
MANAGING LEARNING INTERACTIONS FOR COLLABORATIVE ROBOT
LEARNING

A Dissertation Proposal
Presented to

The Academic Faculty

By

Kalesha Bullard

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Interactive Computing

College of Computing

Georgia Institute of Technology

December 2019

Copyright © Kalesha Bullard 2019

MANAGING LEARNING INTERACTIONS FOR COLLABORATIVE ROBOT
LEARNING

Approved by:

Dr. Sonia Chernova, Advisor
School of Interactive Computing
Georgia Institute of Technology

Dr. Charles Isbell
School of Interactive Computing
Georgia Institute of Technology

Dr. Henrik I. Christensen
Department of Computer Science
and Engineering
University of California San Diego

Dr. Maja Matarić
Viterbi School of Engineering
University of Southern California

Dr. Andrea L. Thomaz
Department of Electrical and Com-
puter Engineering
University of Texas at Austin

Date Approved: May 17, 2019

TABLE OF CONTENTS

List of Tables . viii

List of Figures . ix

Chapter 1: Introduction . 1

1.1 Motivation . 1

1.2 Thesis Overview . 4

1.2.1 Contributions of Thesis Work . 5

1.2.2 Outline of Dissertation Document 7

Chapter 2: Background . 9

2.1 Problem Statement . 9

2.2 Learning from Demonstration . 10

2.3 Feature Selection . 11

2.4 Active Learning . 13

2.5 Inverse Reinforcement Learning . 17

2.5.1 Markov Decision Process . 17

2.5.2 Problem Statement . 19

Chapter 3: Related Work . 21

iii

3.1 Question-Asking for Robot Task Learning 21

3.1.1 Active Robot Learning . 21

3.1.2 Computational Curiosity . 22

3.2 Interactive Symbol Grounding . 23

3.3 Interactive Feature Selection . 25

Chapter 4: Learning from Demonstration for Task-Situated Concept Grounding 28

4.1 Introduction . 28

4.2 Approach . 29

4.2.1 Representing Tasks and Environments 30

4.2.2 Learning from Demonstration . 33

4.2.3 Building the Parameter Models . 34

4.2.4 Task Execution . 35

4.3 Evaluation . 36

4.3.1 Environmental Setup . 36

4.3.2 Task Environments . 38

4.3.3 Data Collection . 39

4.3.4 Evaluation Metrics . 40

4.4 Results . 40

4.4.1 Learning Model Parameters for a Specific Environment 42

4.4.2 Transfer of Learned Models Between Environments 45

4.5 Discussion . 48

4.6 Conclusion . 48

iv

Chapter 5: Concept Grounding using Human-Driven Feature Selection 50

5.1 Introduction . 50

5.2 Learning Task . 53

5.2.1 Problem Statement . 53

5.2.2 Problem Domain . 53

5.3 Computational Feature Selection . 54

5.3.1 Algorithm Overview . 54

5.3.2 Evaluation . 57

5.4 Human-Driven Feature Selection . 58

5.4.1 Direct Communication of Features 59

5.4.2 Indirect Inference of Features . 59

5.4.3 Combined Approach for Conveying Features 60

5.4.4 Evaluation and User Study . 60

5.4.5 Learning Episode . 62

5.4.6 Results . 65

5.4.7 Additional Task Domains . 66

5.5 Discussion . 68

5.6 Conclusion . 70

Chapter 6: Active Concept Grounding through Arbitration of Diverse Learn-
ing Queries . 72

6.1 Introduction . 72

6.2 Related Work . 74

6.3 Problem Formulation and Overview . 75

v

6.3.1 Query Types . 76

6.3.2 Learning Episode . 77

6.4 Querying Strategies . 78

6.4.1 Baseline Query Selection . 78

6.4.2 Arbitration Strategies . 79

6.5 Evaluation . 83

6.5.1 Data Collection . 84

6.5.2 Sensory Input . 86

6.5.3 Experimental Design . 86

6.6 Results . 87

6.6.1 Learning Static Groundings . 87

6.6.2 Learning Groundings that Change over Time 91

6.7 Discussion . 94

6.8 Conclusion . 95

Chapter 7: Active Concept Grounding within Constrained Environments through
Imitation of an Expert Questioner 97

7.1 Introduction . 97

7.2 Related Work . 99

7.3 Problem Formulation and Approach . 99

7.3.1 Active Learning for Concept Grounding 100

7.3.2 Imitating an Expert Questioning Strategy 105

7.3.3 Learning Episode . 107

7.4 Evaluation . 107

vi

7.4.1 Experimental Design . 108

7.4.2 Results . 111

7.5 Conclusion . 114

Chapter 8: Conclusion and Open Questions . 117

8.1 Summary of Thesis Contributions . 117

8.2 Open Questions . 118

8.2.1 Perception . 118

8.2.2 Behavior Generation . 119

8.2.3 Scale . 119

8.2.4 Information Gathering . 120

8.2.5 Communication and Interaction 121

8.2.6 Multi-Agent Modeling . 122

8.2.7 Cognition . 123

References . 132

vii

LIST OF TABLES

2.1 Table of Notation . 20

4.1 SERVE PASTA TASK RECIPE . 32

4.2 SERVE SALAD TASK RECIPE . 32

5.1 High-Level Task Features (per object instance) 55

5.2 Source of Training Data and Feature Sets (per User) n = num instances in training
sample k = num training samples . 64

5.3 Statistical Significance Relationships where A = Error(approach a) and B =
Error(approach b) (p-values for n = 12) ∗= p < 0.05; ∗∗= p < 0.01; ∗∗∗= p <

0.001 . 67

5.4 Statistical Significance Relationships where A = Error(approach a) and B =
Error(approach b) (p-values for n = 100 ∗= p < 0.05; ∗∗= p < 0.01; ∗∗∗= p <

0.001) . 68

5.5 Task Domain Selected Features . 69

5.6 Experimental Findings . 69

viii

LIST OF FIGURES

2.1 High-level system diagrams for the three general classes of Feature Selection Al-
gorithms: (a) filters, which take place as a preprocessing step for the predictor, (b)
wrappers, which evaluate all possible feature subsets using the predictor and re-
turn the optimal subset based upon defined metrics, and (c) embedded algorithms,
which incrementally evaluate a given feature subset using the predictor and itera-
tively refine the feature subset. 12

4.1 Environmental setup of Curi’s workspace. Includes overhead Asus RGBD camera
for perceptual input. Situates the interaction that takes place when Curi recieves a
task demonstration. 29

4.2 Illustrates the different objects used and the configuration of the semantic locations
on the workspace, for each kitchen environment. 31

4.3 Overhead view of all initial states for the set of training demonstrations under one
lighting condition, given in Environment 1 of the Serve Pasta task. 37

4.4 Illustration of different lighting conditions for corresponding task demonstrations
in Serve Pasta task in Environment 1. 38

4.5 Illustrates the perceptual clusters for objects used in each of the kitchen environments. 39

4.6 Within-Environment Cross Validation. Performance for each parameter model for
the Serve Pasta task, in each environment, tested in the same environment. Based
on upon number of training demonstrations. Best viewed in color. 41

4.7 Location Models learned for stove, cupboard, and refrigerator. Trained with De-
mos listed. Best viewed in color. 44

4.8 Comparison of Learned Models Trained in different subsets of all kitchen environ-
ments. Performance for each parameter model for the Serve Salad task. All Tested
in Environment 1. 46

ix

5.1 Instances selected by user study participant to teach robot about the specified
classes of objects in groceries task. 52

5.2 Learning performance of computational FS algorithms for classification of objects
in Groceries task. Test Set Size = 1000. 58

5.3 Learning performance of human-driven FS approaches for classification of objects
relevant to Unpack Groceries task. The task involves four object classes where
each training set has an even distribution of the classes. Test Set Size = 1000. . . . 63

5.4 Venn Diagrams to show amount of overlap between selected feature subsets for
each task domain . 70

6.1 Example learning interation between robot and human partner for lunch packing
task. 72

6.2 High-level system diagram mapping query types to type of input each provides
and system modules processing the data. 76

6.3 Illustration of object state changes for main dish and fruit objects classes in prepare-
lunch task. 84

6.4 (a) Accuracy of all strategies for pack-lunchbox task, as a function of number of
questions asked. Baseline approaches use computational feature selection; exper-
imental strategies request human-selected features. (b) Comparison of accuracy
once learning has stabilized for best strategies (after 20 questions). 88

6.5 Accuracy of all strategies for prepare-lunch task, as a function of number of ques-
tions asked. Baseline approaches use computational feature selection; experimen-
tal strategies request human-selected features. Performance under both (a) rapid
change (every turn) and (b) gradual change (every 20 turns). 89

6.6 Accuracy for prepare-lunch task when learning stabilized for best questioning
strategy (after 50 questions), as denoted by the vertical red bars on learning curves.
Performance under (a) rapid change (every turn) and (b) gradual change (every 20
turns) . 90

6.7 Learning Performance as Number of Time Steps in Learning Episode for Decision-
Theoretic Strategy . 93

6.8 Prepare Lunch Task: depicts state of objects in three environmental scenes ob-
served by agent. 96

x

7.1 Learning system diagram, illustrating how each active learning strategy
performs query selection. 98

7.2 Illustration of object state changes for main dish and fruit objects classes in
prepare-lunch task. 109

7.3 Prepare Lunch Task. Shows performance (test accuracy with standard er-
ror) for each AL strategy under different environmentally constrained con-
ditions. Parameters of allocated time and query budget imposed on the
learner vary, with: (a) only time constrained [budget: high (500), time: low
(40)], (b) neither time nor query budget constrained [budget: high (500),
time: high (150)], (c) both time and query budget constrained [budget: low
(25), time: low (40)], and (d) only query budget constrained [budget: low
(25), time: high (150)]. 110

7.4 Pack Lunchbox Task. Shows performance (test accuracy with standard er-
ror) on a separate task, under the most constrained experimental condition:
both time and query budget constrained. 111

7.5 Juxtaposition of Human Partner Engagement, as a result of Robot’s Management
of Learning Session. This illustration is primarily to provide context for what the
learning sessions look like and why the problem of managing the learning interac-
tion is important. In the top images, the robot appears to be wisely managing its
time with the human partner, though the human has different amounts of cognitive
resources available (comparing scenario (a) with (b)). In both bottom images, by
contrast, the robot appears not to be taking full advantage of the time allocated with
the human partner. On the left, the partner keeps busy by checking her cell phone,
but on the right is becoming increasingly bored as the robot seemingly continues
to contemplate. 112

7.6 Questioning Behavior of each Strategy in Prepare-Lunch Task for one train-
ing sample. Dots indicate when a query is made. 116

xi

SUMMARY

Robotic assistants should be able to actively engage their human partner(s) to generalize

knowledge about relevant tasks within their shared environment. Yet a key challenge is

not all human partners will be proficient at teaching; furthermore, humans should not be

held accountable for tracking a robot’s knowledge over time in a dynamically changing

environment, across multiple tasks. Thus, it is important to enable these interactive robots

to characterize their own uncertainty and equip them with an information gathering policy

for asking the appropriate questions of their human partners to resolve that uncertainty. In

this way, the robot shares the responsibility in guiding its own learning process and is a

collaborator in the learning. Additionally, given the robot requires some tutelage from its

partner, awareness of constraints on the teacher’s time and cognitive resources available for

devoting to the interaction could help the agent to use the time allotted more wisely.

This thesis examines the problem of enabling a robotic agent to leverage structured

interaction with a human partner for acquiring concepts relevant to a task it must later per-

form. To equip the agent with the desired concept knowledge, we first explore the paradigm

of Learning from Demonstration for the acquisition of (1) training instances as examples

of task-relevant concepts and (2) informative features for appropriately representing and

discriminating between task-relevant concepts. Given empirical evidence that a human

partner can be helpful to the agent in solving the concept learning problem, we subse-

quently investigate the design of algorithms that enable the robot learner to autonomously

manage interaction with its human partner, using a questioning policy to actively gather

both instance and feature information. This thesis seeks to investigate the following hy-

pothesis: In the context of robot learning from human demonstrations in changeable

and resource-constrained environments, enabling the robot to actively elicit multiple

types of information through questions, and to reason about what question to ask and

when, leads to improved learning performance.

xii

CHAPTER 1

INTRODUCTION

1.1 Motivation

With the growth of technology, robots are becoming more ubiquitous in society, and an

important contributing factor for that is their widespread applicability in domains such

as manufacturing, services, healthcare, education, defense, and space. Service robots in

particular are intended to assist people in their daily lives [1] on a variety of tasks, over

extended periods of time. However, we are not able to equip these robots with all of the task

intelligence they will need by hard coding relevant knowledge a priori; the robots will need

the ability to dynamically adapt in their environments. The goal then is to deploy robots

who are able to continually acquire information that will expand their task intelligence, in

dynamically changing environments.

Additionally, service robots are expected to perform tasks in spaces generally inhabited

by humans and oftentimes in direct collaboration with people. As these robots are regularly

solicited for aid, it becomes increasingly important for them to have the capacity to learn

task knowledge in the context of the environment they are situated. For this, training data

specific to the environment is necessary. And though real world environments may have

an abundance of data, there is also an abundance of noise in the data as perceived through

robot sensors and typically a scarcity of labeled data. Thus given a learning task, robotic

agents needs a way of learning sufficient models within an abundance of noisy unlabeled

data, that may dynamically change over time. For this, they can leverage interaction with

their human partners.

The robotics paradigm of Learning from Demonstration (LfD) enables a robotic agent

to learn a new task from examples provided by a human teacher [2, 3]. In LfD however,

1

the model learned depends on the ability of the teacher to provide maximally informative

input to the learner. Two important considerations persist however: (1) we want to leverage

domain knowledge of any user, yet not all human partners will be proficient at teaching,

and (2) over extended durations in a dynamically changing environment, it becomes diffi-

cult for even a proficient teacher to track the state of the learner’s knowledge and accord-

ingly decipher when to provide new information and what information to provide to help

the learner refine its knowledge. The desire to minimize the cognitive burden of teaching

for the human partner motivates the employment of agent-driven learning to ground task-

relevant concepts. We seek to enable the robot learner to characterize its own uncertainty

and autonomously solicit the information it needs from the teacher, to resolve that uncer-

tainty. Thus, the robot shares the responsibility in guiding its own learning process and is a

collaborator in the learning.

Within robotics, student-driven robot learning has primarily been encompassed by ac-

tive learning. Active Learning (AL) is a subfield of machine learning which enables an

agent to select unlabeled training examples about which it is most uncertain and query an

oracle (or expert) for the correct labels [4, 3]. Prior literature in AL provides evidence

for employing active learning with robots. Cakmak found that active learning achieved

a higher execution success rate and greater generality than passive learning with novice

teachers [5]. Generality was measured as skill coverage of possible goal configurations.

Skills taught by an expert teacher achieved similar generality and a comparable success

rate. Chernova shows in her work on active learning for a simulated driving domain that

compared against a baseline of teacher guided (passive) learning with an expert teacher,

a robot active learner is able to infer the teacher’s driving policy with substantially fewer

demonstrations and a smaller number of collisions [6]. Another advantage of using the

robot active learner was that the learning session terminated when the robot learned the

teacher’s policy; using the teacher guided algorithm, it was difficult for teachers to select a

termination point. Thus, prior findings suggest that learning is improved when the learner

2

actively engages and guides the learning process, both with novice and expert teachers.

Accordingly, there is a growing body of AL literature within the field of robotics. In

the task learning space, related literature has focused on learning an optimal policy towards

the end of imitating a human demonstrator’s behavior [6, 7], syntheis of queries for experi-

mentation [8], symbol grounding [9, 10], and inferring task constraints [11]. This previous

work has all focused on making one specific type of AL query towards generalization along

that dimension of the task (e.g. taking the best action in a state or understanding action or-

dering constraints to more effectively plan). Cakmak and Thomaz introduce three different

types of embodied queries and characterize the value of each in the context of learning

lower-level skills [12], however this work does not directly compare the query types or

perform action selection given the diverse pool of queries.

A brief review of prior literature in AL for robots suggests the problem is interesting

and relevant to the robotics community. Nonetheless, it is important to situate why AL for

LfD domains is also a difficult problem. Active learning can be thought of as the problem

of decision-making for the goal of learning. From a decision-making persepective, robotics

is a particularly challenging domain because robotic agents inherently exist in partially ob-

servable, stochastic, dynamic, and continuous environments. The environment dynamics

may also be unknown to the agent, and it may exist amongst other goal-directed agents,

suggesting the environment of a robot may also be unknown and multi-agent. Thus, at-

tempting to optimally select queries to guide one’s own learning in a partially observable,

stochastic, dynamic, continuous, multiagent, and unknown environment represents an ex-

tremely difficult and complex decision-making problem for an artificial agent. The problem

remains complex and challenging even if we consider only a subset of these environmental

properties. For this thesis, we scope the broad and complex decision-making problem of

active robot learning to consider the problem of concept learning in partially observable,

stochastic, and ”changeable” environments. By changeable, we mean loosely inspired by

the dynamic nature of real world environments in which robots exist, whereby we simulate

3

change over time in the environment, representative of the type of state change a robot

is likely to encounter. Additionally, in LfD settings, where collaborative learning with a

human partner is the goal, there are likely to be contraints imposed on the learning inter-

action, based upon limitations in time and cognitive resources the human has to devote to

the learning interaction. Similar to some prior work in Interactive Robot Learning, this

thesis explores the problem domain of concept learning for a robotic agent [10, 9, 13]

and employs the broad spectrum of query types explored in AL literature [12] for acquir-

ing concepts. However, it contributes novel exploration into the problems of interactive

learning for task-situated concept learning within changeable and resource-constrained en-

vironments, and arbitration between diverse types of learning queries within a unifying

principled framework.

1.2 Thesis Overview

When a robotic agent is given a recipe for a task, it must first perceptually ground each

entity and concept within the recipe (e.g. items, locations) in order to later perform the

task. Assuming no prior knowledge, this is particularly challenging when situated in new

or dynamic environments, where the robot has limited representative training data. Given

the agent operates in human settings however, it should be able to actively engage its human

partner(s) in order to generalize knowledge about relevant tasks within their shared envi-

ronment. Yet, not all human partners will be proficient at teaching; furthermore, humans

should not be held accountable for tracking a robot’s knowledge over time in a dynami-

cally changing environment, across multiple tasks. Thus, it is important to enable these

interactive robots to characterize their own uncertainty and equip them with an information

gathering policy for asking the appropriate questions of their human partners to resolve that

uncertainty. Additionally, given that a robot requires some tutelage from a human partner,

awareness of constraints on the teacher’s time or cognitive resources available for devoting

to the interaction could help the agent to use the time allotted more wisely.

4

This thesis examines the problem of enabling a robotic agent to leverage structured

interaction with a human partner for acquiring concepts relevant to a task it must later

perform. To equip the agent with the desired concept knowledge, we first explore the

paradigm of LfD for the acquisition of (1) training instances as examples of task-relevant

concepts and (2) informative features for appropriately representing and discriminating be-

tween task-relevant concepts. Given empirical evidence that a human partner can be useful

for solving the concept grounding problem, we subsequently investigate the design of al-

gorithms that enable the robot learner to autonomously manage interaction with its human

partner, using a questioning policy to actively gather both instance and feature information.

This thesis seeks to investigate the following hypothesis: In the context of robot learning

from human demonstrations in changeable and resource-constrained environments,

enabling the robot to actively elicit multiple types of information through questions,

and to reason about what question to ask and when, leads to improved learning per-

formance.

1.2.1 Contributions of Thesis Work

Much of LfD literature for high-level tasks has focused on policy learning, learning a map-

ping between input states and the optimal output actions [3]. However within this work, we

focus on less explored aspects of the task learning problem: (a) acquiring training instance

data to solve the problem of task-situated symbol grounding, (b) maximizing sample effi-

ciency for symbol grounding in sparse data environments by using humans to help solve

the feature selection problem, (c) employing the use of active learning to ground relevant

concepts, by extracting both informative features and representative instances from hu-

man teachers, and (d) expanding the active learning problem to jointly optimize for both

learning objectives and environmental constraints. Toward that end, this thesis work has

contributed the following:

• Learning from Demonstration for Task-Situated Symbol Grounding: Symbol Ground-

5

ing is the problem of mapping symbolic representations to constructs in the physical

world [14]. In particular, we consider the problem of grounding a high-level task, de-

scribed by an abstract task recipe. The given recipe enumerates objects and semantic

locations relevant for execution of the task, but not grounded in the physical envi-

ronment where the robot is situated. For example, in order to serve pasta, the robot

must get a “bowl” from the “cupboard”. But it does not know what a “bowl” for

storing pasta looks like, where to find the “cupboard” in its environment, or where

in the “cupboard” “bowls” are stored. This thesis is the first to explore the use of

LfD for efficiently providing the robot with the perceptual groundings it needs for

execution of the task recipe in any situated environment. Our findings suggest that

these symbol groundings can be learned efficiently through demonstration and are

necessary for each newly situated environment.

• Symbol Grounding using Human-Driven Feature Selection: Feature Selection (FS)

is the problem of determining a subset of features for use in building all of the clas-

sifiers needed for the task [3]. We explore how to enable a robot learner to request

feature information from a human teacher for use in constructing grounded concept

models. Since the chosen model representation directly affects the learner’s ability to

discriminate between task-relevant classes and thus later perform the task, the goal

is for the learner to actively solicit information about which features it should use to

represent and reason about the concepts. This thesis contributes the exploration of

five different strategies for acquiring feature information from a human teacher and

extracts insights about the most effective approaches.

• Active Symbol Grounding through Arbitration of Diverse Learning Queries: Tra-

ditional active learning enables a learner to request labels for unlabeled instances

from an oracle, whether using existing instances or creating new instances (label

requests). Prior active learning literature has also examined the request for new in-

6

stances to be generated given a particular class (demonstration requests) and exam-

ined the use of feature oracles to label the relevance of individual features (feature

relevance requests). However, the thesis contributes the first active learning policy

which arbitrates between all of these types of queries within one unifying framework

and autonomously acquires both feature and instance input from the human teacher.

Another contribution of this work is that relaxes the typical AL assumption of a static

unlabeled pool of data and considers tasks situated in dynamic environments.

• Active Symbol Grounding within Time and Resource Constrained Environments: The

previous contribution was focused on the use of AL to acquire diverse types of input

from a human teacher and thus more efficiently solve the symbol grounding prob-

lem. It assumed a dynamic environment where the learner could not exceed a given

query budget. However, the learner did not explicitly reason about the resource con-

straints being imposed on it and thus was not able to adapt its strategy under different

environmentally constrained conditions. This work is the first to contribute an AL

policy that explicitly attempts to tradeoff the agent’s learning objectives with the time

and resource constraints being imposed on the agent. Our approach uses inverse rein-

forcement learning to infer the weights employed by a human expert questioner, with

respect to a given set of decision features. A primary advantage of the approach ex-

plored is that it expands the capabilities of the active learner, subsuming the previous

set of decision features and adding an awareness of resource consumption.

1.2.2 Outline of Dissertation Document

The dissertation is organized as follows. Technical background and related work for the

research questions examined in this thesis are discussed in Chapters 2 and 3, respectively.

Initial work on task-situated symbol grounding, focused on acquiring training instances

from a human teacher, is detailed in Chapter 4. Work on exploring symbol grounding

through human-driven feature selection is detailed in Chapter 5. The initial exploration on

7

enabling an active learning policy for symbol grounding, through the use of diverse learning

queries, is described in Chapter 6. Work building upon this to enable active learning in time

and resourced constrained environments is detailed in Chapter 7. And finally, we conclude

and discuss some interesting open questions in Chapter 8.

8

CHAPTER 2

BACKGROUND

In this thesis, the artificial agent (hereafter, called the agent) is tasked with the goal of

perceptually grounding all concepts relevant to the task it must later perform. This work

is motivated by the scenario of a social robot colocated in an environment with at least

one human partner. As input, the agent is given a list of abstract concepts that are mean-

ingful for the task. Symbol (or concept) grounding is the problem of mapping symbolic

representations to constructs in the physical world [14]. Thus to solve the symbol ground-

ing problem, the agent must build classifiers for all given task-relevant concepts, whereby

physical instances in the agent’s environment serve as training data, and the concepts serve

as labels. We frame this problem as one of multi-class classification, with each instance as-

signed a single label, and the only labels considered are those of the task-relevant concepts.

As a note, this document uses the terms symbol and concept interchangeably. This thesis

explores two general approaches for enabling an agent to interactively solve this problem

of grounded concept acquisition, through passive observation of human-provided input and

through actively querying the human partner.

2.1 Problem Statement

Given a task, an accompanying set of task-relevant concepts Y , a finite duration of time or

number of turns T to learn groundings for all y∈Y , and a task dataset D from which to sam-

ple training instances, the agent must learn a classifier or function approximator for each

y ∈ Y . At each time step t ≤ T , the agent perceives a scene of unlabeled instances X . The

superset of features F used to represent each instance are derived from the robotic agent’s

sensors. Our overarching approach for solving this problem is to leverage interaction for

acquiring task groundings, using the paradigm of Learning from Demonstration.

