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SUMMARY

The objective of the thesis is to improve the applicability of Visual Simultaneous Lo-

calization and Mapping (VSLAM) on diverse platforms and scenarios, which has broad

impact on practical applications in Robotics and Argumented Reality (AR).

Traditionally, a large fraction of effort on VSLAM has focused on performance, for

instance accurate pose tracking, dense mapping, etc. The computation cost of VSLAM, on

the other hand, is commonly overlooked: many VSLAM systems have to run on desktop

CPUs or even GPUs to meet real-time requirements. Until very recently, the applicability of

VSLAM draws the attention of community, with target applications on diverse platforms

(e.g. micro flying vehicles, AR headset) and scenarios (e.g. low-texture, fast motion).

However, state-of-the-art applicable VSLAM involves design choices that trade efficiency

with significant sacrifice of performance, therefore with low tracking accuracy and high

sensitivity to working environment.

In this thesis, we study feature-based BA SLAM, which has high performance in gen-

eral but also high computation cost. A series of improvements are proposed to improve

both the efficiency and performance of feature-based BA SLAM for diverse platforms and

scenarios. As recognized in the SfM and SLAM community, the structure of the SLAM

problem can be represented with two equivalent representations: factor graph and Jacobian

matrix. From the perspective of information preservation, the full factor graph that contains

many inter-connections between nodes should be used. However, for a real-time applicable

SLAM, a small and sparse graph (Jacobian) is preferred. A rich body of work has explored

offline or posterior graph sparsification. Instead, the scope of this thesis is on online graph

selection and sparsification.

The thesis is based upon theorems developed in the submatrix selection literature. Orig-

inating from computational theory and machine learning, submatrix selection aims at iden-

tifying a subset of columns/rows from the original matrix, while maximizing matrix re-

xxi



vealing metrics such as the Frobenius Norm and logDet. An optimally selected submatrix

not only preserves the most information from original matrix but is also much smaller and

sparser than the original one. Small-size and sparsity are preferred for efficient numerical

optimization; the performance-efficiency trade-off of optimization-related process such as

VSLAM is improved thereafter. In Chapter 3, submatrix selection is introduced to guide the

feature matching effort in the feature matching module of the VSLAM front-end. Chapter 4

extends the concept of submatrix selection to submatrix tuning, for improving the condi-

tioning of the line-assisted VSLAM. In Chapter 5, the local map data structure and data

selection process are explored, as it plays a critical role in VSLAM front-end robustness.

Submatrix selection enables efficient construction and querying of a compact local map.

In Chapter 6, submatrix selection is introduced to the BA-based VSLAM back-end, which

results in a cost-effective back-end solution with superior performance when running on

compute limited devices. Finally Chapter 7 explores VSLAM in mobile robotic systems

for closed-loop and online usage. VSLAM pose estimation is integrated with high-rate in-

ertial data to generate feedback control signal, which is crucial for close-loop navigation.

The benefit of low-latency VSLAM is revealed in the closed-loop navigation, which is a

major application of VSLAM.

xxii



CHAPTER 1

INTRODUCTION

Visual Odometry (VO) and Visual Simultaneous Localization and Mapping (VSLAM) are

essential in a wide range of robotics and Augmented Reality (AR) applications. VO aims at

local-consistent pose tracking with or without mapping; while VSLAM covers both local-

consistent and global-consistent pose tracking, with explicit mapping and loop closing

modules [1]. In the absence of absolute positioning signal, e.g. GPS (outdoor) or local

electromagnetic beacons (indoor), VO/VSLAM complements traditional odometry meth-

ods such as wheel-based or inertial odometry.

Research over the past two decades has revealed a few key strategies for VO/VSLAM.

A large fraction of effort has focused on the accuracy and robustness of pose tracking [2,

3, 4, 5, 6, 7] (and mapping [8, 9]), while meeting the real-time requirement (e.g. 30 fps) on

desktops and laptops. However, the computational resources on practical robotics and AR

platforms are more diverse and can be more limited. For instance, a micro flying vehicle

(MAV) can only support lightweight computing kits [10], while AR headsets typically have

ARM SoC with low power consumption. Although many state-of-the-art VO/VSLAM

systems achieved good real-time performance on a PC or laptop with a powerful CPU,

reaching the same level of performance on a less powerful device remains an open problem.

Some VO/VSLAM systems fail to meet real-time processing under computational limits

[11]. Other systems gain efficiency with significant performance loss [6, 10]. To improve

the applicability of VO/VSLAM on practical robotics and AR applications, cost-efficiency

of VO/VSLAM is essential, and has to be further improved.

In this chapter, we review the state-of-the-art in VSLAM and relevant topics of VO

and VINS. After discussing the gap of applicability in the existing VO/VSLAM works, the

contributions of this thesis are listed as an outline.
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Figure 1.1: Typical pipeline of VSLAM/VINS [12]. Front-end consists of feature extrac-
tion and data association (feature tracking and loop closure detection). Back-end performs
Maximum A Posteriori (MAP) estimation using front-end data associations.

1.1 Gap of Applicability in State-of-the-Art VSLAM/VINS Systems

This section covers the literature of VSLAM. We focus the discussion to VSLAM with

frame-based, color cameras. VSLAM methods using alternative visual sensor such as event

camera are excluded.

Two closely-related topics, VO and VINS are covered as well. Conventionally, VO

can be considered as a component of VSLAM: VO aims at local-consistent pose tracking

with or without mapping; while VSLAM covers both local-consistent and global-consistent

pose tracking, with explicit mapping and loop closing modules [1]. VINS, meanwhile, can

be considered as an extension of VSLAM with additional inertial input. VINS gains extra

robustness by fusing visual input with inertial. For simplicity we use the term VSLAM to

represent both VO and VSLAM.

The typical pipeline of VSLAM/VINS is illustrated in Fig 1.1. Two major component

of VSLAM/VINS are an image processing font-end and a state estimation back-end. The

role of front-end is to process input visual (and inertial) data, and to associate data captured

at different time. It typically consists of feature extraction and data association (feature

tracking and loop closure detection). The role of the back-end, meanwhile, is to estimate

the state of the visual sensor (e.g. camera) and surrounding environment (e.g. map) using

front-end measurements. In VSLAM back-end, the state estimation is typically posed as a

Maximum A Posteriori (MAP) problem solved with filters or non-linear joint optimization.
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1.1.1 Front-end of VSLAM/VINS

The front-end of VSLAM can be categorized into feature-based and direct methods, as

illustrated in Fig 1.3:

Feature-based methods work with feature descriptors, which are computational efficient

to extract and insensitive to image noise and view point change. Typically, a feature-based

front-end consists of three modules: keypoint detection, feature(descriptor) extraction and

feature matching. Most are based on point-feature binary descriptors, e.g. BRISK [13],

ORB [14] and FREAK [15]. Due to the robustness and repeatability of point-feature binary

descriptors, feature-based front-ends provide long-baseline data associations (illustrated in

Fig 1.2), therefore are widely used in modern VSLAM (e.g. ORB-SLAM [4]) and VINS

systems (e.g. OKVIS [16]). To increase the amount of long-baseline data associations,

feature-based front-ends usually match current feature to a collection of historical features,

i.e., local map. Systems that couple feature-based front-end and local map are highly accu-

rate, and are robust in most scenarios where some textures exist. On low-textured scenarios

where point feature may be lacking, e.g. corridors and hallways, line and edge can be uti-

lized as alternative features. In the early days of VSLAM, lines were explored to cope with

large view change of monocular camera tracking [17, 18]. More recently, with progress

in line detection (e.g. LSD[19]) and descriptor (e.g. LBD[20]), line features have been

demonstrated as reliable alternatives for VSLAM [21, 22, 23] and VINS [24].

The robustness of feature-based front-ends come with the price of high computational

cost. With dedicated hardwares such as FPGA, certain computations that are highly par-

allelizable can be accelerated, e.g. feature extraction [26, 27, 28]. Nevertheless, matching

the features between current image and the map is computationally expensive, since the

cost of doing so scales linearly with the map size. To reduce the load in feature match-

ing, direct front-ends omit the explicit feature extraction and matching module (partially or

completely). One type of direct front-ends is based on optical flow methods such as KLT

[29]. Compared with feature-based front-ends, front-ends using optical flow track pixels

3



Figure 1.2: Distributions of data association baseline for 3 representative VSLAM front-
ends when averaged on EuRoC MAV benchmark [25]: feature descriptor in ORB-SLAM
(ORB) [4], KLT in MSCKF [10], and direct SVO [6]. For each association, the baseline is
assessed with the length of life: from the first-measured frame to the last-measured frame.
The feature-based front-end (ORB) extracts more long-baseline feature matchings than the
KLT and direct methods.

in a short duration. Though computationally less costly, the tracking quality is worse than

feature-based ones [30]. As a consequence, state-of-the-art VINS systems [31, 32] with

KLT-based front-ends have worse tracking performance than feature-based ones [16]. An-

other direct method uses photometric error as an objective function to optimize for state

estimation. These front-ends omit the explicit feature extraction and matching modules

completely. The load of matching is postponed to the back-end optimization, which mini-

mizes an direct objective with photometric residuals. In general, VSLAM [7, 6] and VINS

[33] systems with photometric-based front-ends are more efficient than feature-based ones.

To further improve the efficiency, state-of-the-art photometric-based front-ends only work

with a sparse set of image patches, as opposed to the dense set used at the early stage [5].

The biggest issue of direct measurements, including KLT and photometric error, is

the small region of attraction (due to the non-smooth nature of image) [34]. As a conse-

quence, direct front-ends are sensitive to many factors: image noise, initial pose estima-

tion, lighting condition changes, etc. Furthermore, immediate recovery from track failure

(i.e., relocalization) is a known issue for direct systems. Therefore, direct systems require

certain conditions [7, 35, 36] to work properly, e.g. global shutter camera with precise
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Figure 1.3: Front-end options: feature-based [4] vs. direct [7]. Left: feature-based front-
end extracts a small set of correspondences between frames using feature matching. The
correspondences contribute to state estimation as back-projection residual terms. Right:
direct front-end works on a large set of pixels between frames. Data association and state
estimation are typically conducted jointly, via minimizing the photometric residual terms.

calibration, consistent lighting condition, accurate motion prediction or smooth and slow

camera motion. These conditions limit the applicability of direct systems for many robotics

and AR applications, where VSLAM should work with noisy sensory input under chang-

ing environment for long duration. In addition, direct measurements rarely endure over

long-baseline travel and can sometimes exhibit intermittent observation, both of which un-

dermine strong localization and triangulation conditioning. For applications with frequent

revisits, the percentage of long-baseline associations utilized by direct systems is less than

that of feature-based ones, therefore limiting the performance of direct VSLAM systems.

Semidirect systems [6] also leverage direct measurements in the pose tracking, therefore

have poorer tracking performance than feature-based methods. Direct VINS are less sensi-

tive since the motion priors from inertial sensors are relatively accurate. Still, performance

of direct VINS are worse than feature-based VINS, as demonstrated in [11].

To summarize, the applicability of all image processing front-ends mentioned above are

limited. In Fig 1.4, we compare these front-ends with regards to three applicability metrics:

efficiency, accuracy and robustness:
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Figure 1.4: Illustration of applicability limits for image processing front-ends in VS-
LAM/VINS. Left: Accuracy vs. Efficiency. Right: Robustness vs. Efficiency.

1) When some level of textures exist, point-feature-based front-ends have high accuracy but

also relatively high computation costs, due to the explicit feature extraction and matching.

Direct front-ends are efficient, however the accuracy of these methods are poorer, therefore

limiting the usage in practical applications. It is desirable for the VSLAM front-end to have

the same level as accuracy as feature-based front-ends, while being as efficient as direct

ones.

2) In low texture situations, line-feature-based front-ends provide extra robustness. How-

ever they are typically inaccurate due to the weak-constraint of line features. It is desirable

for the VSLAM front-end to have the same level of robustness as line-feature-based front-

ends, while being more accurate.

1.1.2 Back-end of VSLAM/VINS

To exploit the multi-core and multi-thread capabilities of modern compute hardware, state

estimation in VSLAM/VINS is separated into multiple threads, each tackles a semi-independent

problem. Modern VSLAM/VINS systems typically have 3 threads:

1) Pose tracking thread: conducts pose-only optimization on the current frame. It should

meet strict frame-rate imposed constraints on processing time, including the overhead of

the front-end. For efficiency, it is common to assume fixed map in pose tracking thread,

and only optimize the state of current frame. Common optimization methods include PnP

and pose-only BA.
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2) Local optimization thread: conducts joint optimization of poses and mapped features

at local scale (e.g. within a short history). Depending on the task requirement, the rate

of local optimization ranges between frame-rate and sub-frame-rate. Compared with the

pose tracking thread, the computation of local optimization is much higher due to the high

dimensionality of states to be optimized.

3) Global optimization thread: conducts optimization of poses (and mapped features) at

global scale (e.g. the entire history). Global optimization could be executed at the lowest

frequency, e.g. only being triggered when a loop closure is detected. Furthermore, it

is common for global optimization to work on the camera-only system (i.e., pose graph

optimization), therefore further reducing the computational load.

The local optimization is the major bottleneck for applicable VSLAM/VINS, since the

computational costs are high while the demanded processing rate is likewise high. In what

follows, we first review existing optimization techniques in local optimization. Then, a

gap of applicability in existing local optimization methods is revealed, which motivates the

cost-efficiency local BA work (i.e., Good Graph) in this thesis.

There is a long history in SLAM community to apply filters, such as EKF [2] and EIF

[37], to local optimization. The complexity of EKF and EIF are extremely high: O((n +

m)3), with n-D camera states and m-D map states. This is due to the dense structure

(covariance matrix or information matrix) utilized to model joint distribution in EKF and

EIF. Not surprisingly, the performance-efficiency trade-off of EKF and EIF failed to meet

the large-scale, long-term requirement of VSLAM [38]. The efficiency of EKF can be

significantly improved by optimizing the camera states only, while modeling map states as

constraints between camera states. One representative design of efficient EKF is MSCKF

[39], which has been well studied and applied to VINS [40, 10]. The complexity of MSCKF

is O((n)3 + m), which is linear in the cardinality of the map. However, MSCKF has the

downside of degraded mapping (e.g. map points are poorly distributed and inaccurate).

Furthermore, all EKF variants introduced above are known to be inconsistent: they have
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Figure 1.5: Illustration of filter and BA, as variants of general Markov Random Field
(MRF) [38]. Notice the dense structure in filter (the edges between map nodes) and the
sparse structure in keyframe BA.

to linearize and marginalize old states at a early stage, which may be conflicting with later

states as more measurements arrive.

Bundle adjustment, on the other hand, has proven to be more accurate, especially in

large-scale SfM and SLAM problem [38], when computational resources are sufficient. BA

methods are more consistent than filters since there is no early linearization or marginal-

ization. The downside of BA is the computation complexity: it could be cubic at the worst

case! Therefore, BA requires extra effort in bounding the scale of the states to be optimized.

One tactic for bounding the computational cost of BA in local optimization is exploiting

the sparsity property of SLAM problem [41, 42, 43, 44]. As illustrated in Fig 1.5, SLAM

is sparse: the map can be modeled as a set of independent states, and the time-varying

camera poses can be modeled as Markov. Exploiting the sparse structure with specialized

data structures and data organization methods leads to a sparse optimization problem that

is efficiently solved with Schur marginalization and back substitution. In this way, the time

complexity of local BA can be reduced to O(n3 + mn): 1) Marginalize out all the map

states, with cost O(mn); 2) Solve the reduced camera system, with O(n3); and 3) Back

substitute to collect the map states, with O(mn).

Sparse local BA is implemented in the back-end solvers of modern VSLAM [3, 5, 6, 7,

4] and VINS [16, 31, 45] systems. State-of-the-art non-linear solvers, such as iSAM2[44],

g2o[46], Ceres[47], SLAM++[48] and ICE-BA[45], support sparse least squares optimiza-

tion using state-of-the-art solvers, e.g. Levenberg-Marquardt and Conjugate Gradient De-

scent.
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Figure 1.6: Illustration of applicability limits for optimization back-ends in VSLAM/VINS.
The performance, which include both accuracy and robustness, are compared against effi-
ciency, for back-end options.

Apart from sparsity, another key characteristics of SLAM problem to exploit is the in-

cremental nature: measurements arrive sequentially, rendering the SLAM problem equiv-

alent to an incremental estimation problem. Incremental solvers reuse the previously cal-

culated factorization, and only perform calculations for states affected by the currently

arrived measurements. Pioneering works of iSAM [43, 44] uses Givens rotation to update

the QR factorization incrementally. Incremental Cholesky factorization updates have been

incorporated into the BA-based back-end solvers [49]. Incremental algorithms for another

compute intensive module, Schur elimination, have also been implemented [50]. More re-

cently, the combination of sliding window and incremental algorithms has been explored

[45].

Though a rich body of works exist in reducing the computational cost of the local

BA, it is still more expensive than carefully designed filter back-ends such as MSCKF.

As illustrated in Fig 1.6, a gap of applicability exists in the back-ends of VSLAM/VINS.

MSCKF-based back-ends are computationally inexpensive, but with unsatisfactory quality

in pose tracking and mapping. Sparse (and incremental) BA back-ends have the best perfor-

mance, yet they are quite expensive to compute. Therefore, VSLAM/VINS systems with

BA-based back-end haven’t achieved the same level of success as filter-based ones when

there are strict computational constraints. Still, BA-based back-ends have great potential

on account of having better accuracy and robustness. Furthermore, BA-based back-ends
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provide a more accurate and richer 3D map, which is crucial for downstream modules such

as 3D scene understanding, interaction, and closed-loop navigation [51]. Therefore, speed-

ing up the sparse BA back-end without performance loss will have a huge impact on the

applicability of BA-based VSLAM.

1.2 General Problem of Submatrix Selection

The works to be described in this thesis are based upon theorems developed in compu-

tational theory and applied mathematics. Specifically, the general problem of submatrix

selection is closely related. Given a matrix A ∈ Rn×m (usually in full-rank), it is of inter-

est to compress A via selecting a submatrix As, such that the selected submatrix behaves

spectrally similarly to the original matrix, i.e., the singular values of the two matrices are

comparable. In most cases, the selection is further limited to one dimension of full matrix

A only, which is referred as column (row) subset selection.

Submatrix selection, especially column (row) subset selection, has been extensively

studied for large-scale problems that A has tens of thousands of rows and columns, or

more. A variety of algorithms are developed to solve submatrix selection for large-scale

matrix, including random sampling [52, 53], greedy forward [54] and backward stepwise

selection [55], forward stagewise regression [56, 57]), branch and bound [58, 59], and

convex optimization such as ridge regression [60] and the lasso [61]. Random sampling

methods [52, 53] have good performance when the scale of matrices is vastly huge; the

performance degrades when the matrix gets smaller. Optimization based methods, such as

branch and bound [58, 59] and convex optimization [60, 61], have good performance guar-

antee in general. However these methods are compute-expensive. Stepwise and stagewise

methods are in the middle ground: they are less expensive to compute, but with degraded

performance guarantee.

Compared with the existing studies on general submatrix selection, the problem dealt

with in this thesis is similar in-spirit, but has several differences arising from the target
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application. A large portion of the literature aims to solve in tractable ways large-scale

linear problems requiring high-performance computing (HPC) that exceed the capabilities

of HPC machines. These large-scale problems require reduction to be solveable, or require

acceleration to be solveable on reasonable time-scales (possibly due to an iterative outer

loop associated to the actual problem solution). Many of the same approaches to arriving

at computationally tractable methods for large-scale problems apply to moderately-scaled

problems on compute limited devices. However, the real-time constraints and trade-offs

associated to the accelerated solutions need to be managed. The problems arising in SLAM

have three key differences: 1) the scale of matrix in VSLAM is much smaller than those

matrices in machine learning and data mining; 2) the compute budget (processing speed,

memory, time cost) in VSLAM is highly restrictive, and 3) the performance requirement

of submatrix selection is strict due to the sequential nature of VSLAM. The first difference

is important because some of the accelerated solutions rely on theorems that hold in the

asymptotic sense (as the matrix grows and the subset sought shrinks percentage-wise).

Additionally, the desired submatrix selection algorithm in this thesis should have strict

performance guarantees, while being highly efficient when working on small to medium

scale matrices (e.g. with hundreds of rows and columns). In the meantime, the scalability

to large-scale submatrix selection is less of a concern. Per such requirements, a specific

family of submatrix selection algorithm, namely greedy stepwise selection, is extensively

studied and verified.

1.3 Pipeline of Feature-based BA VSLAM

In this thesis, we revisit the feature-based BA VSLAM, which has the best performance

but also high computational costs. Two state-of-the-art feature-based BA VSLAM, ORB-

SLAM [4] and PL-SLAM [23], are chosen as the base VSLAM system to improve upon.

The pipeline of ORB-SLAM [4] is illustrated in Fig 1.7. The computation load is

separated into three parallel threads, i.e., tracking, local mapping and loop closing. As
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Figure 1.7: Detailed pipeline of state-of-the-art feature-based BA VSLAM, ORB-SLAM
[4]. The modules improved in this thesis are highlighted in red. Top: three threads are
running in-parallel: 1) tracking, 2) local mapping and 3) loop closing. Bottom: when
working with stereo input, pre-rectification of input image pair is conducted. Although it
is not shown in this figure, ORB-SLAM also works with monocular input.

discussed early in VSLAM front-end options, the main bottlenecks of pose tracking are

feature extraction and matching. In the example pipeline, ORB (feature) extraction is con-

ducted as a part of the pre-processing module, while feature matching is conducted in the

12



  

Figure 1.8: Detailed pipeline of state-of-the-art line-assisted BA VSLAM, PL-SLAM [23].
The module improved in this thesis is highlighted in red. Similar to ORB-SLAM [4], three
major threads run in-parallel: 1) stereo VO (pose tracking), 2) local mapping and 3) loop
closing.

stereo matching and the track local map modules. Naturally, the efficiency of these mod-

ules (ORB extraction, stereo matching, and track local map) are worth looking into if we

want to improve the applicability of feature-based BA VSLAM. Apart from image pro-

cessing front-end, the local mapping also affects the applicability of VSLAM heavily. As

mentioned in VSLAM back-end options, both the computational costs and the demanded

processing rate is high for local mapping. The cost-efficiency of the most compute-heavy

module in local mapping, namely local BA, is worth looking into as well.
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While point-feature-based ORB-SLAM has top-of-the-line performance in many sce-

narios, it does suffer when point features are lacking in the environment. Concrete ex-

amples include low-textured environment and motion-blurring. To run VSLAM robustly

on these scenarios, it is desired to incorporate line features into a point-feature VSLAM

pipeline. A state-of-the-art VSLAM system that tracks both point and line features is PL-

SLAM [23]. The pipeline of PL-SLAM is illustrated in Fig 1.8. Similar to ORB-SLAM

[4], the computation load is separated into three parallel threads. One primary limitation

of line-assisted PL-SLAM is that, the real-time pose tracking with line features (frame-to-

frame tracking) is not as accurate as the point counterpart. Due to the weak nature of line

features and the frequent self-occlusion, lines are hard to triangulate and update with ac-

cumulated measurements. Here, hard means with high uncertainty, therefore the resulting

3D lines in the map are typically erroneous. The accuracy of line-assisted pose tracking

needs further improvement for practical applications. In addition, the computational cost

of modern line detectors such as LSD [19] is higher than point detectors. Through it is out

of the scope of this thesis, accelerating feature extraction with dedicated hardware, such as

FPGAs, is worth investigating as well.

1.4 Outline of the Thesis

The rest of this thesis is organized as follows:

• Chapter 2 describes the general forms of least squares optimization objectives used

in multiple modules of VSLAM. The connection between least squares optimization

and submatrix selection is revealed for the described optimization problems. A set

of submatrix selection metrics have the property of submodularity, which enables

efficient and near-optimal selection algorithms. Recognizing the universality of these

efficient solutions leads to several improvements to VSLAM, as described in the

remaining Chapters of the thesis.
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• Chapter 3 applies submodular submatrix selection to a computation-intense module

in the VSLAM front-end, i.e., map-to-frame feature matching. It is then combined

with active feature matching, leading to a low-latency, performance guaranteed fea-

ture matching algorithm, dubbed Good Feature Matching [62, 63].

• Chapter 4 extends the idea of point feature selection to line features. A specific

property of lines, i.e., extending along specific direction, is exploited to enable line

feature refinement. The underlying optimization objective of line feature refinement

is a convex optimization problem. An efficient, multi-start algorithm for generating

sub-optimal solutions, dubbed Good Line Cutting [64], is described and evaluated.

• Chapter 5 details an appearance-based enhancement (Map Hashing [65]) for con-

structing, populating, and querying the local map. Local map is a critical accuracy-

improving sub-component of the VSLAM front-end. An efficient hashing technique

is applied to store and query appearance prior. Furthermore, submodular submatrix

selection provides a means to reduce the quantity of hash queries through active,

online table selection, thereby reducing the overhead of local map construction.

