. 

These factors must be weighed.  

5.3.2 Effect of Granular Heterogeneities 

We now consider the effects of the granular microstructure, as well as the interactions 

between the effects of the microstructure and voids, on the Pop plot.  For this purpose, the 

four material cases in Figure 46 are considered: homogeneous (H), granular microstructure 

only (M), 5% voids only (V), and both microstructure and voids (M+V). The overall results 

are shown in Figure 53. As different forms of heterogeneities and material defects, 

microstructure and voids each causes the Pop plot lines to shift to the lower left in pressure-

run distance space. In other words, the run distance decreases at a given shock pressure as 

more heterogeneities are included. The average decrease in run distance for each material 



 148 

case (H, M, V, M+V) has been normalized with respect to the homogeneous case (H), as 

listed in Table 19. 

 

Figure 53 - Pop plot lines for the homogeneous samples (black), granular 

microstructured samples (red), samples with 5% voids by volume only (blue), and 

samples with 5% voids and granular microstructure (green). 

 

Table 19. Effect of material heterogeneities on normalized run distance 

SEMSS Average Decrease in Run Distance 

Homogeneous (H) 0% 

Microstructure (M) 12.3% 

5% Voids (V) 20.6% 

5% Voids and Microstructure (V+M) 27.5% 

 

For the range of pressure considered, homogeneous samples have the highest Pop 

plot line, or the longest run distance at a given pressure. Voids and granular microstructure 
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each cause the Pop plot line to move toward the lower left in the shock pressure-run 

distance space. Relatively speaking, the effects of 5% voids are stronger than the effects of 

granular heterogeneities embodied by ±30% grain-grain variations in the density of the 

material. The Pop plot line for samples with both microstructure and voids have the lowest 

Pop plot line, or the fastest SDT in terms of run distance and time among the cases 

analyzed. The results in Table 18 allow a rank-order of the effects of microstructure and 

voids to be established. A graphical illustration of this ordering is given in Figure 54. From 

the lowest to highest SDT performance: homogenous HMX, HMX with only 

microstructure, HMX with 5% voids, HMX with 5% voids and microstructure, HMX with 

10% voids, and HMX with 20% voids.  

 

Figure 54 - Normalized averaged decrease in run distance of samples with and 

without granular microstructure (blue and black respectively) as compared to 

homogeneous HMX as a function of void volume fraction. 
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For the 0% and 5% void cases, adding granular microstructure decreases the run 

distance by 12.3% and 6.9%, respectively. Clearly, microstructure has a significant effect 

on the SDT behavior and the Pop plot. It is important to point out that a relatively idealized 

microstructure representation is used here, as the only material heterogeneity is in the 

density (which in turn affects the EOS). In reality, material heterogeneities lie in 

constitutive behavior, crystal orientation and associates strength anisotropy, reaction 

kinetics, and thermal behavior. As such, the overall effects of microstructure are likely 

more pronounced than what is stated here. The current analysis should be regarded only as 

a first order estimate of the lower bound of the effects of microstructure relative to the 

effects of voids. In addition, only one relatively large void size (50 µm) is analyzed here. 

Void size is expected to affect the results [18, 169, 170].  

5.3.3 Probabilistic Pop plot model 

Up until now, the discussions regarding the rank-ordering of the effects of different 

microstructural attributes on SDT behavior have focused on the best curve fit associated 

with each Pop plot data set. This takes the form of a single line that represents the “average” 

behavior or trend. The analysis does not account for the fact that the behavior of HEM are 

stochastic due to several factors, the most important of which is intrinsic material 

heterogeneities at lower scales. The behavior of individual samples scatter around the 

overall trend line and the type and extent of heterogeneities determine the statistical spread 

and the uncertainties involved. There is a strong need to quantify not only the overall 

“average” behavior, but also the statistical distribution of the material behavior. The 

quantification must allow the uncertainties associated with SDT behavior assessment to be 
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determined. Here, we use the SEMSS and the statistical SDT data sets obtained from the 

SEMSS to develop a probabilistic formulation for the Pop plot itself. To begin, each set of 

Pop plot data is fit to the standard power law 

  
* ,m

sx SP  (43) 

where S is a material-dependent scaling parameter, m is an exponential fitting parameter, 

𝑥∗ is the run distance, and 𝑃𝑠 is the shock pressure. This standard method Pop plot line 

represents the threshold of having 50% of the samples in a data set achieve SDT by a given 

run distance at a given pressure. In order to capture the probabilistic behavior of the Pop 

plot data set and quantify the likelihood of observing SDT at other combinations of run 

distance and shock pressure away from this line, a modified form of Eq. (43) is proposed 

with the introduction of a new, non-dimensional parameter D in the form of  
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This parameter can be regarded as the Pop plot characteristic number or the Pop plot 

number (PPN).  It provides a measure of deviation from the 50% trend line of Eq. (43) in 

the run distance vs. shock pressure space, with 0D . In particular, 1D  represents the 

threshold where 50% of the samples reach detonation (i.e., the traditional PP line); and 

1D   and 1D  correspond to conditions for attaining SDT at greater than 50% and less 

than 50% probabilities, respectively. 𝑃0 is the shock pressure below which no SDT occurs, 

and 𝑥0
∗  is the minimum run distance for observing SDT. These quantities can be regarded 

as material parameters which constitute bounds for 𝑃𝑠 and 𝑥∗, respectively. Including these 
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parameters allows the model to account for and separate conditions under which SDT may 

or may not occur. In particular, shock pressures that are too low may never lead to 

detonation (no go) as the applied energy disperses too quickly to form critical hotspots. 

The minimum run distance 𝑥0
∗ , on the other hand, recognizes the fact that chemical 

reactions cannot occur instantaneously. Unlike the S and m material parameters in Eq. (43) 

the values for 𝑃0 and 𝑥0
∗ cannot be accurately predicted by fitting Eq. (44) to the data set 

here, as the calculations carried out here do not concern the physical conditions for these 

parameters. Instead, their values must be carefully determined based on independent 

experimental observations or separate computations with appropriate constitutive, EOS 

and chemistry models at both high and low shock pressures. That task is beyond the scope 

of this thesis. According to the LASL explosive property database, the lowest recorded 

pressure tested for SDT is 4.41 GPa [171]. Low density HMX (65% TMD), which is known 

to be more sensitive than 100% TMD HMX, has been observed to reach SDT at shock 

pressures as low as 400 MPa [172]. Welle et. al calculated a minimum possible power flux 

required for ignition of Class 3 pressed HMX samples of 0.35 GW/cm2 [13]. Using the 

basic dynamic pressure equations, this minimum flux value roughly corresponds to a shock 

pressure of 2.26 GPa. Due to the lack of experimental data required to provide an accurate 

value for either 𝑃0 or 𝑥0
∗, they are treated here as insensitive fitting parameters. An accurate 

calibration of both parameters is required for future work in either the high or low pressure 

regime. If and when such data is obtained, they can be used to demarcate the domain in the 

shock pressure – run distance space in which the probabilistic analyses below can be more 

accurately used. Within that domain, these parameters have negligible bearing on the 

accuracy or validity of the analyses here. 
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The PPN offers a mechanism to quantitatively determine the probability of reaching 

SDT at any given point in the entire run distance and shock pressure space (the Pop plot 

space). Under the assumption that the distribution of data points in each data set follows a 

log-normal distribution about the line of Eq. (43), D can be used to obtain the cumulative 

probability of observing SDT in the form of 
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where µ is the mean of the natural logarithm of the PPN, and   is the standard deviation of 

the spread of all data points in a given set around the 50% mean represented by Eq. (43). 

A log-normal distribution is chosen as it ensures the probability is symmetric about the PP 

line in log-log space. Since the mean value of the PPN is unit by definition, Eq. (45) may 

be simplified to 
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This may be rewritten as 

  
1 1 ln

( ) erf ,
2 2 2 d

D
D



 
    

 
P  (47) 

where P is the probability of reaching SDT and D determines the location in the Pop plot 

space via Eq. (44). The fit for the homogeneous with 5% voids (V) SDT data set is shown 

in Figure 55. The material parameters for all data sets are shown in Table 20. 
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Figure 55 - Cumulative SDT Probability as a function of the natural logarithm of the 

Pop plot number, D, for homogeneous samples with 5% voids (V). The data set is fit 

to Eq. (47). 

 

Table 20. Probabilistic material parameters for all cases of HMX 

Sample Type / Material Parameter d    S  m  

Homogeneous (H) 0.024 73.5 1.80 

Microstructure (M) 0.094 62.0 1.78 

5% Voids (V) 0.072 58.2 1.84 

5% Voids + Microstructure (V+M) 0.179 56.6 1.93 

 

The form of Eq. (47) mirrors the probabilistic ignition threshold proposed in Chapter 3, 

which was initially based on the J parameter (or James number) first proposed by Gresshoff 
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and Hrousis [106]. Here, the Pop plot number D resembles the J parameter. Substituting 

Eq. (44) into Eq. (47) gives the probability function in terms of the run distance and shock 

pressure, i.e., 

       * *
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P  (48) 

In the above expression,  erf   is the error function. Using Eq. (48), we can generate 

a probability map for the entire Pop plot space of shock pressures and run distance for each 

material case. The resulting probability maps for the four materials cases analyzed are 

shown in Figure 56. These SDT probability distribution maps are the first of their kind and 

provide a systematic and quantitative means for predicting the probability of observing 

SDT at any combination of run distance and shock pressure. This analytical form can be 

used to guide experiments and selection of material by quantitatively relating common 

macroscopic measures. It is useful to point out that d , m, and S in Eq. (48) are material 

parameters that are determined by the data set (obtained computationally or 

experimentally) for each material case. Ultimately, they can and should be expressly 

written as functions of material attribute measures such as constitutive properties, grain 

size, grain volume fraction, void content/size, and interfacial properties. Such an endeavor 

is not undertaken here, but the framework developed here lends itself to such future 

development.  
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Figure 56 - SDT probability distribution maps for the four cases of HMX analyzed: 

homogeneous (top left), microstructure (top right), 5% voids only (bottom left), and 

both voids and microstructure (bottom right). 

Recently, Wei et al. extended this probabilistic approach from the James space for 

ignition thresholds to the Pop plot space for detonation thresholds [173]. It is further 

expanded upon here by recognizing that the SDT probability itself may serve as an input 

parameter for evaluating other quantities of interest in different design or materials 

selection scenarios. While Eq. (48) is useful in determining the likelihood of observing 

SDT for a given combination of shock pressure and run distance, it may also be used to 

calculate necessary conditions needed in order to reach a desired probability of detonation 

at a particular run distance or shock pressure. Specifically, the relation can be recast in the 

following form for calculating the minimum run distance required for achieving SDT with 

a given level of probability under a particular shock pressure 
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In the above relation,  1erf    is the inverse error function, which approaches negative 

infinity at 0P  and positive infinity at 1P . There is no convenient closed form 

expression for the inverse error function and it is generally calculated numerically. The 

relationship described by Eq. (49) has been mapped out over shock pressures ranging from 

4-10 GPa and is shown in Figure 57 for the four material cases analyzed.  

 

Figure 57 - Necessary run distance to achieve a desired SDT probability under a given 

shock pressure for the four cases of HMX analyzed: (a) homogeneous, (b) 

microstructure, (c) 5% voids only, and (d) both voids and microstructure. 
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Similarly, the shock pressure required to achieve SDT at a specific run distance at a 

required probability is 
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This relationship has been mapped out over run distances ranging from 1-5 mm for the four 

material cases, and the result is shown in Figure 58. 

 

Figure 58 - Necessary shock pressure to achieve a desired SDT probability at a given 

run distance for the four cases of HMX analyzed: (a) homogeneous, (b) 

microstructure, (c) 5% voids only, and (d) both voids and microstructure. 

