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SUMMARY

Statistical mechanics bridges the �elds of physics and probability theory, providing critical

insights into both disciplines. Statistical physics models capture key features of macroscopic

phenomena and consist of a set of con�gurations satisfying various constraints. Markov chain

Monte Carlo algorithms are often used to sample from distributions over the exponentially large

state space of these models to gain insight about the system and estimate its thermodynamic

properties. Similar problems arise throughout machine learning, optimization, and counting

complexity. In this dissertation, we present several new techniques based on random walks for

analyzing sampling algorithms and the dynamics of various lattice models from statistical physics.

We start by investigating the mixing time of Glauber dynamics for the six-vertex model in

its ordered phases. We show that for every Boltzmann weight in the ferroelectric phase, there

exist boundary conditions such that local Markov chains require exponential time to converge

to equilibrium. This is the �rst rigorous result about the mixing time of Glauber dynamics for

the six-vertex model in the ferroelectric phase. We also analyze the Glauber dynamics with free

boundary conditions in the antiferroelectric phase and signi�cantly extend the region for which

local Markov chains are known to be slow mixing.

In separate lines of work, we use techniques from the theory of random walks and electrical

networks to give nearly tight bounds for the transience class of the Abelian sandpile model,

closing an open problem of Babai and Gorodezky. The Abelian sandpile model is the canonical

dynamical system used to study the phenomenon of self-organized criticality, and the transience

class measures the time needed for the process to reach steady-state behavior. We also explore a

new approach for approximately sampling elements with �xed rank from graded posets that relies

solely on the mixing time of biased Markov chains. This allows us to bypass the usual obstacle of

log-concavity. Last, we take a foray into analytic combinatorics and use the singularity analysis of

Dirichlet generating functions to design sampling algorithms for Bose–Einstein condensates.

xi



CHAPTER 1

INTRODUCTION

Randomization has played a fundamental role in the design and analysis of modern algorithms.

Many of the current best algorithms for problems in combinatorial optimization, counting com-

plexity, and machine learning leverage random sampling to achieve faster running times without

compromising the quality of their solutions. One of the most prevalent classes of sampling algo-

rithms are Markov chain Monte Carlo (MCMC) methods. These algorithms use random walks to

explore complex state spaces and generate independent samples from desirable distributions over

a state space while visiting only a small fraction of its states. The predominant obstacle when

analyzing MCMC algorithms is bounding the number of steps a random walk needs to take so that

the process converges close to the target distribution. While there have been several triumphs

over the last thirty years, designing provably e�cient Markov chains still remains a challenge for

countless problems in computer science, discrete mathematics, and statistical physics.

Much of this progress has built on deep insights from statistical physics. One of the most com-

pelling discoveries is the realization that many natural Markov chains undergo phase transitions

where their rate of convergence suddenly changes from polynomial-time to exponential-time

as some parameter of the system is varied. This phenomenon occurs at critical thresholds gov-

erned by thermodynamic properties of the system, similar to many lattice models from statistical

physics. Approaching algorithm design from the perspective of statistical physics has repeatedly

proven to be a worthwhile endeavor, as demonstrated by the long-standing popularity of the

Metropolis–Hastings algorithm for generating random samples [Met+53], simulated annealing in

combinatorial optimization [KGV83], and Boltzmann machines in statistical inference [AHS85].

The focus of this dissertation is to introduce several new probabilistic techniques for designing

provably e�cient sampling algorithms and analyzing the rate at which the dynamics of various
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lattice models in statistical physics converge to equilibrium. Our methods are largely inspired

by the theory of random walks, leveraging connections to concentration inequalities, electrical

networks, and spectral graph theory, and we use these techniques to investigate and resolve

open problems about stochastic processes on lattice models. This includes making signi�cant

progress towards understanding the conjectured phase transitions of local Markov chains for the

six-vertex model and the proving nearly tight bounds for the time required for the Abelian sandpile

model to necessarily reach its steady-state behavior. The approaches in our other works lead to

new sampling algorithms for combinatorial structures, where we exploit properties of Markov

chains and Boltzmann (or Gibbs) sampling, as well as probabilistic processes motivated by analytic

combinatorics. We proceed in the rest of the section by giving a brief overview of MCMC methods

and their applications to counting complexity and statistical physics. Then we summarize the

main contributions of this dissertation.

1.1 Sampling Algorithms

We start by presenting the Markov chain Monte Carlo method more formally, and then we explore

some of its most notable applications. Markov chains provide us with an algorithmic approach for

the following fundamental problem. Given an exponentially large, complex set Ω of combinatorial

objects and a probability distribution � over Ω, generate a random element from Ω according to

the distribution � . This is a core subroutine for many statistical procedures that is immediately

useful for examining properties of a typical element drawn from � and constructing unbiased

estimators for random variables over Ω. For example, in statistical physics, the state space Ω is

often the set of con�gurations of a �nite thermodynamic system and � is a natural probability

distribution on Ω in which the probability of a con�guration is related to its energy in the system.

Although MCMC methods are heavily used across science and engineering, these algorithms often

lack rigorous guarantees about the quality of the samples generated. For this reason, the problem

of random sampling has received signi�cant attention in theoretical computer science for decades.

2



One of the subtle but incredibly powerful applications of MCMC algorithms is that they can be

used for estimating the cardinality of Ω, or more generally, performing discrete integration. For a

given state space Ω and function w ∶ Ω → ℝ≥0, the discrete integration problem is to estimate the

weighted sum ∑x∈Ω w(x) with arbitrarily small relative error. Such problems arise routinely in

machine learning and statistical physics when estimating the normalizing constant of a probability

distribution. In almost all interesting instances, however, exact solutions to these counting and

integration problems are #P-complete, the counting analog of NP-complete decision problems.

Therefore, we aim to design e�cient randomized approximation schemes for these problems instead.

Formally, let f ∶ {0, 1}∗ → ℤ≥0 be a function that maps problem instances to the number of their

solutions. A fully polynomial randomized approximation scheme (FPRAS) for f is a randomized

algorithm that takes as input an instance x ∈ {0, 1}n and " > 0, and outputs a number Y in time

that is polynomial in n (the size of the input) and "−1 such that

Pr ((1 − ")f (x) ≤ Y ≤ (1 + ")f (x)) ≥ 34.
We can use MCMC methods to give an FPRAS for many such counting problems by performing

the following procedure:

1. Partition the state space into two nonempty sets A and Ω ⧵ A.

2. Estimate the probability mass p of the set A by generating independent samples.

3. Recursively solve the counting problem on the subset A to get the value ZA.

4. Output the �nal estimate Z = 1p ⋅ ZA.

This approach was introduced by Jerrum, Valiant, and Vazirani [JVV86] to show that approximate

counting and almost-uniform sampling (i.e., generating samples that are within " total variation

distance of the uniform distribution) are interreducible for self-reducible problems. Two of the

landmark achievements achievements of MCMC methods that heavily build on this technique

3



are estimating the volume of a convex body [DFK91] and approximating the permanent of a

nonnegative matrix [JSV06]. For a more detailed discussion about MCMC methods and their

applications to counting complexity, we direct the reader to the surveys [JS96, Jer03].

The results above demonstrate what can be accomplished when we can e�ciently generate

high-quality samples. Determining how long to simulate a Markov chain so that it produces

an approximately unbiased sample from its stationary distribution, however, is often the main

challenge when designing MCMC algorithms. The number of steps a Markov chain must take

so that its distribution becomes close to stationarity is known as the mixing time of the Markov

chain. Several techniques for rigorously bounding the mixing time of a Markov chain have been

developed over the years, many of which we present in Section 2.1. One of the primary goals of

this dissertation is to further advance the techniques used for bounding the mixing time of local

Markov chains that sample con�gurations from weighted lattice path models in statistical physics.

Sampling algorithms for objects that are not necessarily #P-complete to count can also greatly

bene�t from using stochastic processes instead of methods based on dynamic programming.

For example, one of the main advantages of using Markov chains to generate random samples

is the enormous savings in space complexity compared to the amount typically required for

memoization. It is also sometimes bene�cial to use rejection sampling to generate samples. If

there is an e�cient algorithm for sampling from a larger state space that (1) contains the target

objects and (2) preserves their conditional probabilities, then if the marginal probability of the

target set has su�cient mass, we can possibly achieve a faster algorithm by repeatedly drawing

samples until we produce one of the target objects. We regularly use rejection sampling in the

design and analysis of our algorithms. Furthermore, in addition to MCMC algorithms, we also

investigate probabilistic processes inspired by analytic combinatorics in Chapter 6 to design

optimized sampling algorithms for highly-structured and decomposable combinatorial objects.
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1.2 Connections to Statistical Physics

Markov chain Monte Carlo simulations are used extensively in computational physics for approxi-

mating high-dimensional integrals and gaining insight into the nature of mathematical models.

While techniques here are often nonrigorous, observations about the behavior of these algorithms

in practice have routinely advanced the theory of Markov chains and mixing times. The most

notable example is the coexistence of phase transitions, where the macroscopic behavior of a

model and the mixing time of a corresponding Markov chain suddenly change dramatically as a

parameter of the system is varied.

1.2.1 Lattice Models

In statistical physics, lattice models are often the simplest structured models that capture the

essential features of nontrivial macroscopic phenomena. They have inspired a wealth of interdis-

ciplinary questions in probability and complexity theory, and despite their initial approachability,

they can be immensely di�cult to analyze. The most celebrated and deeply studied model in statis-

tical physics is the Ising model of ferromagnetism, which models the spontaneous magnetization

of ferromagnetic materials as their temperature varies. In an instance of the Ising model there is

an underlying graph G = (V , E), which we usually take to be an n × n region of the square lattice,

and each vertex is assigned a spin value of either +1 or −1, hence the state space is Ω = {+1, −1}V .

The probability mass of an Ising con�guration x ∈ Ω is given by �(x) ∝ e−�H(x), where � = 1/T > 0
is the inverse temperature and H(x) = −∑{i,j}∈E xixj is the energy of the con�guration. Thus, at

low temperatures the most probable con�gurations in the state space are those for which many

pairs of neighboring vertices take on the same spin value.

A standard approach for sampling con�gurations from the Ising model is to use an MCMC

algorithm called Glauber dynamics. This is a local Markov chain where at each time step, the

Markov chain selects a vertex v ∈ V uniformly at random and sets its spin to be +1 or −1 with
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the appropriate probability conditioned on the spins of its neighbors. Using techniques that we

present in Section 2.1, it is easy to show that this process converges to � . A central problem

in statistical physics is to evaluate the partition function Z = ∑x∈Ω e−�H(x), hence the desire for

Glauber dynamics to have polynomially-bounded mixing time. In addition to being a means for

sampling, it is reasonable to believe that Glauber dynamics is truly how these idealized systems

evolve, further justifying the study of local Markov chains and their mixing times.

One of the primary contributions of this dissertation is our analysis of the mixing time of

Glauber dynamics for the six-vertex model in Chapter 3. The six-vertex model generalizes Eulerian

orientations of the square lattice and models the hydrogen-bonding patterns of two-dimensional

ice. This model exhibits several physical phase transitions in its parameter space, and our results

work towards establishing matching critical thresholds for the mixing time of local Markov chains.

In Chapter 4 we investigate the Abelian sandpile model, which is the canonical dynamical system

for studying a phenomenon called self-organized criticality, and we prove nearly tight bounds for

number of steps required for this process to necessarily reach its steady-state behavior.

1.2.2 Phase Transitions

One of the main motivations for studying lattice models is that they often undergo phase transitions

as parameters of the thermodynamic system are varied. Surprisingly, phase transitions also seem to

manifest themselves in the mixing time of local Markov chains that walk along states of the physical

system. For example, Onsager [Ons44] showed that the Ising model on the in�nite two-dimensional

square lattice exhibits a phase transition at the critical inverse-temperature �c = 12 log(1 + √2).
An analogous e�ect has been observed about the mixing time of Glauber dynamics for the Ising

model on �nite square lattice regions with free boundary conditions (i.e., boundary vertices can

take either spin). At high temperatures when � < �c , Glauber dynamics is known to mix in

polynomial time [MO94a, MO94b], but at low temperatures when � > �c , the Markov chain

requires exponential time to converge to stationarity [Tho89].
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1.3 Summary of Contributions

In this dissertation we introduce several new probabilistic techniques that allow us to prove

previously-conjectured convergence rates about the dynamics of lattice models. One of the main

themes throughout our analyses is that we leverage properties of random walks to tightly bound

quantities that can be interpreted as escape probabilities. Our methods are interdisciplinary by

nature, spanning computer science, discrete mathematics and statistical physics, and they have

surprising consequences in the design and analysis of MCMC sampling algorithms.

In Chapter 3 we analyze the mixing time of Glauber dynamics for the six-vertex model in its

ordered phases. We show that for all Boltzmann weights in the ferroelectric phase, there exist

boundary conditions for which local Markov chains converge to equilibrium exponentially slowly.

This is the �rst rigorous result about the mixing time of Glauber dynamics for the six-vertex

model in the ferroelectric phase. In our analysis, we carefully construct asymmetric cuts in the

state space that demonstrate a fundamental connection between correlated random walks and

intersecting lattice path models. Moreover, this construction suggests an underlying combinatorial

interpretation for the phase transition between the ferroelectric and disordered phases in terms of

the adherence strength of intersecting lattice paths and the momentum parameter of correlated

random walks. We remark that one of the major technical contributions here is a new tail inequality

for correlated random walks.

Taking a completely di�erent approach, we also analyze Glauber dynamics for the six-vertex

model with free boundary conditions in the antiferroelectric phase and signi�cantly extend the

region for which local Markov chains are known to be slowly mixing. This mixing time result builds

on the topological obstruction framework of Randall [Ran06b] and relies on a Peierls argument

combined with novel properties of weighted non-backtracking walks, which we obtain by solving a

system of linear recurrence relations. This is based on joint work with Dana Randall that appeared

in the 2019 International Conference on Randomization and Computation [FR19].
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In Chapter 4 we develop techniques in the theory of random walks and electrical networks

that give nearly tight bounds for the transience class of the Abelian sandpile model on the two-

dimensional grid, closing an open problem of Babai and Gorodezky [BG07, CV12]. The Abelian

sandpile model is a discrete process on graphs that is intimately related to the phenomenon of

self-organized criticality. In this process, vertices receive grains of sand, and once the number of

grains exceeds their degree, they topple by sending grains to their neighbors. The transience class

of the Abelian sandpile model is the maximum number of grains of sand that can be added to the

system before it necessarily reaches its steady-state behavior or, equivalently, a recurrent state.

Using a more re�ned and global analysis of electrical potentials on the n×n grid, we prove that the

transience class of the grid has an upper bound of O(n4 log4 n) and a lower bound of Ω(n4). Our

methods also naturally generalize to d-dimensional grids to give O(n3d−2 logd+2 n) upper bounds

and Ω(n3d−2) lower bounds. Our work builds on a reduction of Choure and Vishwanathan [CV12]

that bounds the transience class in terms of vertex potentials when the underlying graph is viewed

as an electrical network. One of the main highlights of our analysis is that we view voltages

as escape probabilities and demonstrate a systematic method for decoupling two-dimensional

random walks into simple symmetric random walks. This allows us to then extend well-known

results for one-dimensional random walks and achieve tight inequalities for the vertex potentials.

This chapter is based on joint work with David Durfee, Yu Gao, and Tao Xiao that appeared in the

2018 Annual ACM-SIAM Symposium on Discrete Algorithms [DFGX18].

In Chapter 5 we show that for certain classes of graded posets, biased Markov chains that

walk along the edges of Hasse diagrams allow us to approximately generate uniform samples with

any �xed rank in expected polynomial time. Our arguments do not rely on the typical proofs of

log-concavity, which are often used to construct a stationary distribution with a speci�c mode in

order to lower bound the probability of outputting an element of the desired rank. Instead, we infer

the rejection rate directly from bounds on the mixing time of the Markov chains through a method

that we call balanced bias. This approach demonstrates an unconventional way of leveraging
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the high conductance of a rapidly mixing Markov chain. We investigate how our balanced bias

technique can be applied to the problem of uniformly sampling integer partitions of n subject

to a variety of constraints. In particular, we present the �rst provably e�cient Markov chain

algorithm for uniformly sampling region-restricted integer partitions of n. Several problem-speci�c

observations allow us to improve our uniform sampling algorithm for integer partitions to run in

expected O(n9/4) time and to use O(n1/2 log n) space. Lastly, some of the related applications that

we explore include sampling permutations with a �xed number of inversions and sampling lozenge

tilings on the triangular lattice with a �xed average height. This is based on joint work with

Prateek Bhakta, Ben Cousins, and Dana Randall that appeared in the 2017 ACM-SIAM Symposium

on Discrete Algorithms [BCFR17].

In Chapter 6 we take a foray into analytic combinatorics and use techniques from Boltzmann

sampling to give provably e�cient sampling algorithms for a broad class of combinatorial struc-

tures known as weighted partitions and selections. In particular, we focus on a family of weighted

integer partitions related to Bose–Einstein condensation from statistical physics. Our algorithms

are probabilistic interpretations of the ordinary generating functions for these objects, derived

from the symbolic method in analytic combinatorics. Using the Khintchine–Meinardus probabilistic

method to bound the rejection rate of these Boltzmann samplers through the singularity analysis

of Dirichlet generating functions, we o�er an alternative approach to analyze Boltzmann samplers

for objects with multiplicative structure. The main technical contributions in this chapter include

developing a new tail inequality for negative binomial distributions and applying intricate bounds

from analytic number theory for the Riemann zeta function to analyze the singularities of Dirichlet

generating functions. This is based on joint work with Megan Bernstein and Dana Randall that

appeared in the 2018 Workshop on Analytic Algorithms and Combinatorics [BFR18].
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CHAPTER 2

PRELIMINARIES

We start by presenting background on Markov chains and mixing times. In particular, we show

how to design Markov chains that converge to a given stationary distribution using the Metropolis–

Hastings algorithm [Met+53], and we introduce several established techniques for analyzing their

rates of convergence. We also examine Boltzmann distributions and their role in Markov chain

Monte Carlo sampling algorithms. For a more comprehensive review, we direct the reader to the

references [Ran06a, LPW17].

2.1 Markov Chains

A discrete-time Markov chain is a stochastic process on a state spaceΩ such that starting anywhere,

the probability of moving to the next state depends solely on the current state and is independent

of all previous states. Formally, a sequence of random variables (X0, X1, X2, … ) is a Markov chain

with state space Ω and transition matrix P if for all x, y ∈ Ω, all t ≥ 0, and any realizable sequence

of states (x0, x1, … , xt−1, x), we have

Pr(Xt+1 = y ∣ X0 = x0, X1 = x1, … , Xt−1 = xt−1, Xt = x) = Pr(Xt+1 = y ∣ Xt = x) = P(x, y). (2.1)

By a realizable sequence, we mean Pr(X0 = x0, X1 = x1, … , Xt−1 = xt−1, Xt = x) > 0, so that these

conditional probabilities are well-de�ned. Equation (2.1) is often called the Markov (or memoryless)

property of the stochastic process, and it shows that a �nite Markov chain can be completely

described by its |Ω|× |Ω| transition matrix P . The x-th row of P is the probability distribution P(x, ⋅).
Therefore, P is a right stochastic matrix, i.e., all of its entries are nonnegative and ∑y∈Ω P(x, y) = 1
for all x ∈ Ω.
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There are two important properties of a Markov chain that govern the long-term behavior. A

Markov chain is irreducible if for any two states x, y ∈ Ω there exists a t ≥ 0 such that P t(x, y) > 0,

where P t(x, y) is the probability of moving from x to y in exactly t steps. Second, we say that a

Markov chain is aperiodic if for all x ∈ Ω we have gcd{t ≥ 0 ∶ P t(x, x) > 0} = 1. A Markov chain is

ergodic if it is irreducible and aperiodic. Ergodicity turns out to be a useful minimum requirement

when designing Markov chain Monte Carlo algorithms. If a chain is not aperiodic, we can easily

remedy its periodicity by introducing self-loops at each state. Concretely, we can construct a new

Markov chain Q = (I + P)/2, where I is the |Ω| × |Ω| identity matrix. We call Q the lazy version of P
because every state has a self-loop probability of at least 1/2 and the long-term behavior of Q is

the same as that of P . It is often more convenient to analyze the lazy version of a Markov chain.

2.1.1 Stationary Distributions

A stationary distribution of a Markov chain is a distribution � satisfying � = �P . In other words,

we have �(y) = ∑x∈Ω �(x)P(x, y) for all y ∈ Ω. The fundamental theorem of Markov chains states

that ergodicity is a necessary and su�cient condition for a Markov chain to converge to a unique

stationary distribution regardless of its initial state.

Theorem 2.1.1 (Fundamental Theorem of Markov Chains). If a �nite Markov chain P is ergodic,

it has a unique stationary distribution � . Moreover, we have limt→∞ P t(x, y) = �(y), for all x, y ∈ Ω.
This result is a consequence of the Perron–Frobenius theorem, which implies that � is the unique

left eigenvector of P with eigenvalue 1 and that all other eigenvalues have absolute value strictly

less than 1. To reason about the stationary distribution of a Markov chain, we often use the detailed

balance equations. These conditions state that if a distribution � satis�es

�(x)P(x, y) = �(y)P(y, x),
for all x, y ∈ Ω, then � is a stationary distribution of P . A Markov chain that satis�es the detailed
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balance equations is said to be reversible.

Next, we present a well-established framework for designing Markov chains that converge to

any desired stationary distribution on a state space Ω using only an allowable set of transitions.

The Metropolis–Hastings algorithm [Met+53] is a simple but robust idea that tells us how to

assign transition probabilities so that the Markov chain converges to the target distribution � . To

see how it works, let N(x) denote the neighborhood of a state x (i.e., the set of states to which x
can transition), and let the degree of x be the size of its neighborhood. Starting from any x0 ∈ Ω,

at each time step the Metropolis–Hastings algorithm chooses a neighbor y ∈ N (xt) uniformly at

random with probability 1/(2Δ), where Δ is the maximum degree over all states, and sets xt+1 ← y
with probability min{1, �(y)/�(xt)}. The process stays at xt+1 ← xt with all remaining probability.

Using the detailed balance equations, it is easy to verify that if this Markov chain is irreducible,

then � must be the stationary distribution. The termmin{1, �(y)/�(xt)} is known as the Metropolis

�lter, and while the individual probabilities �(y) and �(xt) are often intractable computations, we

design algorithms using stationary distributions on suitably connected state spaces so that this

quotient is simple to calculate.

2.1.2 Mixing Times

The Metropolis–Hastings algorithm allows us to engineer Markov chains that converge to a

particular distribution, but it does not provide any guarantees about the rates of convergence.

We typically measure the time required for a Markov chain to become close to its stationary

distribution in terms of total variation distance, which for two probability distributions � and �
on Ω is the norm ‖� − �‖TV = 12 ∑x∈Ω|�(x) − �(x)|.
The mixing time of a Markov chain is the number of steps needed for the total variation distance

between the t-step distribution P t(x, ⋅) and the stationary distribution � to become su�ciently
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small, for all possible initial states x ∈ Ω. Formally, for any " > 0, the mixing time is de�ned as

� (") = min{t ≥ 0 ∶ maxx∈Ω ‖‖P t(x, ⋅) − �‖‖TV ≤ "}.
It is often convenient to assume " = 1/4, because for any " < 1/2, we have �(") ≤ �(1/4)⌈log2("−1)⌉.
We say that a Markov chain is rapidly (or polynomially) mixing if its mixing time is bounded

above by a polynomial in log("−1) and n, where n is the size of a con�guration in the state space.

Similarly, a Markov chain is said to be slowly mixing if its mixing time is bounded below by exp(nc),
for some constant c > 0.

The mixing time of a reversible, ergodic Markov chain can also be analyzed through the

spectral representation of its transition matrix. Label the eigenvalues of P in decreasing order as

1 = �1 > �2 ≥ ⋯ ≥ �|Ω| > −1,
and let �∗ = max{|�| ∶ � is an eigenvalue of P and � ≠ 1}. We call the di�erence 1 − �∗ the spectral

gap of P , and we can use it to prove both upper and lower bounds on the mixing time.

Theorem 2.1.2 ([LPW17, Theorem 12.3 and Theorem 12.4]). Let P be a reversible, ergodic Markov

chain on the state space Ω with stationary distribution � , and let � ∗ = minx∈Ω �(x). The mixing time

satis�es

( 11 − �∗ − 1) log( 12") ≤ �(") ≤ 11 − �∗ log( 1"� ∗).
We note that the spectrum of a lazy Markov chain is nonnegative, so the spectral gap is 1 − �2. We

also reiterate that for ergodic Markov chains, the spectral gap 1 − �∗ ≠ 0 by the Perron–Frobenius

theorem.
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2.1.3 Coupling Arguments

Coupling is a powerful technique for bounding mixing times because it reduces a comparison

between distributions to a comparison between random variables, which can be considerably

simpler. A coupling of a Markov chain with transition matrix P is a stochastic process (Xt , Yt)∞t=0
on Ω × Ω such that both marginals (Xt , ⋅)∞t=0 and (⋅, Yt)∞t=0 are faithful copies of the original Markov

chain given the initial states X0 = x and Y0 = y. Moreover, a coupling can be modi�ed so that

once the two chains simultaneously occupy the same state, they agree from that time forward.

Formally, we only consider couplings with the property that if Xt = Yt , then Xt+1 = Yt+1. For any

initial states x, y ∈ Ω, let Tx,y = min{t ≥ 0 ∶ Xt = Yt ∣ X0 = x, Y0 = y} be a random variable

that denotes the time required for the processes to coalesce. The coupling time is the worst-case

expected coalescence time T = maxx,y∈Ω E[Tx,y], and it allows us to upper bound the mixing time

by �(") ≤ ⌈Te log("−1)⌉ (see, e.g., [Ald83]).