• Chapter 6 tackles the computational costs of the general BA problem, which is fre-

quently solved in BA-based VSLAM back-end. A novel, rigorous method to deter-

mine the state subset in BA with strong performance guarantee is proposed, dubbed

Good Graph [66]. Furthermore, we explore the potential of budget-awareness to

determine the size of desired Good Graph on-the-fly.

• Chapter 7 explores the application of previously described efficiency improvements

to closed-loop robot navigation, when integrated into a loosely-coupled visual-inertial

state estimation system. The accurate and low-latency of described visual SLAM

method is revealed in the closed-loop navigation scenario investigated. A repro-

ducible benchmarking simulation [67] for closed-loop VSLAM evaluation is pre-
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sented, which supports comprehensive evaluation of VSLAM in closed-loop naviga-

tion tasks.

• Chapter 8 concludes the thesis with a summary of findings and observations. Direc-

tions for future research are discussed as well.
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CHAPTER 2

PRELIMINARY

2.1 Background

A key perspective of this thesis is speeding up compute-intensive modules in VSLAM

with submodular submatrix selection. The majority of VSLAM modules, as studied in this

thesis, can be formulated as some sort of least squares problem:

arg min
x

∑
i,j

‖ρ(x(i),x(j))‖2
Σij
, (2.1)

where x is the vector of states to be optimized, ρ is the residual function, and Σij is the

covariance of each residual term.

With first-order approximation, these least squares problems can be further simplified

into linear systems:

arg min
δ
‖Jδ − b‖2 , (2.2)

where the Jacobian J is of interest. The Jacobian J can be equivalently represented as a

factor graph [68]. A toy example of factor graph, as well as equivalent Jacobian and system

(Hessian) matrix, are illustrated in Fig 2.1.

A toy example of SLAM (in factor graph representation), as well as corresponding

Jacobian, is illustrated in Fig 2.1. Each factor (measurement) has corresponding non-zero

filling in the Jacobian. Each factor has corresponding row, and each state (pose/landmark)

has corresponding column.

Both the size and the sparsity of Jacobian J are closely related to cost-efficiency of

corresponding VSLAM modules:

1) In the feature matching module of the VSLAM front-end, the number of rows in J is de-
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Figure 2.1: A toy example of factor graph and matrix representations [68]. Left: a factor
graph with 3 poses xi and 2 landmarks li. Right: corresponding Jacobian, where each
factor (measurement) has corresponding row, and each state (pose/landmark) has corre-
sponding column.

termined by the total number of feature matchings, while the number of columns is fixed (to

the state of current frame). Each measurement contributes to a set of fillings accordingly.

Collecting a J with a small row number is clearly cheaper in terms of feature matching

effort. Since feature matching could be expensive in the presence of many matching candi-

dates, it is desired to bound the effort of feature matching by building a small Jacobian.

2) For BA optimization in VSLAM back-end, both the row number and column number of

J are correlated to computation cost. Similar to the front-end case, each row of J stands

for a measurement, e.g. a feature matching or an odometry reading. Each column of J,

on the other hand, stands for a state to be optimized. Collecting a J with a limit size on

row and column is much cheaper: less computation effort is required in data association.

Furthermore, the cost of numeral optimization is reduced when working on a J with less

rows/columns, as the computation costs of most matrix manipulations involved in numeral

optimization have cubic growth.

Naturally, it is attractive to build a principled solution that selects a small-size Jacobian

from the full Jacobian J with little overhead. Apart from size limitation, it is also desired

to preserve the spectral property of the full matrix J as much as possible. The general

problem, i.e., submatrix selection, has been studied in the fields of computational theory

and machine learning. The submatrix selection problem is defined as: given a matrix J,
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Max-Trace Trace Tr(Q) =
∑m

1 Qii is max.
Min-Cond Condition κ(Q) = λ1(Q)/λm(Q) is min.
Max-MinEigenValue Min. eigenvalue λm(Q) is max.
Max-logDet Log. of determinant log det(Q) is max.

Table 2.1: Commonly used matrix-revealing metrics for square matrix Q of rank m.

select a subset of rows and columns so that the overall spectral properties of the selected

submatrix are preserved as much as possible.

2.2 Matrix-Revealing Metrics

As extensively studied in the numerical methods and machine learning fields [69, 70],

a number of matrix-revealing metrics exist to score the subset selection process. They

are listed in Table 2.1. Subset selection with any of the listed matrix-revealing metrics is

equivalent to a finite combinatorial optimization problem under the cardinality constraint:

max
S1⊆{1,2,...,m},S2⊆{1,2,...,n},|S1|=k1,|S2|=k2

f([J(S1, S2)]T [J(S1, S2)]) (2.3)

where S1 is the index subset of selected rows from the full matrix J, S2 is the index subset

of selected columns, [J(S1, S2)] is the corresponding submatrix indexed by S1 and S2, k1

and k2 are the cardinalities of row and column subset, and f the matrix-revealing metric.

2.3 Submatrix Selection Algorithms

While the combinatorial optimization can be solved by brute force, the exponentially-

growing problem space quickly becomes impractical to search over for real-time VSLAM

applications. To employ efficient subset selection strategies while limiting the loss in opti-

mality, the submodularity property of subset selection is exploited [71, 72, 73, 74].

Definition [75] A set function f : 2F → R is submodular if, for any subsets A ⊆ B ⊆ F ,

and for any element e ∈ F \B, it holds that:
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f(A ∪ e)− f(A) ≥ f(B ∪ e)− f(B)

Submodularity formalizes the notion of diminishing returns in discrete domain: adding a

row(block) to a small submatrix is more advantageous than adding it to a large submatrix.

More importantly, a submodular function can be solved with greedy heuristic:

Proposition 1 (Suboptimal submodular maximization [75]) Given a normalized, mono-

tone, submodular set function f : 2F → R, and calling S∗ the optimal solution of the

maximization problem 2.3, then the set S#, computed by the greedy heuristic, is such that:

f(S#) ≥ (1− 1/e)f(S∗) ≈ 0.63f(S∗)

This bound ensures that the worst-case performance of a simple greedy algorithm cannot

be far from the optimum. Except for Min-Cond, the metrics listed in Table 2.1 are ei-

ther submodular or approximately submodular, and monotone increasing. The Max-logDet

metric is submodular [73], while the Max-Trace is modular (a stronger property) [71].

Lastly, Max-MinEigenValue is approximately submodular [72]. Therefore, selecting rows

with these metrics can be approximately solved with greedy methods. Using these known

properties, the aim here is to arrive at an efficient submatrix selection algorithm without

significant loss in optimality.

2.3.1 Greedy Selection

Subset selection with submodular metric has been studied for sensor selection [73] and

feature selection [74], with reliance on a simple greedy algorithm commonly used to ap-

proximate the original NP-hard combinational optimization problem. The approximation

ratio of the greedy approach is 1−1/e [71]. This approximation ratio is the best achievable

by any polynomial time algorithm under the assumption that P 6= NP .

The computation complexity of the greedy selection is O(kn), when selecting k-size

submatrix from n-size full matrix. When working with a large-size matrix, the cost of
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greedy selection could be too expensive for real-time VSLAM applications. Several ac-

celerating techniques exist for the greedy selection, which could be crucial for applying

submatrix selection to large-size matrix with real-time requirement.

2.3.2 Lazy Greedy

The classical greedy algorithm can be enhanced into an accelerated version, lazy greedy

[76]. The key idea of lazy greedy is utilizing a compute-cheap upper bound to reject un-

wanted candidates, therefore reducing the computation of actual margin gain at each iter-

ation. Obviously, the speed up of lazy greedy hinges on the tightness of the upper bound.

Consider an idealized case, where the computing upper bound takes zero-cost and a con-

stant rejection ratio ρ is achieved with the upper bound. Hence the total complexity of

selecting a k-size submatrix out of the n-size full matrix using lazy greedy algorithm is

O(k(1 − ρ)n): the lazy greedy algorithm has to run k rounds, in each round it will go

through (1− ρ)n candidates to identify the current best row/column.

For certain metric (e.g. Max-MinEigenValue), the tight upper bound exists. For the

logDet metric, the upper bound derived from Hadamard’s inequality [77] is quite loose

(i.e., ρ ≈ 0):

log det(Q) ≤
m∑
i=1

log(Qii), rank(Q) = m. (2.4)

Therefore the lazy greedy algorithm is not a general solution to efficient submatrix

selection. Even when working with metric that has tight upper-bound, the amount of com-

putation saved by lazy greedy is limited. As reported in [74] and further confirmed in our

simulation in Chapter 3, the time cost of lazy greedy selection in VSLAM easily exceeds

the real-time requirement (e.g. 30ms per frame). Hence the lazy greedy is still limited in

applicability and efficiency.
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Figure 2.2: Lazier greedy algorithm, originally proposed in [81].

2.3.3 Lazier-than-Lazy Greedy

Compared to the aforementioned deterministic methods (e.g. classic and lazy greedy),

randomized submatrix selection has been studied as a faster alternative with probabilis-

tic performance guarantee [78, 79]. Combining randomized selection with deterministic

method yields fast yet near-optimal submatrix selection for specific matrix norms [70, 80]

and general submodular functions [81, 82].

The combined algorithm is dubbed as lazier-than-lazy greedy, or lazier greedy for fur-

ther simplicity. The general procedure of lazier greedy is presented in Fig 2.2. The idea

of lazier greedy is simple: at each round of greedy selection, instead of going through all

n candidates, only a random subset of candidates are evaluated to identify the current best

candidate. Furthermore, the size of random subset s can be controlled with a decay fac-

tor ε: s = n
k

log(1
ε
). In this way, the total complexity is reduced from O(kn) (greedy) or

O(k(1 − ρ)n) (lazy greedy) to O(log(1
ε
)n). The majority of this thesis is based upon the

following two theorems:

Theorem 2 [81] Let f be a non-negative monotone submoduar function. Let us also set

s = n
k

log(1
ε
). Then lazier greedy achieves a (1− 1/e− ε) approximation guarantee in

expectation to the optimum solution of problem Eq 3.8.

Theorem 3 [82] The expectation of approximation guarantee of (1− 1/e− ε) is reached
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with a minimum probability of 1 − e(−0.5k(
√
µ + ln(ε + e−1)/

√
µ)2), when maximizing

a monotone submodular function under cardinality constraint k with lazier-greedy. µ ∈

(0, 1] is the average of approximation ratio when maximizing margin gain at each iteration

of lazier greedy.

Notice that the symbols and formulations in Theorem 3 are adjusted from the origi-

nal proof at [82] to be consistent with Theorem 2. According to these two theorems: 1)

lazier greedy introduce a linear loss ε to the approximation ratio in expectation; and 2)

the expectation of linear-loss approximation ratio can be guaranteed with high probability.

Compared to the theoretical upper bound of approximation ratio, 1 − 1/e, which no poly-

nomial time algorithm can exceed [71], lazier greedy only loses a small portion from it (in

expectation and probability).
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CHAPTER 3

GOOD FEATURE MATCHING: LOW-LATENCY FRONT-END OF

FEATURE-BASED VSLAM

3.1 Introduction

This chapter describes the Good Feature Matching algorithm that reduces the latency of

feature matching in VSLAM/VINS. The key observation that motivates the research: the

camera pose estimation in VSLAM is an over-constraint optimization problem with mas-

sive over-measurement. Taking less feature matchings reduces the computation cost in VS-

LAM, yet increases the effect of outliers and noise. Obviously a trade-off of performance-

efficiency exists between aggressive feature subset selection and keeping the full feature

set. When properly selected, the feature subset can actually balance the performance drop

and efficiency improvement. The goal of this work is to identify a small subset of fea-

tures (a.k.a. good features) that are most valuable towards pose estimation with minimum

compute overhead. By only utilizing the good features in both data association and state

optimization, the latency of pose tracking is improved, while the accuracy and robustness

are preserved.

The primary outcome of this work is illustrated in Fig 3.1. At the left column, we

present the latency-accuracy trade-off of 4 monocular VSLAM systems on a public bench-

mark (EuRoC MAV [25]). Each marker on the plot represents a successfully tracked se-

quence (zero track loss in 10 repeated trials) for the denoted VSLAM system. To better

understand the latency-accuracy trade-off in each VSLAM system, we adjust the maxi-

mum number of features/patches extracted per frame (for GF-ORB, we also adjust the

maximum number of good feature being matched per frame), to obtain the workable re-

gion of each system in the latency-accuracy plot (in dashed contour). According to the left
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Figure 3.1: Latency reduction and accuracy preservation of proposed approach on EuRoC
MAV benchmark. Four monocular VSLAM systems are assessed: semidirect SVO [6],
direct DSO [7], feature-based ORB [4], and proposed GF-ORB. Left: latency vs. accuracy
of four systems. The workable region (in dashed contour) of each system is obtained by
adjusting the maximum number of features/patches per frame. Right: latency break down
of each module in pose tracking pipelines, average on EuRoC benchmark. An example
configuration that yields good trade-off of latency and accuracy is set: 800 features/patches
extracted per frame; for GF-ORB we further limit the number of good features matched
per frame to 100.

column of Fig 3.1, feature-based ORB-SLAM occupies the lower-right portion, as it is ac-

curate yet with high-latency; direct DSO can reach lower latency than ORB-SLAM under

some configurations, but it has an order of magnitude higher absolute root-mean-square

error (RMSE) than ORB-SLAM; the tight-bounded working region of semidirect SVO is

at the upper-left, meaning it is efficient yet inaccurate. The objectives of low-latency and

high-accuracy are achieved with the proposed approach, GF-ORB-SLAM, whose markers

are located in the lower-left region of the plot. We further present the break down of latency

introduced by each module in pose tracking pipelines, under example configurations for all

4 VSLAM systems. When GF-ORB-SLAM is compared with the baseline ORB-SLAM,

the time cost of feature extraction is identical, but the feature matching and subsequent

modules have a significantly reduced time cost. The overall latency of GF-ORB is the

lowest among all four systems, including the semidirect SVO.

Contributions of this work include:

1) Studying the error model of least squares pose optimization, which connects the per-

formance of pose optimization to the spectral property of a weighted Jacobian matrix;
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2) Exploring metrics connected to the least squares conditioning of pose optimization,

with quantification of Max-logDet as the optimal metric;

3) An efficient Good Feature Selection algorithm that works with Max-logDet metric

is introduced, which is an order of magnitude faster than state-of-the-art feature selection

approaches;

4) Fusing Good Feature Selection and active matching into a generic Good Feature Match-

ing algorithm, which is efficient and applicable to feature-based VSLAM; and

5) Comprehensive evaluation of Good Feature Matching on a state-of-the-art feature-

based VSLAM system, with multiple benchmarks, sensor setups and computation plat-

forms. Evaluation results demonstrate both latency reduction and accuracy and robust-

ness preservation with the propose method. We open source our implementations for both

monocular 1 and stereo SLAM 2.

3.2 Background

This work is closely connected to following two research topics in VSLAM:

3.2.1 Feature Selection

Feature selection has been widely applied in VSLAM for performance and efficiency pur-

poses. Conventionally, fully data-driven and randomized methods such as RANSAC are

used to reject outlier features [2]. Extensions to RANSAC improve its computational ef-

ficiency [83, 84]. These RANSAC-like approaches are utilized in many VSLAM systems

[2, 3, 4] to improve the robustness of state estimation.

Apart from outlier rejection, feature selection methods are also utilized for inlier selec-

tion, which aims to identify valuable inlier matches from useless ones. One major benefit

of inlier selection is the reduction of computation (and latency thereafter), since only a

small set of selected inliers are processed by VSLAM. In addition, it is possible to improve
1https://github.com/ivalab/GF_ORB_SLAM
2https://github.com/ivalab/gf_orb_slam2
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accuracy with inlier selection, as demonstrated in [85, 86, 87, 62]. The scope of this work

is on inlier selection, which reduces the latency of VSLAM while preserving the accuracy

and robustness.

Image appearance has been used to guide inlier selection: feature points with distinct

color/texture patterns are more likely to get matched correctly [88, 89, 90]. However, these

works solely rely on quantifying distinct appearance, while the structural information of

the 3D world and the camera motion are ignored. While we agree that appearance cues are

important in feature selection, the focus of this work is on the latter properties: identifying

valuable features based on structural and motion information. The proposed structural-

driven method can be combined with the appearance-based complementary approach [62].

To exploit the structural and motion information, covariance-based inlier selection meth-

ods are studied [2, 91, 92, 93, 94, 74]. Most of these works are based on pose covariance

matrix, which has two key characteristics: 1) it contains both structural and motion in-

formation implicitly, and 2) it approximately represents the uncertainty ellipsoid of pose

estimation. Based on the pose covariance matrix, different metrics were introduced to

guide the inlier selection, such as information gain [2], entropy [92], trace [93], covariance

ratio [94], minimum eigenvalue and log determinant [74]. Covariance-based inlier selec-

tion methods are studied for both filtering-based VSLAM [2, 91, 92, 93, 94] and BA-based

VSLAM [50, 48, 74].

Observability matrix has been studied as an alternative of covariance matrix to guide

feature selection [86, 87]. In these works, the connection between pose tracking accuracy

and observability conditioning of SLAM as a dynamic system is studied. The insight of

their work being: the better conditioned the SLAM system is, the more tolerant the pose

estimator will be towards feature measurement error. To that end, the minimum singular

value of observability matrix is used as the metric to guide feature selection. However,

the efficient construction of observability matrix relies on the piecewise linear assumption,

which limits the applicability of observability-based feature selection. Furthermore, we
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argue that covariance matrix is better suited for static or instantaneous bundle adjustment

(BA) problem as been formulated in pose tracking, and it can be constructed efficiently for

non-linear optimizers.

The study in [74] is mostly related to our work. In [74], feature selection is performed

by maximizing the information gain towards pose estimation within a prediction horizon.

Two feature selection metrics were evaluated, minimal eigenvalue and log determinant

(Max-logDet). Though the log determinant metric is utilized in our work, the algorithm for

approximately selecting the feature subset maximizing logDet differs, as well as the matrix

whose conditioning is optimized. Compared with [74], our work is more applicable for

low-latency pose tracking thanks to two key advantages. First, the lazier-greedy algorithm

presented in our work is efficient. It takes an order of magnitude less time than the lazy-

greedy algorithm of [74], yet preserves the optimality bound. Second, we present the

combination of efficient feature selection and active feature matching, which reduces the

latency of both data association and state optimization. Meanwhile, [74] selects features

after data association, therefore leaving the latency of data association unchanged. The

experimental results in [74] supports our claim on applicability: there are occasions that

feature selection actually increases the latency of full pipeline, compared with the original

all-feature approach.

3.2.2 Active Matching

Another key perspective of this work is combining feature selection algorithm with ac-

tive feature matching, which leads to latency-reduction in both data association and state

optimization. Active matching refers to the guided feature matching methods that prior-

itize processing resource (e.g. CPU percentage, latency budget) on a subset of features.

Compared with the brute force approach that treats all features equally, active matching is

potentially more efficient, especially under resource constraints.

Active matching has been intensively studied for filter-based VSLAM, with represen-
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tative works [95, 96, 97]. Traditional active matching methods are designed upon dense

covariance matrix (i.e., majority of off-diagonal components are filled), therefore are ob-

solete in modern VSLAM driven by non-linear sparse optimizers. Furthermore, the algo-

rithms used by these active matching methods were extremely compute-heavy, therefore

impossible to integrate into the real-time pose tracking thread of modern VSLAM system.

Therefore, the idea of active matching gets less attractive, as quoted from [51]: “the prob-

lem with this idea (active searching) was that ... too much computation is required to decide

where to look.” In this work, we demonstrate the worthy of revisiting the classic idea of ac-

tive matching: the Good Feature Matching algorithm is extremely efficient and applicable,

based upon specific matrices and selection algorithm tailored for non-linear optimization.

To the best of our knowledge, this is the first work that demonstrates the applicability of

latency-reduction and accuracy preservation in real-time pose tracking with active feature

selection.

3.3 Conditioning of Pose Tracking Objective

Without loss of generality, this work is based on the least squares objective of pose tracking

below:

x̂ = argmin
x
‖h(x, p)− z‖2 , (3.1)

where x is the pose of the camera, p are the 3D feature points and z are the corresponding

2D image measurements. The measurement function, h(x, p), is a combination of the

SE(3) transformation (world-to-camera) and pin-hole projection. For simplification, we

omit the distortion of camera lens in h(x, p). In practice, it is typical to replace the quadratic

loss in Eq 3.1 with some robust loss function, e.g. Huber Kernel. Nevertheless, least

squares with robust kernel can be approximated with iteratively reweighted least squares

[98]. Therefore, the formulations in the following can be extended to robust least squares

by simply including a weight matrix.
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Solving the least squares objective often involves the first-order approximation of all

non-linear functions in Eq 3.1:

h(x, p) ≈ h(x(s), p) + Hx(x− x(s))

h(x, p) ≈ h(x, p(s)) + Hp(p− p(s))

(3.2)

where Hx is the measurement Jacobian linearized about the initial guess x(s). In Gauss-

Newton style optimizer, minimization of Eq 3.1 is done iteratively via

x(s+1) = x(s) −Hx
+(z − h(x(s), p)). (3.3)

The accuracy of Gauss-Newton depends on the residual error εr, which can be decom-

posed into two terms: measurement error εz and map error εp. Assuming the input error are

under independent Gaussian: εz(i) ∼ N(0,Σz(i)) and εp(i) ∼ N(0,Σp(i)). Then we can

derive the covariance matrix of pose estimation:

Σr = Σz + HpΣpHp
T

Σx = Hx
+Σr(Hx

+)T = Hx
+Wr(Hx

+Wr)
T

(3.4)

where the simplification holds since both Jρ and Σr are block-diagonal matrices, and Wr

is the diagonal weight matrix with Cholesky decomposed diagonal blocks Σr: Σr(i) =

Wr(i)Wr(i)
T .

Finally, we can move everything to the left hand side of Eq 3.4:

Wr
−1HxΣx(Wr

−1Hx)T = I, (3.5)

where Wr
−1 is still a block diagonal matrix, consisting of 2×2 blocks denoted by Wr

−1(i).

Meanwhile, each row block of measurement Jacobian Hx can be written as Hx(i). Follow-
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ing through on the block-wise multiplication results in the matrix Hc:

Hc =


Wr

−1(0)Hx(0)

...

Wr
−1(n− 1)Hx(n− 1)

 , (3.6)

from which the simplified pose covariance matrix follows:

Σx = Hc
+(Hc

+)T = (Hc
THc)−1, (3.7)

assuming that Hc is full rank (i.e., sufficient tracked map points exist). The conditioning

of Hc determines the error propagation properties of the iteratively solved least-squares

solution for the camera pose x.

The pose covariance matrix Σx represents the uncertainty ellipsoid in pose configura-

tion space. According to Eq (3.7), one should use all the features/measurements available

to minimize the uncertainty (i.e., variance) of pose estimation: with more measurements,

the singular values of Hc should increase in magnitude. The worst case uncertainty would

be proportional to the inverse of minimal singular value σmin(Hc), whereas in the best case

it would be proportional to the inverse of maximal singular value σmax(Hc).

However, for the purpose of low-latency pose tracking, one should only utilize suffi-

cient features. There is a tension between latency and error rejection. From the analysis, the

uncertainty of least squares pose optimization problem is bounded by the extremal spectral

properties of the matrix Hc. Hence, one possible metric that measures the sufficiency of a

feature subset would be, the factor of worst case scenario σmin(Hc). Meanwhile, one may

argue that the extremal spectral properties only decides the upper and lower bounds of pose

optimization uncertainty. The true values would depend on what the overall spectral prop-

erties of the system are. It follows then, that another possible measurement of sufficiency

would be the overall spectral properties of Hc.
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3.4 Good Feature Selection using Max-LogDet

Define the Good Feature Selection problem to be: Given a set of 2D-3D feature matchings,

find a constant-cardinality subset from them, such that the error of least squares pose opti-

mization is minimized when using the subset only. Based on the previous discussion, the

Good Feature Selection problem is equivalent to submatrix selection: Given a matrix Hc,

select a subset of row blocks so that the overall spectral properties of the selected submatrix

are preserved as much as possible.

3.4.1 Objective Formulation

Recall the discussion of submatrix selection in Chapter 2, a number of matrix-revealing

metrics exist to score the subset selection process, as listed in Table 2.1. Subset selec-

tion with any of the listed matrix-revealing metrics is equivalent to a finite combinatorial

optimization problem under cardinality constraint:

max
S⊆{1,2,...,n},|S|=k

f([Hc(S)]T [Hc(S)]) (3.8)

where S contains the index subsets of selected row blocks from the full matrix Hc, [Hc(S)]

is the corresponding row-wise concatenated submatrix, k is the cardinality of subset, and f

the matrix-revealing metric.