Both Eq. (49) and Eq. (50) result from simple algebraic manipulations of Eq. (48). 
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5.3.4  Experimental Comparison  

A look at the prediction presented here in the context of available experimental data 

is in order and helpful. Figure 59 compares the results from section 5.3.2 with reported 

experimental Pop plot results for HMX (86% TMD) from Lawrence Livermore National 

Lab (LLNL) [172] and fully packed HMX (100% TMD) from Los Alamos National Lab 

(LANL) [171]. The results here are in general agreement with the experimental data in 

terms of overall trend. Only the 50% lines are shown, as there is a lack of statistical 

quantification in the experimental data sets. The decreasing of the predicted Pop plot lines 

as heterogeneities increase is consistent with the trend in the experimental data (density 

decreases). This is a first attempt at predicting the macroscopic PP using ME and VE 

mesoscale models. It is important to bear in mind the challenges in comparing such 

simulations to experiments. First, there are wide variations among the different 

experimental data sets. Possible reasons include material sample differences and 

inconsistencies (different batches of materials prepared at different times and locations can 

be significantly different), lack of quantification of grain size, void content, and statistical 

variations of these attributes, and experimental loading condition differences (different 

types of flyers, shock pressure and run distance measurement errors, etc.). Second, like any 

model, the model used here includes simplifications and assumptions, including the use of 

the specific HVRB chemistry model. With these factors in mind, we see that the 

simulations show that the homogeneous HMX case has a Pop plot line that is below that 

of the experimentally reported 100% TMD material. This may be the result of limiting the 

computational analysis to a 2D plane strain model and the calibration of the HVRB used. 

The exact cause of this discrepancy should be analyzed in future work. The work presented 
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in this chapter is only a first attempt at modeling the behavior of HMX at the macroscale 

with explicit account of both voids and microstructure. More localized material factors and 

processes are not explicitly resolved, and may account for some of the discrepancies seen 

between the simulations and experiments. Note also that the samples with voids (V) 

approximately correspond to the 95% TMD HMX in the experiments, with the 

understanding that detailed microstructure analyses were not reported in the references 

cited. 

 

Figure 59 - Comparison of the predicted Pop plot lines (colored solid) with available 

experimental data in the literature (dash lines). The predicted lines shown are for 

homogeneous HMX (H), HMX with microstructure (M), HMX with 5% void volume 

fraction (V), and HMX with both microstructure and voids (M+V) material cases. 

5.4 Conclusion 

This chapter has presented a mm-scale model for analyzing the SDT behavior of 

heterogeneous energetic materials. The model samples are microstructure-explicit, void-

explicit, and large enough (mm length scale) to track the largest material size scale and 
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SDT behavior size scale for common polymer-bonded explosives and granular explosives. 

The shock to detonation (SDT) behaviors of homogeneous HMX, HMX with granular 

microstructure, HMX with voids, and HMX with both granular microstructure and voids 

are analyzed and rank-ordered. The full transition from hotspot initiation to detonation is 

simulated using an Eulerian computational framework which resolves the material 

heterogeneity and the coupled thermal-mechanical-chemical processes underlying the 

response of energetic materials under shock loading.  

Simulations carried out show that adding a 5% volume fraction of voids to an 

otherwise homogeneous material decreases the average run distance by 20.6%. On the 

other hand, increasing the void volume fraction from 5% to 20% shortens the run distance 

by 37.2% relative to the homogeneous case. The heterogeneous microstructure also plays 

an important role in affecting the SDT behavior, causing the average run distance to 

decrease by 12.3% relative to the homogenous material. When both microstructure and 

voids (M+V) are present, the average run distance decreases by another 6.9% over that of 

the material with 5% voids by volume. The results show that both voids and microstructure 

significantly affect the SDT process and the SDT thresholds. Further, as sources of 

heterogeneities, the effects of microstructure and voids on the SDT behavior are additive 

and interactive, implying that both must be considered and one cannot be used to account 

for the effects of the other. It is useful to bear in mind that the representation and resolution 

of microstructure heterogeneities are relatively simple and not exhaustive. Actual effects 

of microstructure are likely larger. The effects of void size are not explored in this work. 
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A probabilistic formulation for quantifying the Pop plot is developed. This relation 

is general in nature and applicable to any type of HEM. It provides a useful framework for 

analyzing, selecting, and designing HEM. The relationship (Eq. (48)) can be used to 

determine the probability of observing the SDT at a given shock pressure and run distance. 

If a specific probability of SDT is desired, Eqs. (49) and (50) may be used to determine the 

necessary shock pressure or run distance, respectively. Ultimately, parameters in these 

relations can and should be expressed as functions of material constituent properties and 

microstructure attributes.  

Finally, it is useful to point out that the goal of this chapter is to illustrate the relative 

importance of two dominate microstructural aspects on the SDT process. This work is 

among the first to quantify the relative effects of grains and voids using an Eulerian 

framework. While only the detonation behavior of pressed HMX is studied here, the effects 

of binder and additives in composite PBXs are still a main focus of the energetics 

community. The SDT probability study presented here can be expanded to other energetic 

compositions in the future. 
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CHAPTER 6. THREE-DIMENSIONAL MICROSTRUCTURE-

EXPLICIT AND VOID-EXPLICIT MESOSCALE SIMULATIONS 

OF DETONATION OF HMX AT MILLIMETER SAMPLE SIZE 

SCALE 

This chapter is based on work in collaboration with Daniel Olsen. 

6.1 Introduction 

This chapter presents fully three dimensional (3D) microstructure-explicit (ME) and 

void-explicit (VE) mesoscale models at the millimeter scale (ME-VE-MM-MS) for pressed 

granular HEs under shock loading. Both material microstructures and voids are explicitly 

resolved. The overall size scale of the models are up to 3×3×15 millimeters, large enough 

to resolve the full process from onset of loading to eventual SDT with the detonation front 

propagating in the remaining un-shocked part of the material. At the largest size scale, the 

samples have ~30,000 grains and ~206,265 voids. Each simulation can require over 2 days 

(50 hours) on over 1,400 computing cores on supercomputers at the DoD Supercomputing 

Resource Centers (DSRCs). The processes captured include thermal-mechanical response, 

hotspot development, reaction initiation, formation of a detonation front, and the SDT. In 

the calculations carried out, the particular material of choice is HMX (Octahydro-1,3,5,7-

tetranitro-1,3,5,7-tetrazocine). Four model cases are considered: homogenous material 

with no microstructure or voids, material with a granular microstructure but no voids, 

material with voids but no microstructure, and material with both voids and granular 

microstructure. Shocking loading is generated by an aluminum flyer thick enough to 
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maintain continuous loading on the HMX sample without unloading. The focus of the 

analyses is on the SDT process and the run-to-detonation-distance (RDD), rather than the 

details of local fields in the material. Statistically equivalent microstructure sample sets 

(SEMSS) for the heterogeneous cases are used, allowing probabilistic quantification of the 

Pop plot (PP) and statistically significant assessment of the rank order of the influences of 

different material factors (microstructure, voids, and combinations thereof). The results 

from 2D and fully 3D simulations are compared to outline their potential differences and 

highlight factors that should be addressed in the future for more systematic comparisons 

and assessment of the multi-dimensional models. 

The quantification of the probabilistic nature or uncertainties of the Pop plots uses the 

statistical approach first proposed by Wei et al. [173] for ignition thresholds and later 

expanded upon in Chapter 5 of this thesis to Pop plots. This analysis results in the 

generation of probabilistic Pop plots along with analytical relations. These relations can 

also be used to determine the necessary shock pressure, RDD, or SDT probability given 

any two of the three quantities. Although the material of focus is HMX, the models, the 

approach, and the analytical relations developed are applicable to PBX and other energetic 

materials. 

6.2 Framework of Analysis   

The 3D simulations are carried out using CTH, the Sandia National Labs solid 

mechanics code. Sustained loading is effected on the sample via the use of a thick 

aluminum flyer with velocities varying from 600 m/s to 1200 m/s, resulting in shock 

pressures between 4 and 8 GPa. In section 6.2.1, the method for generating 3D statistically 
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equivalent microstructure sample sets (SEMSS) is discussed. An outline of the constitutive 

models used is given in section 5.2.2. The results of mesh convergence and sample size 

effects are discussed in section 5.2.4. 

6.2.1 Material, Model and Microstructure 

In order to accurately quantify the effects of microstructure heterogeneities on the 

detonation behavior, we consider four types of samples: homogenous (H), microstructured 

without voids (M), homogenous with voids (V), and microstructured with voids (M+V). A 

microstructured sample and the corresponding void distribution are shown in Figure 60. 

The homogeneous (H) and microstructured (M) samples are fully-dense (100% TMD). The 

voids in the V and M+V samples are spheres and have diameters of 50 µm. This void size 

is chosen to allow explicit resolution of each void in the 3×3×15 mm samples without 

making the computational time prohibitively expensive. Depending on the shock intensity, 

each run can require up to 50 hours using 1,400 cores on a supercomputer. Further 

discussions on mesh size and computational cost are in section 5.2.4.  

A set of five random but statistically similar microstructures is generated using 

Voronoi tessellation. These samples conform to the statistical grain size distribution in 

Figure 61. This monomodal distribution has a mean grain diameter of 164.7 µm. This 

method of microstructure generation results in reasonably realistic, randomized, and 

statistically equivalent microstructure sample sets (SEMSS). For the homogenous or 

microstructured samples with voids, the individual voids are inserted randomly until a total 

void volume fraction of 10% has been reached or an average void density of 1528/mm3. 

For the 3×3×15 mm samples, this porosity level corresponds to 206,265 voids in each 
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sample. No two voids overlap, ensuring a constant void size and random void distribution. 

For visual clarity, only 5% of all the voids are shown in Figure 60(b).  

 

 

Figure 60 -(a) Three-dimensional microstructure of a sample in the microstructured 

(M) material case generated by Voronoi tessellation. The sample size is 3×3×15 mm. 

(b) A random void distribution in the V and V+M cases. The void volume fraction 

considered is 10% and each void is a sphere with a diameter of 50 µm. The total 

number of grains is 29,093 in the model shown. The total number of voids is 206,265, 

giving rise to a void density of 1528/mm3. Only 5% of the voids are actually illustrated 

in (b) for visual clarity. 
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Figure 61 - Monomodal HMX grain size distribution in the statistically equivalent 

microstrucutre sample sets of the M and M+V material cases. 

Actual samples in experiments have more heterogeneous characteristics than those 

in the four sets of samples presented here.  For example, nano- and micro-scale voids, 

microcracks, and directionality of the material properties due to the anisotropic nature of 

the HMX crystal all play roles in the response of the materials to shock loading. These 

factors are too small, too complicated, or computationally expensive to be explicitly 

resolved in the current model setting. They are often ignored in many models reported in 

the literature. To account for the effects of these factors via grain-level heterogeneities, the 

density of the HMX for each grain is set to one of three possible values: 80% TMD (1.52 

g/cm3), 100% TMD (1.90 g/cm3), and 120% TMD (2.28 g/cm3). These density variations 

emulate the effects of local variations in the material and represent one source of variations 

in fields behind the shock front normally attributed to localized material heterogeneities. It 

is important to note that even though 120% TMD is a nonphysical description of a material, 



 168 

this variation in density is used as a modeling tool to account for microstructural aspects 

not explicitly resolved in this study. It also allows the average density at the overall sample 

level and across multiple samples in a SEMSS to conform to the density of the material for 

samples without voids. Since the HVRB chemistry model used here (further detailed in 

section 6.2.2) is pressure-dependent (density-dependent), the density variations are a 

source of heterogeneous reaction behavior as well as mechano-thermal behaviors, as seen 

in experiments. In this study, the grains are assumed to be perfectly bonded to one another.  

If two grains with the same density are positioned next to one another, they behaves as a 

single grain of the same density. For the H and V samples, the standard HMX 100% TMD 

(1.90 g/cm3) is used. 

The present framework represents a simplified approach toward explicitly 

resolving some important features in microstructures of common heterogeneous energetic 

materials (HEM). While the method of varying the density of the HMX grains may 

replicate the trends seen in experiments, it is difficult to fully quantify the effect of 

heterogeneities into a single parameter. Actual experimental samples have clear defects not 

accounted for here, which are known to contribute to hotspot initiation and subsequent 

detonation [20, 101, 166, 167]. Other HEMs may have binder and additive components, 

such as aluminum, which can affect the sensitivity of the material to ignition (as discussed 

in Chapter 4 of this thesis). It is entirely possible that microstructure heterogeneity plays 

an even larger role than what is presented in the results of this study. However, as one of 

the first 3D millimeter macroscale microstructure-explicit and void-explicit modeling 

approaches, the current framework should be regarded as a step toward fully accounting 

for the most essential material heterogeneities using mesoscale models.  
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Figure 62 - Statistically equivalent microstructure sample set (SEMSS) for the M and 

M+V material cases. 