Path coupling is a technique introduced by Bubley and Dyer [BD97] that greatly simpli�es the

construction of couplings. Instead of arguing about the expected coalescence time for all pairs of

initial states x, y ∈ Ω, we can use path coupling to restrict our comparison to a small subset of

neighboring states U ⊆ Ω × Ω that are close according to some distance metric. To show that a

Markov chain is rapidly mixing, we need to choose an appropriate metric ' on Ω and construct a

local coupling for the joint process starting from each pair of states (x, y) ∈ U . If we can prove

that the expected change in distance of the coupled process is nonincreasing for all neighboring

pairs, then we can extend the argument to all pairs of initial states x, y ∈ Ω by our choice of ' and

the linearity of expectation, and therefore bound the time required for coalescence.

We call a metric ' ∶ Ω × Ω → ℝ≥0 a path metric for the set U ⊆ Ω × Ω if for all (x, y) ∈ Ω × Ω
there exists a shortest path (z0, z1, … , zr ) from x = z0 to y = zr such that (zi , zi+1) ∈ U for 0 ≤ i < r
and ' (x, y) = r−1∑i=0 ' (zi , zi+1) .
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The following result of Dyer and Greenhill is a convenient version of the path coupling theorem.

Theorem 2.1.3 ([DG98]). Let ' be a path metric for U ⊆ Ω × Ω that takes values in {0} ∪ [1, D].
Let  be an ergodic Markov chain and let (Xt , Yt) be a coupling of . Suppose there exists a � ≤ 1
such that, for all (x, y) ∈ U , we have

E [' (Xt+1, Yt+1) ∣ Xt = x, Yt = y] ≤ �' (x, y) .
1. If � < 1, then the mixing time satis�es

� (") ≤ log(D"−1)1 − � .
2. If � = 1, i.e., E['(Xt+1, Yt+1) − ' (x, y) ∣ Xt = x, Yt = y] ≤ 0, let � > 0 be a parameter satisfyingPr['(Xt+1, Yt+1) ≠ '(x, y) ∣ Xt = x, Yt = y] ≥ � for all (x, y) ∈ U such that x ≠ y. The mixing

time of satis�es �(") ≤ ⌈eD2� ⌉⌈log("−1)⌉.
Greenberg, Pascoe, and Randall [GPR09] showed how to modify the path coupling theorem to

allow for cases where the distance between states is exponentially large and the expected change

in distance is at most zero. In particular, they showed that to prove rapid mixing, it su�ces for the

expected change in the absolute value of the distance to be proportional to the current distance.

Theorem 2.1.4 ([GPR09]). Let ' be a path metric for U ⊆ Ω × Ω that takes values in {0} ∪ [1, D].
Let  be an ergodic Markov chain and let (Xt , Yt) be a coupling of . If the expected change in

distance satis�es E['(Xt+1, Yt+1) − '(x, y) ∣ Xt = x, Yt = y] ≤ 0 and there exists �, � ∈ (0, 1) such thatPr (|'(Xt+1, Yt+1) − '(x, y)| ≥ �'(x, y) ∣ Xt = x, Yt = y) ≥ �, for all (x, y) ∈ U , then

� (") ≤ ⌈ e log2(D)log2(1 + �)� ⌉ ⌈log("−1)⌉ .
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We use this path coupling result for exponential metrics in Section 5.4.3 to bound the mixing time

of a biased Markov chain on region-restricted integer partitions.

2.1.4 Conductance and Isoperimetric Inequalities

The mixing time of a Markov chain can also be characterized by its conductance, a quantity that

measures the presence of bottlenecks in the overall state space. Given a Markov chain on Ω with

the transition matrix P and stationary distribution � , the conductance of a nonempty set S ⊆ Ω is

Φ(S) = ∑x∈S,y∉S �(x)P(x, y)�(S) .
It is often useful to view conductance as an escape probability—starting from stationarity and

conditioned on being in S, the conductance Φ(S) is the probability that the Markov chain leaves S in

one step. The global conductance of a Markov chain is de�ned as its worst-case escape probability

Φ∗ = minS⊆Ω∶0<�(S)≤1/2Φ(S).
The notion of conductance is closely connected to the Cheeger constant in graph theory,

and therefore provides us with lower and upper bounds on the spectral gap of P . In particular,

Jerrum and Sinclair [JS89] proved the isoperimetric inequalities Φ∗ ≤ √2(1 − �∗) and 1 − �∗ ≤ 2Φ∗.
Combining their results with Theorem 2.1.2, we can lower bound the mixing time as follows.

Theorem 2.1.5 ([JS89]). For an ergodic, reversible Markov chain with conductance Φ∗, we have
�(") ≥ ( 12Φ∗ − 1) log( 12") .

This theorem is useful for showing that a Markov chain is slowly mixing because it only requires

the construction of a cut S ⊆ Ω in the state space whose conductance Φ(S) is exponentially small.

We use this technique for our analysis of the six-vertex model in Chapter 3.
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A Peierls argument is a mathematically rigorous and intuitive method for proving the existence

of such a bottleneck. For any cut S ⊆ Ω, let )S = {x ∈ S ∶ there exists a y ∈ S with P(x, y) > 0}
denote the boundary of S. If we can construct an injection f ∶ )S → Ω such that �(f (x)) ≥ cn�(x)
for all x ∈ )S and some constant c > 1, then if S is a cut satisfying 1/poly(n) ≤ �(S) ≤ 1/2, we can

show that the conductance of the Markov chain Φ∗ is exponentially small. In particular, observe

that

Φ∗ ≤ Φ(S) = ∑x∈S,y∉S �(x)P(x, y)�(S) ≤ ∑x∈)S �(x)� (S) ≤ ∑x∈)S �(f (x))cn� (S) ≤ 1cn�(S) ≤ poly(n)cn .
We use the topological obstruction framework introduced in [Ran06b] and a Peierls argument to

show slow mixing of the six-vertex model in its antiferroelectric phase in Section 3.3.

2.2 Boltzmann Distributions

One of the central objects in statistical physics is the Boltzmann distribution (or Gibbs measure).

This distribution gives the probability of observing a particular state x ∈ Ω when considering the

state space as a thermodynamic system at equilibrium for a �xed temperature T . The probability

mass function takes the form

Pr� (x) = e−�H(x)Z� ,
where � = 1/T is the inverse temperature, H(x) is the Hamiltonian (or energy) of the state x ,

and Z� is a normalizing constant called the partition function. Computing the partition function is

often an intractable problem, but we may be able to rely on Markov chain Monte Carlo methods

to approximately sample from Boltzmann distributions.

A convenient property of Boltzmann distributions that can be leveraged when designing

uniform sampling algorithms is that states with equal energy appear with equal probability. This

provides us with some �exibility when designing Markov chains because we can embed our target

set of objects into a larger state space where we might be able to show that a related Markov
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chain is rapidly mixing. As long as the desired objects are assigned an equal energy value, any

sample generated with this energy will be a uniform sample from the target set. The Hamiltonian

of a combinatorial object is typically given by the negative of its size (e.g., the cardinality of a

matching in a graph or the sum of parts in an integer partition). We can bias a distribution to

favor objects with a given energy value by varying � to change the temperature of the system.

Most of the analysis in this situation is then devoted to �nding a viable temperature parameter,

if one exists, and lower bounding the probability of generating an object from the target set at

this temperature. We use this approach extensively in the design of our sampling algorithms for

region-restricted integer partitions in Chapter 5 and for Bose–Einstein condensates in Chapter 6.
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CHAPTER 3

SLOWMIXING OF GLAUBER DYNAMICS FOR THE SIX-VERTEX MODEL

In this chapter we show that the mixing time of Glauber dynamics for the six-vertex model can be

exponentially slow in its ordered phases. The six-vertex model is a weighted generalization of the

ice model (i.e., Eulerian orientations) and the zero-temperature three-state Potts model (i.e., proper

three-colorings) on the two-dimensional square lattice. We prove for all ferroelectric weights that

there exist boundary conditions for which local Markov chains are slowly mixing. This is the �rst

rigorous result about the mixing time of Glauber dynamics in the ferroelectric phase. We also

analyze Glauber dynamics in the antiferroelectric phase subject to free boundary conditions and

signi�cantly extend the subregion for which Glauber dynamics is known to be slow mixing.

3.1 Introduction

The six-vertex model was �rst introduced by Pauling in 1935 [Pau35] to study the thermodynamics

of crystalline solids with ferroelectric properties, and has since become one of the most compelling

models in statistical mechanics. The prototypical instance of the model is the hydrogen-bonding

pattern of two-dimensional ice—when water freezes, each oxygen atom must be surrounded by

four hydrogen atoms such that two of the hydrogen atoms bond covalently with the oxygen atom

and two are farther away. The state space of the six-vertex model consists of orientations of the

edges in a �nite region of the two-dimensional square lattice where every internal vertex has

two incoming edges and two outgoing edges, also represented as Eulerian orientations of the

underlying lattice graph. The model is most often studied on the n×n square latticeΛn ⊆ ℤ2 with 4n
additional edges so that each internal vertex has degree 4. There are six possible edge orientations

incident to a vertex (see, e.g., Figure 3.1). We assign Boltzmann weights w1, w2, w3, w4, w5, w6 ∈ ℝ>0
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a b c

Figure 3.1: The six valid edge orientations for internal vertices in the six-vertex model and their
corresponding Boltzmann weights.

to the six vertex types and de�ne the partition function as Z = ∑x∈Ω∏6i=1 wni (x)i , where Ω is the

set of Eulerian orientations of Λn and ni(x) is the number of type-i vertices in the con�guration x .

In 1967, Lieb discovered exact solutions to the six-vertex model with periodic boundary

conditions (i.e., on the torus) for three di�erent parameter regimes [Lie67a, Lie67b, Lie67c]. In

particular, he famously showed that if all six vertex weights are set to wi = 1, the energy per

vertex is limn→∞ Z 1/n2 = (4/3)3/2 = 1.5396007..., which is known as “Lieb’s square ice constant”. His

results were immediately generalized to all parameter regimes and to account for external electric

�elds [Sut67, Yan67]. An equivalence between periodic and free boundary conditions in the limit

was established in [BKW73], and since then the primary object of study has been the six-vertex

model subject to domain wall boundary conditions, where the lower and upper boundary edges

point into the square and the left and right boundary edges point outwards [ICK92, KZJ00, BPZ02,

BF06, BL09, BL10]. The six-vertex model serves as an important “counterexample” in statistical

physics because the surface free energy in the thermodynamic limit depends on the boundary

conditions. In particular, it is di�erent for periodic and domain wall boundary conditions.

There have been several surprisingly profound connections to combinatorics and probability

in this line of work. For example, Zeilberger gave a sophisticated computer-assisted proof of the

alternating sign matrix conjecture in 1995 [Zei96]. A year later, Kuperberg [Kup96] produced an

elegant and signi�cantly shorter proof using analysis of the partition function of the six-vertex

model with domain wall boundary conditions. Other connections to combinatorics include the
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dimer model on the Aztec diamond and the arctic circle theorem [CEP96, FS06], sampling lozenge

tilings [LRS01, Wil04, BCFR17], and counting 3-colorings of lattice graphs [RT00, CR16].

While there has been extraordinary progress in understanding properties of the six-vertex

model with periodic or domain wall boundary conditions in mathematical physics, remarkably less

is known when the model is subject to arbitrary boundary conditions. Sampling con�gurations

using Markov chain Monte Carlo (MCMC) algorithms has been one of the primary means for

discovering mathematical and physical properties of the six-vertex model [AR05, LKV17, LKRV18,

KS18]. However, the model is empirically very sensitive to boundary conditions, and numerical

studies have often observed slow convergence of local MCMC algorithms under certain parameter

settings. For example, according to [LKRV18], “it must be stressed that the Metropolis algorithm

might be impractical in the antiferromagnetic phase, where the system may be unable to thermalize.”

There are very few rigorous results about natural Markov chains and the computational complexity

of sampling from the six-vertex model when the Boltzmann distribution is nonuniform, thus

motivating our study of Glauber dynamics for the six-vertex model, the most widely used MCMC

sampling algorithm, in the ferroelectric and antiferroelectric phases.

At �rst glance, the model has six degrees of freedom. However, this conveniently reduces to a

two-parameter family because of invariants that relate pairs of vertex types. To see this, it is useful

to view the con�gurations of the six-vertex model as intersecting lattice paths by erasing all of

the edges that are directed south or west and keeping the others (see, e.g., Figure 3.2). Using this

bijective “routing interpretation,” it is simple to see that the number of type-5 and type-6 vertices

must be closely correlated. In addition to revealing invariants, the lattice path representation of

con�gurations turns out to be exceptionally useful for analyzing Glauber dynamics. Moreover,

the total weight of a con�guration should remain unchanged if all the edge directions are reversed

in the absence of an external electric �eld, so we let w1 = w2 = a, w3 = w4 = b, and w5 = w6 = c.
This complementary invariance is known as the zero �eld assumption, and it is often convenient

to exploit the conservation laws of the model [BL09] to reparameterize the system so that w1 = a2
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(a) (b)

Figure 3.2: Examples of a con�guration in the six-vertex model: (a) illustrates the edge orientations
and internal Eulerian constraints, and (b) overlays the corresponding routing interpretation in red.

and w2 = 1. This allows us to ignore empty sites and focus solely on weighted lattice paths.

Furthermore, since our goal is to sample con�gurations from the Boltzmann distribution, we can

normalize the partition function by a factor of c−n2 and consider the weight (a/c, b/c, 1) instead of

the parameter (a, b, c). Collectively, we refer to these properties as the invariance of the Gibbs

measure for the six-vertex model.

The single-site Glauber dynamics for the six-vertex model is the Markov chain that makes

local moves by (1) choosing an internal cell of the lattice uniformly at random and (2) reversing

the orientations of the edges that bound the chosen cell if they form a cycle. In the lattice path

interpretation, these dynamics correspond to the “mountain-valley” Markov chain that �ips

corners. Transitions between states are made according to the Metropolis-Hastings acceptance

probability so that the Markov chain converges to the desired distribution. For a review on Markov

chains, mixing times, and the Metropolis–Hastings algorithm, we refer the reader to Chapter 2.

The phase diagram of the six-vertex model represents distinct thermodynamic properties of

the system and is partitioned into three regions: the disordered (DO) phase, the ferroelectric (FE)
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phase, and the antiferroelectric (AFE) phase. To establish these regions, we consider the parameter

Δ = a2 + b2 − c22ab .
The disordered phase is the set of parameters (a, b, c) ∈ ℝ3>0 that satisfy |Δ| < 1, and Glauber dy-

namics is expected to be rapidly mixing in this region because there are no long-range correlations

in the system. The ferroelectric phase is de�ned by Δ > 1, or equivalently when we have a > b + c
or b > a + c. The antiferroelectric phase is de�ned by Δ < −1, or equivalently when a + b < c.

The phase diagram is symmetric over the positive diagonal, which follows from the fact thata and b are interchangeable under the automorphism that rotates each of the six vertex types

by ninety degrees clockwise. This is equivalent to rotating the entire model under the zero

�eld assumption. Therefore, we can assume that mixing results are symmetric over the main

diagonal. Combinatorially, we show in Section 3.2 that con�gurations in the ferroelectric phase

can be interpreted as intersecting lattice paths that prefer to adhere to each other. We carefully

exploit this property to show that Glauber dynamics slow mixing. In the antiferroelectric phase,

con�gurations prefer vertices of type-c and tend to be closely aligned with one of states with

maximum probability that are arrow reversals of each other.

3.1.1 Related Works

Cai, Liu, and Lu [CLL19] recently investigated the six-vertex model for 4-regular graphs and

provided strong evidence that the complexity of approximating the partition function agrees with

the phase diagram from statistical physics. In particular, they give a fully randomized approximation

scheme (FPRAS) for all 4-regular graphs in the subregion of the disordered phase de�ned by the

inequalities a2 ≤ b2 + c2, b2 ≤ a2 + c2, and c2 ≤ a2 + b2 (i.e., the blue region in Figure 3.3a). Their

algorithm builds on the winding technique for Holant problems developed in [McQ13, HLZ16] and

requires O(n10) time to sample a six-vertex con�guration from the Boltzmann distribution, where n
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DO

AFE FE

FE

1 a/c

1

b/c

(a)

DO

AFE FE

FE

1 a/c

1

b/c

(b)

DO

AFE FE

FE

1 a/c

1

b/c

(c)

Figure 3.3: Diagram (a) shows the computational complexity of approximating the partition
function of the six-vertex model for 4-regular graphs. There exists an FPRAS in the blue subregion
of the disordered phase, and there cannot exist an FRPAS in the ferroelectric or antiferroelectric
(gray) regions unless RP = NP. Diagram (b) shows the previously known slow mixing regions
of Glauber dynamics in red, and diagram (c) shows the current slow mixing regions. Glauber
dynamics is conjectured to be rapidly mixing in all of the disordered phase, but it has only been
shown for the uniform distribution indicated by the green point (1, 1).
is the number of vertices in the graph. The Markov chain they use is not Glauber dynamics, but

rather a directed loop algorithm whose state space is augmented with “near-perfect” con�gurations

that slightly violate the Eulerian orientation constraint. This Markov chain can be understood

as gradually reversing a large directed loop in a valid six-vertex con�guration, whereas Glauber

dynamics is restricted to reversing cycles that form the perimeter of a cell. Cai, Liu, and Lu also

showed that an FPRAS for 4-regular graphs cannot exist in the ferroelectric or antiferroelectric

regions unless RP = NP (i.e., the gray regions in Figure 3.3a). Their hardness results use nonplanar

4-regular gadgets to reduce from 3-MIS, the NP-hard problem of computing the cardinality of

a maximum independent set in a 3-regular graph [GJS74], and therefore so not directly reveal

anything about the mixing time of Glauber dynamics for the six-vertex model on regions of ℤ2. A

dichotomy theorem for the (exact) computability of the partition function of the six-vertex model

on 4-regular graphs was also recently proven in [CFX18].

As for the positive results about the mixing time of Glauber dynamics, Luby, Randall, and

Sinclair [LRS01] proved rapid mixing of a Markov chain that leads to a fully polynomial almost
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uniform sampler for Eulerian orientations on any region of the Cartesian lattice with �xed

boundaries (i.e., the unweighted case when a/c = b/c = 1). Randall and Tetali [RT00] then used a

comparison technique to argue that Glauber dynamics for Eulerian orientations on lattice graphs

is rapidly mixing by relating this Markov chain to the Luby-Randall-Sinclair chain. Goldberg,

Martin, and Paterson [GMP04] extended their approach to show that Glauber dynamics is rapidly

mixing on rectangular lattice regions with free boundary conditions.

Liu [Liu18] gave the �rst rigorous result showing that Glauber dynamics can be slowly mixing

in a subregion of an ordered phase. In particular, Liu showed that local Markov chains subject to free

boundary conditions require exponential time to converge to stationarity in the antiferroelectric

subregion de�ned by max(a, b) < c/� (i.e., the red region in Figure 3.3b), where � = 2.6381585... is

the connective constant for self-avoiding walks on the square lattice. We note that the connective

constant is de�ned by the limit � = limn→∞ 
 1/nn , where 
n is the number of self-avoiding walks of

length n on the square lattice. Liu also showed that the directed loop algorithm used in [CLL19]

mixes slowly in the same antiferroelectric subregion and for all of the ferroelectric region. This,

however, has no bearing on the e�ciency of Glauber dynamics in the ferroelectric region. As an

aside, we also remark that the partition function is exactly computable for all boundary conditions

at the free-fermion point when Δ = 0, or equivalently a2 + b2 = c2, via a reduction to domino

tilings and a Pfa�an computation [FS06].

3.1.2 Main Results

In this chapter we show that there exist boundary conditions for which Glauber dynamics mixes

slowly for the six-vertex model in the ferroelectric and antiferroelectric phases. We start by

proving that there are boundary conditions that cause Glauber dynamics to be slow for all

Boltzmann weights that lie in the ferroelectric region of the phase diagram, where the mixing time

is exponential in the number of vertices in the lattice. This is the �rst rigorous result for the mixing

time of Glauber dynamics in the ferroelectric phase and it gives a complete characterization.
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Theorem 3.1.1 (Ferroelectric Phase). For any (a, b, c) ∈ ℝ3>0 such that a > b + c or b > a + c, there
exist boundary conditions for which Glauber dynamics mixes exponentially slowly on Λn.
We note that our approach naturally breaks down at the critical line of the conjectured phase

diagram for the mixing time in a way that reveals a trade-o� between the energy and entropy of

the system. Additionally, our analysis suggests an underlying combinatorial interpretation for

the phase transition between the ferroelectric and disordered phases in terms of the adherence

strength of intersecting lattice paths and the momentum parameter of correlated random walks.

Our second mixing result builds on the topological obstruction framework developed in [Ran06b]

to show that Glauber dynamics with free boundary conditions mixes slowly in most of the antifer-

roelectric region. Speci�cally, we generalize the recent antiferroelectric mixing result in [Liu18]

with a Peierls argument that uses multivariate generating functions for weighted non-backtracking

walks instead of the connectivity constant for (unweighted) self-avoiding walks to better account

for the discrepancies in Boltzmann weights.

Theorem 3.1.2 (Antiferroelectric Phase). For any (a, b, c) ∈ ℝ3>0 such that ac + bc + 3ab < c2,
Glauber dynamics mixes exponentially slowly on Λn with free boundary conditions.

We illustrate the new regions for which Glauber dynamics can be slowly mixing in Figure 3.3.

Observe that our antiferroelectric subregion signi�cantly extends Liu’s and pushes towards the

conjectured threshold.

3.1.3 Techniques

We take signi�cantly di�erent approaches for our analysis of the ferroelectric and antiferroelectric

phases. In the ferroelectric phase, where a > b + c and type-a vertices are preferred to type-b and

type-c vertices, we construct boundary conditions that induce polynomially-many paths separated

by a critical distance that allows all of the paths to (1) behave independently and (2) simultaneously

intersect with their neighbors maximally. (This analysis also covers the case b > a+c by a standard
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invariant that shows symmetry in the phase diagram over the line y = x .) From here, we analyze

the dynamics of a single path in isolation as an escape probability, which eventually allows us to

bound the conductance of the Markov chain. The dynamics of a single lattice path is equivalent to

that of a correlated random walk. In Section 3.4 we present a new tail inequality for correlated

random walks that accurately bounds the probability of large deviations from the starting position.

We note that decomposing the dynamics of lattice models into one-dimensional random walks

has recently been shown to achieve nearly tight bounds for escape probabilities in a di�erent

setting [DFGX18].

One of the key technical contributions in this chapter is our analysis of the tail behavior of

correlated random walks in Section 3.4. While there is a simple combinatorial expression for the

position of a correlated random walk written as a sum of marginals, it is not immediately useful

for bounding the displacement from the origin. To achieve an exponentially small tail bound for

these walks, we �rst construct a smooth function that tightly upper bounds the marginals and

then optimize this function to analyze the asymptotics of the log of the maximum marginal. Once

we obtain an asymptotic equality for the maximum marginal, we can upper bound the deviation of

a correlated random walk, and hence the deviation of a lattice path in a con�guration. Ultimately,

this allows us to show that there exists a balanced cut in the state space that has an exponentially

small escape probability, which implies that the Glauber dynamics are slowly mixing.

In the antiferroelectric phase, on the other hand, the weights satisfy a + b < c, so type-c
vertices are preferred. It follows that there are two (arrow-reversal) symmetric ground states of

maximum probability containing only type-c vertices. To move between con�gurations that agree

predominantly with di�erent ground states, the Markov chain must pass through con�gurations

with a large number of type-a or type-b vertices. Using the idea of fault lines introduced in [Ran06b],

we use weighted non-backtracking walks to characterize such con�gurations and construct a cut

set with exponentially small probability mass that separates the ground states.
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3.2 Slow Mixing in the Ferroelectric Phase

We start with the ferroelectric phase where a > b + c or b > a + c, and we give a conductance-based

argument to show that Glauber dynamics can be slowly mixing in the entire ferroelectric region.

Speci�cally, we show that there exist boundary conditions that induce an exponentially small,

asymmetric bottleneck in the state space, revealing a natural trade-o� between the energy and

entropy in the system. Viewing the six-vertex model in the intersecting lattice path interpretation

suggests how to plant polynomially-many paths in the grid that can (1) be analyzed independently,

while (2) being capable of intersecting maximally. This path independence makes our analysis

tractable and allows us to interpret the dynamics of a path as a correlated random walk, for which

we develop an exponentially small tail bound in Section 3.4. Since conductance governs mixing

times (see Section 2.1.4), we show how to relate the expected maximum deviation of a correlated

walk to the conductance of the Markov chain and prove slow mixing. In addition to showing slow

mixing up to the conjectured threshold, a surprising feature of our argument is that it potentially

gives a combinatorial explanation for the phase transition from the ferroelectric to disordered

phase. In particular, Lemma 3.2.6 demonstrates how the parameters of the model delicately balance

the probability mass of the Markov chain.

We start by leveraging the invariance of the Gibbs measure and the lattice path interpretation

of the six-vertex model to conveniently reparameterize the Boltzmann weights. Recall that for a

�xed boundary condition, the invariants of the model [BL09] imply that a = √w1w2. Therefore,

we set w1 = �2 and w2 = 1 to ignore empty sites while letting a = �. We also set b = w3 = w4 = �
and c = w5 = w6 = 1 so that the weight of a con�guration only comes from straight segments and

intersections of neighboring lattice paths.
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3.2.1 Constructing the Boundary Conditions and Cut

We begin with a few colloquial de�nitions for lattice paths that allow us to easily construct the

boundary conditions and make arguments about the conductance of the Markov chain. We call a2n-step, north-east lattice path 
 starting from (0, 0) a path of length 2n, and if the path ends at(n, n) we describe it as tethered. If 
 = ((0, 0), (x1, y1), (x2, y2), … , (x2n, y2n)), we de�ne the deviation

of 
 to be maxi=0..2n‖(xi , yi) − (i/2, i/2)‖1. Geometrically, path deviation captures the (normalized)

maximum perpendicular distance of the path to the line y = x . We refer to vertices (xi , yi) along

the path as corners or straights depending on whether or not the path turned. If two paths intersect

at a vertex we call this site a cross. Note that this classi�es all vertex types in the six-vertex model.