9

2.2 Learning from Demonstration

The field of Learning from Demonstration (LfD) examines how to enable an artificial agent

to autonomously learn skills or tasks from demonstration data [2, 3]. It is a form of super-

vised learning, whereby the data is derived from a goal-directed external source. In the

delineation of LfD by [3], the field can be partitioned into at least two broad categories

of learning problems: (1) low-level skill learning and (2) high-level task learning. The

problem of skill learning focuses on learning motion trajectories or primitive actions, pre-

sumably to be later used in the context of a task. The problem of task learning focuses

on learning complex behaviors which utilize and combine primitive actions, assuming a

library of primitive action controllers given a priori. It also subsumes other aspect of the

task learning problem, like feature selection and object affordances, both presumably in

service of a task.

In our setting, the agent is not seeking to learn a task policy, or mapping from states to

actions, but instead concept classifiers that are necessary for performing the task. We also

assume a library of primitive actions is given. The agent’s goal is to acquire the necessary

task-relevant concept knowledge from its human partner. Thus this problem of interactive

concept grounding can still be broadly classified under the broader umbrella of task LfD.

In the initial iteration of solving the task-situated symbol grounding problem, the task

is provided in the form of an abstract task plan, whereby the concepts to be learned corre-

spond to parameters of each action in the plan. Later, this document also uses the term ”task

recipe” to denote one instance of a task plan. In this version of the problem, the teacher is

responsible for providing demonstrations of the task, from which the agent extracts a set of

labeled training instances L. A subset of relevant features F
′ ⊆ F for representing the con-

cepts is assumed to be given a priori. In the next iteration of the problem, the assumption

of relevant features given is relaxed. Yet, highly sample efficient learning is still critical,

given the sparsity of data available to the agent and no reasonable assumption of prior

10

concept knowledge. Since the agent is allowed to leverage interaction for learning how-

ever, this leads to exploration of both computational and human-driven feature selection

for additionally inferring an optimal feature subset F∗ as part of the learning problem.

2.3 Feature Selection

Computational feature selection addresses the problem of automatically inferring a subset

of informative features to be used as the underlying representation for all instances. It

is an important aspect of any learning problem because the number of training instances

required to sufficiently learn a model increases exponentially with the number features

used to represent each instance. The choice of features also impacts how robust a model

is to noise in the data. This suggests a key component of sample efficient learning is the

selection of features.

There are three classes of computational approaches for automatic feature selection that

have been explored in the literature: filters, wrappers, and embedded methods [15]. Filters

take the training data as input and examine the relevance of each individual feature with

respect to the class label, as a preprocessing step. They typically output a ranking of all

features according to degree of informativeness. The class of filtering algorithms is visu-

ally depicted by Figure 2.1a, where predictor represents a supervised learning algorithm,

assumed to be decided and given.

One very common filtering algorithm ranks features based upon mutual information

with the class label and selects all features whose informativeness exceeds some threshold,

I(Y | f)> τ . In this thesis, τ = 0 so that all features providing any information are deemed

relevant and are included in the selected subset. Equation 5.1 shows the information gain

algorithm for computing relevance of feature f ∈ F ; the equation computes a reduction in

uncertainty for predicting the class Y given evidence of feature f . Thus ∀ f ∈ F ,

I(Y | f) = ∑
y∈Y

H(y)−H(y| f) (2.1)

11

(a) Filter

(b) Wrapper

(c) Embedded Method

Figure 2.1: High-level system diagrams for the three general classes of Feature Selection
Algorithms: (a) filters, which take place as a preprocessing step for the predictor, (b) wrappers,

which evaluate all possible feature subsets using the predictor and return the optimal subset based
upon defined metrics, and (c) embedded algorithms, which incrementally evaluate a given feature

subset using the predictor and iteratively refine the feature subset.

where H(y) represents the entropy for class variable y.

Wrappers and embedded methods both conduct a search through the space of feature

subsets, evaluating the usefulness of each subset, with respect to a given predictor. Wrap-

pers typically conduct an exhaustive search and assess usefulness of all feature subsets

based upon predefined performance metrics (e.g. learning accuracy, model complexity).

At the end of the process, wrappers output an optimal feature subset, as illustrated by Fig-

ure 2.1b. Embedded algorithms, by contrast, proceed more efficiently by conducting a best

first search through the feature subset space and incrementally refine the current feature

subset. They typically either begin with no features and incrementally add (forward selec-

tion) or begin with all features and incrementally prune (backward elimination). Embedded

algorithms terminate the incremental refinement process, given some predefined stopping

12

criteria and output a locally optimal feature subset, as depicted in 2.1c.

In the first two iterations of solving this grounded concept acquisition problem, the

goal was to understand if the agent could solely leverage interaction with a human partner

to efficiently ground all concepts in its environment. The second half of the thesis focuses

on enabling the agent to guide its own learning process for grounding given task-relevant

concepts. the overarching approach taken is through active learning.

2.4 Active Learning

Active Learning (AL) is a subfield of Machine Learning whereby the agent queries an

oracle (or teacher) for labels on selected unlabeled instances, according to predefined utility

metrics [16, 17]. It differs from traditional supervised or ”passive” learning in that instead

of the teacher (or environment) selecting training data and the learner passively observing,

the learner queries instances that reduce its confusion.

AL algorithms typically assume the appropriate hypothesis class and representation for

the problem have been selected a priori. There are three general scenarios these algorithms

have been designed for: query synthesis, stream-based sampling, and pool-based sampling

[16]. Query synthesis algorithms synthesize new instances de novo, given a definition of

the input space, but not necessarily the data-generating distribution [8]. In the stream-based

selective sampling scenario, unlabeled instances are sampled from the underlying distribu-

tion one at a time. For each sample presented, the learner determines whether to query or

discard the instance. Though there are problem domains where the former two have been

used, pool-based sampling has been used for the majority of AL applications and is the

scenario most appropriate for the work discussed in this thesis. In pool-based sampling,

the learner has access to a large pool of unlabeled data and a substantially smaller set of

labeled data. This document denotes these as X and L respectively. Typically in AL lit-

erature, the unlabeled pool X is assumed to be static, and queries are selected in a greedy

fashion, according to a utility metric. Once an optimal instance to query x∗ ∈ X is selected

13

and a label is provided, L← L∪{x∗} and X ← X −{x∗}. For the problem domain consid-

ered in this work however and for robotics more broadly, it is more appropriate to consider

the unlabeled set (presumably deriving from instances in the robot’s environment) as dy-

namically changing, since real world environments are dynamic. Additionally, instances

correspond to objects in our domain, and removing instance queries from the unlabeled

pool would require the robotic agent to track all objects it has requested information about,

even as the environment changes over time, in order to later identify an object as one that

has been queried. As we do not wish to make the restricting assumption that objects must

be tracked over time, it is not feasible to have the agent remove each instance query made

from the unlabeled pool. Thus our problem domain requires an AL algorithm able to han-

dle a dynamically changing unlabeled set X and able to make decisions that enable learning

progress, in spite of being memoryless.

Within the body of literature on pool-based AL, there are several classes of algo-

rithms that have been investigated: uncertainty sampling approaches, committee-based ap-

proaches, decision-theoretic approaches, and cluster-based approaches. The first two fam-

ilies have also been combined with density weighting to tradeoff uncertainty and diversity

in sample selection [17]. Cluster-based approaches are most advantageous and appropri-

ate where there is a very large pool of unlabeled data and one seeks to greatly reduce the

number of candidate queries by first leveraging structure in the data. As data scarcity is a

key challenge in LfD domains, this class of algorithms is not as well suited for our problem

domain. Thus, we will focus our discussion on the first three families.

Uncertainty sampling approaches assume a single hypothesis and utilize the posterior

probability distribution over labels in Y given unlabeled instance x, pθ (Y |x), in order to

detect outliers or instances closest to a decision boundary. A commonly used metric for

uncertainty sampling is prediction entropy, shown in Equation 2.2.

Hθ (Y |x) =−∑
y∈Y

pθ (y|x) log pθ (y|x) (2.2)

14

Another metric employed in prior literature is based upon prediction margin.

Mθ (Y |x) = pθ (ŷ1|x)− pθ (ŷ2|x) (2.3)

where ŷ1 and ŷ2 represent the classifier’s first and second most likely prediction. Though

less commonly used, prediction margin may be more desirable when the goal is to better

discriminate among classes. This thesis employs both uncertainty metrics.

Committee based approaches to AL consider a committee or ensemble of hypothe-

ses attempting to explain the same data. Hypotheses, which are computational models,

may be different instantiations derived from the same model class, e.g. using different

parameter values or feature representations. They may also come from different model

classes altogether. The primary requirement involves the ability to generate an ensemble

of hypotheses and a utility metric for measuring committee disagreement or uncertainty.

Committee-based approaches often involve computing a consensus probability for each la-

bel y ∈ Y by averaging over predictions from the entire committee. Some utility metrics

used have been: entropy given the distribution of consensus probabilities and average KL

divergence when comparing distance of each committee member from the consensus. One

limitation of both uncertainty-sampling and committee-based approaches however is they

may be prone to querying outliers, as these instances may serve as a continual source of

uncertainty for the classifiers, due to their inherent distance in the instance space from more

prototypical examples. One way this has been addressed in the literature is by using density

weighting techniques to bias query selection toward instances that more representative of

the unlabeled pool. Another promising way of addressing the limitations of the prior two

classes of approaches discussed is to use AL algorithms that directly optimize for expected

reduction in classification error.

Decision-theoretic (DT) approaches to AL simulate all possible outcomes of each can-

didate query action and optimize for reduction of future expected error, either implicitly

15

or explicitly. Equation 2.4 shows a decision-theoretic measure for explicitly computing

expected error reduction given a query about instance x.

ERθ (x) = ∑
y∈Y

pθ (y|x)

[
∑

x′∈X
1− pθ+(ŷ|x′)

]
(2.4)

Here x represents the instance queried, y the hypothetical label provided, x′ ∈ X an

instance in the unlabeled pool after retraining on the simulated new training sample X ∪

〈x,y〉, θ+ the retrained model, and ŷ the new model’s most likely prediction for x.

DT approaches must retrain all classifiers for every possible 〈query,response〉 combi-

nation, in order to compute an expectation over all possible outcomes and select an optimal

query. Since they directly optimize for achieving a desired outcome, they have generally

been found to perform better than all other families of approaches for AL, with the tradeoff

being that they are significantly more computationally expensive. Another advantage of de-

cision theory is that it provides a general framework for making decisions, given different

types of actions. Thus, because of its efficacy in solving learning problems and its ability

to handle a diverse action space, DT is used as the basis for AL in this thesis. As a note,

understanding how to make this approach more scalable and sufficiently fast to run in real

time is an important challenge and left as a topic for future work.

As a first exploration into active learning for grounding task-relevant concepts, we con-

tributed a decision-theoretic framework able to reason about the acquisition of both in-

stance and feature information from a human teacher. However, as the problem changes

to investigate AL within constrained environments, more representative of human settings,

the AL framework in this thesis is expanded to more appropriately capture both the learning

problem being solved and the context of the learning environment. This is achieved by ex-

panding the set of decision criteria considered in the agent’s objective function. However,

given the decision feature space expands and performing policy rollouts (active learning

episodes) can be computationally intensive and time consuming, it is important to find an

efficient and scalable way to determine an optimal assignment of weights for this more

16

diverse set of decision features. For learning an optimal set of weights, we use imitation

learning.

2.5 Inverse Reinforcement Learning

Imitation Learning and LfD are often referred to synonymously in the literature and while

there is very large overlap, there are also differences in terminology and some of the prob-

lems covered in each space. The primary goal in Imitation Learning is that of mimicking

an expert’s behavior, towards executing a given skill or task in a desired way. In Imitation

Learning literature, it is generally assumed that (a) demonstrations are provided by a single

expert, (b) features appropriate for characterizing the desired behavior will be selected or

extracted, and (c) representations for the policy and learning algorithm will be selected a

priori based upon the problem domain [18].

Imitation Learning can be broadly partitioned into two families of algorithms: behav-

ioral cloning (BC) and inverse reinforcement learning (IRL). BC algorithms employ su-

pervised learning to estimate a policy directly mapping states to actions. IRL algorithms,

by contrast, use optimization techniques to recover the reward (objective) function from

demonstrations of a policy. From the objective function, an optimal policy can be derived,

using planning or reinforcement learning. Though IRL approaches only indirectly produce

a policy, they are often the most succinct description of behavior for planning-oriented

or deliberative tasks [18], and are thus the family of approaches used in this thesis, for

imitating an expert’s questioning strategy.

2.5.1 Markov Decision Process

The underlying framework typically used for IRL is Markov decision processes, a decision-

theoretic framework used for sequential decision-making problems. Formally, a Markov

decision process (MDP) is defined as a tuple {S,A,P,R,γ} where S is the set of states,

A the set of actions allowable in each state, P the transition or dynamics model which

17

encompasses a set of state transition probabilities P(s′|a,s), R the reward function, (also

called the utility or objective function), and γ a discount factor [19, 20]. MDPs assume

the Markov property, which says the state at time t + 1 only depends on the state and

action taken at time t. Thus T = P(st+1|st ,at ,st−1,at−1, ...,s0,a0) = P(st+1|st ,at). We

additionally note that though the reward function for MDPs is typically denoted by R in

Reinforcement Learning literature, in order to keep consistency with literature in Decision

Theory, introduced in an earlier section, we will reference the reward or utility function of

the learner as U , from here forward.

The solution to an MDP is a policy π(s). An optimal policy is obtained by maximizing

expected long-term reward. Deterministic optimal policies map each state to a single opti-

mal action a∗, whereas stochastic optimal policies map each state to a distribution over all

a ∈ A. At each time step t of an episode, the agent is in state st , takes an action at , lands in

state st+1 as a result, and receives a reward (utility) ut . The objective function U is defined

by the mapping, U : S×A→ R. Given a finite time horizon T , a full learning episode τ

(also called a trajectory or rollout) consists of a sequence of 〈state,action,reward〉 tuples

such that τ = {s0,a0,u0,s1,a1,u1, ...,sT ,aT ,uT}.

Since MDPs solve a sequential decision making problem, policies seek to maximize

expected long term utility using Equation 2.5:

Ut =
T

∑
k=0

γ
kut + k+1 (2.5)

where T can be finite or T = ∞, and the discount factor γ ∈ [0,1] characterizes the value

of future rewards. As γ→ 0, the agent is considered to be myopic and is focused primarily

on immediate rewards, whereas γ → 1 indicates the agent weights future rewards more

strongly and can become farsighted as a result [19, 20].

18

2.5.2 Problem Statement

The problem of IRL generally seeks to learn the agent’s objective function U . It is often

assumed that U is a function of decision features φ : S → [0,1]k where k is number of

decision criteria or individual objectives for which the agent is optimizing [18]. Thus, the

problem of IRL takes as input a set of expert trajectories T, sequences of decision feature

values φτ corresponding to each trajectory τ ∈ T. An IRL algorithm may also optionally

take a dynamics model P. It produces an estimate for U(φ) as output.

In much of prior literature, U has been assumed to be a linear combination of the deci-

sion features, as shown in Equation 2.6. Thus, the objective function estimate would take

the form of a learned weight vector w∗.

U(s,a) = w1 ∗φ1(τ)+w2 ∗φ2(τ)+ ...+wk ∗φk(τ) (2.6)

Generally, the IRL problem is considered to be ill-posed in that many reward functions

can produce the same policy. To address this, many IRL algorithms approach the problem

as one of constrained optimization whereby additional objectives are added as constraints,

with the goal of yielding a unique solution [18]. This thesis uses the feature matching IRL

problem formulation, whereby the key constraint being optimized for is that of matching

the learner’s expected decision feature counts to the expert’s empirical decision feature

counts. Given a trajectory τ , the decision feature counts fτ are defined as ∑st∈τ fst , the sum

of state feature values observed along the path or trajectory [21].

Table 2.1 summarizes all notation introduced in this chapter. Though each chapter

that follows is self-contained and will define relevant notation, to the extent possible, the

notation below remains consistent throughout the thesis document.

19

Table 2.1: Table of Notation

D dataset or data sample

Y set of concepts or labels

L set of training (labeled) instances

F superset of features, derived from robot sensors

X set of scene (unlabeled) instances

O set of candidate objects (specific type of scene instance)

E set of learning environments, whereby agent can be situated

S set of agent internal states or world states

A set of communicative actions (includes no-query action)

U utility or objective function of active learner

k number of decision criteria considered by learner

T time horizon or number of turns in learning episode

Σ set of querying strategies (active learners)

TE set of expert questioning episode demonstrations

TL set of learner questioning episode samples

20

CHAPTER 3

RELATED WORK

3.1 Question-Asking for Robot Task Learning

This thesis work utilizes the robotics paradigm of learning from demonstration (LfD),

within the space of learning high-level tasks. In high-level task learning, it is assumed

that the robot is given access to a library of primitive action controllers. Its goal then is to

acquire knowledge useful for applying or combining these actions to perform a more com-

plex behavior or task [3]. As motivated in the introduction, we are interested in a self-driven

robot learner, one who leverages the expertise of the human teacher in order to acquire the

information it needs, by asking questions. Within the robotics literature, this is primarily

addressed by Active Learning (AL).

3.1.1 Active Robot Learning

Given a pool of unlabeled instances, the problem of Active Learning seeks to query an

oracle to acquire the label of an instance about which it possesses uncertainty [16, 17]. In

the task learning context, AL can enable a robot to both resolve unintended ambiguities

during the learning process and explore unseen parts of the state space, in order to create

a more generalized task representation. Related work on active learning for robots has

focused on learning lower-level skill controllers [22, 23, 24, 23, 25, 26, 27], an optimal

policy towards the end of imitating a human demonstrator’s behavior [6, 7, 22, 12, 23,

28], grounding of task symbols or descriptions [9, 10, 29, 30], and inferring sequencing

constraints on actions in a task [11, 31]. There has also been related work on strategies for

introspective and extrospective detection and communication of the learner’s knowledge

gaps [32]. All of this previous work however has focused on asking one specific type of

21

query towards generalization along that dimension of the task.

Cakmak and Thomaz introduced three different types of embodied queries and charac-

terize the value of each in the context of learning lower-level skills [12]. The work describes

three types of queries: label, demonstration, and feature queries. Label, or membership,

queries request the correct label from the oracle for an unlabeled training instance (e.g.

perform a new trajectory sampled from the skill model and ask if it is a positive example

of the skill). Demo queries create a new scenario and request a demonstration of a positive

example from the oracle (e.g. generate a new hand pose and requesting a demonstration of

the given skill from that state). Feature queries can be decomposed into subtypes. Feature

Relevance queries ask whether a particular feature is important or relevant for a skill (e.g.

whether orientation of hand matters for executing a given skill). Feature Value and Feature

Invariance queries inquire about specific allowable values for features (e.g. ask if a partic-

ular hand orientation has to be fixed when executing the skill). But the work by Cakmak

does not include an algorithm for arbitrating between different types of learning queries,

nor does it consider constraints imposed on the learner.

This thesis contributes a unifying active learning framework for querying diverse types

of information from a human teacher in more realistic environments, where the learner is

expected to: (1) track the state of its own knowledge, (2) determine when it needs help,

(3) request what task relevant knowledge it requires, and (4) consider constraints being

imposed on it (namely, from its teacher or learning environment). The types of information

considered for querying are instances (demonstrations), labels, and feature subsets.

3.1.2 Computational Curiosity

Additionally, there is a body of work that focuses on enabling an artificial agent with intrin-

sic motivation to explore and examining how best to explore the learner’s state space for

interesting examples. It is largely encompassed by the subfield of computational curios-

ity [33, 34, 35, 36]. From a psychological perspective, curiosity implies an intrinsic drive

22

for exploratory behaviors, such as learning, exploration, and investigation [37]. Computa-

tional models of curiosity can be partitioned into categories according to variables used for

evaluation of stimuli. A taxonomy of existing computational models synthesized by [33]

identifies six categories for evaluation of stimuli: novelty, surprise, uncertainty, conflict,

change, and complexity. Though this body of literature seeks to solve a different problem,

it is complimentary to AL, and we leverage the literature on computational curiosity for

ideas regarding metrics an AI agent may use for exploration and selection of unlabeled

instances to query.

3.2 Interactive Symbol Grounding

Recently there has been an increased focus on having robots take advantage of cloud com-

puting resources and repositories of robot tasks. Tenorth and Beetz present KnowRob, a

comprehensive knowledge processing infrastructure for embedding robots with all knowl-

edge needed to interpret vague task descriptions and perform a task [38]. KnowRob is

connected to RoboEarth, which has an entire cloud-based database of objects, environ-

ments, and action recipes, usable by robotic platforms [39]. Other works explore the use of

recipes in task performance as well. Misra et.al. introduce Tell Me Dave, a framework that

focuses on understanding potentially ambiguous or vague natural language instructions and

converting them to a set of execution instructions to be carried out by the robot [40]. Bollini

et.al. present a robotic chef which collects recipes online, parses them into a sequence of

execution instructions, and executes the task [41]. In this prior work however, the robot

can only execute the task in environments for which it has existing primitive action con-

trollers. Within the context of these high level task descriptions which reference abstract

symbols (e.g. cup, plate), if the robot has a way to perceptually ground the symbols, this

provides it with necessary knowledge to enable task execution in any situated environment.

This mapping from abstract symbols to constructs in the physical world is called symbol

grounding.

23

The symbol grounding problem has been extensively studied in the literature. Within

robotics, there has been only a sample of work that has addressed the symbol grounding

problem. Some works have taken as input relatively unstructured natural language input

and used context from the environment in order to ground it. [42] explores the acquisition

of language from multi-modal channels of sensory data (namely sequential images and

natural speech from video); in contrast, our work inversely maps task-relevant language to

sensory data in the environment. In [40], free-form natural language phrases are mapped

into sequences of mobile manipulation instructions, to be executed by a robot. This work

is complimentary to our work in that it outputs a sequence of manipulation instructions

for a task, i.e. a task recipe which could be used as input for perceptual grounding in the

environment.

Other work has explored the use of LfD to learn mappings from concepts (language)

to percepts in the environment, but for the purpose of inferring the goal of a high-level

task [43, 44]. Recently, [10] examined the use of active learning for symbol learning and

grounding, whereby the robot physically generates informative geometric configurations of

objects and acquires a symbol label (e.g. inside(X,Y)); this is later coupled with a learned

transition model to generate task plans. Overall, these works focus on learning (1) task

goals or (2) relational symbols for task planning.

For a comprehensive discussion of the extensive body of literature on LfD, the reader

is directed to [2, 3]. Essentially however, the most related works have primarily focused on

learning either an optimal task policy (state-to-action mapping) [45, 46, 47], inferring the

objective(s) of the task (generalizing the final goal state) [43, 44, 48], or generalizing a task

plan (admissible action sequences from initial to goal state) [49, 50, 51, 52, 10].

In contrast, the task-situated symbol grounding problem we aim to solve takes as input

one instance of a feasible task plan in the form of a task recipe and learns a situated percep-

tual grounding for each parameter enumerated in the recipe. That is, the learning problem

is to create a mapping from concepts in the task recipe to percepts in the environment, in

24

order to enable execution of the given task plan in the newly situated environment. Our

approach then is complementary to any LfD approach that yields a task plan consisting of

parameterized actions or any LfD approach that infers task objectives as this can be used

to monitor execution.

Additionally, there have been a number of works focused on learning hierarchical rep-

resentations of space and groundings for general classes of objects [14, 53, 54, 55, 56].

The goal of this component of the thesis work is not to learn a generalized hierarchy of all

physical space or object types within an environment; it is to enable a robot to quickly ac-

quire the information necessary to execute a given task in a new environment, even once the

environment has been perturbed. The advantage of our approach is that it allows the learner

to use a small number of perceptual features while still characterizing the relevant target

concepts, and it enables the human teacher to specify which objects in the environment are

most appropriate for performing the given task.

3.3 Interactive Feature Selection

Feature Selection (FS) aims toward the broader goal of dimensional reduction in order to

reduce sample complexity for learning a new task. It is a process of selecting a subset of

features to be used in task model construction (i.e. for building all classifiers needed for the

task). Since the number of training instances needed generally increases exponentially with

the number of features used to represent a target concept, pruning uninformative features

has the potential to greatly speed up the learning process and enable classifiers to more

effectively discriminate because of increased robustness to noise in the data. In LfD, this is

especially important because robots are typically only provided a small number of examples

from the human teacher and thus efficiency in learning is critical.

For the broader applications of robotics and intelligent agents, FS has been previously

explored in the literature for several problem domains: mobile robot navigation [57, 58,

59, 60]; simulated autonomous car driving [61, 58, 62]; emotion state classification for

25

a nursing robot [63]; robot soccer and multi-robot domains [64]; gas identification [65]

and fire hazard classification [66] for search and rescue; and grasp classification [67, 68].

Nonetheless, these prior works have looked at enabling a robot to automatically select

features using computational algorithms with no human in the loop.