 

6.2.2 Constitutive Relations 

The computational analysis is performed using CTH, a multi-material, Eulerian solid 

mechanics simulation platform developed at Sandia National Laboratories. The 

constitutive models used are the same as used in Chapter 5, so only a brief summary will 
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be provided here. The full descriptions of each of these constitutive models are described 

in Chapter 2.3.  The specimen is initially stress-free and at rest. A thick aluminum flyer 

impacts the sample at velocity ( PU ) to generate sustained shock loading for the duration of 

the simulation. The side (lateral) boundaries are constrained in a frictionless manner to 

maintain the overall conditions of macroscopic sample-level uniaxial strain typical of 

planar impact experiments. The coupled mechanical, thermal, and chemical events in the 

samples are fully three-dimensional, along with the ME and VE material model.  

A simplified Steinberg-Guinan-Lund strain-dependent flow stress model (SGL) is used 

to account for the viscoplastic constitutive behavior of HMX. This strain-rate dependent 

model is well-suited for high strain-rate deformation and accounts for the effects of thermal 

softening. The model has been calibrated to match the elasto-viscoplastic model used for 

HMX in Chapters 3 and 4 of this thesis, which in turn was based on available experimental 

data. The bulk response to hydrostatic pressure is modeled using the first order Mie–

Grüneisen EOS and the effects of chemical reaction initiation and progression are 

described using the history variable reactive burn model (HVRB). Reactive burn models 

have been widely used to simulate the ignition and detonation of HEMs [14, 83, 84]. These 

empirical models are often calibrated to Pop plot data. As a result, the localized extent of 

reaction behind the shock front may not be perfectly resolved (which is a known limitation 

for the HVRB model). However, with available data and models, this is a reasonable trade-

off in order to reach the macroscale from the mesoscale, since the focus here is on analyzing 

macroscale material behavior, rather than fine details of local fields. 
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6.2.3 Mesh and Size Convergence 

To ensure accurate results for the analysis of the RDD (quantity of interest or QoI), a 

mesh convergence study is carried out to determine the proper mesh size necessary to 

explicitly resolve both the grains and voids and to ensure convergence of the QoI. To this 

end, shock pressure and RDD are calculated for samples including both microstructure and 

voids (M+V) at mesh sizes ranging from 30 µm to 5 µm. The M+V sample set was chosen 

for this purpose because it accounts for both types of heterogeneities and therefore poses 

the most stringent requirement for resolution. As shown in Figure 63, a mesh resolution of 

15 µm is sufficient to reach convergence for the shock pressure, with further mesh 

refinement down to 5 m resulting in relative fluctuations of ~1.2%. For the RDD, 

convergence is observed for mesh sizes finer than 10 µm, with further refinement down to 

5 m resulting in relative fluctuations of ~1.5%. For both the pressure and RDD, the further 

refinement does not lead to a specific trend (increase or decrease). For this reason, a mesh 

size of 10 µm is chosen for all subsequent production calculations. At the resolution of 10 

µm, a 3×3×15 mm sample has 1.35×108 volumetric elements; at a resolution of 5 µm, the 

same sample has 1.08×109 elements. The computational savings are significant. It is 

important to note that this study is focused on the macroscale detonation behaviors of the 

materials, not on details of local fields, as is the case in many other studies. A finer mesh 

resolution would likely be required to accurately resolve local temperatures and pressures. 

Such local analyses may also appropriately call for the use of an Arrhenius-type chemical 

reaction rate model, as is commonly the case for small-scale simulations [70, 170, 174, 

175]. The HVRB model used here (as outlined in section 6.2.2) is a simplified, pressure-

dependent chemistry model that does not require direct use of local temperature or account 
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for specific chemical species. It is understandable that a coarser mesh can be used for the 

study of macroscale parameters such as the run distance because macroscale responses and 

events reflect the aggregate effects of local fluctuations at lower scales.  

 

Figure 63 - (a) Shock pressure and (b) run distance to detonation (RDD) for a sample 

with microstructure and voids (M+V) at mesh resolutions ranging from 30 µm to 5 

µm. 

 

In addition to the mesh resolution study, an analysis is also carried out on the sample 

size effects so as to ensure a sufficiently large representative volume element (RVE) for 

the material while potentially minimizing computational cost. Here, while the smallest 

microstructure features (voids) dictate the necessary mesh resolution, the largest 

microstructure features (grains) and the length scale of the SDT process (the run distance 
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to detonation) dictate the necessary RVE size of the sample. As such, in addition to the 

3×3×15 mm sample size, smaller sizes are also considered. Note that for the pressure range 

of interest (4-8 GPa), the run distance to detonation is within 6 mm. Therefore, two smaller 

sample sizes, 2×2×6 mm and 1×1×6 mm, are used. The run distance to detonation is 

calculated for five separate shock intensities, the results show strong agreement among all 

the sizes, indicating that the smaller sample sizes are acceptable. To minimize 

computational cost without significant loss of accuracy, the remaining calculations are 

carried out using a sample size of 1×1×6 mm. 

 

Figure 64 - (a) Run distance to detonation (RDD) as a function of shock pressure (Pop 

plot) for the microstructured material case (M) for three different sample sizes: 

3×3×15 mm, 2×2×6 mm, and 1×1×6 mm. (b) An enlarged portion of the plot in (a). 

6.3 Results 

A systematic quantification of the effect of the microstructure and voids on the SDT 

behavior and Pop plot of pressed HMX is carried out. Section 6.3.1 discusses how the 

shock pressure and run distance are determined for each sample. Section 6.3.2 discusses 
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the effects of microstructure and voids on the Pop plot for 3D samples. Section 6.3.3 

compares the results between 3D and equivalent 2D samples. Finally, Sections 6.3.4 and 

6.3.5 present a thorough statistical framework which may be used to predict detonation 

behavior over the entire range of shock pressures. 

6.3.1 Determination of Shock Pressure and Run Distance 

The RDD is a performance metric used to measure the SDT sensitivity and performance 

of energetic materials. In this analysis, the RDD is defined as the longitudinal distance the 

shock wave travels in the sample when the detonation wave front is fully formed and 

transitions into propagation in undeformed material.  

The relationship between the RDD and the pressure of the imposed shock loading 

(shock pressure), or the Pop plot, is both material-dependent and microstructure-

dependent. This relation can be used to compare the relative performances of different 

materials and identify microstructure effect trends. In the analysis here, the relations are 

used to quantify the differences in performance due to microstructure and voids of the four 

HMX cases described earlier. To determine the shock pressure in each simulation, the 

pressure profile along the entire length of the sample is calculated by averaging the 

pressures on cross-sections that are perpendicular to the loading direction. The plateau of 

this profile starting from the impact face is measured and used to obtain an average over 

both sample distance and time. This allows the most accurate assessment of the shock 

pressure. To calculate the run distance, the location of the shock front in the sample is 

recorded as a function of time. Since the detonation wave propagates faster than the inert 

shock wave, the run distance is easily measured by examining the sharp change in the 
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propagation velocity of the shock front. The pressure fields showing shock front locations 

at four different times of one sample with microstructure and voids (M+V) at an impact of 

P 1000 m/sU  are shown in Figure 65. The time histories of pressure at nine spatial 

locations for this sample are shown in Figure 66. 

 

Figure 65 - The shock-to-detonation process in a HMX sample containing both 

microstructure and voids (10% by volume). The pressure fields are shown on the 

current (deformed) configurations. Shock loading is due to impact by a thick 

aluminum flyer at 1000 m/s. The resulting run distance to detonation is 4.16 mm. 
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Figure 66 - Time history of pressure at nine locations during the SDT process shown 

in Figure 65. Each line represents the average pressure on the cross section 

perpendicular to the impact direction at a given distance from the impact face. 

 

6.3.2 Effects of Microstructure and Voids in 3D 

In this section, the effects of microstructure heterogeneities are quantified and rank-

ordered. The four types of samples described earlier: homogeneous (H), homogeneous with 

only voids (V), microstructured (M), and microstructured with voids (M+V), are analyzed. 

A SEMSS with five samples for each of the heterogeneous cases (V, M, and M+V) are 

used in the analyses. The primary focus is on the effects of the heterogeneities on the Pop 

plot for 3D samples. For comparison, companion 2D cases for each material case are also 

analyzed with a corresponding SEMSS. The 2D and 3D SEMSS sets have generally 

matching attributes in terms of grain size, grain size distribution, void size, and void 

volume fraction. The 2D and 3D results are compared at the end of this section. While the 
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2D simulations are similar to the results presented in Chapter 5, the 2D simulations here 

are new calculations whose microstructural parameters have been tailored to match that of 

the 3D samples. 

 

 

Figure 67 - Run-to-detonation distance (RDD) comparison for a sample of each 

material case under similar pressures. For visual clarity, a cutout of each sample has 

been removed to show the detonation process in the interior. 

Impact loading is effected by a thick aluminum flyer traveling at velocities ranging 

from 600 m/s to 1200 m/s, resulting in shock pressures ranging from 4 to 8 GPa. A single 

visual comparison of each of the cases is shown in Figure 67 and the Pop plot (relation 

between the RDD and the shock pressure) for the cases analyzed is shown in Figure 68. 

Shorter run distances under a given shock pressure suggest higher impact sensitivity and 

more rapid SDT. It is desirable to not only rank-order the Pop plot lines for different 

material cases, but also to quantify the effects of the underlining material mesoscopic 

factors – microstructure and voids. Also, because of uncertainties or statistical variations 
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resulting from mesoscopic material heterogeneities, the quantification should account for 

the probabilistic nature of the results. The plot shows both the RDD data sets for the four 

SEMSS and the Pop plot lines that represent the “average” RDD-shock pressure relation 

for each material case. More specifically, these “average” lines represent the RDD-shock 

pressure conditions corresponding to a 50% probability of observing SDT. The SDT 

probability is greater than 50% above the “average” line for a material and less than 50% 

below the line. For the cases considered, the rank order of the four “average” or 50% lines 

from the lowest to the highest SDT sensitivity (longest to shortest RDD at the same shock 

pressure) is: homogeneous (H), microstructured (M), homegenous with voids (V), and 

microstructures with voids (M+V). To quantified the differences, the average percentage 

vertical distance between 50% line for the homegenous (H) case and that for each of the 

other three cases is calcualted and listed in Table 21. 
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Figure 68 - Run distance to detonation (RDD) as a function of shock pressure (Pop 

plot) for the four material cases analyzed using 3D simulations. The data sets are: 

homogeneous (H, black), microstructured (M, blue), homogeneous with 10% voids by 

volume (V, red), and microstructured with10% voids (M+V, green). The line for each 

data set (or material case) represents the average trend or the conditions for a 50% 

probability of SDT. The probability of SDT is higher than 50% above the line and 

lower than 50% below the line. 

 

Table 21. Effect of material heterogeneities on normalized run distance for 3D 

samples 

SEMSS 
Average decrease in RDD 

relative to H 

Homogenous (H) 0% 

Microstructured (M) 12.2% 

Homogeneous with 10% voids (V) 18.2% 

Microstructured with 10% voids (M+V) 24.3% 
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Clearly, the introduction of heterogeneities (microstructure, voids) increases the SDT 

sensitivity (shifting the Pop plot data sets and Pop plot lines to the lower left in the RDD-

pressure space) of the material over the shock pressure regime analyzed.  Relative to the 

homogeneous case, the introduction of 10% voids decreases the average run distance by 

18.6%, while the microstructured case on average has a RDD that is 12.5% lower than that 

of the homogeneous case. The material with both microstructure and voids is the most 

sensitive, with RDDs that are on average 24.1% lower than those of the homogeneous case. 

Several processes are at play here. The microstructure heterogeneities cause highly 

inhomogeneous stress and strain fields, thereby giving rise to inhomogeneous and localized 

temperature rises. Voids lead to sharp spikes in stresses, strains, and temperature via severe 

distortion and collapse. The result is the development of hot spots. Note that the levels of 

these effects are only reflective of the level of material heterogeneities and size scale of the 

voids considered here.   

6.3.3 2D-3D Pop plot comparison 

Since most simulations hitherto are carried out in 2D, there is naturally an interest in 

understanding the potential differences between the two types of models. Three-

dimensional models not only can resolve the full 3D nature of the material microstructure 

and void distributions but also resolve an additional dimension and level of complexity in 

the evolution of the thermal, mechanical, and chemical fields.  In contrast, 2D models 

involve more simplifications. Full understanding and quantification of the relations 

between the two require much more detailed study than what is possible in this chapter. 