We consider the following independent paths boundary condition for an n × n six-vertex

model for the rest of the section. To construct this boundary condition, we consider its lattice

path interpretation. First, place a tethered path 
0 that enters (0, 0) horizontally and exits (n, n)
horizontally. Next, place 2� = 2⌊n1/8⌋ translated tethered paths of varying length above and below

the main diagonal, each separated from its neighbors by distance d = ⌊32n3/4⌋. Speci�cally, the

paths 
1, 
2, … , 
� below the main diagonal begin at the vertices (d, 0), (2d, 0), … , (�d, 0) and end at

the vertices (n, n−d), (n, n−2d), … , (n, n−�d), respectively. The paths 
−1, 
−2, … , 
−� above the main

diagonal begin at (0, d), (0, 2d), … , (0, �d) and end at (n−d, n), (n−2d, n), … , (n−�d, n). The deviation

of a translated tethered path is the deviation of the same path starting at (0, 0). To complete the

boundary condition, we force the paths below the main diagonal to enter vertically and exit

horizontally. Symmetrically, we force the paths above the main diagonal to enter horizontally and

exit vertically. See Figure 3.4a for an illustration of the construction when all paths have small

deviation.

Next, we construct an asymmetric cut in the state space induced by this boundary condition

in terms of its internal lattice paths. In particular, we analyze a set S of con�gurations such that
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(a) (b)

Figure 3.4: Examples of states with the independent paths boundary condition: (a) is a state in S
with the deviation bounds highlighted and (b) is the ground state in the ferroelectric phase.

every path in a con�guration has small deviation. Formally, we let

S def= {x ∈ Ω ∶ the deviation of each path in x is less than 8n3/4}.
Observe that by our choice of separation distance d = ⌊32n3/4⌋ and the deviation limit for S, no

paths in any con�guration of S intersect. It follows that the partition function for S factors into a

product of 2� + 1 partition functions, one for each path with bounded deviation. This intuition is

useful when analyzing the conductance Φ(S) as an escape probability from stationarity.

3.2.2 Lattice Paths as Correlated Random Walks

Now we weight the internal paths according to the parameters of the six-vertex model de�ned in

the beginning of Section 3.2. The main result in this subsection is Lemma 3.2.1, which states that

random tethered paths are exponentially unlikely to deviate past !(n1/2), even if drawn from a

Boltzmann distribution that favors straights. Start by de�ning Γ(�, n) to be the distribution over
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tethered paths of length 2n with the property that

Pr(
 ) ∝ �(# of straights in 
 ).
Lemma 3.2.1. Let �, " > 0 and m = o(n). For n su�ciently large and 
 ∼ Γ(�, n), we have

Pr(
 deviates by at least 2m) ≤ e−(1−")m2�n .
Before giving the proof of Lemma 3.2.1, we �rst introduce the concept of correlated random walks.

Then we present three prerequisite results about correlated random walks and brie�y explain their

connection to the deviation of biased tethered paths. Our goal here is to show how the supporting

lemmas interact prior to the proof of Lemma 3.2.1.

A key idea in our analysis of the ferroelectric phase is the notion of a correlated random walk,

which generalize a simple symmetric random walk by accounting for momentum. A correlated

random walk with momentum parameter p ∈ [0, 1] starts at the origin and is de�ned as follows.

Let X1 be a uniform random variable with support {−1, 1}. For all subsequent steps i ≥ 2, the

direction of the process is correlated with the direction of the previous step and satis�es

Xi+1 =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Xi with probability p,−Xi with probability 1 − p.

We denote the position of the walk at time t by St = ∑ti=1 Xi . It will often be useful to make the

change of variables p = �/(1 + �) when analyzing the six-vertex model, where � > 0 is the weight

of a straight vertex. In many cases this also leads to cleaner expressions. We use the following

probability mass function (PMF) for the position of a correlated random walk to develop our new

tail inequality (Lemma 3.2.5), which holds for all values of p.
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Lemma 3.2.2 ([HF98]). For any n ≥ 1 and m ≥ 0, the PMF of a correlated random walk is

Pr(S2n = 2m) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
12p2n−1 if 2m = 2n,∑n−mk=1 (n+m−1k−1 )(n−m−1k−1 )(1 − p)2k−1p2n−1−2k(n(1−p)+k(2p−1)k ) if 2m < 2n.

Now that we have de�ned correlated random walks, we proceed by observing that there is a

natural measure-preserving bijection between biased tethered paths of length 2n and correlated

random walks of length 2n that return to the origin. To see this, observe that every vertical edge

in the tethered path corresponds to a step to the right in the correlated random walk (i.e., Xi = 1),
and every horizontal edge in the tethered path corresponds to a step to the left in the correlated

random walk (i.e., Xi = −1). Concretely, for a correlated random walk (S0, S1, … , S2n) parameterized

by p = �/(1 + �), we have

Pr(
 deviates by at least 2m) = Pr(maxi=0..2n|Si | ≥ 2m |||| S2n = 0). (3.1)

The �rst prerequisite lemma we present is an asymptotic equality that generalizes the return

probability of simple symmetric random walks. This allows us to relax the condition in Equa-

tion (3.1) where the correlated random walk must return to the origin, and instead we boundPr(maxi=0..2n |Si | ≥ 2m) at the expense of an polynomial factor.

Lemma 3.2.3 ([Gil55]). For any constant � > 0, the return probability of a correlated random walk is

Pr(S2n = 0) ∼ 1√��n .
The second result that we need in order to prove Lemma 3.2.1 is that the PMF for correlated

random walks is monotone.

Lemma 3.2.4. For any momentum parameter p ∈ (0, 1) and n su�ciently large, the probability of
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the position of a correlated random walk is monotone. Concretely, for m ∈ {0, 1, … , n − 1}, we have
Pr(S2n = 2m) ≥ Pr(S2n = 2(m + 1)).

Proof. We consider the cases m = n − 1 and m ∈ {0, 1, 2, … , n − 2} separately. Using Lemma 3.2.2,

the probability density function for the position of a correlated random walk is

Pr(S2n = 2m) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
12p2n−1 if 2m = 2n,∑n−mk=1 (n+m−1k−1 )(n−m−1k−1 )(1 − p)2k−1p2n−1−2k(n(1−p)+k(2p−1)k ) if 2m < 2n.

If m = n − 1, then we have the equations

Pr(S2n = 2m) = (1 − p)p2n−3(n(1 − p) + 2p − 1),Pr(S2n = 2(m + 1)) = 12p2n−1.
Therefore, we have Pr(S2n = 2m) ≥ Pr(S2n = 2(m + 1)) for all

n ≥ 11 − p ⋅ ( p22(1 − p) + 1 − 2p) > 0.
Now we assume that m ∈ {0, 1, 2, … , n − 2}. Writing Pr(S2n = 2m) − Pr(S2n = 2(m + 1)) as a

di�erence of sums and matching the corresponding terms, it is instead su�cient to show for all

values of k ∈ {1, 2, … , n − (m + 1)}, we have

(n + m − 1k − 1 )(n − m − 1k − 1 ) − (n + (m + 1) − 1k − 1 )(n − (m + 1) − 1k − 1 ) ≥ 0.
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Next, rewrite the binomial coe�cients as

(n + (m + 1) − 1k − 1 ) = n + mn + m − (k − 1) ⋅ (n + m − 1k − 1 ),
(n − (m + 1) − 1k − 1 ) = n − m − kn − m − 1 ⋅ (n − m − 1k − 1 ).

Therefore, it remains to show that

1 − n + mn + m − (k − 1) ⋅ n − m − kn − m − 1 ≥ 0.
Since all of the values in {n + m, n + m − (k − 1), n − m − k, n − m − 1} are positive for any choice

of m and k, it is equivalent to show that

(n + m − (k − 1))(n − m − 1) ≥ (n + m)(n − m − k).
Observing that

(n + m − (k − 1))(n − m − 1) − (n + m)(n − m − k) = (2m + 1)(k − 1) ≥ 0
completes the proof.

The third result we need is an upper bound for the position of a correlated random walk. We

fully develop this inequality in Section 3.4 by analyzing the asymptotic behavior of the PMF in

Lemma 3.2.2. We note that Lemma 3.2.5 shows exactly how the tail behavior of simple symmetric

random walks generalizes to correlated random walks as a function of �.

Lemma 3.2.5. Let �, " > 0 and m = o(n). For n su�ciently large, a correlated random walk satis�es

Pr(S2n = 2m) ≤ e−(1−")m2�n .
34



Now that we have established these supporting lemmas, we are prepared to complete the proof

of Lemma 3.2.1, which also heavily relies on union bounds and relaxing conditional probabilities.

Proof of Lemma 3.2.1. Using the measure-preserving bijection between tethered paths of length 2n
and correlated random walks of length 2n (Section 3.2.2) along with the de�nition of conditional

probability and Lemma 3.2.3, we have

Pr(
 deviates by at least 2m) = Pr(maxi=0..2n|Si | ≥ 2m |||| S2n = 0)≤ Pr(maxi=0..2n|Si | ≥ 2m)Pr(S2n = 0)≤ 2√��n ⋅ Pr(maxi=0..2n|Si | ≥ 2m),
where the last inequality uses the de�nition of asymptotic equality with " = 1/2. Next, a union

bound and the symmetry of correlated random walks imply that

Pr(maxi=0..2n|Si | ≥ 2m) ≤ Pr(maxi=0..2n Si ≥ 2m) + Pr(mini=0..2n Si ≤ −2m)= 2 ⋅ Pr(maxi=0..2n Si ≥ 2m).
Now we focus on the probability that the maximum position of the walk is at least 2m. For this

event to be true, the walk must reach 2m at some time i ∈ {0, 1, 2, … , 2n}, so by a union bound,

Pr(maxi=0..2n Si ≥ 2m) ≤ 2n∑i=0 Pr(Si = 2m) ≤ n∑i=1 Pr(S2i ≥ 2m).
The second inequality takes into account the parity of the random walk, the fact that if i = 0 the

walk can only be at position 0, and the relaxed condition that the �nal position is at least 2m.

Lemma 3.2.4 implies that the distribution is unimodal on its support centered at the origin for

su�ciently large n. Moreover, for walks of the same parity with increasing length and a �xed tail
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threshold, the probability of the tail is nondecreasing. Combining these two observations, we have

n∑i=1 Pr(S2i ≥ 2m) ≤ n ⋅ Pr(S2n ≥ 2m) ≤ n2 ⋅ Pr(S2n = 2m).
Using the chain of previous inequalities and the upper bound for Pr(S2n = 2m) in Lemma 3.2.5

with the smaller error "/2, it follows that

Pr(
 deviates by at least 2m) ≤ 4n2√��n ⋅ Pr(S2n = 2m) ≤ e−(1−")m2�n ,
which completes the proof.

3.2.3 Bounding the Conductance and Mixing Time

Next, we bound the conductance of the Markov chain by viewing Φ(S) as an escape probability.

We start by claiming that �(S) ≤ 1/2 (as required by the de�nition of conductance) if and only if

the parameters are in the ferroelectric phase. Then we use the correspondence between tethered

paths and correlated random walks (i.e., Section 3.2.2) to prove that Φ(S) is exponentially small.

Lemma 3.2.6. Let � > 0 and � > 1 + � be constants. For n su�ciently large, �(S) ≤ 1/2.
Proof. We start by upper bounding �(S) in terms of the partition function Z . No paths in any

state of S deviate by more than 2n3/4 by the de�nition of S. Moreover, since adjacent paths are

separated by distance d = ⌊32n3/4⌋, no two can intersect (Figure 3.4a). Therefore, it follows that

the paths are independent of each other, which is convenient because it allows us to implicitly

factor the generating function for con�gurations in S.

Next, observe that an upper bound for the generating function of any single path is (1 + �)2n+1.
This is true because all paths have length at most 2n, and we introduce an additional (1 + �)2 factor

36



to account for boundary conditions. Since all the paths are independent and � = ⌊n1/8⌋, we have

�(S) ≤ ((1 + �)2n+1)2�+1Z = (1 + �)4n9/8(1+o(1))(1 + o(1))Z .
Now we lower bound the partition function Z of the entire model by considering the weight

of the ferroelectric ground state (Figure 3.4b). Recall that we labeled the � paths below the main

diagonal path 
1, 
2, … , 
� such that 
� is farthest from the main diagonal. Let c ≤ 10 be a constant

that accounts for subtle misalignments between adjacent paths. It follows that each path 
k
uniquely corresponds to at least n − (2kd + k + c) intersections. Using the last path 
� as a lower

bound for the number of intersections that each path contributes and accounting also for the

paths above the main diagonal, it follows that there are at least

2� (n − (2�d + � + c)) = 2n9/8(1 − o(1))
intersections in the ground state.

Similarly, we bound the number of straights that each path 
k contributes. Note that we may

also need an upper bound for this quantity in order to lower bound the partition function since it

is possible that 0 < � < 1. The number of straights in 
k is 2(kd ± c), and 
0 has two straights on

the boundary. Therefore, the total number of straights in the ground con�guration is

2 �∑k=1 2(kd ± c) = 64n(1 + o(1)).
Since intersections are weighted by �2 and straights by � in our reparameterized model, by

considering the ground state and using the previous enumerations, it follows that

Z ≥ (�2)2n9/8(1−o(1))�64n(1+o(1)).
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Combining these inequalities allows us to upper bound the probability mass of the cut �(S) by

�(S) ≤ (1 + �� )4n9/8(1+o(1))�−64n(1+o(1))(1 + o(1)).
Using the assumption that � > 1 + �, we have �(S) ≤ 1/2 for n su�ciently large, as desired.

Our analysis of the escape probability from S critically relies on the fact that paths in any

state x ∈ S are non-intersecting. Combinatorially, we exploit the factorization of the generating

function for states in S as a product of 2� + 1 independent path generating functions.

Lemma 3.2.7. Let �, " > 0 be constants. For n su�ciently large, Φ(S) ≤ e−(1−")�−1n1/2 .
Proof. The conductance Φ(S) can be understood as the following escape probability. Sample a

state x ∈ S from the stationary distribution � conditioned on x ∈ S, and run the Markov chain

from x for one step to get a neighboring state y . The de�nition of conductance implies that Φ(S) is

the probability that y ∉ S. Using this interpretation, we can upper bound Φ(S) by the probability

mass of states that are near the boundary of S in the state space, since the process must escape in

one step. Therefore, it follows from the independent paths boundary condition and the de�nition

of S that

Φ(S) ≤ Pr(there exists a path in x deviating by at least 4n3/4 || x ∈ S).
Next, we use a union bound over the 2� + 1 di�erent paths in a con�guration and consider

the event that a particular path 
k deviates by at least 4n3/4. Because all of the paths in S are

independent, we only need to consider the behavior of 
k in isolation. This allows us to rephrase
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the conditional event. Relaxing the conditional probability of each term in the sum gives

Φ(S) ≤ �∑k=−� Pr(
k deviates by at least 4n3/4 || x ∈ S)= �∑k=−� Pr(
k deviates by at least 4n3/4 || 
k deviates by less than 8n3/4)
≤ �∑k=−� Pr(
k deviates by at least 4n3/4)1 − Pr(
k deviates by at least 8n3/4).

For large enough n, the length of every path 
k is in the range [n, 2n] since we eventually have

the inequality n − �d ≥ n/2. Therefore, we can apply Lemma 3.2.1 with the error "/2 to each term

and use the universal upper bound

Pr(
k deviates by at least 4n3/4)1 − Pr(
k deviates by at least 8n3/4) ≤ e−(1− "2 ) 16n3/2�n1 − e−(1− "2 ) 64n3/2�n ≤ 2e−(1− "2 ) 16n3/2�n .
It follows from the union bound and previous inequality that the conductance Φ(S) is bounded by

Φ(S) ≤ (2� + 1) ⋅ 2e−(1− "2 ) 16n3/2�n ≤ e−(1−")�−1n1/2 ,
which completes the proof.

Now that we have constructed a cut in the state space with exponentially small conductance,

we can obtain a bound on the mixing time when the probability mass is properly distributed.

Theorem 3.2.8. Let �, " > 0 and � > 1 + �. For n su�ciently large, � (1/4) ≥ e(1−")�−1n1/2 .
Proof. Since �(S) ≤ 1/2 by Lemma 3.2.6, we have Φ∗ ≤ Φ(S). The proof follows from Theorem 2.1.5

and the conductance bound in Lemma 3.2.7 with a smaller error "/2.
Last, we restate our main theorem and use Theorem 3.2.8 to show that Glauber dynamics for

the six-vertex model can be slow mixing for all parameters in the ferroelectric phase.
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Theorem 3.1.1 (Ferroelectric Phase). For any (a, b, c) ∈ ℝ3>0 such that a > b + c or b > a + c, there
exist boundary conditions for which Glauber dynamics mixes exponentially slowly on Λn.
Proof. Without loss of generality, we reparameterized the model so that a = �, b = �, and c = 1.
Therefore, Glauber dynamics with the independent paths boundary condition is slow mixing ifa > b + c by Theorem 3.2.8. Since the rotational invariance of the six-vertex model implies that a
and b are interchangeable parameters, this mixing time result also holds in the case b > a + c.
3.3 Slow Mixing in the Antiferroelectric Phase

While Glauber dynamics can be slowly mixing in the ferroelectric phase, we �nd it is true for

substantially di�erent reasons. In the antiferroelectric phase, Boltzmann weights satisfy a+b < c, so

con�gurations tend to favor corner (i.e., type-c) vertices. The main insight behind our slow mixing

proof is that when c is su�ciently large, the six-vertex model can behave like the low-temperature

hardcore model on ℤ2 where con�gurations predominantly agree with one of two ground states.

Liu recently formalized this argument in [Liu18] and showed that Glauber dynamics for the

six-vertex model with free boundary conditions requires exponential time when max(a, b) < �c,
where � ≤ 2.639 is the connective constant of self-avoiding walks on the square lattice [GC01]. His

proof uses a Peierls argument based on topological obstructions introduced by Randall [Ran06b]

in the context of independent sets. In this section, we extend Liu’s result to the region depicted

in Figure 3.3c by computing a closed-form multivariate generating function that upper bounds

the number of self-avoiding walks and better accounts for disparities in their Boltzmann weights

induced by the parameters of the six-vertex model.

3.3.1 Topological Obstruction Framework

We start with a recap of the de�nitions and framework laid out in [Liu18]. There are two ground

states in the antiferroelectric phase such that every interior vertex is a corner: xR (Figure 3.5a)
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(a) (b) (c)

Figure 3.5: Edge colorings of (a) the red ground state xR, (b) the green ground state xG, and (c) an
example con�guration with free boundary conditions that does not have a monochromatic cross.

and xG (Figure 3.5b). These con�gurations are edge reversals of each other, so for any state x ∈ Ω
we can color its edges red if they are oriented as in xR or green if they are oriented as in xG. See

Figure 3.5c for an example of how a con�guration is colored. It follows from case analysis of the

six vertex types in Figure 3.1 that the number of red edges incident to any internal vertex is even,

and if there are only two red edges then they must be rotationally adjacent to each other. The

same property holds for green edges by symmetry. Note that the four edges bounding a cell of

the lattice are monochromatic if and only if they are oriented cyclically, and thus reversible by

Glauber dynamics. We say that a simple path from a horizontal edge on the left boundary of Λn to

a horizontal edge on the right boundary is a red horizontal bridge if it contains only red edges. We

de�ne green horizontal bridges and monochromatic vertical bridges similarly. A con�guration

has a red cross if it contains both a red horizontal bridge and a red vertical bridge. Likewise, we

can de�ne a green cross. Let CR ⊆ Ω be the set of all states with a red cross, and let CG ⊆ Ω be the

set of all states with a green cross. It follows from Lemma 3.3.1 that CR ∩ CG = ∅.

Next, we de�ne the dual lattice Ln to describe con�gurations in Ω⧵ (CR ∪CG). The vertices of Ln
are the centers of the cells in Λn, including the cells on the boundary that are partially enclosed,

and we connect dual vertices by an edge if their corresponding cells are diagonally adjacent. Note

that Ln is a union of two disjoint graphs (Figure 3.6a). For any state x ∈ Ω there is a corresponding

dual subgraph Lx de�ned as follows: for each interior vertex v in Λn, if v is incident to two red
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(a) (b) (c)

Figure 3.6: Illustrations of (a) the dual lattice Ln as a union of disjoint cyan and purple subgraphs, (b)
an example con�guration overlaid with its dual graph, and (c) the example under the injective
fault line map.

edges and two green edges, then Lx contains the dual edge passing through v that separates the

two red edges from the two green edges. This construction is well-de�ned because the red edges

are rotationally adjacent. See Figure 3.6b for an example of a dual con�guration. For any x ∈ Ω,

we say that x has a horizontal fault line if Lx contains a simple path from a left dual boundary

vertex to a right dual boundary vertex. We de�ne horizontal fault lines similarly and let CFL ⊆ Ω
be the set of all states containing a horizontal or vertical fault line. Fault lines completely separate

red and green edges, and hence are topological obstructions that prohibit monochromatic bridges.

Last, we extend the notion of fault lines to almost fault lines. We say that x ∈ Ω has a horizontal

almost fault line if there is a simple path in Ln connecting a left dual boundary vertex to a right

dual boundary vertex such that all edges except for one are in Lx . We de�ne vertical almost fault

lines similarly and let the set CAFL ⊆ Ω denote all states containing an almost fault line. Finally,

let )CR ⊆ Ω denote the set of states not in CR that one move away from CR in the state space

according to the Glauber dynamics.

Lemma 3.3.1 ([Liu18]). We can partition the state space into Ω = CR ∪ CFL ∪ CG. Furthermore, we

have )CR ⊆ CFL ∪ CAFL.
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3.3.2 Bounding the Mixing Time with a Peierls Argument

In this subsection we show that �(CFL ∪ CAFL) is an exponentially small bottleneck in the state

space Ω. The analysis relies on Lemma 3.3.1 and a new multivariate upper bound for weighted

self-avoiding walks (Lemma 3.3.2). Our key observation is that when a fault line changes direction,

the vertices in its path change from type-a to type-b or vice versa. Therefore, our goal in this

subsection is to generalize the trivial 3n−1 upper bound for the number of self-avoiding walks

by accounting for their changes in direction in aggregate. We achieve this by using generating

functions to solve a system of linear recurrence relations.

We start by encoding non-backtracking walks that start from the origin and take their �rst step

northward using the characters in {S, L, R}, representing straight, left, and right steps. For example,

the walk SLRSSL corresponds to the sequence ((0, 0), (0, 1), (−1, 1), (−1, 2), (−1, 3), (−1, 4), (−2, 4)). If

a fault line is the same shape as SLRSSL up to a rotation about the origin, then there are only two

possible sequences of vertex types through which it can pass: abaaab and babbba. This follows

from the fact that once the �rst vertex type is determined, only turns in the self-avoiding walk

(i.e., the L and R characters) cause the vertex type to switch. We de�ne the weight of a fault line to

be the product of the vertex types through which it passes. More generally, we de�ne the weight

of a non-backtracking walk that initially passes through a �xed vertex type to be the product of

the induced vertex types according to the rule that turns toggle the current type. Formally, we

let the function ga(
 ) ∶ {S} × {S, L, R}n−1 → ℝ≥0 denote the weight of a non-backtracking walk 

that starts by crossing a type-a vertex. We de�ne the function gb(
 ) similarly and provide the

examples ga(SLRSSL) = a4b2 and gb(SLRSSL) = a2b4 for clarity. Last, observe that a sequence of

vertex types can have many di�erent walks in its preimage. The non-backtracking walk SRRSSR

also maps to abaaab and babbba—in fact, there are 23 = 8 such walks in this example since we

can interchange L and R characters.

The idea of enumerating the preimages of a binary string corresponding to sequence of vertex
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types suggests a recursive approach for computing the sum of weighted non-backtracking walks.

This naturally leads to the use of generating functions, so we overload the variables x and y
to also denote function arguments. For nonempty binary string s ∈ {0, 1}n, let ℎ(s) count the

number of pairs of adjacent characters that are not equal and let |s| denote the number of ones

in s (e.g., if s = 010001 then ℎ(s) = 3 and |s| = 2). The sum of weighted self-avoiding walks is

upper bounded by the sum of weighted non-backtracking walks, so we proceed by analyzing the

following function:

Fn(x, y) def= ∑
∈{S}×{S,L,R}n−1 gx (
 ) + gy(
 ) = ∑s∈{0,1}n 2ℎ(s)x |s|yn−|s|. (3.2)

Note that Fn(1, 1) = 2 ⋅ 3n−1 recovers the number of non-backtracking walks that initially cross

type-a or type-b vertices.

In the next section, we compute the closed-form solution for Fn(x, y) by diagonalizing a matrix

corresponding to the system of recurrence relations, which allows us to accurately quantify the

discrepancy between fault lines when the Boltzmann weights a and b di�er. For now, we use the

following upper bound for Fn(x, y) in our Peierls argument and defer its proof to Section 3.3.3.

Lemma 3.3.2. Let Fn(x, y) be the generating function for weighted non-backtracking walks de�ned

in Equation (3.2). For any integer n ≥ 1 and x, y ∈ ℝ>0, we have
Fn(x, y) ≤ 3(x + y)(x + y + √x2 + 14xy + y22 )n−1.

The �rst step of our Peierls argument is to upper bound �(CFL ∪ CAFL), which then gives us a

bound on the conductance and allows us to prove Theorem 3.1.2. We start by de�ning the subset

of antiferroelectric parameters that cause Fn(a/c, b/c) to decrease exponentially fast.
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Lemma 3.3.3. If (a, b, c) ∈ ℝ3>0 is antiferroelectric and 3ab + ac + bc < c2, then
a + b + √a2 + 14ab + b2 < 2c.