In terms of incorporating a human in the loop, there is a body of literature that ex-

amines the discovery of discriminative attributes for image classification, generated based

upon what is intuitive to human annotators [69, 70, 71, 71]. This work also aims toward the

broader goal of improved classification accuracy through dimensionality reduction. How-

ever, it does so by asking annotators to provide intuitive attribute labels (e.g. “one-handed”,

“has spots”) which are essentially higher level descriptors that can be later recognized and

used to effectively differentiate between classes in new images. It is analogous to feature

extraction, or the creation of new features. In robotics however, we aim to solve a slightly

different problem. The robot’s sensors will always provide a superset of low-level candidate

features, only a subset of which it needs to direct its attention to for learning/performing a

given task. Thus, the goal is to enable the robot to decipher which subset of features given

to it are most relevant for the task at hand.

Towards this end, we also use a human in the loop, and there has been some prior

work within the robotics community that looks at requesting feature information from a

human teacher. Work by Rosenthal et. al. [72] recommends specific aspects that should

be included when asking a question, in order to provide transparency to the human partner,

and one of the selection criteria recommended is feature selection. In this work, FS is

suggested as a follow-up question whereby the robot simply asks why, when its prediction

is incorrect. It is assumed that robot can parse the open ended response of the human and

may elicit high level features from the human partner (e.g. “the correct shape is a cube

because it has six sides - all squares”). Embodied feature queries were introduced by [12]

for a robot learning a skill from demonstration by a human teacher. The work focuses on

enabling a robot to generate three types of queries using its embodiment where the query

26

types each aim to reduce uncertainty with respect to learning a low-level skill controller.

In contrast, our focus in this component of the thesis work is to examine the efficacy of

different natural language question types towards acquiring the same information: a useful

set of features to sufficiently characterize the given task.

The most closely aligned work has explored the use of automatic feature selection for

learning a task policy from human demonstrations [73]. The abstraction by demonstra-

tion algorithm enables an agent to infer relevant features for the human policy based upon

demonstrations given. Though this work is similar in that it seeks to learn informative fea-

ture subsets through human provided examples, our work on interactive FS differs in two

ways: (1) we seek to determine the most effective approach for eliciting feature informa-

tion from human teachers and (2) we compare the efficacy of human-driven FS approaches

to computational FS approaches.

27

CHAPTER 4

LEARNING FROM DEMONSTRATION FOR TASK-SITUATED CONCEPT

GROUNDING

4.1 Introduction

One of the learning problems we seek to address through question arbitration is concerned

with task-situated symbol grounding. This component of the thesis work explores symbol

grounding in the passive learning case, using demonstrations provided by a human teacher.

Our findings provide insights about the efficiency and necessity of perceptually grounding

task-relevant objects and semantic locations in the situated environment.

The motivation for the work lies in an increased focus on robots taking advantage of

cloud computing repositories of high-level task descriptions (recipes) [38, 39, 40, 41]. A

task recipe is one instantiation of a task plan and thus provides a sequence of instructions

for execution of a task in the situated environment. In prior work however, the robot can

only execute the task in environments for which it has existing primitive action controllers.

Our approach addresses this problem by breaking down each task recipe into a sequence of

parameterized actions; we then learn the perceptual groundings for all unique parameters

from a small number of demonstrations of the task recipe in a new environment.

In this work, we use LfD to solve a task-situated symbol grounding problem. Symbol

grounding is the problem of mapping symbolic representations to constructs in the physical

world [14]. In our case, we assume this grounding is situated in the context of a particu-

lar task. Each task recipe has discrete set of abstract concepts concerning the objects and

locations, and our system learns a classifier for each of these concepts, enabling the robot

to now perform the abstract task recipe in its specific environment. We validate this ap-

proach by showing that a robot can take two abstract kitchen task recipes, and perceptually

28

(a) Curi’s Environmental Setup

Figure 4.1: Environmental setup of Curi’s workspace. Includes overhead Asus RGBD camera for
perceptual input. Situates the interaction that takes place when Curi recieves a task demonstration.

ground both differently in three different kitchen environments, given only a small number

of task demonstrations. Our results provide evidence that it is both feasible and necessary

to ground the parameter models in each new environment where execution must take place.

We present the following contributions:

• An approach for solving this situated symbol grounding problem given no informa-

tion about the environment a priori, through the use of an LfD framework which

requires only a small number of demonstrations

• An evaluation on image sets from three different environments for two separate tasks,

which shows that we are able to successfully ground task-specific objects and seman-

tic locations in a situated environment

4.2 Approach

Our approach uses human demonstrations to learn perceptual groundings in a specific envi-

ronment, for each parameter referenced within the task recipe. We assume each task recipe

29

is provided to the robot a priori and remains fixed. Our goal is to show these groundings

are both (1) capable of being learned efficiently, from demonstrations, and (2) necessary to

learn for each newly situated environment.

As our running example, we situate a robot within a kitchen setting, learning how to

help prepare dinner. We experiment with two task recipes: serving pasta and serving salad,

provided in Tables 4.1 and 4.2 respectively. Each task is to be executed in three different

kitchen environments, each with different sets of dishes, pots, etc. and different relative

locations for the stove, refrigerator, etc. (Figure 4.2).

Most goal-driven actions employed in such tasks manipulate some type of object and in

the process, move or reposition the object in some way. Therefore, we believe there are two

types of recurring parameters which must be well characterized for successful performance

of a task: objects and semantic locations.

In high-level task learning, we assume the robot is given a library of primitive actions

controllers a priori for task execution. In this work, we also assume semantic locations

are physical constructs in the environment which remain consistent within a given environ-

ment. Given this, the robot must learn which objects housed within the environment should

be used, and which physical locations in the environment correspond to the semantic loca-

tions specified in the recipe, in order to execute the task.

4.2.1 Representing Tasks and Environments

We define a high-level task, t ∈ T , as a sequence of primitive parameterized actions,

a1,a2, . . . ,an ∈ A, where A is the set of actions in the task recipe. Each primitive ac-

tion ai ∈ A contains a set of parameters, Pai , which define the dimension(s) along which

the action can vary. These parameters correspond to semantic location parameters or ob-

ject parameters, for any action. For example, the Serve Pasta task (seen in Table 4.1) is

composed of a sequence of pick and place actions, parameterized as: pick-place <target-

object, start-location, end-location>. Hence, a task has a set of parameters, such that

30

(a) Environment 1

(b) Environment 2

(c) Environment 3

Figure 4.2: Illustrates the different objects used and the configuration of the semantic locations on
the workspace, for each kitchen environment.

31

Table 4.1: SERVE PASTA TASK RECIPE

Action ID Parameterized Action

1 pick-place <pasta-pot, stove, counter>

2 pick-place <bowl, cupboard, counter>

3 pick-place <pasta-sauce, fridge, counter>

Table 4.2: SERVE SALAD TASK RECIPE

Action ID Parameterized Action

1 pick-place <bowl, cupboard, counter>

2 pick-place <salad-dressing, fridge, counter>

∀ai ∈ A, Pt =
⋃

Pai , representing the collection of all unique object and semantic location

parameters within the recipe. In this work, we highlight tasks composed only of pick-place

actions, but the proposed approach can be extended to any high-level tasks with actions

parameterized by objects and locations.

Each object parameter model, po
t ∈ Pt , which characterizes the action’s target object,

is a classifier selecting which candidate object in the workspace is the best match. It is

modeled as a mixture of multivariate Gaussian distributions, where the dimensions of the

Gaussian represent the perceptual features used to characterize an object. In the context of

our running example, the set of object perceptual features fo is composed of color dimen-

sions (red, green, blue) and bounding box size dimensions (length, width, height). Hence,

fo = (r,g,b, l,w,h). Each semantic location parameter model, pl
t ∈ Pt , is a classifier repre-

senting where an object should either originate or be placed. It characterizes the object’s

starting or target location. It is also modeled as a mixture of multivariate Gaussian dis-

tributions, where the dimensions of the Gaussian here represent dimensions of physical

space. In our running example, the set of location perceptual features is characterized by

fl = (x,y,z). Extraction of all perceptual features is explained in Section 4.3.1.

Each environment e∈ E is defined as a collection of objects and a specific configuration

32

of semantic locations within the physical space. We distinguish environments in two ways:

(1) changing where the semantic locations are positioned in the robot’s workspace (e.g. the

cupboard is located in different places in different kitchens), and (2) changing the set of

used objects (e.g. different homes use different sets of dishes). With each task grounded in

a new environment, the robot acquires new knowledge about objects and semantic locations

specifically found within that environment and task-specific context for how those objects

mays be utilized (e.g. learning which of the bowls stored in the cupboard are appropriate

to use for serving pasta). The ground truth objects and configuration of semantic locations

defined for each environment are shown in Figure 4.2.

The learning problem then is to build task-specific classifiers for each unique object and

semantic location parameter in the task recipe, enabling the robot to generalize different

ways of executing the task in the situated environment.

4.2.2 Learning from Demonstration

Demonstrations of the task are collected by observing a human performing the task in

the workspace. For each demonstration given, the robot is positioned on one side of the

workspace, where the robot and the teacher are positioned directly across from each other,

as shown in Fig. 4.1. For each t ∈ T , t ←− {a1,a2, . . . ,an}. The teacher provides verbal

cues to denote the start and end of each action in the task; world states, s ∈ S, are then

captured as snapshots of the robot’s workspace before and after each action is demonstrated

by the teacher. This yields |S|= 2∗ |A|, where S is the set of world states for the task.

For each pair of world states corresponding to before and after action ai was performed

by the human teacher, spre
i and spost

i respectively, the system observes changes in the world

state resulting from the performance of action ai. The effects of taking action are assumed

to correspond to a visible world state change, such that ||spost
i − spre

i || >> 0. This results

from a change in the positioning or state of an object; in our running example, a bowl

may move from the cupboard to the counter or go from empty to full. Over the course

33

of an entire task demonstration, the system learns the sequence of world state changes

corresponding to performing the task.

4.2.3 Building the Parameter Models

We use perceptual data from world states spre
i and spost

i ∀ai ∈ A to learn Pt , the set of

parameter models relevant to all actions within the task. When the robot subsequently

executes task t in the environment, the parameter models po
t ∈ Pt enable it to infer which

objects to select and pl
t ∈ Pt guide it as to where in the environment to direct its attention

when acting on the selected objects.

The learner receives as input the set S. Each s ∈ S contains a set of object clusters (like

shown in Figure 4.5), with each cluster encoded as a feature vector or point f in feature

space F . The distance metric in Equation 4.1 compares each object’s state before and after

an action has been demonstrated. This enables tracking of the objects being manipulated

and the resulting world state changes.

dist(opre,opost) = || f post(o)− f pre(o)|| (4.1)

o∗ = argmax
o∈O

{dist(opre,opost)} (4.2)

Each cluster is considered a candidate object o. In Equation 4.1, each o ∈ O, the set

of all candidate objects in the robot’s purview, is represented by a feature vector f ∈ F .

f pre(o) represents the feature values for an object before an action was performed by the

teacher and f post(o) represents the object feature values, after the action. In Equation 4.2,

o∗ represents the candidate object whose feature values changed the most by demonstration

of the action. The object(s) evaluated as having undergone the greatest change is/are se-

lected by the learner and used to update the object and semantic location parameter models

associated with that action. For a pick-place action, the starting location and target loca-

34

tion parameters are updated with location values corresponding to where o∗ originated and

where it is placed. Let fl(o) represent the location feature values of a candidate object; then

the starting location and target location models are updated with f pre
l (o∗) and f post

l (o∗),

respectively. The target object parameter model is updated with values from both f pre
o (o∗)

and f post
o (o∗).

For each p ∈ Pt , with each new task demonstration provided, a new set of m hypotheses

is generated, where m is the number of training demonstrations given thus far. Hypotheses

are all represented as Gaussian Mixture Models where k is the number of mixture com-

ponents and with k = [1,m] ∈ Z. Hence the hypotheses range from 1 cluster with m data

points in it, to m clusters with one data point each. We use a covariance prior to initial-

ize the covariance matrix for each hypothesis, consistent with the amount of sensor noise

observed for objects in the robot’s workspace. Bayesian Information Criterion is used to

select the best hypothesis.

4.2.4 Task Execution

After receiving training task demonstrations in the environment, the learner has task-specific

classifiers for each unique object and semantic location used in the task. The learner then

prepares to execute the task in a previously unseen world state. In this work, we have not

yet run experiments on the physical robot. So the learner executes the task sequentially by

selecting a candidate object o ∈ O, for each a ∈ A, and verbalizing how to act upon that

object (e.g. where to place the object).

For each action type with position constraints on its start state (actions which have a

starting location parameter), the problem of deciding which object to select is a hierarchi-

cal classification problem. The learner first identifies which region of the environment to

direct its attention; this corresponds to the region that falls within a specified Mahalanobis

distance of the action’s starting location model. Then it only searches candidate objects

within the identified region. We empirically determined a Mahalanobis distance threshold,

35

τ = 3.0, yielding good performance. For semantic location parameters, this was used to

evaluate model membership of a selected query point (location of a candidate object) as

being positioned within the starting location specified for the action being executed.

Candidate objects are then evaluated for selection of the best match to the target object

parameter model, po
t , according to Equation 4.3.

argmax
o∈O

[p(o|N(µpo
t
,Σpo

t
))] (4.3)

where N(µpo
t
,Σpo

t
) represents the learned multi-modal Gaussian distribution for the target

object. The best matching candidate object o∗ must also meet the additional criteria that it

is a likely match to po
t . Likely matches are all o ∈ O that fall within τ of N(µpo

t
,Σpo

t
).

4.3 Evaluation

Our primary assertion in this paper is that in order for a robot to successfully perform a

task, for which it has been given a recipe, it must ground the task in the environment where

task execution will take place. Accordingly we have two hypotheses that we are testing:

(1) This grounding can be learned quickly in a given environment using LfD, and (2) this

grounding is necessary for every new environment.

In our scenario, this corresponds to the robot learning where the stove, cupboard, re-

frigerator, and counter are located and what a pasta-pot, bowl, sauce-bottle, and salad-

dressing look like specifically for executing the tasks in each environment. Additionally,

we expect the learner to concurrently learn models for each of these parameters, from only

a small number of task demonstrations.

4.3.1 Environmental Setup

The environmental setup can be seen in Figure 4.1. Tasks are demonstrated on a countertop

workspace. An overhead ASUS Xtion RGBD camera is pointed to the workspace. The

36

(a) Demo 1 (b) Demo 2 (c) Demo 3

(d) Demo 4 (e) Demo 5 (f) Demo 6

Figure 4.3: Overhead view of all initial states for the set of training demonstrations under one
lighting condition, given in Environment 1 of the Serve Pasta task.

robot, Curi, is a mobile upper-torso humanoid with 7-DOF arms, 4-DOF hands, and a

socially expressive head. In this work, the robot does not execute actions but serves to

situate the teacher-learner interaction.

The RGBD camera is used to track and extract information about objects. We seg-

ment the objects above the countertop using the method presented in [74], which identifies

planes based on connected-component labeling (CCL) of the normals of the point cloud

data and finds spatial clusters based on CCL of distances above the selected plane. After

this segmentation, we fit a rotated bounding box to the object1. Figures 4.5a, 4.5b, and

4.5c illustrate the output of the perceptual pipeline for world states from each environment,

corresponding to images shown in Figure 4.2.

To characterize candidate objects in the workspace, we define the feature space F as a 3-

tuple of 〈color,size, location〉. Color is composed of the (r)ed, (g)reen and (b)lue channels

of the object segment in the image; size is characterized by (w)idth, (l)ength and (h)eight)

of the fitted bounding box; and location is composed of the coordinates of the centroid

1We assume the rotation is only with respect to the countertop normal

37

(a) Demo 1 (b) Demo 7

Figure 4.4: Illustration of different lighting conditions for corresponding task demonstrations in
Serve Pasta task in Environment 1.

of the object’s bounding box, with respect to the robot. So for each cluster, we extract a

feature set f = {r,g,b,w, l,h,x,y,x} ∈ F , given as input to the learner.

4.3.2 Task Environments

To test our hypotheses, we conducted a set of experiments in different environments. We

define three distinct environments in which to perform the task. One of the authors provided

demonstrations of both tasks, in each of the three environments. For each environment,

a specific set of objects and configuration of semantic locations was selected to be the

ground truth. The workspace was systematically perturbed to yield a small change in edit

distance between any two adjacent task demonstrations; nonetheless, the demonstrations

had significant variance over the course of the entire set of training demonstrations in a

given environment. Figure 4.3 shows the initial state for each of the first six serve pasta task

demonstrations given in Environment 1. Perturbations within one environment represent

variance in how the same task may be taught in one setting. Importantly, semantic locations

remain consistent over the course of all demonstrations within the environment (e.g. the

cupboard always remains on the right of the robot’s workspace in Environment 1), and

objects must be placed in the correct semantic location (e.g. bowls must always originate

38

(a) Environment 1 (b) Environment 2 (c) Environment 3

Figure 4.5: Illustrates the perceptual clusters for objects used in each of the kitchen environments.

in the cupboard), but may vary as to where and how, within that location, they are placed.

The second and third environments are representative of the robot performing the task

in a different setting altogether. We select distinctly different sets of objects for fulfilling the

same purposes, as would be expected in three different homes. We also change where the

semantic locations are positioned on the robot’s workspace. Figure 4.2 shows the setup for

demonstration 1 of environment 1 on the left, environment 2 in the center, and environment

3 on the right. The demonstrations given in Environments 2 and 3 were perturbed in a

similar systematic way as illustrated for Environment 1. Additionally, for the serve pasta

task, we varied the lighting conditions such that the positioning of objects in demonstrations

7 through 12 correspond to those in demonstrations 1 through 6 but under different lighting

conditions, as shown for demos 1 and 7 in Figure 4.4.

4.3.3 Data Collection

Task demonstrations were performed in the robot’s workspace, using the setup detailed in

Subsection 4.3.1. Each task demonstration consisted of a sequence of every action in the

task recipe. Each action demonstration changed the location of one object, the target ob-

ject of the action. It is important to note that in our experiments, the same set of candidate

objects remained on the robot’s workspace throughout an entire task demonstration. There-

fore the change, corresponding to one action, was always a change in positioning for one

of the existing objects, not a change in the number of objects in the task.

39

4.3.4 Evaluation Metrics

In order to assess the robot’s performance in task execution, we evaluate each of the object

and semantic location models separately. For a semantic location parameter, the goal is to

assess how well the model characterizes the semantic location where the target object is

expected to reside. Since the robot uses the learned location model as a guide for directing

its attention to where it should be searching for the object of interest, the target object must

be contained within the set of objects positioned inside of the location, in order for the

location parameter model to perform successfully. For an object parameter, the goal is to

assess how well the model characterizes the target object needed to achieve the goal of the

action. This model is used for object selection. In order to assess the object parameter

independently of its semantic location, the model considers all objects in its purview and

selects the object that has the highest likelihood of being the target object. The object

selected must meet the additional criteria that it is within a specified Mahalonobis distance

of the target object model; this ensures that the best matching candidate object is also a

likely match to the target object. If the candidate object selected is both a likely match

and has the ground truth label associated with the target object model, the object parameter

model performs successfully.

4.4 Results

Below we detail the two different analyses performed on the experimental results: (1)

performance of environment-specific task models, within the environment trained and (2)

generalization of learned task models, across different environments. We expect to observe

the set of task models trained and tested within one environment to outperform the other

sets of model tests; furthermore, we expect that learned models will only perform well when

they have been trained in the situated environment. This means that we are not expecting

transfer of learned task models to a previously unseen environment since environments may

40

(a) Environment 1

(b) Environment 2

(c) Environment 3

Figure 4.6: Within-Environment Cross Validation. Performance for each parameter model for the
Serve Pasta task, in each environment, tested in the same environment. Based on upon number of

training demonstrations. Best viewed in color.

vary so vastly; nonetheless we aim to show that LfD enables the robot to learn the task in

the situated environment at relatively little cost to the human teacher. The learning metric

41

we use is task performance, as described in detail in the previous section.

4.4.1 Learning Model Parameters for a Specific Environment

In our first analysis, we perform within-environment cross-validation on the serve pasta

task, for each environment e∈ E. For the serve pasta task, a total of 12 task demonstrations

were provided under two different lighting conditions, as explained in subsection 4.3.2.

Let n represent the total number of task demonstrations in the dataset for one environment

(so here n = 12) and let m be the number of training task demonstrations used to learn

all parameter models needed for task t. Each task model ti consists of the set of parameter

models Pt , uniquely identified in the task recipe. In order to train each pti ∈Pt , we uniformly

randomly sample m task demonstrations, where m < n. Then ∀pti ∈ Pt , pti is tested on the

remaining n−m unseen demonstrations. To generate the learning curve as a function of m:

∀m, we train and test 12 task models.

Figure 4.6 shows average learning performance as a function of the number of training

demonstrations given, in each environment. Each colored line represents the performance

of an individual task parameter grounded in the environment. There are a total of seven

task parameters in the Serve Pasta task: (1) three object parameters – pasta pot, bowl

(larger bowl for pasta), and sauce bottle; and (2) four semantic location parameters – stove,

cupboard, refrigerator, and counter space. The learning curves are not smooth since we

only trained and tested a small sample of the total number of possible task models that

could be learned for each value of m.

Nonetheless, the learning curves exhibit a clear and consistent trend for both objects and

semantic locations grounded in all three environments. Most of the learning curves begin

to reach their peak performance after approximately 5-6 task demonstrations have been

provided. Some classification error does occur however. For some of the curves, even as

they reach the maximum number of training demonstrations that could have been provided

from the dataset, performance is not optimal. The highlighted parameter model for the

42

bowl in Environment 1 (purple) is an example of this. When m = 11, representing the case

of leave-one-out cross validation, the pasta bowl classifier fails to identify the bowl used for

pasta in three test cases out of 12 attempts. In all of the cases, it selects the correct object

(the large red bowl) as being the closest match to the learned distribution; however in all

three cases, the object selected as being the closest match slightly exceeds the Mahalonobis

distance threshold of 3.0 (all had distances of less than 4.0, two were even less than 3.5).

This means that although it was able to select the correct candidate object as being the

closest match to the target object, amongst all candidate objects in the robot’s purview, it

did not have enough confidence that the closest matching candidate object was also a likely

match. Therefore in all three cases the final output was that no match was found. In two

of the cases, it is because the lighting conditions cause the red bowl to appear too bright

to be a likely match. In the third case, the height of segmented bounding box for the bowl

was too large, so the selected object appears to be too tall to be likely match. This example

highlights key challenges faced grounding the different parameters even within one task:

some learning problems are inherently harder than others, and the effects of sensor noise

are difficult to completely overcome.

Overall however, the learning curves for the parameter models are aligned with what

we would expect. All of the models were able to perform quite well with only a small

number of training demonstrations; hence supporting our hypothesis that the grounding of

all parameters for a task executed in a new environment can be learned quickly.

To that point, in some instances, the robot is able to learn a model that performs well

with only two task demonstrations. We hypothesize that this is correlated with how varied

the training demonstrations given are. This can be quantified as the maximum environment

edit distance between any pair of task demonstrations used to train the task model. Envi-

ronment edit distance of two task demonstrations da and db is measured using Equation 4.4,

where Oa and Ob represent the set of candidate objects observed in di and d j respectively

43

and dist(oi,o j) is defined in Equation 4.1.

dist(da,db) = ∑
oi∈Oa

∑
o j∈Ob

dist(oi,o j) (4.4)

(a) Example World State (b) Demos [1,2]

(c) Demos [2,6] (d) Demos [1,2,3,4,5,6]

Figure 4.7: Location Models learned for stove, cupboard, and refrigerator. Trained with Demos
listed. Best viewed in color.

In the sets of demonstrations, since the location of objects was the only feature we could

systematically vary with each demonstration, we examine the location parameter models in

Environment 3, shown in Figure 4.7a, more closely. Figures 4.7b and 4.7c show two sets of

location models trained using only two task demonstrations. The demonstration numbers

shown below each graph are the set of training demonstrations used to build the models

shown and correlate with the images shown in Figure 4.3. The semantic location model for

the stove is learned from the positioning of the pasta pot, the semantic location model for

44

the cupboard is learned from the positioning of the bowl used for pasta (large white bowl in

Env 3), and the semantic location model for the refrigerator is learned from the positioning

of the sauce bottle (dark green bottle). Therefore, looking at the images, we can see that task

demonstrations 1 and 2 have a relatively small edit distance, whereas task demonstrations

2 and 6 have a comparatively larger edit distance. Interestingly, the models in 4.7c are able

to characterize quite well the semantic locations, shown in the image above the models in

4.7a. The variance is a little larger for both the stove and cupboard since the models have

only seen examples of the pot and bowl placed near the edges of counter, and the fridge

model variance is noticeably smaller since it has only seen two of the three general areas

where the pasta sauce is typically placed. However, even with that, the location models for

the stove and cupboard trained using demos 2 and 6 capture essentially the same allowable

variance as do the corresponding models in 4.7d, trained using all six task demonstrations

from that lighting condition. The same could be observed for the fridge model had we

trained using demos 3 and 6, for example. So although the learning curves illustrated

that on average after approximately 5-6 demonstrations, the robot will have acquired a

perceptual grounding for each of the parameters in the task recipe; here we see that if the

teacher is able select informative examples, training using LfD is even less costly, requiring

less than half of the number of demonstrations required on average.