Nevertheless, a preliminary analysis is conducted here to gain a look at the issue and 
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illustrate the need for more such analyses. While many factors are at play, the approach 

here involves generating 2D microstructures sample sets (SEMSS) with statistical 

attributes that are similar to those of the 3D SEMSS already analyzed. As mentioned 

previously, the 2D simulations carried out here are based on the work presented in Chapter 

5, but are also independent of the results in Chapter 5. The 2D microstructures used in 

Chapter 5 and Chapter 6 are unique from each other. The “matching” 2D samples used 

here are 1×6 mm in size and have an average grain size distributions shown in Figure 69 

and the same void diameter (50 m) and void volume fraction (10%). By matching the 

attributes, we hope to focus on the effects of the additional dimensionality on the material 

behavior. The same four materials cases as in 3D are considered: homogeneous (H), 

microstructured without voids (M), homogeneous with voids (V), and microstructured with 

voids (M+V). The resulting Pop plot from the 2D simulations are shown in Figure 70, and 

the average decrease in the normalized run distance relative to the homogenous case is 

listed in Table 22.  
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Figure 69 - Monomodal HMX grain size distribution in the statisically equivlaent 

microstrucutre sample sets of the 2D M and M+V material cases. 

 

Figure 70 - Run distance to detonation (RDD) as a function of shock pressure (Pop 

plot) for the four material cases analyzed using 2D simulations. 
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Table 22. Effect of material heterogeneities on normalized run distance for 2D 

samples 

SEMSS Average Decrease in Run Distance 

Homogeneous (H) 0% 

Microstructured (M) 10.1% 

10% Voids (V) 22.9% 

Microstructured with 10% voids (M+V) 27.2% 

 

There are noticeable differences between the 3D and 2D results (Figure 68 and Figure 70 

respectively) in the heterogeneous (V, M, and M+V) cases, as seen in Figure 71, while the 

homogenous (H) case results are essentially the same in 3D and 2D as expected. For the M 

case, the 3D RDDs that are shorter than the corresponding 2D RDDs. For the V and the 

M+V cases, the trend is the opposite overall, with significant overlap in the data sets. In all 

three inhomogeneous material cases, the 2D data sets appear to have wider scatter of the 

data points than the corresponding 3D data sets. The differences here partly highlight the 

complexities in comparing 2D and 3D models. One important issue is that representing 

fundamentally three-dimensional material microstructures using 2D models invariably 

leaves out factors that cannot be captured, as 3D is more complex than 2D. As one example, 

uniformly sized spherical voids (or solid spheres for that matter) appear as circles of 

various diameters on 2D cross-sections through the material, as the voids are intercepted 

by the cross-section at different off-center locations, resulting in an extra degree of 

variation. The same is true for grains or particles. How should 2D representations be 

developed is a question that needs to be carefully addressed. One potential answer is to use 

direct cross-sections of the 3D samples. However, the average size and size distributions 

of grains and voids would not be the same as those in the original material. The objective 
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of this discussion here is not to provide answers for the questions, but rather to illustrate 

the challenges in comparison 2D and 3D models and bring to attention the need for further 

analyses.  

 

Figure 71 - Comparison of the Pop plots obtained from 2D and 3D simulations. (a) 

Homogenous (H), (b) Microstructured (M), (c) Homogenous with 10% voids (V), and 

(d) Microstructured with 10% voids (M+V). 

 

6.3.4 Quantification of Stochasticity in Material Response 

To quantify the statistical variations in the Pop plot results, a probabilistic formulation 

is required. To this end, we introduce a non-dimensional measure in the form of  
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where S is a material-dependent scaling parameter, m is a material-dependent exponent, 𝑥∗ 

is the run distance, and 𝑃𝑠 is the shock pressure. 𝑃0 is the shock pressure below wich no 

SDT occurs, and 𝑥0
∗  is the minimum run distance for observing SDT. These quantities 

should be regarded as material-dependent parameters which constitute bounds for 𝑃𝑠 and 

𝑥∗, respectively. This relationship was first proposed in Chapter 5 to fully recognize the 

probabilistic nature of the Pop plot. When D =1, Eq. (51) reduces to a standard power law, 

which is commonly used to fit data in the pressure-run distance space [29]. This line of 

best fit corresponds to the physical space where the SDT is likely to be observed in 50% 

of samples. The non-dimensional D can be considered as the Pop plot number (PPN) which 

allows the quantification of the probability of observing SDT above or below the “mean” 

Pop plot line of D =1. Specifically, D >1 and D <1 correspond to conditions for attaining 

SDT at greater than 50% and less than 50% probabilities, respectively. In order to connect 

the PPN to a specific probability, a log-normal cumulative distribution function (CDF) is 

fit to the data set for each material case (H, V, M, and M+V). Since the mean value of D is 

known or set as unit by definition here, the only remaining parameter in the log-normal 

distribution to determine via the fit for each material case is the standard deviation d . The 

results for the 2D and 3D data sets are shown in Figure 72. 
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Figure 72 - Cumulative SDT probability obtained from (a) 2D and (b) 3D simulations. 

The lines are fits to the log-normal cumulative distribution function for the sample 

sets of the four material cases. The D parameter is computed for each data point using 

Eq. (51) 

 

Once 
d

 has been calculated for each data set, the corresponding probability map can 

be generated using  

      * *

0 0

1 1 1
( , *) erf ln ln ln .

2 2 2

m

s s

d

P x P P x x S


 
      

 
P  (52) 

The relation in Eq. (52) is strictly a slightly modified log-normal CDF where the PPN is 

treated as the independent variable. A full derivation of this equation can be found in 

Chapter 5.3.3. 

 The material parameters d , S, and m for the four materials cases in both 2D and 3D  

are shown in Table 23. The conditions for which 𝑃0 and 𝑥0
∗ are relevant are outside the 

pressure regime of 4-8 GPa analyzed here.  Accurate determination of values of 𝑃0 and 𝑥0
∗ 
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requires separate experimental data or threshold SDT analyses which are not carried out 

here. The fitting process shows that their values are low for the data sets here, therefore for 

D =1, Eq. (52) essentially approximates the power law for the traditional Pop plot line in 

Reference [29]. However, the form of Eq. (52) allows data sets to be more accurately 

determined whenever the relevant threshold data is made available by experiments or 

separate computations.  

Table 23. Material parameters for the probabilistic relation in Eq. (52) 

Dimensionality Material case 
d   S  m  

3D Homogeneous (H) 0.013 69.3 1.78 

3D Microstructured (M) 0.028 60.0 1.70 

3D Homogeneous with 10% voids (V) 0.010 66.4 1.85 

3D Microstructured with 10% voids (M+V) 0.015 67.5 1.94 

2D Homogeneous (H) 0.015 77.8 1.82 

2D Microstructured (M) 0.046 56.7 1.64 

2D Homogeneous with 10% voids (V) 0.048 45.5 1.60 

2D Microstructured with 10% voids (M+V) 0.042 54.5 1.74 

 

With Eq. (52), the SDT probability in the entire shock pressure vs. RDD space is 

mapped for each material case. The probability maps for the 2D results are shown in Figure 

73, and the maps for the 3D results are shown in Figure 74. These figures (and Table 23) 

show that microstructure is the primary source of stochasticity in the Pop plot, i.e., the 

microstructured case (M) has the highest standard deviation. On the other hand, voids tend 

to significantly increase the standard deviation in 2D and only slightly increase the standard 

deviation in 3D. While much more systematic analyses are needed to explain why, one 

conjecture is that 3D samples involve many more voids than the 2D samples thereby 

“smooths” out some of the fluctuations in behavior.  
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Figure 73 - SDT probability distribution maps for the four material cases obtained 

using 2D simulations: (a) homogeneous, (b) homogenous with 10% voids, (c) 

microstructures without voids, and (d) microstructured with 10 % voids. 

 

Figure 74 - SDT probability distribution maps for the four material cases obtained 

using 3D simulations: (a) homogeneous, (b) homogenous with 10% voids, (c) 

microstructures without voids, and (d) microstructured with 10% voids. 
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The probability maps shown here are a useful tool for examining the effects of 

microstructure heterogeneity on detonation behavior. Equation (52) allows the probability 

for observing SDT at a given run distance under shock loading with a given pressure. Often, 

it is also desirable to determine the shock pressure required or the minimum run distance 

necessary to ensure a desired probability of observing SDT. To find the answers to these 

questions, Eq. (52) can be rearranged to express P  as function of sP  or *x , and *x  as a 

function of sP  and P , i.e.,  
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These relations are previously derived in Chapter 5.3.3 and can be used to generate 

corresponding maps which are not shown here.  

 

6.3.5 Probabilistic rank order of Pop plot lines of different material cases 

In Figure 68, and Figure 70, the statistical data sets for different material cases overlap, 

making the comparison of the run distances of different materials a probabilistic endeavor. 

More specifically because the statistical data sets overlap, questions such as “what is the 

likelihood that the run distance of a random “M+V” sample is shorter than the run distance 

of a random “M” sample?” is of great interest and can only be answered in a probabilistic 
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manner.  Graphically, the 50-50% probability lines for the cases in Figure 68, and Figure 

70 and quantitatively ranked in Tables IV and V only show how the average run distances 

compare over the entire range of shock pressure of interest. Here, a more general approach 

is presented that allows the run distances of two random samples of two different materials 

at any given shock pressure to be compared in a probabilistic manner. 

To facilitate the discussion, the probability density function (PDF) distributions of the 

RDD in the P - *x space for the microstructured (M) and microstructured with voids 

(M+V) material cases obtained from the 2D simulations are shown in Figure 75(a).  For a 

given shock pressure ,sP  the PDFs are illustrated in Figure 75 (b). The probabilistic 

comparison is carried out on such cross-sections for different sP  values over the range of 

interest.  

 

Figure 75 - (a) Probability density function (PDF) distributions of the RDD in the P
- *x space for the microstructured (M) and microstructured with voids (M+V) 

material cases obtained from the 2D simulations. The function values represent the 

probability of observing SDT at combinations of run distance and shock pressure. (b) 

A comparison of the PDFs at a shock pressure of 5 GPa. X  and s  represent the 

sample mean run distance and standard deviation at the given pressure, respectively. 
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Although the data sets in Figure 75 are for the M+V and M material cases, for the ease of 

discussion and generality, we will refer to these two cases as “A” and “B”, respectively, in 

the formulas below because the approach described here is applicable to the comparison of 

any two different materials. At any given shock pressure sP , the probability density p for 

each material as a function of  *x  can be obtained from Eq. (52) as  
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In the above relations, X  is the mean and s  is the standard deviation as illustrated in Figure 

75(b). In this notation, the PDFs for A and B at sP  are denoted as  *;A sp x P  and 

 *; ,B sp x P  respectively. The probability of the RDD of A being shorter than the RDD of 

B for any given shock pressure sP  is  
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0
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where  *;A B sp x P  is the probability density of the RDD of a random sample in 

distribution A  being lower than  the RDD of a random sample in distribution B  at *x . 

This probability density can be evaluated via  
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 where  
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A sp x P dx  is the probability of observing the RDD of a random sample in A 

being shorter than or equal to *x . Since the maximum cumulative probability of any 

probability density function is unit by definition,  
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  A B sp x P dx  such that the  A B sPP  evaluated via Eq. 

(58) satisfies  

  0 1. A B sPP   (60) 
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Figure 76 - Probability that: (1) M+V samples have a shorter RDD than V samples 

(red), (2) V samples have a shorter RDD than M samples (blue), and (3) M samples 

have a shorter RDD than H samples (black) as a function of shock pressure for (a) 2D 

and (b) 3D samples. 

Equations (58) and (59) are used to compare the RDDs for the four material cases over the 

entire range of shock pressure studied. The confidence levels for the rank order of 

* * * *

M+V V M H  x x x x  are shown in Figure 76 for both the 2D and the 3D simulations. In 

the case of the 2D simulations, the confidence level for the M+V samples resulting in 

shorter RDDs than the V samples increases as the shock pressure increases. In contrast, 

both the likelihoods for the M samples having shorter RDDs as compared to the H samples 

and the V samples as compared to the M samples decrease as the shock pressure increases. 