Proof. Let x = a/c and y = b/c, and observe that 0 < x < 1 by the antiferroelectric assumption. It

follows from our hypothesis that y < (1 − x)/(1 + 3x). Therefore, we have

x + y + √x2 + 14xy + y2 < x + 1 − x1 + 3x + √x2(1 + 3x)2 + 14x(1 − x)(1 + 3x) + (1 − x)2(1 + 3x)2= x(1 + 3x) + 1 − x + √(3x2 − 6x − 1)21 + 3x= x(1 + 3x) + 1 − x − (3x2 − 6x − 1)1 + 3x= 2(1 + 3x)1 + 3x= 2,
which completes the proof.

Lemma 3.3.4. If (a, b, c) ∈ ℝ3>0 is antiferroelectric and 3ab +ac +bc < c2, then for Glauber dynamics

with free boundary conditions we have

� (CFL ∪ CAFL) ≤ poly(n)(a + b + √a2 + 14ab + b22c )n.
Proof. For any self-avoiding walk 
 and dual vertices s, t ∈ Ln on the boundary, let Ω
 ,s,t ⊆ Ω be

the set of states that contain 
 as a fault line or an almost fault line such that 
 starts at s and

ends at t . Without loss of generality, assume that the (almost) fault line is vertical. Reversing the

direction of all edges on the left side of 
 de�nes the injective map f
 ,s,t ∶ Ω
 ,s,t → Ω ⧵ Ω
 ,s,t such

that if 
 is a fault line of x ∈ Ω
 ,s,t , then the weight of its image f
 ,s,t(x) is ampli�ed by c |
 |/ga(
 )
or c |
 |/gb(
 ). For an example of this injection, see Figure 3.6c. Similarly, if 
 is an almost fault line,
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decompose 
 into subpaths 
1 and 
2 separated by a type-c vertex such that 
1 starts at s and 
2
ends at t . In this case, the weight of the images of almost fault lines is ampli�ed by a factor ofmin(a, b)/c ⋅ c |
1 |+|
2 |/(g� (
1)g�(
2)) for some (�, �) ∈ {a, b}2. Using the fact that f
 ,s,t is injective and

summing over the states containing 
 as a fault line and an almost fault line separately gives us

�(Ω
 ,s,t) ≤ ga(
 ) + gb(
 )c |
 | + cmin(a, b) ∑
1+
2=
 ga(
1) + gb(
1)c |
1 | ⋅ ga(
2) + gb(
2)c |
2 | , (3.3)

where the sum is over all Θ(|
 |) decompositions of 
 into 
1 and 
2.
Equipped with Equation (3.3) and Lemma 3.3.2, we use a union bound over all pairs of terminal

vertices (s, t) and fault line lengths � to bound �(CFL ∪CAFL) in terms of the generating function for

weighted non-backtracking walks F� (x, y). Since antiferroelectric weights satisfy 3ab+ac +bc < c2,
it follows from Lemma 3.3.3 that

�(CFL ∪ CAFL) ≤ ∑(s,t) n2∑�=n(F� (a/c, b/c) + cmin(a, b) �∑k=0 Fk(a/c, b/c)F�−k(a/c, b/c))≤ ∑(s,t) n2∑�=n poly(� )(a + b + √a2 + 14ab + b22c )�

≤ poly(n)(a + b + √a2 + 14ab + b22c )n.
Note that the convolutions in the �rst inequality generate all almost weighted non-backtracking

walks.

Theorem 3.1.2 (Antiferroelectric Phase). For any (a, b, c) ∈ ℝ3>0 such that ac + bc + 3ab < c2,
Glauber dynamics mixes exponentially slowly on Λn with free boundary conditions.

Proof of Theorem 3.1.2. Let ΩMIDDLE = CFL ∪ CAFL, ΩLEFT = CR ⧵ ΩMIDDLE, and ΩRIGHT = CG ⧵ ΩMIDDLE.

It follows from Lemma 3.3.1 that Ω = ΩLEFT ∪ ΩMIDDLE ∪ ΩRIGHT is a partition with the properties

that )ΩLEFT ⊆ ΩMIDDLE and �(ΩLEFT) = �(ΩRIGHT). Since the partition is symmetric, Lemma 3.3.4

implies that 1/4 ≤ �(ΩLEFT) ≤ 1/2, for n su�ciently large. Therefore, we can upper bound the
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conductance by Φ∗ ≤ Φ(ΩLEFT) ≤ 4�(ΩMIDDLE). Using Theorem 2.1.5 along with Lemma 3.3.4 and

Lemma 3.3.3 gives the desired mixing time bound.

3.3.3 Weighted Non-Backtracking Walks

In this section we present a closed-form formula for the weighted non-backtracking walks gen-

erating function Fn(x, y), and we give the proof of Lemma 3.3.2. We start by decomposing the

generating function Fn(x, y) into two sums over disjoint sets of bit strings de�ned by their �nal

character. Formally, for any n ≥ 1, let

Fn,0(x, y) = ∑s∈{0,1}n−1×{0} 2ℎ(s)x |s|yn−|s|
Fn,1(x, y) = ∑s∈{0,1}n−1×{1} 2ℎ(s)x |s|yn−|s|.

First, note that Fn(x, y) = Fn,0(x, y)+Fn,1(x, y). Second, observe that by recording the �nal character

of the bit strings, we can design a system of linear recurrences to account for the 2ℎ(s) term

appearing in Equation (3.2), which counts the number of non-backtracking walks that map to a

given sequence of vertex types.

Lemma 3.3.5. For any integer n ≥ 1 and x, y ∈ ℝ>0, we have the system of recurrence relations

Fn+1,0(x, y) = xFn,0(x, y) + 2xFn,1(x, y)Fn+1,1(x, y) = 2yFn,0(x, y) + yFn,1(x, y),
where the base cases are F1,0(x, y) = x and F1,1(x, y) = y .
Proof. This immediately follows from the de�nitions of the functions Fn,0(x, y) and Fn,1(x, y).
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Lemma 3.3.6. For any integer n ≥ 1 and x, y ∈ ℝ>0, de�ne the values
m = √x2 + 14xy + y2�1 = 12(x + y − m)�2 = 12(x + y + m).

The generating Fn(x, y) can be written in closed-form as

Fn(x, y) = 12m((x2 + 6xy + y2 + m(x + y))�n−12 − (x2 + 6xy + y2 − m(x + y))�n−11 ).
Proof. For brevity, we let Fn,0 = Fn,0(x, y) and Fn,1 = Fn,1(x, y). It follows from Lemma 3.3.5 that

⎡⎢⎢⎢⎣
Fn+1,0Fn+1,1

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
x 2x2y y

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
Fn,0Fn,1

⎤⎥⎥⎥⎦ .
Next, observe that the recurrence matrix is diagonalizable. In particular, we have

A = ⎡⎢⎢⎢⎣
x 2x2y y

⎤⎥⎥⎥⎦ = PΛP−1,
where

P = 14y ⎡⎢⎢⎢⎣
x − y − m x − y + m4y 4y

⎤⎥⎥⎥⎦ Λ = ⎡⎢⎢⎢⎣
�1 00 �2

⎤⎥⎥⎥⎦ P−1 = 12m ⎡⎢⎢⎢⎣
−4y x − y + m4y −(x − y − m)

⎤⎥⎥⎥⎦ .
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Since the base cases are Fn,0 = x and Fn,1 = y , it follows that

⎡⎢⎢⎢⎣
Fn,0Fn,1

⎤⎥⎥⎥⎦ = An−1 ⎡⎢⎢⎢⎣
F1,0F1,1

⎤⎥⎥⎥⎦ = PΛn−1P−1 ⎡⎢⎢⎢⎣
xy
⎤⎥⎥⎥⎦ .

Using the fact Fn(x, y) = Fn,0(x, y) + Fn,1(x, y) and simplifying the matrix equation above gives us

Fn(x, y) = 18my (y(3x + y + m)(x + 3y + m)�n−12 − y(3x + y − m)(x + 3y − m)�n−11 )= 12m((x2 + 6xy + y2 + m(x + y))�n−12 − (x2 + 6xy + y2 − m(x + y))�n−11 ),
as desired.

Lemma 3.3.2. Let Fn(x, y) be the generating function for weighted non-backtracking walks de�ned

in Equation (3.2). For any integer n ≥ 1 and x, y ∈ ℝ>0, we have
Fn(x, y) ≤ 3(x + y)(x + y + √x2 + 14xy + y22 )n−1.

Proof. We start by using Lemma 3.3.6 to rewrite the closed-form solution of Fn(x, y) as

Fn(x, y) = 12m((x2 + 6xy + y2)(�n−12 − �n−11 ) + m(x + y)(�n−12 + �n−11 )).
Next, we observe that the eigenvalue �1 satis�es �1 < 0 and |�1| ≤ �2. Since (x + y)2 < m2, it

follows that x + y − m = 2�1 < 0. Furthermore, we have 2|�1| ≤ |x + y| + |−m| = 2�2 by the triangle

inequality. Together these two properties imply that

�n−12 − �n−11 ≤ 2�n−12 and �n−12 + �n−11 ≤ 2�n−12 .
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Therefore, we can upper bound Fn(x, y) by

Fn(x, y) ≤ 1m(x2 + 6xy + y2)�n−12 + (x + y)�n−12 .
Since x2 + 6xy + y2 < m2, we have the inequalities

1m(x2 + 6xy + y2) < √x2 + 6xy + y2 < √(2x + 2y)2 = 2(x + y).
The result follows from the de�nition of �2.
3.4 Tail Behavior of Correlated RandomWalks

In this section we prove Lemma 3.2.5, which gives an exponentially small upper bound for the tail

of a correlated random walk as a function of its momentum parameter �. Our proof builds o� of

the PMF for the position of a correlated random walk restated below, which is combinatorial in

nature and not readily amenable for tail inequalities. Speci�cally, the probability Pr(S2n = 2m) is a

sum of marginals conditioned on the number of turns that the walk makes [RH81].

Lemma 3.2.2 ([HF98]). For any n ≥ 1 and m ≥ 0, the PMF of a correlated random walk is

Pr(S2n = 2m) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
12p2n−1 if 2m = 2n,∑n−mk=1 (n+m−1k−1 )(n−m−1k−1 )(1 − p)2k−1p2n−1−2k(n(1−p)+k(2p−1)k ) if 2m < 2n.

There are two main ideas in our approach to develop a more useful bound for the position of a

correlated random walk Pr(S2n = 2m). First, we construct a smooth function that upper bounds

the marginals as a function of x (a continuation of the number of turns in the walk k), and then we

determine its maximum value. Next we show that the log of the maximum value is asymptotically

equivalent to m2/(�n) for m = o(n), which gives us desirable bounds for su�ciently large values
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of n. We note that our analysis illustrates precisely how correlated random walks generalize

simple symmetric random walks and how the momentum parameter � controls the exponential

decay.

3.4.1 Upper Bounding the Marginal Probabilities

We start by using Stirling’s approximation to construct a smooth function that upper bounds the

marginal terms in the sum of the PMF for correlated random walks. For x ∈ (0, n − m), let

f (x) def=
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1 if x = 0,

(n+m)n+mxx (n+m−x)n+m−x ⋅ (n−m)n−mxx (n−m−x)n−m−x ⋅ �−2x if x ∈ (0, n − m),�−2(n−m) if x = n − m.
(3.4)

It can easily be checked that f (x) is continuous on all of [0, n −m] using the fact that limx→0 xx = 1.

Lemma 3.4.1. For any integer m ≥ 0, a correlated random walk satis�es

Pr(S2n = 2m) ≤ poly(n) n−m∑k=0( �1 + �)2nf (k).
Proof. Consider the probability density function for Pr(S2n = 2m) in Lemma 3.2.2. If 2m = 2n the

claim is clearly true, so we focus on the other case. We start by bounding the rightmost polynomial

term in the sum. For all n ≥ 1, we have

n(1 − p) + k(2p − 1)k ≤ 2n.
Next, we reparameterize the marginals in terms of �, where p = �/(1+�), and use a more convenient
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upper bound for the binomial coe�cients. Observe that

Pr(S2n = 2m) ≤ 2n n−m∑k=1 (n + m − 1k − 1 )(n − m − 1k − 1 )( 11 + �)2k−1( �1 + �)2n−1−2k
≤ poly(n) n−m∑k=0 (n + mk )(n − mk )( �1 + �)2n�−2k .

Stirling’s approximation states that for all n ≥ 1 we have

e(ne )n ≤ n! ≤ en(ne )n,
so we can bound the products of binomial coe�cients up to a polynomial factor by

(n + mk )(n − mk ) ≤ poly(n) ⋅ (n+me )n+m( ke )k(n+m−ke )n+m−k ⋅ (n−me )n−m( ke )k(n−m−ke )n−m−k= poly(n) ⋅ (n + m)n+mkk(n + m − k)n+m−k ⋅ (n − m)n−mkk(n − m − k)n−m−k .
The proof follows the de�nition of f (x) given in Equation (3.4).

There are polynomially-many marginal terms in the sum of the PMF, so if the maximum term

is exponentially small, then the total probability is exponentially small. Since the marginal terms

are bounded above by an expression involving f (x), we proceed by maximizing f (x) on its support.

Lemma 3.4.2. The function f (x) is maximized at the critical point

x ∗ = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n2−m22n if � = 1,
n1−�2(1 − √�2 + (1 − �2)m2n2 ) otherwise.

Proof. We start by showing that f (x) is log-concave on (0, n −m), which implies that it is unimodal.

It follows that a local maximum of f (x) is a global maximum. Since n and k are �xed as constants
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and because the numerator is positive, it is su�cient to show that

g(x) = − log(xx (n + m − x)n+m−x ⋅ xx (n − m − x)n−m−x ⋅ �2x)= −(2x log(�x) + (n + m − x) log(n + m − x) + (n − m − x) log(n − m − x))
is concave. Observe that the �rst derivative of g(x) is

g′(x) = −2(1 + log(�x)) + (1 + log(n + m − x)) + (1 + log(n − m − x))= −2 log(�x) + log(n + m − x) + log(n − m − x),
and the second derivative is

g′′(x) = − 2x − 1n + m − x − 1n − m − x .
Because g′′(x) < 0 on (0, n − m), the function f (x) is log-concave and hence unimodal.

To identify the critical points of f (x), it su�ces to determine where g′(x) = 0 since log x is

increasing. Using the previous expression for g′(x), it follows that

g′(x) = log[(n − x)2 − m2�2x2 ]. (3.5)

Therefore, the critical points are the solutions of (n − x)2 − m2 = �2x2, so we have

x ∗ = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n2−m22n if � = 1,
n−√n2−(1−�2)(n2−m2)1−�2 otherwise.
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It remains and su�ces to show that x ∗ is a local maximum since f (x) is unimodal. Observing that

))x log f (x) = g′(x)
and di�erentiating f (x) = exp(log f (x)) using the chain rule, the de�nition of x ∗ gives

f ′′(x ∗) = elog f (x ∗)[g′′(x ∗) + g′(x ∗)2]= f (x ∗)g′′(x ∗).
We know f (x ∗) > 0, so f ′′(x ∗) has the same sign as g′′(x ∗) < 0. Therefore, x ∗ is a local maximum

of f (x). Using the continuity of f (x) on [0, n−m] and log-concavity, f (x ∗) is a global maximum.

Remark 3.4.3. It is worth noting that for m = o(n), the asymptotic behavior of the critical point

is continuous as a function of � > 0. In particular, it follows from Lemma 3.4.2 that x ∗ ∼ n/(1 + �).
3.4.2 Asymptotic Behavior of the Maximum Log Marginal

Now that we have a formula for x ∗, and hence an expression for f (x ∗), we want to show that

( �1 + �)2nf (x ∗) ≤ e−nc ,
for some constant c > 0. Because there are polynomially-many marginals in the sum, this leads to

an exponentially small upper bound for Pr(S2n = 2m). De�ne the maximum log marginal to be

ℎ(n) def= − log[( �1 + �)2nf (x ∗)]. (3.6)

Equivalently, we show that ℎ(n) ≥ nc for su�ciently large n using asymptotic equivalences.
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Lemma 3.4.4. The maximum log marginal ℎ(n) can be symmetrically expressed as

ℎ(n) = (n + m) log[(1 + �� )(1 − x ∗n + m)] + (n − m) log[(1 + �� )(1 − x ∗n − m)].
Proof. Grouping the terms of ℎ(n) by factors of n, m and x ∗ gives

n log[(1 + �� )2 (n − x ∗)2 − m2(n + m)(n − m)] + m log[(n − m)(n + m − x ∗)(n + m)(n − m − x ∗)] + x ∗ log[ (�x ∗)2(n − x ∗)2 − m2 ].
Using Equation (3.5), observe that the last term is

x ∗ log[ (�x ∗)2(n − x ∗)2 − m2 ] = −x ∗g′(x ∗) = 0.
The proof follows by grouping the terms of the desired expression by factors of n and m.

The following lemma is the crux of our argument, as it presents an asymptotic equality for the

maximum log marginal in the PMF for correlated random walks. We remark that we attempted to

bound this quantity directly using Taylor expansions instead of an asymptotic equivalence, and

while this seems possible, the expressions are unruly. Our asymptotic equivalence demonstrates

that second derivative information is needed, which makes the earlier approach even more

unmanageable.

Lemma 3.4.5. For any � > 0 and m = o(n), the maximum log marginal satis�es ℎ(n) ∼ m2/(�n).
Proof. The proof is by case analysis for �. In both cases we analyze ℎ(n) as expressed in Lemma 3.4.4,

consider a change of variables, and use L’Hospital’s rule twice. In the �rst case, we assume � = 1.
The value of x ∗ in Lemma 3.4.2 gives us

1 − x ∗n + m = 2n(n + m) − (n2 − m2)2n(n + m) = n + m2n1 − x ∗n − m = 2n(n − m) − (n2 − m2)2n(n − m) = n − m2n .
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It follows that ℎ(n) can be simpli�ed as

ℎ(n) = n log[(1 + �� )2(n2 − m24n2 )] + m log(n + mn − m)
= n log(1 − m2n2 ) + m log(1 + 2mn − m).

To show ℎ(n) ∼ m2/n, by the de�nition of asymptotic equivalence we need to prove that

limn→∞ n log(1 − m2n2 ) + m log(1 + 2mn−m)m2n = 1.
Make the change of variables y = m/n. Since m = o(n), this is equivalent to showing

limy→0 log(1 − y2) + y log(1 + 2y1−y)y2 = 1.
Using L’Hospital’s rule twice with the derivatives

))y [log(1 − y2) + y log(1 + 2y1 − y)] = log(−y + 1y − 1))2)y2 [log(1 − y2) + y log(1 + 2y1 − y)] = 21 − y2 ,
it follows that

limy→0 log(1 − y2) + y log(1 + 2y1−y)y2 = limy→0 log(−y+1y−1)2y = limy→0
21−y22 = 1.

This completes the proof for � = 1.
The case when � ≠ 1 is analogous but messier. Making the same change of variables y = m/n,
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it is equivalent to show that

(1 + y) log[(1 + �� )(1 − 11 − �2 ⋅ 11 + y ⋅ (1 − √�2 + (1 − �2)y2))]+ (1 − y) log[(1 + �� )(1 − 11 − �2 ⋅ 11 − y ⋅ (1 − √�2 + (1 − �2)y2))] ∼ �−1y2, (3.7)

because the value of x ∗ for � ≠ 1 in Lemma 3.4.2 gives us

1 − x ∗n + m = 1 − 1n + m ⋅ n1 − �2 ⋅ (1 − √�2 + (1 − �2)m2n2 ).
Denoting the left-hand side of Equation (3.7) by g(y), one can verify that the �rst two derivatives

of g(y) are

g′(y) = log(�2 − √�2 − �2y2 + y2 + (�2 − 1)y(� − 1)�(y + 1) ) − log(−�2 + √�2 − �2y2 + y2 + (�2 − 1)y(� − 1)�(y − 1) )g′′(y) = 2(1 + y)(1 − y)√y2 − �2(y2 − 1) .
Observing that g(0) = g′(0) = 0 due to convenient cancellations and using L’Hospital’s rule twice,

limy→0 g(y)�−1y2 = limy→0 g′(y)2�−1y = limy→0 2(1 + y)(1 − y)√y2 − �2(y2 − 1) ⋅ �2 = 1.
This completes the proof for all cases of �.

Lemma 3.2.5. Let �, " > 0 and m = o(n). For n su�ciently large, a correlated random walk satis�es

Pr(S2n = 2m) ≤ e−(1−")m2�n .
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Proof. For n su�ciently large, the asymptotic equality for ℎ(n) in Lemma 3.4.5 gives us

ℎ(n) ≥ (1 − "2)m2�n .
It follows from our construction of f (x) and the de�nition of the maximum log marginal that

Pr(S2n = 2m) ≤ poly(n) ⋅ ( �1 + �)2nf (x ∗)
= poly(n) ⋅ e−ℎ(n)≤ poly(n) ⋅ e−(1− "2 )m2�n≤ e−(1−")m2�n ,

as desired.

3.5 Summary and Discussion

We have made signi�cant progress in this chapter towards rigorously establishing the conjectured

slow regions of the phase diagram for the six-vertex model. In particular, we prove that there

exist boundary conditions for which Glauber dynamics requires exponential convergence time for

the entire ferroelectric region and most of the antiferroelectric region. Furthermore, our proofs

demonstrate why sharp boundaries exist between the ferroelectric phase and the disordered phase,

where Glauber dynamics is believed to transition to polynomial-time convergence. We have not

fully characterized the antiferroelectric phase, but our improvement over the best previous bounds

in [Liu18] cover a signi�cantly larger part of the region.

Our arguments for the slow mixing of Glauber dynamics completely break down in the

disordered phase, as expected, but there has not been any rigorous work showing that in this

region of the phase diagram we have fast convergence. The single exception is the unweighted

case when we have a = b = c, which corresponds to Eulerian orientations of the lattice region. This
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was shown to converge in polynomial time for all boundary conditions [RT00, LRS01, GMP04].

The approaches in these works are inherently combinatorial, and it seems that generalizing them

to weighted cases will require signi�cantly di�erent ideas. Lastly, we emphasize that our proofs of

slow mixing rely on new techniques for analyzing lattice models, which include the exponentially

small tail inequality for correlated random walks developed in Section 3.4 and the closed-form

generating function for weighted non-backtracking walks derived in Section 3.3.
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CHAPTER 4

NEARLY TIGHT BOUNDS FOR SANDPILE TRANSIENCE ON THE GRID

In this chapter we prove nearly tight bounds for the transience class of the Abelian sandpile model

on the two-dimensional grid, closing an open problem of Babai and Gorodevsky [BG07, CV12].

The transience class of the Abelian sandpile model quanti�es how long it takes for the system to

reach its steady-state behavior, starting from a worst-case con�guration. Our main results in this

chapter show that the transience class of the Abelian sandpile model on the n×n grid has an upper

bound of O(n4 log4 n) and a lower bound of Ω(n4). We remark that the notion of convergence to

equilibrium here di�ers from that of the stationary distribution of ergodic Markov chains.

4.1 Introduction

The Abelian sandpile model is the canonical dynamical system used to study self-organized

criticality. In their seminal paper, Bak, Tang, and Wiesenfeld [BTW87] proposed the idea of self-

organized criticality to explain several ubiquitous patterns in nature typically viewed as complex

phenomena, such as catastrophic events occurring without any triggering mechanism, the fractal

behavior of mountain landscapes and coastal lines, and the presence of pink noise in electrical

networks and stellar luminosity. Since their discovery, self-organized criticality has been observed

in an abundance of disparate scienti�c �elds [Bak96, Wat+16], including condensed matter the-

ory [WWAM06], economics [SW94, BPR15], epidemiology [SMM14], evolutionary biology [Phi14],

high-energy astrophysics [MTN94, Asc11], materials science [RAM09], neuroscience [LHG07,

Bro+16], statistical physics [Man91, Dha06], seismology [SS89], and sociology [KG09]. A stochastic

process is a self-organized critical system if it naturally evolves to highly imbalanced critical states

where slight local disturbances can completely alter the current state. For example, when pouring
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grains of sand onto a table, the pile initially grows in a predictable way, but as it becomes steeper

and more unstable, dropping a single grain can spontaneously cause an avalanche that a�ects

the entire pile. Self-organized criticality di�ers from the critical point of a phase transition in

statistical physics, because a self-organizing system does not rely on tuning an external parameter.

Instead, it is insensitive to all parameters of the model and simply requires time to reach criticality,

which is known as the transient period. Natural events empirically operate at a critical point

between order and chaos, thus justifying our study of self-organized criticality.

Dhar [Dha90] developed the Abelian sandpile model on �nite directed graphs with a sink

vertex to further understand self-organized criticality. The Abelian sandpile model, also known

as a chip-�ring game [BLS91], on a graph with a sink is de�ned as follows. In each iteration a

grain of sand is added to a non-sink vertex of the graph. While any non-sink vertex v contains at

least deg(v) grains of sand, a grain is transferred from v to each of its neighbors. This is known

as a toppling. When no vertex can be toppled, the state is stable and the iteration ends. The sink

absorbs and destroys grains, and the presence of a sink guarantees that every toppling procedure

eventually stabilizes. An important property of the Abelian sandpile model is that the order in

which vertices topple does not a�ect the stable state. Therefore, as the process evolves it produces

a sequence of stable states. From the theory of Markov chains, we say that a stable state is recurrent

if it can be revisited; otherwise it is transient.

In the self-organized critical state of the Abelian sandpile model on a graph with a sink,

transient states have zero probability and recurrent states occur with equal probability [Dha90].

As a result, recurrent con�gurations model the steady-state behavior of the system. Therefore,

the natural algorithmic question to ask about self-organized criticality for the Abelian sandpile

model is:

Question 4.1.1. How long in the worst case does it take for the process to reach its steady-state

behavior or, equivalently, a recurrent state?

Starting with an empty con�guration, if the vertex that receives the grain of sand is chosen
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uniformly at random in each step, Babai and Gorodezky [BG07] give a simple solution that is

polynomial in the number of edges of the graph using a coupon collector argument. In the worst

case, however, an adversary can choose where to place the grain of sand in each iteration. Babai

and Gorodezky analyze the transience class of the model to understand its worst-case behavior,

which is de�ned as the maximum number of grains that can be added to the empty con�guration

before the con�guration necessarily becomes recurrent. An upper bound for the transience class

of a model is an upper bound for the time needed to enter self-organized criticality.