4.4.2 Transfer of Learned Models Between Environments

The next analysis examines the extent to which these models transfer between environ-

ments. Since one of our hypotheses is that the task grounding is necessary for every new

environment, it was important to assess whether learning the task in one environment was

sufficient for successful performance of the task in a new environment. We also examine

the performance of task models trained across multiple environments, referred to as aggre-

gate task models. Some aggregate models include demonstrations from the environment

where the robot needs to execute the task (i.e. the test environment) whereas others do not.

45

Whether looking at the performance of task models trained in a single environment or ag-

gregate models trained in multiple environments though, the goal here is to assess whether

it is necessary for the learned task model to include demonstrations from the environment

where the robot is currently situated and needs to execute the task.

(a) Parameter models learned with 2 training demos

(b) Parameter models learned with 5 training demos

Figure 4.8: Comparison of Learned Models Trained in different subsets of all kitchen
environments. Performance for each parameter model for the Serve Salad task. All Tested in

Environment 1.

In this analysis, we used between-environment cross-validation on the serve salad task,

for each environment e ∈ E. For the serve salad task, a total of 6 task demonstrations were

provided, using only one of the lighting conditions. For the task models trained in a single

46

environment, we train task models (sets of parameter models) for every combination of m=

[1,5] task demonstrations. For the aggregate models, we provide every combination of m

demonstrations, in each training environment; therefore all aggregate models are composed

in total of m ∗ |Et | training demonstrations, where Et is the set of environments used for

training a task model t. Here n = 6 and again each task model is tested on new world

states taken from the remaining n−m demonstrations. Though we tested each task model

trained (from individual environments as well as aggregated across multiple environments)

in every e ∈ E, in this analysis, we focus only on a case study where task models are

tested in Environment 1, using either two or five training demonstrations. Figure 4.8 shows

the average performance of each set of parameter models, all of which are to be used for

execution in Environment 1 where the robot is presumably situated. These bar graphs

compare the performance of all models that were trained in the execution environment

against those models that exclude the environment where execution is to occur.

Specifically, the blue bars all represent models not trained in the situated environment,

whereas the red bars all represent models that include demonstrations from the situated

environment. Each pattern within a color denotes a different combination of environments

where training of the task occurred. These graphs clearly demonstrate that whether trained

with a very small number of task demonstrations or a larger number, all parameter models

trained in the environment where execution is to occur significantly outperform any of the

models learned in a subset of environments that does not include the situated environment.

Presumably because the variance between environments can be substantial and thereby

makes it difficult to transfer learned parameter models across environments. This finding

supports our hypothesis that it is necessary to ground the task in each new environment

where the robot is situated and operating.

47

4.5 Discussion

Given that a robot may have no information about its situated environment a priori, the goal

of this work was to show that LfD is a powerful framework for enabling the robot to quickly

acquire the environment-specific perceptual groundings needed to execute a task. This may

be counter-intuitive, given that the primary goal of most machine learning applications is

generalization; however, we claim that it is a practical approach for enabling a robot to

become operational in a new environment quickly, at little cost to the human. An advantage

of the proposed approach is that it does not require general classifiers for each relevant

object class or a complete semantic map of the situated environment; it is able to use simple

perceptual features and still perform robustly since it leverages the expert knowledge of the

human teacher and the contexts of the environment and task.

As future work, we plan to conduct a user study with naive users on the physical robot,

in order to assess: (1) how intuitive it is for people to teach these groundings, (2) how many

demonstrations are required from naive users for the learner to build a model that accurately

characterizes relevant semantic locations and the task objects, and (3) how successfully

a robot is able to execute the task recipe in the situated environment given the learned

groundings. We are also interested in enabling the robot to be an active learner in the

interaction. We have seen in our analysis that providing informative examples reduces the

amount of time that the teacher needs to spend providing demonstrations and still achieves

the goal of generalizing how to execute the task in the situated environment; this can also

be accomplished by a robot that actively requests informative examples from the teacher,

with the goal of better generalizing its own mental model.

4.6 Conclusion

We have presented a framework that enables a robot to efficiently learn to ground higher-

level tasks in new environments, given the task recipe a priori. Since personal robots work

48

in direct collaboration with people they are able to leverage the expertise of their human

partner, and acquire demonstrations that provide them with information about two essen-

tial types of parameters necessary to successfully perform a task in a real-world setting:

objects and semantic locations. Our approach seeks to solve this situated grounding prob-

lem; it learns perceptual groundings for each unique parameter in the given task recipe,

in order to generalize how to perform the task in the situated environment. We collected

demonstrations of two tasks, in three different environments, representing three different

kitchens, and were able to show (1) that this grounding can be learned quickly in a situated

environment and (2) that this grounding is necessary for every new environment.

49

CHAPTER 5

CONCEPT GROUNDING USING HUMAN-DRIVEN FEATURE SELECTION

5.1 Introduction

The other learning problem we seek to address through question arbitration is concerned

with task-relevant feature selection. This component of the thesis work explores different

strategies for extracting feature information from a human teacher, for the purpose of deter-

mining which features are most appropriate for representing the task. Our findings provide

insights about how a robot should request feature information in order to help it solve the

feature selection problem for a task it is learning interactively.

This work is motivated by the fact that research on robot learning from demonstration

(LfD) focuses on the development of robots capable of learning a wide range of tasks from

a small number of human demonstrations. Much of the work in this field is particularly

aimed at the development of general-purpose robots capable of performing multiple tasks,

such as a household robot able to put away groceries as well as cook a meal, or a service

robot able to execute multiple maintenance procedures. Most research in this area assumes

that a set of features representing the state of the robot and the surrounding environment

are available to the robot, and that these features are then applied to learning new actions

(e.g., open cabinet) or new task models (e.g., make coffee) [3].

The state features available to the robot define the variables on which the learning com-

putation depends. However, little prior work considers feature selection in the context of

deploying a general-purpose robot able to learn new tasks. Given a new set of demon-

strations, which features should the robot use to learn? The feature selection problem is

substantial because a general-purpose robot may have the ability to track dozens, or even

hundreds, of potential features in its environment, only a handful of which are likely to be

50

relevant for any given task, and incorporating too many unnecessary features leads to poor

learning performance. Computational feature selection techniques [75, 76, 15], which rely

on identifying statistical patterns in data, may not have sufficient evidence given the small

number of training examples encountered in LfD. In fact, in prior work, all LfD papers we

surveyed used hand-coded state features, with the exception of [73], in which computa-

tional feature selection techniques are applied to identify relevant features based on human

demonstrations in the games Frogger and Pong.

In this work, our goal is to explore interactive feature selection in which a robot can

identify relevant features with the aid of a human user. Humans familiar with a target

domain typically have the ability to characterize which features are important in decision

making, at least at an abstract level. We explore whether non-expert users are able to

identify which features are most informative for discriminating between classes of objects

needed for a given task, how best to elicit the feature information from the user, and how

computational feature selection compares to human-driven feature selection given varying

amounts of data. Specifically, we explore two research questions. First, is a domain expert

able to identify a subset of features that will enable the robot to classify unseen examples

as accurately as using computational feature selection? Second, does the way in which

information is elicited from the user impact the quality of resulting feature selection?

To address the second research question, we developed three general categories of ap-

proaches for allowing humans to communicate feature information to the robot:

1. Direct Communication - the user directly communicates about features useful for

the task, either by selecting or eliminating, from a superset of candidate features

2. Indirect Inference - the human teacher selects a small number of instances from

each task-relevant object class and the robot learner indirectly infers which features

are being communicated by the examples shown

3. Combined Approach - the human teacher both selects a small number of instances

51

Figure 5.1: Instances selected by user study participant to teach robot about the specified classes
of objects in groceries task.

from each object class as examples and subsequently chooses features being com-

municated from a superset of candidate features

To study both research questions we conducted a between-subjects user study with 30

participants. Participants were asked to help a robot discriminate between four classes of

objects needed for a household task, by communicating about informative features using

one of the interaction strategies above. Our findings show that (1) the performance of hu-

man feature selection is on-par with computational methods for domains in which they

have prior knowledge, (2) direct communication is the most effective strategy for eliciting

feature information from users when the task features are intuitive, and (3) when a rela-

tively large amount of training data is available, asking a human teacher to first select a

small number of informative instances and then indirectly inferring the features being com-

municated leads to the best performance. We also conducted a follow-on study in three

52

additional task domains to examine how reliably users directly communicate informative

features; the supplemental findings show that people are able to select useful features for a

task only when the features are semantically interpretable.

5.2 Learning Task

5.2.1 Problem Statement

The problem of learning task features consists of determining a subset of features for use

in building all of the classifiers needed for the task [3]. In our problem formulation, the

robot is given a set of task-specific labels to be learned, Y , and the superset of all candidate

features, F , associated with the observed state of the world. The robot’s goal is to learn

how to classify instances of all the labels Y . Feature selection then, either by using a

computational approach or by asking questions of a human teacher, can help the robot

determine a subset of features F ′ ⊂ F that represent a single state space appropriate for all

classes Y .

5.2.2 Problem Domain

As our running example, we situate a robot within a kitchen setting, learning to help sort

and put away groceries, as shown in Figure 5.1. We define the sort groceries task as

teaching the robot to distinguish between four object classes (produce, snacks, food cans

& jars, and beverages). For each object instance encountered by the robot, we compute the

superset of all candidate features F based on perceptual information extracted from a RGB-

D image of the object, the object’s relative location to the robot, the robot’s joint position

information at this time and audio input from the environment. Table 5.1 lists the feature

categories and the number of features each decomposes into, for a total of 84 low-level

features. The robot’s goal is to determine which of the listed features are relevant to the

sort groceries task.

We use the University of Washington RGB-D Object Dataset to obtain a standard set

53

of object images for testing [77]. The object dataset includes over 200,000 images in

total, encompassing over 300 objects organized into 51 categories (e.g. can), with multiple

object instances per category (e.g. pepsi can, mountain dew can, etc.). For each object

instance, the database contains several hundred images captured from different viewpoints

and distances from the camera, and some objects in the dataset have been captured under

more than one lighting condition. For the sort groceries task, we consider only images

related to produce (fruits and vegetables), snacks (food bags, food boxes, and cereal), food

cans & jars, and beverages (water bottles and jugs). In addition to using the images, we

also purchased approximately 60 objects from the dataset to use in the user study.

5.3 Computational Feature Selection

In this section, we briefly discuss established computational feature selection methods and

establish a baseline by examining how feature selection impacts learning performance in

our domain.

5.3.1 Algorithm Overview

Feature Selection (FS) aims to eliminate irrelevant and redundant features such that g(F)→

F ′, where g is the feature selection function. In selecting feature subsets, features are typ-

ically evaluated for relevance or usefulness [75, 76]. There are three classes of computa-

tional approaches for automatic feature selection that have been explored in the literature:

filters, wrappers, and embedded methods [15]. Of those, we used filtering and embedded

algorithms since they are the most computationally efficient. In terms of classifier repre-

sentation, after validating learning performance with three different classifiers (k-nearest

neighbors, support vector machines, and random forests), we observed the best perfor-

mance using an SVM classifier with a radial basis function kernel. Thus, SVMs used for

all learned models in this work. Below we briefly introduce the feature selection techniques

employed. All algorithm implementations were obtained from the Weka Software Library

54

Table 5.1: High-Level Task Features (per object instance)

absolute location (3-dimensional) of object in
environment (3)

orientation (yaw) of object on surface (1)

location of object relative to five specified inter-
est points (15)

location of robot’s base in environment (3)

pose of robot’s two hands (location + orienta-
tion quaternion) relative to its body (14)

pose of robot’s two hands (location + orienta-
tion quaternion) relative to counter (14)

orientation (yaw) of robot’s base on ground (1)

robot hand states (open or closed) (2)

position for each joint of robot’s 7-dof arms (14)

average color of object (3)

object bounding box size measurements (3)

area of object bounding box (1)

volume of object bounding box (2)

aspect ratio for object bounding box (1)

surface area to volume ratio for object bounding
box (1)

compactness of object point cloud (1)

number of SIFT features (measure of visual tex-
ture) (1)

max/min/average volume of noise in environ-
ment over duration of learning interaction (3)

weight of object (1)

55

[78].

Filtering

Filters take as input the training data and examine the relevance of each feature f ∈ F as

it pertains to each class label y ∈ Y . The filtering algorithm (FI) employed ranks features

based upon information gain IG and selects all features f ∈ F such that IG(Y | f)> τ where

τ = 0. Thus ∀ f ∈ F ,

I(Y | f) = ∑
y∈Y

H(y)−H(y| f) (5.1)

where H(y) represents the entropy of variable y.

Embedded Methods

Embedded methods conduct a best first search through the space of feature subsets, eval-

uating the usefulness of each subset F ′ ⊂ F with respect to a given predictor. We use two

embedded algorithms in this work: embedded selection (ES) begins with no features and

incrementally adds (forward selection) whereas embedded reduction (ER) begins with

all features and incrementally prunes (backward elimination). Both embedded algorithms

employed use a greedy search strategy and evaluate subsets based upon two metrics: pre-

dictive ability of each feature and redundancy between them. Embedded selection (ES)

begins with no features and incrementally adds (forward selection) whereas embedded re-

duction (ER) begins with all features and incrementally prunes (backward elimination).

The algorithm used to evaluate F ′ ∈P(F), the powerset of F , was introduced in [79] and

is given by Equation 5.2.

MF =
mτc f√

m+m(m+1)τ f f
(5.2)

where MF represents the merit of F ′ containing m features, τc f represents mean class-

56

feature correlation, and τ f f represents mean feature-feature intercorrelation. The correla-

tions are averaged ∀ f ∈ F ′.

5.3.2 Evaluation

To evaluate the effect of feature selection on our chosen domain, we compare the perfor-

mance of the above algorithms and an SVM classifier on the sort groceries task. For the

evaluation we create a test set, Ptest , containing 1000 task-relevant images sampled without

replacement using stratified random sampling (SRS) from the object dataset. The train-

ing set, Ptrain, is similarly sampled to generate k = 10 disjoint training samples, Di,...,k,

each consisting of n sampled images. We use the following evaluation metric to evaluate

algorithm performance:

E[accD(a)] =
1
k

k

∑
i=1

1
n ∑

x∈Di

[1−δ (ha
i (x),y)] (5.3)

where E[accD(a)] represents the learning accuracy using feature selection approach a

with respect to distribution D, ha
i (x) is the hypothesis of the learner using a given instance

x in training set Di, y is the ground truth label for instance x, and the quantity δ (ha
i (x),y) is

1 if ha
i (x) 6= y and 0 otherwise.

We wanted to test the FS approaches, given a small and large amount of training data.

Figure 5.2 reports the results for n = 12 and n = 100 in order to simulate each scenario. In

both conditions, feature selection aids with learning performance. However the difference

in expected performance between a learner using computational feature selection and a

learner using no feature selection is dependent upon the amount of training data observed.

When there is a relatively large amount of training data, as depicted by figure 5.2b, using

computational feature selection yields statistically significantly less error than using none,

no matter which approach is employed. When only a small amount of training data is

available, overall classification performance is lower and there is no statistically significant

difference between the expected error of learners with no feature selection and learners

57

(a) Train Set Size = 12 (b) Train Set Size = 100

Figure 5.2: Learning performance of computational FS algorithms for classification of objects in
Groceries task. Test Set Size = 1000.

with computational feature selection.

Hence what we observe is that computational approaches are limited in their ability to

improve learning performance when there is a small amount of data, since these approaches

are data-driven. Nonetheless in LfD, it is commonly the case that a robot is provided only

a small number of examples from the human teacher and needs to leverage these in order

to learn the task. This motivates the need for other techniques for acquiring a subset of

discriminative features where there is limited training data available.

From this point forward, we use only the ER algorithm as our baseline computa-

tional feature selector, since it narrowly outperforms other computational approaches as

the amount of data increases.

5.4 Human-Driven Feature Selection

In this work, we are interested in enabling a robot to characterize the essential features of

a task when there are still very few (or even no) examples to observe. Given limited data,

being more selective about features helps the robot better discriminate between the object

classes relevant to the task. We hypothesize that humans with task domain knowledge

can help the robot by providing information about what features they believe to be most

58

informative for the task.

We compare five approaches to determine how human teachers can best aid with the

feature selection problem. We group the techniques into three categories based upon inter-

action style and the type of information they provide: (1) direct communication of features,

(2) indirect inference of features, and (3) combination of indirect and direct communica-

tion of features. Table 5.2 shows the source for training instances and selection of feature

subsets, using each category of FS approach.

5.4.1 Direct Communication of Features

We wanted to examine whether the way in which features are requested impacts learning

performance. Therefore, we explore two direct communication approaches for eliciting

the information: (a) human feature selection (HFS) and (b) human feature reduction

(HFR). For both approaches, the human teacher is provided a list of hierarchically ar-

ranged candidate features and has the option to choose entire (sub)categories of features

to indicate that every feature in the set should be marked or alternatively only choose the

individual features within the hierarchical category that are appropriate (e.g. size features

of object: volume, surface area, length, width, and height). For human feature selection,

the teacher’s goal is to provide only features they believe to be most useful for the robot in

determining which class an unseen object belongs to. In contrast, for human feature reduc-

tion, the teacher’s goal is to specify features the robot learner should not pay attention to

(i.e. features it should ignore) because they will not help it determine the class of an unseen

object.

5.4.2 Indirect Inference of Features

There is one indirect inference approach that we explore: human instance selection (HIS).

With this approach, the human teacher’s goal is to teach the robot how to distinguish be-

tween the four classes of objects needed for the task by providing a small number of exam-

59

ples of each. The examples selected for each class y ∈ Y are specifically intended to help

the robot determine which features are most useful when identifying objects belonging to

class y. As a note, we only seed the training set with examples selected by the teacher; the

rest are automatically generated using SRS.

5.4.3 Combined Approach for Conveying Features

Lastly, there are two combined approaches that we explore: (a) human instance selection

+ human feature selection (HIS-FS) and (b) human instance selection + human feature

reduction (HIS-FR). For both approaches, the teacher’s goal is to use the direct communi-

cation approach first, then subsequently select instances. The motivation for the combined

approaches is to allow the teacher to subsequently reflect and explicitly communicate to

the robot learner what they were attempting to implicitly highlight through the instances

selected prior.

5.4.4 Evaluation and User Study

We sought to explore two research questions in this work:

1. Learning - Is a domain expert able to identify a subset of features that will enable

the robot to classify unseen examples as accurately as using computational feature

selection?

2. Interaction - Does the way in which feature information is elicited from the user

impact the quality of resulting feature selection?

Toward that end, we have two hypotheses that we are testing: (1) humans intuitively

understand and are able to characterize informative features of a task for which they have

prior knowledge and (2) humans will do better at characterizing the task indirectly (select-

ing representative instances) than directly (enumerating useful features). We hypothesized

60

that people would be more adept at indirectly communicating features because some can-

didate features generated by the robot’s sensors may not be as intuitive for people, and

with that, we would not necessarily expect the features used by people to map directly to

features generated by robot sensors.

For evaluation, we conducted a between-subjects user study with 30 participants on

Georgia Tech’s campus, to collect data from humans about what features they would teach

to help a robot differentiate between the task-relevant object classes. There were three

conditions tested (10 participants per condition): (1) feature selection, (2) feature reduction,

and (3) instance selection. For the study, all task-relevant objects were grouped by class

on a table, but spaced out sufficiently for participants to see and interact with individual

objects. All objects purchased corresponded to instances in the object dataset and therefore

could be mapped to a corresponding set of images for processing.

In the first two study conditions (HFS and HFR), participants are given the option to

interact with the objects in any way they desire in order to help them decide which features

to select or prune. They were also asked to do a brief exit survey upon completing the

teaching task. For the third study condition (HIS), once three examples per class were

selected by the teacher, all twelve examples are brought to the robot’s workspace. Figure

5.1 shows an example of a complete demonstration for all object classes associated with

the sort groceries task. Then, instead of completing an exit survey, participants from the

third condition were equally subdivided into two sets. Directly following the selection

of instances, one set was asked to additionally perform feature selection (HIS-FS); the

other, feature reduction (HIS-FR). The order was not counterbalanced in this condition.

We intentionally requested that each of these participants first communicate about features

in an indirect way by selecting instances, then communicate features in a direct way by

either (a) choosing relevant features or (b) eliminating irrelevant features.

This study provided the data needed for all five human-driven feature selection ap-

proaches discussed on the given household task. For the HIS approach, we only process

61

the first teaching strategy used by participants in the third user study condition. As an ad-

ditional note, the data for one participant from the instance selection + feature selection

subgroup had to be excluded, thereby leaving data from 29 users mapped to the interaction

strategies, as follows:

• HFS: 10 users

• HFR: 10 users

• HIS: 9 users

• HIS-FS: 4 users

• HIS-FR: 5 users

5.4.5 Learning Episode

Now that we have experimental data from users around feature subsets, we need to evaluate

the extent to which the features they indicated are useful in learning the various classifiers

needed for the task. We evaluate learned models as a function of the number of training

instances n, in order to understand how human-driven feature selection compares to com-

putational feature selection, given both small and large amounts of training data. Specif-

ically, each learning episode consists of training k|A| models, k different learned models

for each a ∈ A, in each iteration j of the learning episode, as n increments from n = 12

to n = 100. The reason we generate k models ∀a ∈ A is because we randomly generate k

disjoint training samples during each iteration j. Thus for each j, ∀a ∈ A, we take the ag-

gregate performance for all k learned models generated by approach a, in order to evaluate

the expected performance and variance of a. We start the episode with n = 3|Y |= 12 exam-

ples since that is the number shown by the teacher, and we selected a termination point for

the learning episode empirically based upon when learning performance converges. More

details are included in the subsections below.

62

(a) Train Set Size = 12

(b) Train Set Size = 100

Figure 5.3: Learning performance of human-driven FS approaches for classification of objects
relevant to Unpack Groceries task. The task involves four object classes where each training set

has an even distribution of the classes. Test Set Size = 1000.

Generation of Training Samples

For indirect and combined approaches, we collected three human demonstrated examples

for each classifier needed for the task. Thus at the beginning of a learning episode, the

training set is a uniformly distributed sample Di...k,0 containing 3|Y | object instances, where

Di is the ith training sample, Di,0 represents the initial set for the ith training sample, and

63

Table 5.2: Source of Training Data and Feature Sets (per User)
n = num instances in training sample

k = num training samples

FS Approach n k Instances Features

None 12 10 SRS All

100 10 SRS

Computational
FS {ER}

12 10 SRS ER

100 10 SRS

Direct {HFS,
HFR}

12 10 SRS Human

100 10 SRS

Indirect {HIS} 12 1 Human ER

100 10 Human + SRS

Combined
{HIS-FS,
HIS-FR}

12 1 Human Human

100 10 Human + SRS

|Y | = 4 for the sort groceries task. For the computational and direct feature selection

approaches, whereby all training instances are generated using SRS, this corresponds to

k = 10 disjoint initial training sets Di...k,0. For the indirect and combined approaches, where

human teachers have selected the instances, there is only one initial training set, and it is

composed only of the examples selected by the human teacher; thus k = 1.

After the initial set of training examples, all remaining instances are generated using

SRS ∀a ∈ A. Thus for each a, in each subsequent iteration j, a new set of object instances

is sampled from Dtrain such that

∀y ∈ Y,∀i | Di, j← Di, j∪
{

oy
}

64

where oy is an object instance belonging to class y. Table 5.2 summarizes the generation of

training data ∀a ∈ A.

Selection of Feature Subsets

In each iteration of a learning episode, after new instances have been added to the training

sample, feature subsets must be selected by each a ∈ A, a classifier for each trained and

tested, then learning performance recorded. For the computational and indirect approaches,

feature subsets are also dynamically updated in each iteration. The ER algorithm is used to

compute a new subset of useful features for both, based upon the updated training set. For

the indirect and combined approaches, human teachers have already provided the subset of

informative features; therefore the feature subset associated with each of these approaches

remains fixed throughout the entire learning episode and is used for every training sample

Di...k.

5.4.6 Results

Results in figures 6.4b and 5.3b reflect learning performance for each a ∈ A for n = 12 and

n = 100 instances respectively, as computed by Equation 5.4.

E[accD(a)] =
1
|Ua| ∑

u∈Ua

[
1
k

k

∑
i=1

1
n ∑

x∈Du
i

[1−δ (ha
i (x),y)]

]
(5.4)

where Du
i represents a training set that may have either been completely randomly gen-

erated or at least partially selected by the user u ∈ Ua, the set of users for approach a.

Importantly, learning performance is now averaged across all u ∈Ua. For the baseline of

no FS and the computational approach, let |Ua|= 1 to denote one oracle that randomly gen-

erates examples for each training sample Di. We used the Mann-Whitney U-test to compute

pairwise statistical significance comparisons for each pair of FS approaches. However be-

cause there were so many comparisons, the bar graphs in Figure 5.3 only highlight the

relationships that juxtapose the best performing human-driven approaches with baseline

65

approaches, given small and large amounts of data.