To explore which matrix-revealing metrics might best guide good feature/row block se-

lection for least squares pose optimization, a simulation is conducted based on the Matlab

simulation environment [99]. To simulate the residual error, both the 3D mapped features

and the 2D measurements are perturbed with zero-mean Gaussian noise. A zero-mean

Gaussian with the standard deviation of 0.02m are added to the 3D features stored as map.

Three levels of measurement error are added to 2D measurements: zero-mean Gaussian

with standard deviation of 0.5, 1.5 and 2.5 pixel. Subset size ranging from 80 to 200 are

tested. To be statistically sound, 300 runs are repeated for each configuration. The sim-
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Figure 3.2: Simulation results of least squares pose optimization. First column: RMS of
translational error under 3 levels of residual error. Second column: RMS of rotational
error under 3 levels of residual error.

ulation results are presented in Fig 3.2, with the root-mean-square (RMS) of translational

error (m) and rotational error (deg). Each of the matrix-revealing metrics in Table 2.1 is

tested. For reference, the plots include simulation results with randomized subset selection

(Random) and with all features available (All).

According to the simulation, two metrics stand out: Max-MinEigenValue and Max-

logDet. Under all residual noise levels, their curves more quickly approach the baseline

error (All) as a function of the subset size. Based on the outcomes, Max-logDet is chosen

as the metric to guide Good Feature Selection. The reasons are two-fold:

First, according to Fig 3.2, the error curves of Max-logDet are always lower, if not at

the same level, than those of Max-MinEigenValue. Similar trends are observed under other

configurations as well. The subset selected with Max-logDet approximates the original

full feature set better than the subset with Max-MinEigenValue. As discussed previously,

greedy selection with Max-logDet has guaranteed approximation ratio due to submodular-
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ity.

Second, the computational cost of logDet is lower than that of MinEigenValue. The

main logDet computation is Cholesky factorization, with a complexity of O(0.33n3) on a

n square matrix, whereas for MinEigenValue the complexity is O(22n3) [100].

3.5 Efficient Good Feature Matching

Assuming the combined matrix Hc is known, the key question of Good Feature Matching

becomes: how to identify a row subset [Hc(S)] in Hc, so that the overall spectral property

(e.g. measured by logDet) is maximized? As introduced in Chapter 2, efficient algorithm

exists for such submodular submatrix selection: lazier greedy.

3.5.1 Choice of Decay Factor

The approximation ratio and computational speed up of lazier greedy hinge on the decay

factor ε. As illustrated in Fig 3.3 (middle), the approximation ratio decays linearly with ε,

while the computational cost (FLOP) decays logarithmically. When the decay factor ε = 0,

the lazier greedy algorithm converges to the classical greedy, which has the best optimal

guarantee and the highest computational cost.

As ε increases the resulting computational gain outpaces the loss in optimality, until hit-

ting an inflection point after which the benefit reduces. When the decay factor is set to the

maximal (i.e., e−
k
n ), lazier greedy becomes randomized sampling (i.e., s = 1), which has

an almost-zero expected approximation ratio (i.e., 1 − 1/e − e− k
n ). Though the computa-

tional cost is the lowest in randomized sampling, the consistency of randomized sampling

is limited as indicated from the closer to zero approximation ratio. As a consequence,

a poorly-conditioned state optimization could occasionally be formulated when selecting

good features with randomized sampling, especially when the size of feature pool is small.

For sequential estimation problems such as VSLAM, inconsistent randomized sampling

should be avoided: degraded estimation of the current state negatively impact the estima-
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Figure 3.3: Illustration of performance and efficiency of lazier greedy, when selecting a
subset of 450 rows from 1500 rows with average approximation ratio µ = 0.8 in max-
imizing margin gain (logDet). Left: Approximation ratio and probabilistic guarantee of
lazier greedy, versus the decay factor ε. Middle: Approximation ratio and computation
cost (FLOP) of lazier greedy, versus the decay factor ε. Right: Efficiency of lazier greedy,
versus the decay factor ε.

tion of follow-up states and leads to pose tracking degradation, or even failure. Therefore

the choice of ε should lie somewhere between the two extremes (0 and e−
k
n ). By setting

ε to a small positive value, e.g. 0.1-0.3 as indicated in Fig 3.3 (right), lazier greedy will

have a slightly degraded optimal bound but with a 3-4x higher efficiency than lazy greedy.

Alg 1 describes an efficient algorithm for Good Feature Selection based on the near-optimal

lazier-greedy.

Algorithm 1: Lazier-greedy Good Feature Selection algorithm.
Data: Hc = {Hc(1), Hc(2), ... , Hc(n)}, k
Result: Hsub

c ⊆ Hc, |Hsub
c | = k

1 Hsub
c ← ∅;

2 while |Hsub
c | < k do

3 HR
c ← a random subset obtained by sampling
s = n

k
log(1

ε
) random elements from Hc;

4 Hc(i)← arg maxHc(i)∈HR
c

log det(Hc(i)THc(i) +[Hsub
c ]T [Hsub

c ]);
5 Hsub

c ← Hsub
c ∪Hc(i);

6 Hc ← Hc \Hc(i);

7 return Hsub
c .

3.5.2 Simulation of Lazier Greedy Feature Selection

To validate the benefits of lazier greedy, and to identify the proper value of decay factor

ε, a simulation of Good Feature Selection is conducted. A testing process similar to the
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Figure 3.4: Lazy greedy vs. lazier greedy in feature selection simulation. Left: average
time cost of lazy greedy vs. lazier greedy under different decay factor ε. Right: average
error ratio of lazier greedy (compared with lazy greedy baseline; the smaller the better)
under different ε.

Matlab one from the previous pose optimization simulation was implemented in C++ for

speed assessment. The two feature selection algorithms tested are: lazy greedy [74] and

lazier greedy (Alg 1). Like the simulation of pose optimization, a set of randomly-spawned

3D feature points, as well as the corresponding 2D measurements, are provided as input.

Gaussian noise is added to both the 3D mapped features and the 2D measurements. The

perturbed inputs are fed into a matrix building module, which estimates the combined ma-

trix Hc for submatrix/feature selection.

To assess the performance and efficiency of Good Feature Selection comprehensively,

we sweep through the three parameters: the number of 3D features from 100 to 3000, the

percentage to select as subset from 10% to 80%, and the decay factor from 0.5 to 0.005.

For each parameter combination, we randomly spawn 100 different worlds and evaluate

each feature selection algorithm on each world. Due to the randomness of lazier greedy,

we repeat it 20 times under each configuration.

Fig 3.4 plots the simulation results for computational time and error ratio as a function

of the subset percentage and the number of features. The error ratio uses the lazy-greedy

outcome as the baseline, then computes the normalized RMS of the difference versus lazier

greedy. The multiple surfaces for lazier-greedy correspond to different decay factors ε.

Referring to the time cost graph, lazier greedy is 1-3 orders of magnitude lower than that of
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Figure 3.5: Lazier greedy with different decay factor ε under 2 example configurations:
selecting 30% subset from 1500 and 2500 feature matchings. First row: time cost of lazier
greedy. Second row: error ratio of lazier greedy.

lazy greedy, depending on ε. The plot includes a constant reference plane of 10ms time cost

(in blue). The preference is to lie near to-or below-this reference plane, which lazier greedy

can achieve over large regions of its parameter space while lazy greedy cannot. Moving

to the error ratio graph, an error ratio of 0.1 indicates that the subset selected with lazier

greedy is less than 10% different from the lazy greedy baseline. Though slow, this baseline

has good performance for Good Feature Selection. According to Fig 3.4, the average error

ratio of lazier greedy is below 0.1 for the majority of configuration surfaces when ε ≤ 0.1.

To further identify an acceptable decay factor ε, box-plots of time cost and error ratio

under three configurations are presented in Fig 3.5, which vary by the number of matched

features. We consider ε = 0.1 a good option for Good Feature Selection: the time cost of

corresponding lazier greedy is minimum under the requirement of less-than-0.1 error ratio.

In what follows, all experiments run lazier greedy with ε = 0.1.

3.5.3 Good Feature Matching Algorithm

Now we can tailor the lazier greedy to Good Feature Matching problem. Essentially, the

assumption that all feature matchings are available shall be removed. At the beginning

stage of Good Feature Matching, few feature matches is known. Under such a condition,

the complete algorithm of Good Feature Matching is described in Alg 2.
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Algorithm 2: Good Feature Matching in mono VSLAM.
Data: P = {p(1), p(2), ... , p(n)}, Z = {z(1), z(2), ... , z(m)}, k
Result: M = < p(i), z(j) >, |M | = k

1 foreach 3D feature p(i) do
2 build Jacobians Hx(i), Hp(i);
3 W(i) = chol(I2 + Hp(i)Σp(i)Hp(i)T ) ;
4 Hc(i) = W(i)−1Hx(i) ;

5 M ← ∅, Hsub
c ← ∅;

6 while |M | < k do
7 HR

c ← a random subset obtained by sampling
s = n

k
log(1

ε
) random elements from Hc;

8 while 1 do
9 Hc(i)← arg maxHc(i)∈HR

c
log det(Hc(i)THc(i) +[Hsub

c ]T [Hsub
c ]);

10 if found matched measurement z(j) for p(i) then
11 W(i) = chol(Σz(j) + Hp(i)Σp(i)Hp(i)T ) ;
12 Hc(i) = W(i)−1Hx(i) ;
13 M ←M∪ < p(i), z(j) >;
14 break;

15 else
16 HR

c ← HR
c \Hc(i);

17 HR
c ← HR

c ∪ a random sample from Hc;

18 Hsub
c ← Hsub

c ∪Hc(i);
19 Hc ← Hc \Hc(i);
20 Z ← Z \ z(j);

21 return M .

Good Feature Matching applies to stereo cameras as well as to monocular cameras.

Compared to monocular VSLAM pipeline, stereo VSLAM has an additional module in

data association: stereo matching, which associates measurements between left and right

frames. Since the stereo algorithm associates existing 3D mapped features to 2D measure-

ments from both frames, each paired measurement provides twice the number of rows to

the least squares objective (in pose-only and joint BA). Stereo methods also provide for

instant initialization of new map points through triangulated 2D measurements from the

left and right frames. However, optimization for the current pose (as pursued in pose track-

ing) only benefits from the stereo matchings associated with existing 3D mapped features!

By exploiting this property, we can design a lazy-stereo VSLAM pipeline that has lower
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latency than the original stereo pipeline. Stereo matching is postponed after map-to-frame

matching. Instead of searching for stereo matchings between all measurements, only those

measurements associated with 3D map points are matched. After pose optimization, the

remaining measurements are stereo-matched and triangulated as new 3D mapped features.

The lazy-stereo VSLAM pipeline should have the same level of accuracy and robustness

as the original pipeline, with reduced pose tracking latency. Implementing the stereo good

feature matching algorithm with the lazy-stereo pipeline will further reduce latency while

preserving accuracy and robustness. Compared with monocular Alg 2, the stereo Alg 3

has additional steps of stereo matching at each successful iteration of map-to-frame feature

matching (line 13 of Alg 3). Depending on the matching outcome, the blockHc(i) contains

map-to-frame information only (no stereo matching found; line 11-12 of Alg 3), or both

map-to-frame and left-to-right information (stereo matching found; line 14-15 of Alg 3).

Algorithm 3: Good Feature Matching in stereo VSLAM.
Data: P = {p(1), ... , p(n)}, Z = {z(1), ... , z(m)}, Zr = {zr(1), ... , zr(s)}, k
Result: M = < p(i), z(j), zr(r) >, |M | = k
// line 1-9 identical with monocular version

10 if found matched left measurement z(j) for p(i) then
11 W(i) = chol(Σz(j) + Hp(i)Σp(i)Hp(i)T ) ;
12 Hc(i) = W(i)−1Hx(i) ;
13 if found matched right measurement zr(d) for p(i) then
14 Wr(i) = chol(Σz

r(d) + Hr
p(i)Σp(i)H

r
p(i)T ) ;

15 Hc(i) = [Hc(i); Wr(i)−1Hr
x(i)] ;

16 M ←M∪ < p(i), z(j), zr(d) >;

17 else
18 M ←M∪ < p(i), z(j), ∅ >;

19 break;

// rest of lines identical with line 15-21 of monocular
version
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3.6 Experiments

The Good Feature Matching algorithm is integrated into the map-to-frame matching func-

tion of monocular ORB-SLAM [4] and stereo ORB-SLAM [101]. For each input frame, the

map-to-frame feature matchings are combined with keyframe-to-frame feature matchings,

which are compute-economic to find. The combined matchings are feed into pose opti-

mization for real-time camera pose estimation. In the following, the good-feature-matching

enhanced ORB-SLAM is referred as GF, while the baseline ORB-SLAM is ORB. Two ref-

erence methods that prioritize feature matching with simple heuristics are also integrated

into ORB-SLAM: 1) purely-randomized matching, i.e., Rnd; and 2) prioritizing map points

with long tracking history, i.e., Long.

The EuRoC MAV benchmark [25] is chosen for the evaluation, since it covers a va-

riety of challenging cases for pose tracking in VSLAM/VINS: fast motion, blurring, low

light and low texture. For fair comparison between VSLAM and VO, the loop closing

modules are disabled in all SLAM systems. Accuracy of real-time pose tracking is eval-

uated with the absolute root-mean-square difference (RMSE) between ground truth track

and SLAM estimated track, as commonly used in SLAM evaluation [102]. The latency of

real-time pose tracking per frame, i.e., time cost from receiving an image till publishing the

state estimation, is also reported. The full evaluation results that include both RMSE and

RPE/ROE are provided externally 3.

3.6.1 Monocular VSLAM with Latency Reduction

Apart from ORB-SLAM variants, we also report results of two state-of-the-art monocular

VSLAM (SVO [6], DSO [7]), and two monocular VINS (ROVIO [33], VIMono [31]). Apart

from the feature-based ORB, the other four baselines are with direct front-ends.

All results in the following are collected from desktops with the same spec: Intel i7-

7700k quadcore 4.20GHz CPU (passmark score of 2583 per thread), Ubuntu 14.04 and
3https://github.com/ivalab/FullResults_GoodFeature

40

https://github.com/ivalab/FullResults_GoodFeature


ROS Indigo. To ensure the results are reliable, a 10-run repeat is performed for each config-

uration, i.e., the benchmark sequence, the VSLAM approach and the parameter (number of

features tracked per frame). Any results with tracking failure are discarded in the following,

as it indicates some issue in robustness. In addition to the monocular ORB-SLAM base-

line (ORB), two state-of-the-art monocular direct VO methods serve as baselines: SVO4 [6]

and DSO5 [7]. SVO is a light-weight direct VO system targeting low-latency pose tracking

while sacrificing tracking accuracy. The multi-threaded option in SVO is enabled, so that

the depth update/mapping runs on a separate thread from pose tracking.

The latency and accuracy of VSLAM systems can be adjusted through a few internal

parameters. One key parameter that significantly impacts both latency and accuracy is

the max feature number, i.e., the maximum number of features/patches tracked per frame.

Running VSLAM with high max feature number is beneficial for accuracy and robustness.

Meanwhile, lowering the max feature number is preferred for latency reduction. To evaluate

the trade-off between latency and accuracy for baseline systems (ORB, SVO, and DSO), all

of them are configured to run 10-repeats for max feature number parameters ranging from

150 to 2000.

For a given max feature number, ORB-SLAM latency can be reduced via the Good

Feature Matching algorithm. Adjusting the good feature number, i.e., the number of good

features being matched in pose tracking, varies the observed latency. Tests with the three

ORB-SLAM variants (GF, Rnd and Long) are configured to run 10-repeat under good

feature number values ranging from 60 to 240. Meanwhile, the max feature number is

fixed to 800, which yields a good balance of latency and accuracy for baseline ORB.

Fig. 3.6 present the latency-accuracy trade-off curves for monocular VSLAM imple-

mentations on three example EuRoC sequences Amongst the baseline methods, ORB has

the best accuracy while SVO has the lowest latency. Lowering the max feature number

reduces the latency of ORB baseline to some extent, however, it comes with clear loss of

4http://rpg.ifi.uzh.ch/svo2.html
5https://github.com/JakobEngel/dso
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Figure 3.6: Latency vs. accuracy on 3 EuRoC Monocular sequences: MH 01 easy, V2
02 med, and MH 04 diff (from top to bottom). Baseline systems are evaluated with max
feature number ranging from 150 to 2000; ORB-SLAM variants are evaluated with good
feature number ranging from 60 to 240, and max feature number fixed to 800. Only the
configurations with zero failure in 10-run repeat are plotted (e.g. all configurations of DSO
fail to track on MH 04 diff, therefore omitted in row 3). Same rule applies to latency vs.
accuracy figures afterwards.

tracking accuracy (e.g. the 1st blue marker in row 2), or even the risk of track failure (e.g.

the first 2 blue markers are omitted in row 3). Meanwhile, better latency-accuracy trade-off

is achieved with the proposed GF method. According to Fig 3.6, the latency of GF is in a

similar range as SVO, but with the accuracy of GF being an order of magnitude better than

both SVO and DSO. Furthermore, the accuracy-preserving property of GF is demonstrated
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when comparing against reference methods Rnd and Long. The latency-accuracy curves of

GF are almost flat and lower than the other two, once a reasonable number of good features

are set to be matched (e.g. starting from the 3rd black marker).

Figure 3.7: Latency vs. good feature number on EuRoC sequence MH 01 easy. Top: box-
plots for GF and baseline ORB. Bottom: the latency vs. time trend of GF under 100 good
feature number (marked with red arrow on left) and ORB for 1 run.

The latency-reduction of GF is further illustrated in Fig 3.7, in which the max feature

number is set to 800. Compared with ORB, the latency of GF has lower variance. A good

setting for the good feature number is 100, as marked by a red arrow in Fig 3.7. The

accuracy of GF with 100 good feature number is on par with ORB, as quantified by the 3rd

black marker in each row of Fig 3.6.

Last, we report the accuracy and latency of all monocular VSLAM methods under

example configurations: the RMSE values are in Table 3.1 (after a Sim3 alignment to the

ground truth), and the latency values in Table 3.2. For the three VSLAM baselines, the max

feature number is 800. For the three ORB variants, the max feature number is 800 and the

good feature number is 100. Results with any tracking failure are omitted from both tables.
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Table 3.1: RMSE (m) on EuRoC Monocular Sequences

VSLAM
Seq. SVO DSO ORB GF Rnd Long

MH 01 easy 0.227 0.407 0.027 0.025 0.024 0.029
MH 02 easy 0.761 - 0.034 0.043 0.038 0.040
MH 03 med 0.798 0.751 0.041 0.045 0.041 0.040
MH 04 diff 4.757 - 0.699 0.492 1.110 1.377
MH 05 diff 3.505 - 0.346 0.464 0.216 0.915
VR1 01 easy 0.726 0.950 0.057 0.037 0.036 0.037
VR1 02 med 0.808 0.536 - - - -
VR1 03 diff - - - - - -
VR2 01 easy 0.277 0.297 0.025 0.024 0.025 0.023
VR2 02 med 0.722 0.880 0.053 0.051 0.051 0.059
VR2 03 diff - - - - - -

All Avg. 1.477 0.637 0.160 0.147 0.193 0.315
Int. Avg. 0.550 0.657 0.041 0.036 0.035 0.038

GF subset selection does not impact the robustness of ORB-SLAM: it works on all eight

sequences that ORB also tracks. The average RMSE for all tracked sequences per method

is given (i.e., All Avg.), as well as the average RMSE of 5 sequences that all methods track

successfully (i.e., Int. Avg.).

On each EuRoC sequence, the minimum RMSE is noted in bold. Interestingly, GF

does not just preserve the accuracy and robustness of ORB; it further reduces the RMSE

on several sequences. On average, GF has the lowest RMSE over all evaluated VSLAM

methods. Furthermore, GF also has better overall accuracy when compared with two refer-

ence selection methods. Though Rnd seems to have lowest RMSE on multiple sequences,

the margin between Rnd and GF small for them. Meanwhile, both Rnd and Long lead to

large accuracy loss on the difficult sequence MH 04 diff, while GF improves RMSE.

According to Table 3.2, the average latency of GF is the lowest relative to all other

methods: GF has an average latency 34% lower than ORB! Compared with the direct

methods, the latency of GF has lower variance. The 1st quartile of GF latency is higher

than direct methods, since feature extraction introduces a constant overhead. However, the

3rd quartile of GF latency is lower than direct methods, which might occasionally spend

too much time on direct optimization.
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Table 3.2: Latency (ms) on EuRoC Monocular Sequences

VSLAM
SVO DSO ORB GF Rnd Long

Q1 7.4 5.8 13.9 10.3 10.0 10.0
Avg. 12.6 16.4 18.4 12.2 12.3 12.3
Q3 16.8 19.1 20.7 13.3 13.2 13.0

3.6.2 Stereo VSLAM with Latency Reduction

We also evaluate the latency-accuracy trade-off of stereo GF against state-of-the-art stereo

VSLAM systems. Four baseline stereo systems are included in the evaluation: stereo SVO,

stereo DSO (only on KITTI since no open-source implementation available), canonical

stereo ORB-SLAM (ORB), and Lz-ORB, a sped-up version of stereo ORB-SLAM based

on the lazy-stereo pipeline described earlier.

The Good Feature Matching (Alg 3) is integrated into the sped-up ORB-SLAM, Lz-

ORB. In what follows, we again refer to the good feature enhanced ORB-SLAM as GF. As

before, two heuristics are integrated into Lz-ORB as reference methods, i.e., Rnd and Long.

The latency-accuracy trade-off of stereo VSLAM on three example EuRoC sequences

can be found at Fig 3.8. Among all 3 baseline systems, Lz-ORB has the best accuracy, while

SVO has the lowest latency. Simply lowering the max feature number leads to accuracy

drop or even track failure in Lz-ORB. However, with GF the latency of pose tracking can

be reduced to the same level as SVO, while the RMSE remains a magnitude lower than SVO.

Two state-of-the-art stereo VINS systems, OKVIS6 [16] and MSCKF7 [10], are evaluated as

well. Both VINS systems are assessed under the default parameters, therefore rather than

having the full curve only one marker is presented in Fig 3.8. The latency of GF is clearly

lower than filter-based MSCKF, while the accuracy is even better than BA-based OKVIS.

However, when comparing with two heuristics (Rnd, Long), the advantage of GF is harder

to identify than monocular results.

6https://github.com/ethz-asl/okvis
7https://github.com/KumarRobotics/msckf_vio
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Figure 3.8: Latency vs. accuracy on 3 EuRoC Stereo sequences: MH 01 easy, V2 02 med,
and MH 04 diff (from top to bottom). Baseline systems are evaluated with max feature
number ranging from 150 to 2000; ORB-SLAM variants are evaluated with good feature
number ranging from 60 to 240, and max feature number fixed to 800.

The latency reduction of GF is further illustrated in Fig 3.9. The max feature number

being used in Lz-ORB and ORB is 800, which balances accuracy and latency. Compared

with the two non-GF baselines, the latency of GF is has a lower upper bound. A reasonable

good feature number is 160, since it yields low latency as well as high accuracy (the 3rd

black mark to the right, in Fig 3.8).

The RMSEs and latencies of all 6 stereo VSLAM methods under the example config-

urations (max feature number of 800 and good feature number of 160) are summarized
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Figure 3.9: Latency vs. good feature number on EuRoC sequence MH 01 easy. Top:
latency for GF under different good feature number, and 2 baselines Lz-ORB and ORB.
Bottom: the latency trend of GF under 160 good feature number (marked with red arrow
at the left), Lz-ORB and ORB in 1 run.

in Table 3.3. The results of 2 stereo VINS systems under default parameters are reported

as well. Different from monocular VSLAM, it is expected for stereo systems to estimate

scale correctly. Therefore, in each cell of Table 3.8 we report both the RMSE after Sim3

alignment (as the 1st value) and the scale error percentage (as the 2nd value). The low-

est error within each category, i.e., VSLAM or VINS, is highlighted in bold. Similar to the

monocular experiment, GF is the lowest in terms of average RMSE and average scale error,

compared with other stereo VSLAM methods. Furthermore, the accuracy of GF is better

than the two stereo VINS systems, while the robustness of GF is at the same level as stereo

VINS (each of them failed on 1 sequence). The advantage of GF over Rnd and Long can

be verified as well: both Rnd and Long failed to track on MH 02 easy while GF succeed;

both the average RMSE and the scale error of GF are lower than the other two as well.

The latency of all 8 stereo systems under the same configuration as Table 3.6 are sum-

marized in Table 3.4. The lowest latency is achieved with SVO, though the accuracy of SVO

is an order of magnitude higher than GF. The average latency reduction of GF is 27.4%
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when compared against baseline Lz-ORB, and 46.2% when compared with ORB.