4.1.1 Main Results

We give the �rst nearly tight bounds (up to polylogarithmic factors) for the transience class of

the Abelian sandpile model on the n × n grid with all boundary vertices connected to the sink.

This model was �rst studied in depth by Dhar, Ruelle, Sen, and Verma [DRSV95], and it has

since been the most extensively studied Abelian sandpile model due to its role in algebraic graph

theory, theoretical computer science, and statistical physics. Babai and Gorodezky [BG07] initially

established that the transience class of the grid is polynomially bounded by O(n30), which was

unexpected because there are graphs akin to the grid with exponential transience classes. Choure

and Vishwanathan [CV12] improved the upper bound for the transience class of the grid to O(n7)
and gave a lower bound of Ω(n3) by viewing the graph as an electrical network and relating the

Abelian sandpile model to random walks on the underlying graph. Moreover, they conjectured

that the transience class of the grid is O(n4), which we answer nearly a�rmatively.

Theorem 4.1.2. The transience class of the Abelian sandpile model on the n × n grid is O(n4 log4 n).
Theorem 4.1.3. The transience class of the Abelian sandpile model on the n × n grid is Ω(n4).
Our results establish how fast the system reaches its steady-state behavior in the adversarial case,

and they corroborate empirical observations about natural processes exhibiting self-organized
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criticality. Our analysis directly generalizes to higher-dimensional cubic hypergrids and gives the

following result.

Theorem 4.1.4. For any integer d ≥ 2, the transience class of the Abelian sandpile model on thed-dimensional cubic hypergrid with nd vertices is O(n3d−2 logd+2 n) and Ω(n3d−2).
In addition to addressing the main open problem in [BG07] and [CV12], we begin to shed

light on Babai and Gorodezky’s inquiry about sequences of graphs that exhibit polynomially

bounded transience classes. Speci�cally, for cubic hypergrids (a family of locally �nite graphs

with high symmetry) we quantify how the transience class grows as a function of the size and

local degree of the graph. When viewed through the lens of graph connectivity, such transience

class bounds are surprising because grids have low algebraic connectivity, yet we are able to make

global structural arguments using only the fact that grids have low maximum e�ective resistance

when viewed as electrical networks. By doing this, we avoid spectral analysis of the grid and

evade the main obstacle in Choure and Vishwanathan’s analysis. Our techniques suggest that low

e�ective resistance captures a di�erent but similar phenomenon to high conductance and high

edge expansion for stochastic processes on graphs. This distinction between the role of a graph’s

e�ective resistance and conductance could be an important step forward for building a theory

for discrete di�usion processes analogous to the mixing time of Markov chains. We also believe

our results have close connections to randomized, distributed optimization algorithms for �ow

and decomposition problems [BMV12, Bec+13, Meh13, SV16a, SV16b, SV16c, Chu+18], where the

dynamics of self-adjusting sandpiles (a Physarum slime mold in their model) are governed by

electrical �ows and resistances.

4.1.2 Techniques

Our approach is motivated by the method of Choure and Vishwanathan [CV12] for bounding the

transience class of the Abelian sandpile model on graphs using electrical potential theory and the
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analysis of random walks. Viewing the graph as an electrical network with a voltage source at

some vertex and a grounded sink, we give more accurate voltage estimates by carefully considering

the geometry of the grid. We use several lines of symmetry to compare escape probabilities of

random walks with di�erent initial positions, resulting in a new technique for comparing vertex

potentials. These geometric arguments can likely be generalized to other lattice-based graphs. As

a result, we get empirically tight inequalities for the sum of all vertex potentials in the grid and

the voltage drop between opposite corners of the network.

For many of our voltage bounds, we interpret a vertex potential as an escape probability

and decouple the corresponding two-dimensional random walks on the grid into independent

one-dimensional random walks on a path graph. Decoupling is the standout technique in this

chapter because it allows us to apply classical results about simple symmetric random walks on ℤ
(for example, the re�ection principle), which we extend as needed using conditional probability

arguments. By reducing from two-dimensional random walks to one-dimensional walks, we

utilize standard probabilistic tools including Stirling’s approximation, Cherno� bounds, and the

negative binomial distribution. Since we consider many di�erent kinds of events in our analysis,

Section 4.5 is an extensive collection of probability inequalities for symmetric t-step random walks

on ℤ with various boundary conditions. We noticed that some of these inequalities are directly

related to problems in enumerative combinatorics without closed-form solutions [ES77].

Lastly, we leverage well-known results about e�ective resistances of the n × n grid when

viewed as an electrical network. We follow Choure and Vishwanathan in using the potential

reciprocity theorem to swap the voltage source with any other non-sink vertex, but we use this

theorem repeatedly with the fact that the e�ective resistance between any non-sink vertex and the

sink is bounded between a constant and O(log n). This approach enables us to analyze tractable

one-dimensional random walk problems at the expense of polylogarithmic factors.
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4.2 Preliminaries

4.2.1 Abelian Sandpile Model

Let G = (V , E) be an undirected multigraph. Throughout this chapter, all of the graphs we consider

have a sink vertex denoted by vsink. The Abelian sandpile model is a dynamical system on a

graph G used to study the phenomenon of self-organized criticality. A con�guration � on G in the

Abelian sandpile model is a vector of nonnegative integers indexed by the non-sink vertices such

that �(v) denotes the number of grains of sand on vertex v. We say that a con�guration is stable

if �(v) < deg(v) for all non-sink vertices and unstable otherwise. An unstable con�guration �
moves towards stabilization by selecting a vertex v such that �(v) ≥ deg(v) and sending one grain

of sand from v to each of its neighboring vertices. This event is called a toppling of v, and it

creates a new con�guration � ′ such that � ′(v) = �(v) − deg(v), � ′(u) = �(u) + 1 for all vertices u
adjacent to v, and � ′(u) = �(u) for all remaining vertices. This procedure eventually reaches a

stable state because G has a sink. Moreover, the order in which vertices topple does not a�ect

the �nal stable state. The initial con�guration of the Abelian sandpile model is typically the zero

vector, and in each iteration a grain of sand is placed on a vertex (chosen either deterministically

or uniformly at random). The system evolves by stabilizing the con�guration and then receiving

another grain of sand.

A stable con�guration � is recurrent if the process can eventually return to � . Any state that

is not recurrent is transient. Note that once the system enters a recurrent state, it can never visit a

transient state. Babai and Gorodezky [BG07] introduced the following notion to upper bound on

the number of steps for the Abelian sandpile model to reach self-organized criticality.

De�nition 4.2.1. The transience class of the Abelian sandpile model of G is the maximum number

of grains that can be added to the empty con�guration before the con�guration necessarily

becomes recurrent. We denote this quantity by tcl(G).
In Section 4.3 we illustrate the transient con�gurations in the transient period of the Abelian
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(a) (b) (c) (d)

Figure 4.1: Con�gurations of the Abelian sandpile model on the 500×500 grid during its transience
period after placing (a) 1010, (b) 2 ⋅ 1010, (c) 4 ⋅ 1010, and (d) 8 ⋅ 1010 grains of sand on the vertex (1, 1).
sandpile model as it advances towards its critical state. We speci�cally show in this chapter that

by repeatedly placing grains of sand in the top-left corner of the grid, we maximize the length of

the transience period up to a polylogarithmic factor.

In earlier related works, Björner, Lovász, and Shor [BLS91] studied a variant of this process

without a sink and characterized the conditions needed for stabilization to terminate. They also

related the spectrum of the underlying graph to the rate at which the system converges. In

the model we study, an observation by Dhar [Dha90] and Kircho�’s theorem show that the

stable recurrent states of the system are in bijection with the spanning trees of G. Choure

and Vishwanathan [CV12] show that if every vertex in a con�guration has toppled then the

con�guration is necessarily recurrent, which we use to bound the transience class. The Abelian

sandpile model also has broad applications to algorithms and statistical physics, including a direct

relation to the q-state Potts model and Markov chain Monte Carlo algorithms for sampling random

spanning trees [Dha90, Wil10, JLP19, BCFR17, RS17]. For a comprehensive survey on the Abelian

sandpile model, see [Hol+08].

4.2.2 Random Walks on Graphs

A walk w on G is a sequence of vertices w (0), w (1), … , w (tmax) such that every w (t+1) is a neighbor

of w (t). We let tmax = |w| denote the number of steps in the walk. A random walk is a process
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that begins at vertex w (0), and at each time step t transitions from w (t) to w (t+1) such that w (t+1) is

chosen uniformly at random from the neighbors of w (t). Note that this de�nition naturally extends

to walking on a multigraph. We consider walks that continue until reaching a set of sink vertices,

so it will be convenient for our analysis to formally de�ne these families of walks.

De�nition 4.2.2. For any set of starting vertices S and terminating vertices T in the graph G, let

 (S → T) def= {w ∶ w (0) ∈ S, w (i) ∉ T ∪ {vsink} for 0 ≤ i < |w|, and w (|w|) ∈ T}
be the set of �nite walks from S to T .

Observe that this de�nition allows for walks w of length 0 if we have w (0) ∈ S ∩ T . Throughout the

chapter, it will be convenient to consider random walks from one vertex u to another vertex v or

the pair {v, vsink}. We denote these cases by the notation  (u → v) =({u} → {v}). If walks

on multiple graphs are being considered, we use G(u → v) to denote the underlying graph.

Lastly, we consider the set of nonterminating walks in our analysis, so it will be useful to de�ne

 (S) def= {w ∈ ∞∏i=0 V ∶ w (0) ∈ S and w (i) ≠ vsink for any i ≥ 0},
which is the set of in�nite walks from S. An analogous de�nition follows when S = {u}.

The focus of our study is the n × n grid graph, denoted by Gridn. Similar to previous works,

we do not follow the usual graph-theoretic convention of using n to denote the vertex count. Start

by denoting [n] = {1, 2, … , n}. We formally de�ne the one-dimensional projection of Gridn to be

Pathn, which has the vertex set [n] ∪ {vsink} and edges between i and i + 1 for every i ∈ [n − 1], as

well as two edges connecting vsink to 1 and n. Thus, vsink can be viewed as the set {0, n + 1}. If we

remove the sink (which can be thought of as letting vsink = ±∞) then the resulting graph is the

one-dimensional line with vertices i ∈ ℤ and edges between every pair (i, i + 1). We denote this

graph by Line and use the indices i, j, and k to represent its vertices. Analyzing random walks on
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Line is critical to our analysis. It will be useful to record the minimum and maximum position of

truncated t-step walks, so we de�ne the following functions.

De�nition 4.2.3. For an initial position s ∈ ℤ and walkw ∈(s) on Line, let the t-step minimum

and maximum positions be

min≤t(w) def= min(w (0), w (1), … , w (t))
and

max≤t(w) def= max(w (0), w (1), … , w (t)).
We construct Gridn similarly. Its vertices are [n]2 ∪ {vsink}, and its edges connect any pair of

vertices that di�er in one coordinate. Vertices on the boundary have edges connected to vsink so

that every non-sink vertex has degree 4. With this de�nition of Gridn, each corner vertex has two

edges to vsink and non-corner vertices on the boundary share one edge with vsink. Since all vertices

correspond to pairs of coordinates, we use the vector notation u = (u1,u2) to denote coordinates

on the grid, as it easily extends to higher dimensions. Throughout the chapter, boldfaced variables

denote vectors. A t-step random walk on Gridn naturally induces a (tmax + 1) × 2 matrix. We can

decouple such a walk w into its horizontal and vertical components, using the notation w1 for

the change in position of the �rst coordinate and w2 for the change in position of the second

coordinate. In general we use the notation wi to index into one of the dimensions i ∈ [d] of

a d-dimensional walk. We do not record duplicate positions when the walk takes a step in a

dimension di�erent than i, so we have |w| = |w1| + |w2| − 1 when d = 2 since the initial vertex is

present in both w1 and w2.
4.2.3 Electrical Networks

Vertex potentials are central to our analysis. They have close connections with electrical voltages

and belong to the class of harmonic functions [DS84]. We analyze their relation to the transience
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class of general graphs. For any non-sink vertex u, we can de�ne a unique potential function �u
such that �u(u) = 1, �u(vsink) = 0, and for all other vertices v ∈ V ⧵ {u, vsink} we have

�u(v) = 1
deg(v) ∑x∈N (v) �u(x),

where the sum is over the neighbors of v. Thus, �u(v) denotes the potential at v when the boundary

conditions are set to 1 at u and 0 at the sink. Since we analyze potential vectors in both Pathn
and Gridn, we use superscripts to denote the graph when context is unclear.

Choure and Vishwanathan showed that we can give upper and lower bounds on the transience

class using potentials, which we rephrase in the following theorem.

Theorem 4.2.4 ([CV12]). If G is a graph such that the degree of every non-sink vertex is bounded

by a constant, then

tcl(G) = O ( maxu,v∈V ⧵{vsink}(∑x∈V �u(x)) �u(v)−1)
and

tcl(G) = Ω( maxu,v∈V ⧵{vsink} �u(v)−1) .
All non-sink vertices have degree 4, so we can apply Theorem 4.2.4 to Gridn.

The following combinatorial interpretations of potentials as random walks is fundamental to

our investigation of the transience class of Gridn. Note that we use boldfaced vector variables for

non-sink vertices in Gridn as they can be identi�ed by their coordinates.

Fact 4.2.5 ([DS84, Chapter 1.3.2]). For any graph G and non-sink vertex u, the potential �u(v) is
the probability of a random walk starting at v and reaching u before vsink.

It follows from the escape probability interpretation of �u(v) and the law of total probability that
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we can decompose the voltage at a vertex as a sum of disjoint weighted walks.

Lemma 4.2.6. Let u be a non-sink vertex of Gridn. For any vertex v, we have

�u (v) = ∑w∈ (v→u) 4−|w|.
Proof. By de�nition, we have

�u (v) = ∑w∈ (v→u) 4−|w|∑w∈ (v→{u,vsink}) 4−|w| .
For any v ∈ V (Gridn), let f (v) = ∑w∈ (v→{u,vsink}) 4−|w|
be the normalizing constant for �u (v). It follows that f (u) = 1 and f (vsink) = 1, because the only

such walk for each has length 0. For all other v ∈ V (Gridn) ⧵ {u, vsink}, we have

f (v) = 14 ∑
x∈N (v) f (x).

Therefore, f (v) is a harmonic function with constant boundary values. It follows that f (v) = 1 for

all vertices v ∈ V (Gridn).
A systematic treatment of the connection between random walks and electrical networks can be

found in the monograph by Doyle and Snell [DS84] or the survey by Lovász [Lov93].

The e�ective resistance between a pair of vertices u and v, denoted as Re�(u, v), is a widely-

studied quantity in the design and analysis of algorithms, and it can be formalized in several ways.

In the electrical interpretation [DS84], e�ective resistance can be viewed as the voltage needed to

send one unit of current from u to v if every edge in G is a unit resistor. For a linear algebraic

de�nition of e�ective resistance, we direct the reader to [Ell+11].

We �rst present a classic result that states the e�ective resistance between opposite corners
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in an n × n resistor network is Θ(log n). Then we use Thompson’s principle of the electrical

�ow [DS84] and a triangle inequality for e�ective resistances to show that the e�ective resistance

between vsink and any internal vertex is bounded between a constant and O(log n). We note that

our proof of Lemma 4.2.8 easily generalizes to any pair of vertices in Gridn.
Proposition 4.2.7 ([LPW17, Proposition 9.16]). Let G be an n × n network of unit resistors. If u
and v are vertices at opposite corner vertices, then log(n − 1)/2 ≤ Re� (u, v) ≤ 2 log n.
Lemma 4.2.8. For any non-sink vertex u in Gridn, we have 1/4 ≤ Re� (vsink,u) ≤ 2 log n + 1.
Proof. We start by proving the lower bound 1/4 ≤ Re�(vsink,u). The e�ective resistance between

vertices vsink and u is the reciprocal of the total current �owing into the circuit when �u(u) = 1 and�u(vsink) = 0. Since �u is a harmonic function, we have �u(v) ≥ 0 for all v ∈ V (Gridn). Moreover,

we know that deg(u) = 4, so

Re�(vsink,u) = (∑
v∼u �u(u) − �u(v))−1 ≥ 14.

For the upper bound, we use Rayleigh’s monotonicity law, Proposition 4.2.7, and the triangle

inequality for e�ective resistances to show that Re�(vsink,u) ≤ 2 log n + 1, for n su�ciently large.

Rayleigh’s monotonicity law [DS84] states that if the resistances of a circuit are increased, the

e�ective resistance between any two points can only increase. The following triangle inequality

for e�ective resistances is given in [Tet91]:

Re� (u, v) ≤ Re� (u, x) + Re� (x, v) .
De�ne H to be the subgraph of Gridn obtained by deleting vsink and all edges incident to vsink.

Let m be the largest positive integer such that u1 + i ≤ n and u2 + j ≤ n for all 0 ≤ i, j < m, and

let H(u) be the subgraph of H induced by the vertex set {(u1 + i,u2 + j) ∶ 0 ≤ i, j < m}. We

71



can view H(u) as the largest square resistor network in H such that u is the top-left vertex. Let

v = [u1 + m − 1,u2 + m − 1] be the bottom-right vertex in H(u). Using in�nite resistors to remove

every edge in E(Gridn) ⧵ E(H(u)), we have

RGridn
e� (v,u) ≤ RH(u)e� (v,u)

by Rayleigh’s monotonicity law. Proposition 4.2.7 implies that RH(u)e� (v,u) ≤ 2 log n since m ≤ n.

The vertex v is incident to vsink in Gridn, so Rayleigh’s monotonicity law gives RGridn
e� (vsink, v) ≤ 1.

By the triangle inequality for e�ective resistances, we have

Re�(vsink,u) ≤ Re�(vsink, v) + Re�(v,u) ≤ 2 log n + 1,
which completes the proof.

Now we present the potential reciprocity lemma in Choure and Vishwanathan [CV12] to

analyze the transience class of the Abelian sandpile model. This result is particularly powerful

for Gridn graphs because we can combine it with Lemma 4.2.8 to swap the source vertex when

computing vertex potentials at the expense of a O(log n) factor. We note that reciprocity has

been studied in more general contexts and has been shown to be equivalent in some sense to

reversibility in ergodic Markov chains [Tet94].

Lemma 4.2.9 ([CV12, Potential Reciprocity]). Let G be a graph (not necessarily degree-bounded)

with sink vsink. For any pair of vertices u and v, we have
Re� (vsink, u) �u(v) = Re� (vsink, v) �v(u).

Lemma 4.2.10. For any non-sink vertices u and v in Gridn, we have �u (v) ≤ (8 log n + 4) �v (u).
Proof. This is a direct consequence of Lemma 4.2.8 and Lemma 4.2.9.
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Voltages and �ows on electrical networks are central to many recent developments in algo-

rithmic graph theory (e.g. modern maximum �ow algorithms and interior point methods [Chr+11,

Mad13]). The convergence of many of these algorithms depend on the extremal voltage values of

the electrical �ow that they construct. As a result, we believe some of our techniques are relevant

to the grid-based instantiations of these algorithms.

4.3 Upper Bounding the Transience Class

In this section we prove the upper bound in Theorem 4.1.2 for the transience class of the Abelian

sandpile model on the square grid. Our proof follows the framework of Choure and Vishwanathan

in that we use Theorem 4.2.4 to reduce the proof to bounding the following two quantities for any

non-sink vertex u ∈ V (Gridn):
• We upper bound the sum over all potentials ∑v∈V �u(v).
• We lower bound the potential �u(v) for all non-sink vertices v.

By symmetry we assume without loss of generality that u is in the top-left quadrant of Gridn
(i.e., we have 1 ≤ u1,u2 ≤ ⌈n/2⌉). The principal idea is to use reciprocity from Lemma 4.2.9 and

e�ective resistance bounds from Lemma 4.2.8 to swap source vertices and bound �v(u) instead, at

the expense of a O(log n) factor. The second key idea is to interpret potentials as random walks

using Fact 4.2.5 and then decouple two-dimensional walks on Gridn into separate horizontal

and vertical one-dimensional walks on Pathn. Using well-studied properties of one-dimensional

random walks, we achieve nearly tight bounds on tcl(Gridn).
We note that there is a natural trade-o� in the choice of the source vertex u. Choosing u

near the boundary decreases vertex potentials because a random walk has a higher probability of

escaping to vsink instead of u. This improves the upper bound of the sum of vertex potentials, but

it weakens the lower bound of the minimum vertex potential. For vertices u that are not near the
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(a) (b) (c)

Figure 4.2: Log-scale heat maps of the vertex potentials log �u(v) on the 150 × 150 grid with the
boundary conditions �u(u) = 1 and �u(vsink) = 0, where (a) u = (75, 75), (b) u = (30, 50), and (c)
u = (1, 1).
boundary, the opposite is true. Therefore, we need to accurately account for the choice of u in our

bounds. We illustrate this trade-o� phenomenon below in Figure 4.2.

4.3.1 Upper Bounding the Sum of Vertex Potentials

Lemma 4.3.1. For any non-sink vertex u in Gridn, we have
∑
v∈V �u (v) = O (u1u2 log3 n) .

Proof. We use Fact 4.2.5 and Lemma 4.2.6 to interpret vertex potentials as random walks. We can

omit vsink because any random walk starting there immediately terminates. By Lemma 4.2.10,

�u (v) = O (�v (u) log n) ,
so we can apply the random walk interpretation to potentials starting at u instead of v. Consider

one such walkw ∈ (u → v) and its one-dimensional decompositionsw1 andw2. The probability

of a walk from u reaching v is equal to the probability that two interleaved walks in Pathn starting

at u1 and u2 are present on v1 and v2, respectively, at the same time before either hits their

one-dimensional sink vsink = {0, n + 1}.
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If we remove the restriction that these walks are present on v1 and v2 at the same time

and only require that they visit v1 and v2 before hitting vsink, then each of these less restricted

walks wd belongs to the class Pathn (ud → vd ) . Viewing a walk w on Gridn as in�nite walk on

the lattice ℤ2 induces independence between w1 and w2. Thus, we obtain the upper bound

�v (u) = Prw∼ℤ2 (u) (w hits v before leaving Gridn)≤ Prw∼ℤ2 (u)[w1 hits v1 before vsink and w2 hits v2 before vsink]= Prw∼ℤ2 (u) (w1 hits v1 before vsink) ⋅ Prw∼ℤ2 (u) (w2 hits v2 before vsink)= �Pathn
v1 (u1) ⋅ �Pathn

v2 (u2).
Summing over all choices of v = (v1, v2), it follows that

∑
v∈V �v (u) ≤ ( n∑

v1=1 �Pathn
v1 (u1))( n∑

v2=1 �Pathn
v2 (u2)) .

The potentials of vertices in Pathn have the following closed-form solution, as shown in [DS84]:

�Pathn
v1 (u1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n+1−u1n+1−v1 if v1 ≤ u1,
u1
v1 if v1 > u1.

Splitting the sum at u1 and using the fact that potentials are escape probabilities, we have

n∑
v1=1 �Pathn

v1 (u1) ≤ u1 + n∑
v1=u1+1 u1v1 = O(u1 log n).

We obtain the upper bound of O(u2 log n) for the other dimension similarly. These bounds along

with the initial O(log n) overhead from swapping u and v gives the desired upper bound.
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4.3.2 Lower Bounding the Minimum Vertex Potential

The more involved part of this chapter proves a lower bound for the minimum vertex potentialminv∈V ⧵{vsink} �u(v) as a function of a �xed vertex u = (u1,u2). Recall that we assumed without

loss of generality that u is in the top-left quadrant of Gridn. We �rst prove that the minimum

potential occurs at vertex (n, n), the corner farthest from u. Using Lemma 4.2.10 to swap u

and (n, n) at the expense of a Ω(1/ log n) factor, we reduce the problem to giving a lower bound

for �(n,n)(u). Next, we decompose walks w ∈  (u → {(n, n), vsink}) into their one-dimensional

walks w1 ∈Pathn (u1) and w2 ∈Pathn (u2), and we interpret �(n,n)(u) as the probability that the

individual processes w1 and w2 are present on n at the same time before either walk leaves the

set [n]. Walks on Line that meet at n before escaping [n] are equivalent to walks on Pathn that

meet at n before terminating at vsink. Lastly, we use conditional probabilities to analyze walks on

Line instead of walks on Pathn so that we can leverage well-known facts about simple symmetric

random walks.

To lower bound the desired probability �(n,n)(u), we show that a subset of  (u → (n, n)) of

interleaved one-dimensional walks starting from u1 and u2 that �rst reach n in approximately the

same number of steps has a su�cient amount of probability mass. We prove this by observing that

the distributions of the number of steps for the walks to �rst reach n without leaving the set [n]
are concentrated around (n − u1)2 and (n − u2)2, respectively. Consequently, we show that this

distribution is approximately uniform in an Θ(n2) length interval, with each t-step walk having

probability Ω(u1n−3) and Ω(u2n−3). We then use Cherno� bounds to show that both walks take

approximately the same number of steps with constant probability. Combining these facts allows

us to achieve the desired lower bound Ω(u1u2n−4).
We �rst show that the corner vertex (n, n) has the minimum potential up to a constant factor.

Viewing potentials as escape probabilities, we utilize the geometry of the grid to construct maps

between sets of random walks that show the potential of an interior vertex is greater than its
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axis-aligned projection to the boundary of the grid.