Looking at figure 6.4b, with a small amount of training data, we observe that allowing

a human teacher to provide feature information about the task yields a statistically signifi-

cant increase in expected learning performance as compared to using only a computational

feature selection approach. Specifically, the HFS interaction strategy appears to be the

most effective way of eliciting information about useful features from the human teacher.

It also dominates the second best human-driven interaction strategy, HFR. With a large

amount of training data, computational feature selection (ER) and the best human-driven

feature selection approaches (HIS and HFS) perform comparably; all three are statistically

significantly better than a learner with no feature selection. Therefore while humans are

not necessarily needed when there is sufficient training data available for the learner to ob-

serve, the fact that human approaches are still on par with the best computational approach

suggests that the domain knowledge extracted from humans is both useful for the learning

task and reliable as sample size grows.

All statistical significance relationships are shown in Tables 5.3 and 5.4. For each

approach a ∈ A, N = k|Ua| where k can be found in Table 5.2. |Ua| for all human-driven

approaches is listed at the end of Subsection 5.4.4. For each pair of approaches (cell) and

given value of n, the corresponding table shows the probability p that error(approach a) <

error(approach b). Each row shows which FS approaches are dominated by a whereas each

column shows which approaches dominate b. So e.g., we observe that the baseline of no FS

is dominated by every FS approach when there is a large amount of training data available.

5.4.7 Additional Task Domains

Our second hypothesis was that people would be not be as successful in directly commu-

nicating about task features; nonetheless our results failed to support this hypothesis. We

believed this to be at least partially attributable to the features in the sort groceries task be-

ing quite intuitive for people. Thus we conducted a follow-on study to explore this further;

66

Table 5.3: Statistical Significance Relationships
where A = Error(approach a) and B = Error(approach b)

(p-values for n = 12)
∗= p < 0.05; ∗∗= p < 0.01; ∗∗∗= p < 0.001

H
:

A
<

B

b:
N

on
e

(N
=1

0)

b: E
R

(N
=1

0)

b: H
FS

(N
=1

00
)

b: H
FR

(N
=1

00
)

b: H
IS

(N
=9

0)

b:
H

IS
-F

S
(N

=4
0)

b:
H

IS
-F

R
(N

=5
0)

a: None – 0.82 1.0 1.0 0.84 0.99 0.98

a: ER 0.19 – 1.0 0.99 0.41 0.93 0.93

a: HFS *** *** – ** *** 0.09 0.07

a: HFR *** *** 1.0 – ** 0.33 0.40

a: HIS 0.18 0.60 1.0 1.0 – 0.95 0.96

a: HIS-
FS

* 0.09 0.91 0.67 0.07 – 0.06

a: HIS-
FR

* 0.08 0.93 0.60 0.06 0.63 –

it consisted of an online survey whereby 48 participants were given three tasks: (1) play-

ing Pacman for a reinforcement learning agent [80], (2) autonomous navigation through

a crowded environment for a mobile robot [60], and (3) classification of fire, smoke, and

thermal reflections for a humanoid firefighting robot [66]. For each task domain, the partic-

ipant was shown an image of the domain, then asked to check off all features they believed

to be most useful for a robot learning to perform the specified task.

For each domain, an empirically validated set of useful features is provided by the

source referenced, thus used as our baseline for comparison. All participants were recruited

from the same population of on-campus students. Table 5.5 lists the baseline features

selected for each domain; for the firefighting task, all features listed are with respect to pixel

intensities from thermal images of the scene. Figure 5.4 illustrates the amount of overlap

between the human-selected feature subset and the baseline subset for each domain, where

67

Table 5.4: Statistical Significance Relationships
where A = Error(approach a) and B = Error(approach b)

(p-values for n = 100
∗= p < 0.05; ∗∗= p < 0.01; ∗∗∗= p < 0.001)

H
:

A
<

B

b:
N

on
e

(N
=1

0)

b: E
R

(N
=1

0)

b: H
FS

(N
=1

00
)

b: H
FR

(N
=1

00
)

b: H
IS

(N
=9

0)

b:
H

IS
-F

S
(N

=4
0)

b:
H

IS
-F

R
(N

=5
0)

a: None – 1.0 1.0 1.0 1.0 1.0 1.0

a: ER *** – 0.59 0.28 0.87 * **

a: HFS *** 0.41 – * 0.94 *** ***

a: HFR *** 0.72 0.96 – 1.0 ** **

a: HIS *** 0.13 0.06 *** – *** ***

a: HIS-
FS

*** 0.99 1.0 0.99 1.0 – 0.57

a: HIS-
FR

*** 0.99 1.0 1.0 1.0 0.43 –

a feature was included if selected by at least half of the participants.

The primary insight extracted from this follow-on study is that the only task people were

not able to characterize in a way closely aligned with the computationally validated baseline

is the one where most of the features selected were difficult to interpret semantically.

5.5 Discussion

Our overall findings are summarized in Table 5.6. It highlights the highest performing

method(s) for selecting a useful feature subset as we vary two parameters: (1) amount of

training data and (2) use of a human teacher.

The bottom row is specifically what were interested in exploring in this work. The

findings suggests that even without having yet seen any training examples, a robot learner

can leverage the knowledge of a domain expert to identify a subset of features useful for

68

Table 5.5: Task Domain Selected Features

Pacman Navigation Firefighting

grid width / height location / orientation of
robot

mean

grid cell locations speed / direction robot is
traveling

variance

location of walls location / orientation of
each pedestrian

standard deviation

number of ghosts num pedestrians per square
foot, in robot neighborhood

skewness

location of Pacman / ghosts
/ food / capsule(s)

speed / direction each
pedestrian is traveling,
relative to robot

dissimilarity

amount of food remaining movement of each pedes-
trian towards / away from /
perpendicular to robot

entropy

whether Pacman has been
eaten

correlation

constructing a more discriminative task representation. This supports our first hypothesis

that humans are able to help solve the feature selection problem and is valuable for LfD

domains where the robot is learning from a teacher but training data provided is typically

limited. Additionally, we have some insights about successful and unsuccessful ways to

extract this feature information, when optimizing for classification accuracy.

In considering all five of the strategies we examined for eliciting feature information

DATA

H
U

M
A

N Small Large

No FI ER

Yes HFS HIS, ER, HFS

Table 5.6: Experimental Findings

69

Figure 5.4: Venn Diagrams to show amount of overlap between selected feature subsets for each
task domain

from humans teachers, two approaches emerged as most effective: human feature selection

(HFS) and human instance selection (HIS). HFS outperformed all other approaches (both

computational and human-driven) given a small amount of training data; both HIS and HFS

were comparable to computational feature selection given a large amount of training data,

but neither was able to significantly outperform the best computational feature selection

approach (ER). So contrary to what we hypothesized, direct communication about features

proved to be the most effective overall strategy for users. This was further validated in

our follow-on study, providing the insight that users are able to select informative features

given that the features can be understood intuitively.

Other insights gleaned from the results were that HFS always dominated HFR and that

the combined approaches never yielded the best performance, as compared to other human-

driven approaches. In future work, we can explore why we observe these trends.

5.6 Conclusion

Enabling robots to request the most useful features for characterizing a task is an important

step toward autonomous task model construction. With only a small amount of data, com-

putational feature selection approaches are limited in their ability to output the most useful

features for discriminating between classes of objects needed for a task. Therefore, using

computational feature selection as a baseline, this work explored: (1) whether a human

70

teacher is able to characterize the most informative features of a classification task as accu-

rately as computational approaches and (2) the best way to extract this feature information

from the teacher. Our results suggest that a human teacher can directly select a subset of

features that will be informative for discriminating between the task-relevant object classes

given that the features are semantically interpretable. And in the case that the robot learner

has either no or a small number of training examples, we can expect the subset selected

by a human teacher to be more useful for classifying unseen task-relevant objects than that

selected by a computational feature selection algorithm.

71

CHAPTER 6

ACTIVE CONCEPT GROUNDING THROUGH ARBITRATION OF DIVERSE

LEARNING QUERIES

6.1 Introduction

The paradigm of Learning from Demonstration (LfD) enables an agent to learn a new task

from examples provided by a human teacher [3]. In LfD however, the model learned de-

pends on the ability of the teacher to provide appropriate examples to the learner. Placing

the primary burden of conveying maximally informative input on the teacher presents an in-

herent challenge, as it is not feasible to expect every human with task domain knowledge to

also understand how an agent models the task and be proficient at teaching it. Yet we want

to leverage the domain knowledge of any user, independent of teaching skills. Therefore

we seek to enable a learning agent to characterize its own uncertainty and autonomously

solicit information it needs from the teacher to resolve that uncertainty, thus a collaborator

in the learning.

Figure 6.1: Example learning interation between robot and human partner for lunch packing task.

72

Student-driven agent learning has primarily been encompassed by the field of active

learning (AL). Using AL techniques, an agent autonomously selects unlabeled training

examples, based upon predetermined selection criteria, and queries an oracle for correct

labels [4, 17]. In high-level task LfD, related literature has focused on learning an optimal

policy for imitating a human demonstrator’s behavior [6, 7], symbol grounding [9, 10], and

inferring task constraints [11]. Importantly, the previous work has primarily focused on

making one specific type of AL query towards generalization along that dimension of the

task (e.g. taking the optimal action in a state). However, there is a wealth of information

an agent can acquire from a human’s domain knowledge. And proficient learners, like

humans, combine information rather than simply focusing on one type of question. This

work is the first to contribute algorithms for enabling an AL agent to arbitrate between

diverse types of queries, with the goal of autonomously gathering both informative features

and representative instances from the human teacher.

In this work, AL is used to solve a task-situated symbol grounding problem. Symbol

grounding is the problem of mapping symbolic representations (labels, concepts) to con-

structs in the physical world [14]. Assuming no prior knowledge, the robotic learning agent

is given a task (e.g. serving pasta) and with it, task-relevant concepts (e.g. cooking pot,

pasta sauce) it must ground, in order to later perform the task in the situated environment.

The agent learns to ground the concepts by actively querying its human partner.

The primary contributions of the work are (1) investigating whether enabling a learn-

ing agent with strategies for arbitrating between diverse types of AL queries improves

learning performance, (2) exploring the design of rule-based (RB) and decision-theoretic

(DT) arbitration strategies that enable the agent to acquire and appropriately prioritize fea-

ture and instance information useful for the given task, and (3) analyzing the tradeoffs

between rule-based and decision-theoretic strategies with respect to learning performance

in the agent’s situated environment. We conducted an experiment comparing five query

arbitration strategies, each gathering both feature and instance information by employing

73

multiple query types, against two baseline approaches for making requests that each only

obtain training instances by employing queries of one type. The evaluation was conducted

on two tasks consisting of different computer vision datasets. Our findings showed that

all RB and DT strategies outperformed both baselines on both tasks. We also found the

DT strategy was able to consistently perform at least as well as all RB strategies but had

an advantage in that it could additionally reason about when to make queries. Thus in

the task where environmental change was both more gradual and substantial, similar to

many real-world environments, the DT strategy statistically significantly outperformed all

other strategies by its ability to adapt to the rate of environmental change and distribute

its questions over time, thereby minimizing uninformative requests and acquiring a more

representative training sample than any other strategy.

6.2 Related Work

As motivated in the introduction, we are interested in a self-driven learning agent who can

leverage the expertise of its human partner in order to acquire the information it needs,

by asking questions. Within machine learning literature, this is primarily addressed by

AL. Our work is inspired by the scenario of a robot assistant able to acquire groundings

necessary for later performing a task in the situated environment. For task learning, AL

can enable a robot to both resolve unintended ambiguities during the learning process and

explore unseen parts of the state space, in order to create a more generalized task repre-

sentation. Related work on AL for robots has explored the learning of low-level action

controllers [22, 23, 24], an optimal policy towards the end of imitating a human demon-

strator’s behavior [6, 7], grounding of goal state symbols [10], inferring task sequencing

constraints [11], and retrieval of objects by the use of curiosity in human-robot dialog [29].

There has also been related work on strategies for introspective and extrospective detec-

tion and communication of the learner’s knowledge gaps [32]. All of this previous work

however has focused on asking one specific type of query towards generalization along that

74

dimension of the task.

More closely aligned work includes the proposal of a framework with three types of

embodied queries: label, demonstration, and feature queries. It characterizes the value

of each in the context of learning lower-level motion trajectories [12]. Yet this work by

Cakmak and Thomaz does not include arbitration between the query types, and the entire

framework has not yet been applied to the domain of high-level task learning. Additional

work within the robotics community looks at requesting feature information from a user.

Rosenthal et. al. [72] recommend feature selection as a specific aspect which should be

included when asking a question, in order to provide transparency to the human partner;

however it does not include an algorithm for enabling the agent to autonomously reason

about when to request feature information. Bullard et. al. [81] compare five different

approaches for eliciting informative feature subsets from a human teacher and provide in-

sights about the most effective ways to request features from the teacher. Though we can

leverage insights from the findings of both, the contribution of this work is in arbitrating

between several types of AL queries within one coherent questioning framework, such that

the learning agent is able to reason about both employing multiple types of questions and

acquiring diverse types of information from its human partner.

6.3 Problem Formulation and Overview

In our problem formulation, the AL agent must solve a task-situated symbol grounding

problem, defined by [82], in which it must map abstract object symbols to perceptual input

associated with physical entities in the agent’s environment. Given a set of objects from a

scene in the agent’s purview, each object instance is represented by a feature vector x =<

f1... fm >. Instances are modeled by the superset of features F extracted from the robot’s

sensors (e.g. color, height). A set of binary classifiers, one for each symbol y ∈ Y , the set

of object symbols, each take as input an instance x and produce a degree of confidence

p(y|x) = [0,1] that x has label y. For each symbol to be learned, a binary Gaussian process

75

classifier with a radial basis function kernel is trained. This representation was selected

because of its efficacy in producing probabilistic predictions of unlabeled instances given

only sparse training data.

6.3.1 Query Types

To acquire input data, the learning agent must query the human teacher. We utilize three

types of candidate queries, which map to two different types of input data to be processed

by the symbol grounding models: (1) instances and (2) features. Figure 7.1 illustrates what

type of input data each AL query type provides.

Figure 6.2: High-level system diagram mapping query types to type of input each provides and
system modules processing the data.

Demonstration Queries

Demonstration (or demo) queries (DQ), analogous to active class selection [83], involve

the learner requesting a new demonstration of how a concept (symbol) is embodied in the

physical world. DQs provide new instances to the system with each demonstration selected

by the teacher; the learner is responsible for communicating which symbol it requires a

demonstration of.

76

Label Queries

Label queries (LQ), are synonymous to membership or instance queries extensively ex-

plored in AL literature [16, 17, 9, 10, 84]. The learner selects an unlabeled instance, based

upon predefined selection criteria, and requests the correct label from the teacher. LQs pro-

vide new instances to the system as well, but the instances have been specifically targeted

and selected by the learner.

Feature Subset Queries

Feature subset queries (FSQ) involve the learner requesting a subset of features useful

for discriminating between the task-relevant classes; the teacher selects the features. We

employ the human feature selection (HFS) approach introduced in prior work and found to

be most effective in eliciting feature subsets from humans [81].

6.3.2 Learning Episode

The agent uses a single querying strategy σ̂ throughout the entire learning episode. The

episode begins with the teacher specifying the task and all relevant symbols to be grounded.

At each turn t in the episode, the learner observes the state of the world, extracting percep-

tual input for all objects in the scene. The set of candidate queries consists of (a) one DQ

associated with each symbol classifier, (b) one LQ for each object in the scene, and (c) one

FSQ, which we constrain to a one-time query, since the answer is not expected to change

over time. The learner uses σ̂ to select a query to make at t, makes the query, then receives

teacher feedback. If it receives a new instance, the instance is added to the training set of

every symbol classifier (either as a positive or negative example). If provided with a subset

of features, it updates all classifiers y ∈ Y to only consider human selected features from

that point in the episode. Lastly, the agent checks stopping criteria to determine whether to

continue or end the episode.

77

6.4 Querying Strategies

Our goal was to assess the impact of three separate aspects on the agent’s ability to learn

the task-relevant concepts: (1) the ability to acquire diverse types of information, (2) the

assignment of priorities to the query types, and (3) the ability to determine when to ask

questions. Towards that end, we explore (1) two baseline strategies each making queries of

one type, (2) random selection between queries of diverse types, and (3) two categories of

experimental strategies for arbitration (rule-based and decision-theoretic).

6.4.1 Baseline Query Selection

Each baseline strategy, employs one query type and acquires only training instances from

the teacher, as is typical in interactive learning. Neither has the ability to explicitly reason

about when to make queries; they simply acquire data at every turn, until the learning

episode concludes.

1. BL: passive (P) – Employing only DQs essentially reduces to the traditional LfD sce-

nario, or passive learning, whereby the teacher continually selects examples and the

learner passively observes.

2. BL: active (A) – Employing only LQs essentially reduces to traditional AL, whereby

the agent continually selects unlabeled instances according to predefined criteria (e.g.

uncertainty) and the teacher provides requested labels.

Passive learning is simulated using stratified random sampling from a generated task

dataset. Uncertainty sampling [16, 17] is used for the active baseline, measured as entropy

H of object instance x in the scene. It is computed by:

H(y|x) =−∑
y∈Y

Pθ (y|x)logPθ (y|x) (6.1)

78

6.4.2 Arbitration Strategies

The simplest arbitration strategy we employ is random query selection (R). Given candi-

date queries of all types, R simply randomly selects one, at each turn. After a feature subset

has been requested using HFS, it will select between only DQs and LQs. We validate this

strategy to differentiate the relative benefits of multiple query types from the ordering ef-

fects of the experimental arbitration strategies.

Our experimental approach is inspired by Dialog Management literature, which has tra-

ditionally employed rule-based and data-driven approaches for action selection. In keeping

with this, we explore two different classes of algorithms for the design of the experimental

arbitration strategies.

Experimental: Rule-Based Arbitration

The prioritization of query types for RB strategies follows from machine learning liter-

ature. The number of training examples required to learn an accurate model of a concept

increases exponentially with the number of features in the state space representation. Thus,

machine learning systems typically employ feature extraction as a preprocessing step be-

fore training ensues, to increase sample efficiency. Additionally, in AL systems, some

passive learning is often done first to obtain a small unbiased training sample for building

initial models of the concepts. Then LQs are made on the remaining unlabeled instances,

as selected by learner.

Based on these standard practices, we designed RB prioritization as follows: (1) request

for task features using HFS, (2) initial demonstrations given by teacher, (3) label requests

made by learner for refinement of initial symbol models. We investigate the following

rule-based strategies:

1. ARB: HFS + passive (HFS+P) – Imposes constraint that features must first be selected

by teacher, then passive learning ensues until termination of episode

79

2. ARB: HFS + active (HFS+A) – Imposes constraint that features must first be selected

by teacher, then active learning ensues until termination of episode

3. ARB: HFS + P + A (All/CD) – Imposes constraint that features must first be selected

by teacher, then a minimal set of demonstrations provided by teacher, then refinement of

groundings is done through active learning. This strategy also tries to maintain a uniform

class distribution.

Experimental: Decision-Theoretic Arbitration

RB strategies explored provide the agent with a seemingly intuitive set of heuristics for

selecting a query type at each turn. However, they do not encapsulate any notion of agent

goals. They do not allow the agent to directly compare queries of different types and rea-

son about which most enables learning progress. And they do not allow the agent to reason

about whether to even make a query. Thus we formulate a decision-theoretic (DT) arbi-

tration framework which explicitly models the agent’s learning state, allows direct com-

parison of diverse query actions, and encodes agent learning goals within a multiattribute

objective function.

Let D be the set of training instances acquired by the agent, Y the set of task-relevant

symbols, X the set of scene objects (unlabeled instances), and Fy be set of features used to

represent symbol y. Learning state s is represented as the current estimate of the joint prob-

ability distribution between instances and symbols, where each element pxy is the posterior

probability that instance x is an example of symbol y. The current state s is dependent

on both D and Fy for each y ∈ Y . The robotic agent’s goal is to sufficiently ground and

generalize its model of each y ∈ Y .

With respect to the assessment of learning progress, it is not feasible to assume the agent

has access to a labeled test set that it can use to evaluate its current performance. Thus the

agent needs a different way to both evaluate a candidate query action a and recognize when

no query will help it to make it progress towards its learning goals. The expected utility of

80

each candidate a ∈ A is computed as a linear combination of two goals: (1) maximization

of each symbol classifier’s ability to discriminate aptly, and (2) minimization of selection

bias in the training sample acquired.

1. Average Classifier Discriminability (ACD) – Ascertains ability of symbol classifiers to

differentiate between most probable and least probable examples of their class. It em-

ploys the function:

ACD(s) =
1
|Y | ∑y∈Y

[ps(y|xmax)− ps(y|xmin)]

where ps represents the probabilistic prediction for y in the current state s, and xmax

and xmin represent the instances in the scene predicted to be the most and least probable

examples of class y, respectively. ACD value should increase over the course of the

learning episode, indicating that the symbol classifiers are improving in their ability to

differentiate between examples in X .

2. Class Distribution Uniformity (CDU) – Assesses selection bias in the training sample,

resulting from the agent collecting a sample unrepresentative of the underlying distri-

bution. We assume a uniform distribution of symbol classes should be acquired by the

agent so as not to bias it towards any task-relevant object, however the formula can be

adapted for a nonuniform distribution as well. CDU employs the following function:

CDU(s) =
|Dymin,s|
|Dymax,s|

where Dymax,s and Dymin,s are each subsets of the training sample. They represent the

subsets of positive examples for ymax and ymin, the symbols most and least represented

in the training sample at state s. This value is maximal when the class distribution is

uniform.

81

Combining the above metrics, utility of s is computed as:

U(s) = w1ACD(s)+w2CDU(s) (6.2)

To select an optimal query action a∗, the agent computes the expected utility (EU) of taking

each a ∈ A, the set of candidate actions, and takes an argmax. EU is computed as

EU(a|D,X ,Y,F) = ∑
s′

U(s′)∗P(s′|a,D,X ,Y,F) (6.3)

where s′ is a candidate next state resulting from taking a, dependent upon teacher feedback.

Importantly, the agent’s decision rule is to only take action a∗ if EU(a∗)>U(s). Else, the

agent makes no query at turn t. Intuitively, this suggests a query should only be made if is

expected to improve the state of the learning, i.e. engender learning progress.

To assess a DQ for symbol ŷ, the agent simulates the set of plausible responses by

the teacher. Given the agent has requested a demonstration of ŷ, it assumes the teacher

will draw the demonstration from X . Thus ∀x ∈ X , it simulates a resulting state s′ by

adding labeled instance < x, ŷ > to D and computing the U(s′) according to Equation 7.2.

We approximate the probability of s′ occurring (i.e. the teacher providing x as a positive

example of ŷ) as p(x|ŷ).

To assess a LQ for instance x̂, the agent again simulates the set of plausible responses

by the teacher. Given the agent has requested a label for x̂, it assumes the teacher will

provide it a label from Y . Thus ∀y ∈ Y , it simulates a resulting state s′ by adding labeled

instance < x̂,y > to D and computes the U(s′) according to Equation 7.2. We approximate

the probability of state s′ occurring (i.e. the teacher providing y as a label for x̂) as p(y|x̂).

To assess an FSQ, it is too computationally expensive to simulate all feature subsets the

teacher could possibly provide, since there are 2|F | candidate subsets. Thus, to substantially

prune the search space, the agent can use feature subsets outputted by the computational

feature selectors of each y ∈ Y . These subsets are the best approximates it currently has

82

for informative features, and prior work has shown that given task features are intuitive,

HFS is at least as good as computational feature selection [81]. Since we assume task

features are semantically interpretable by a human, the agent can expect the feature subset

it would receive to be at least as good as those outputted by computational methods. Thus,

the agent simulates the set of plausible responses by the teacher with the computational

feature subsets generated. Utility for an FSQ is computed as follows: ∀y ∈ Y , it simulates

a resulting state s′ by changing Fy to Fy,c for each y ∈ Y , where Fy,c is the computational

feature subset computed for symbol y. Thus it retrains all symbol classifiers, given D,

but with Fy,c as the underlying representation. We approximate the probability of state s′

occurring (i.e. the teacher providing feature subset Fy,c) as 1/|Y |, a uniform distribution

over the computational feature subsets generated by the symbol models.

6.5 Evaluation

Given the research questions being explored, we evaluated three hypotheses: (1) arbitration

strategies will outperform baseline strategies since they acquire both informative features

and training instances from humans domain experts, (2) prioritizing the acquisition of fea-

ture data over instances will result in more efficient learning, and (3) DT arbitration will

better adapt within dynamic environments since it additionally reasons about when to make

queries.

To evaluate all strategies, we conducted an experiment with two different tasks: (1)

a pack-luncbox task and (2) a prepare-lunch task. Each task uses the same four object

symbols: main dish, snack, fruit, and beverage. However, the task datasets have different

properties and were created from different image datasets. Each σ ∈ Σ is evaluated using

two metrics: learning accuracy (how well agent identifies unseen examples of each symbol)

and sample efficiency (number of questions needed to sufficiently ground all symbols).