For the 3D simulations, the confidence level increases as the shock pressure increases for 

all three comparisons: 
* * * *

M+V V M H.  x x x x  Again, more systematic studies are required to 

explain why 2D and 3D simulations are different.   
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6.4 Conclusion 

There is a long-standing interest in three-dimensional (3D) simulations of the behavior 

of energetic materials and in understanding potential differences between 2D and 3D 

simulations. While 2D simulations have been extensively carried out at the micron to tens-

of-microns size scales, simulations at the millimeter scale explicitly accounting for 

microstructure and voids are rare. 3D simulations at the millimeter scale are equally sparse. 

Millimeter scale model sizes are important for two reasons. One is the need to have 

sufficient representative volume of the heterogeneous material microstructure, the other is 

the need to capture the entire process of shock loading, reaction initiation, onset of 

detonation, and the transition from shock to detonation – which occurs over distances of 

millimeters for most materials under shock pressures of several GPa. This chapter reports 

a first attempt at carrying out large-scale 3D simulations and corresponding 2D 

simulations. As such, simplifications or idealizations are involved, as is the case in most 

analyses. For example, nanoscale defects, additives, material anisotropy and crystalline 

behavior have not been considered here. While the material of focus is pressed HMX, the 

approach is applicable to other materials as well, including PBXs.  

The fully dimensional (3D) mesoscale models presented here are microstructure-

explicit and void-explicit for the simulations of the shock-to-detonation transition (SDT) 

process. The samples have overall sizes up to 3×3×15 millimeters. The material cases 

considered revolve around pressed granular HMX and are designed to allow systematic 

delineation of the effects of microstructure and voids. The analysis has focused on the 

effects of microstructure and voids on the run-to-detonation distance (RDD), a 
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macroscopic performance measure for HE. For comparison purposes, 2D simulations are 

also carried out to assess the differences between the 2D and 3D simulations. One feature 

of the analysis is the use of statistically equivalent microstructure sample sets (SEMSS) to 

establish statistical and probabilistic Pop plots (PP). Sample sets with different 

combinations of microstructure heterogeneities and voids allow the effects of 

microstructure and voids to be systematically delineated. The effects of both microstructure 

(heterogeneous grain size, morphology, and distribution) and voids on the RDD and the PP 

are quantified using a probabilistic formulation. This formulation is further used to rank 

order the influences of microstructure and voids, allowing confidence levels to be 

established in the assessments of the trends. 

The 2D and 3D models yielded results that overall consistent with each other, but with 

significant differences. In general, the 2D simulations exhibit wider scatter of the RDD in 

all material cases as compared to the 3D simulations. The level of the RDD are also 

somewhat different. This comparison is preliminary, illustrates the complexities of the 2D 

vs. 3D issue, and points out the need for more systematic analyses in the future including 

more consistent generation of the 2D and 3D SEMSS.  

The 3D simulations show that homogeneous HMX is the least sensitive (having the 

longest RDD or requiring the highest shock pressure for SDT initiation under otherwise 

identical conditions). Relative to the homogenous material, the average run distance of the 

heterogeneous microstructured material is 12.2% lower. On the other hand, the 

introduction of a 10% voids by volume to the homogeneous material causes the average 

run distance to decrease by 18.2%. The material with both microstructure and 10% voids 
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has the lowest average run distance which is 24.3% lower relative to that of the 

homogeneous material.   
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CHAPTER 7. SUMMARY AND FUTURE DIRECTIONS 

7.1 Summary 

The work presented in this thesis focuses on developing a better understanding of the 

role of microstructure in the ignition and detonation process of high explosives (HEs) 

during shock loading. As a shock wave propagates through an HE, material heterogeneities 

such as voids, cracks, additives, and grain morphology all contribute to energy dissipation 

in localized areas, thereby forming hotspots. These local temperature spikes serve as the 

initiation sites for chemistry in the material, and if enough hotspots coalesce prior to 

quenching, a detonation wave can form. This whole process is known as the shock to 

detonation transition (SDT), and understanding how mechanical dissipations influence the 

chemistry remains a long standing challenge of the energetics community at large. The 

work presented in this thesis serves to advance the greater understanding of the detonation 

process in HEs and contributes both new ideas and useful engineering tools to aid in the 

design process of future HEs.   

Chapter 2 lays out the computational framework and capabilities for both the 

Cohesive Dynamics for Explosives (CODEX) and CTH codes used in Chapters 3-6. 

CODEX is a Lagrangian cohesive finite element method (CFEM) framework which 

accurately tracks the material response prior to the ignition of hotspots. Using CODEX, 

sample sensitivity is determined by monitoring critical hotspots, which occur due to 

localized energy dissipations resulting primarily from plastic and viscoelastic deformation, 

crack propagation, and friction. CTH is an Eulerian solid mechanics hydrocode developed 



 198 

at Sandia National Laboratories which is able to track more extensive deformation, 

including the SDT at the cost of not being able to effectively track friction. Both of these 

frameworks are useful in studying the effects of microstructure and chemistry at different 

times in the detonation process. 

Chapter 3 studies the microstructural effects on the ignition sensitivity of pressed 

HMX. Three sets of HMX microstructures are considered, each with a different average 

grain size: 220 µm, 130 µm, and 70 µm. Using CODEX, the ignition sensitivity of each 

material case is rank-ordered in E - Π space using the modified James relation presented in 

Eq. (25). It is found that decreasing the mean grain size of the pressed HMX leads to an 

increase in the sample sensitivity to ignition. This chapter also introduces a first of its kind 

statistical quantification of the results in E - Π space, which is used to derive a probabilistic 

formulation (Eq. (25)) of the likelihood of ignition. Using Eq. (25), the probability of 

ignition is mapped over the entire range of potential loading conditions. Finally, a new 

parameter, R, is introduced to provide a simple analysis for categorizing hotspots according 

to the proximity of their size-temperature state to the criticality condition. The approaches 

developed in this chapter provide useful engineering tools for the design and sensitivity 

evaluation of future HEs. 

Chapter 4 applies a similar methodology developed in Chapter 3 to a mm scale 

PBX, containing HMX grains, an Estane binder, and aluminum (Al 7075) particulates. A 

set of statistically equivalent microstructure sample sets (SEMSS) are generated, and a 

shock loading is effected using a rigid flyer for various pulse durations. The volume 

fraction of the Estane binder is held constant at 19% while four different volume fractions 
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of aluminum are studied: 0%, 6%, 10%, and 18%. It is found that the ignition sensitivity 

of the PBX sample increase as the aluminum concentration increases, which is consistent 

with experimental results in the literature. The sensitivity analysis is carried out using both 

the High-James criterion in E - Π space and the Walker-Wasley criterion in P – τ space. 

The relative effects of frictional energy dissipation are compared to localized plastic work, 

and friction is shown to play a dominant role in the development of critical hotspots. 

Incorporating aluminum particulates causes cracks to appear between the aluminum and 

binder elements, which may otherwise occur as intragranular cracks in the HMX. Another 

study was conducted comparing the effects of two aluminum particle diameters: 50 µm and 

100 µm. Smaller aluminum particles are found to further decrease the material sensitivity 

to ignition and the total energy dissipated by cracks in the aluminum is found to scale with 

the total aluminum particle surface area. 

Chapter 5 returns to the study of pressed HMX in 2D, this time using the Eulerian 

framework CTH. The entire shock to detonation transition (SDT) is explicitly modeled 

using a history variable reactive burn model (HVRB), and the primary focus is on the effect 

of explicitly modeled voids and microstructure. Multiple SEMSS are impacted with a rigid 

flyer at varying velocities and the run distance to detonation (RDD) is calculated as a 

function of shock pressure to generate a Pop plot for the material. Initially, SDT 

simulations are carried out on samples containing an increasing volume fraction of voids 

(5%, 10%, and 20% voids), and the increased void concentration is found to lower the 

average run distance (as compared to the Homogeneous case) by 20.6%, 28.8%, and 37.2% 

respectively. To compare the relative effect of microstructure and voids, four material cases 

are generated and simulated under shock loading (Homogeneous (H), Microstructured (M), 
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Homogeneous with 5% voids (V), and Microstructured with 5% voids (M+V)). As more 

material heterogeneities are introduced the Pop plot line is found to decrease – indicating 

the sample is achieving its RDD in a shorter distance for similar shock pressures. Both 

microstructure and voids significantly affect the Pop plot and samples with only 5% voids 

are found to have a stronger effect than samples with only microstructure. Samples with 

both microstructure and voids (M+V) have the largest effect. A probabilistic analysis is 

developed, based on work initially carried out in Chapter 3, which maps the likelihood of 

observing SDT at any given shock pressure and RDD. This analysis is expanded to 

incorporate probability itself as a potential input to calculate either the RDD or pressure 

necessary to observe SDT given one or the other.  

Chapter 6 develops a model for 3D simulations of pressed, granular HMX by 

expanding the computational framework previously employed in Chapter 5. The size scale 

of these simulations are 3×3×15 mm, with roughly 30,000 grains and over 200,000 voids. 

Four material cases are analyzed: Homogeneous (H), Microstructured (M), Homogeneous 

with 10% voids (V), and Microstructured with 10% voids (M+V). In addition, new 

statistically equivalent 2D cases are also run to have a reliable basis of comparison between 

2D and 3D simulations. The 2D Pop plot results are found to have a much higher degree 

of scatter than their 3D counterparts, indicating that 3D simulations are necessary to 

capture true material behavior. A new statistical approach is formulated to illustrate a how 

the relative importance of each microstructural characteristic changes as a function of 

shock pressure. As the shock pressure increases, the importance of accounting for voids on 

top of microstructure alone also increases in the case of 3D simulations. 
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7.2 Suggestions for Future Directions 

While the work presented here answers many questions posed by the energetics 

community, the overall role of microstructure and chemistry is still not fully understood. 

This part of the chapter outlines some questions that still remain unanswered, as well as 

ideas for potential ways to expand upon the framework of analysis presented in this thesis. 

While this dissertation serves as an important stepping stone to further the overall 

understanding of HE ignition and detonation, there are always improvements to be made.  

To begin, the idea of an R parameter was introduced in Chapter 3 as a potential way 

to quantify subcritical hotspots within the material. It currently requires a significant 

number of runs to quantify J but only one to determine R for a single sample. Since the two 

parameters J and R are strongly correlated, the number of samples required to obtain the 

James type ignition threshold may be greatly reduced by analyzing the relationship 

between the R and J values. It would be of interest to study how the R quantification of the 

material affects predictions about the overall SDT transition as explored in Chapters 5 and 

6. Finding new ways to reduce the computational time necessary to statistically quantify 

material would be a major improvement, and could lead to even faster microstructural 

characterization in the future. 

The scope of void effect in this thesis did not consider void size – rather a single 

diameter of 50 µm diameter voids were used. This void size is far larger than are typically 

seen in experimental samples, but was a necessary tradeoff in order to fully study the effect 

of voids at mm length scales. Further studies should be carried out, accounting for more 

complete representations of material microstructure heterogeneities, including a range of 
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void size, void volume fraction, and void morphologies. Additionally, two separate 

computational frameworks were used: a Lagrangian one to study the frictional effects, and 

an Eulerian one to study the void effect. Ultimately, an approach is needed that can account 

for both of these mechanisms simultaneously, as they have both been shown to strongly 

affect the ignition sensitivity of the material. 

In Chapter 6, a preliminary comparison between 2D and 3D SDT simulations was 

performed, however the 2D microstructures were generated independently from the 3D 

samples. To better draw conclusions on the true effect of dimensionality, including 

resulting data scatter effects, 2D simulations of actual 3D cross sections should be run. 

This will require some careful planning, as a single “slice” of the 3D sample will be 

unlikely to have the same grain and void distributions as the overall 3D sample. 3D 

simulations are computationally intensive, and any further work to identify just how 

necessary (or unnecessary) they are to accurately model energetic material behavior will 

be vastly appreciated by the shock physics community at large.  

This thesis uses the pressure-dependent History Variable Reactive Burn (HVRB) 

model to track the evolution of chemistry in the shocked sample. While this model is widely 

used in the community, it is still an empirical model calibrated to match Pop plot results, 

not local fields. Due to this, transitioning to a more localized (although still empirical) 

Arrhenius-based chemical kinetics model may be desirable in order to better study the 

evolution of hotspots in CTH. Typically chemical-kinetics models require explicit tracking 

of the chemical species and have a reaction rate that evolves exponentially with 

temperature. This often requires an extremely fine computational time step in order to fully 
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resolve the chemistry. A simplified next step may involve transitioning the chemistry 

model to an Arrhenius Reactive Burn (ARB) model, which follows the overall reaction rate 

evolution model without explicitly tracking the product and reactant species. This 

intermediate step may lead to observing a more heterogeneous detonation than is seen in 

Chapters 5 and 6. Real HEs have been observed to have a heterogeneous wave front [9, 

176, 177], and the HVRB still does not fully capture that effect, even though the macroscale 

run distance results are accurate. 