Lemma 4.3.2. If u is a vertex in the top-left quadrant of Gridn, then for any non-sink vertex v,

�u (v) ≥ 116�u ((n, n)) .
Proof. We use Lemma 4.2.6 to decompose �u(v) as a sum of probabilities of walks, and then

construct maps for all v1, v2 ∈ [n] to show

�u ((v1, v2)) ≥ max{14�u ((n, v2)) , 14�u ((v1, n))} .
We begin by considering the �rst dimension:

�u ((v1, v2)) ≥ �u ((n, v2))4 .
Let �hor be the horizontal line of re�ection passing through (⌈(v1 + n)/2⌉, 1) and (⌈(v1 + n)/2⌉, n)
in ℤ2, and let u∗ be the re�ection of u over �hor. Note that u∗ may be outside of the n × n grid. Next,

de�ne the map f ∶ ((n, v2) → u) →  ((v1, v2) → u)
as follows. For any walk w ∈ ((n, v2) → u):

1. Start the walk f (w) at (v1, v2), and if n − v1 is odd move to (v1 + 1, v2).
2. Perform w but make opposite vertical moves before the walk hits �hor, so that the partial

walk is a re�ection over �hor.

3. After hitting �hor for the �rst time, continue performing w , but now use the original vertical

moves.

4. Terminate this walk when it �rst reaches u.
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Denote the preimage of a walk w′ ∈ ((v1, v2) → u) under f to be

f −1 (w′) = {w ∈ ((n, v2) → u) ∶ f (w) = w′} .
We claim that for any w′ ∈Gridn ((v1, v2) → u),

14 ∑w∈f −1(w′) 4−|w| ≤ 4−|w′ |.
If f −1(w′) = ∅ the claim is true, so assume f −1(w′) ≠ ∅. We analyze two cases. First, if w′ hits �hor,

then f −1(w′) contains exactly one walk w of length |w′| or |w′| − 1. If w′ does not hit �hor, then

f −1(w′) = {w ∈ ((n, v2) → u) ∶ w is a re�ection of w′ over �hor before w hits u∗}.
It follows that any walk w ∈ f −1(w′) can be split into w = w1w2, where w1 is the unique walk from(n, v2) to u∗ that is a re�ection of w′, and w2 is a walk from u∗ to u that avoids vsink and hits u

exactly once upon termination. Clearly w1 has length |w′| or |w′| − 1, and the set of admissible w2
is  (u∗ → u). Therefore, we have

14 ∑w∈f −1(w′) 4−|w| = 4−|w1 |−1 ∑w2∈ (u∗→u) 4−|w2 |= 4−|w1 |−1�u (u∗)≤ 4−|w′ |,
since �u(u∗) is an escape probability. Summing over all w′ ∈  ((v1, v2) → u), it follows from
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Lemma 4.2.6 and the previous inequality that

�u ((v1, v2)) = ∑w′∈ ((v1,v2)→u) 4−|w′ |
≥ ∑w′∈ ((v1,v2)→u) 14 ∑w∈f −1(w′) 4−|w|
≥ 14�u ((n, v2)) ,

because every w ∈ ((n, v2) → u) is the preimage of a w′ ∈ ((v1, v2) → u).
Similarly, we have �u ((v1, v2)) ≥ �u ((v1, n)) /4 for all v1 ∈ [n] by re�ecting walks over the

vertical line from (1, ⌈(n + v2)/2⌉) to (n, ⌈(n + v2)/2⌉). Combining inequalities proves the claim.

By decomposing two-dimensional walks on Gridn that start at u into one-dimensional walks

on Line, our lower bound relies on showing that there is an Θ(n2) length interval such that

each one-dimensional walk of a �xed length in this interval has probability Ω(u1n−3) or Ω(u2n−3),
respectively, of remaining above 0 and reaching n for the �rst time upon termination. Lower

bounds for this probability su�ce for our purpose, and they are a consequence of the following

key property for one-dimensional walks that we prove in Section 4.5.

Lemma 4.3.3. Let n ∈ ℤ≥1 and i ∈ [⌈n/2⌉] be any starting position. For any constant c > 4 and t ∈ ℤ
such that n2/c ≤ t ≤ n2/4 with t ≡ n − i (mod 2), a simple symmetric random walk w on ℤ satis�es

Prw∼Line(i) (w (t) = n,max≤t(w) = n, and min≤t(w) ≥ 1) ≥ e−2c−2 in3 .
Next, we give a constant lower bound for the probability of an n-step simple symmetric walk

being su�ciently close to its starting position. We prove this by using the recursive de�nition of

binomial coe�cients and a Cherno� bound for symmetric random variables.
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Lemma 4.3.4. For all n ≥ 10, we have
12n min⎧⎪⎪⎨⎪⎪⎩ ⌊3/4n⌋∑k=⌈1/4n⌉k odd

(nk), ⌊3/4n⌋∑k=⌈1/4n⌉k even
(nk)⎫⎪⎪⎬⎪⎪⎭ ≥ 25.

Proof. First observe that for n ≥ 10, we have

12n ⌊3/4n⌋∑k=⌈1/4n⌉k odd
(nk) ≥ 12n ∑k∈( n−14 , 3(n−1)4 ) (n − 1k )

and 12n ⌊3/4n⌋∑k=⌈1/4n⌉k even
(nk) ≥ 12n ∑k∈( n−14 , 3(n−1)4 ) (n − 1k ).

To see this, we exploit the parity restriction and expand the summands as (nk) = (n−1k−1) + (n−1k ). LetX1, X2, … , Xn−1 be independent Bernoulli random variables such that Pr (Xi = 0) = Pr (Xi = 1) = 1/2.

Letting Sn−1 = X1 + X2 +⋯ + Xn−1 and � = E[Sn−1] = (n − 1)/2, it follows from a Cherno� bound that

for n ≥ 60, we have

12n ∑k∈( n−14 , 3(n−1)4 ) (n − 1k ) = 12 [1 − Pr (|Sn−1 − �| ≥ 12 ⋅ �)] ≥ 12 − e−(n−1)/24 ≥ 25.
Checking the remaining cases numerically when 10 ≤ n < 60 proves the claim.

Using Lemma 4.3.3 with Lemma 4.3.4, we give a lower bound for �(n,n)(u), the probability that

a walk starting from u reaches (n, n) before vsink.

Lemma 4.3.5. For all n ≥ 10 and any vertex u in the top-left quadrant of Gridn, we have
�(n,n) (u) ≥ e−100u1u2n4 .

Proof. We decouple each walk w ∈  (u → (n, n)) into its horizontal walk w1 ∈ Line(u1) and
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vertical walk w2 ∈Line(u2). The potential �(n,n) (u) can be interpreted as the probability that w1
and w2 visit n at the same time before either leaves the interval [1, n]. We can further decompose

the t-step walks on Gridn into those that take t1 steps in the horizontal direction and t2 in the

vertical direction. Considering restricted instances where w1 and w2 visit n exactly once, we obtain

the following bound by Lemma 4.2.6:

�(n,n) (u) ≥ ∑w∼ (u→(n,n))w1 hits n exactly oncew2 hits n exactly once

4−|w|. (4.1)

Accounting for all the ways that the two one-dimensional walks can be interleaved, the right hand

side of Equation (4.1) is equal to

∑t1,t2≥0(t1+t2t1 )4t1+t2 (# of t1-step walks from u1 that stay in [n − 1] and terminate at n)
⋅ (# of t2-step walks from u2 that stay in [n − 1] and terminate at n) .

Observing that

Prw1∼ (u1) (w (t1)1 = n,max≤t1−1(w) = n − 1,min≤t1−1(w) ≥ 1)= (# of t1-step walks from u1 that stay in [n − 1] and terminate at n)2t1 ,
it follows from Equation (4.1) that

�(n,n) (u) ≥ ∑t1,t2≥0(t1+t2t1 )2t1+t2 Prw1∼ (u1) (w (t1)1 = n,max≤t1−1(w) = n − 1,min≤t1−1(w) ≥ 1)⋅ Prw2∼ (u2) (w (t2)2 = n,max≤t2−1(w) = n − 1,min≤t2−1(w) ≥ 1) .
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By our choice of n and u, the right hand side of inequality above equals

∑t1,t2≥5(t1+t2t1 )2t1+t2 [12Prw1∼ (u1) (w (t1−1)1 = n − 1,max≤t1−1(w) = n − 1,min≤t1−1(w) ≥ 1)]⋅ [12Prw2∼ (u2) (w (t2−1)2 = n − 1,max≤t2−1(w) = n − 1,min≤t2−1(w) ≥ 1)] . (4.2)

Letting t = t1 + t2, we can further re�ne the set of two-dimensional walks so that t ∈ [1/5n2, 1/4n2]
and t1, t2 ∈ [1/4t, 3/4t] while capturing a su�cient amount of probability mass for a useful lower

bound. Note that the parities of t1 and t2 satisfy t1 ≡ n − u1 (mod 2) and t2 ≡ n − u2 (mod 2) for

valid walks. Let I be an indexing of all such pairs (t1, t2). Working from Equation (4.2), we have

�(n,n) (u) ≥ ∑(t1,t2)∈I (t1+t2t1 )2t1+t2 (12e−2(20)−2u1n3)(12e−2(20)−2u2n3)≥ e−84u1u24n6 ∑t∈[1/5n2,1/4n2]t≡u1+u2 (mod 2)
25

≥ e−84u1u24n6 ⋅ n250 ⋅ 25≥ e−100u1u2n4 .
For the �rst inequality, we can apply Lemma 4.3.3 because t1, t2 ∈ [1/20n2, 3/16n2]. For the second

inequality, we group pairs (t1, t2) by their sum t = t1 + t2 and apply Lemma 4.3.4. The number of

step sizes t ∈ [1/5n2, 1/4n2] with either of the parity restriction is at least ⌊1/40n2⌋ ≥ 1/50n2.
We now combine the upper bound for the sum of potentials given by Lemma 4.3.1 and the

lower bounds in Section 4.3.2 to obtain the overall upper bound for the transience class of the grid.

Theorem 4.1.2. The transience class of the Abelian sandpile model on the n × n grid is O(n4 log4 n).
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Proof. For any u = (u1,u2) in the top-left quadrant of Gridn, we have

max
u,v∈V ⧵{vsink}(∑

x∈V �u(x)) �u(v)−1 ≤ max
u∈V ⧵{vsink}(∑

x∈V �u (x)) 16�u ((n, n))= max
u∈V ⧵{vsink}(∑

x∈V �u (x)) O (log n)�(n,n) (u)= max
u∈V ⧵{vsink}O (u1u2 log3 n)O (n4 log n

u1u2 )= O (n4 log4 n) .
The �rst inequality follows from Lemma 4.3.2, the second from Lemma 4.2.10, and the third from

Lemma 4.3.5 and Lemma 4.3.1. Therefore, the result follows from Theorem 4.2.4, which bounds

the transience class in terms of vertex potentials.

4.4 Lower Bounding the Transience Class

In this section we lower bound tcl(Gridn) using techniques similar to those in Section 4.3. Since

the lower bound in Theorem 4.2.4 considers the maximum inverse vertex potential over all pairs of

non-sink vertices u and v, it su�ces to upper bound �(n,n)((1, 1)). We lower bound vertex potentials

by decomposing two-dimensional walks on Gridn into one-dimensional walks on Line and then

upper bound the probability that a t-step walk on Line starting at 1 and ending at n does not

leave the set [n]. More speci�cally, our upper bound for �(n,n)((1, 1)) follows from Lemma 4.4.1

(which we prove in Section 4.5) and Fact 4.4.2.

Lemma 4.4.1. For all n ≥ 20 and t ≥ n − 1, we have
Prw∼Line(1) (w (t) = n,max≤t(w) = n, and min≤t(w) ≥ 1) ≤ min{e25n3 , 64 (nt )3}.

83



Fact 4.4.2. For any nonnegative integer t1 ∈ ℤ≥0, we have
∑t2≥0(t1 + t2t2 ) 12t1+t2 = 2.

Proof. This follows from the negative binomial distribution. In particular, observe that

∑t2≥0(t1 + t2t2 ) 12t1+t2 = 2 ∑t2≥0((t1 + 1) − 1 + t2t2 ) 12t1+1 ⋅ 12t2 = 2,
as desired.

By decoupling the two-dimensional walks in a way similar to the proof of Lemma 4.3.5, we

apply Lemma 4.4.1 to the resulting one-dimensional walks to achieve the desired upper bound.

Lemma 4.4.3. For all n ≥ 20, we have
�(n,n)((1, 1)) ≤ 2max{Prw∼ (1) (w (t) = n,max≤t(w) = n,min≤t(w) ≥ 1) ∶ t ∈ ℤ≥0}⋅ ∑t≥0 Prw∼ (1) (w (t) = n,max≤t(w) = n,min≤t(w) ≥ 1) .

Proof. Analogous to our lower bound for �(n,n)((1, 1)), decouple each walk w ∈ ((1, 1) → (n, n))
into its horizontal walk w1 ∈Line(1) and its vertical walk w2 ∈Line(1). We view �(n,n) ((1, 1)) as

the probability that the walks w1 and w2 are present on n at the same time before either leaves

the set [n]. Letting t1 be the length of w1 and t2 be the length of w2, we relax the conditions on

the one-dimensional walks and only require that w1 and w2 both be at vertex n on the �nal stept = t1 + t2. Note that both of the walks could have previously been present on n at the same time

before terminating. This gives the following upper bound:

�(n,n) ((1, 1)) ≤ ∑t1,t2≥0(t1+t2t1 )2t1+t2 Prw1∼ (1) (w (t1)1 = n,max≤t1(w) = n,min≤t1(w) ≥ 1)⋅ Prw2∼ (1) (w (t2)2 = n,max≤t2(w) = n,min≤t2(w) ≥ 1) .
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Nesting the summation above gives us

�(n,n) ((1, 1)) ≤ ∑t1≥0 Prw1∼ (1) (w (t1)1 = n,max≤t1(w) = n,min≤t1(w) ≥ 1)
⋅ ∑t2≥0 (t1+t2t1 )2t1+t2 Prw2∼ (1) (w (t2)2 = n,max≤t2(w) = n,min≤t2(w) ≥ 1) .

Using Fact 4.4.2, we can upper bound the inner sum by

∑t2≥0 (t1+t2t1 )2t1+t2 Prw2∼ (1) (w (t2)2 = n,max≤t2(w) = n,min≤t2(w) ≥ 1)≤ 2max{Prw2∼ (1) (w (t2)2 = n,max≤t2(w) = n,min≤t2(w) ≥ 1) ∶ t2 ∈ ℤ≥0} .
Factoring out the inner upper bound and using the symmetric of the walks completes the proof.

The upper bound on the maximum term in the right hand side of Lemma 4.4.3 follows im-

mediately from Lemma 4.4.1. Now we upper bound the summation in the right hand side of

Lemma 4.4.3 using a simple application of Lemma 4.4.1.

Lemma 4.4.4. For n ≥ 20 and w ∼Line(1), we have
∑t≥0 Pr (w (t) = n,max≤t(w) = n,min≤t(w) ≥ 1) ≤ e25n .

Proof. We start by partitioning the summation as

∑t≥0 Pr (w (t) = n,max≤t(w) = n,min≤t(w) ≥ 1) = ∑0≤t≤n2 Pr (w (t) = n,max≤t(w) = n,min≤t(w) ≥ 1)+ ∑t>n2 Pr (w (t) = n,max≤t(w) = n,min≤t(w) ≥ 1) .
Our goal is to bound both terms by O(1/n). The upper bound for the �rst term follows immediately
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from Lemma 4.4.1 and the fact that we are summing n2 + 1 terms starting with t = 0:
∑0≤t≤n2 Pr (w (t) = n,max≤t(w) = n,min≤t(w) ≥ 1) ≤ e25n .

To upper bound the second sum, we use the other component of Lemma 4.4.1. If t > n2, then

Pr (w (t) = n,max≤t(w) = n,min≤t(w) ≥ 1) ≤ 64 (nt )3 .
Since 64(n/t)3 is a decreasing function in t , we have

64 (nt )3 ≤ ∫ t
t−1 64 (nt )3 dt.

Therefore, we can bound the in�nite sum by the integral

∑t>n2 Pr (w (t) = n,max≤t(w) = n,min≤t(w) ≥ 1) ≤ ∫ ∞
n2 64 (nt )3 dt = 32n .

This completes the proof since both parts of the sum are bounded by O(1/n).
We can now easily combine the lemmas in this section with the bounds that relate vertex

potentials to the lower bound for the transience class of Gridn.
Theorem 4.1.3. The transience class of the Abelian sandpile model on the n × n grid is Ω(n4).
Proof. Applying Lemma 4.4.3 and then Lemma 4.4.1 and Lemma 4.4.4, it follows that

�(n,n)((1, 1)) ≤ 2max{Prw∼ (1) (w (t) = n,max≤t(w) = n,min≤t(w) ≥ 1) ∶ t ∈ ℤ≥0}⋅ ∑t≥0 Prw∼ (1) (w (t) = n,max≤t(w) = n,min≤t(w) ≥ 1)≤ 2e25n3 ⋅ e25n≤ e100n4 .
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Therefore, we have �(n,n)((1, 1))−1 = Ω(n4). Since the voltage at (n, n) gives a bound on the global

minimum, it follows from Lemma 4.3.2 and Theorem 4.2.4 that we have tcl(Gridn) = Ω(n4).
4.5 Simple Symmetric RandomWalks

Our proofs for upper and lower bounding the transience class on the grid heavily relies on

decoupling two-dimensional walks into independent one-dimensional walks, as they are much

easier to analyze. This idea is immediately apparent when working with vertex potentials for

one-dimensional walks on the path, which we used in the proof of Lemma 4.3.1.

We assumed, however, two essential lemmas about one-dimensional walks to prove the lower

and upper bound of the minimum vertex potential. Therefore, in this section we examine the

probability

Prw∼Line(i) (w (t) = n,max≤t(w) = n,min≤t(w) ≥ 1), (4.3)

and we prove the required lower and upper bounds in Lemma 4.3.3 and Lemma 4.4.1 by extending

previously known properties of simple symmetric random walks on ℤ. The key ideas behind these

proofs are that: the position of a walk in one dimension follows the binomial distribution, the

number of walks reaching a maximum position in a �xed number of steps has an explicit formula,

and there are tight bounds for binomial coe�cients via Stirling’s approximation.

The properties we need do not immediately follow from previously known facts because we

assume strict conditions on both the minimum and maximum positions. In Section 4.5.2 we give

proofs of known explicit expressions for the maximum and minimum position of a walk, along

with several useful facts that follow from this proof. In Section 4.5.3 we apply Stirling’s bound to

give accurate lower bounds on a range of binomial coe�cients. In Section 4.5.4 and Section 4.5.5 we

prove several necessary preliminary lower bound lemmas. In Section 4.5.5 we prove Lemma 4.3.3,

and in Section 4.5.6 we develop upper bound lemmas that are necessary to prove Lemma 4.4.1.
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4.5.1 Lower and Upper Bounding Equation 4.3

Lower Bound. In order to lower bound Equation (4.3), we split the desired probability into the

product of two probabilities using the de�nition of conditional probability, and then we lower

bound each term:

• In Lemma 4.5.6 we show for lengths t ∈ Θ(n2) that the probability of a random walk on ℤ
starting at i ∈ [⌈n/2⌉] satis�es

Prw∼ (i) (min≤t(w) ≥ 1) = Ω( in) .
• In Lemma 4.5.8 and Lemma 4.5.7 we bound the probability that a walk starting at i ∈ [⌈n/2⌉]

of length t ∈ Θ(n2) reaches n at step t without ever having gone above n, conditioned on

never dropping below 1:
Pr (w (t) = n,max≤t(w) = n | min≤t(w) ≥ 1) = Ω( 1n2) .

Lemma 4.3.3 immediately follows by multiplying these two bounds together. This approach

allows us to separate proving a minimum and maximum, and in turn simpli�es applying known

bounds on binomial distributions. Speci�cally, Lemma 4.5.6 is an immediate consequence of

explicit expressions for the minimum point of a walk and bounds on binomial coe�cients, both of

which we rigorously explore in Section 4.5.2.

Our results yield a known explicit expression for the probability of the walk reaching n at

step t , while always staying to the left of n. All that remains from here is to condition the walk

to not go to the left of 1. Note that 1 is in the opposite direction of n with respect to the starting

position i. Formally, we show that the probability of reaching n without going above n only

improves if the walk cannot move too far in the opposite direction—but only for t ≤ (n − i + 1)2,
thus explaining the reason why we need to upper bound t by n2/4.
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Upper Bound. The desired lemma only concerns walks starting at i = 1, which are critical for

our proofs. The key idea is to split the walk in half and consider the probability that the necessary

conditions are satis�ed in the �rst t/2 steps and in the second t/2 steps. The midpoint of the walk

at t/2 steps can be any point in the set [n], so we must sum over all these possible midpoints.

Removing the upper and lower bound conditions, respectively, then gives the upper bound in

Lemma 4.5.9:

Prw∼ (1) (w (t) = n,max≤t(w) = n,min≤t(w) ≥ 1) ≤ n∑i=1 Prw∼ (1) (w (⌊t/2⌋) = i,min≤⌊t/2⌋(w) ≥ 1)⋅ Prw∼ (i) (w (⌈t/2⌉) = n,max≤⌈t/2⌉(w) = n) .
Given that the �rst (t/2)-step walk starts at 1 and the second (t/2)-step walk ends at n, the

conditions min≤t(w) ≥ 1 for the �rst walk and max≤⌈ t2 ⌉(w) = n for the second walk are the di�cult

properties for each walk to satisfy. Next we apply facts proved in Section 4.5.2 to obtain expressions

for each term in the summation. The remainder of the upper bound analysis focuses on bounding

these expressions.

4.5.2 Maximum Position of a Random Walk

As previously mentioned, our proofs leverage well-known facts about the maximum and minimum

position of a random walk, along with tight bounds for these probabilities. This section �rst gives

the result about the maximum and minimum positions of random walks, as well as a connection

to Stirling’s approximation.

If we are only concerned with a single end point, we can �x the starting location to be 0 by

shifting accordingly. In these cases, the following bounds are well-known from probability theory.
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Fact 4.5.1 ([RB79, Chapter 3.21]). For any t, n ∈ ℤ≥0, we have

Prw∼ (0) (max≤t(w) = n) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Pr (w (t) = n) = ( tt+n2 ) 12t if t + n ≡ 0 (mod 2),
Pr (w (t) = n + 1) = ( tt+n+12 ) 12t if t + n ≡ 1 (mod 2).

Proof. For any k ≤ n, consider a walk w ∈ (0) that satis�es w (t) = k and max≤t(w) ≥ n. Let t ∗ be

the �rst time that w (t) = n, and construct the walk m ending at 2n − k such that

m(i) = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
w (i) if 0 ≤ i ≤ t ∗,2n − w (i) if t ∗ < i ≤ t.

This re�ection map is a measure-preserving bijection, so for k ≤ n we have

Prw∼ (0) (w (t) = k,max≤t(w) ≥ n) = Prw∼ (0) (w (t) = 2n − k) . (4.4)

Subtracting the probability of the maximum position being at least n + 1 gives us

Prw∼Line(0) (w (t) = k,max≤t(w) = n) = Prw∼Line(0) (w (t) = 2n − k) − Prw∼Line(0) (w (t) = 2(n + 1) − k) .
Summing over all k ≤ n, it follows that

Prw∼Line(0) (max≤t(w) = n) = Prw∼Line(0) (w (t) = n) + Prw∼Line(0) (w (t) = n + 1) .
Considering the parity of t and n completes the proof.

This proof of Fact 4.5.1 contains two intermediate expressions for probabilities similar to the

ones we want to bound.

90



Fact 4.5.2. For any integers n ≥ 0 and k ≤ n, we have
Prw∼ (0) (w (t) = k,max≤t(w) ≥ n) = Prw∼ (0) (w (t) = 2n − k) .

Proof. This is the intermediate Equation (4.4) in the proof of Fact 4.5.1.

Fact 4.5.3. Let t, n ∈ ℤ≥0. For any integer k ≤ n, we have
Prw∼ (0) (w (t) = k,max≤t(w) = n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
( tt+2n−k2 ) 12t ⋅ 4n−2k+2t+2n−k+2 if t + k ≡ 0 (mod 2),0 if t + k ≡ 1 (mod 2).

Proof. Using Fact 4.5.1 and analyzing the parity of the walks gives us

( tt+2n−k2 ) 12t − ( tt+2n−k+22 ) 12t = ( tt+2n−k2 ) 12t − t − 2n + kt + 2n − k + 2( tt+2n−k2 ) 12t= ( tt+2n−k2 ) 12t ⋅ 4n − 2k + 2t + 2n − k + 2,
as desired.

4.5.3 Lower Bounding Binomial Coe�cients

Ultimately, our goal is to give tight lower bounds on closely related probabilities to the ones in

Section 4.5.2. To do so, we use various bounds for binomial coe�cients that are consequences of

Stirling’s approximation.

Fact 4.5.4 (Stirling’s Approximation). For any positive integer n, we have
√2�nn+1/2e−n ≤ n! ≤ enn+1/2e−n.

An immediate consequence of this is a concentration bound for the binomial coe�cients.
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Fact 4.5.5. Let c, n ∈ ℝ>0 satisfy c < √n. For any integer k ∈ [1/2(n − c√n), 1/2(n + c√n)], we have
(nk) ≥ e−1−c2 2n√n .

Proof. Substituting Stirling’s approximation to the de�nition of binomial coe�cients gives

( nn−c√n2 ) = n!(n−c√n2 )! (n+c√n2 )!≥ √2�n (ne )ne√n−c√n2 (n−c√n2e ) n−c√n2 e√n+c√n2 (n+c√n2e ) n+c√n2

≥ 2√2�e2√n ⋅ 2n(1 − c2n ) n2 (1 − c√n)− c√n2 (1 + c√n) c√n2

≥ 2√2�e2+c2 ⋅ 2n√n≥ e−1−c2 ⋅ 2n√n ,
as desired.

4.5.4 Lower Bounding the Minimum Position

Now we bound the probability of the minimum position of a walk in  (i) being at least 1 after

taking exactly t steps.