83

(a) Pasta
(state:in box)

(b) Pasta
(state:in pot)

(c) Pasta
(state:in bowl)

(d) Banana
(state:bunch)

(e) Banana
(state:single)

(f) Banana
(state:sliced)

Figure 6.3: Illustration of object state changes for main dish and fruit objects classes in
prepare-lunch task.

6.5.1 Data Collection

The pack-lunchbox task assumes all groundings remain static, which means the way the

object is embodied in the world does not change. The main dishes (instant noodles) are

always packaged, the beverages (water and soda cans) remain bottled or canned, the fruit

(apples, oranges, peaches, pears) is whole and ripe, and the snacks (food bags, e.g. chips)

remain closed. Data for this task was collected from the University of Washington RGB-

Dataset of common household objects [77]. The image dataset includes over 200,000 ob-

ject images in total, encompassing over 300 objects organized into 51 categories (e.g. soda

can), with multiple object instances per category (e.g. pepsi can, mountain dew can). For

each object instance, there are several hundred images, captured from three camera view-

points; a small subset of object instances are additionally captured under different light-

ing conditions. For the pack-lunchbox task, we only consider object instances relevant to

the symbols being grounded. Given images of object instances from the UW dataset, we

84

generated five disjoint training datasets for the pack-lunchbox task and one hold-out test

dataset, each training dataset consisting of n = 3200 images and the test dataset consist-

ing of n = 800 images. All datasets contain images of the same set of task-relevant object

instances. For each dataset, stratified random sampling without replacement was used to

generate a uniform class distribution.

In the prepare-lunch task, some objects change state, presumably as lunch is being

prepared. The motivation for this is even within the same environment, groundings for a

particular symbol can change over time (e.g. an apple transitioning from whole to sliced,

or pasta going from being packaged in a box to being served in a bowl). This property of

dynamically changing groundings is an important part of our problem domain and is thus

explored in the second task. Towards that end, we varied the states of two objects symbols

(main dish and fruit) and allowed the other two to remain static (beverages and snacks).

Figure 7.2 illustrates changes that could reasonably occur as the task is being performed.

Data collection was done using a Kinect RGB-D sensor on our mobile manipulator

robot platform. The sensor is mounted on the head of the robot and was angled to look

down at the robot’s workspace for taking color and depth images of each object. As data

was being collected, the orientation of each object instance was systematically varied, and

each object instance was also moved to various positions around the workspace to create

different lighting angles. A total of approximately 200 images were taken, four object

categories which decompose into 14 different object instances: 3 boxes of pasta, 4 brands

of chips, 3 types of fruit, and 4 beverages. From the image dataset created, train and test

datasets for the task were generated so as to ensure a representative sample of the object

states collected in the data. Given that we aimed for a uniform distribution of classes and

the same underlying distribution of object instances in each dataset, not all images were

used. The training dataset for the prepare-lunch task contained n = 80 images and the test

dataset contained n = 40 images. For this task, since the number of images of transformed

objects taken from our robot was several orders of magnitude smaller than the UW dataset,

85

we seeded each training dataset with the same set of images but added Gaussian noise to

the extracted features; we also added Gaussian noise to simulated features for both task

datasets. We again generated five training datasets for the second task. For both tasks, the

training and test datasets generated are disjoint.

6.5.2 Sensory Input

Since our work is intended for a robotic agent, we collected real-world vision data from a

robot’s camera1, as well as simulated multi-modal feature information to represent features

that would be extracted from other robot sensors2, resulting in 90 low level features in total.

Thus for each object in the scene, F is computed based upon perceptual information taken

from multiple robot sensors.

6.5.3 Experimental Design

In designing experiments, the agent should be provided with perceptual input that simu-

lates a robotics domain. Thus, we had two goals: (1) since a robot’s perceptual system

typically outputs one feature vector per cluster in the scene, the system is designed to

randomly sample one image per scene object from the specified task dataset each time a

new set of observations is generated and (2) since robots typically operate in dynamically

changing environments, the system samples a new set of observations every r turns in the

learning episode, where r represents the rate of environmental change. For the task where

groundings remain static, environmental changes include only viewpoint and/or lighting.

Groundings changing over time (Figure 7.2) means environmental changes may also in-

clude physical object state change. At each turn t, X contains only one observation (image)

1object bounding box position, orientation on table, color, size dimensions, area, volume, aspect ratio,
visual texture, compactness of object’s point cloud, and density of point cloud contour

2object’s location relative to interest points in the environment (e.g. counter top, stove, refrigerator,
pantry), the object‘s location relative to the robot base, absolute location of robot’s base in the environment,
location of the robot‘s base with respect to the counter top, the robot‘s joint positions for each arm, pose of
the robot’s hands, robot‘s hand states (open vs closed), weight of the object, and max/min/average volume of
noise in the environment over duration of learning episode.

86

of each object in the scene. To simulate environmental change, the perceptual system gen-

erates a new set of observations. Else, it outputs the set of observations from t−1. Given X ,

the agent decides whether to query, then updates and evaluates all symbol models following

feedback given. The teacher for all experiments was one of the authors.

6.6 Results

We compare learning accuracy resulting from employing each of the different questioning

strategies. To test each strategy σ ∈ Σ, learning accuracy is computed using:

E[AD(σ)]≈ 1
k

k

∑
i=1

1
n ∑

x∈Di

[1−δ (hσ
i (x),y)] (6.4)

where E is the expected value of the learning accuracy using σ on training dataset Di

with respect to distribution D, hσ
i (x) is the hypothesis of the learner using σ trained on Di

then tested on instance x in the test dataset, y is the ground truth label for x, and the quantity

δ (hσ
i (x),y) is 1 if hσ

i (x) 6= y and 0 otherwise. Also, n is the number of test instances in

each task test dataset and k is the number of task training datasets used. For both tasks,

k = 5; n = 800 for pack-lunchbox task and n = 40 for prepare-lunch task.

6.6.1 Learning Static Groundings

Figures 6.4 and 7.4 show learning accuracy for each σ ∈ Σ in the pack-lunchbox and

prepare-lunch tasks respectively. Each σ was given a 40 question budget in the former

and 60 question budget in the latter since it is a harder learning problem. We use the Mann-

Whitney U-test to compute statistical significance comparisons for each pair of strategies.

Our first hypothesis was that strategies gathering both feature and instance information

will outperform baselines acquiring only instances. Our resulting learning curves support

this hypothesis for all experimental strategies (i.e. rule-based and decision-theoretic), with

respect to both learning accuracy and number of questions necessary for learning perfor-

87

(a) Pack Lunchbox Task

(b) Performance after 20 questions

Figure 6.4: (a) Accuracy of all strategies for pack-lunchbox task, as a function of number of
questions asked. Baseline approaches use computational feature selection; experimental strategies
request human-selected features. (b) Comparison of accuracy once learning has stabilized for best

strategies (after 20 questions).

mance to stabilize. For the pack-lunchbox task (Figure 6.4), learning performance for

all experimental strategies begins to stabilize after approximately 20 questions have been

asked, whereas performance does not stabilize for the baseline strategies until approxi-

88

(a) Prepare Lunch Task
(rapidly changing environment)

(b) Prepare Lunch Task
(gradually changing environment)

Figure 6.5: Accuracy of all strategies for prepare-lunch task, as a function of number of questions
asked. Baseline approaches use computational feature selection; experimental strategies request
human-selected features. Performance under both (a) rapid change (every turn) and (b) gradual

change (every 20 turns).

mately 40 questions have been asked. And the baselines still require additional questions

to reach the performance of the experimental strategies. Thus on the easier learning task,

the experimental strategies are able to sufficiently learn the task-relevant concepts with less

89

(a) Performance after 50 questions
(rapidly changing environment)

(b) Performance after 50 questions
(gradually changing environment)

Figure 6.6: Accuracy for prepare-lunch task when learning stabilized for best questioning strategy
(after 50 questions), as denoted by the vertical red bars on learning curves. Performance under (a)

rapid change (every turn) and (b) gradual change (every 20 turns)

than half the number of questions. For the prepare-lunch task (Figure 7.4), all arbitration

strategies significantly outperform both baseline strategies throughout the entire duration of

the learning episodes tested, the random strategy outperforms the baselines for a little more

than half of the episode, and the rate of increase for the baseline strategies is very gradual.

Thus we do not expect learning performance to stabilize for any of the baseline learners

on the more difficult learning task until well after any of the learners using an arbitration

strategy conclude their episodes.

The second hypothesis being tested was prioritization of a feature subset request over

instance acquisition, imposed by experimental strategies, would result in more efficient

learning, as compared to a random arbitrator, which also combines all query types but with

no apparent strategy. We found that on average, the random strategy seems to perform on

par with the two baseline strategies incorporating only one query type, in the pack-luncbox

task, which means it takes much longer to learn the concepts than experimental arbitration

strategies for this task. This supports our hypothesis. However, random is able to perform

comparably with the experimental arbitration strategies after approximately 30 questions

on average, in the prepare-lunch task. Thus all arbitration strategies sufficiently learn the

90

task after approximately 50 questions. This fails to support our hypothesis. To understand

why, we examined the episodes more closely. We found that in episodes where the ran-

dom learner requests human features, learning performance spikes and quickly becomes

comparable to that of the experimental strategies thereafter. In episodes where an FSQ is

not made, this essentially reduces to the case of randomly selecting between only DQs and

LQs; in those cases, we observed learning performance comparable to baseline strategies

for the duration of the episode. And since the pack-lunchbox task has over four times the

number of objects as the prepare-lunch task (55 vs 12), and thus considers approximately

four times the number of candidate queries per turn, R takes substantially longer to ran-

domly select an FSQ in pack-lunchbox than in prepare-lunch. This explains the significant

shift in the performance of R in the prepare-lunch task (Fig 7.4) but not in the pack-luncbox

task (Fig 6.4a); it takes much longer to happen in the latter case. The overall implication

is the acquisition of informative features has a significant impact on learning performance;

thus if the teacher can provide them, a feature subset request should be prioritized.

6.6.2 Learning Groundings that Change over Time

Our final hypothesis was DT arbitration would better adapt within dynamic environments

because it additionally reasons about when to make queries. We aimed to understand the

impact of the rate of environmental change on efficacy of arbitration strategy employed.

For this analysis, we focus on the prepare-lunch task since we found that rate of envi-

ronmental change did not noticeably impact learning performance for the pack-lunchbox

task, where groundings remain static. In the prepare-lunch task however, the environment

must change for the agent to encounter all possible symbol groundings, since the ground-

ings themselves change over time. Thus, we use prepare-lunch for exploration of dynamic

groundings.

Figures 6.5a and 6.5b compare learning performance per number of questions asked in

prepare-lunch, given both rapid and gradual environmental change. When rapid change

91

is occurring (every turn), performance ∀σ ∈ Σ stabilizes after approximately 50 questions.

As shown in Figure 6.6a, all RB strategies (magenta) and the DT strategy (black) perform

comparably. However, under gradually changing conditions (every 20 turns) 3, DT clearly

and significantly outperforms all other strategies for most of the learning episode. Figure

6.6b highlights this by comparing performance of all σ ∈ Σ at 50 questions, where DT

begins stabilizing. Here, all arbitration strategies statistically significantly outperform both

baselines. Moreover, DT statistically significantly outperforms all other strategies. In all

cases, p < .05.

To better understand why DT dominates in this setting, we examine Figure 6.7, which

visually depicts one learning episode for the DT strategy under both rapid and gradual en-

vironmental change. Accuracy is plotted as a function of time steps elapsed. Gray vertical

bars represent change occurring in the environment. The dots indicate time steps where

a query is made. The green vertical bar indicates when all other strategies complete their

episode (after 60 time steps) since all other σ ∈ Σ make a query at every time step until their

questioning budget is depleted. The red vertical bar indicates when the DT agent depletes

its questioning budget and completes its episode.

To further understand what is changing, we look at examples of world state for the Pre-

pare Lunch task-relevant groundings, in figures 6.8a, 6.8b, and 6.8c, respectively. Though

the instances taken as input to the system were actually sampled from the our task dataset,

the following images are shown simply to visually illustrate the individual state of each of

the objects in the agent’s scene, in the first three environmental states. That is, the state of

all of the objects corresponding to each of the first three gray vertical lines in the graphs.

Importantly, as described earlier, the fruit and the main dish classes are changing in sub-

stantial ways, representing an external change of state, due to the dynamic nature of the

environment in which the robotic agent exists.

Comparing the graphs, under gradual change, the DT agent makes less frequent re-

3Accompanying video at https://www.kaleshabullard.com/research/

92

(a) Rapid Environmental Change
(perturbation every turn)

(b) Gradual Environmental Change
(perturbation every 20 turns)

Figure 6.7: Learning Performance as Number of Time Steps in Learning Episode for
Decision-Theoretic Strategy

quests and distributes its questions over 374 time steps. Whereas under rapid change, it

takes only 112 time steps to complete its episode and still achieves comparable perfor-

mance. Even more compelling, under both conditions, its queries are generally made soon

after environmental change occurs. Thus illustrating its ability to be adaptive and respon-

sive to environmental change and successfully acquire a representative training sample,

independent of the rate of change. By comparison, since all other strategies make a query

93

at every time step, they end up acquiring many redundant training examples when the envi-

ronment is changing slowly. This leads to training samples that inadequately represent the

diversity (variance) in each task-relevant class and classifiers that perform sub-optimally on

a representative test set. In short, the DT agent allots its questioning budget more wisely,

so it is largely unaffected by the slowly changing conditions. In a long-term setting, this

is especially compelling because the agent can effectively reason about how to refine its

models as a function of change in the environment and does not have to rely on the user to

track the state of its knowledge over extended durations or decipher when and how to help

the agent update its models.

6.7 Discussion

From our experimental investigations, two key insights emerge: (1) enabling the learning

agent to ask questions that elicit diverse types of input (i.e. both informative features and

instances) and appropriately prioritize the query types consistently leads to more efficient

learning of the task-relevant concepts and (2) given a dynamic environment and constrained

questioning budget (typical in human settings), the DT strategy is able to make the best use

of the limited number of questions by deciphering both when to make a query and what

query to make.

The DT strategy is not without its limitations however. DQs are costly to a human

teacher because they often require more effort and time. The DT strategy used an average

of 32% and 38% of its questioning budget making demo requests for the pack-lunchbox and

prepare-lunch tasks respectively, in the rapidly changing environment, and an average of

52% for the prepare-lunch task in the gradually changing environment. This is substantially

more demo requests than the rule-based strategies, which are fixed at 8 DQs, independent

of the task, or on average 20% and 13% of the budget for the pack-lunchbox and prepare-

lunch tasks respectively. In future work, we are interested in exploring interaction-related

attributes in the DT strategy’s objective function, so it reasons about an optimal action,

94

considering both learning progress and social aspects of the interaction.

6.8 Conclusion

This work explored the use of rule-based and decision-theoretic strategies for arbitrating

between AL queries of different types, to enable a learning agent to acquire diverse types

of information (i.e. informative features and training instances) from a human teacher.

We conducted experiments on two different tasks under different environmental condi-

tions, comparing 4 experimental arbitration strategies against baselines of more traditional

passive and active learning, as well as random query selection. Overall, the questioning

strategies that enabled the learning agent to (1) extract diverse types of information and

(2) prioritize acquiring feature information early in the learning episode, more efficiently

learned to ground the task-relevant concepts. Moreover, given a dynamically changing

environment and constrained questioning budget, the DT strategy was the only strategy

able to acquire a representative training sample, independent of the rate of environmental

change, because it reasons about both what query to make and when to query. These find-

ings show that strategic arbitration eliciting diverse types of information from the teacher

is able to consistently maximize learning performance when grounding concepts.

95

(a) Environmental State 1

(b) Environmental State 2

(c) Environmental State 3

Figure 6.8: Prepare Lunch Task: depicts state of objects in three environmental scenes observed
by agent.

96

CHAPTER 7

ACTIVE CONCEPT GROUNDING WITHIN CONSTRAINED ENVIRONMENTS

THROUGH IMITATION OF AN EXPERT QUESTIONER

7.1 Introduction

Active learning (AL) agents are intended to learn from an oracle, often assumed to be hu-

man, but typically not designed for more realistic human environments. Understanding

environmental context however is especially important for robotic agents, generally as-

sumed to be colocated in the environment with the oracle or teacher. Within the robotics

community, there has been AL work aimed at understanding [85, 86, 87, 88], modeling [89,

31], and improving [9, 30] interaction with a human partner. An important aspect of the

interactive learning problem, this body of work focuses on interaction with the teacher, but

there still remains the open question of how the learner should integrate reasoning about

the environment in which it is situated.

Specifically, external constraints imposed on the learner may have direct implications

for solving the learning problem. For example, a teacher has only a limited time frame of

availability or limited cognitive resources that can be devoted to answering the learner’s

questions. This information may need to influence the learner’s questioning policy. How-

ever, the problem of trading off learning goals with environmental constraints is relatively

unexplored within AL literature, particularly when considering dynamic environments. Yet

this problem is important for learning in realistic human settings.

In this work, we investigate the question of how to enable an active learner to reason

about its learning objectives within a dynamically changing environment while concur-

rently considering time and resource constraints provided for solving the learning problem.

We use a decision-theoretic approach to active learning, whereby the individual decision

97

Figure 7.1: Learning system diagram, illustrating how each active learning strategy
performs query selection.

criteria (or decision features) within the objective function are hand designed and include

both task-centric and environment-centric features. Nonetheless, since the learning agent

must consider multiple and diverse decision criteria, it becomes difficult to manually tune

the individual objectives. Thus we propose imitation of an expert questioner for learning to

weight the decision features. Our approach employs Inverse Reinforcement Learning (IRL)

for inferring weights of the objective function from demonstrations of an expert policy.

In the experiments conducted, the agent is given a concept learning problem that it must

use active learning to solve, under different environmentally constrained conditions. This

work makes the following contributions:

• first AL work to reason about environmental constraints within the objective function

of the learner

• first AL work to use imitation learning for mimicking the policy of an expert ques-

tioner

We evaluate efficacy using two separate task datasets and show that environmentally-

aware reasoning allows our algorithm to significantly outperform an established AL base-

line of uncertainty sampling and task-centric questioning strategies examined.

98

7.2 Related Work

Active Learning encompasses an extensive body of literature, spanning across several prob-

lem domains. We focus here on the most relevant work within the broader space, active

learning for robots and embodied artificial agents. Most literature in AL for robots solves

learning problems directly relevant to robotics domains: learning an expert policy to derive

desirable robot behavior [6, 7, 22, 12, 23, 25, 28, 26, 27], inferring sequencing constraints

on actions in a task [11, 31], and grounding task-relevant symbols or descriptions [9, 10,

29, 90, 30]. A key limitation however is current approaches only reason about the learn-

ing problem the agent must solve, but not time and resource constraints imposed by the

environment in which the agent is situated. In other words, in prior literature, the learner

typically uses an objective function to reason about its learning goals but does not addi-

tionally consider environmental constraints.

The most relevant prior work explored autonomous arbitration between multiple types

of active learning queries, acquiring both feature and instance input from the teacher, and

situated in dynamic environments [90]. A primary contribution of this work was an algo-

rithm for arbitration between diverse query types that could also adapt the frequency of its

questioning to the rate at which objects changed in its environment. Nonetheless, a key

limitation is the inability to reason about constraints imposed by the teacher or learning

environment. Thus, while able to adapt its questioning strategy to the rate of environmental

change, the learner has no mechanism for adapting its strategy to the query budget given or

amount of learning time allocated.

7.3 Problem Formulation and Approach

Symbol (or concept) grounding is the problem of mapping symbolic representations to con-

structs in the physical world [14]. Specifically, the agent must solve a task-situated concept

grounding problem, whereby it is given abstract task-relevant concepts to be perceptually

99

grounded in its environment, in a way appropriate for the task. For example, when learning

concepts for the serve breakfast task, eggs scrambled or sunny-side up would be a more

appropriate grounding than a dozen cartoned eggs.

We formalize the problem as follows: Given a set of objects X from a scene in the

agent’s purview taken at time t, each object instance x ∈ X is represented by a feature

vector xt =< f t
1... f

t
m >. We assume the agent has both exteroceptive and proprioceptive

sensors for perceiving its external environment and internal state. Each object instance

then is modeled by the superset of features F extracted from the agent’s sensors at t (e.g.

object height or color, position of robot base or end effector). A set of binary classifiers,

one for each symbol y ∈ Y , the set of object symbols, each take as input an instance x

and produce a degree of confidence p(y|x) = [0,1] that x has label y. For each symbol, a

Gaussian Process Classifier was trained. This representation was selected because it both

probabilistically models agent uncertainty and learns well from sparse data.

In dynamic environments, groundings also change over time and concept models must

be refined accordingly. This may include change in the physical object state (e.g. eggs go-

ing from being in a shell to scrambled) or objects being replaced within the same category

(e.g. breakfast beverage being served one day as coffee in a mug and another as orange

juice in a glass). Since it is unreasonable to expect a human partner to track the agent’s

knowledge over time, in a changing environment, we take an active concept grounding

approach.

7.3.1 Active Learning for Concept Grounding

Active Learning enables a learner to query an oracle or teacher for information about which

is has uncertainty. It typically assumes a query will be made at every turn and seeks to equip

the learner with a utility function for selecting an optimal query [16]. However, real world

environments often do not allow the learner unlimited queries or time for querying, and

simultaneously change over time. This means it is not always the best use of time and

100

resources to make a query at every time step, until the query budget is depleted. Thus,

employing a traditional AL strategy may not maximize learning in dynamically changing,

constrained environments, as shown by [90].

We present a decision-theoretic AL approach which extends prior work intended for dy-

namic environments [90]. In that work, the authors contributed a decision-theoretic frame-

work for arbitrating between multiple types of AL queries, acquiring both informative fea-

tures and representative training instances from a teacher. Building upon that framework,

our approach contributes a model that is able to reason about both the agent’s concept

learning goals and external time and resource constraints imposed on the agent. Specifi-

cally, the objective function of the learner is expanded to include decision criteria which

reason about environmental context. Equation 7.1 shows the learner’s objective function

used at each turn t to assess the expected utility (EU) of an action a, given the current

learning state st .

The learning state at t includes: {estimate of posterior probability distributions of y ∈

Y for all x ∈ X, interaction history, query budget, and teaching time allocation}. The

set of candidate actions At consist of demonstration queries for each of the task-relevant

concepts [DQ(y) ∀y ∈ Y], label queries for each object in the current scene [LQ(x) ∀x ∈ X],

a feature subset query [FSQ] to identify relevant features for discriminating between task

concepts, and a no query action [NQ]. Thus, there are |At |= |Y |+ |X|+2 candidate actions

from which the agent can choose at each turn t. Additionally, each of the query types is

associated with a cost, given a priori. The learner selects an optimal action a∗ as

a∗ = argmax
a

EU(a|st)

= argmax
a

∑
st+1

P(st+1|a,st) U(st+1)
(7.1)

where

U(s) = w1φ1(s)+w2φ2(s)+ ...+wnφn(s) (7.2)

101

The set of decision features φ ∈Φ used in computing U(s) comprise the representation

for the agent’s objective (decision) function and is primarily what distinguishes prior work

from the approaches introduced in this work. U(s) is represented as a function of decision

features φ : S→ [0,1]k, where k is number of decision criteria or individual objectives for

which the agent is optimizing.

Baseline Approaches

We employ two AL models from prior literature, as baselines for comparison: a standard

uncertainty sampling approach (U-sampling) and a state-of-the-art decision-theoretic ap-

proach for arbitrating between diverse query actions (DT-iros). Uncertainty sampling al-

gorithms are possibly the most commonly employed class of AL strategies in the literature

[16, 17]. They assume a single hypothesis θ and utilize the posterior probability distribu-

tion over labels y ∈ Y given unlabeled instance x, pθ (Y |x), in order to detect outliers or

instances closest to a decision boundary. Like other standard AL approaches, they query at

every turn, each time requesting a label for a maximally informative instance, based upon

predetermined selection criteria. A commonly used metric for uncertainty sampling is pre-

diction entropy: −∑y∈Y pθ (y|x) log pθ (y|x). We employ this as our standard AL baseline

(U-sampling).

Decision-theoretic approaches to active learning simulate all possible outcomes of each

candidate query action and optimize with respect to future expected utility. This work

builds from prior work employing decision theory to arbitrate between diverse types of

learning queries, including a supplemental no-query action [90]. The set of decision fea-

tures investigated were average classifier discriminability and class distribution uniformity.

Given a set of instances in the agent’s purview X and a task-relevant concept y, the clas-

sifier discriminability metric assesses the range of probabilities over the set of instances:

pθ (y|xmax)− pθ (y|xmin), where xmax and xmin are the model’s prediction of the most and

least probable examples of class y, respectively. Range is a standardized metric of statistical

102

dispersion; an average is taken over all y ∈ Y . Class distribution uniformity assesses selec-

tion bias in the training sample, due to an unrepresentative class distribution. It is a useful

decision feature in sparse data environments, as has traditionally been the assumption in

Learning from Demonstration settings, where the learner does not have sufficient evidence

to confidently infer the underlying distribution of classes. This metric incentivizes the

learner to minimize sample selection bias. Given this work also seeks to arbitrate between

all action types, we employ this previously published decision-theoretic objective function,

where the number of decision features k = 2, as our state-of-the-art baseline (DT-iros).