Finally, the work in Chapters 3, 5, and 6 have focused on pressed HMX. While the 

microstructural analyses and probabilistic developments from these chapters were kept 

general, the next logical step is to apply the conclusions here to more PBX explicit models. 

In addition, several other phenomena are of interest to the community which were not 

studied in this work. These include analyzing the effects of PBX aging, ignition sensitivity 

to vibration, and the transition from deflagration to detonation at low impact velocities, 

among others. While many of these questions may not be answered in the immediate future, 

they provide a good direction to expand upon the contributions made in this thesis.  
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APPENDIX A. DERIVATION OF EQUIVALENT JAMES 

RELATION 

 Walker and Wasley [53] introduced a shock initiation threshold based on the critical 

energy input of  

 

2

,
2


fly fly

cr

m V
E   (A-1) 

where flym  and flyV  are the mass and velocity of the flyer, respectively. For simplicity, 

assuming the impedance of the flyer is the same as the impedence of the sample, they used 

the following substitutions of variables. 
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where A is area, w is thickness,  fly  is the density of the flyer, and flyc  is the speed of the 

stress wave in the flyer. The pressure in the sample and flyer is denoted by P. Plugging the 

variables in Eqs. (A-2) into Eq. (A-1) yields 
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where μ is the impedance of the flyer (  fly flyc ) which is assumed to be a constant. James 

[54] converted the P –τ relation to the Σ – τ relation in the form of 
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where cE  is critical energy fluence ( /c crE E A) and Σ is specific kinetic energy 

(
20.5  pU ). To achieve a better representation of experimental data at low flyer velocities, 

James added an additional asymptotic line, denoted by  c , which gives   
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Since  pE PU , Eq. (A-5) can be represented as 
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Welle et al. [13] replaced the specific kinetic energy (
20.5  pU ) by the power flux 

(  pPU ) to give 
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Since the power flux (  pPU ) is the rate of energy imparted to the material 

(  dE dt ), we can eliminate the energy fluence and recast Eq. (A-7) in the Π - τ space 

as 

 1 .


 


 
   

 

c c
c

E
  (A-8) 



 206 

 

REFERENCES 

1. Bourne, N.K. and G.T. Gray, Dynamic response of binders; teflon, estane™ and 

Kel-F-800™. Journal of Applied Physics, 2005. 98(12): p. 123503. 

2. Campbell, A.W. and J.R. Travis. Shock desensitization of PBX-9404 and 

Composition B-3. in 8th International Detonation Conference. 1985. Albuquerque, 

NM. 

3. Provatas, A., Energetic polymers and plasticisers for explosive formulations-A 

review of recent advances. 2000, DEFENCE SCIENCE AND TECHNOLOGY 

ORGANISATION MELBOURNE (AUSTRALIA). 

4. Cooper, J., et al., Explosive composition. 2018, Google Patents. 

5. Campbell, A.W., et al., Shock Initiation of Solid Explosives. Physics of Fluids, 

1961. 4(4): p. 511-521. 

6. Gustavsen, R.L., S.A. Sheffield, and R.R. Alcon, Measurements of shock initiation 

in the tri-amino-tri-nitro-benzene based explosive PBX 9502: Wave forms from 

embedded gauges and comparison of four different material lots. Journal of 

Applied Physics, 2006. 99(11): p. 114907. 

7. Campbell, A.W., W.C. Davis, and J.R. Travis, Shock Initiation of Detonation in 

Liquid Explosives. Physics of Fluids, 1961. 4(4): p. 498-510. 

8. Sheffield, S.A., et al., Shock initiation and detonation study on high concentration 

H2O2/H2O solutions using in-situ magnetic gauges. 2010, Los Alamos National 

Lab.(LANL), Los Alamos, NM (United States). 

9. Johansson, C.H. and P.-A. Persson, Detonics of high explosives. 1970: Academic 

Press. 

10. Mader, C.L., Numerical modeling of explosives and propellants. 2nd ed. 1998: 

CRC press. 

11. Johnson, J.N., P.K. Tang, and C.A. Forest, Shock‐wave initiation of heterogeneous 

reactive solids. Journal of Applied Physics, 1985. 57(9): p. 4323-4334. 

12. Bowden, F.P. and A.D. Yoffe, Initiation and growth of explosion in liquids and 

solids. 1952: Cambridge University Press. 

13. Welle, E.J., et al., Microstructural effects on the ignition behavior of HMX. Journal 

of Physics: Conference Series, 2014. 500(5): p. 052049. 



 207 

14. Baer, M.R., Modeling heterogeneous energetic materials at the mesoscale. 

Thermochimica Acta, 2002. 384(1-2): p. 351-367. 

15. Mader, C.L., Initiation of Detonation by the Interaction of Shocks with Density 

Discontinuities. The Physics of Fluids, 1965. 8(10): p. 1811-1816. 

16. Austin, R.A., et al., Direct numerical simulation of shear localization and 

decomposition reactions in shock-loaded HMX crystal. Journal of Applied Physics, 

2015. 117(18): p. 185902. 

17. Handley, C.A., et al., Understanding the shock and detonation response of high 

explosives at the continuum and meso scales. Applied Physics Reviews, 2018. 5(1): 

p. 011303. 

18. Rai, N.K. and H.S. Udaykumar, Mesoscale simulation of reactive pressed energetic 

materials under shock loading. Journal of Applied Physics, 2015. 118(24): p. 

245905. 

19. Kim, S., et al., Computational prediction of probabilistic ignition threshold of 

pressed granular octahydro-1,3,5,7-tetranitro-1,2,3,5-tetrazocine (HMX) under 

shock loading. Journal of Applied Physics, 2016. 120(11): p. 115902. 

20. Kim, S., et al., Prediction of shock initiation thresholds and ignition probability of 

polymer-bonded explosives using mesoscale simulations. Journal of the Mechanics 

and Physics of Solids, 2018. 114: p. 97-116. 

21. Jackson, T.L., et al., Multi-dimensional mesoscale simulations of detonation 

initiation in energetic materials with density-based kinetics. Combustion Theory 

and Modelling, 2018. 22(2): p. 291-315. 

22. Wood, M.A., et al., Multiscale modeling of shock wave localization in porous 

energetic material. Physical Review B, 2018. 97(1): p. 014109. 

23. Yarrington, C.D., R.R. Wixom, and D.L. Damm, Shock interactions with 

heterogeneous energetic materials. Journal of Applied Physics, 2018. 123(10): p. 

105901. 

24. Bennett, J.G., et al., A constitutive model for the non-shock ignition and mechanical 

response of high explosives. Journal of the Mechanics and Physics of Solids, 1998. 

46(12): p. 2303-2322. 

25. Benson, D.J. and P. Conley, Eulerian finite-element simulations of experimentally 

acquired HMX microstructures. Modelling and Simulation in Materials Science 

and Engineering, 1999. 7(3): p. 333-354. 

26. Rao, P.T. and K.A. Gonthier. Analysis of Dissipation Induced by Successive Planar 

Shock Loading of Granular Explosive. in 51st AIAA/SAE/ASEE Joint Propulsion 

Conference. 2015. Orlando, FL. 



 208 

27. Field, J.E., et al., Hot-Spot Ignition Mechanisms for Explosives and Propellants. 

Philosophical Transactions of the Royal Society of London Series a-Mathematical 

Physical and Engineering Sciences, 1992. 339(1654): p. 269-283. 

28. Tarver, C.M., S.K. Chidester, and A.L. Nichols, Critical conditions for impact- and 

shock-induced hot spots in solid explosives. Journal of Physical Chemistry, 1996. 

100(14): p. 5794-5799. 

29. Ramsay, J. and A. Popolato, Analysis of shock wave and initiation data for solid 

explosives. 1965, Los Alamos Scientific Lab., Univ. of California, N. Mex. 

30. Bourne, N. and A. Milne, The temperature of a shock-collapsed cavity. Proceedings 

of the Royal Society of London. Series A: Mathematical, Physical and Engineering 

Sciences, 2003. 459(2036): p. 1851-1861. 

31. Bourne, N.K. and J.E. Field, Explosive ignition by the collapse of cavities. 

Proceedings of the Royal Society a-Mathematical Physical and Engineering 

Sciences, 1999. 455(1987): p. 2411-2426. 

32. Austin, R.A., et al., Modeling pore collapse and chemical reactions in shock-

loaded HMX crystals. Journal of Physics: Conference Series, 2014. 500(5): p. 

052002. 

33. Chidester, S., L. Green, and C. Lee, A frictional work predictive method for the 

initiation of solid high explosives from low-pressure impacts. 1993, Lawrence 

Livermore National Lab., CA (United States). 

34. Chaudhri, M.M., Photographic Evidence for Ignition by Friction in a Deflagrating 

Explosive Single-Crystal. Journal of Physics D-Applied Physics, 1992. 25(3): p. 

552-557. 

35. Browning, R.V. and R.J. Scammon, Microstructural model of ignition for time 

varying loading conditions. Shock Compression of Condensed Matter-2001, Pts 1 

and 2, Proceedings, 2002. 620: p. 987-990. 

36. Gruau, C., et al., Ignition of a confined high explosive under low velocity impact. 

International Journal of Impact Engineering, 2009. 36(4): p. 537-550. 

37. Curtis, J.P., et al., Modeling Violent Reaction Following Low Speed Impact on 

Confined Explosives. Shock Compression of Condensed Matter - 2011, Pts 1 and 

2, 2012. 1426. 

38. Barua, A., Y. Horie, and M. Zhou, Energy localization in HMX-Estane polymer-

bonded explosives during impact loading. Journal of Applied Physics, 2012. 

111(5): p. 054902. 

39. Barua, A., Y. Horie, and M. Zhou, Microstructural level response of HMX–Estane 

polymer-bonded explosive under effects of transient stress waves. Proceedings of 



 209 

the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 

2012. 468(2147): p. 3725-3744. 

40. Barua, A. and M. Zhou, Computational analysis of temperature rises in 

microstructures of HMX-Estane PBXs. Computational Mechanics, 2013. 52(1): p. 

151-159. 

41. Czerski, H. and W.G. Proud, Relationship between the morphology of granular 

cyclotrimethylene-trinitramine and its shock sensitivity. Journal of Applied 

Physics, 2007. 102(11). 

42. Bardenhagen, S.G., et al., Detailed Characterization of Pbx Morphology for 

Mesoscale Simulations. Shock Compression of Condensed Matter - 2011, Pts 1 and 

2, 2012. 1426. 

43. Burnside, N.J., et al. Particle characterization of pressed granular HMX. in Shock 

Compression of Condensed Matter. 1997. AIP Conference Proceedings. 

44. Swallowe, G. and J. Field. Effect of polymers on the drop-weight sensitiveness of 

explosives. in 7th Symp. on Detonation. 1981. 

45. Rimoli, J.J., E. Gürses, and M. Ortiz, Shock-induced subgrain microstructures as 

possible homogenous sources of hot spots and initiation sites in energetic 

polycrystals. Physical Review B, 2010. 81(1): p. 014112. 

46. Bowden, F.P. and A.D. Yoffe, Fast reactions in solids. 1958: Butterworths 

Scientific Publications. 

47. Semenov, N.N., Chemical Kinetics and Chain Reactions. 1935: Oxford University 

Press, London. 

48. Frank-Kamenetskii, D.A., Zhurnal Fizicheskoi Khimii, 1939. 13. 

49. Thomas, P.H., On the Thermal Conduction Equation for Self-Heating Materials 

with Surface Cooling. Transactions of the Faraday Society, 1958. 54(1): p. 60-65. 

50. Boddington, T., et al., Thermal Explosions with Extensive Reactant Consumption - 

a New Criterion for Criticality. Proceedings of the Royal Society of London Series 

a-Mathematical Physical and Engineering Sciences, 1983. 390(1798): p. 13-30. 