3.6.3 Real-time Tracking on Low-Power Devices

Last, the proposed GF is deployed on three low-power devices with limited processing

speed, which serve as on-board processing unit for light weight platforms. The low-power

devices being tested include:

1) X200CA: a light-weight laptop with Intel Pentium 2117U processor (passmark score

1662 per thread) and 4 GB of RAM. The processor has 2 cores, and requires 17 W.

2) Jetson TX2: a 64-bit embedded single-board computer system, containing a hybrid pro-

cessing unit (2 Denver2 + 4 ARM A57) and 8 GB of RAM. The power consumption is 7.5

W.

3) Euclid: a 64-bit embedded single-board computer system, with a Intel Atom x7-Z8700

processor (passmark score 552 per thread) and 4 GB of RAM. The processor has 4 cores,

and consumes 4 W of power.

The proposed GF, as well as 3 monocular VSLAM baselines, are deployed on these

devices, and evaluated with EuRoC monocular sequences. To run ORB variants near real-

time, the pyramid levels for ORB feature extraction were reduced to 3 from 8, and the

max feature number set to 400. As a consequence, the robustness performance of the ORB

variants is worse than the previous EuRoC Mono results. In what follows, we relax the

robustness condition slightly, and report results with 1 tracking failure in 10 runs as well

(marked with underline).

The RMSEs on all three low-power devices are summarized in Table 3.5, while the

latencies are summarized in Table 3.6. The max feature number is set to 400, and the good

feature number is set to 60.

1) When running on X200CA, GF has the 2nd lowest average RMSE (23% higher than

ORB). However, the robustness of GF is slightly better than ORB and SVO: it tracks on 8

sequences without failure, while the other 2 baselines track 7 sequences and with failure.
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Table 3.4: Latency (ms) on EuRoC Stereo Sequences

VSLAM VINS
SVO ORB Lz-ORB GF Rnd Long OKVIS MSCKF

Q1 8.6 30.0 21.5 14.5 14.2 14.2 50.5 19.9
Avg. 16.4 38.5 28.5 20.7 19.9 20.1 65.1 28.3
Q3 23.3 44.2 32.1 24.2 22.5 22.9 80.3 36.0

When comparing on the 7 sequences that ORB tracks, GF only introduces 14% to average

RMSE. The strength of SVO is the low-latency; though the average latency of GF is 24%

less than ORB, it is still almost twice as much as the latency of SVO.

2) The released binary of SVO does not support 64-bit Jetson TX2, therefore only 3 meth-

ods are assessed on Jetson. Similar to the X200CA results, GF is slightly worse than ORB

in terms of average RMSE (by 8%). Notice GF is also less robust than ORB, as it intro-

duces additional tracking failure on sequences MH 02 easy and MH 04 diff. The latency

reduction of GF is also small: 11% less than ORB.

3) When running on Euclid, GF introduces 20% more error in terms of average RMSE.

Again, notice that GF works on MH 05 diff while ORB cannot. If we only take the 6 se-

quences that ORB tracks into account, GF only introduces 4% to average RMSE. However,

the latency reduction of GF is smaller than the Jetson results: only 9% time savings. Apart

from the 4 monocular VSLAM systems, we also include the VINS results [11] evaluated on

a UP Board, which has almost identical hardware specifications as Euclid. The RMSE of

the VINS methods, labeled SVOMSF[11] and VIMono[31], are obtained by Sim3 alignment

to ground truth, which is identical with our evaluation. With additional input from inertial

sensors, VINS are clearly more robust than vision-only systems. However, the accuracy

of VINS is poorer than vision-only ones (when scale corrected). Furthermore, the latency

of the VINS approaches is much higher than vision-only systems, which suggests the scal-

ability of VINS is also poor for low-power devices. Therefore, for VSLAM and VINS,

combination of algorithm improvements (e.g. Good Feature) and hardware improvements

may be required to achieve low latency and good accuracy on embedded devices.
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Figure 3.10: Latency breakdown for all modules in pose tracking pipeline, running on
low-power devices.

When the computation resources (e.g. processor speed, cache size) are highly limited,

the latency reduction of GF is less significant. The preservation of accuracy and robust-

ness, on the other hand, scales relatively well on different devices (only with slight drop).

The limited scalability to devices such as Jetson and Euclid is mostly due to the sequential

nature of the proposed GF algorithm. As embedded device hardware specifications im-

prove, in terms of compute power and core quantity, we anticipate that improvements will

favor the GF variant (as demonstrated on desktop and X200CA). Even on current embed-

ded platforms, the small amount of latency reduced by GF could be important: it turns the

near real-time ORB into a real-time applicable VSLAM system, as illustrated in Fig 3.10.

3.7 Conclusion

This section presents an active map-to-frame feature matching method, Good Feature Match-

ing, which reduces the computational cost (and therefore latency) of VSLAM, while pre-

serving the accuracy and robustness of pose tracking. The feature matching effort is con-

nected to the submatrix selection problem. To that end, the Max-logDet matrix revealing

metric was shown to perform best via simulated scenarios. For application to active feature
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matching, the combination of deterministic selection (greedy) and randomized acceleration

(random sampling) is studied. The described Good Feature Matching algorithm is inte-

grated to both monocular and stereo feature-based VSLAM systems, followed by extensive

evaluation on multiple benchmarks and computation platforms. Good Feature Matching is

shown to be an efficiency enhancement for low-latency VSLAM, while preserving, if not

improving, the accuracy and robustness of VSLAM.

In the future, Good Feature Matching can be combined with dedicate hardware (e.g.

FPGA) to further boost the performance-efficiency of VSLAM on low-power devices, since

the overhead of feature extraction (illustrated in Fig 3.10) can be greatly reduced. Another

interesting direction is to combine the advantage of feature-based and direct front-end.

Feature matching provides long-baseline associations that are beneficial to the overall ac-

curacy of VSLAM, while direct measurements serve as the short-term constraints for the

robustness of VSLAM.
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CHAPTER 4

GOOD LINE CUTTING: ACCURACY IMPROVEMENT OF LINE-ASSISTED

VSLAM

4.1 Introduction

In this chapter, we present the work of Good Line Cutting, which tackles a key problem in

line-assisted VSLAM: accurately solving the least squares pose optimization with unreli-

able 3D line input. Line features serve as sensible alternatives or additions to point features,

given that edges are also fairly abundant in images; especially within man-made environ-

ments where sometimes the quantity of points may be lacking to the detriment of VS-

LAM. The canonical examples being corridors and hallways, whose low-texture degrades

the performance of point features methods. Under these circumstances, lines become more

reliable constraints versus points.

Adding line features to VSLAM is not a trivial task. Triangulating a 3D line from 2D

measurements requires more measurements and is more sensitive to measurement noise,

compared to points. Lines are generally weak in constraining the correspondence along

its direction of expansion. It is hard to establish reliable point-to-point correspondence be-

tween two lines (as segments), which degrades triangulation accuracy. In addition, lines

are usually partially-occluded, which brings the challenge of deciding the endpoint corre-

spondence. Examples of 3D lines reconstructed with state-of-the-art line-assisted VSLAM

system, PL-SLAM [23], are provided in Fig 4.1. When compared against the ground truth

floor plan, the reconstructed 3D lines are clearly off. To solve line-based pose estima-

tion accurately when the 3D line references are potentially erroneous, the low-reliability of

triangulated 3D lines has to be resolved.

To reduce the impact of unreliable 3D lines, a common practice is to model the un-
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3D lines mapped with PL-SLAM Outline of floorplan (3D line GT)

Figure 4.1: The map that includes 3D points and 3D lines estimated with line-assisted PL-
SLAM [23]. Left: map of gazebo simulate office environment. Right: map of EuRoC
MAV sequence V1 01 easy captured in a room. The 3D lines maintained (and referred) in
the map are in black solid lines. The outline of actual floor plan, which serves as the ground
truth for 3D lines around, are in green dash lines. Notice the significant error in 3D line
map, when compared against the ground truth floor plan.

certainty of the 3D line, and weight the contribution of each line accordingly in pose op-

timization. The information matrix of the line residual [103, 104, 105, 23] is one of such

weighting terms. The residuals of uncertain lines get less weight so that the optimized pose

is biased in favor of the certain lines. However, uncertainty of line residual does not im-

mediately imply incorrect pose estimation (though there is some correlation): a certain line

residual term might barely contribute to pose estimation, whereby it would make no sense

to weight it highly. We posit that, in lieu of the uncertainty of line residual, the uncertainty

of pose estimation should be assessed and exploited.

Another way to reduce uncertainty is to simply drop highly-uncertain lines when nu-

merically constructing the pose optimization problem. However, line features are typically

low in quantity (e.g. tens of lines). Too much information could be lost by dropping line

features. Furthermore, there is a high risk of forming ill-conditioned optimization problem.
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Figure 4.2: A toy case illustrating the proposed Good Line Cutting approach. Left: Giving
3 line matchings with confidence ellipsoids (dashed line), the least squares pose estimation
has high uncertainty. Right: Line-cutting applied to the line-based least squares prob-
lem. The cut line segments and their corresponding confidence ellipsoids are in red. The
confidence ellipsoid of the new pose estimation improves.

As opposed to line weighting and dropping, this work aims to improve pose optimization

through the concept of Good Line Cutting. The goal of Good Line Cutting is simple: for

each 3D line, find the line segment that contributes the largest amount of information to

pose estimation (a.k.a. a good line), and select only those informative segments to solve

pose optimization. With line cutting, the conditioning of the optimization problem im-

proves, leading to more accurate pose estimation than the original problem. An illustration

of Good Line Cutting can be found at Fig 4.2. To the best of the authors’ knowledge, this

is the first work discussing the role of line cutting in line-based pose optimization. The

contributions of this chapter are:

1) Demonstration that Good Line Cutting improves the overall conditioning of line-based

pose optimization;

2) An efficient algorithm for real-time applications that approaches the computationally

more involved joint optimization solution to Good Line Cutting; and

3) Integration of Good Line Cutting algorithm into a state-of-the-art line-assisted VSLAM

system. When evaluated in two target scenarios (motion blur and low-texture), the pro-

posed line cutting leads to accuracy improvements over line-weighting, while preserving
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the robustness of line-assisted pose tracking.

4.2 Background

There are continuous effort investigating line features in the SLAM community. In the early

days of visual SLAM, lines features are used to improve the large view change in monocular

camera tracking [17, 18]. In [17], the authors integrate lines into a point-based monocular

Extended Kalman Filter SLAM (EKF-SLAM). Real-time pose tracking with lines only are

demonstrated in [18] by using a Unscented Kalman Filter (UKF). Both methods model

3D lines as endpoint-pairs, project endpoint-pairs to image, then measure the point-wise

residual. Alternatively, edges are extracted and utilized [106]. For the convenience of

projection, a 12-DOF over-parameterization is used to model 3D edge. Again, the edge

residual is measured after 3D-to-2D projection.

Line-assisted VSLAM has been studied with 3D visual sensors, such as RGB-D sen-

sor and stereo camera. In [103], a line-assisted RGB-D odometry system is proposed. It

involves parameterizing the 3D lines as 3D endpoint-pairs and minimizing the endpoint

residual in SE(3). However, directly working in SE(3) has the disadvantage of being

sensitive to inaccurate depth measurements. With the progress in line detectors (e.g. LSD

[19]) and descriptors (e.g. LBD [20]), matching and triangulating 3D lines from 2D color

image become feasible in real-time VSLAM. As a consequence, stereo [107, 21, 23] and

monocular [108, 109, 105] line-assisted VSLAM systems are developed. Though alter-

native parameterizations have been explored (e.g. Plücker coordinate [22], orthonormal

representation [110]), most line-assisted VSLAM continued to use the 3D endpoint-pair

parametrization because it conveniently combines with the well-established point-based

optimization. Pose estimation typically jointly minimizes the reprojection errors of both

point and line matches. For line features, the endpoint-to-line distance is chosen as the

reprojection error term, i.e., the line residual. To cope with the 3D line uncertainty, a co-

variance matrix is maintained for each 3D line. Each line residual term is weighted by the
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inverse of the covariance matrix obtained by propagating the covariance from the 3D line

to the endpoint-to-line distance.

Line-assisted methods building from direct VSLAM have also been developed [109,

105]. Interestingly, neither of them use direct measurements (e.g. photometric error) for

line terms in the joint optimization objective. Instead, the line residual is the least squares

of endpoint-to-line distance, which is identical to other feature-based approaches.

Research into line-assisted VSLAM is still ongoing. Among the systems described

above, there is a set of modules employed in common: 1) 3D lines parameterized as 3D

endpoint-pairs; 2) endpoint-to-line distance and variants serve as the line residual; 3) in the

optimization objective (pose only and joint), line residuals are weighted by some weighting

matrix. The Good Line Cutting approach described in this work expands on these three

modules.

4.3 Conditioning of Line-assisted Pose Tracking Objective

Similar to the Good Feature Matching work, we begin with the general least squares objec-

tive in line-assisted VSLAM:

x̂ = arg min{‖p− h(x,P)‖2 +
∥∥lTh(x,L)

∥∥2} (4.1)

where p and l are stacked matrices of 2D point measurements {pi} and 2D line coefficients

{li}, respectively. P is the stacked matrix of 3D points {Pi}, while L is the stacked matrix

of all endpoints from the 3D line set {Li}. h(x,P) consists of the pose transformation

(decided by x) and pin-hole projection. For simplicity, the least squares (4.1) is referred to

as line-LSQ problem.

Solving the line-LSQ (4.1) often involves the first-order approximation of the non-linear

measurement function. For instance, the endpoint-to-line distance h(x,L) on image plane
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can be approximated as,

h(x,L) = h(x0,L) + Hx(x− x0) (4.2)

so that the least squares of line residual term can be minimized with Gauss-Newton method,

which iteratively updates the pose estimate:

x̂ = x0 − (lTHx)+lT (h(x0,L)) (4.3)

Accuracy of x̂ is affected by two types of error in line features: 2D line measurement

error and 3D line triangulation error. As mentioned earlier, 3D line triangulation is sensitive

to noise and less reliable than 3D point triangulation. Therefore, here we only consider the

error of 3D line endpoint L while assuming the 2D measurement l is accurate. Again, with

the first-order approximation of h(x0,L) at the initial pose x0 and triangulated 3D endpoint

L0, we may connect the pose optimization error εx and 3D line endpoint error εL,

εx = (lTHx)+lTHLεL = HT εL (4.4)

where HT = (lTHx)+(lTHL). Here we intentionally ignore the error of point residual

term. The reason is, when available, point features are known to be more accurate. There-

fore, the main source of error in line-LSQ problem is from 3D line triangulation εL, which

is propagated by H.

Following the common error model of independent distributed zero-mean Gaussian in

inverse-depth parametrization, we may derive the pose information matrix Ωx from Eq 4.4,

Ωx = HTΩLH =
∑

Hi
TΩLi

Hi (4.5)

where Hi is the corresponding row block in H for line Li, and ΩLi
is the information

matrix of 3D endpoint-pair used to parametrize Li. ΩLi
is a block diagonal matrix under
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the independent distributed assumption on 3D endpoint error. Set ΩLi(0), ΩLi(1) as the

two diagonal blocks of ΩLi
, and Hi(0), Hi(1) the corresponding row block in Hi, then

(4.5) can be further broken down into:

Ωx =
∑

[Hi
T (0)ΩLi(0)Hi(0) + Hi

T (1)ΩLi(1)Hi(1)]

=
∑

Hi
T (αi)ΩLi(αi)Hi(αi)

(4.6)

where we extend the range of i from n lines to 2n endpoints, and set [αi] as a 2n × 1

chessboard vector filled with 0 and 1.

As pointed out in the literature of point-feature selection (e.g. [93, 86, 87, 74] and

chapter 3), the spectral property of the pose information matrix has strong connection with

the error of least squares pose optimization. For example, the worst-case error variance is

quantified by the inverse of minimum eigenvalue of Ωx [86, 87]. Large min-eigenvalue of

Ωx is preferred to avoid fatal error in line-LSQ solving. Also, the volume of the confidence

ellipsoid in pose estimation can be effectively measured with the log-determinant of Ωx

[74]. For accurately solving the line-LSQ problem, the large log-determinant of Ωx is

pursued. In what follows, we quantify the spectral property of Ωx with log-determinant,

i.e., log det(Ωx).

4.4 Good Line Cutting using Max-LogDet

4.4.1 Intuition of Good Line Cutting

Compared with points that are typically modeled as sizeless entity, lines are modeled to

extend along one certain dimension. For a 3D line Li defined by endpoint-pair Li(0) and

Li(1) in Euclidean space, the following equations hold for any intermediate 3D point Li(α)
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Figure 4.3: Illustration of Good Line Cutting intuition. The final line cutting behav-
ior is jointly determined by two motivations: uncertainty-reduction and information-
preservation.

that lies on Li:

Li(α) = (1− α)Li(0) + αLi(1)

ΩLi(α) = ΣLi(α)
−1 = {(1− α)2ΣLi(0) + α2ΣLi(1)}−1,

where α is the interpolation ratio, and ΣLi(∗) is the covariance matrix of 3D point Li(∗).

The covariance matrix of the intermediate 3D point, ΣLi(α), is convex to the inter-

polation ratio α, as both ΣLi(0) and ΣLi(1) are positive semi-definite. At some specific

αm ∈ [0, 1], ΣLi(αm) reaches a global minimum (and ΩLi(αm) a global maximum). In

other word, at some intermediate 3D position Li(αm) (both endpoints included) the corre-

sponding 3D uncertainty is minimized. The same conclusion holds when extending from

a single 3D point to the 3D point-pair 〈Li(α1),Li(α2)〉 lying on the 3D line Li: both 3D

points share the least-uncertain position Li(αm). To minimize the amount of uncertainty

introduced with 3D line endpoints, the 3D line Li will shrink to a single 3D point!

However, the pose information Ωx is not only dependent on endpoint information ma-

trix ΩLi(α), but also the Jacobian term Hi(α) = (li
THx(α))+(li

THL(α)). Cutting 3D line

into smaller segments will affect the corresponding Jacobian term as well. Intuitively, line

cutting could hurt the spectral property of measurement Jacobian block Hx(α): if a 3D line

gets cut to a single point, the corresponding measurement Jacobian will degenerate from
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rank-2 to rank-1, thereby losing one of the two constraints provided by the original 3D line

matching.

Therefore, the objective of Good Line Cutting can be written as follow,

[αi] = arg max log det(Ωx)

= arg max log det[
∑

Hi
T (αi)ΩLi(αi)Hi(αi) + Ωpt

x ]

(4.7)

where we include a constant term Ωpt
x to capture the information from point features, if

applicable. Naturally, this objective can be solved with nonlinear optimization techniques.

4.4.2 Validation of Good Line Cutting

Before describing the optimization of (4.7), we would like to validate the idea of line cut-

ting. One natural question towards line cutting with (4.7) being, is it possible that the

Jacobian term Hi
T (αi) has much stronger impact towards (4.7) than 3D uncertainty reduc-

tion, so that one should always use the full-length of 3D line? To address this question, we

study the minimal case, single line cutting: only one pair of cutting ratio 〈α1, α2〉 can be

changed, while the remaining n− 1 lines are not cut.

It is cumbersome to derive the function from line cut ratio α to Jacobian term Hi(α): it

is highly non-linear, and the Jacobian term varies under different SE(3) parameterizations

of camera and 3D lines. Instead, a set of line-LSQ simulation are conducted to validate line

cutting.

The testbed is developed based on the simulation framework of [99]. A set of 3D lines

that form a cuboid are simulated, under homogeneous-points line (HPL) parameterization.

To simulate the error in 3D line triangulation, the endpoints of 3D lines are perturbed with

zero-mean Gaussians in inverse-depth space, as illustrated with blue lines in Fig. 4.4 left.

For the 3D line in red, the optimal line cutting ratio, found through brute-force search,

is plotted versus camera pose in Fig. 4.4 right. The boxplots indicate that cutting hap-

pens when the 3D line is orthogonal or parallel to the camera frame. In these cases, the
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measurement Jacobian of the red 3D line scales poorly with line length. Taking a smaller

segment/point is preferred so as to introduce less noise into the least squares problem. Ac-

cording to Fig. 4.4, line cutting adapts to the information and uncertainty of the tracked

lines based on the relative geometry.

To visualize the outcomes of different line cutting ratios, we used brute-force sweep

to generate the surface of log det(Ωx) as a function of the line cutting ratio parameters.

Three example surfaces are illustrated in Fig 4.5. In the 1st example, global maximum of

log det(Ωx) is at 〈α1 = 0, α2 = 1.0〉, which indicates the full-length of 3D line should be

used. The 2nd one has global maximum at 〈α1 = 0, α2 = 0.76〉, which encourages cutting

out part of the line. In column 3, log det(Ωx) is maximized at 〈α1 = 0.52, α2 = 0.52〉,

which means the original 3D line should be aggressively cut to a 3D point. To maximize

pose information, line cutting is definitely preferred in some cases (e.g. Fig 4.5 columns 2

and 3).

4.5 Efficient Good Line Cutting

4.5.1 Single Line Cutting

To begin with, consider the single line cutting problem as simulated previously. Based on

Fig 4.5, we notice the mapping from 〈α1, α2〉 to log det(Ωx) is continuous, and is concave

within a neighborhood. Therefore by doing gradient ascent in each of the concave regions,

the global maximum of log det(Ωx) is expected to be found. One possible triplet of ini-

tial pairs are: full-length 〈α1 = 0, α2 = 1.0〉, 1st endpoint only 〈α1 = 0, α2 = 0〉, and 2nd

endpoint only 〈α1 = 1.0, α2 = 1.0〉.

The effectiveness of the multi-start gradient ascent is demonstrated with 100-run re-

peated test. Two representative endpoint-pair parameterizations of 3D lines [99] are tested

here: homogeneous-points line (HPL) and inverse-depth-points line (IDL). The error of

endpoint estimation is simulated with i.i.d. Gaussian in inverse-depth space (standard de-

viation of 0.005 and 0.015 unit are used), and propagated to SE(3) space. Five different
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Figure 4.4: Line cutting behavior under different camera poses. A pair 〈0, 100〉 indicates
full line selection. Identical ratio pair, e.g. 〈45, 45〉 indicates cutting to a point. At each
camera pose, the 3D line in red is cut using the good line cutting objective 4.7. The resulting
line cutting ratios are summarized as boxplots to the right side. According to row 1 and 2,
line cutting happens when the 3D line is orthogonal or parallel to the camera frame, where
the constraint of corresponding line degenerates. In row 3, meanwhile, a consistent cutting
outcome of nearly 〈50, 50〉 appears. The outcome is sensible regarding the motion profile
(rotation about an axis parallel to the blue dashed line). The line cutting strategy adapts to
the information and uncertainty of the tracked lines based on the relative geometry.
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Figure 4.5: Example surfaces of log det(Ωx) in single line cutting set-up and HPL param-
eterization. The global maximum of log det(Ωx) is marked with red cross.

sizes (6, 10, 15, 20 and 30) of 3D line set are tested. Under both HPL and IDL parametriza-

tion, we compare the best pair from the 3 gradient ascends with the brute-force result. The

differences of line cutting ratios are smaller than 0.01 for over 99% of the cases. Therefore,

single line cutting problem can be solved effectively using the outcomes from a combina-

tion of three gradient ascents.

4.5.2 Joint Line Cutting

Now extend the single line cutting to the complete problem of joint line cutting: how to

find the line cutting ratios for all n 3D lines, so that the log det of pose information matrix

generated from n line matchings is maximized?

Naturally, the joint line cutting objective (4.7) can be approached with nonlinear opti-

mizers, e.g. interior-point [111], active-set [112]. Meanwhile, an alternative approach is

simple greedy heuristic: instead of optimizing the joint problem (or a smaller subproblem),

simply searching for the local maximum for each 3D line as single line cutting problem,

and iterating though all n lines. As demonstrated previously, single line cutting can be

effectively solved with a combination of 3 gradient ascends. Besides, the 3 independent

gradients ascends can execute in parallel. Compared with nonlinear joint optimization that

typically requires O(ε−c) iterations of the full problem (c is some constant), the greedy ap-

proach has a much well-bounded computation complexity. It takes n iterations to complete,
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while at each iteration the single line cutting is solved in O(m) (m the maximum number

of steps in gradient ascend). The efficiency of joint line cutting is crucial, since minimum

overhead (e.g. milliseconds) shall be introduced to the real time pose tracking of targeted

line-assisted VSLAM applications.

The greedy algorithm for efficient joint line cutting is described in Alg 4. The compo-

nent of pose information matrix from a full-length line Li is denoted by Ωx
i(0, 1), while a

line cut from 〈α1, α2〉 is denoted by Ωx
i(α1, α2). With the line-LSQ simulation platform,

the effectiveness of greedy joint line cutting is demonstrated with 100-run repeated test.