Experimental Approaches

We introduce two experimental questioning policies: a learning-centric model intended to

improve the state-of-the-art (DT-task) and an environmentally-aware active learner (DT-

task-env). For the learning-centric model, we propose two additional decision features

that we believe improves the performance of the originally published DT-iros algorithm,

even before consideration of environmental context: instance variation and label prediction

margin, defined by Equations 7.3 and 7.4 respectively.

IV (s) =
1
|Y | ∑y∈Y

σ(p(X|y))
E[p(X|y)]

(7.3)

PM(s) =
1
|X | ∑x∈X

pθ1(y1|x)− pθ2(y2|x) (7.4)

Instance variation is a standardized measure of statistical dispersion. Given a class y

and a set of scene instances X, it is a measure of relative standard deviation of the class

conditional distribution pθ (X|y). Intuitively, it attempts to assess each classifier’s ability to

recognize variation amongst the set of unlabelled instances.

In the context of concept learning, the class-conditional distribution p(X|y) can be

thought of as the likelihood of each unlabelled instance x ∈ X being selected as an exam-

103

ple of class y. Given that multiple, diverse instances within a scene may serve as positive

examples of a given class, it seems useful to employ decision features which approximate

the learner’s ability to recognize diversity amongst the set of unlabelled instances in its

purview. Because of this, both classifier discriminability and instance variation are mea-

sures of statistical dispersion, but along different dimensions. Whereas, classifier discrim-

inability is a measure of statistical dispersion over the likelihood of instances belonging

to a class, instance variation quantifies the statistical dispersion over the features values

of instances. The former rewards the learner for differentiating between the most proto-

typical and improbable examples of each class; the latter rewards the learner for recogniz-

ing greater variation between instances. Both decision features incentivize the selection

of queries which increase the learner’s recognition of the underlying diversity that exists

within the pool of unlabelled instances.

Given an unlabelled instance x and a distribution over class labels p(Y|x), label pre-

diction margin measures the difference between what the learner predicts to be the most

probable label y1 and second most probable label y2. Previously employed in AL literature

[16], it is a measure of uncertainty; as the margin increases, the learner is more confident

about its prediction. It is computed for all scene instances, then averaged. This decision

feature incentivizes accuracy in the class prediction for each unlabelled instance.

Thus, the first decision function proposed in this work (DT-task) subsumes the set of

decision features considered by DT-iros, considering four learning-centric criteria that each

optimize for different aspects of the concept learning problem.

The primary contribution of this work however is in the addition of environmental con-

text into the AL agent’s objective function. We introduce the following environmental

features:

• query budget consumption – measures the proportion of query budget consumed at

turn t, given the query history

• remaining time usage – measures the proportion of allocated time remaining after

104

turn t

• non-query time passed – measures the proportion of consecutive turns no query was

made within a sliding time window Tw; here the size of the time window is propor-

tional to the rate of environmental change; it is computed as tNQ =
nNQ
|Tw| ; tNQ→ 0 when

the learner has just queried and tNQ→ 1 when the learner has not queried throughout

the entire duration of the time window; intuitively this metric is intended to penalize

the agent for being too passive, in a dynamically changing environment

The environmentally-aware agent’s objective function (DT-task-env) is then composed

of a linear combination of seven decision features, a subset of which roughly attempt to esti-

mate progress towards learning goals (i.e. learning task centric) and the remaining features

intended to incentivize wise time and resource management (i.e. environment centric). All

decision-theoretic learners described can arbitrate between all communicative action types.

Given the different types of decision features being considered however, it is challeng-

ing to decipher how to trade them off (e.g. budget consumption versus prediction margin).

One key observation is humans can often intuitively reason about decision criteria that are

difficult to compare quantitatively; thus, we propose to observe the strategy of a human

expert questioner, given the same learning problem, and infer how the expert trades off the

given decision criteria.

7.3.2 Imitating an Expert Questioning Strategy

Imitation learning seeks to efficiently learn desired behavior by mimicking a domain expert

[18]. Within imitation learning literature, Inverse Reinforcement Learning (IRL) aims to

recover the expert’s reward (objective) function from demonstrations of a policy [91, 21].

We employ a state of the art IRL algorithm, maximum entropy IRL [92], to infer the weights

w ∈W of Equation 7.2, for the active learner’s decision features, ∀φ ∈Φ, as wielded by an

expert.

105

The maximum entropy loss function LME maximizes entropy of distributions over paths

followed by the expert, while satisfying the constraint that the learner’s decision feature

counts should ideally match those of the expert. The problem is formulated as follows:

Given φE(τ) ∀τ ∈ T demo, find an optimal weight vector w such that

w∗ = argmax
w

−∑
τ

p(τ|w) ln p(τ|w) (7.5)

subject to the constraint

E [φE(τ)] = E [φL(τ)] (7.6)

where φE(τ) and φL(τ) represent the feature counts of the expert and learner respec-

tively, for a trajectory τ . In our problem domain, a trajectory is a sequence of learning states

visited and communicative actions taken {s1,a1,s2,a2, ...sT ,aT} at each time step t <= T ,

the maximum number of iterations allowed in a learning episode.

Optimization using the maximum entropy loss LME(w) is equivalent to maximizing the

log likelihood of the expert demonstrations [92, 18]:

w∗ = argmax
w

LME(w)

= argmax
w

∑
τ

p(τ|w) ln
1

p(τ|w)

∝ argmax
w

∑
τ

p(τ|w)

w∗ ∝ argmax
w

∑
τ

ln p(τ|w)

Using this formulation, the gradient of the IRL loss, shown in Equation 7.7, is the dif-

ference between the empirical feature counts (demonstrated by the expert) and the expected

feature counts, computed from sample trajectories generated with w.

∇wLME = EπE [φE(τ)]−∑
τ

p(τ|w)φL(τ) (7.7)

106

We used an empirically determined maximum number of iterations as stopping criteria

for the IRL algorithm. Weights for the environmentally-aware active learner’s objective

function were learned offline and tested for generalization in AL episodes under different

environmental conditions.

7.3.3 Learning Episode

Figure 7.1 shows the high-level flow for the learning system. For each active learning

episode conducted, the task-relevant concepts and questioning strategy are given as input.

Within an episode, at each turn t, the agent perceives all objects in its purview, computes

its estimate of the posterior probability distributions p(y|x) ∀x,y to update learning state

st , determines the set of candidate actions At , computes EU(a|st) ∀a ∈ At , then takes an

optimal action a∗. The learning episode concludes once t = T .

7.4 Evaluation

This work explores an AL strategy designed to optimize for environmental constraints and

proposes an imitation learning approach for accomplishing this. Toward this end, we test

two hypotheses: (1) Reasoning additionally about environmental context can enable an AL

agent to adapt its questioning strategy and improve its learning performance under con-

strained conditions, and (2) Imitation Learning can be used to infer an expert’s strategy for

managing time and resources allocated to solve a given learning problem, then generalized

to other constrained environments. As illustrated in Figure 7.1, each of the questioning

strategies conduct their own learning episodes, during which binary classifiers are trained

for all task-relevant classes, based upon information gathered. We use recognition accu-

racy on hold-out test sets for assessing the concept models learned, given each questioning

strategy.

107

7.4.1 Experimental Design

In evaluating the AL approaches, we focus experiments on a concept grounding task in

a dynamic environment, under different environmentally constrained conditions. We also

examine performance on another task for generalization of the learned decision feature

weights across tasks. Both concept grounding tasks are given the same four abstract con-

cepts to ground (main dish, snack, fruit, and beverage), but are generated from different

object RGB-D datasets and represent different properties of dynamic change.

The prepare-lunch task, the most difficult of the two learning problems, is our focus; it

places emphasis on the same objects changing state, as one might expect over the course

of the task (e.g. pasta going from being in a box in the pantry to being cooked in a pot

to being served in bowl for lunch.) It was extracted from a local RGB-D object dataset

focused on state-change. Figure 7.2 shows an example of the type of dynamic change

the learner may expect to see in this task. In the second pack lunchbox task, objects do

not change state, but have greater within-category diversity. For example, the fruit class

contains apples, oranges, peaches, and pears, and the beverage class contains varieties of

both soda and water. This task was extracted from the University of Washington RGB-D

dataset of common household objects [77]. As both tasks are from prior literature, details

regarding data collection can be found in [90].

Since RGB-D datasets were being used for evaluation, in order to create a learning en-

vironment that more closely approximates real-world settings, we simulated multi-modal

features, representing features extracted from a robot’s other sensors1. Gaussian noise was

added to all simulated features since robot sensor data is typically noisy. We also simulated

dynamic change in the environment by sampling a new set of object images at a predeter-

mined rate, to represent the scene changing. At each turn t, O contains only one observation

1object’s location relative to interest points in the environment (e.g. counter top, stove, refrigerator,
pantry), the object‘s location relative to the robot base, absolute location of robot’s base in the environment,
location of the robot‘s base with respect to the counter top, the robot‘s joint positions for each arm, pose of
the robot’s hands, robot‘s hand states (open vs closed), weight of the object, and max/min/average volume of
noise in the environment over duration of learning episode

108

(a) Pasta
(state:in box)

(b) Pasta
(state:in pot)

(c) Pasta
(state:in bowl)

(d) Banana
(state:bunch)

(e) Banana
(state:single)

(f) Banana
(state:sliced)

Figure 7.2: Illustration of object state changes for main dish and fruit objects classes in
prepare-lunch task.

(image) of each object in the scene. To simulate environmental change, the perceptual sys-

tem generates a new set of observations. Else, it outputs the set of observations from t−1.

In the prepare-lunch task, objects can change state.

Using the complete RGB-D object datasets, we generated five smaller task training data

samples and one disjoint hold-out test sample for each task. Since the UW dataset is several

orders of magnitude larger than the local dataset created, the data sample sizes vary by task.

Each of the training and test task samples are 80 images and 40 images respectively for the

prepare-lunch task and 3200 images and 800 images respectively for the pack-lunchbox

task.

There are four AL algorithms being evaluated on each task: the uncertainty sam-

pling baseline (U-sampling), two task-centric decision-theoretic learners (DT-iros and DT-

task), and our experimental environmentally-aware decision-theoretic approach (DT-task-

env), which reasons about both learning objectives and environmental constraints.

109

(a) CONDITION 3: Constrained Time (b) CONDITION 4: Unconstrained

(c) COND 1: Constrained Time & Budget (d) CONDITION 2: Constrained Budget

Figure 7.3: Prepare Lunch Task. Shows performance (test accuracy with standard error)
for each AL strategy under different environmentally constrained conditions. Parameters

of allocated time and query budget imposed on the learner vary, with: (a) only time
constrained [budget: high (500), time: low (40)], (b) neither time nor query budget
constrained [budget: high (500), time: high (150)], (c) both time and query budget

constrained [budget: low (25), time: low (40)], and (d) only query budget constrained
[budget: low (25), time: high (150)].

For training of DT-task-env decision feature weights, an expert questioner was given a

very constrained query budget (15) and time allocation (30 turns) to ground the prepare-

lunch task concepts. During training, the environmental scene changed every 10 turns, and

major object state changes took place with each scene change; thus spreading the query

budget out over the allocated time period affords the opportunity to acquire a more diverse

and representative training sample. This was a key part of the strategy employed by the

expert used, which was one of the authors of this paper.

110

(a) CONDITION 1: Constrained Time & Budget

Figure 7.4: Pack Lunchbox Task. Shows performance (test accuracy with standard error)
on a separate task, under the most constrained experimental condition: both time and

query budget constrained.

The expert provided three demonstrations of questioning sessions (learning episodes)

in the training scenario. As part of the strategy demonstrated, the expert also always re-

quested relevant features for discriminating between concepts (FSQ) early in the learning

episode (within the first five turns), focused most queries on the least costly query type,

and focused on quickly acquiring representative training examples for each class. During

IRL training, the maximum number of iterations was set to 100, and we selected the set of

weights w∗ that performed best on the validation set. Qualitatively examining the rollouts

associated with w∗ under the training conditions, the behavior of the imitation learner was

able to closely match the expert’s questioning strategy. Environmental conditions were held

constant across demonstrations and IRL training. Values changed for testing were time and

budget allocation and frequency of environmental change.

7.4.2 Results

To test our hypotheses, we first investigated generalization to different environmentally

constrained conditions. The goal was to vary time on one axis and resources (query bud-

111

(a) Wise management of time and cognitive
resources, partner fully engaged with robot

(b) Wise usage of time while partner is present,
though partner is multitasking

(c) Robot continues to contemplate questions,
as partner finds ways to keep busy

(d) Missed opportunity to engage, as partner
appears increasingly bored

Figure 7.5: Juxtaposition of Human Partner Engagement, as a result of Robot’s Management of
Learning Session. This illustration is primarily to provide context for what the learning sessions

look like and why the problem of managing the learning interaction is important. In the top
images, the robot appears to be wisely managing its time with the human partner, though the

human has different amounts of cognitive resources available (comparing scenario (a) with (b)). In
both bottom images, by contrast, the robot appears not to be taking full advantage of the time

allocated with the human partner. On the left, the partner keeps busy by checking her cell phone,
but on the right is becoming increasingly bored as the robot seemingly continues to contemplate.

get) on the other axis. In order to have a feasible stopping point, we could not truly allow

unlimited time or query budget; however, as defined here, the constrained versus uncon-

strained parameters denote an order of magnitude difference in allocation. All action types

were assigned an a-priori cost, which is 2 for demo queries and feature subset queries, 1

for label queries, and 0 for no query. This can be assigned in any way desired, but for our

purposes, was intended to map roughly with the cognitive load required by the teacher in

answering a particular type of question. Figure 7.3 shows learning curves for each combi-

nation of time and resource parameters. For each task, learning curves are averaged over

5 runs, each run sampling from a different pre-generated task training data sample. Exam-

112

ining the subfigures: from left to right, time allocation is increased (from 40 to 150) and

from bottom to top, query budget is increased (from 25 to 500). Thus fig 7.3c is the most

constrained (budget 25, time 40) and most similar to the training scenario (budget 15, time

30). Overall, the left half roughly corresponds to the agent being given approximately 20

questions, assuming the most costly queries are minimized, whereas the right half corre-

sponds to the agent being given unlimited queries during the time allocated. In testing,

once a strategy has exceeded its query budget, it is no longer allowed to make queries, rep-

resenting complete resource consumption. Thus for the remainder of the episode, it must

select the no-query action at no cost. It should also be stated that we assume at most one

query per turn.

We used the Mann-Whitney U-test to perform pairwise statistical comparisons of our

experimental approach (DT-task-env) with each of the baseline approaches at the end of

the allocated learning time, for all four experimental conditions. A one-tailed test was con-

ducted, as the goal was to understand if the experimental environmentally-aware approach

improves performance over the baseline task-centric approaches to AL. In conditions 1, 3,

and 4, DT-task-env statistically outperforms all other approaches by the end of the learning

time. In condition 2, it statistically outperforms all approaches except DT-task, compared

to which it performs equivalently. Using the second (pack-lunchbox) task, we were able

to replicate our results in another domain. We only show the most constrained condition

(limited time and query budget) in Figure 7.4. Overall, there is a clear pattern. DT-task-env

always performs at least as well as the task-centric baselines but moreover dominates task-

centric approaches under most of the environmental conditions examined. This confirms

our second hypothesis that a questioning strategy learned through imitation of an expert

in one environment can be used to generalize to other constrained environments. Our first

hypothesis however is not supported by findings from Condition 2.

To better understand what behavior leads to these findings, we analyze learning episodes

from one training data sample under two different experimental conditions in Figure 7.6.

113

The dots represent points where queries were made for the given strategy. We find that

given a limited query budget and ample time (figure 7.6b), DT-task and DT-task-env em-

ploy very similar conservative strategies. Both use most of their budget closer to the be-

ginning of the episode, as they attempt to build initial concept models, but also attempt

to modulate budget consumption with rate of environmental change. However, when the

agent is allowed to ask unlimited queries given the same time frame (figure 7.6a), these

two strategies behave very differently. Whereas the task-centric learners employ exactly

the same strategy (because they have no ability to reason about environmental constraints),

DT-task-env employs a very liberal strategy. In fact, it makes at least an order of magnitude

more queries both than DT-task and DT-iros (134 versus 22 and 9), largely accounting for

its complete domination over the other strategies. Also notably, U-sampling asks a question

at every turn until it exceeds its budget, since it is able to modulate neither for environmen-

tal change nor for external constraints. It also does not have the capability to autonomously

select a feature subset query, so it must rely upon computational feature selection for solv-

ing its learning problem. The decision-theoretic approaches, by contrast, are able to reason

about and request an FSQ early in the episode, making them significantly more sample

efficient.

The key implication of all of the experimental findings is that the DT-task-env strategy

has the ability to effectively adapt its questioning behavior both to the rate of environmental

change (like DT-iros and DT-task) and to time and resource constraints imposed externally.

In more realistic environments, this is compelling as it gives human partners the capability

to specify their own time and cognitive load constraints, with the understanding that the

agent can integrate this knowledge into its reasoning about the learning task.

7.5 Conclusion

This work contributed a first exploration and novel computational approach for solving the

problem of active learning under externally imposed time and resource constraints. Imita-

114

tion of an expert questioner’s policy was used to learn to weight the diverse set of decision

criteria for an environmentally-aware active learner. Experiments were conducted under

various environmentally constrained conditions and on two concept learning tasks. Key

findings show the experimental approach presented statistically outperformed a standard

uncertainty sampling baseline and the strictly task-centric active learners under most envi-

ronmental conditions; thus representing a promising alternative for active learners in more

realistic human environments.

115

(a) CONDITION 4: Unconstrained

(b) CONDITION 2: Constrained Budget

Figure 7.6: Questioning Behavior of each Strategy in Prepare-Lunch Task for one training
sample. Dots indicate when a query is made.

116

CHAPTER 8

CONCLUSION AND OPEN QUESTIONS

This thesis can be partitioned into two high-level units. First, we sought to understand if

we could leverage interaction with a human agent to help a robotic agent solve the symbol

(or concept) grounding problem and how sample efficient the interactive learning process

was. Given that knowledge, we sought to enable the agent with algorithms to autonomously

guide its own learning process, by reasoning about its questioning policy for actively ac-

quiring the concept knowledge it aimed to learn.

Specifically, we set out to validate the claim: In the context of robot learning from

human demonstrations in changeable and resource-constrained environments, en-

abling the robot to actively elicit multiple types of information through questions,

and to reason about what question to ask and when, leads to improved learning per-

formance.

8.1 Summary of Thesis Contributions

Toward that end, this thesis has made the following contributions:

• Learning from Demonstration for Task-Situated Concept Grounding: Employed LfD

to perceptually ground object and semantic location symbols (concepts), associated

with abstract task recipes, in robot’s situated environment

• Concept Grounding using Human-Driven Feature Selection: Introduced human-driven

feature selection for robot task learning and several approaches for eliciting feature

information from human teachers

• Active Concept Grounding through Autonomous Arbitration of Diverse Query Types:

First to explore active learning algorithms for eliciting both feature and instance in-

117

formation from an oracle and introduced a decision-theoretic framework for arbitrat-

ing between diverse types of information, as well as inferring when to make queries

in a dynamically changing environment.

• Active Concept Grounding within Time and Resource Constrained Environments:

Contributed the first active learning algorithm for explicitly trading off learning ob-

jectives with environmental constraints externally imposed on the learner, and first

work to use imitation of an expert questioner to infer an active learning policy.

8.2 Open Questions

Yet, there are still many open questions that remain, especially if one important future goal

is to deploy an intelligent and curious information gathering agent capable of reasoning

about its own goals, and leveraging interaction towards accomplishing them. We categorize

the open challenges discussed into six broad categories:

8.2.1 Perception

The properties of environmental change captured by the object datasets used in this thesis

serve only as a proxy for partial observability encountered in the real world. Additionally,

the scenes considered by the agent were designed with simple object configurations, so

as to circumvent the complex scene segmentation problem, which is still an active area of

computational perception research. It follows then that one open question pertains to how

the queries for grounding concepts change when one considers more complex perceptual

data as input. For example, considering cluttered scenes, significant occlusion in scenes, or

even video feed where there is a continuous stream of dynamic change in the environment.

Another question that arises is how the problem changes considering pixel feature space.

118

8.2.2 Behavior Generation

The active learning models contributed in this thesis are intended for use by any type of ar-

tificial agent and thus agnostic to an agent’s embodiment. However, what an agent decides

to ask cannot always be decoupled from how it must use its embodiment to execute the

query. For example, query cost may increase if a query requires fine-grained manipulation

that is difficult for the agent to maneuver or simply takes a longer time to generate than

other queries. Ideally, this should be incorporated into the agent’s model or decision func-

tion. One question that arises then is how to incorporate additional costs associated with

time or energy expenditure of candidate behaviors that can be generated, given each query.

Other questions are (1) how to decipher the most appropriate behaviors to generate, given

a query, (2) how to evaluate behaviors generated, and (3) whether noise/errors in motion

planning and execution should be incorporated into the active learning model and if so,

how to do this in a principled and generalizable way.

8.2.3 Scale

The problem instances considered in this thesis contained a relatively small number of con-

cepts and objects; however, the active learning framework was designed to be independent

of the specific problem instantiation and applicable to the broader class of multiclass clas-

sification problems in sparse data environments. In fact, it is the case that concepts and

instances could be dynamically added or removed, even within the same learning episode.

Moreover, decision theory provides a principled and interpretable framework for making

decisions and has the following key advantages over other families of active learning ap-

proaches: (1) ability to directly compare utitlity across a diverse set of actions and (2)

ability to directly optimize for desired future outcomes, which often results in maximal

learning performance. One key challenge with decision-theoretic apporaches however is

how computationally intensive they are. The amount of deliberation necessary at each turn

is dependent upon the number of possible resulting new states, which is dervied from con-

119

sidering every feasible 〈query,response〉 combination and computing an expectation. So

one important question that arises is how to scale decision-theoretic approaches as the prob-

lem space grows (i.e. number of instances and concepts increase substantially). There is

also an important open question about how to speed up the deliberation process of the deci-

sion theoretic approaches explored in this thesis to run in ”interaction-time”, particularly as

the training sample size grows and retraining all classifiers at each turn, for every possible

outcome, becomes too computationally expensive. By ”interaction time”, we mean seem-

ingly natural timing given an online interaction with a human user. This largely mimics the

time one would expect a human to deliberate before asking a new question.

8.2.4 Information Gathering

Within the space of questioning for information gathering, it would be interesting to move

beyond queries currently considered by active learning literature and enable reasoning

about a richer space of queries. For example: queries that allow new features completely

unknown to the agent to be discovered, queries that synthesize new instances, queries that

test affordances of objects, or queries that request explanations from the teacher. Some of

the key challenges with expanding the types of queries considered by the agent are how

to represent these queries, how to predict candidate responses in order to reason about

possible outcomes, and how to incorporate knowledge acquired from each type of query.

Regarding the broader goal of information gathering, there is an interesting question

that arises about the combination of active learning and active perception. In the scenarios

considered in this thesis, the agent passively observes its environment and only actively

queries a human partner when confusion arises. But it would be even more powerful if the

agent could actively explore and perturb its environment in order to seek out additional ex-

amples not in its purview and actively find new candidate queries. This is especially true if

it needs to maximize the time frame for which it has access to the human. This would intro-

duce a tradeoff between exploration of its environment and exploration through querying

120

its human partner. This also expands the set of resources it must consider, e.g. constraints

on power consumption become more important as it actively navigates its world. Another

advantage of an information gathering framework that autonomously reasons about both

queries and environmental exploration is the opportunity to leverage the complimentary

fields of active learning and semi-supervised learning, towards solving the learning prob-

lem. Whereas active learning provides the agent with the capability to query an oracle for

labels to confusing unlabeled instances, semi-supervised learning focuses on extrapolating

from what it has already learned and independently finding new training instances amongst

the vast amounts of unlabeled data in its environment.

To build upon this further, if we aim to create a curious information gathering agent,

the field of computational curiosity has investigated several metrics for enabling an agent

with a curiosity-driven exploration policy. These include the metrics of novelty, surprise,

uncertainty, conflict, change, and complexity. So one interesting question is how employing

and combining subsets of these metrics for exploration would impact the behavior of the

agent. An agent can also exhibit both intrinsic and extrinsic motivations for curiosity. Thus,

there is also an inherent question about how one defines and enables an optimal curiosity-

driven robotic agent towards continual learning in physical environments, given that it is

capable of employing different faculties for information gathering and that it can optimize

for many different definitions of ”curious”.