51. Tarver, C.M. and T.D. Tran, Thermal decomposition models for HMX-based plastic 

bonded explosives. Combustion and Flame, 2004. 137(1-2): p. 50-62. 

52. Henson, B.F., et al., Ignition chemistry in HMX from thermal explosion to 

detonation. Shock Compression of Condensed Matter-2001, Pts 1 and 2, 

Proceedings, 2002. 620: p. 1069-1072. 



 210 

53. Walker, F.E. and R.J. Wasley, Critical Energy for Shock Initiation of 

Heterogeneous Explosives. Explosivstoffe, 1969. 17: p. 9-13. 

54. James, H.R., An extension to the critical energy criterion used to predict shock 

initiation thresholds. Propellants Explosives Pyrotechnics, 1996. 21(1): p. 8-13. 

55. Roth, G., Performance of explosives. 1900: German Patent No. 173327  

56. Vadhe, P.P., et al., Cast aluminized explosives. Combustion Explosion and 

ShockWaves, 2008. 44(4): p. 461-477. 

57. Grishkin, A.M., et al., Effect of Powdered Aluminum Additives on the Detonation 

Parameters of High Explosives. Combustion Explosion and Shock Waves, 1993. 

29(2): p. 239-245. 

58. Akhavan, J., The Chemistry of Explosives. 2004, Cambridge: The Royal Society of 

Chemistry. 

59. Gogulya, M.F., A.Y. Dolgoborodov, and M.A. Brazhnikov, Fine structure of 

detonation waves in HMX-Al mixtures. Chemical Physics Reports, 1998. 17(1-2): 

p. 51-54. 

60. Antić, G. and V. Džingalašević, Characteristics of cast PBX with aluminium. 

Scientific Technical Review, 2006. 56(3-4): p. 52-58. 

61. Dlott, D.D., New Developments in the Physical Chemistry of Shock Compression. 

Annual Review of Physical Chemistry, Vol 62, 2011. 62: p. 575-597. 

62. VonNeumann, J. and R.D. Richtmyer, A Method for the Numerical Calculation of 

Hydrodynamic Shocks. Journal of Applied Physics, 1950. 21(3): p. 232-237. 

63. Bowers, R.L. and J.R. Wilson, Numerical modeling in applied physics and 

astrophysics. 1991: Jones and Bartlett Publishers. 

64. Segletes, S.B., Thermodynamic stability of the Mie–Grüneisen equation of state, 

and its relevance to hydrocode computations. Journal of Applied Physics, 1991. 

70(5): p. 2489-2499. 

65. Ahrens, T.J., D.L. Anderson, and A.E. Ringwood, Equations of state and crystal 

structures of high-pressure phases of shocked silicates and oxides. Reviews of 

Geophysics, 1969. 7(4): p. 667-707. 

66. Dattelbaum, D.M. and L.L. Stevens, Chap 4. Equations of State of Binders and 

Related Polymers, in Static Compression of Energetic Materials, S.M. Peiris and 

G.J. Piermarini, Editors. 2008, Springer: Virginia, USA. p. 127-202. 

67. Jouguet, E., On the propagation of chemical reactions in gases. J. de 

mathematiques Pures et Appliquees, 1905. 1(347-425): p. 2. 



 211 

68. Davison, L., Fundamentals of Shock Wave Propagation in Solids (Chap. 13). Shock 

Wave and High Pressure Phenomena, ed. L. Davison and Y. Horie. 2008: Springer 

Berlin Heidelberg. 

69. Horie, Y., Hot Spots, High Explosives Ignition, and Material Microstructure. 

Materials Science Forum, 2014. 767: p. 3-12. 

70. Laidler, K.J., The development of the Arrhenius equation. Journal of Chemical 

Education, 1984. 61(6): p. 494. 

71. Springer, H.K., et al., Investigating short-pulse shock initiation in HMX-based 

explosives with reactive meso-scale simulations. Journal of Physics: Conference 

Series, 2014. 500(5): p. 052041. 

72. Tarver, C. and C. May. Short pulse shock initiation experiments and modeling on 

LX-16, LX-10, and ultrafine TATB. in Fourteenth International Detonation 

Symposium. 2010. 

73. Zhan, C.-G. and D.A. Dixon, A Density Functional Theory Approach to the 

Development of Q− e Parameters for the Prediction of Reactivity in Free-Radical 

Copolymerizations. The Journal of Physical Chemistry A, 2002. 106(43): p. 10311-

10325. 

74. Tarver, C., Chemical energy release in self-sustaining detonation waves in 

condensed explosives. Combustion and Flame, 1982. 46: p. 157-176. 

75. Mader, C.L., Two dimensional homogeneous and heterogeneous detonation wave 

propagation. 1976, Los Alamos Scientific Lab., N. Mex.(USA). 

76. Cady, H.H., A.C. Larson, and D.T. Cromer, The crystal structure of alpha-HMX 

and a refinement of the structure of beta-HMX. Acta Cryst., 1963. 16: p. 617-623. 

77. Karpowicz, R.J. and T. Brill, The beta to delta transformation of HMX-Its thermal 

analysis and relationship to propellants. Aiaa Journal, 1982. 20(11): p. 1586-1591. 

78. Sorescu, D.C., B.M. Rice, and D.L. Thompson, Theoretical studies of the 

hydrostatic compression of RDX, HMX, HNIW, and PETN crystals. The Journal of 

Physical Chemistry B, 1999. 103(32): p. 6783-6790. 

79. Kimura, J. and N. Kubota, Thermal decomposition process of HMX. Propellants, 

Explosives, Pyrotechnics, 1980. 5(1): p. 1-8. 

80. Farber, M. and R. Srivastava, Mass spectrometric investigation of the thermal 

decomposition of RDX. Chemical Physics Letters, 1979. 64(2): p. 307-310. 

81. Kishore, K., Thermal Decomposition Studies on Hexahydro‐1, 3, 5‐trinitro‐s‐

triazine (RDX) by differential scanning calorimetry. Propellants, Explosives, 

Pyrotechnics, 1977. 2(4): p. 78-81. 



 212 

82. McGuire, R. and C. Tarver, Chemical-decomposition models for the thermal 

explosion of confined HMX, TATB, RDX, and TNT explosives. 1981, Lawrence 

Livermore National Lab., CA (USA). 

83. Lee, E.L. and C.M. Tarver, Phenomenological model of shock initiation in 

heterogeneous explosives. Physics of Fluids, 1980. 23(12): p. 2362-2372. 

84. Menikoff, R. and M.S. Shaw, Reactive burn models and ignition & growth concept. 

New Models and Hydrocodes for Shock Wave Processes in Condensed Matter, 

2010. 10. 

85. Menikoff, R. and M.S. Shaw, Review of the Forest fire model for high explosives. 

Combustion Theory and Modelling, 2008. 12(3): p. 569-604. 

86. Hertel, E., et al., CTH: A software family for multi-dimensional shock physics 

analysis, in Shock Waves@ Marseille I. 1995, Springer. p. 377-382. 

87. McGlaun, J.M., S.L. Thompson, and M.G. Elrick, CTH: A three-dimensional shock 

wave physics code. International Journal of Impact Engineering, 1990. 10(1): p. 

351-360. 

88. S. K. Chidester, K.S.V., C. M. Tarver, Shock Initiation of Damaged Explosives. 

2009, LLNL. 

89. Tarver, C.M., Chemical Kinetic Modeling of HMX and TATB Laser Ignition Tests. 

Journal of Energetic Materials, 2004. 22(2): p. 93-107. 

90. Nichols III, A.L. and C.M. Tarver. A statistical hot spot reactive flow model for 

shock initiation and detonation of solid high explosives. in Twelfth International 

Symposium on Detonation, Office of Naval Research, San Diego, CA. 2002. 

91. Tarver, C.M., Effects of Chemical Energy-Release on Detonation-Waves in 

Condensed Explosives. Bulletin of the American Physical Society, 1979. 24(4): p. 

713-713. 

92. Massoni, J., et al., A mechanistic model for shock initiation of solid explosives. 

Physics of Fluids, 1999. 11(3): p. 710-736. 

93. Kapila, A., et al., Two-phase modeling of deflagration-to-detonation transition in 

granular materials: Reduced equations. Physics of fluids, 2001. 13(10): p. 3002-

3024. 

94. Fried, L.E., et al., LLNL CHEETAH Code. 

95. Barua, A. and M. Zhou, A Lagrangian framework for analyzing microstructural 

level response of polymer-bonded explosives. Modelling and Simulation in 

Materials Science and Engineering, 2011. 19(5): p. 055001. 



 213 

96. Barua, A., et al., Ignition criterion for heterogeneous energetic materials based on 

hotspot size-temperature threshold. Journal of Applied Physics, 2013. 113(6): p. 

064906. 

97. Kapahi, A. and H.S. Udaykumar, Three-dimensional simulations of dynamics of 

void collapse in energetic materials. Shock Waves, 2015. 25(2): p. 177-187. 

98. Rai, N.K., Numerical Framework for Mesoscale Simulation of Heterogeneous 

Energetic Materials, in Mechanical Engineering. 2015, University of Iowa. p. 173. 

99. Lambrecht, M.R., et al., Electromagnetic modeling of hot-wire detonators. IEEE 

Transactions on Microwave Theory and Techniques, 2009. 57(7): p. 1707-1713. 

100. Fried, L.E., et al. The role of viscosity in TATB hot spot ignition. in AIP Conference 

Proceedings. 2012. AIP. 

101. Wei, Y., et al., Quantification of probabilistic ignition thresholds of polymer-

bonded explosives with microstructure defects. Journal of Applied Physics, 2018. 

124(16): p. 165110. 

102. Rai, N.K., M.J. Schmidt, and H.S. Udaykumar, High-resolution simulations of 

cylindrical void collapse in energetic materials: Effect of primary and secondary 

collapse on initiation thresholds. Physical Review Fluids, 2017. 2(4): p. 043202. 

103. Baer, M., M. Kipp, and F.v. Swol, Micromechanical modeling of heterogeneous 

energetic materials. 1998, Sandia National Labs., Albuquerque, NM (United 

States). 

104. Reaugh, J., Grain-scale dynamics in explosives Lawrence Livermore National 

Laboratory Tech. Rep. 2002, UCRL-ID-150388-2002. 

105. Rai, N.K. and H. Udaykumar, Three-dimensional simulations of void collapse in 

energetic materials. Physical Review Fluids, 2018. 3(3): p. 033201. 

106. Gresshoff, M. and C.A. Hrousis. Probabilistic Shock Threshold Criterion. in 14th 

International Detonation Symposium. 2010. Coeur d'Alene, ID. 

107. Nichols III, A.L. Statistical hot spot model for explosive detonation. in AIP 

Conference Proceedings. 2006. AIP. 

108. Schwarz, A.C., Study of factors which influence the shock-initiation sensitivity of 

hexanitrostilbene (HNS). 1981, Sandia National Laboratories: Albuquerque, NM 

USA. p. 16. 

109. Yan-Qing, W. and H. Feng-Lei, A micromechanical model for predicting combined 

damage of particles and interface debonding in PBX explosives. Mechanics of 

Materials, 2009. 41(1): p. 27-47. 



 214 

110. Barua, A., et al., Prediction of probabilistic ignition behavior of polymer-bonded 

explosives from microstructural stochasticity. Journal of Applied Physics, 2013. 

113(18): p. 184907. 

111. Zhou, M., A. Needleman, and R.J. Clifton, Finite-Element Simulations of Shear 

Localization in Plate Impact. Journal of the Mechanics and Physics of Solids, 1994. 

42(3): p. 423-458. 

112. Kim, S., Y. Horie, and M. Zhou, Ignition Desensitization of PBX via Aluminization. 

Metallurgical and Materials Transactions A, 2015. 46(10): p. 4578-4586. 

113. Gump, J.C. and S.M. Peiris, Isothermal equations of state of beta octahydro-

1,3,5,7-tetranitro-1,3,5,7-tetrazocine at high temperatures. Journal of Applied 

Physics, 2005. 97(5): p. 053513. 

114. Yoo, C.-S. and H. Cynn, Equation of state, phase transition, decomposition of beta-

HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) at high pressures. The 

Journal of Chemical Physics, 1999. 111(22): p. 10229-10235. 

115. Landerville, A.C., et al., Equations of state for energetic materials from density 

functional theory with van der Waals, thermal, and zero-point energy corrections. 