Lemma 4.5.6. For any positive integer n, initial position i ∈ [⌈n/2⌉], and constant c > 4, if the step
size t ∈ [n2/c, n2/4] then

Prw∼ (i) (min≤t(w) ≥ 1) ≥ e−1−c in .
Proof. First observe that

Prw∼ (i) (min≤t(w) ≥ 1) = i∑k=1 Prw∼ (i) (min≤t(w) = k) .
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By the symmetry of re�ection, this sum is equal to

i−1∑k=0 Prw∼ (0) (max≤t(w) = k) .
For each integer 0 ≤ k ≤ i − 1, Fact 4.5.1 implies that

Prw∼ (0) (max≤t(w) = k) ≥ min{( tt+k2 ) 12t , ( tt+k+12 ) 12t} .
Using the assumption that k ≤ k + 1 ≤ i ≤ n ≤ √ct , we can apply Fact 4.5.5 to give us

min{( tt+k2 ) 12t , ( tt+k+12 ) 12t} ≥ ( tt+√ct2 ) 12t ≥ e−1−c 1√t ≥ e−1−c 1n .
The �nal inequality follows from t ≤ n2/4. Summing over 0 ≤ k ≤ i−1 gives the desired bound.

4.5.5 Lower Bounding the Final and Maximum Position

We can similarly use binomial coe�cient approximations to bound the probability of a t-step walk

terminating at n while never advancing to a position greater than n.

Lemma 4.5.7. For any initial position i ∈ [⌈n/2⌉] and step size max{n, n2/c} ≤ t ≤ n2/4 satisfyingt ≡ n − i (mod 2), we have
Prw∼ (i) (max≤t(w) = n, w (t) = n) ≥ e−1−c 1n2 .

Proof. By symmetry, we can rewrite the probability as

Prw∼ (0) (max≤t(w) = n − i, w (t) = n − i) .
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Fact 4.5.3 gives that this probability equals to

Prw∼ (0) (max≤t(w) = n − i, w (t) = n − i) = 12t( tt+n−i2 ) 2(n − i + 1)t + n − i + 2.
We bound the last two terms separately using our assumptions on t and i. Setting i = 0 minimizes

the binomial ( t(t+n−i)/2) for all i ≥ 0. Setting i = ⌈n/2⌉ in the numerator and i = 0 and t = n2/4 in the

denominator minimizes the term 2(n − i + 1)/(t + n − i + 2). It follows that

12t( tt+n2 )2(⌊n/2⌋ + 1)n2/4 + n + 2 ≥ 12t( tt+n2 ) nn2 .
We reapply Fact 4.5.5 with the observation that n ≤ √ct , which gives us

12t( tt+√ct2 )1n ≥ 2√2�e2+c ⋅ √cn2 ≥ e−1−c 1n2 ,
as desired.

It remains to condition on the minimum position of a walk. This hinges on the following

statement, which shows that moving in the opposite direction can only decrease the probability

of a walk starting at some i ∈ [⌈n/2⌉] and ending at n without ever exceeding n.

Lemma 4.5.8. Let i ∈ [⌈n/2⌉] be the starting position. At each step t ≤ n2/4 with t ≡ n − i (mod 2),
we have

Prw∼ (i) (w (t) = n,max≤t(w) = n) ≥ Prw∼ (i) (w (t) = n,max≤t(w) = n | min≤t(w) ≤ 0) .
Proof. Condition on the even min≤t(w) ≤ 0 and consider the �rst time t ∗ the walk hits 0. This means

that i ≡ t ∗ (mod 2) and in turn n ≡ t −t ∗ (mod 2). The probability of the event max≤t(w) = w (t) = n
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during the steps t ∗ + 1,… , t is then at most

Prw∼ (0) (w (t−t∗) = max≤t−t∗(w) = n) .
Note that we have the inequality because it is possible that we already have max≤t∗(w) > n.

Therefore, it su�ces to show for any n and any t ∗ ∈ [t] that

Prw∼ (0) (w (t−t∗) = max≤t−t∗(w) = n) ≤ Prw∼ (i) (w (t) = max≤t(w) = n) .
There are two variables that are shifted from one side of the inequality to the other: the starting

position of the walk and the number of steps. In order to prove the inequality, we show that taking

more steps and starting further to the right of i can only improve the probability of ending at n
and not going above n.

We start by showing that taking more steps only improves this probability. Concretely, we

show that

Prw∼ (0) (w (t−t∗) = max≤t−t∗(w) = n)≤ max{Prw∼ (0) (w (t−1) = max≤t−1(w) = n) , Prw∼ (0) (w (t) = max≤t(w) = n)}.
There is no guarantee that t ≡ n (mod 2), so we need to consider t or t − 1 steps depending on the

parity. We are guaranteed, however, that t − 1 ≥ t − t ∗ since t ∗ ≥ 1, so without loss of generality,

we assume t ≡ t ∗ (mod 2) and show

Prw∼ (0) (w (t−t∗) = max≤t−t∗(w) = n) ≤ Prw∼ (0) (w (t) = max≤t(w) = n) .
Note that the proof is equivalent when t − 1 ≡ t ∗ (mod 2).
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Using Fact 4.5.3, we have an explicit expression for this probability:

Prw∼ (0) (max≤t(w) = w (t) = n) = 12t( tt+n2 ) 2n + 2t + n + 2.
Substituting t by t − 2 into the equation above and comparing both sides implies that

Prw∼ (0) (w (t−2) = max≤t−2(w) = n) ≤ Prw∼ (0) (w (t) = max≤t(w) = n) ,
because we know from the assumption that

12t−2( t − 2t+n2 − 1)2n + 2t + n ≤ 12t( tt+n2 ) 2n + 2t + n + 2 ⟺ (t − 2)!( t+n−22 )! ( t−n−22 )!(t + n) ≤ t!4 ( t+n2 )! ( t−n2 )!(t + n + 2)⟺ 1t + n ≤ t(t − 1)(t + n)(t − n)(t + n + 2)⟺ 3t ≤ n2 + 2n.
Inductively applying this argument inductively for t − 2 proves the inequality.

To complete the proof, it now su�ces to consider the starting position i and show that

max{Prw∼ (0) (w (t−1) = max≤t−1(w) = n) , Prw∼ (0) (w (t) = max≤t(w) = n)}≤ Prw∼ (i) (w (t) = max≤t(w) = n) .
We approach this inequality similarly. First, rewrite the right hand side using the fact that

Prw∼ (i) (w (t) = max≤t(w) = n) = Prw∼ (0) (w (t) = max≤t(w) = n − i) ,
and assume that t ≡ n (mod 2), which implies n ≡ n− i (mod 2). Again, using the explicit formula
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from Fact 4.5.3 and substituting n by n − 2 gives us

Prw∼ (0) (w (t) = max≤t(w) = n) ≤ Prw∼ (0) (w (t) = max≤t(w) = n − 2) ,
for t + 2 ≤ n2. This is true because of our initial assumption, and it can be inductively applied

until n − i + 2 because n − i + 2 ≥ ⌈n/2⌉ + 1. Unfortunately, we cannot apply the same proof whent − 1 ≡ n (mod 2) because this would imply that n ≢ n − i (mod 2). Applying the same proof as

for t ≡ n (mod 2) allows us to obtain the inequality

Prw∼ (0) (w (t−1) = max≤t−1(w) = n) ≤ Prw∼ (0) (w (t−1) = max≤t−1(w) = n − i + 1) ,
because (t − 1) + 2 ≤ (n − i + 3)2. Therefore, we can conclude the proof by showing that

Prw∼ (0) (w (t−1) = max≤t−1(w) = n − i + 1) ≤ Prw∼Line(0) (w (t) = max≤t(w) = n − i) .
This is then true if and only if

n − i ≤ tt − (n − i) ⋅ (n − i + 1),
which holds for all integers n − i ≥ 0.

An immediate corollary of Lemma 4.5.8 is that if we condition on the walk not going to the

left of 1, it only becomes more probable to reach n without going above n. Now we prove the

main result of this section.

Lemma 4.3.3. Let n ∈ ℤ≥1 and i ∈ [⌈n/2⌉] be any starting position. For any constant c > 4 and t ∈ ℤ
such that n2/c ≤ t ≤ n2/4 with t ≡ n − i (mod 2), a simple symmetric random walk w on ℤ satis�es

Prw∼Line(i) (w (t) = n,max≤t(w) = n, and min≤t(w) ≥ 1) ≥ e−2c−2 in3 .
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Proof. Consider any starting position i ∈ [⌈n/2⌉]1 and time n2/c ≤ t ≤ n2/4 with t ≡ n − i (mod 2).
From the de�nition of conditional probability, we have

Prw∼ (i) (w (t) = n,max≤t(w) = n,min≤t(w) ≥ 1) = Prw∼ (i) (w (t) = n,max≤t(w) = n | min≤t(w) ≥ 1)⋅ Prw∼ (i) (min≤t(w) ≥ 1) .
Lemma 4.5.6 shows that the second term is at least exp(−1 − c)i/n. Considering the probability

of the event min≤t(w) ≥ 1 (i.e., the complement of min≤t(w) < 1) and using Lemma 4.5.8 allows us

to upper bound the �rst term by Lemma 4.5.7. It follows from these results that

Prw∼ (i) (w (t) = n,max≤t(w) = n | min≤t(w) ≥ 1) ≥ Prw∼ (i) (w (t) = n,max≤t(w) = n)≥ e−1−c 1n2 .
Putting both inequalities together then gives us

Prw∼ (i) (w (t) = n,max≤t(w) = n,min≤t(w) ≥ 1) ≥ e−1−c in ⋅ e−1−c 1n2= e−2−2c in3 ,
which completes the proof.

4.5.6 Upper Bounding the Final, Maximum, and Minimum Position

We begin by splitting every t-step walk in half, and instead consider the probability of each walk

satisfying the given conditions. In order to give upper bounds for these probabilities, we relax the

requirements, which allows us to more easily relate the probabilities to previously known facts

about one-dimensional walks that we proved in Section 4.5.2. Additionally, we have to consider

all the possible midpoints in [n] because we partitioned the walks.
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Lemma 4.5.9. For any integer n ∈ [t], we have
Prw∼ (1) (w (t) = n,max≤t(w) = n,min≤t(w) ≥ 1) ≤ n∑i=1 Prw∼ (1) (w (⌊t/2⌋) = i,min≤⌊t/2⌋(w) ≥ 1)⋅ Prw∼ (i) (w (⌈t/2⌉) = n,max≤⌈t/2⌉(w) = n) .

Proof. By subdividing the length of the walk in half, we consider all possible positions of the walk

after half of its steps such that the walk satis�es the maximum and minimum conditions. The

second half of the walk must end at n, which implies the maximum position of the walk must be

at least n. Thus, the �rst half of the walk only needs to not go above n. Accordingly, we can write

Prw∼ (1) (w (t) = n,max≤t(w) = n,min≤t(w) ≥ 1)= n∑i=1 Prw∼ (1) (w (⌊t/2⌋) = i,max≤⌊t/2⌋(w) ≤ n,min≤⌊t/2⌋(w) ≥ 1)⋅ Prw∼ (i) (w (⌈t/2⌉) = n,max≤⌈t/2⌉(w) = n,min≤⌈t/2⌉(w) ≥ 1) .
Relaxing the requirements that the random walks must satisfy cannot decrease the probability, so

our upper bound follows.

Using Fact 4.5.3 we can obtain explicit expressions for each inner term of the summation. We

then simplify these expression to achieve a tight bound for the summation in the following lemma.

Lemma 4.5.10. For all integers n ∈ [t], we have
Prw∼ (1) (w (t) = n,max≤t(w) = n,min≤t(w) ≥ 1)≤ n∑i=1 16i(n − i + 1)t2 ( ⌊t/2⌋⌊t/2⌋+i−12 ) 12⌊t/2⌋( ⌈t/2⌉⌈t/2⌉+(n−i+1)−12 ) 12⌈t/2⌉ .

Proof. Apply the upper bound in Lemma 4.5.9 and examine each inner term in the summation.

By the symmetry of the walks, there must be an equivalent number of ⌊t/2⌋ step walks with

endpoints 1 and i that never walk below the position 1 versus those that never walk above i.
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Therefore, we have

Prw∼ (1) (min≤⌊t/2⌋(w) ≥ 1, w (⌊t/2⌋) = i) = Prw∼ (1) (max≤⌊t/2⌋(w) ≤ i, w (⌊t/2⌋) = i) .
Shifting the start of the walk to 0 allows us to apply Fact 4.5.3 because max≤⌊t/2⌋(w) ≤ i is equivalent

to max≤⌊t/2⌋(w) = i if the walk is required to end at i. It follows that

Prw∼ (1) (min≤t(w) ≥ 1, w (⌊t/2⌋) = i) = 2i⌊t/2⌋ + i + 1( ⌊t/2⌋⌊t/2⌋+i−12 ) 12⌊t/2⌋ ,
if the parity is correct and 0 otherwise. This works well for us as an upper bound. Similarly, by

shifting the starting position to 0 and applying Fact 4.5.3, we also have

Prw∼ (i) (w (⌈t/2⌉) = n,max≤⌈t/2⌉(w) = n) = 2(n − i + 1)⌈t/2⌉ + (n − i + 1) + 1( ⌈t/2⌉⌈t/2⌉+(n−i+1)−12 ) 12⌈t/2⌉ .
Applying Lemma 4.5.9, we now have expressions for the term inside the summation, so

Prw∼ (1) (w (⌊t/2⌋) = i,min≤⌊t/2⌋(w) ≥ 1) ⋅ Prw∼ (i) (w (⌈t/2⌉) = n,max≤⌈t/2⌉(w) = n)= 2i⌊t/2⌋ + i + 1( ⌊t/2⌋⌊t/2⌋+i−12 ) 12⌊t/2⌋ ⋅ 2(n − i + 1)⌈t/2⌉ + (n − i + 1) + 1( ⌈t/2⌉⌈t/2⌉+(n−i+1)−12 ) 12⌈t/2⌉≤ 16i(n − i + 1)t2 ( ⌊t/2⌋⌊t/2⌋+i−12 ) 12⌊t/2⌋( ⌈t/2⌉⌈t/2⌉+(n−i+1)−12 ) 12⌈t/2⌉ .
The �rst equality follows from the fact that

(⌊ t2⌋ + i + 1)(⌈ t2⌉ + (n − i + 1) + 1) ≥ t24 .
This allows us to derive the desired upper bound and complete the proof.

The following lemma gives an upper bound for the inner expression in Lemma 4.5.10 by bound-

ing the binomial coe�cients via the central binomial coe�cients and Stirling’s approximation.
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Lemma 4.5.11. For any integer i ∈ [n], we have
16i(n − i + 1)t2 ( ⌊t/2⌋⌊t/2⌋+i−12 ) 12⌊t/2⌋( ⌈t/2⌉⌈t/2⌉+(n−i+1)−12 ) 12⌈t/2⌉ ≤ 64n2t3 .

Proof. Given that i ∈ [n], we can crudely upper bound i(n − i + 1) by n2. Additionally, we can

will use Stirling’s approximation for the central binomial coe�cient to upper bound our binomial

coe�cients by

( ⌈t/2⌉⌈t/2⌉+(n−i+1)−12 ) ≤ 2⌈t/2⌉ ⋅ 1√⌈t/2⌉ ,
and

( ⌊t/2⌋⌊t/2⌋+i−12 ) ≤ 2⌊t/2⌋ ⋅ 1√⌊t/2⌋ .
The exponential terms cancel each other out, so we are left with

1√⌈t/2⌉ ⋅ 1√⌊t/2⌋ ≤ 4t ,
which leads us to the desired upper bound.

The upper bound in Lemma 4.5.11 is not su�cient for t that are asymptotically less than n2,
so for these values of t we need to give a more detailed analysis. Therefore, we more carefully

examine the binomial coe�cients that are signi�cantly smaller than the central coe�cient for

small t . Consequently, the exponential terms will not cancel out in the same way as before in this

case. More speci�cally, we show that the function of t on the right hand side of Lemma 4.5.10 is

increasing in t until approximately n2.
In the following lemma we consider even length walks for simplicity, but the proof for odd

length walks follows analogously.
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Lemma 4.5.12. Let n ≥ 20 and i ∈ [n] be integers. For all t ≤ n2/40, we have
16i(n − i + 1)(2t)2 ⋅ 122t( tt+i−12 )( tt+(n−i+1)−12 ) ≤ 16i(n − i + 1)(2t + 4)2 ⋅ 122t+4( t + 2t+2+i−12 )( t + 2t+2+(n−i+1)−12 ),

where we consider lengths 2t and 2t + 4 to ensure that (2t)/2 and (2t + 4)/2 have the same parity.

Proof. Canceling like terms implies that the desired inequality is equivalent to

1t2( tt+i−12 )( tt+(n−i+1)−12 ) ≤ 1(t + 2)2 ⋅ 116( t + 2t+2+i−12 )( t + 2t+2+(n−i+1)−12 ).
Carefully examining the binomial coe�cients shows us that

( tt+i−12 )(t + 2)(t + 1)t+1+i2 ⋅ t+3−i2 = ( t + 2t+2+i−12 )
and

( tt+(n−i+1)−12 ) (t + 2)(t + 1)t+2+(n−i)2 ⋅ t+2−(n−i)2 = ( t + 2t+2+(n−i+1)−12 ).
Using these identities, the desired inequality is equal to

1t2 ≤ 16−1(t + 2)2 ⋅ (t + 2)(t + 1)t+1+i2 ⋅ t+3−i2 ⋅ (t + 2)(t + 1)t+2+(n−i)2 ⋅ t+2−(n−i)2 .
Further cancelling like terms and moving the denominators on each side to the numerators of the

other side implies that our desired inequality is equivalent to

(t + 1 + i)(t + 3 − i)(t + 2 + (n − i))(t + 2 − (n − i)) ≤ t2(t + 1)2.
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It is straightforward to see that (t + 1 + i)(t + 3 − i) is maximized by i = 1, and

(t + 2 + (n − i))(t + 2 − (n − i))
is maximized by n − i = 0. Furthermore, it must be true that either i ≥ n/2 or n − i ≥ n/2, so we

can upper bound the left hand side of our inequality by substituting n/2 for i or n − i, and then

setting the other terms to the value that maximizes the product. Therefore, we have

(t + 1 + i)(t + 3 − i)(t + 2 + (n − i))(t + 2 − (n − i)) ≤ (t + 2)2 (t + 3 + n/2) (t + 3 − n/2) .
To prove our desired inequality it now su�ces to show (t + 2)2 (t + 3 + n/2) (t + 3 − n/2) ≤ t2(t + 1)2,
which is equivalent to

(t + 3 + n2)(t + 3 − n2) ≤ t2(1 − 1t + 2)2 .
Expanding both sides of the inequality and rearranging terms yields

6t + 9 + 2t2t + 2 − ( tt + 2)2 ≤ n24 .
Since 2t2/(t + 2) ≤ 2t , it su�ces to show that 8t + 9 ≤ n2/4. This is true if t ≤ n2/40 and n ≥ 20.

We can now prove the main upper bound in this section using the previously derived bounds

for the right hand side of the expression in Lemma 4.5.10.

Lemma 4.4.1. For all n ≥ 20 and t ≥ n − 1, we have
Prw∼Line(1) (w (t) = n,max≤t(w) = n, and min≤t(w) ≥ 1) ≤ min{e25n3 , 64 (nt )3}.
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Proof. Applying Lemmas 4.5.10 and 4.5.11 gives us

Prw∼ (1) (w (t) = n,max≤t(w) = n,min≤t(w) ≥ 1) ≤ n∑i=1 64(n2t3 ) ,
which immediately gives the upper bound 64(n/t)3. Similarly, Lemmas 4.5.10 and 4.5.12 imply that

for step sizes t ≤ n2/40 and the value T = n2/40, we have

Prw∼ (1) (w (t) = n,max≤t(w) = n,min≤t(w) ≥ 1)≤ n∑i=1 16i(n − i + 1)T 2 ( ⌊T/2⌋⌊T/2⌋+i−12 ) 12⌊T/2⌋( ⌈T/2⌉⌈T/2⌉+(n−i+1)−12 ) 12⌈T/2⌉ .
Next, we use Lemma 4.5.11 and sum from 1 to n to obtain the inequality

Prw∼ (1) (w (t) = n,max≤t(w) = n,min≤t(w) ≥ 1) ≤ n∑i=1 64n2T 3 ≤ 64(40)3n3 ≤ e25n3 ,
for all t ≤ n2/40. Using the fact that 64(n/t)3 is a decreasing function in t , we have

64 (nt )3 ≤ e25n3 ,
for all t ≥ n2/40, which completes the proof.

4.6 Extension to Higher Dimensions

In this section we show how to extend our analysis of the upper and lower bounds on the transience

class to d-dimensional cubic hypergrids. We combine both of our results in the following theorem.

Theorem 4.1.4. For any integer d ≥ 2, the transience class of the Abelian sandpile model on thed-dimensional cubic hypergrid with nd vertices is O(n3d−2 logd+2 n) and Ω(n3d−2).
We denote by Hypergridd,n the d-dimensional cubic hypergrid with nd vertices and construct

it analogously to Gridn. Its vertex set is [n]d ∪ {vsink} and its edges connect any pair of vertices
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that di�er in one coordinate. Vertices on the boundary have additional edges connecting to vsink

so that every non-sink vertex has degree 2d . We use the vector notation u = (u1,u2, … ,ud ) to

identify non-sink vertices. We can decouple a walkw on Hypergridd,n into one-dimensional walksw1, w2, … , wd so that each step of a random walk on Hypergridd,n can be understood as choosing

a random direction with probability 1/d and then a step in the corresponding one-dimensional

walk with probability 1/2.
Our bounds for the two-dimensional grid heavily relied on decoupling walks into interleaved

one-dimensional walks, and applying bounds from Section 4.5 for simple symmetric walks. Gen-

eralizing these bounds to d-dimensional hypercubes follows similarly and only requires simple

extensions of our lemmas for two-dimensional grids. Therefore, we will list the necessary lemmas

from previous sections and comment on the minor modi�cations needed to give analogous lemmas

for hypergrids. The upper bound proof requires several key lemmas and is more involved, whereas

extending the lower bound only requires one simple addition to our proof in Section 4.4.

4.6.1 Upper Bounding the Transience Class

Since Theorem 4.2.4 from [CV12] relies on non-sink vertices having constant degree, we assume

that d is constant and that all non-sink vertices have degree 2d . In addition to utilizing properties

of one-dimensional walks, speci�cally Lemma 4.3.3 proven in Section 4.5, the proof of our higher-

dimensional upper bound relies on four key lemmas:

• Lemma 4.2.10 — The source vertex can be swapped with a any non-sink vertex at the expense

of a O(log n) approximation factor in the potential.

• Lemma 4.3.1 — An upper bound for the sum of all vertex potentials that we achieve by

factoring the expression into one-dimensional vertex potentials.

• Lemma 4.3.2 — For any interior vertex, the opposite corner vertex minimizes the potential

up to a constant factor.
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• Lemma 4.3.5 — A lower bound for the voltage �(n,n) (u), for any vertex u in the upper-right

quadrant of Gridn.
Now we describe how to extend each of these lemmas to a constant number of dimensions.

These results essentially follow from decoupling walks into one-dimensional walks.

Lemma 4.6.1. For any pair of non-sink vertices u, v in Hypergridd,n, �u (v) ≤ (8 log n + 4) �v (u) .
Proof. This is a consequence of Rayleigh’s monotonicity theorem. Fix an underlying n×n subgraph

of the hypergrid with corners at the source and sink, and set the rest of the resistors to in�nity.

The upper bound for this n × n grid is an upper bound for the hypergrid.

Our d-dimensional generalization of Lemma 4.3.1 follows from Lemma 4.6.1 and projecting

coordinate walks into one-dimension.

Lemma 4.6.2. For any non-sink vertex u in Hypergridd,n, we have
∑
v∈V �u(v) = O (logd+1(n) d∏i=1 ui) .

Proof. We follow the proof structure of Lemma 4.3.1. First, take the reciprocal by Lemma 4.6.1:

�Hypergridd,n
u (v) = O (�Hypergridd,n

v (u) log n) .
Performing the decoupling step across all d dimensions gives us

�Hypergridd,n
v (u) = Prw∼ℤd (u) (w hits v before leaving Hypergridd,n)≤ Prw∼ℤd (u)( d⋂i=1wi hits vi before vsink)= d∏i=1 Prw∼ℤd (u) (wi hits vi before vsink)

= d∏i=1 �Pathn
vi (ui).
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Similar to before, factoring the sum over all choices of v gives us

∑
v∈V (Hypergridd,n) �Hypergridd,n

v (u) ≤ d∏i=1 ( n∑
vi=1 �Pathn

vi (ui)) .
The remainder of the proof proceeds in the same way as the proof of Lemma 4.3.1, where we use

closed-form expressions for the one-dimensional voltages.

Next, we generalize our proof of Lemma 4.3.2 to higher dimensions. This is a direct consequence

of the orthogonality between dimensions in our analysis.

Lemma 4.6.3. If u is a non-sink vertex of Hypergridd,n such that ui ∈ [⌈n/2⌉], then for all i ∈ [d]
we have �u (v) ≥ ( 12d)d �u ((n, n, … , n)) .
Proof. Extend the proof of Lemma 4.3.2 by re�ecting walks across the (d − 1)-dimensional hyper-

plane perpendicular to the chosen axis instead of a line.

Last, we generalize Lemma 4.3.5. The key idea of this result is to considers walks of lengthΘ(n2)
and show that there is a constant fraction such that both dimensions have taken Θ(n2) steps,

which then allows us to apply Lemma 4.3.3 to each possible walk. To do this, we essentially union

bound Lemma 4.3.4 over all d dimensions, which shows that Θ(n2) walk lengths take Θ(n2) steps

in each direction with probability at least 2−d .

Lemma 4.6.4. For n ≥ 10 and u ∈ V (Hypergridd,n) such that 1 ≤ ui ≤ ⌈n/2⌉ for 1 ≤ i ≤ d , we have
�(n,n,…,n) (u) = Ω(∏di=1 uin3d−2 ) .