8.2.5 Communication and Interaction

The active learning contributions within this thesis can be seen as enabling the agent to

reason about its communication policy, and to this end, are focused on questions of what to

communicate and when to communicate, given its goals. Another very interesting question

that naturally arises is: when the agent decides to make a query, how should it communicate

its intent? Since robots have embodiment, this is not only a question of natural language

generation, but also of natural non-verbal behavior generation and synchronization between

121

multiple modalities. With respect to language generation, an interesting direction might be

autonomous generation of explanations for questions that may seem redundant or would

otherwise raise questions in the mind of a user, as to the source of the agent’s uncertainty

or confusion. Explanation generation is less about communicating intent and more about

communicating internal state, which is also an important aspect of how to communicate in

a way that helps one achieve self-goals. Transparency of internal state can be important

for managing perception by and thus relationships with other agents. Thus accordingly,

the question of how also significantly impacts how sociable the agent will be perceived by

users and the overall usability of the system. Conducting user studies to understand these

dimensions also becomes important.

8.2.6 Multi-Agent Modeling

The decision-making framework used for the learning agent is designed for reasoning in

stochastic environments, and the objective function attempts to reason about uncertainty

in state, potentially deriving from partial observability or dynamic change in the environ-

ment. The framework assumes however that a transition model is provided (though only an

estimate that changes over time) and does not explicitly reason about other agents. These

are common assumptions in active learning literature. However, there are interesting re-

search questions that could be explored around explicitly modeling the human teacher. In

Dialogue research, much of the literature builds user models from dialogue or conversa-

tion datasets. Similarly, it might be interesting to have the agent model different teaching

strategies and automatically infer the strategy of the user, in order to better estimate the

informativeness of open-ended queries, e.g. demo queries, feature subset queries.

It might also be interesting to have the agent automatically infer time and query budget

constraints, based upon perceived social cues by the teacher. For example, if a person

continuously checks their watch, it suggests they have little time to continue devoting to

the interaction. Similarly, by tone of voice, an agent may be able to detect impatience or

122

annoyance on the part of the user, suggesting a reduced query budget. A key challenge here

becomes the recognition of relevant social cues and how to quantify those cues to predict

time and budget constraints, which serve as input to the decision-making algorithm.

8.2.7 Cognition

There are interesting open questions that lie mostly in the realm of cognition for the agent.

This thesis assumed the agent to be memoryless and for the active concept grounding work,

scenes with relevant instances were given to the agent, so it did not have to reason about

directing its own attention. It would be interesting to relax both of these assumptions

and explore how the problem changes with faculties for memory retrieval and attention

selection. Memory retrieval would be especially important if the agent were placed in a

longer term setting, where a primary goal would be lifelong learning across multiple tasks.

Attention selection is important for efficiently searching for instances of concepts in large

or complex environments or if employing active perception to explore the environment.

Finally, one very fascinating part of cognition is metacognition, and the problem of

lifelong learning provides a useful context for thinking about why this might be important.

Given that an agent has both long-term goals and short-term goals and is continually learn-

ing over the course of its lifetime, introspection is important. This could mean explicit

reasoning about its current policy’s success in achieving an identified goal or even which

goals are best for it to focus its attention on in the current context. For task-situated concept

learning, it would be interesting if an agent could reason about it’s current questioning pol-

icy with respect to its learning goals and determine how to modify its policy, if not effective

in achieving the goals. One example might be by adapting the weights of its decision fea-

tures online because certain features are more useful in the beginning of an episode, when

the agent is building initial models, but much less so and thus slowing learning, once it has

reasonable models and is only making refinements. Another example might be in the space

of goal reasoning and determining that it should context-switch or focus on a different set

123

of learning goals because it is now situated in a different part of the environment and is

unlikely to see instances of the concepts it was previously focused on. Though this is likely

the most abstract and ill posed of all open questions discussed, enabling a lifelong learning

agent to reason about its current policy given short-term goals as well as long-term learn-

ing goals and how to be intentional about adapting those is a critical component of artificial

general intelligence.

124

REFERENCES

[1] H Christensen, T Batzinger, K Bekris, K Bohringer, J Bordogna, G Bradski, O
Brock, J Burnstein, T Fuhlbrigge, R Eastman, et al., “A roadmap for us robotics:
From internet to robotics,” Computing Community Consortium and Computing Re-
search Association, Washington DC (US), 2009.

[2] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot learning
from demonstration,” Robotics and autonomous systems, vol. 57, no. 5, pp. 469–483,
2009.

[3] S. Chernova and A. L. Thomaz, Robot Learning from Human Demonstration. Mor-
gan and Claypool Publishers, 2014.

[4] B. Settles, “Active learning literature survey,” University of Wisconsin, Madison,
vol. 52, pp. 55–66, 2010.

[5] M. Cakmak, “Guided teaching interactions with robots: Embodied queries and teach-
ing heuristics,” PhD thesis, Georgia Institute of Technology, 2012.

[6] S. Chernova and M. Veloso, “Interactive policy learning through confidence-based
autonomy,” Journal of Artificial Intelligence Research, vol. 34, no. 1, p. 1, 2009.

[7] M. Lopes, F. Melo, and L. Montesano, “Active learning for reward estimation in
inverse reinforcement learning,” in Machine Learning and Knowledge Discovery in
Databases, Springer, 2009, pp. 31–46.

[8] R. D. King, K. E. Whelan, F. M. Jones, P. G. Reiser, C. H. Bryant, S. H. Muggle-
ton, D. B. Kell, and S. G. Oliver, “Functional genomic hypothesis generation and
experimentation by a robot scientist,” Nature, vol. 427, no. 6971, p. 247, 2004.

[9] C. Chao, M. Cakmak, and A. L. Thomaz, “Transparent active learning for robots,”
in ACM/IEEE Int. Conf. on Human-Robot Interaction, 2010, pp. 317–324.

[10] J. Kulick, M. Toussaint, T. Lang, and M. Lopes, “Active learning for teaching a robot
grounded relational symbols,” in Proceedings of the Twenty-Third international joint
conference on Artificial Intelligence, AAAI Press, 2013, pp. 1451–1457.

[11] B. Hayes and B. Scassellati, “Discovering task constraints through observation and
active learning,” in 2014 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
2014, pp. 4442–4449.

125

[12] M. Cakmak and A. L. Thomaz, “Designing robot learners that ask good questions,”
in ACM/IEEE Int Conf on Human-Robot Interaction, 2012, pp. 17–24.

[13] C. Chao, M. Cakmak, and A. L. Thomaz, “Towards grounding concepts for transfer
in goal learning from demonstration,” in Development and Learning (ICDL), 2011
IEEE International Conference on, IEEE, vol. 2, 2011, pp. 1–6.

[14] S. Harnad, “The symbol grounding problem,” Physica D: Nonlinear Phenomena,
vol. 42, no. 1, pp. 335–346, 1990.

[15] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” Jour-
nal of machine learning research, vol. 3, no. Mar, pp. 1157–1182, 2003.

[16] B. Settles, “Active learning,” Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning, vol. 6, no. 1, pp. 1–114, 2012.

[17] Y. Fu, X. Zhu, and B. Li, “A survey on instance selection for active learning,” Knowl-
edge and information systems, pp. 1–35, 2013.

[18] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters, et al., “An al-
gorithmic perspective on imitation learning,” Foundations and Trends® in Robotics,
vol. 7, no. 1-2, pp. 1–179, 2018.

[19] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach. Malaysia;
Pearson Education Limited, 2016.

[20] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[21] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforcement learn-
ing,” in Proceedings of the twenty-first international conference on Machine learn-
ing, ACM, 2004, p. 1.

[22] O. Kroemer, R. Detry, J. Piater, and J. Peters, “Combining active learning and reac-
tive control for robot grasping,” Robotics and Autonomous Systems, vol. 58, no. 9,
pp. 1105–1116, 2010.

[23] C. Daniel, M. Viering, J. Metz, O. Kroemer, and J. Peters, “Active reward learning,”
in Robotics: Science and Systems, 2014.

[24] E Gribovskaya, F. d’Halluin, and A. Billard, “An active learning interface for boot-
strapping robot’s generalization abilities in learning from demonstration,” in RSS
Workshop Towards Closing the Loop: Active Learning for Robotics, 2010.

126

[25] G. Maeda, M. Ewerton, T. Osa, B. Busch, and J. Peters, “Active incremental learning
of robot movement primitives,” 2017.

[26] N. Chen, A. Klushyn, A. Paraschos, D. Benbouzid, and P. Van der Smagt, “Active
learning based on data uncertainty and model sensitivity,” in 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), IEEE, 2018, pp. 1547–
1554.

[27] Y. Cui and S. Niekum, “Active reward learning from critiques,” in 2018 IEEE Inter-
national Conference on Robotics and Automation (ICRA), IEEE, 2018, pp. 6907–
6914.

[28] C. Basu, M. Singhal, and A. D. Dragan, “Learning from richer human guidance:
Augmenting comparison-based learning with feature queries,” in Proceedings of
the 2018 ACM/IEEE International Conference on Human-Robot Interaction, ACM,
2018, pp. 132–140.

[29] J. Thomason, A. Padmakumar, J. Sinapov, J. Hart, P. Stone, and R. J. Mooney, “Op-
portunistic active learning for grounding natural language descriptions,” in Confer-
ence on Robot Learning, 2017, pp. 67–76.

[30] M. Racca, A. Oulasvirta, and V. Kyrki, “Teacher-aware active robot learning,” in
Proceedings of the 2019 ACM/IEEE International Conference on Human-Robot In-
teraction, ACM, 2019.

[31] M. Racca and V. Kyrki, “Active robot learning for temporal task models,” in Pro-
ceedings of the 2018 ACM/IEEE International Conference on Human-Robot Inter-
action, ACM, 2018, pp. 123–131.

[32] M. Majnik, M. Kristan, and D. Skočaj, “Knowledge gap detection for interactive
learning of categorical knowledge,” 2013.

[33] Q. Wu and C. Miao, “Curiosity: From psychology to computation,” ACM Computing
Surveys (CSUR), vol. 46, no. 2, p. 18, 2013.

[34] L. Macedo and A. Cardoso, “Towards artificial forms of surprise and curiosity,”
in Proceedings of the European Conference on Cognitive Science, S. Bagnara, Ed,
Citeseer, 1999, pp. 139–144.

[35] P.-Y. Oudeyer, F. Kaplan, and V. V. Hafner, “Intrinsic motivation systems for au-
tonomous mental development,” IEEE transactions on evolutionary computation,
vol. 11, no. 2, pp. 265–286, 2007.

[36] J. Schmidhuber, “Curious model-building control systems,” in Neural Networks,
1991. 1991 IEEE International Joint Conference on, IEEE, 1991, pp. 1458–1463.

127

[37] T. B. Kashdan, P. Rose, and F. D. Fincham, “Curiosity and exploration: Facilitat-
ing positive subjective experiences and personal growth opportunities,” Journal of
personality assessment, vol. 82, no. 3, pp. 291–305, 2004.

[38] M. Tenorth and M. Beetz, “KnowRob – A Knowledge Processing Infrastructure for
Cognition-enabled Robots. Part 1: The KnowRob System,” International Journal of
Robotics Research (IJRR), 2013, Accepted for publication.

[39] M. Tenorth, A. C. Perzylo, R. Lafrenz, and M. Beetz, “Representation and exchange
of knowledge about actions, objects, and environments in the roboearth framework,”
Automation Science and Engineering, IEEE Transactions on, vol. 10, no. 3, pp. 643–
651, 2013.

[40] D. K. Misra, J. Sung, K. Lee, and A. Saxena, “Tell me dave: Context-sensitive
grounding of natural language to manipulation instructions,” in Proceedings of Robotics:
Science and Systems, Berkeley, USA, 2014.

[41] M. Bollini, S. Tellex, T. Thompson, N. Roy, and D. Rus, “Interpreting and executing
recipes with a cooking robot,” in Experimental Robotics, Springer, 2013, pp. 481–
495.

[42] D. K. Roy and A. P. Pentland, “Learning words from sights and sounds: A compu-
tational model,” Cognitive science, vol. 26, no. 1, pp. 113–146, 2002.

[43] C. Chao, M. Cakmak, and A. Thomaz, “Towards grounding concepts for transfer
in goal learning from demonstration,” in Proceedings of the Joint IEEE Interna-
tional Conference on Development and Learning and on Epigenetic Robotics (ICDL-
EpiRob), IEEE, vol. 2, 2011, pp. 1–6.

[44] R. Cubek, W. Ertel, and G. Palm, “High-level learning from demonstration with
conceptual spaces and subspace clustering,” in Robotics and Automation (ICRA),
2015 IEEE International Conference on, IEEE, 2015, pp. 2592–2597.

[45] G. Hovland, P. Sikka, and B. McCarragher, “Skill acquisition from human demon-
stration using a hidden markov model,” in Robotics and Automation, 1996. Proceed-
ings., 1996 IEEE International Conference on, Ieee, vol. 3, 1996, pp. 2706–2711.

[46] O. Jenkins, M. Mataric, and S. Weber, “Primitive-based movement classification for
humanoid imitation,” in Proceedings, First IEEE-RAS International Conference on
Humanoid Robotics (Humanoids-2000), 2000.

[47] S. Chernova and M. Veloso, “Interactive policy learning through confidence-based
autonomy,” Journal of Artificial Inelligence Research, vol. 34, no. 1, pp. 1–25, 2009.

128

[48] S. Calinon and A. Billard, “A probabilistic programming by demonstration frame-
work handling constraints in joint space and task space,” in Intelligent Robots and
Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, IEEE, 2008,
pp. 367–372.

[49] M. van Lent and J. E. Laird, “Learning procedural knowledge through observation,”
in K-CAP ’01: Proceedings of the 1st international conference on Knowledge cap-
ture, Victoria, British Columbia, Canada: ACM Press, 2001, pp. 179–186, ISBN:
1-58113-380-4.

[50] H. Veeraraghavan and M. Veloso, “Teaching sequential tasks with repetition through
demonstration (short paper),” in Proceedings of the International Conference on Au-
tonomous Agents and Multiagent Systems (AMMAS ’08), 2008.

[51] M. N. Nicolescu and M. J. Mataric, “Natural methods for robot task learning: In-
structive demonstrations, generalization and practice,” in Proceedings of the Second
International Joint Conference on Autonomous Agents and Multi-Agent Systems,
2003, pp. 241–248.

[52] S. Ekvall and D. Kragic, “Robot learning from demonstration: A task-level plan-
ning approach,” International Journal of Advanced Robotic Systems, vol. 5, no. 3,
pp. 223–234, 2008.

[53] B. Kuipers, “The spatial semantic hierarchy,” Artificial Intelligence, vol. 119, no. 1,
pp. 191–233, 2000.

[54] H. Zender, O. M. Mozos, P. Jensfelt, G.-J. Kruijff, and W. Burgard, “Conceptual
spatial representations for indoor mobile robots,” Robotics and Autonomous Systems,
vol. 56, no. 6, pp. 493–502, 2008.

[55] A. Pronobis and P. Jensfelt, “Large-scale semantic mapping and reasoning with het-
erogeneous modalities,” in Robotics and Automation (ICRA), 2012 IEEE Interna-
tional Conference on, IEEE, 2012, pp. 3515–3522.

[56] M. R. Walter, S. Hemachandra, B. Homberg, S. Tellex, and S. Teller, “Learning
semantic maps from natural language descriptions,” Robotics: Science and Systems,
2013.

[57] C. Diuk, L. Li, and B. R. Leffler, “The adaptive k-meteorologists problem and its
application to structure learning and feature selection in reinforcement learning,”
in Proceedings of the 26th Annual International Conference on Machine Learning,
ACM, 2009, pp. 249–256.

[58] D. Floreano, T. Kato, D. Marocco, and E. Sauser, “Coevolution of active vision and
feature selection,” Biological cybernetics, vol. 90, no. 3, pp. 218–228, 2004.

129

[59] S. Zhang, L. Xie, and M. D. Adams, “Entropy based feature selection scheme for
real time simultaneous localization and map building,” in Intelligent Robots and Sys-
tems, 2005.(IROS 2005). 2005 IEEE/RSJ International Conference on, IEEE, 2005,
pp. 1175–1180.

[60] D. Vasquez, B. Okal, and K. O. Arras, “Inverse reinforcement learning algorithms
and features for robot navigation in crowds: An experimental comparison,” in Intel-
ligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference
on, IEEE, 2014, pp. 1341–1346.

[61] S. Whiteson, P. Stone, K. O. Stanley, R. Miikkulainen, and N. Kohl, “Automatic
feature selection in neuroevolution,” in Proceedings of the 7th annual conference on
Genetic and evolutionary computation, ACM, 2005, pp. 1225–1232.

[62] S. Loscalzo, R. Wright, and L. Yu, “Predictive feature selection for genetic policy
search,” Autonomous Agents and Multi-Agent Systems, vol. 29, no. 5, pp. 754–786,
2015.

[63] M. Swangnetr and D. B. Kaber, “Emotional state classification in patient–robot in-
teraction using wavelet analysis and statistics-based feature selection,” IEEE Trans-
actions on Human-Machine Systems, vol. 43, no. 1, pp. 63–75, 2013.

[64] D. L. Vail and M. M. Veloso, “Feature selection for activity recognition in multi-
robot domains.,” in AAAI, vol. 8, 2008, pp. 1415–1420.

[65] M. Trincavelli and A. Loutfi, “Feature selection for gas identification with a mobile
robot,” in Robotics and Automation (ICRA), 2010 IEEE International Conference
on, IEEE, 2010, pp. 2852–2857.

[66] J.-H. Kim, S. Jo, and B. Y. Lattimer, “Feature selection for intelligent firefighting
robot classification of fire, smoke, and thermal reflections using thermal infrared
images,” Journal of Sensors, vol. 2016, 2016.

[67] L. Y. Chang, N. S. Pollard, T. M. Mitchell, and E. P. Xing, “Feature selection for
grasp recognition from optical markers,” in Intelligent Robots and Systems, 2007.
IROS 2007. IEEE/RSJ International Conference on, IEEE, 2007, pp. 2944–2950.

[68] A. Ramisa, G. Alenya, F. Moreno-Noguer, and C. Torras, “Using depth and appear-
ance features for informed robot grasping of highly wrinkled clothes,” in Robotics
and Automation (ICRA), 2012 IEEE International Conference on, IEEE, 2012, pp. 1703–
1708.

[69] J. Y. Zou, K. Chaudhuri, and A. T. Kalai, “Crowdsourcing feature discovery via
adaptively chosen comparisons,” arXiv preprint arXiv:1504.00064, 2015.

130

[70] D. Parikh and K. Grauman, “Interactively building a discriminative vocabulary of
nameable attributes,” in Computer Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on, IEEE, 2011, pp. 1681–1688.

[71] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth, “Describing objects by their at-
tributes,” in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on, IEEE, 2009, pp. 1778–1785.

[72] S. Rosenthal, A. K. Dey, and M. Veloso, “How robots’ questions affect the accu-
racy of the human responses,” in IEEE Int. Symp. on Robot and Human Interactive
Communication, IEEE, 2009, pp. 1137–1142.

[73] L. C. Cobo, P. Zang, C. L. Isbell Jr, and A. L. Thomaz, “Automatic state abstrac-
tion from demonstration,” in IJCAI Proceedings-International Joint Conference on
Artificial Intelligence, Citeseer, vol. 22, 2011, p. 1243.

[74] A. J. B. Trevor, S. Gedikli, R. B. Rusu, and H. I. Christensen, “Efficient organized
point cloud segmentation with connected components,” in 3rd Workshop on Seman-
tic Perception, Mapping and Exploration (SPME), Karlsruhe, Germany, 2013.

[75] A. L. Blum and P. Langley, “Selection of relevant features and examples in machine
learning,” Artificial intelligence, vol. 97, no. 1, pp. 245–271, 1997.

[76] R. Kohavi and G. H. John, “Wrappers for feature subset selection,” Artificial intelli-
gence, vol. 97, no. 1, pp. 273–324, 1997.

[77] K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale hierarchical multi-view rgb-d
object dataset,” in IEEE Int. Conf. on Robotics and Automation, 2011, pp. 1817–
1824.

[78] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The
weka data mining software: An update,” ACM SIGKDD explorations newsletter,
vol. 11, no. 1, pp. 10–18, 2009.

[79] M. A. Hall, “Correlation-based feature subset selection for machine learning,” PhD
thesis, University of Waikato, Hamilton, New Zealand, 1998.

[80] U. Berkeley, Intro to ai project 3: Reinforcement learning, 2014 (accessed 01-March-
2017).

[81] K. Bullard, S. Chernova, and A. L. Thomaz, “Human-driven feature selection for a
robotic agent learning classification tasks from demonstration,” in 2018 IEEE Inter-
national Conference on Robotics and Automation (ICRA), IEEE, 2018, pp. 6923–
6930.

131

[82] K. Bullard, B. Akgun, S. Chernova, and A. L. Thomaz, “Grounding action param-
eters from demonstration,” in 2016 25th IEEE International Symposium on Robot
and Human Interactive Communication (RO-MAN), IEEE, 2016, pp. 253–260.

[83] R. Lomasky, C. E. Brodley, M Aernecke, D. Walt, and M Friedl, “Active class selec-
tion,” in Machine learning: ECML 2007, Springer, 2007, pp. 640–647.

[84] S. Chernova and M. Veloso, “Multi-thresholded approach to demonstration selection
for interactive robot learning,” in ACM/IEEE Int. Conf. on Human robot interaction,
2008, pp. 225–232.

[85] M. Cakmak, C. Chao, and A. L. Thomaz, “Designing interactions for robot active
learners,” Autonomous Mental Development, IEEE Transactions on, vol. 2, no. 2,
pp. 108–118, 2010.

[86] W. B. Knox, P. Stone, and C. Breazeal, “Training a robot via human feedback: A case
study,” in International Conference on Social Robotics, Springer, 2013, pp. 460–
470.

[87] V. Gonzalez-Pacheco, M. Malfaz, A Castro-Gonzalez, J. C. Castillo, F Alonso, and
M. A. Salichs, “Analyzing the impact of different feature queries in active learning
for social robots,” International Journal of Social Robotics, pp. 1–14, 2018.

[88] K. Bullard, S. Chernova, and A. L. Thomaz, “Human-driven feature selection for a
robot learning classification tasks from demonstration,” in Robotics and Automation
(ICRA), 2018 IEEE International Conference on. IEEE, 2018, pp. 6923–6930.

[89] S. Rosenthal and M. Veloso, “Modeling humans as observation providers using
pomdps,” in RO-MAN, 2011 IEEE, IEEE, 2011, pp. 53–58.

[90] K. Bullard, A. L. Thomaz, and S. Chernova, “Towards intelligent arbitration of di-
verse active learning queries,” in 2018 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), IEEE, 2018, pp. 6049–6056.

[91] A. Y. Ng, S. J. Russell, et al., “Algorithms for inverse reinforcement learning.,” in
Icml, vol. 1, 2000, p. 2.

[92] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum entropy inverse
reinforcement learning.,” in AAAI, Chicago, IL, USA, vol. 8, 2008, pp. 1433–1438.

132

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Thesis Overview
	Contributions of Thesis Work
	Outline of Dissertation Document

	Background
	Problem Statement
	Learning from Demonstration
	Feature Selection
	Active Learning
	Inverse Reinforcement Learning
	Markov Decision Process
	Problem Statement

	Related Work
	Question-Asking for Robot Task Learning
	Active Robot Learning
	Computational Curiosity

	Interactive Symbol Grounding
	Interactive Feature Selection

	Learning from Demonstration for Task-Situated Concept Grounding
	Introduction
	Approach
	Representing Tasks and Environments
	Learning from Demonstration
	Building the Parameter Models
	Task Execution

	Evaluation
	Environmental Setup
	Task Environments
	Data Collection
	Evaluation Metrics

	Results
	Learning Model Parameters for a Specific Environment
	Transfer of Learned Models Between Environments

	Discussion
	Conclusion

	Concept Grounding using Human-Driven Feature Selection
	Introduction
	Learning Task
	Problem Statement
	Problem Domain

	Computational Feature Selection
	Algorithm Overview
	Evaluation

	Human-Driven Feature Selection
	Direct Communication of Features
	Indirect Inference of Features
	Combined Approach for Conveying Features
	Evaluation and User Study
	Learning Episode
	Results
	Additional Task Domains

	Discussion
	Conclusion

	Active Concept Grounding through Arbitration of Diverse Learning Queries
	Introduction
	Related Work
	Problem Formulation and Overview
	Query Types
	Learning Episode

	Querying Strategies
	Baseline Query Selection
	Arbitration Strategies

	Evaluation
	Data Collection
	Sensory Input
	Experimental Design

	Results
	Learning Static Groundings
	Learning Groundings that Change over Time

	Discussion
	Conclusion

	Active Concept Grounding within Constrained Environments through Imitation of an Expert Questioner
	Introduction
	Related Work
	Problem Formulation and Approach
	Active Learning for Concept Grounding
	Imitating an Expert Questioning Strategy
	Learning Episode

	Evaluation
	Experimental Design
	Results

	Conclusion

	Conclusion and Open Questions
	Summary of Thesis Contributions
	Open Questions
	Perception
	Behavior Generation
	Scale
	Information Gathering
	Communication and Interaction
	Multi-Agent Modeling
	Cognition

	References