The Matlab implementations of interior-point [111], as well as three variants of active-set

[112], are chosen to compare against the greedy algorithm. The results are presented as

boxplots in Fig 4.6. Under both 3D line parameterizations (HPL and IDL), greedy algo-

rithm provides the largest increase of log det(Ωx) (on average and in the worst case).

Algorithm 4: Efficient greedy algorithm for joint line cutting.
Data: 3D line set {L(i)}n, 2D measurement set {l(i)}n
Result: {〈α1(i), α2(i)〉}n

1 Ωx =
∑

Ωx
i(0, 1);

2 for i = 1 : n do
3 Ωr

x = Ωx −Ωi
x(0, 1);

4 〈α1(i), α2(i)〉 = arg max log det(Ωi
x(α1, α2) + Ωr

x);
5 Ωx = Ωr

x + Ωi
x(α1(i), α2(i));

4.6 Experiments

4.6.1 Motion Blur Scenarios

The performance improvement of Good Line Cutting to line-assisted VSLAM is assessed

on EuRoC MAV dataset. Instead of running on all 11 sequences, only the 6 fast-motion

sequences recorded in a Vicon-equipped room (with high potential to exhibit motion blur)

are used for motion blur evaluation. Still, the level of motion blur for the original EuRoC

sequence is not severe: the shot of each camera is strictly controlled, and the vehicle is only
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Figure 4.6: Boxplots of joint line cutting with different approaches. Left: with HPL
parametrization. Right: with IDL parametrization. Boxplots are presented in order: 1)
original log det(Ωx), 2) after line cutting with greedy approach, 3)-6) after line cutting
with nonlinear joint optimizers.

doing fast motion at several moments during the entire sequence. To assess the performance

under severe motion blur, we smooth the 6 Vicon sequences with a 5 × 5 box filter, and

include the 6 blurred ones in the evaluation as well.

An open-source stereo line-assisted VSLAM system, PL-SLAM [23], is chosen as the

testbed. The Good Line Cutting algorithm is integrated into PL-SLAM in place of the

original line-weighting scheme. It takes all feature matchings as input: lines are to be

refined with line cutting, while points serve as constant terms in the line cutting objective.

After line cutting, all features (points and cut lines) are sent to pose optimization. The loop

closing module of PL-SLAM is turned off since the focus of this work is real-time pose

tracking.

For comprehensively evaluating the value of line cutting, five variants of the modified

PL-SLAM are assessed: 1) point-only SLAM (P ), 2) line-only SLAM (L), 3) line-only

SLAM with line cutting (L + Cut), 4) point and line SLAM (PL), and 5) point and line

SLAM with line cutting (PL+ Cut). Beside the five variants of PL-SLAM, two baselines

are evaluated as well: stereo ORB-SLAM [4] (referred as ORB) and stereo SV O [6].

Accuracy of real-time pose tracking is evaluated with three metrics [102] between

ground truth track and SLAM estimated track:

1) Absolute Root-Mean-Square Error (RMSE), which captures the absolute error of the
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Figure 4.7: Example frames of Line Cutting PL-SLAM running in challenging scenarios:
1) low-texture, 2) motion blur, 3) lighting change. Detected features are in green, while
projected are in red. Notice the length of projected line being much shorter than the mea-
surement, after line cutting.

entire trajectory estimated in VSLAM;

2) Relative Position Error (RPE), which captures the average drift of pose tracking in a

short period of time;

3) Relative Orientation Error (ROE), which captures the average orientation error of

pose tracking with the same estimation pipeline as RPE. Both RPE and ROE are estimated

with a fixed time window of 3 seconds.

Due to the fact that most SLAM systems have some level of randomness (e.g. fea-

ture extractor, multi-thread), all experiments in the following are repeated with 10 times.

For those failed more than 2 times in 10 trials, we ignore the results due to the lack of

consistency. For the rest, the average metric values are reported.

The RMSEs on 6 EuRoC sequences with potential motion blur are summarized in the

upper hald of Table 4.1. Corresponding RPEs and ROEs are in the upper half of Table 4.2

and Table 4.3, respectively. For each sequence, we compare the line-assisted baseline with

the line cutting version, and highlight the better one in bold. Among all 7 methods evaluated

here, the one that leads to the lowest error is marked with parentheses.

Compared with the line-assisted baselines (L and PL), the line cutting versions (L +

Cut and PL+Cut) clearly have better accuracy: both absolute RMSE and relative RPE/ROE

are reduced in most rows of Table 4.1, 4.2 and 4.3. Meanwhile, the performance of ORB

is not as consistent: when tracking succeed, ORB has the highest accuracy among all 7

methods. However it failed to function reliably on the last 2 sequences. This is not surpris-
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Table 4.1: RMSE (m) on EuRoC Sequences with Fast Motion

Approach
Sequence L L+ Cut PL PL+ Cut P ORB SV O

V1-01-easy 0.379 0.205 0.512 0.498 0.988 (0.035) 0.396
V1-02-med 0.525 0.495 0.397 0.345 0.667 (0.109) -
V1-03-dif 1.489 0.890 1.586 1.426 3.748 (0.430) -

V2-01-easy 0.980 0.835 0.639 0.621 0.875 (0.047) 0.609
V2-02-med 1.448 1.516 0.995 (0.946) - - -
V2-03-dif 3.513 3.979 (3.449) 4.195 - - -

V1-01-easy blurred 0.630 0.346 0.713 0.660 1.051 (0.103) 0.251
V1-02-med blurred 0.525 (0.375) 0.474 0.398 1.066 0.441 0.565
V1-03-dif blurred 1.623 1.428 - 1.682 - - (0.506)

V2-01-easy blurred 0.934 0.444 0.723 0.557 0.881 0.307 (0.210)
V2-02-med blurred 1.825 1.411 1.612 1.059 - (0.351) 0.473
V2-03-dif blurred - - - 4.176 - - (1.751)

Table 4.2: RPE (m/s) on EuRoC Sequences with Fast Motion

Approach
Sequence L L+ Cut PL PL+ Cut P ORB SV O

V1-01-easy 0.044 0.043 0.048 0.048 0.058 (0.041) 0.128
V1-02-med 0.135 0.059 0.046 0.043 0.072 (0.034) -
V1-03-dif 0.169 0.133 0.164 0.156 0.402 (0.108) -

V2-01-easy 0.100 0.059 0.042 0.030 0.053 (0.011) 0.109
V2-02-med 0.126 (0.112) 0.179 0.126 - - -
V2-03-dif 0.483 0.450 0.431 (0.364) - - -

V1-01-easy blurred 0.054 (0.047) 0.054 0.052 0.062 0.048 0.126
V1-02-med blurred 0.076 0.068 0.052 (0.049) 0.129 0.178 0.357
V1-03-dif blurred 0.233 0.206 - (0.148) - - 0.277

V2-01-easy blurred 0.144 0.054 (0.034) 0.037 0.040 0.049 0.096
V2-02-med blurred 0.166 0.138 0.171 (0.127) - 0.162 0.270
V2-03-dif blurred - - - 0.391 - - (0.289)

ing: when available, point features are known to be more accurate for pose tracking; they

are just not as robust as lines under motion blur. Lastly, the direct SV O failed to track on 4

out of 6 sequences, similar to the results reported in [6] (failed on 3 out of 6). It is expected

since direct approaches are more sensitive to fast motion and lighting changes (e.g. the 3rd

plot in Fig 4.7) than feature-based ones.

The level of motion blur for the original EuRoC sequence is not severe: the shot of each

camera is strictly controlled, and the vehicle is only doing fast motion at several moments

during the entire sequence. To assess the performance under severe motion blur, we smooth
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Table 4.3: ROE (deg/s) on EuRoC Sequences with Fast Motion

Approach
Sequence L L+ Cut PL PL+ Cut P ORB SV O

V1-01-easy 0.52 0.49 0.61 0.63 0.83 (0.43) 4.23
V1-02-med 3.01 1.52 0.71 0.64 1.71 (0.32) -
V1-03-dif 4.99 3.82 2.38 2.85 9.58 (1.96) -

V2-01-easy 3.58 2.56 0.86 0.77 0.88 (0.26) 4.49
V2-02-med (2.14) 2.35 4.38 3.47 - - -
V2-03-dif 12.67 11.77 (10.77) 12.05 - - -

V1-01-easy blurred 0.80 (0.63) 0.77 0.73 0.95 0.66 4.24
V1-02-med blurred 1.69 1.62 0.84 (0.76) 3.08 2.63 8.63
V1-03-dif blurred 7.35 6.65 - (3.17) - - 10.49

V2-01-easy blurred 2.94 2.08 0.99 1.07 (0.92) 2.25 3.96
V2-02-med blurred 3.47 2.67 3.15 (2.62) - 5.48 8.38
V2-03-dif blurred - - - 10.60 - - (8.58)

the 6 Vicon sequences with a 5×5 box filter, and rerun all 7 VSLAM methods on the blurred

ones. Corresponding results are reported in the bottom half of Table 4.1, 4.2 and 4.3.

Under the severe motion blur, point-based approaches (P andORB) become less accu-

rate than before, while also be prone to loss track. Meanwhile, the line-assisted approaches

are more robust to the blur. More importantly, the accuracy of line-assisted approaches

are clearly improved with line cutting. Interestingly, direct SV O tracks on all 6 blurred

sequences, including 4 sequences that it failed to track originally. The reason is mostly

likely due to the blurring applied, which acts to pre-condition the direct objective (original

highly non-smooth). The convergence rate of optimizing the direct objective improves and

positively impacts the tracking rate.

According to the RMSEs reported in Table 4.1, direct SV O seems having better perfor-

mance than line-feature VSLAM variants under severe motion blur. However, the relative

metrics suggest the opposite: PL + Cut has the lowest RPE and ROE on 3 sequences,

while L + Cut has the best relative scores at another sequence. The difference between

absolute, global RMSE and relative, local RPE/ROE indicates the proper use case of line

features. Instead of incorporating line features to mapping and long-term re-usage, lines

are mostly suited as temporal references in short-term pose tracking. Really, line features
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should only be used for short and challenging durations that sufficient constraints cannot

be obtained with point features only.

Furthermore, we briefly discuss the computation cost of line cutting. Since the baseline

PL-SLAM does not maintain covariance matrix for each 3D line, we do so with a simple

error model: 1) assume a constant i.i.d. Gaussian at the inverse-depth space of each 3D

line endpoint; 2) propagate the endpoint covariance matrix from inverse-depth space of

the previous frame to the Euclidean space of current frame. Then we run the greedy line

cutting algorithm (Alg 4) with these covariance/information matrices. Most of compute

time is spent on the iterative greedy algorithm. When averaged over the EuRoC sequences,

the line cutting module takes 3 ms to process 60 lines per frame.

4.6.2 Low-Texture Scenarios

In addition, we evaluate the described approach on low-texture scenario. To the authors’

knowledge, no publicly available, low-texture stereo benchmark exists. We synthesized

a low-texture stereo sequence with Gazebo for this evaluation. An example frame of the

low-texture sequence is provided as the 1st plot in Fig 4.7.

Relative errors are summarized in Table 4.4. After applying line cutting to line-assisted

baseline (L and PL), the average relative errors are cut down by almost 40%, as high-

lighted in bold. The lowest tracking error (i.e., best accuracy) is achieved when combining

point and line features, and cutting the lines with the described method (PL+Cut). Mean-

while, systems that only utilize point features perform poorly: point-only SLAM (P ) has

high ROE; ORB-SLAM2 (ORB) failed to track. The direct approach SV O succeeded in

tracking the whole low- texture sequence, but has the highest relative errors.

The evaluation results suggest that, line features are valuable for pose tracking in low-

texture scenarios. However, simply using the full-length of lines for pose optimization may

cause large tracking error. With the described line cutting, the accuracy of line-assisted

pose tacking improves.
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Table 4.4: Relative Error on Synthetic Low-Texture Sequence

Approach
Metric L L+ Cut PL PL+ Cut P ORB SV O

RPE(m/s) 0.246 0.141 0.242 (0.126) 0.222 - 0.372
ROE(deg/s) 4.78 3.01 3.83 (1.68) 5.13 - 8.83

4.7 Conclusion

This chapter presents Good Line Cutting, which deals with the uncertain 3D line mea-

surements to be used in line-assisted VSLAM. The goal of Good Line Cutting is to find

the (sub-)segment within each uncertain 3D line that contributes the most information to-

wards pose estimation. By only utilizing those informative (sub-)segments, line-based least

squares is solved more accurately. We also describe an efficient, greedy algorithm for the

joint line cutting problem. With the efficient approximation, line cutting is integrated into

a state-of-the-art line-assisted VSLAM system. When evaluated on two target scenarios

of line-assisted VSLAM (motion blur; low-texture), accuracy improvements are demon-

strated, while robustness is preserved. There are a couple of further directions that can be

investigated in the future. First, Good Line Cutting can be extended to infinite parametriza-

tions of 3D lines, such as Plücker coordinates. The combination of point feature selection

(i.e., Good Feature Selection) and line cutting ( i.e., Good Line Cutting) is worth explor-

ing as well. Last, the computation cost of state-of-the-art line feature extraction algorithm

is still limited. Further investigation of active and efficient line extraction is crucial for

applicable line-assisted VSLAM.
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CHAPTER 5

MAP HASHING: APPEARANCE-ENHANCED COMPACT LOCAL MAP OF

FEATURE-BASED VSLAM

5.1 Introduction

In this chapter, we present the work of Map Hashing, which bounds the cardinality of

local map with strong appearance prior, therefore improving the long-term performance of

VSLAM. Augmentation of the feature matching process of VSLAM systems with a local

map matching sub-process aids data association and state optimization [4, 113]. Compared

with a global map containing all historical 3D points, the local map includes only the subset

of 3D points that are hypothesized to be currently visible. Conducting data association

and downstream state optimization on a compact local map is more efficient than for the

larger global map. By matching 2D features from the current frame to the local map (which

includes 3D points observed at earlier frames), extra long-baseline feature matchings can be

extracted and utilized in state optimization; see Figure 5.1 (top-left) depicting a histogram

of matched local map points for ORB-SLAM, where the baseline is measured in terms of

how long ago the features were seen (as opposed to how far spatially). These long-baseline

matchings contribute to the accuracy and robustness of VSLAM. Not surprisingly, VSLAM

systems employing a local map [16, 4] tend to be more accurate and robust than systems

relying only on frame-to-frame tracking [114, 31, 32].

A compute-economic property to guide the building of the local map with relevant 3D

points is co-visibility. Co-visibility was introduced for loop closing in VSLAM [115], and

later extended to pose tracking [116, 4, 117, 118]. The assumption of co-visibility being:

if an earlier keyframe shares many 3D points with a recent keyframe (i.e., co-visible), then

all 3D points observed by the earlier keyframe are likely to be seen also. Co-visibility
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Figure 5.1: Latency reduction of the described Map Hashing algorithm (MIH-x/32), when
integrated into a state-of-the-art VSLAM system (ORB-SLAM[4]). Top-Left: Histogram
of matched features baselines extracted from local map, with and without proposed algo-
rithm Top-Right: Accuracy of VSLAM with or without proposed algorithm, measured
with RPE (10-sec window). Middle: Size of the local map utilized in VSLAM, with or
without proposed algorithm. Bottom: Latency profile of real-time pose tracking on the
long-term NewCollege sequence.

information is cheap to obtain as the by-product of earlier data association calculations,

therefore it can be considered to be an efficient heuristic for local map building. However,

co-visibility only utilizes the relatively-weak temporal prior (i.e., seen before, likely to be

seen now). A local map generated with co-visibility could easily grow without bound, and

introduce significant latency to VSLAM thereafter. Figure 5.1 (middle row) includes a plot

of the ORB-SLAM local map versus time, where it is seen to occasionally grow to be one

to two orders of magnitude more than the number of tracked features per frame (typically
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on the order of 102 to 103).

In this work, we propose to enhance the co-visibility local map building step with a

strong appearance prior, which will lead to a compact yet relevant local map, as indicated

in Figure 5.1 (middle row) where the proposed local map queried is bounded in size and can

be up to an order of magnitude lower than ORB-SLAM. The idea is straightforward: only

those 3D points that are visually similar to currently extracted features are potentially useful

in data association (and state optimization thereafter). To utilize the appearance prior effi-

ciently, we propose to index descriptors of historical 3D points with Multi-Index Hashing

(MIH) [119]. By querying historical 3D points from a series of hash tables, we can collect

the subset of 3D points that are similar to current measurements in appearance/descriptor

space. The visually-similar 3D points are then verified with co-visibility, and put together

as the local map for the costly computations, e.g. data association and state optimization.

Furthermore, an online table selection algorithm is developed to choose a subset of

hash tables that cover the most relevant 3D points. By only querying 3D points from the

subset, the overhead on hash table queries is reduced, while the quality of the local map

is preserved, as indicated by comparable RPE in Fig 5.1 (top-right). The table selection

process is rooted in the submodular property with regards to the table selection metric

(e.g. information gain of feature matchings obtained from each table). Because of the

submodular property of table selection metric, a greedy algorithm can achieve near-optimal

table selection outcomes with good efficiency properties. Figure 5.1 (bottom row) shows

better bounding of the SLAM latency per frame, with fewer outliers, relative to a 30ms

threshold.

The described Map Hashing algorithm is generic; it can be easily extended to other

visual(-inertial) SLAM systems utilizing a local map, i.e., [16, 120].
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5.2 Background

Two closely-related fields are reviewed: Vision-based Localization (VBL) and Visual SLAM

(VSLAM). Differences between existing works and the described work are discussed.

VBL aims to retrieve the 6DoF pose of a visual query (image or video) within a huge,

pre-built spatial representation, e.g. a 3D point map. One key component of VBL is to in-

dex the spatial representation for efficient queries. Co-visibility was introduced to feature-

based VBL [121, 122] as a cue to prioritize feature matching efforts. Researchers also

proposed alternative indexing methods based on appearance/feature descriptors [123, 124].

Real-valued feature descriptors such as SIFT[125] and SURF [126] are typically indexed

offline using a kd-tree. Appearance-based indexing are proven to yield more accurate and

robust query results, while co-visibility is more computationally-efficient. Combining both

cues was first explored in [127], and further refined in [128, 129]. The work [129] re-

placed the kd-tree data structure with a faster and more flexible indexing method, inverted

multi-index. The appearance-based query results are then filtered with co-visibility. Such

a combination scheme is efficient: the VBL system runs real-time on mobile device. Nev-

ertheless, training the inverted index is still an offline process requiring a known 3D map.

Binary feature descriptors such as BRISK [13] and ORB [14] are used in VBL since

they are more efficient to extract than real-valued ones. Conventional indexing data struc-

tures like kd-trees are better suited to real-valued descriptors, rather than binary ones, moti-

vating the exploration of alternative indexing methods. For example, randomized trees were

proposed to index binary descriptors [130], which were trained offline from the pre-built

3D map. Hashing has been proven to be a good indexing solution [131, 132] in binary-

descriptor VBL. Coarse-to-fine searching schemes are commonly applied in these VBL

systems, where an initial hashing query provides the coarse results that are later refined by

a linear scan.

Apart from compatibility with binary descriptors, two other properties of hashing make
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it particularly attractive to online and incremental pose estimation problem, e.g. VSLAM.

First, hashing index can be updated efficiently for online processes. It is then possible to

generate a more compact and relevant index by updating hash tables, e.g., according to

changes in the map and the visibility constraints. Second, hashing relaxes the requirement

for database pre-training (or prior offline database generation), therefore enabling VSLAM

systems to operate in general and unknown environments. Hashing has been applied to

modules of VSLAM where real-time performance is not required. In [133], binary de-

scriptors are indexed with Locality Sensitive Hashing (LSH) [134]. Good relocalization

performance in a VSLAM system is demonstrated thereafter. Multi-Index Hashing (MIH),

which is firstly developed in data query [119], has been introduced to the loop closing

module of VSLAM [135].

The described Map Hashing method is based on MIH, but with a key enhancement:

an online table selection algorithm is developed to reduce the number of hashing queries,

therefore enabling MIH to be used in VSLAM modules with real-time requirements, e.g.

pose tracking. The local map queried with appearance/feature descriptors is further tailored

with a co-visibility check. The final local map is more compact than the ones generated

with either co-visibility or appearance only. Running data association and state optimiza-

tion on the size-reduced local map is more efficient and leads to significant latency reduc-

tions in VSLAM based on a more efficient local map data association step. Furthermore,

the quality of the local map (e.g. amount of long-baseline feature matchings) is preserved in

the compact local map. Therefore, the performance of VSLAM is preserved. Preliminary

quantification of these benefits can be seen in Figure 5.1 for a single sequence.

5.3 Local Map Building with Multi-Index Hashing

A diagram of the proposed local map building method is illustrated in Fig 5.2. The modules

of our method are highlighted with shaded boxes, while those in a conventional VSLAM

pipeline have clear boxes. This section describes the query and insertion stage of MIH. The
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Figure 5.2: Framework of the proposed local map building method. The local map built
with co-visibility is the red dashed ellipse, while the one built by querying MIH is the
green dashed ellipse. Their intersection defines the local map for downstream processing,
i.e., data association and state optimization.

hash table selection algorithm will be introduced in the next section.

5.3.1 Query MIH

Assume that a frame with m binary descriptors extracted is provided and that the MIH

contains t hash tables. Each binary descriptor will trigger a MIH query. In a MIH query,

the b-bit binary query descriptor is first separated into t disjoint contiguous substrings, as

illustrated in Fig 5.3. Each substring gets queried with the corresponding hash table for an

exact match. Query results from all t hash tables are put together as the final query result.

Repeating the MIH query for all binary descriptors from the input frame, aggregate the

3D point set {Ph} that satisfy the appearance prior. The intersection of appearance-based

point set {Ph} and the 3D point set {Pc} collected with conventional co-visibility is the

final local map, i.e., {Ph} ∩ {Pc}.

5.3.2 Insert to MIH

Updating MIH according to changes in the map and visibility constraints is essential for

efficient local map building. As a trade-off between update frequency and computation

cost, MIH updates are triggered only for keyframes sent to the mapping thread. Updating

MIH in the mapping thread avoids introducing overhead during real-time pose tracking.

For each keyframe, the co-visible 3D points {Pc} are inserted into the MIH. Similar

to the query process, the b-bit binary descriptor of each 3D point in {Pc} is separated into
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Figure 5.3: An illustration on Multi-Index Hashing (MIH) [119].

t disjoint contiguous substrings, each of which is of length bb/tc. Each substring is then

inserted into a corresponding hash table. For 3D points already in the hash tables, their

entries will shift to the front of the bucket, making them more likely to be queried in the

future.

5.3.3 Choice of Hash Table Number

The quantity of hash tables t has strong impact on the performance-efficiency of MIH-based

local map indexing. Recall the example of a frame with m features extracted. Each feature

will trigger a MIH query consisting of t queries to hash tables. Therefore, the MIH-based

local map building has a time complexity of O(mt), i.e., linear in t. Meanwhile, the space

complexity of MIH is O(tN2bb/tc), where N is the bucket size in each hash table. The

space complexity decreases exponentially with table number t. Therefore, only a certain

range of t works in practical applications due to time and space complexity limits.

Apart from time and space complexity, the robustness of MIH against perturbations in

binary descriptors is largely decided by hash table number t. Assuming ε bits of the query

descriptor are perturbed under a uniform distribution, the recall probability (i.e., probability

that the query succeeds with a perturbed string) is connected to hash table number t as per

79



Figure 5.4: Simulation results evaluating the recall probability of hashing (the higher the
better) vs. the number of bits perturbed for different numbers of tables in the MIH. For
256-bit descriptors, MIH with 32 tables is preferred: it remains high recall even under
significant perturbation (50-100 bits).

[135]:

Precall(t, ε) = 1− t! Θ(ε, t)/tε, (5.1)

where Θ(ε, t) is the Stirling partition number [136].

When working with 256-bit binary descriptors such as ORB, the relationship described

in Eq 5.1 is illustrated in Fig 5.4. The green and red dashed lines indicate example thresh-

olds of bit-wise perturbations in typical SLAM applications. At least 32 tables are needed

for high recall probability within the example perturbation levels (vertical dashed lines).

Using 64 tables is also possible, but with the drawback of higher overhead due to the

linear-growth in time complexity. In the described local map indexing method, 32 hash

tables are maintained; each table covers an 8-bit descriptor substring.

5.3.4 Choice of Bucket Size

Another parameter affecting the performance-efficiency of MIH-based local map building

is the bucket size N of each hash table. A bucket in MIH is implemented as ring buffer,

where only theN most recent 3D points are stored. For the purpose of long-baseline feature

matching, it is necessary to keep the entries of 3D points observed earlier in time within

the bucket. However, an over-sized bucket will store entries of 3D points that are no longer

visible nor relevant. As a consequence, the resulting local map will be less compact and
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relevant, introducing overhead to data association. In what follows, the bucket size N is set

to 10 based on a parameter sweep.