Applied Physics Letters, 2010. 97(25): p. 251908. 

116. Marsh, S.P., LASL Shock Hugoniot data. Los Alamos series on dynamic material 

properties. University of California, Berkeley, CA, 1980. 

117. Mas, E.M., et al., A Viscoelastic Model for PBX Binders. AIP Conference 

Proceedings, 2002. 620: p. 661-664. 

118. Zhai, J., V. Tomar, and M. Zhou, Micromechanical simulation of dynamic fracture 

using the cohesive finite element method. Journal of Engineering Materials and 

Technology, 2004. 126(2): p. 179-191. 

119. Bourago, N.G., A Survey on Contact Algorithms. Proc. Int. Workshop on Grid 

Generation and Industrial Applications, 2002: p. pp. 42-59. 

120. Hardin, D.B., The Role of Viscoplasticity in the Deformation and Ignition Response 

of Polymer Bonded Explosives, in Mechanical Engineering. 2015, Georgia Institute 

of Technology. 

121. Kerley, G.I., CTH equation of state package: porosity and reactive burn models. 

Sandia National Laboratories report SAND92-0553, 1992. 

122. Schmitt, R., et al., CTH user's manual and input instructions version 11.2. CTH 

Development Project, Sandia National Laboratories, Albuquerque, NM, 2016. 

123. Solov'ev, V.S., Some specific features of shock-wave initiation of explosives. 

Combustion Explosion and Shock Waves, 2000. 36(6): p. 734-744. 



 215 

124. Molek, C.D., et al. Microstructural Characterization of Pressed HMX Material 

Sets at Differing Densities. in APS SCCM-2015. In press. Tampa, FL. 

125. Wixom, R.R., et al., Characterization of pore morphology in molecular crystal 

explosives by focused ion-beam nanotomography. Journal of Materials Research, 

2010. 25(7): p. 1362-1370. 

126. Yang, X., T. Zhou, and C. Chen, Effective elastic modulus and atomic stress 

concentration of single crystal nano-plate with void. Computational Materials 

Science, 2007. 40(1): p. 51-56. 

127. Hudson, R.J., Investigating the factors influencing RDX shock sensitivity, in 

Applied Science and Engineering. 2012, Cranfield University. 

128. Hudson, R.J., P. Zioupos, and P.P. Gill, Investigating the Mechanical Properties of 

RDX Crystals Using Nano-Indentation. Propellants, Explosives, Pyrotechnics, 

2012. 37(2): p. 191-197. 

129. Sewell, T.D., et al., A molecular dynamics simulation study of elastic properties of 

HMX. The Journal of Chemical Physics, 2003. 119(14): p. 7417-7426. 

130. Dimas, L.S., et al., Random Bulk Properties of Heterogeneous Rectangular Blocks 

With Lognormal Young's Modulus: Effective Moduli. Journal of Applied 

Mechanics, 2015. 82(1): p. 011003-011003. 

131. Liu, C., On the minimum size of representative volume element: An experimental 

investigation. Experimental Mechanics, 2005. 45(3): p. 238-243. 

132. May, C.M. and C.M. Tarver, Modeling Short Shock Pulse Duration Initiation of 

LX‐16 and LX‐10 Charges. AIP Conference Proceedings, 2009. 1195(1): p. 275-

278. 

133. Green, L., A. Weston, and J. Van Velkinburg, Mechanical and Frictional Behavior 

of Skid Test Hemispherical Billets. 1971, California Univ., Livermore. Lawrence 

Livermore Lab. 

134. Dickson, P.M., et al., Frictional Heating and Ignition of Energetic Materials. AIP 

Conference Proceedings, 2006. 845(1): p. 1057-1060. 

135. Barua, A., Mesoscale computational prediction and quantification of 

thermomechanical ignition behavior of polymer-bonded explosives (PBXs), in 

Mechanical Engineering. 2013, Georgia Institute of Technology: Atlanta, GA. 

136. von Neumann, J. and R.D. Richtmyer, A Method for the Numerical Calculation of 

Hydrodynamic Shocks. Journal of Applied Physics, 1950. 21(3): p. 232-237. 

137. Landshoff, R., A numerical method for treating fluid flow in the presence of shocks. 

1955, DTIC Document. 



 216 

138. Campbell, J. and R. Vignjevic, Chap. 19 Artificial Viscosity Methods for Modelling 

Shock Wave Propagation, in Predictive Modeling of Dynamic Processes. 2009, 

Springer. p. 349-365. 

139. Benson, D.J., Computational methods in Lagrangian and Eulerian hydrocodes. 

Computer Methods in Applied Mechanics and Engineering, 1992. 99(2–3): p. 235-

394. 

140. Simpson, R.L., F.H. Helm, and J.W. Kury, Non-Reactive HMX Shock Hugoniot 

Data. Propellants, Explosives, Pyrotechnics, 1993. 18(3): p. 150-154. 

141. James, H.R. and B.D. Lambourn, On the systematics of particle velocity histories 

in the shock-to-detonation transition regime. Journal of Applied Physics, 2006. 

100(8): p. 084906. 

142. Merzhanov, A.G. and V.G. Abramov, Thermal Explosion of Explosives and 

Propellants. A review. Propellants, Explosives, Pyrotechnics, 1981. 6(5): p. 130-

148. 

143. Lambourn, B.D., et al., A simple model for the pressure field from a distribution of 

hotspots. Journal of Physics: Conference Series, 2014. 500(5): p. 052023. 

144. Migault, A., Concepts of Shock Waves, in Impacts on Earth, D. Benest and C. 

Froeschlé, Editors. 1998, Springer Berlin Heidelberg. p. 79-112. 

145. McMillan, A.R., W.M. Isbell, and A.H. Jones, High Pressure Shock Wave 

Attenuation. 1971, General Motors: Virginia. 

146. Wall, C. and M. Franson, Validation of a Pressed Pentolite Donor for the Large 

Scale Gap Test (LGST) at DSTO. 2013, Defence Science and Technology 

Organisation: Department of Defense, Austrailia. 

147. Khurana, R., et al., Studies on Shock Attenuation in Plastic Materials and 

Applications in Detonation Wave Shaping. Journal of Physics: Conference Series, 

2012. 377(1): p. 012051. 

148. Welle, E.J., et al. Microstructure effects on the initiation threshold behavior of 

HMX and PBXN-5. in 15th International Detonation Symposium. 2014. 

149. Khasainov, B.A., et al., On the effect of grain size on shock sensitivity of 

heterogeneous high explosives. Shock Waves, 1997. 7(2): p. 89-105. 

150. Christensen, J.S., M. Gresshoff, and K.J. McMullen. Probabilistic shock threshold 

development for LX-17. in 15th International Detonation Symposium. 2014. 

151. Honodel, C., et al. Shock initiation of TATB formulations. in Proceedings Seventh 

Symposium (International) on Detonation. 1981. Annapolis, Maryland. 



 217 

152. Schwarz, A.C. Shock initiation sensitivity of hexanitrostilbene (HNS). in Seventh 

Symposium (International) on Detonation. 1981. Annapolis, Maryland (USA): 

Sandia National Labs. 

153. Yarrington, C.D., et al., Nano Aluminum Energetics: The Effect of Synthesis 

Method on Morphology and Combustion Performance. Propellants Explosives 

Pyrotechnics, 2011. 36(6): p. 551-557. 

154. Sánchez, F., et al., Relationship between particle size and manufacturing 

processing and sintered characteristics of iron powders. Revista Latinoamericana 

de Metalurgia y Materiales, 2003. 23(1): p. 35-40. 

155. Miller, C., et al., Ignition thresholds of aluminized HMX-based polymer-bonded 

explosives. AIP Advances, 2019. 9(4): p. 045103. 

156. Prakash, V., et al., Influence of aluminium on performance of HTPB-based 

aluminised PBXs. Defence Science Journal, 2004. 54(4): p. 475-482. 

157. Barua, A., Y. Horie, and M. Zhou, Microstructural level response of HMX-Estane 

polymer-bonded explosive under effects of transient stress waves. Proceedings of 

the Royal Society a-Mathematical Physical and Engineering Sciences, 2012. 

468(2147): p. 3725-3744. 

158. Sundararaman, V. and S.K. Sitaraman, Determination of Fracture Toughness for 

Metal/Polymer Interfaces. Journal of Electronic Packaging, 1999. 121(4): p. 275-

281. 

159. Gogulya, M.F., et al., Mechanical sensitivity and detonation parameters of 

aluminized explosives. Combustion Explosion and Shock Waves, 2004. 40(4): p. 

445-457. 

160. Li, Y.-b., et al., The effect of wax coating, aluminum and ammonium perchlorate 

on impact sensitivity of HMX. Defence Technology, 2017. 13(6): p. 422-427. 

161. Gogulya, M., et al., Explosive characteristics of aluminized HMX-based 

nanocomposites. Combustion, Explosion, and Shock Waves, 2008. 44(2): p. 198-

212. 

162. Dick, J.J., et al., The Hugoniot and shock sensitivity of a plastic‐bonded TATB 

explosive PBX 9502. Journal of Applied Physics, 1988. 63(10): p. 4881-4888. 

163. Peterson, J.R., C.A. Wight, and M. Berzins, Applying High-performance 

Computing to Petascale Explosive Simulations. Procedia Computer Science, 2013. 

18: p. 2259-2268. 

164. Starkenberg, J. and T.M. Dorsey, An Assessment of the Performance of the History 

Variable Reactive Bum Explosive Initiation Model in the CTH Code. 1998, Army 

Research Lab, Aberdeen Proving Ground, MD, USA. 



 218 

165. Hardin, D.B., J.J. Rimoli, and M. Zhou, Analysis of thermomechanical response of 

polycrystalline HMX under impact loading through mesoscale simulations. AIP 

Advances, 2014. 4(9): p. 097136. 

166. Ramos, K., M. Cawkwell, and D. Hooks. Defect characterization and the effect of 

pre-existing and shock-induced defects on the shock response of single crystal 

explosives. in 17th Biennial International Conference of the APS Topical Group on 

Shock Compression of Condensed Matter. 2011. Chicago, Illinois: Bulletin of the 

American Physical Society  

167. Hua, C., et al., Research on the Size of Defects inside RDX/HMX Crystal and Shock 

Sensitivity. Propellants Explosives Pyrotechnics, 2013. 38(6): p. 775-780. 

168. Menikoff, R., Sewell, T.D., Constituent properties of HMX needed for meso-scale 

simulaitons. Los Alamos National Lab., 2001(Report LA-UR-00-3804-rev). 

169. Herring, S.D., T.C. Germann, and N. Grønbech-Jensen, Effects of void size, density, 

and arrangement on deflagration and detonation sensitivity of a reactive empirical 

bond order high explosive. Physical Review B, 2010. 82(21): p. 214108. 

170. Yarrington, C., R.R. Wixom, and D.L. Damm, Mesoscale Simulations Using 

Realistic Microstructure and First Principles Equation of State. 2012, Sandia 

National Lab.(SNL-NM), Albuquerque, NM (United States). 

171. Gibbs, T.R. and A. Popolato, LASL Explosive Property Data. 1980: University of 

California, Berkeley. 

172. Garcia, F., K.S. Vandersall, and C.M. Tarver. Shock initiation experiments with 

ignition and growth modeling on low density HMX. in Journal of Physics: 

Conference Series. 2014. IOP Publishing. 

173. Wei, Y., et al., Integrated Lagrangian and Eulerian 3D microstructure-explicit 

simulations for predicting macroscopic probabilistic SDT thresholds of energetic 

materials. Computational Mechanics, 2019. 

174. Mulford, R.N. and D.C. Swift, Mesoscale modelling of shock initiation in HMX-

based explosives. Shock Compression of Condensed Matter-2001, Pts 1 and 2, 

Proceedings, 2002. 620: p. 415-418. 

175. Tokmakoff, A., M.D. Fayer, and D.D. Dlott, Chemical-Reaction Initiation and Hot-

Spot Formation in Shocked Energetic Molecular Materials. Journal of Physical 

Chemistry, 1993. 97(9): p. 1901-1913. 

176. Mader, C.L., Numerical modeling of explosives and propellants (Chap. 4). Vol. 1. 

1997: CRC press. 

177. Mader, C.L., Numerical modeling of detonations. Los Alamos Series in Basic and 

Applied Sciences, Berkeley: University of California Press, 1979, 1979. 