5.4 Overhead Reduction with Hash Table Selection

For a frame withm features extracted and a 32-table MIH, the number of hash table queries

in local map building is O(32m). While querying all 32 hash tables provides robustness

against severe perturbation, querying a subset of hash tables is more efficient when the bit-

wise perturbation level is low or medium. We propose an online table selection algorithm

to identify the minimum subset of hash tables to be queried, which further improve the

compactness of local map without performance degeneration.

5.4.1 Objective Formulation

To begin, the metric used for table selection is introduced. Assume F is the full set of

true feature matchings between current frame and the full local map built with all 32 hash

tables. For each hash table Ti, the true feature matchings that can be queried from it form

a subset Fi ⊂ F , where
⋃32
i=1 Fi = F . For each hash table Ti, the contribution towards

current state optimization can be assessed with the information matrix of subset Fi.

Following the previous least squares definition of VSLAM pose tracking 2.1, we can

derive the information matrix of camera pose Ωx as

Ωx =
∑

H(i)TΩr(i)H(i) =
∑

Ωx(i), (5.2)

where H(i) and Ωr(i) are the measurement Jacobian and residual information matrix of

corresponding true matched features. Denote by Ωx(i) the pose information matrix derived

from a single feature match i.

As introduced for feature subset selection [74, 62], the logDet is especially suited for

quantifying the contribution of matched features to VSLAM. Therefore, the value of a hash
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table Ti towards current state optimization can be measured with

log det(
∑
i∈Fi

Ωx(i)). (5.3)

There is a certain level of overlap between the true matched feature subsets for each

hash table. In an ideal scenario without any perturbation to feature descriptor, the full set

of true feature matchings can be retrieved from any one of the 32 hash tables, i.e., 100%

overlapping between subsets, ∀i, j Fi = Fj = F . In practice perturbations reduce the

subset overlap percentage to less than 100%, and each hash table covers a subset of true

feature matchings F . Therefore, selecting a subset of hash table is equivalent to a problem

of maximum coverage, with the objective formulated as:

max
S⊆{1,2,...,32},|S|≤k

log det(
∑

i∈{
⋃

h∈S Fh}

Ωx(i)), (5.4)

where k is the cardinality constraint.

5.4.2 Greedy Table Selection

The maximum coverage problem is studied in the field of computational theory, where it

is known to have submodular properties. Recall the proposition 1, that a monotone and

submodular problem can be approximated with greedy method with the approximation

guarantee of (1− 1/e). Furthermore, logDet meets both requirements [73]. Solutions

to the subset selection problem, and the equivalent hash table selection problem, can be

approximated using greedy algorithms. More importantly, a greedy algorithm is guaranteed

to be near-optimal, with approximation ratio of 1−1/ε. Based on this outcome, we present

a greedy, online hash table selection algorithm in Alg 5. Two control parameters are fixed

after parameter sweeping: cardinality constraint k = 8, target contribution dthres = 80.0.

The above discussion assumes that the true feature matchings are known before per-

forming hash table selection. In practice, however, we do not know the true matchings
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Algorithm 5: Online hash table selection algorithm.
Data: feature matching subset from each hash table {F1, F2, ... , F32},

cardinality constraint k, target contribution dthres
Result: indices of hash tables selected S

1 foreach feature matching j ∈
⋃32
i=1 Fi do

2 collect pose information matrix Ωx(j);

3 S ← ∅, dacc = 0;
4 while |S| < k ∧ dacc < dthres do
5 foreach i /∈ S do
6 d(i) = log det(

∑
i∈{

⋃
h∈S∪Fi

Fh}Ωx(i))

7 j ← arg maxi d(i);
8 dacc = d(j);
9 S ← S ∪ j;

10 return S.

beforehand. To mitigate that, we assume that the content of hash tables is a slowly-varying

function of time, and execute the hash table subset selection algorithm on keyframes rather

than all regular frames. After finishing map-to-frame feature matching for a keyframe, the

selection of hash tables gets updated using Alg 5. The updated subset of hash tables is

utilized for the incoming regular frames, till another keyframe is taken. The above im-

plementation enables efficient query and construction of the local map, without having

noticeable performance loss.

5.5 Experiments

This section evaluates the performance-efficiency trade off of the Map Hashing algorithm

on a state-of-the-art VSLAM system, ORB-SLAM [4]. Applying the described algorithm

to the real-time tracking thread of ORB-SLAM reduces pose tracking latency. Meanwhile,

tracking accuracy is either improved (on short sequences) or remains near the same level

as canonical ORB-SLAM (on long sequence), and the robustness is preserved (i.e., avoid

tracking failure).
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5.5.1 Long-Term VSLAM in Unknown Environment

The latency reduction and strong performance of the Map Hashing algorithm is demon-

strated by comparing with other state-of-the-art VSLAM systems on a long-term VSLAM

benchmark, NewCollege [137]. NewCollege contains a 43-minutes stereo sequence col-

lected with a robot traversing a campus and adjacent parks. There are multiple loops/revis-

its within the sequence. The sequence is well-suited for evaluating the long-term perfor-

mance and efficiency of VSLAM system (with loop closure). Due to the lack of 6DoF pose

ground truth, offline Bundle Adjustment is executed with stereo video, and the jointly op-

timized camera poses are taken as the ground truth. We only evaluate monocular VSLAM

(e.g. with left camera) against the ground truth in this experiment.

The Relative Position Error (RPE) [102, 138] is chosen to evaluate the long-term perfor-

mance of VSLAM on NewCollege. Compared with absolute RMSE, RPE is less sensitive

to the inevitable scale drift of monocular VSLAM. Therefore, it is better for evaluating

monocular systems on long-term sequences.

The efficiency of VSLAM is evaluated with the latency of real-time pose tracking per

frame, which has been described in the experiment section of Chapter 3. Latency of map-

ping and loop closing is less of a concern in this work due to the relaxed time constraints of

those processes. The same configuration as Chapter 3 is applied: 10-run repeat; discarding

any track failure; running on Intel i7-7700K quadcore 4.20GHz CPU (passmark score of

2583 per thread).

To demonstrate the benefit of online hash table selection (Alg 5), we performed addi-

tional 10-run repeats of MIH-based local map building with a predefined set of fixed hash

table subsets, ranging 1 table (MIH-1/32) to all 32 tables (MIH-32/32). Results of these

tests are compared to MIH-based local map building with online hash table selection, i.e.,

MIH-x/32 (x = 10).

The latency profiles of different hash table subsets are presented in Fig 5.5. MIH-x/32

has the lowest latency for data association, when compared to other predefined hash table
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Figure 5.5: Top: Latency of data association from 1 run on NewCollege. Bottom: Latency
of hash table query (part of data association) from 1 run on NewCollege. The first 5 profiles
have predefined hash table subsets, e.g. first 1, first 4, etc. The last profile employs online
hash table subset selection.

subsets. The latency of hash table queries is also lower with online hash table selection.

Performance evaluation of the methods collected the average RPE (with a 10-sec window),

and also logged the average latency of each module in the real-time pose tracking process.

Performance (RPE) and efficiency (latency) outcomes are summarized in Fig 5.6. MIH-

x/32 has the lowest latency for pose tracking while preserving the performance of VSLAM

relative to the fixed table subsets.

Two state-of-the-art VSLAM systems are chosen as baselines: DSO with loop closure

(LDSO) [139] and ORB-SLAM (ORB) [4]. In addition to the proposed MIH-x/32, we inte-

grate two reference methods into ORB-SLAM that enhance co-visibility local map building

with simple heuristics. One heuristic is random sampling, i.e., Rnd. The other heuristic pri-

oritizes map points with a long track history, denoted as Long, since feature points tracked

for a long time are more likely to be mapped accurately.
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Figure 5.6: RPE and latency for different hash table subsets averaged over 10 runs on
NewCollege. The first 5 columns are the fixed hash table subset methods, e.g. first 1, first
4, etc. The last column employs online selection. No RPE is reported for the single hash
table (MIH-1/32) since track loss frequently occurred.

Figure 5.7: Latency vs. accuracy on NewCollege monocular sequence. System evaluation
involved a sweep of features per frame: 800, 1000, 1500, 2000.

To capture the performance-efficiency trade off of VSLAM systems, we adjust the num-

ber of features/patches extracted per frame. All 5 VSLAM systems are configured to run

10-repeats on NewCollege, with feature/patch quantities ranging from 800 to 2000. The

RPE under 10-sec window versus the average latency per frame is depicted in Fig 5.7. Rel-

ative to ORB-SLAM, the proposed MIH-x/32 leads to latency reduction for all configura-

tions of feature number. Rnd also leads to latency reduction, but not as much as MIH-x/32.

The Rnd case with 800 features leads to track loss, so it is not plotted. Both LDSO and

Long failed to track the full New College sequence. The accuracy of MIH-x/32 is compara-

86



Table 5.1: RPE (m/s) on NewCollege Sequence

Seq. LDSO ORB MIH-x/32

RPE3 - 0.11 (2e-2) 0.12 (8e-3)
RPE10 - 0.08 (8e-3) 0.08 (6e-3)
RPE30 - 0.09 (5e-3) 0.10 (1e-2)

Table 5.2: Latency (ms) on NewCollege Sequence

Seq. LDSO ORB MIH-x/32

Q1 - 13.2 10.4
Avg. - 18.3 12.2
Q3 - 21.5 13.3

ble to the best performing ORB realizations, but with a lower deviation as indicated by the

shorter error bars. Lastly, we report the accuracy of the monocular VSLAM systems under

the configuration of 800 features per frame in Table 5.1. Corresponding latency averaged

per frame is reported in Table 5.2. Three RPE metrics are computed using different sliding

windows: 3-sec, 10-sec and 30-sec. In addition to the average RPE over 10-run repeat, the

standard deviation (STD) of the RPE is also reported in each cell of Table 5.1. The two

heuristics Rnd and Long are excluded since they both failed to track on the full sequence.

The best numbers (lowest average/STD of RPE, lowest latency) are highlighted with bold.

The accuracy of MIH-x/32 remains at similar levels as ORB (equal or around 10%), as eval-

uated on all 3 RPE metrics. More importantly, the latency of described method is lower and

more consistent than baseline ORB. It is 21%, 33%, and 40% lower for the first quartile,

average, and third quartile values.

5.5.2 Long-Term VSLAM in Pre-Mapped Environment

The Map Hashing algorithm is especially suited when huge amount of map points are

available. In the presence of pre-built map from previous runs, VSLAM with compact

local map is able to track camera pose with low-latency and drift-free.

To demonstrate the applicability of Map Hashing algorithm in map re-using scenarios,
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Table 5.3: Sequences Collected in TSRB Office Area

Seq. Collect Date Duration (sec) Frame (stereo pair)

s1 2019-02-05-18-58-08 459 13,798
s2 2019-02-06-18-29-27 377 11,325
s3 2019-02-08-17-16-08 527 15,838
s4 2019-05-03-17-48-01 529 15,877
s5 2019-05-07-19-46-48 1,169 35,086

Figure 5.8: 3D view of the pre-build map.

we collect five runs of stereo sequences in an office area. Details of the collected sequences

are presented in Table 5.3. The prior map is collected by running VSLAM on the first

two sequences, i.e., s1 and s2. The loop closing module, as well as the global pose graph

optimization, are activated to improve the global consistency of generated map. The final

map is illustrated in Fig 5.8, which contains 1,871 keyframes and 56,150 map points.

The prior map from first two sequences are loaded and utilized as prior when running

VSLAMs on the rest sequences: s3, s4 and s5. Though the collection date of last two

sequences are quite different from the map, majority of the pre-mapped features are suc-
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Figure 5.9: Screen shots of MIH-x/32 + GF running on sequence s5. Left: map view.
Right: image view.

cessfully matched during the evaluation. Three stereo VSLAM methods that support map

re-using are evaluated here: canonical ORB-SLAM (ORB), the proposed MIH-x/32, the

combination method MIH-x/32 + GF that builds local map with MIH-x/32 and perform

active good feature matching [63]. Some screen shots of MIH-x/32 + GF running on se-

quence s5 are presented in Fig 5.9. All evaluations are conducted on a desktop equipped

with an Intel i7 quadcore 4.20GHz CPU (passmark score of 2583 per thread). Due to the

lack of ground truth trajectory, we focus on latency reduction in this evaluation.

The pose tracking latency of three evaluated VSLAM methods are presented in Fig 5.10.

Profiles of example runs on three testing sequences are illustrated at the left column; the

summarized latency distribution over 3-repeats are illustrated at the right column. Com-

pared with canonical ORB that builds local map using co-visibility only, pose tracking

latency of proposed MIH-x/32 is significantly better bounded. The average latency of MIH-

x/32 is around 40ms, which is half the latency of ORB. The maximum latency of MIH-x/32
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Figure 5.10: Example profiles (left) and boxplots (right) of pose tracking latency for three
VSLAM methods that support map re-using. Top: pose tracking latency on sequence s3.
Middle: pose tracking latency on s4. Bottom: pose tracking latency on s5.
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is also much less than ORB. The combination of MIH-x/32 and GF has slightly improved

latency profile than with MIH-x/32 alone: on s3 and s4, MIH-x/32 + GF has fewer peaks

than MIH-x/32 according to latency profiles. Nevertheless, the majority of latency reduc-

tion is because of the compact local map constructed with Map Hashing.

5.5.3 Short-Term VO

We also evaluate the Map Hashing algorithm on short-term VO task. The EuRoC [25] is

used in this evaluation, which contains 11 stereo-inertial sequences comprising 19 minutes

of video, recorded in 3 different indoor environments. Compared with NewCollege, videos

in EuRoC are well-suited for evaluating the short-term performance and efficiency of VO

(without loop closure). Ground-truth tracks are provided using motion capture systems

(Vicon and Leica MS50). We evaluate only monocular VO implementations on EuRoC.

The short-term performance of VO on EuRoC is evaluated with absolute root-mean-

square error (RMSE) between ground truth track and real-time VO estimation. Identi-

cal with previous VSLAM evaluation, the latency of real-time pose tracking per frame is

recorded as well; 10-run repeat is conducted for each configuration, i.e., the benchmark

sequence, the VSLAM approach and the parameter (number of features tracked per frame).

Results for a tested VSLAM configuration are discarded if at least one run experiences

track loss. The experiments are conducted on a desktop equipped with an Intel i7 quadcore

4.20GHz CPU (passmark score of 2583 per thread) running the ROS Indigo environment.

Two state-of-the-art VSLAM baselines are included: SVO[6] and DSO [7]. For fair

comparison, the loop closing module is disabled on all ORB-SLAM variants: canonical

ORB, MIH-x/32, Rnd, and Long. All VSLAM systems are configured to run 10-repeats

on EuRoC under example configuration (800 features per frame). The RMSE versus the

average latency per frame for two example EuRoC sequences are depicted in Fig 5.11.

RMSE results on all 11 EuRoC sequences are summarized in Table 5.4, while latency

results are in Table 5.5. The best value (lowest RMSE, lowest latency) in each row is
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Figure 5.11: Latency vs. accuracy on 2 EuRoC monocular sequence: MH 04 difficult (top)
and V2 02 medium (bottom). System evaluation involved a sweep of features per frame:
800, 1000, 1500, 2000.

highlighted with bold in Table 5.4 and Table 5.5. According to Table 5.4, DSO and the 2

local map building heuristics are not robust enough (e.g. frequent track loss). SVO tracks 9

of 11 sequences, but with the highest RMSE over all VSLAM systems. Both ORB baseline

and proposed MIH-x/32 track 8 of 11 sequences. Additionally, MIH-x/32 improves the

accuracy relative to baseline ORB, with an RMSE average that is 41% lower.

The latency reduction of MIH-x/32 is less significant for these short-term sequences,

when compared with the previous long-term VSLAM evaluations. Nevertheless, MIH-x/32

has the 2nd lowest average latency among all 6 VSLAM systems, second to SVO. When

comparing the 3rd quantile of latency, MIH-x/32 is lower than SVO (by 3%), which suggests

that tighter latency bounds can be achieved with the Map Hashing algorithm.
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Table 5.4: RMSE (m) on EuRoC Sequences

Seq. SVO DSO ORB MIH-x/32 Rnd Long

MH 01 easy 0.227 0.407 0.027 0.026 0.025 -
MH 02 easy 0.761 - 0.034 0.031 0.034 -
MH 03 med 0.798 0.751 0.041 0.086 0.035 -
MH 04 diff 4.757 - 0.699 0.293 0.746 0.329
MH 05 diff 3.505 - 0.346 0.197 - -
VR1 01 easy 0.726 0.950 0.057 0.040 0.034 -
VR1 02 med 0.808 0.536 - - - -
VR1 03 diff - - - - - -
VR2 01 easy 0.277 0.297 0.025 0.032 0.021 -
VR2 02 med 0.722 0.880 0.053 0.035 0.216 -
VR2 03 diff - - - - - -

Avg. 1.477 0.637 0.160 0.093 0.159 0.329

Table 5.5: Latency (ms) on EuRoC Sequences

Seq. SVO DSO ORB MIH-x/32 Rnd Long

Q1 7.4 5.8 13.9 11.4 12.0 11.3
Avg. 12.6 16.4 18.4 15.7 16.0 17.7
Q3 16.8 19.1 20.7 16.3 16.1 21.0

5.6 Conclusion

In this chapter, we demonstrate how an appearance prior can be exploited to build a compact

yet relevant local map in VSLAM. Working with the compact local map leads to latency

reduction in time-sensitive VSLAM modules, i.e., pose tracking. Meanwhile, the accuracy

and robustness of VSLAM is preserved, thanks to the preservation of long-baseline fea-

ture associations in the local map. On both long-term VSLAM and short-term VSLAM

applications, the described Map Hashing algorithm leads to significant latency reduction

in real-time pose tracking, while keeping (if not improving) VSLAM performance relative

to the baseline variant and having the best performance relative to other state-of-the-art

systems.
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CHAPTER 6

GOOD GRAPH SELECTION: COST-EFFECTIVE, BUDGET-AWARE BUNDLE

ADJUSTMENT IN VSLAM

6.1 Introduction

In previous chapters, we discussed algorithm improvements for VSLAM front-ends. These

algorithm improvements, alongside with recent hardware developments such as FPGA-

based feature extraction [26, 27, 28], render highly cost-effective VSLAM front-end reach-

able. However, the cost-efficiency of VSLAM back-end, especially the local optimization

that runs at a high-rate, remains to be a bottleneck for applicable VSLAM.

In VSLAM community, it is favored to use Bundle Adjustment (BA) in local optimiza-

tion (i.e., local BA), since BA estimates both camera poses and maps with high accuracy

and robustness. However, local BA is computationally expensive due to the cubic com-

putational complexity and the iterative computation process. Though recent study starts

to explore the usage of FPGA in certain step of BA (e.g. FPGA-based Schur elimination

[140]), the rest of BA steps such as re-linearization and factorization still place limitation

on the cost-efficiency of BA-based back-end.

Due to the computational cost of local BA, some state-of-the-art VSLAM systems [40,

10] use less expensive filter as back-end solution. The computation complexity of care-

fully designed EKF variant, i.e., MSCKF [39], is linear to the size of map states. However,

MSCKF has the downside of inconsistency and degraded mapping [38]. The majority of

state-of-the-art VSLAM systems still utilize BA-based back-end. Several strategies have

been developed to reduce of the cost of local BA by only optimizing a scale-limited subset

of states. Some systems [6, 7, 31, 45] only take recent states (e.g. camera frames and

map points) that stay within a sliding-window. While sliding-window suits for scenarios
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Full graph: 92 cam, 58k pts
RMSE:       18.2 mm

Good subgraph: 46 cam, 51k pts
RMSE:                21.3 mm

Co-visibile subgraph: 46 cam, 40k pts
RMSE:                         25.9 mm

Root VertexRoot Vertex

Figure 6.1: BA example on full graph vs. subgraph. Left: BA on full graph that has 92
cameras and 58k points. Middle: BA on subgraph generated with co-visibility information,
which has 46 cameras and 40k points. Right: BA on subgraph generated with proposed
Good Graph, which has 46 cameras and 51k points. Compare with co-visible subgraph,
BA on Good Graph has better accuracy (lower RMSE).

with little re-visit, e.g. infinite-tunnel, it fails to exploit rich historical data when re-visit

happens frequently. Other systems [116, 101, 120] use co-visibility graph to organize his-

torical keyframes, and query the co-visible subgraph for local BA. However, the heuristic

strategies described above cannot provide any insight on the conditioning of downstream

local BA. In the presence of computational limits, the small subset of states selected with

these heuristic strategies could form an ill-conditioned local BA, which is slow to converge,

or leads to erroneous results.

In this work, we describe a novel, rigorous method to determine the state subset in local

BA (i.e., Good Graph), with strong performance guarantee. The theorem backbone of the

described Good Graph algorithm is submodular submatrix selection, which is introduced

in Chapter 2. Furthermore, the size of desired Good Graph is determined on-the-fly by

predicting the amount of valid budget. A small-sized Good Graph is selected for local BA

when the budget is tight, e.g. when the camera moves rapidly or computation resource

is limited. Otherwise a large-sized Good Graph is selected since the budget can afford
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it in local BA. The proposed Good Graph algorithm is integrated into a state-of-the-art

VSLAM system [101]. When combined with cost-efficient VSLAM front-end [63], the

final VSLAM system achieves superior performance than state-of-the-art VSLAMs under

a variety of computational limits. The combined VSLAM system is released 1.

6.2 Background

As pointed out in the pioneering work [38], VSLAM with BA-based back-end has better

accuracy and robustness than filter-based ones. Using BA in VSLAM, especially in the

high-rate local optimization module, requires careful effort in bounding the scale of states

to be optimized. The sliding window strategy has been employed to bound the scale of

states in local BA [16, 6, 7, 31, 45]. Only the recent states (camera frames and map points)

that stay within the sliding window are optimized in local BA. The older states that are

outside the sliding window are either dropped [16, 6] or fixated as linear priors [7, 31,

45]. Though sliding window strategy is applied in visual-inertial odometry that assumes

the environment as a infinite tunnel, it is not the optimum solution for SLAM environments

with revisits. The ability to reuse historical information that goes outside of sliding window

is limited. Fixing historical information as linear prior introduces bias to the optimization,

therefore leading to inferior performance when re-visit happens frequently.

Another representative strategy is to bound the scale of the optimization states with

co-visibility information. As introduced in [116], co-visibility approximates the amount

of mutual information between keyframes. Ideally, a subset of keyframes that have strong

co-visibility to each other forms a well-conditioned optimization problem, which can be

reliably solved in local BA. For fast query and update, state-of-the-art VSLAM systems

[16, 101, 120] typically stores co-visibility information as a graph of historical keyframes,

i.e., co-visibility graph. Compared with the sliding window, the co-visibility graph encodes

more historical information, which is preferred in general SLAM scenarios. In the pres-

1https://github.com/ivalab/gf_orb_slam2
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ence of revisits, co-visibility graph enables querying and taking early keyframes (and map

points) in local BA. Meanwhile in the absence of revisit, the co-visibility graph behaves

similar to the sliding window. Nevertheless, co-visibility information is only a rough ap-

proximation of frame-to-frame mutual information. Therefore, the actual conditioning of

local optimization problem formed with the co-visibility graph is not guaranteed. In prac-

tice, local BA with co-visibility graph typically over-selects states, therefore is limited in

cost-efficiency.

Apart from bounding the scale of local BA, the incremental nature of SLAM problem

has been looked into. Incremental algorithms have been developed to speed up certain

matrix manipulations that are compute-intense, such as QR factorization [43, 44], Cholesky

factorization [49, 45], and Schur elimination [50]. The method presented in this work is

related to the incremental Cholesky factorization work [49]. However, the goal of our work

is complementary to these incremental BA algorithms. We are pursuing efficient algorithm

to formulate scale-limited BA problem, while the incremental BA algorithms aim at solving

a sequence of BA problem efficiently. Cost-efficiency of local BA will be mostly improved

by combining proposed BA formulation and incremental solving.

6.3 Good Graph Selection in General BA

Based upon the least squares BA objective (2.1) and linear approximation (2.2) defined in

the preliminary chapter, we can write down the normal equation solved in each iteration of

non-linear solver:

Λδ = η, (6.1)

where Λ = JTJ, η = JTb. The spectral property of system matrix Λ is important: 1) a

well-conditioned Λ suggests fast convergence of iterative solving; 2) the volume of Λ is

also connected to the information/uncertainty level of corresponding BA problem.

Recall that the BA problem can be equivalently represented as Jacobian matrix or factor
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Figure 6.2: Toy example of subgraph selection on complete system vs. camera-only system
(best viewed in color). Working on a camera-only system is desired for efficiency purpose.
Subgraph selected from camera-only system (and recovered to include map states) will
be identical to the one selected from complete system, if all map states that are visible to
selected camera subsets are taken.
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graph [68]. In the rest of the chapter, following terminology are used: the term vertex

represents state entity (e.g. camera, map point), edge represents measurement, and graph

represents the BA problem defined by vertex and edge set.

Due to the cubic complexity of BA solving, working on a subproblem of original BA

with smaller scale could be more cost-effective if the full BA solution is not required.

Hence we are interested in selecting a subgraph from the full graph (i.e., the full BA prob-

lem). As discussed in the Chapter 2, the spectral property of the system matrix is important

for BA solving. Naturally, it is desired to select a subgraph with less states, while preserv-

ing (if not improving) the spectral property of corresponding system matrix.

Various metrics that measure the spectral property of matrices have been studied in

the literature [73, 72]. Similar to Chapter 3, the spectral property of the system matrix is

quantified with logDet in this chapter, because of the benefit in cost-efficiency. With logDet

metric, the objective of Good Graph Selection can be formulated as submatrix selection

problem:

max
S⊆{1,2,...,m+n},|S|=k

log det([Λ(S)]), (6.2)

where the complete system matrix Λ contains m camera states and n map states, S is the

index subset of selected camera and map states, [Λ(S)] is the corresponding submatrix,

and k is the cardinality constraint. Only the choice of states (vertices) is optimized with

submatrix selection objective (6.2), while the choice of non-zero fillings (edges) is con-

ducted implicitly. In other word, we only select a subgraph that has less vertices than the

full graph, while the sparsity of the subgraph remains to the same level.

6.3.1 Subgraph Selection on Camera-only System

Now that we have formulated Good Graph Selection as submatrix selection, it is possible

to run submatrix selection algorithms on complete system matrix Λ. Ideally, this will lead

us to a well-conditioned submatrix, as illustrated at the second column of Fig 6.2. The

corresponding subgraph, which is presented at the first column of Fig 6.2, should meet

99



both the size constraint and logDet maximization.

In practice, it is undesirable to work on complete system matrix Λ. The size of Λ is

too large, therefore slows down the submatrix selection drastically. In addition, submatrix

selection on the fused system matrix with both camera and map point states may create un-

desirable behaviors, as indicated in [74]. In BA literature, the map states are marginalized

out with Schur elimination. A marginalized matrix that only includes camera states can be

obtained:

M = Λcc −ΛcpΛ
−1
pp Λcp

T , Λ =

 Λcc Λcp

Λcp
T Λpp

 . (6.3)

An example of marginalized matrix M can be found at the top of fourth column of Fig 6.2,

while the corresponding camera-only graph is at the top of third column. Notice the size of

M is much smaller than Λ.

Selecting a subgraph with k cameras from the marginalized, camera-only matrix M can

be formulated as

max
S⊆{1,2,...,m},|S|=k

log det([M(S)]). (6.4)

More importantly, the corresponding map states can be recovered, by extracting all map

points that are visible to the selected camera subsets. An example of recovered subgraph

that contains both camera and map states can be found at the bottom of column 3 and 4 of

Fig 6.2.

The objective (6.4) for camera-only system is not equivalent to the original objective

(6.2). Ideally, the subgraph selected with (6.2) might have better conditioning since both

camera and map states can be selected explicitly. However, optimizing (6.2) is both expen-

sive and inconsistent. Map states are selected implicitly in the more efficient and consistent

camera-only (6.4): all map points visible to the selected camera subset are taken.
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6.3.2 Submatrix Selection with Lazier Greedy

To solve the camera-only objective (6.4) efficiently while limiting the loss in optimality,

submodularity of the logDet set function is exploited. As described in Chapter 2, the com-

binatorial optimization objective (6.4) can be approximately solved with greedy methods.

Greedy submatrix selection works as follow: starting from submatrix M(0) of a root cam-

era vertex, e.g. the current keyframe, iteratively searching for the best submatrix that has

one more state than M(0). After k − 1 iteration, the selected submatrix contains k camera

states and the selection stops. Finally, all map states that are visible in the camera subset

are included as well.

Further speed-up of greedy selection can be achieved with lazier greedy, as presented in

Chapter 3. Compared with greedy method, lazier greedy only evaluate a random subset of

candidate states (row and column blocks) at each iteration. The size s of random candidate

subset is controlled by decay factor ε: s = m
k

log(1
ε
). Computation complexity of lazier

greedy is O(log(1
ε
)m), which is much less than the O(km) of greedy.

The approximation ratio and computational speed up of lazier greedy hinge on the de-

cay factor ε. Lazier greedy with a decay factor of 0 converges to classical greedy, which

is with the best approximation ratio and computation cost. Meanwhile lazier greedy with

the maximum decay factor (i.e., e−
k
n ) is equivalent to randomized sampling, which is com-

putationally cheap but inconsistent. As discussed in Chapter 3, inconsistent randomized

sampling should be avoided in sequential estimation problems such as VSLAM. In this

chapter, the decay factor ε is fixed to a small positive value 0.05, which enables efficient

selection with sub-optimal guarantee. For those interested, a comprehensive evaluation on

choice of decay factor can be found in [63].

6.3.3 LogDet with Incremental Cholesky

One bottleneck of lazier greedy algorithm is the cost of computing logDet metric. For

positive definite square matrix M, efficient computation of logDet involves Cholesky fac-
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torization M = LLT : log det(M) = 2
∑

log(diag(L)). However, simply plugging the

Cholesky-based logDet computation in lazier greedy is undesired. As the size of selected

submatrix grows during lazier greedy iterations, the cost of Cholesky factorization grows

in cubic, therefore affects the cost-efficiency of submatrix selection.

Cost-efficiency of logDet computation can be significantly improved with a key obser-

vation: Cholesky factorization in iterative submatrix selection is incremental. At each iter-

ation of lazier greedy, system matrix of current selection, dubbed M(i), only gets updated

partially. By re-ordering the row and column blocks, we easily append updated blocks to

the bottom right of current submatrix M(i):

M(i+ 1) =

M(i) B

BT D

 . (6.5)

Assuming Cholesky factorization of M(i) is known: M(i) = L(i)L(i)T . According to

[141], Cholesky factorization of new submatrix M(i+ 1) can be written as:

L(i+ 1) =

L(i) L1

0 L2

 ,
L1 = (L(i)+)TB,

L2 = chol(D− L1
TL1).

(6.6)

Computing logDet with incremental formula (6.6) avoids redundant Cholesky factorization,

therefore improves the cost-efficiency of Good Graph Selection.

6.3.4 Validation of Good Graph Selection

The proposed Good Graph algorithm contains the three improvements described above. In

addition, the system matrix Λ is obtained with the analytical approximation of Jacobian

[142], which is cheaper to compute than numerical ones. Good Graph algorithm is inte-

grated to a state-of-the-art BA solver, SLAM++ [48]. To validate the cost-efficiency of
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Table 6.1: Time Cost Breakdown (ms) of Subgraph BA

Methods Full N.C.G. N.C.L. N.I.L. A.I.L.

Su
bg

ra
ph

Jacob. - 588 584 592 474
Schur - 344 342 341 341
Chol. - 609 105 12 12
Misc. - 121 17 15 15
Total - 1662 1048 960 842

O
pt

im
.

Jacob. 3410 2183 2184 2199 2180
Chi2 1042 619 609 609 600

Linear 10299 4139 4138 4135 4136
Misc. 31 18 30 19 44
Total 14782 6959 6961 6962 6960

Total Time 14782 8621 8009 7922 7802
Size (cam) 92 46 46 46 46
Diff. (cam) - - 3 3 3

Good Graph, BA experiments are conducted on the cathedral dataset, which includes 92

cameras and 58k map points.

Apart from the full BA with all camera and map states, four BA with subgraphs that

include 46 cameras are evaluated. Subgraphs are chosen with variants of subgraph selection

algorithm: with greedy (G) or lazier greedy (L); with batch (C) or incremental Cholesky (I);

with numerical (N) or analytical Jacobian (A). Time cost breakdown of subgraph selection

and corresponding BA solving are reported in Table 6.1. The lowest time cost of each

subgraph selection step is highlight in bold.

According to Table 6.1, the time consumption of Good Graph Selection (A.I.L.), as well

as the total time including downstream subgraph BA, is the lowest among all 4 subgraph

BA variants. Each feature described above has clear positive impact to the cost-efficiency

of Good Graph Selection. Meanwhile, the difference between efficient Good Graph and

slower greedy selection (N.C.G.) is small: only 3 camera states are different within 46

selections. The final RMSE of subgraph BA can be found at Fig 6.1, where the RMSE of

Good Graph BA is only slightly higher than that of full BA. In the meantime, full BA takes

twice amount of time to compute.
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6.4 Budget-Awareness of Local BA in VSLAM

The Good Graph algorithm boosts the cost-efficiency in solving the general BA problem.

Compared with general BA, the local BA in VSLAM back-end has more strict budget

limits. To provide accurate map points and prevent track failure, local BA has to finish

in-time before new measurements accumulate. Similar to general BA, the time cost of the

local BA can be adjusted using Good Graph Selection. A general strategy that determines

the budget of local BA, and the size k of desired Good Graph, is described in this section.

6.4.1 Predicting Budget of Local BA

The primary role of local BA in VSLAM is to provide accurate map points as localization

references for future camera frames. When few map points will be visible in future camera

frames, it is necessary to execute local BA at a fast rate so that new map points are fixed in

time. When sufficient map points last in future frames, local BA can run at a slower rate,

thereby provide a complete and fully-optimized map. Intuitively, the budget of local BA is

connected to the amount of persistently visible map points in the future.

Similar to the feature selection work [74], camera poses (with noise) is assumed avail-

able for the near future. This assumption is reasonable: for closed-loop systems such as

mobile robots, poses in the near future are available from the controller; for open-loop

systems such as AR headset, near future poses can be predicted by propagating IMU mea-

surements. If the camera pose at the near future t + ∆t is available, we can project map

points in the predicted camera frame, and count the number of visible map points Nt+δt.

Assuming the number of visible map points decays linearly with time, the budget of local

BA tBA can be predicted

tBA = ∆t(Nt −Nmin)/(Nt −Nt+∆t), (6.7)

where Nt is the number of points visible at current (key)frame, and Nmin is the minimum
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Figure 6.3: Mappings between keyframe number and local BA budget, on two target de-
vices. Left: mapping learned on PC with Intel i7 quadcore 4.20GHz CPU. Right: mapping
learned on Jetson TX2 with ARM SoC (Cortex A57).

number of map points required to remain visible in near future. We set ∆t to 0.5 second in

the experiments.

The budget of local BA predicted with (6.7) reflects structure and motion information

implicitly. A large budget is more likely to appear when the structure is texture-rich (as

abundant map points are visible), or when the camera motion is slow (as the parallax of

most visible points are limited). A small budget, on the other hand, is typically triggered

when the structure has limited texture or the camera is moving rapidly.

6.4.2 Determining the Size of Good Graph

Given a certain budget tBA for local BA, a size-reduced subgraph needs to be selected using

Good Graph algorithm, so that the downstream local BA fits within the budget. The key

parameter to be sent into good graph selection is the desired size k, characterized by the

number of keyframes.

The mapping between keyframe number and local BA budget, dubbed tBA = f(k), is

known to be cubic. Coefficients of the actual cubic function, however, vary according to

the compute resources available on the target device. For each target device, it is possible to

learn the cubic f(k) a priori. Two example mappings used in the experiments are illustrated

in Fig 6.3: one for a PC that equips an Intel CPU, the other for an embedded device that

has an ARM SoC. The size of desired Good Graph is determined: k = f−1(tBA).
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6.5 Experiments

This section evaluates the performance of the proposed Good Graph method on a state-

of-the-art BA-based stereo VSLAM system, GF-ORB-SLAM (GF [63]). Compared with

canonical ORB-SLAM (ORB [101]), the front-end of GF has better cost-efficiency thanks

to active feature matching. The back-ends of GF and ORB are identical: they both use co-

visibility to bound local BA, which has limited cost-efficiency. The proposed Good Graph

algorithm is integrated to the BA-based back-end of GF, dubbed as GF+GG. We implement

Good Graph algorithm with SLAM++ [48], a state-of-the-art BA solver that supports block

matrix manipulation and incremental factorization. The budget-awareness module takes

noisy pose prediction (ground truth pose with 10% error) as input. The mapping between

local BA budget and desired subgraph size is trained a priori.

Apart from the proposed GF+GG, we include two GF-ORB-SLAM variants as evalua-

tion baselines as well. The sliding window strategy is implemented for the BA back-end of

GF, leading to a combined system GF+SW. We also implement an aggressive state selec-

tion strategy based on co-visibility: only the top-N co-visible camera states are optimized

in local BA. The combined system is referred to as GF+CV. Last, the original ORB and

front-end improved GF are evaluated.

Four state-of-the-art visual(-inertial) SLAM systems that support stereo vision are in-

cluded. SVO [6] is a lightweight, visual-only odometry system that has a direct front-end.

By skipping explicit feature extraction and matching, SVO consumes much less computa-

tion than feature-based GF. VINS-Fusion [31], or VIF, is a visual-inertial SLAM system

that tracks sparse optical flow in the front-end and performs sliding window BA in the

back-end. ICE-BA [45], or ICE, is an incremental and sliding window BA visual-inertial

system. A visual-inertial implementation [10] of MSCKF, dubbed as MSC, is also included

to represent filter-based VSLAM. All three visual-inertial systems, namely VIF, ICE and

MSC, track sparse optical flow in the front-end.

106



6.5.1 Computational Limits Simulation

The goal of this evaluation is to assess the performance of VSLAM under different compu-

tational limits. Instead of configuring VSLAM systems on multiple devices with different

computational resources, we choose to evaluate VSLAM on the same device, but with dif-

ferent speed in playing back data. Inspired by the idea of slo-mo introduced in VSLAM

benchmarking [143], we develop fast-mo evaluation to simulate different level of computa-

tional limits. In fast-mo, VSLAM systems are configured on one single device (a PC with

an Intel i7 quadcore 4.20GHz CPU), but are evaluated under different rates of visual data

input. Performance of a VSLAM running on a PC with 4x real-time data feed serves as the

upper bound of its actual real-time performance on a 4-time slower device (with less cache,

lower transmission rate, etc.). Five levels of fast-mo speeds are evaluated, ranging from 1x

to 5x real-time speed. As indicated in [144], low-power CPU can be simulated with 2x and

3x fast-mo, while ARM SoC can be simulated with 4x and 5x fast-mo.

EuRoC MAV benchmark [25], which contains 11 stereo-inertial sequences recorded

in 3 different indoor environments, is used in fast-mo evaluation. The performance of

each VSLAM system is reflected by the real-time pose tracking output. The accuracy of

real-time pose tracking is measured by the absolute root-mean-square error (RMSE) [102]

between ground truth track and real-time VSLAM output. For each configuration (bench-

mark sequence, VSLAM system and computational limits), a 10-run repeat is executed.

Results are reported only if zero tracking failure occurred during the 10-run repeat. Other-

wise results of corresponding configuration are discarded since the VSLAM system cannot

work reliably.

Three examples of fast-mo results are presented in Fig 6.4. At 1x fast-mo, multiple

GF variants share the best performance (no track failure, lowest RMSE). However, these

methods start losing the edge when fast-mo speed increases. GF, GF+SW and GF+CV

either have quickly increased RMSE or fail to track. Same goes for ORB. Two visual-

inertial systems with sliding window BA (ICE and VIF) have significantly higher RMSE,
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Figure 6.4: Fast-mo results on 3 EuRoC sequences: MH 03 med (top), V1 02 med (middle
and V2 02 med (bottom). The proposed GF+GG tracks on 1x to 4x fast-mo, while keeping
the best tracking accuracy in all cases (except for 1x on V1 02 med). For V1 02 med, only
GF+GG works reliably on 1x to 4x fast-mo while other BA-based VSLAM have track
failure.

and fail to track on 4x fast-mo. The two light-weight systems, namely direct SVO and filter-

based MSC, work on all 5 fast-mo speeds, yet with high RMSE. The proposed GF+GG

consistently has one of the lowest RMSE. The track failure of GF+GG on 5x fast-mo is due

to the front-end bottleneck, as revealed in the following.

Though the scope of this work is on algorithm improvement for VSLAM, it is still inter-
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Figure 6.5: Time cost breakdown of BA back-end on sequence MH 03 med, under 2x fast-
mo. Top: GF that takes all co-visible keyframes into local BA. Bottom: GF+GG that only
optimizes the Good Graph in local BA. Since the camera remains static between 7 sec and
15 sec, no local BA is triggered during that slot.

esting to assess the potential of the Good Graph BA back-end when a hardware-accelerated

front-end is available. Again, a simulation is conducted by running four GF variants with

pre-computed keypoints. In this way the overhead of front-end feature extraction is only

several milliseconds. The performance of the actual VSLAM system that contains both

algorithm and hardware improvements should fall between the regular fast-mo results and

the pre-computed results. Both the regular fast-mo results and the pre-computed results for

are summarized in Table 6.2.

According to Table 6.2, most VSLAM systems except for MSC track on all 11 se-

quences under 1x fast-mo. The RMSE of GF+GG reaches the lowest, yet only gets im-

proved over GF baseline by a small margin. Under 2x and 3x fast-mo, the results become

interesting: only 3 VSLAM systems, i.e., SVO, VIF and GF+GG, track all 11 sequences.

The RMSE of GF+GG is an order-of-magnitude lower than the other two. The other 2 GF

variants with alternative baseline subgraph selection heuristics suffer from track failure.

Furthermore, state-of-the-art BA-based VSLAM systems such as ICE and ORB failed to
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track on multiple sequences. Some failures of filter-based MSC could be caused by im-

proper initialization; nevertheless the average RMSE of MSC is twice that of GF+GG on

successful sequences. With pre-computed keypoints, GF+GG has the lowest RMSE on 2x

fast-mo, and full track success on 3x fast-mo. Though GF+GG starts to have track failure

on 4x fast-mo, it still achieves top-of-the-line robustness (with 3 failed sequences) and ac-

curacy (lowest RMSE on almost all working sequences). We further argue that these track

loss are due to front-end processing speed. When coupled with pre-computed keypoints,

GF+GG tracks on all 11 sequences on 4x fast-mo. In general, the performance degrada-

tion of GF+GG is quite graceful from 2x fast-mo to 4x fast-mo. Further increasing the

fast-mo speed to 5x leads to track failure in most VSLAM systems. SVO is the only system

that works on all 11 sequences in this case, though has quite high RMSE. After releas-

ing the bottleneck of feature extraction in VSLAM font-end with pre-computed keypoints,

GF variants track most sequences as well. The RMSE of GF+GG is the lowest among 4

variants on 8 out of 9 working sequences.

Finally, the time cost breakdown of BA back-end on 2x fast-mo simulation is illustrated

in Fig. 6.5. Compared with GF that takes all co-visible keyframes into local BA, the time

cost of local BA in GF+GG is better bounded. Furthermore, the time cost of Good Graph

algorithm is quite small, compared to the time spent on state optimization.

6.5.2 VSLAM on Low-Power Device

To further validate the conclusion drawn from fast-mo simulation, we evaluate VSLAM

systems on an embedded device, Jetson TX2 with ARM SoC (Cortex A57). Due to com-

patibility issues, two VSLAM systems VIF and SVO are dropped. To resolve the bottleneck

on front-end feature extraction, GPU-acceleration is enabled for 5 ORB-based systems.

Evaluation results on embedded device are summarized in the last block of Table 6.2. In-

cremental ICE tracks on all sequences, while filter-based MSC only failed on 1 sequence.

However, the RMSE achieved with either methods is quite high. The proposed GF+GG,
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Table 6.5: RMSE (m) on UZH-FPV Stereo Sequences

Sequences
Methods if 3 if 5 if 6 if 7 if 9 if 10 Avg.

MSC 5.36 8.11 1.59 1.38 2.31 2.08 3.47
ICE - - - - - - -
VIF - 5.27 7.46 4.51 - - 5.75
SVO 9.43 5.25 8.41 6.68 3.95 3.95 6.28
ORB 2.03 2.34 1.95 - - - 2.11
GF 1.91 2.92 - - 3.33 3.77 2.98

GF+SW - 2.81 - - - 3.84 3.32
GF+CV - 2.92 - - 3.62 3.65 3.40
GF+GG 2.28 2.42 - - 2.57 2.91 2.55

on the other hand, has the lowest RMSE. The clear performance improvement from GF

to GF+GG suggests that the bottleneck of BA back-end has been largely tackled. We fur-

ther conjure that, when working with a FPGA-based front-end, the 4 failure cases shall be

resolved for GF+GG.

6.5.3 VSLAM on Agile Camera Motion

Apart from compute limits, another challenging scenario for state-of-the-art VSLAM is the

agile camera motion. To track the camera reliably, VSLAM systems have to process new

visual measurements and fix new map points within a small budget. All 9 VSLAM systems

mentioned above are evaluated on the UZH FPV benchmark [145], which is recorded with

a racing quadrotor with max speed of 12.8 m/s. Six indoor sequences collected with front-

facing fisheye camera and full ground truth coverage are selected in this evaluation. Ground

truth trajectories are collected with Vicon motion tracking.

Similar to the previous evaluation, a 10-run repeat is executed for each configuration,

and zero tracking failure is allowed. The RMSEs of VSLAM real-time tracking output

are summarized in Table 6.5. Only 2 VSLAM systems manage to track all 6 agile-motion

sequences without any failure: filter-based MSC and direct SVO. However, the RMSE of

SVO is really high. MSC seems to perform quite well on multiple sequences; yet it does
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Table 6.6: RPE (m/s) on UZH-FPV Stereo Sequences

Sequences
Methods if 3 if 5 if 6 if 7 if 9 if 10 Avg.

MSC 1.94 2.06 2.04 1.09 0.66 0.68 1.41
ICE - - - - - - -
VIF - 0.61 1.04 0.49 - - 0.71
SVO 1.19 1.39 1.65 0.88 0.81 0.94 1.14
ORB 0.34 0.41 0.44 - - - 0.40
GF 0.30 0.51 - - 0.39 0.51 0.43

GF+SW - 0.50 - - - 0.53 0.51
GF+CV - 0.51 - - 0.43 0.51 0.48
GF+GG 0.34 0.43 - - 0.31 0.45 0.38

Figure 6.6: Time cost breakdown of BA back-end on agile motion sequence indoor forward
10. Top: GF that takes all co-visible keyframes into local BA. Bottom: GF+GG that only
optimizes the Good Graph in local BA. Several frames are dropped at around 63 sec for
both methods; but they are able to recover quickly afterwards.

really bad on certain sequences such as if 3 and if 5. The proposed GF+GG, on the other

hand, tracks on 4 out of 6 sequences with relative stable accuracy: the RMSEs are around

2.50 meter. Other BA-based VSLAM systems either fail to track on most of the sequences

(e.g. ICE, VIF, ORB, GF+SW and GF+CV), or have high RMSE (e.g. GF).

The RMSEs in Table 6.5 are much higher than those in EuRoC evaluation due to the

challenging agile camera motion. As an alternative metric, we compute the relative posi-
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tion error (RPE) of agile-motion results using 10-second sliding window. The RPEs are

summarized in Table 6.6. Interestingly, the proposed GF+GG has the lowest RPE on av-

erage, which suggests GF+GG tracks camera motion well at local scale. Furthermore, the

performance of GF+GG could be further improved with inertial measurements; currently

only visual data is used in GF+GG.

The time cost breakdown of the BA back-end on an agile motion sequence is illustrated

in Fig. 6.6. Similar to the evaluation under computational limits, GF+GG bounds the time

cost of local BA better than GF; the time cost of Good Graph algorithm is also small.

6.6 Conclusion

This chapter describes a novel, rigorous method to improve the cost-efficiency of BA-based

VSLAM back-end, which is essential for SLAM applications with compute limits. An effi-

cient algorithm is developed to select a size-reduced graph for local BA with conditioning

preservation. The budget of local BA, as well as the desired size of selected graph, are

determined with budget-awareness. The proposed algorithm is integrated into a state-of-

the-art VSLAM system. Superior performance is achieved under a variety of computational

limits, when compared against state-of-the-art VSLAM systems.

116



CHAPTER 7

CLOSED-LOOP NAVIGATION WITH ROBUST, LOW-LATENCY VISUAL

INERTIAL SLAM

7.1 Introduction

In this chapter, we study the performance of VSLAM in a representative robotics appli-

cation, i.e., closed-loop navigation. Traditional benchmarking of VSLAM employs open-

loop analysis (i.e., isolating VSLAM from rest of the autonomous system). Open-loop

evaluation fails to fully address the impact of noise or measurement error on navigation

performance. Therefore, it is hard to gain insights on VSLAM from published benchmark

scores. Furthermore, open-loop evaluation does not measure the impact of latency in online

VSLAM applications. In this chapter, we first describe the VSLAM computational compo-

nents essential to high performance closed-loop navigation. Then we present a reproducible

benchmarking simulation for closed-loop VSLAM evaluation.

The proposed approach employs a loosely-coupled visual-inertial SLAM setup. Visual

and inertial sensors provide complementary constraints in state estimation. The visual sen-

sor provides accurate, yet sparse and delayed measurements of absolute landmarks in the

environment. Estimation drift is mitigated by observing and matching landmarks with a

long but potentially intermittent measurement history during state optimization. The in-

ertial sensor provides high-rate, almost-instantaneous, yet drifting measurements of robot

motion. Inertial measurements constrain the unobservable scale of monocular vision and

compensate for short duration visual feature loss (e.g. in texture poor settings). Closed-loop

navigation benefits from visual-inertial sensor fusion when these properties are simultane-

ously leveraged; more so when the state estimation rate admits feedback control.

A critical characteristic of visual-inertial state estimation in closed-loop navigation is
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Figure 7.1: Impact of visual processing latency in visual-inertial SLAM. Assuming 100%
correct visual estimation and purely-random IMU noise, the only source of error in visual-
inertial state estimation is accumulated IMU bias (quadratic in time). Top: visual-inertial
state estimation trend when visual estimation takes 75% of the visual processing budget.
Bottom: Trend of visual-inertial state estimation when visual estimation takes 50% of the
budget. Reduced latency yields a reduced state estimation error.

the latency of visual processing (e.g. feature extraction, data association, BA, etc.). As

illustrated in Fig 7.1, a slight latency-reduction on visual processing end could improve

the accuracy of fused visual-inertial state estimate due to the quadratic (in time) nature of

accumulated IMU bias. Therefore it is important that VSLAM exhibit the smallest latency

possible. As demonstrated in Chapter 3, an active feature matching algorithm, namely

Good Feature Matching (GF), improves the cost-efficiency of feature matching signifi-

cantly. Through open-loop evaluation, the feature-based VSLAM system with Good Fea-

ture Matching achieves accurate and low-latency pose tracking. In this chapter, we integrate

GF VSLAM to a multi-sensor fusion framework [146]. The resulting visual-inertial SLAM

system has low latency and high performance. The impact of the system is demonstrated

in simulated closed-loop navigation scenarios. When deployed on a navigation planner

and controller system, the navigation performance of the described visual-inertial SLAM

outperforms state-of-the-art direct and feature-based visual(-inertial) SLAM systems.
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7.2 Background

In this section, we first review existing works on visual-inertial state estimation for closed-

loop navigation. The term VI-SLAM will be used to indicate both visual-inertial odometry

(VIO) and visual-inertial SLAM. We also review the evaluation methods for closed-loop

navigation.

7.2.1 VI-SLAM in Closed-Loop Navigation

Pioneering works developing VI-SLAM for closed-loop navigation tasks on ground [147]

and aerial vehicle navigation [148, 149] utilize EKF-based visual inertial state estimation.

Due to the cubic computation cost of the EKF in state dimension, only the pose is fully

tracked. There is no long term mapping in these EKF solutions, which limits the perfor-

mance of state estimation and closed-loop navigation.

Closed-loop navigation with full VI-SLAM running off-board was demonstrated in

[150], based on the ground breaking PTAM [3]. Two important ideas were raised in [3]: 1)

non-linear bundle adjustment (BA) can achieve better performance than filters in state esti-

mation; 2) pose tracking and mapping can be parallelized and function semi-independently.

In [151], a customized version of monocular PTAM was fit into the on-board budget of a

Micro Aerial Vehicle (MAV). Still, PTAM with full BA is computationally expensive; when

working with more than 1 camera, estimation is shifted off-board to meet real-time needs

[152].

To reduce the on-board computational load of VI-SLAM, alternatives have been ex-

plored in both the image processing front-end and state optimization back-end. The combi-

nation of sparse optical flow (e.g. KLT [88]) and the linear-complexity filter (e.g. MSCKF

[39]) has been chosen as an efficient VI-SLAM solution [153, 10, 154]. MSCKF-based

VI-SLAM with both monocular [153] and stereo [10] vision runs in real-time, while still

leaving room for other navigation modules, e.g. planning and control. One downside of
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MSCKF is the low mapping quality. To compensate, a BA-based mapper was integrated

into the monocular MSCKF-based VI-SLAM in [154].

Apart from the linear complexity filter, the sliding-window filter (SWF) [155] has

also been used for efficient VI-SLAM. SWF keeps a finite set of historical information

(keyframes and landmarks) in the window for performing BA within it. Compared to

full BA, SWF has better bounding on the computation footprint while still allowing re-

linearization of historical information. Representative works using the SWF include feature-

based OKVIS [16] and KLT-based VINS-Fusion [156]. Closed-loop navigation with OKVIS

has been demonstrated on both ground [157] and aerial robots [158]. For a high-rate feed-

back signal to the controller, OKVIS was enhanced with visual-inertial fusion [146]. In

[156], a KLT-based image processing front-end is developed to further cut down the cost of

feature extraction and matching. Full navigation has been demonstrated with VINS-Fusion

on a MAV [159].

The efficiency of direct VI-SLAM has also been studied. Instead of extracting and

matching features explicitly between visual frames, the direct method jointly solves data

association and state optimization by optimizing a direct objective on raw image readings.

Direct VI-SLAM systems such as SVO [6] and ROVIO [33] have been integrated into

closed-loop navigation systems, e.g. monocular system [160], stereo system [161], and

IR system [162]. While both KLT and direct VI-SLAM are computationally cheaper than

feature-based VI-SLAM, they are more sensitive to navigation-based conditions: e.g. they

require accurate pose prediction (from inertial) and constant light condition. Furthermore,

both KLT and direct methods are mostly suited for extracting short-baseline feature match-

ings. Feature descriptor matching, on the other hand, can find reliable long-baseline feature

matches that are of great value to state optimization (Fig 1.2).
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7.2.2 Evaluation of Closed-Loop Navigation

Open-loop evaluation of different VI-SLAM methods has been extensively conducted in

the literature, e.g. on multiple public benchmarks [63], on multiple computation devices

[11, 163], and on multiple synthetic environments [164, 165]. Closed-loop evaluation of

different VI-SLAM methods in navigation tasks, however, has not been pursued till very

recently. One big challenge towards closed-loop evaluation is that closed-loop navigation

is not just a software problem; the performance of the full system can be affected by sensor

choice, computational resources, system kinematics and target environment. All these fac-

tors need to be determined and experimentally controlled to comprehensively evaluate the

performance of closed-loop navigation using VI-SLAM.

One way to conduct comprehensive and repeatable closed-loop evaluation is via simu-

lation. Several existing simulators are commonly used in the robotics community. Gazebo

[166] is one of the best simulators in robotics field, with MAV-specific extensions such as

RotorS [167]. AirSim [168] from Microsoft Research is another choice, with photorealis-

tic renderings of visual data via Unreal Engine. A more recent development incorporates

hardware in the loop [169]. By capturing the trajectory of the actual robot on the fly, while

rendering virtual visual data on a remote workstation, [169] collects both actual data under

real physics and virtual data from an easy-to-extend renderer. To the best of our knowl-

edge, there is no comprehensive evaluation of different VI-SLAM methods for closed-loop

navigation. In this paper, we provide evaluation results on closed-loop navigation using

Gazebo.

7.3 Closed-Loop Navigation System Design

As illustrated in Fig 7.2, our closed-loop navigation system consists of three major sub-

systems: 1) a feature-based Visual SLAM subsystem taking stereo vision data to generate

sparse yet accurate state estimates; 2) a sensor fusion subsystem taking both sparse visual
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Figure 7.2: Overview of the closed-loop navigation system. Algorithmic improvements
proposed in Chapter 3 and 6 are included to the key modules, pose tracking and mapping.

estimates and high-rate inertial readings for high-rate and accurate positioning; and 3) a

controller taking high-rate output from sensor fusion to generate actuator commands. It

falls into the category of loosely-coupled stereo inertial SLAM. Though tightly-coupled

VI-SLAM systems tend to have better performance than loosely coupled ones, we choose

loosely-coupled VI-SLAM in our navigation system because it is more open to future en-

hancement by additional sensing modules, such as wheel odometry and magnetic position.

Though this paper only discusses a stereo implementation, the described SLAM system

also supports an RGB-D camera as the visual sensor.

The visual SLAM subsystem is based on ORB-SLAM [4], which consists of three

cascaded modules running as separate threads: pose tracking, mapping, and loop closing.

The pose tracking module estimates the current pose at the same rate as visual sensory input

(e.g. 30Hz). The mapping module accumulates the output of pose tracking, i.e., feature

matchings and current pose estimate, and performs a lower-than-frame-rate (e.g. 3Hz) BA

on historical measurements within a window. The loop closing module is only activated

when the robot revisits previously explored places. It typically triggers at an extremely low

rate, e.g. 0.01Hz.

The efficiency of pose tracking is essential in visual-inertial state estimation and there-

fore in closed-loop navigation. Pose tracking results are fused with high-rate inertial read-

ings in EKF-based sensor fusion [146]. The fused high-rate position signal is fed into
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position controller [170] to drive the robot. As mentioned earlier (e.g. in Fig 7.1), latency

in pose tracking significantly impacts the performance of visual-inertial state estimation.

Cost-efficiency of BA in mapping thread is also crucial, since it affects the quality and

quantity of map points available in pose tracking. As described in Chapter 6, the budget of

local BA is anticipated with controller feedback. Next we will briefly recap the algorithm

improvements.

7.4 Robust, Low-Latency Stereo VSLAM

7.4.1 Low-Latency Pose Tracking

The pose tracking thread in stereo VSLAM systems like ORB-SLAM [4] consists of three

sequential steps (top row of Fig 7.3): stereo matching, map-to-frame matching, and state

optimization. Stereo matching provide disparity/depth information for the current mea-

sured features. Map-to-frame matching associates these measurements to features in the

3D map (assumed to be static). State optimization recovers the current pose of the cam-

era/robot based on matched and tracked features. Following this pipeline, all valid feature

matchings are guaranteed to inform pose optimization. However, it is often unnecessary

to use all valid feature matchings in pose optimization, which is already over-determined

[62]. With the Good Feature Matching algorithm described in Chapter 3, it is possible to

prioritize and re-sequence the feature matching effort (bottom row of Fig 7.3). As a con-

sequence, pose tracking can have a lower latency than before, while preserve the accuracy
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and robustness.

7.4.2 Cost-Effective Local BA

The mapping thread in stereo VSLAM systems like ORB-SLAM [4] consists of three se-

quential steps (top row of Fig 7.4): new points triangulation, local BA, and map culling.

The computational cost of local BA, which is cubic to the scale of states optimized, is the

bottleneck of mapping task, In online applications such as closed-loop navigation, the bud-

get for local BA varies according to multiple factors: the camera / robot motion, the texture

level of working environment, the computational resources available, etc. The on-the-fly

budget awareness module described in Chapter 6 is added to the original mapping pipeline

(bottom row of Fig 7.4). When the budget is loose, all valid states are optimized by local

BA, which is identical to original mapping method. When the budget is tight due to cam-

era motion or computational limits, the Good Graph algorithm described in Chapter 6 is

activated to select a subset of states in local BA with strong performance guarantee.

7.5 Feedback Control

The desired path d∗(t) ∈ R2 is constructed from a series of specified waypoints using

splines. An exponentially stabilizing trajectory tracking controller for Hilare-style robots
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[170] generates a kinematically realistic trajectory for the robot to follow. In the following

discussion, constraints on accelerations and velocities are omitted for clarity.

Let the robot pose as a function of time g(t) ∈ SE(2) follow the mixed first- and

second-order control equations of motion,

ġ = g ·


ν

0

ω

 and
ν̇ = u1

ω̇ = u2
(7.1)

where ν is the forward velocity and ω is the angular velocity, both in the body frame. The

signal u = (u1, u2)T coordinates are the forward and angular acceleration (in body frame).

This controller relies on the differential flatness of the robot kinematics to achieve ex-

ponential stabilization of a virtual point in front of the robot by λ. Define the λ-adjusted

rotation matrix and angular velocity matrix to be

Rλ = R · diag(1, λ) and ω̂(λ, λ̇) =

 0 −λω
1
λ
ω λ̇

λ

 , (7.2)

where R is the orientation from g. For e1 the unit body x̂-vector in the world frame, the

trajectory tracking control is

u =cpRλ
−1 (d∗ − d− λ ∗Re1) + cd

(
Rλ
−1ḋ∗ − V

)
− cdλ̇e1 − ω̂(λ, λ̇)V − (ω̂(λ, λ̇)− cλI)λ̇e1, (7.3)

where cp, cd, cλ are feedback gains and V =
[
ν |ω

]T . The additional offset dynamics are

λ̇ = −cλ(λ− ε), where λ(0) > ε > 0, cλ > 0. (7.4)

The dynamical system represented by Eqs 7.1-7.4 yields a reference trajectory of robot
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poses g∗(t) and body velocity components V ∗(t) for tracking the desired path d∗(t). The

offset variable λ∗(t) can be ignored.

The real time trajectory controller drives the robot to track the reference trajectory based

on feedback of the robot’s state (a SE(2) substate of the SE(3) state estimation). These

control commands are:

νcmd = kx ∗ x̃+ ν∗

wcmd = kθ ∗ θ̃ + ky ∗ ỹ + ω∗
(7.5)

where [x̃, ỹ, θ̃]T ' g̃ = g−1g∗ is the relative pose error between the current state g and the

desired state g∗ in body frame. In the absence of error, the control signal is V ∗(t).

7.6 Experiments

This section describes a simulated closed-loop navigation environment for testing VI-

SLAM systems using Gazebo/ROS. Experimental results show the proposed solution out-

performs state-of-the-art VI-SLAM systems.

7.6.1 Simulation Setup and Baseline Methods

A virtual office world is created for robot navigation (Fig 7.5). The world is based on

the floor-plan of an actual office, with texture-mapped surfaces. The walls are placed 1m

above the ground plane since collision checking and path planning is outside the scope of

this chapter. Within this world, the differential drive robot TurtleBot2 [171] maneuvers. A

30fps stereo camera with an 11cm baseline is mounted to the TurtleBot. An IMU is placed

at the base of TurtleBot. Two commonly-used IMUs are simulated: a high-end ADIS16448

and a low-end MPU6000. Data streams from both the stereo camera and IMU are input to

the VI-SLAM which then outputs SE(3) state estimates. The position controller described

previously uses the SE(2) subspace of the SE(3) estimate to drive the TurtleBot to follow

the desired path.
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Figure 7.5: The virtual office world. Left: Top-down view. The robot starts at the top-left
corner, facing the long corridor. Right: Example images captured by on-board stereo
camera (left camera).

Figure 7.6: All 6 desired paths used in closed-loop navigation experiments. Each desired
path is color-coded to show the direction of travel.

Six test paths were created for the closed-loop navigation experiments, each with dif-

ferent characteristics (Fig 7.6). The first 2 paths are relatively short (∼50m), with few to

none re-visits. The 3rd and 4th paths are both of medium length (∼120m) with many to
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few re-visits. The last 2 paths are long (∼240m) with many re-visits. All paths have the

same start point for the robot, the origin of the world. Three desired linear velocities are

tested: 0.5m/s, 1.0m/s, and 1.5m/s.

The methods tested were the following VI-SLAM systems:

1. MSC: MSCKF-VIO [10] is a tightly-coupled VIO system, with KLT-based front-end

and MSCKF back-end. EKF-based sensor fusion [146] is used to densify the low-rate

estimation output from MSC, before sending it to controller.

2. VIF: VINS-Fusion [156, 172] is a tightly-coupled VI-SLAM with KLT-based front-

end and BA-based back-end (SWF). VIF has a large latency due to the SWF BA.

It does provide a low-latency, high-rate IMU propagation signal, which is sent to

controller.

3. SVO: SVO + MSF [173]. A loosely-coupled VIO system with SVO [6], a light-

weight direct method.

4. ORB: ORB-SLAM + MSF. ORB-SLAM [4] has a feature-based front-end and BA-

based back-end. ORB is computationally costly, so the latency is large.

5. GF: ORB-SLAM with GF front-end + MSF. As described in Chapter 3, a loosely-

coupled ORB, with the low-latency Good Feature pose tracking.

6. GF+GG: ORB-SLAM with GF front-end and GG back-end + MSF. The combination

of Good Feature pose tracking (in Chapter 3) and cost-efficient Good Graph mapping

(in Chapter 6).

The methods with “+ MSF” are loosely-coupled systems with fusion via MSF [146]. All

6 VI-SLAM systems are set to reasonably good parameters found by parameter sweep, the

raw data of which is released online 1. For each test configuration (desired path, desired

1https://github.com/ivalab/FullResults_ClosedNav
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Figure 7.7: Pose tracking profiling of ORB and GF.

linear velocity, VI-SLAM method, and IMU), we repeat each closed-loop navigation run 5

times.

7.6.2 Simulation on Low-Power Laptop

An Intel Xeon E5-2680 CPU workstation (passmark score 1661 per thread) is chosen to

conduct Gazebo simulation and graph rendering. The computations of closed-loop nav-

igation, include VSLAM, visual-inertial fusion and feedback control, are conducted on

a laptop with low-power Intel Core i7-8550U CPU. The total power consumption of the

low-power navigation laptop is 15W. The computing speed of the low-power laptop can be

quantified with passmark score, which is 2140 per thread. For reference, most published

closed-loop navigation systems [151, 158, 154, 160, 10, 159, 161] employ an Intel NUC

whose CPUs score between 1900-2300 per thread. The communication between simulating

workstation and navigation laptop is based on Ethernet.

First, we show that the proposed system does indeed reduce the image to pose latency.

Fig 7.7 provides the time breakdown of the pose tracking computation, generated by av-

eraging the latency across all test runs (180 in total). Compared with ORB, GF removes

the overhead of stereo matching. The latency of map-to-frame matching is similar for both,

which includes some stereo matching for GF. The Good Feature Matching and Lazy Stereo

modifications lead to a 50% reduction in latency.

Next, we review the high-end IMU (ADIS16448) outcomes. The actual trajectories

traveled by the robot with 0.5m/s desired linear velocity are illustrated in Fig 7.8, read
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Figure 7.8: Trajectories the robot traveled for each desired path, color-coded by method.
Desired velocity is 0.5m/s and IMU is simulated as a high-end ADIS16448. Navigation-
related computations are conducted on a low-power laptop.

from left to right, top to bottom row. When following short and mid-term paths (plots

1-4), VIF and SVO have the largest tracking error (red + green). The trajectory of ORB

gets off when the length of desired path is medium or long (plots 3-6). The performance

of MSC (blue) also degrades when following long-term paths (plots 5-6). Trajectories of

the two low-latency VI-SLAM, namely GF (black) and GF+GG (yellow) are consistent

and accurate (to the desired path). The trajectories for the low-end MPU6000 have similar

outcomes, as illustrated in Fig 7.9. Though VIF appears better, many runs leave the figure

bounds. Both SVO and ORB lead to large errors for the mid-term and long-term paths.

On medium and long paths (plot 3-6), trajectories of GF also deviate from the desired

ones. The best path following performance seems to be achieved with two methods: the

light-weight VIO system MSC, and the low-latency BA-based GF+GG.

Navigation performance is quantified in Tables 7.1 and 7.2. The navigation perfor-
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Figure 7.9: Trajectories the robot traveled for each desired path, color-coded by method.
Desired velocity is 0.5m/s and IMU is simulated as a low-end MPU6000. Navigation-
related computations are conducted on a low-power laptop.

mance metric is the root-mean-square (RMS) error between the desired path and the actual

path, averaged over the 5-run repeats. Cases with average RMS over 10m are considered

navigation failures and omitted (the dashes). For each sequence and desired linear velocity,

the VI-SLAM system with the lowest navigation error is in bold. For reference, navigation

performance with perfect visual estimation (no error or latency) is also presented under the

column GT for each configuration.

According to Table 7.1, SVO, VIF and ORB fail under multiple configurations. The

latency of visual estimation, as described earlier, contributes to these failures. Filter-based

MSC, low-latency GF and GF+GG succeed in most configurations. However MSC ei-

ther has slightly more track loss or worse RMSE when compared with BA-based GF and

GF+GG. The performance of GF+GG is further improved over GF when the desired ve-

locity is greater or equal to 1.0 m/s. From Table 7.2, the similar observation can be made
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for the low-end IMU. Navigation performance degrades for most configurations. SVO, VIF

and ORB still fail under multiple configurations. The performance of filter-based MSC is

quite consistent; while GF and GF+GG are with lower RMSE, especially when the desired

linear velocity is 1.0 or 1.5m/s.

To summarize, low-latency GF and GF+GG outperform the other 4 state-of-the-art

VI-SLAM systems in a closed-loop navigation simulation, with MSC having next best

performance. The navigation error of GF+GG is further reduced when the desired linear

velocity is 1.0 or 1.5m/s. The improvement of navigation performance is significant in

most configurations, with both high-end and low-end IMUs. Still, there are some cases that

GF and GF+GG are prune to tack loss. A tighter integration of visual-inertial estimation

is desired to improve the robustness of VI-SLAM state estimation.

7.7 Conclusion

This chapter tests two variants of latency-reduction VSLAM, GF and GF+GG, in closed-

loop navigation. The relative performance of ORB-SLAM versus those of GF and GF+GG

suggests a connection between visual estimation latency and navigation performance. In

a comprehensive and repeatable simulated evaluation, the navigation performance of low-

latency GF outperforms state-of-the-art direct and feature-based VI-SLAM systems. With

GG enhancement, the navigation performance is further improved, especially in medium

or high velocity configurations.
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CHAPTER 8

CONCLUSION AND FUTURE RESEACH

This thesis investigates the applicability of VSLAM on target applications in robotics and

AR. The performance-efficiency trade-off of VSLAM is significantly improved by lever-

aging theorems on submodular submatrix selection. Multiple algorithmic components of

modern VSLAM system are investigated and improved in this thesis, each of which pushed

the applicability of VSLAM forward a little bit. The key contributions are summarized:

• Good Feature Matching: Low-Latency Front-End of Feature-based VSLAM.

The concept of submodular submatrix selection is introduced to a compute-intense

module in the VSLAM front-end, i.e. map-to-frame feature matching. The feature

selection problem is formulated and tackled with submodular submatrix selection. It

is then combined with active feature matching, leading to a low-latency, performance

guaranteed feature matching algorithm, dubbed Good Feature Matching.

• Good Line Cutting: Accuracy Improvement of Line-Assisted VSLAM. The idea

of point feature selection is extended to line features. A specific property of lines,

i.e. extending along a specific direction, is exploited to enable line feature refine-

ment. The underlying optimization objective of line refinement is a convex opti-

mization. An efficient, multi-start algorithm for generating sub-optimal solutions,

dubbed Good Line Cutting, is described and evaluated.

• Map Hashing: Appearance-Enhanced Compact Local Map of Feature-based

VSLAM. An appearance-based enhancement is developed to construct, populate,

and query the local map. Local map is a critical accuracy-improving sub-component

of the VSLAM front-end. An efficient hashing technique is applied to store and query

appearance prior. Furthermore, submodular submatrix selection provides a means to
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reduce the quantity of hash queries through active, online table selection, thereby

reducing the overhead of local map construction.

• Good Graph Selection: Cost-Effective, Budget-Aware Bundle Adjustment in

VSLAM. The concept of submodular submatrix selection is introduced to general

BA problem, which is frequently solved in the BA-based VSLAM back-end. A

novel, rigorous method to determine the state subset in BA with strong performance

guarantees is proposed, dubbed Good Graph Selection. Furthermore, we explore the

potential of budget-awareness to determine the size of Good Graph on-the-fly.

• Closed-Loop Navigation with Robust, Low-Latency Visual Inertial SLAM. Two

algorithmic improvements described in this thesis, namely the Good Feature Match-

ing (Chapter 3) and the Good Graph Selection (Chapter 6), are applied to a visual-

inertial fusion framework. The accurate and low-latency of described visual SLAM

method is revealed in the closed-loop navigation scenario investigated. A repro-

ducible benchmarking simulation for closed-loop VSLAM evaluation is presented,

which supports comprehensive evaluation of VSLAM in closed-loop navigation tasks.

There are several research directions for the future work. From the algorithmic perspec-

tive, the combination of feature-based and direct front-end is promising: feature matching

provides long-baseline associations that are beneficial to the overall accuracy of VSLAM,

while direct measurements serve as the short-term constraints for the robustness of VS-

LAM. The combination of Good Graph and incremental BA solver could further improve

the cost-efficiency of BA-based VSLAM back-end. Deep integration of dedicated hard-

wares such as FPGA and the efficient algorithms such as Good Feature is an interesting

topic as well, which could have great impact to applications with computational limits.

Finally, semantic clues extracted from visual input using deep learning algorithms (e.g.

R-CNN) could be exploited to further improve the robustness of VSLAM. Studies on com-

bining VSLAM and deep learning, however, is still under-going.
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