Proof. Decouple walks w ∈ (u → (n, n, … , n)) into one-dimensional walks wi ∈Line(ui), and

view �(n,n,…,n) (u) as the probability that each walk wi is present on n at the same time before

any leaves the set [n]. If each walk takes t1, t2, … , td steps, respectively, then the total number of
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possible interleavings of these walks is the multinomial coe�cient

(t1 + t2 + ⋯ + tdt1, t2, … , td ) = (t1 + t2 + ⋯ + td )!t1!t2! ⋯ td ! .
Just as before, we can obtain the lower bound

�(n,n,…,n) (u) ≥ ∑t1,t2,…,td≥0 (t1+t2+⋯+tdt1,t2,…,td )d t1+t2+⋯+td d∏i=1 12Pr (w (ti−1)i = n − 1,max≤ti−1(w) = n − 1,min≤ti−1(w) ≥ 1) .
To apply Lemma 4.3.3 to each walk, we need each ti to be in the interval [1/cn2, 1/4n2] for c = 16d .

Then we consider all walks of length t ∈ [1/8n2, 1/4n2], where t = t1 + t2 + ⋯ + td , and show that a

constant fraction of these walks satisfy ti ≥ n2/c with ti having the correct parity. Note that we

can ignore the parity conditions by simply lower bounding the probability of all having correct

parity by 4−d . Now it remains to show that all walks satisfy the inequality ti ≥ n2/c with constant

probability.

Consider the probability that t1 ≥ n2/c. The other dimensions follow identically. Letting each

dimension take at least n2/c steps introduces dependence, so we instead consider the probability

that t1 ≥ n2/c and condtion on t2, t3, … , td ≥ n2/c (which can only decrease the probability of the

event t1 ≥ n2/c). This is equivalent to �xing n2/c steps in each of those directions and randomly

choosing all remaining steps with probability 1/d for each direction. The remaining number of

steps is then at least dn2/c by our assumption that t ≥ n2/8. Therefore, the expected number of

steps in the �rst dimension is at least n2/c, which implies t1 ≥ n2/c with probability at least 1/2.
Multiplying this probability over all dimensions gives ti ≥ n2/c with probability at least 2−d .

Thus, there are O(n2) values of t that we can decompose into one-dimensional walks, each

occurring with constant probability. Applying Lemma 4.3.3 to each decomposition and summing

Ω( d∏i=1 uin3)
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over O(n2) possible walk lengths proves the claim.

Proof of Theorem 4.1.4 (Upper Bound). We prove that tcl(Hypergridd,n) = O(n3d−2 logd+2 n) using

Theorem 4.2.4. For any u = (u1,u2, ...,ud ) in the top-left orthant of Hypergridd,n, it follows that

max
u,v∈V ⧵{vsink}(∑

x∈V �u(x)) �u(v)−1 ≤ max
u∈V ⧵{vsink}(∑

x∈V �u (x)) (2d)d�u ((n, n, … , n))= max
u∈V ⧵{vsink}(∑

x∈V �u (x)) O (log n)�(n,n,…,n) (u)= max
u∈V ⧵{vsink}O (logd+1(n) d∏i=1 ui)O (n3d−2 log n∏di=1 ui )= O (n3d−2 logd+2 n) .

This completes this part of the proof.

4.6.2 Lower Bounding the Transience Class

Extending our lower bound to d-dimensional hypergrids is a simple consequence of decouplingd-dimensional walks into one-dimensional walks since we only need to generalize the upper

bound in Lemma 4.4.3 to

�(n,n,…,n) ((1, 1, … , 1)) ≤ d max{Prw∼ (1) (w (t) = n,max≤t(w) = n,min≤t(w) ≥ 1) ∶ t ∈ ℤ≥0}⋅ ∑t≥0 Prw∼ (1) (w (t) = n,max≤t(w) = n,min≤t(w) ≥ 1) .
We achieve this by replacing the negative binomial distribution with the negative multinomial

distribution.

Fact 4.6.5. For any nonnegative integer t1, we have
∑t2,…,td≥0(t1 + t2 + ⋯ + tdt1, t2, … , td ) 1d t1+t2+⋯+td = d.
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Proof. Consider the proof of Fact 4.4.2 using the negative multinomial distribution.

We are now ready to complete the proof of Theorem 4.1.4.

Proof of Theorem 4.1.4 (Lower Bound). Applying Lemma 4.4.1 and Lemma 4.4.4, it follows that

�(n,n,…,n) ((1, 1, … , 1)) = O (( 1n3)d−1 1n) = O (n−3d+2) .
By Theorem 4.2.4, it follows that tcl(Hypergridd,n) = Ω(n3d−2), as desired.

4.7 Summary and Discussion

In this chapter we prove bounds that are tight up to polylogarithmic factors for the transience class

of the Abelian sandpile model on the n ×n grid, solving an open problem originally posed by Babai

and Gorodezky in [BG07]. Building on previous work of Choure and Vishwanathan [CV12] that

shows how to bound the transience class in terms of vertex potentials when the underlying graph

is viewed as an electrical network, we interpret voltages of internal vertices as escape probabilities

of random walks on the grid and apply a decoupling technique to achieve tight inequalities for the

vertex potentials. Our analysis heavily relies on potential reciprocity (Lemma 4.2.9) and the low

e�ective resistance of the grid (Lemma 4.2.8). Combining these ideas allows us to swap voltage

sources with minimal overhead, which then reduces our approach to analyzing one-dimensional

random walks conditioned on various boundary events. The techniques we present in this chapter

suggest that low e�ective resistance captures a di�erent but possibly similar behavior to high

conductance and edge expansion for random walks on graphs. Investigating the distinction

between the roles of e�ective resistance and conductance could be an important step forward for

building a theory of discrete di�usion processes analogous to the mixing time of Markov chains.
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CHAPTER 5

APPROXIMATELY SAMPLING ELEMENTS WITH FIXED RANK IN GRADED POSETS

In this chapter we return our focus to the design and analysis of Markov chain Monte Carlo

algorithms. We show that for a particular class of graded posets, biased Markov chains that walk

along the edges of Hasse diagrams allow us to approximately generate uniform samples with a

given rank in polynomial time. We present a new technique called Boltzmann sampling with

balanced bias, which allows us to bound rejection rates using only mixing times of the underlying

Markov chains. We then investigate how this method can be applied to sampling integer partitions.

5.1 Introduction

Graded posets are partially ordered sets equipped with a unique rank function that both respects

the partial order and such that neighboring elements in the Hasse diagram of the poset have

ranks that di�er by ±1. Graded posets arise throughout combinatorics, including permutations

ordered by numbers of inversions, geometric lattices ordered by volume, and independent sets

and matchings ordered by cardinality. Sometimes we �nd rich underlying structures that allow

us to directly count, and therefore sample, �xed rank elements of a graded poset. In other cases,

e�cient methods are unlikely to exist, so Markov chains o�er the best approach to sampling and

approximate counting.

Jerrum and Sinclair [JS96] showed that we can sample matchings of a �xed size by introducing

a bias parameter � that assigns weight proportional to �|m| to each matching m. In particular, they

use the fact that for any graph G, the sequence (ai)ni=0 of the number of matchings in G of size i
is log-concave [HL72]. Letting bi = ai�i , this implies the sequence (bi)ni=0 is also log-concave and

therefore unimodal for all �. Setting � = ak/ak+1 forces the mode of the distribution (bi)ni=0 to be k,
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so samples drawn from this distribution are of the desired size with probability at least 1/(n + 1).
Jerrum and Sinclair showed that the matching Markov chain is rapidly mixing for all �, so it can

�nd matchings of �xed size k e�ciently whenever 1/poly(n) < � < poly(n). This condition is not

always satis�ed, but the more sophisticated algorithm of Jerrum, Sinclair, and Vigoda circumvents

this issue [JSV06]. Log-concavity is critical to this argument in order to conclude that there is a

value of � for which samples of the desired size occur with high enough probability.

This follows a common approach used in physics for which we would like to sample from a

microcanonical ensemble, i.e., the states with a �xed energy, from a much larger canonical (or grand

canonical) ensemble, where the energies are allowed to vary due to interactions with the external

environment. In particular, given an input parameter � that is often related to temperature, a

con�guration x ∈ Ω has Boltzmann weight �(x) = �r(�)/Z , where r(x) is the rank of x and Z is

the normalizing constant. Elements x sampled from this distribution are uniformly distributed,

conditioned on their rank. The choice of � controls the expected rank of the distribution, so

simulations of the Markov chain at various � can be useful for understanding properties of

con�gurations with a �xed energy. Typically, however, there is no a priori guarantee that this

approach will enable us to sample con�gurations of a given size e�ciently.

Our main example throughout this chapter will be sampling and counting integer partitions,

possibly restricted to boundary conditions. An integer partition of nonnegative integer n is a

decomposition of n into a nonincreasing sequence of positive integers that sum to n. For example,

the seven partitions of 5 are: (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), and (1, 1, 1, 1, 1). Integer

partitions are commonly represented by staircase walks in ℤ2 known as Young diagrams, where

the heights of the columns represent distinct pieces of the partition. Partitions of n have exactly n
squares, i.e., the area of the diagram, and their column heights are nonincreasing. Partitions arise

in many contexts, include exclusion processes [CMO07], random matrices [Oko02], representation

theory [Jam06], juggling patterns [ABCN14], and growth processes [GPR09] (see, e.g., [And98]).

Several general approaches have been developed to sample elements of �xed rank from a graded
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poset, with varying success. The three main approaches for sampling are dynamic programming

algorithms using self-reducibility, Boltzmann samplers using geometric random variables, and

Markov chain Monte Carlo. The �rst two approaches require methods to estimate the number

of con�gurations of each size. Therefore, Markov chains o�er the most promising approach for

sampling when these estimates are unavailable.

All three of these approaches have been studied extensively in the context of sampling integer

partitions. The �rst approach uses dynamic programming and generating functions to iteratively

count the number of partitions of a given type. Nijinhuis and Wilf [NW78] gave a recursive

algorithm that uses dynamic programming to compute a table of exact values. Their algorithm

takes O(n5/2) time and space for preprocessing and O(n3/2) time per sample. Squire [Squ93]

improved on their algorithm and showed that O(n2) time for preprocessing and O(n3/2 log(n))
time per sample can be achieved using Euler’s pentagonal recurrence and a more e�cient search

method. We note that the time and space complexity of these algorithms account for the fact that

each value of p(n) and the intermediate summands require O(n1/2) bits by the Hardy-Ramanujan

formula. Therefore, even if time is available, dynamic programming approaches for exact sampling

break down in practice on a single machine when n ≥ 106 due to space constraints.

Boltzmann samplers o�er a more direct method for sampling that avoids the computationally

expensive task of counting partitions. A Boltzmann sampler generates samples from a larger

combinatorial class with probability proportional to the Boltzmann weight �|x|, where |x| is

the size of the partition. Samples of the same size are drawn uniformly at random, and the

algorithm rejects those that fall outside of the target size [DFLS04, FFP07]. The value � is chosen

to maximize the yield of samples of our target size n. Fristedt [Fri93] proposed an approach

that quickly generates a random partition using appropriate independent geometric random

variables. His approach exploits the factorization of the generating function for p(n) and can be

interpreted as sampling Young diagrams x in the n × ∞ grid with probability proportional to the

Boltzmann weight �|x|. Recently, Arratia and DeSalvo [AD16] gave a probabilistic approach that is
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substantially more e�cient than previous algorithms, thus allowing for fast generation of random

partitions for signi�cantly larger numbers (e.g., n ≥ 106). Building on the work of Fristedt, they

introduce the probabilistic divide-and-conquer (PDC) method to generate random partitions of n in

optimal Õ(n1/2) expected time and space, where Õ suppresses log n factors. Their PDC algorithm

also uses independent geometric random variables to generate a partition, but does so recursively

in phases. It is worth noting that PDC achieves superior performance relative to conventional

Boltzmann sampling by rejecting impossible con�gurations in early phases.

Lastly, stochastic approaches that utilize Markov chains have produced a similarly rich corpus

of work, but until now have not provided rigorous polynomial bounds. One popular direction uses

Markov chains based on coagulation and fragmentation processes that allow pieces of the partition

to be merged and split [Ald99, BP07]. Ayyer et al. [ABCN14] recently proposed several natural

Markov chains on integer partitions in order to study juggling patterns. In all of these works,

most of the e�ort has been to show that the Markov chains converge to the uniform distribution

over partitions and often use stopping rules in order to generate samples. Experimental evidence

suggests these chains converge quickly to the correct equilibrium, but they lack explicit bounds.

5.1.1 Main Results

For any graded poset, let Ωk be the elements of rank k and let Ω = ⋃ni=0Ωi be the entire poset. We

show that provably e�cient Boltzmann samplers on Ωk can be easily constructed from certain

rapidly mixing Markov chains on the Hasse diagram of the entire poset Ω under mild conditions.

We apply this technique to design the �rst provably e�cient Markov chain based algorithms for

sampling integer partitions of an integer n, permutations with a �xed number of inversions, and

lozenge tilings with �xed average height. Unlike all other methods for sampling that depend on

e�cient counting techniques, our results extend to interesting subintervals of these posets, such

as partitions with at least k pieces with size greater than � , or partitions into pieces with distinct

sizes, or many other such restricted classes. For these restrictions, our results provide the �rst
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sampling algorithms that do not require the space-expensive task of counting.

We focus on the example of integer partitions of n and prove that there is a Markov chain Monte

Carlo algorithm for uniformly sampling partitions of n from a large family of region-restricted

partitions (i.e., Young diagrams restricted to any simply-connected bounding region). The Markov

chain on the Hasse diagram for partitions is the natural “mountain-valley” chain studied for

staircase walks, tilings, and permutations [LRS01]. The transition probabilities are designed such

that we generate a diagram x with weight proportional to �|x|. Previous work on biased card

shu�ing [BBHM05] and growth processes [BBHM05, LPW17, GPR09] shows that this chain is

rapidly mixing for any constant � on well-behaved regions.

In the general setting of sampling from a graded poset, our algorithm is similar to Boltzmann

samplers that heuristically sample elements of a given size, but often without rigorous analysis.

We establish, however, conditions under which these algorithms can be shown to be e�cient,

including restricted settings for which no other methods provide guarantees on both e�ciency

and accuracy. For example, we show that our approach can generate uniformly random partitions

of n in O(n9/4) expected time with only O(n1/2 log(n)) space. Using coupling from the past [PW96],

we can generate samples of the target size exactly from the uniform distribution.

Although our algorithm is slower than recent results for sampling unrestricted partitions using

independent geometric random variables [AD16, Fri93] (in the settings where those methods

apply), our method is signi�cantly more versatile. The Markov chain algorithm readily adapts

to various restricted state spaces, such as sampling partitions with bounded size and numbers of

parts, partitions whose Durfee square is bounded (i.e., the largest square contained in the Young

diagram), and partitions with prescribed gaps between successive pieces including partitions into

pieces with distinct sizes. For bounded regions, our algorithm uses O(n1/2 log(n)) space, and thus

is usually more suitable than other approaches with substantially larger space requirements.

Finally, we achieve similar results for sampling from �xed a rank in other graded posets. These

include permutations with a �xed number of inversions and lozenge tilings with a given average
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height (i.e., the height function representation of the tilings as explained in [LRS01]). Kenyon

and Okounkov [KO07] explored the limit shapes of tilings with �xed volume and showed that

such constraints simpli�ed some arguments, but there has not been rigorous work addressing the

sampling problem.

5.1.2 Techniques

We start by presenting a new argument that shows how to construct Boltzmann samplers with

provable performance guarantees, even in cases where the underlying distributions are not known

to be unimodal, provided that the Markov chain is rapidly mixing on the entire Hasse diagram.

We prove that there always exists a balanced bias parameter �∗ that we can �nd e�ciently and

that allows us to generate con�gurations of the target size with probability at least 1/poly(n). The

target set is no longer guaranteed to be the mode of the distribution, as generally required, but we

show that rejection probability will not be too high. We carefully de�ne a polynomial-sized set

from which the bias parameter � will be chosen. Then we show that at least one bias parameter

in this set will de�ne a distribution satisfying ∑ki=1 Pr(Ωi) ≥ 1/c(n) and ∑ni=k+1 Pr(Ωi) ≥ 1/c(n),
for some polynomial c(n). Since the Markov chain  changes the rank by at most 1 in each

step, we use a conductance-based argument to show that we necessarily generate samples of size

exactly k with probability at least 1/� ("), where �(") is the mixing time of . Therefore, when the

chain is rapidly mixing for all such values of �, samples of size k must occur with non-negligible

probability. This method based on balanced bias parameters is quite general and circumvents the

need to make strong assumptions about the underlying distributions.

Our main tool is to use biased Markov chains and Boltzmann sampling to generate samples of

the targets size k. We assign probability �r(x)/Z to every element x ∈ Ω, where r(x) is the rank

of x in the poset and Z is the normalizing constant. When the underlying sequence f (i) = |Ωi |�i is

known to be log-concave in i (e.g., unrestricted integer partitions or permutations with a �xed

number of inversions), we can provide stronger guarantees than what is achievable by our general
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balanced bias algorithm. For integer partitions speci�cally, several observations allow us to

improve the running time of our algorithm. First, instead of sampling Young diagrams in an n × n
lattice region, we restrict to diagrams lying in the �rst quadrant of ℤ2 below the curve y = 2n/x ,

since this region contains all the Young diagrams of interest and has area Θ(n log n), allowing

the Markov chain to converge faster. Second, we improve the bounds on the mixing time for our

particular choice of � given by path coupling with exponential metrics in [GPR09] by instead

carefully analyzing a recent result in [LPW17]. Lastly, we show how to salvage a substantial

fraction of the samples rejected by Boltzmann sampling, which ultimately allows us to increase

the success probability to at least Ω(1/n1/4). Putting these observations together, we are able to

design a uniform sampling algorithm for integer partitions of size n such that the underlying

Markov chain converges in O(n2) time and the number of trials needed to generate a partition of

size n is O(n1/4) in expectation. Finally, we show how to optimize the space required to implement

the Markov chain. Since Young diagrams have at most O(n1/2) corners, each diagram can be stored

in O(n1/2 log n) space.

5.2 Preliminaries

We start by formally de�ning partial orders, graded posets, and rank generating functions. Then

we brie�y comment on designing Markov chains that walk on Hasse diagrams. A partial order is a

binary relation ≤ over a set Ω that satis�es the following three axioms for all elements x, y, z ∈ Ω:

1. x ≤ x (re�exivity).

2. If x ≤ y and y ≤ x , then x = y (antisymmetry).

3. If x ≤ y and y ≤ z, then x ≤ z (transitivity).

A set equipped with a partial order is called a partially ordered set (also known as a poset). We

say that two elements x and y in a poset Ω are comparable if x ≤ y or y ≤ x ; otherwise x and y
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are incomparable. An element x is strictly less than y if x ≤ y and x ≠ y . Further, we say that x is

covered by y if x is strictly less than y and there does not exist and element z ∈ Ω ⧵ {x, y} such

that x ≤ z ≤ y. We denote the property x covered by y by x < y. The cover structure of a poset

induces a directed graph on the elements of Ω where there is an edge from x to y if x < y. The

Hasse diagram of a poset is an undirected version of the graph given by covering relations.

A graded poset is a partially ordered set equipped with a rank function r ∶ Ω → ℤ≥0 that

satis�es the following properties for all elements x, y ∈ Ω:

1. r(x) = 0 for all minimal elements of Ω.

2. If x ≤ y, then r(x) ≤ r(y) (compatible with the partial order).

3. If x < y, then r(y) = r(x) + 1 (consistent with the covering relation).

Some examples of graded posets and their rank functions are the Boolean lattice of �nite subsets

ordered by inclusion where the rank function is the cardinality of the subset and the positive

integers ordered by divisibility where the rank function is the number of prime factors counted

with multiplicity.

We de�ne the rank of a graded poset Ω to be R = max{r(x) ∶ x ∈ Ω}, and we denote its rank

generating function by F (�) = ∑x∈Ω �r(x).
Let Ωk = {x ∈ Ω ∶ r(x) = k} be the set of elements with rank k, and let ak = |Ωk | denote the

number of such elements. For any � ≥ 0, the Gibbs measure of each x ∈ Ω is �(x) = �r(x)/Z , where

Z = F(�) = R∑i=0 ai�i
is the normalizing constant for the Boltzmann distribution.

The Markov chains that we consider in this chapter walk along the edges of the Hasse diagram

of the corresponding graded poset. It follows that the rank of the current con�guration can change
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by at most 1 in each step. Therefore, we use a Metropolis �lter [Met+53] in each step so that the

stationary distribution e�ciently converges to the Boltzmann distribution parameterized by �.

For a thorough review of Markov chains and mixing times, we refer the reader to Section 2.1.

5.3 Balanced Bias and Rejection Rates

Our ultimate goal is to uniformly sample an element x ∈ Ωk , for a given k ∈ {0, 1, … , R}. To

achieve this, we repeatedly sample from favorable Boltzmann distributions over all of Ω until we

encounter an element of rank k. We show that if mild conditions on the coe�cients of the rank

generating function are satis�ed and that the Markov chain  on Ω is rapidly mixing for all of

the values of � we consider, then the uniform sampling procedure from the set Ωk will be e�cient.

Speci�cally, we only require that R = O(poly(n)) and 1 ≤ ai ≤ c(n)i for some polynomial c(n).
To formalize our claim, we �rst assume that the polynomial c(n) ≥ 2. Then for t ≥ 0, we de�ne

�t def= log(c(n)−1) + t log(c(n))R (5.1)

and

�t def= e�t = c(n)t/R−1, (5.2)

where log x denotes the natural logarithm. Next, for every x ∈ Ω, let

Prt(x) def= �r(x)tZt = �r(x)tF (�t) . (5.3)

The sequence (�t)∞t=0 is constructed in such a way that at most R2 values need to be considered.
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Lemma 5.3.1. For all x ∈ Ω and t ≥ 0, we have
Prt+1(x)
Prt(x) ≥ 1c(n) .

Proof. From the de�nition of �t+1 in Equation (5.1), we know that

1 ≥ e�t r(x)e�t+1r(x) = e− log(c)r(x)/R ≥ 1c(n) .
Therefore, it follows that

Prt+1(x)
Prt(x) = e�t+1r(x)e�t r(x) ⋅ ZtZt+1 ≥ ZtZt+1 = ∑x∈Ω e�t r(x)∑x∈Ω e�t+1r(x) ≥ ∑x∈Ω e�t r(x)∑x∈Ω ce�t r(x) = 1c(n) ,

as desired.

The following lemma is the key to our argument and states that there exists a balanced bias

parameter �t∗ relative to our target set Ωk that assigns nontrivial probability mass to elements

with rank at most k and elements with rank greater than k.

Lemma 5.3.2. LetΩ be a graded poset with rank R ≥ 1 such that 1 ≤ ai ≤ c(n)i for all i ∈ {0, 1, … , R}
and for some polynomial c(n) ≥ 2. If k ∈ {0, 1, … , R − 1}, then there exists a t ∈ [R2] for which

Prt(r(x) ≤ k) ≥ 1c(n) + 1
and

Prt(r(x) > k) ≥ 1c(n) + 1.
Proof. Suppose there exists a minimum t ∗ ∈ ℤ≥1 satisfying the property

Prt⋆(r(x) > k) > 1c(n) + 1.
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By minimality, it follows that

Prt⋆−1(r(x) > k) ≤ 1c(n) + 1 ⟹ Prt⋆−1(r(x) ≤ k) ≥ c(n)c(n) + 1.
Therefore, since Lemma 5.3.1 states that Prt∗(x) ≥ Prt∗−1(x)/c(n), we can conclude that

Prt⋆(r(x) ≤ k) ≥ 1c(n) + 1.
To prove the existence of such a t ∗, recall that Prt(r(x) > k) > 1/(c(n) + 1) if and only if

(c + 1) R∑i=k+1 ai�it > 1. (5.4)

To prove Equation (5.4) it su�ces to prove (c(n) + 1)�Rt > 1. Setting t = R2, we have �t = c(n)R−1 ≥ 1
since R ≥ 1. It follows that (c(n) + 1)�Rt > 1, as desired. To �nish the proof, let t⋆ be the minimum

integer t ∈ [R2] satisfying the inequality

Prt(r(x) > k) > 1c(n) + 1.
This completes the proof.

Now that we have proved Lemma 5.3.2, we can present our main result. Let �t(") denote the

mixing time of the Markov chain  with bias parameter �t as de�ned in Equation (5.2). Our proof

uses a characterization of the mixing time in terms of the conductance of the Markov chain, which

we describe in detail in Section 2.1.4. For convenience, recall that for an ergodic, reversible Markov

chain  with stationary distribution � , the conductance of a nonempty set S ⊆ Ω is de�ned as

Φ(S) = ∑x∈S,y∈S �(x)P(x, y)�(S) .
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The global conductance of the Markov chain is Φ∗ = minS⊆Ω∶0<�(S)≤1/2 Φ(S), and it captures the

mixing time up to polynomial factors as shown in Theorem 2.1.5. Analogous to the notation �t("),
let Φ∗t denote the conductance of the Markov chain with bias parameter �t .
Theorem 5.3.3 (Balanced Bias). Let t be a Markov chain whose state space is the graded poset Ω
with rank function r ∶ Ω → ℤ≥0 and rank R. If the stationary distribution satis�es �t(x) ∝ �r(x)t for

all x ∈ Ω and if there exists a polynomial c(n) ≥ 2 such that 1 ≤ ai ≤ c(n)i for all i ∈ {0, 1, … , R},
then for any k ∈ {0, 1, … , R} there exists a t ∗ ∈ [R2], and hence balanced bias parameter �t∗ , such that

�t∗(Ωk) ≥ 12(c(n) + 1)(�t∗(") + 1) .
Furthermore, sincet can be used to approximately sample from �t in O(�t(")) time, we can approx-

imately sample from Ωk in expected O(c(n)�t∗(")2) time, for any " ≤ 1/e.
Proof. Let Φ∗t denote the conductance of t . Assume that k < R and consider the cut S = Ω≤k . We

havemin(�t∗(S), �t∗(S)) ≥ 1/(c(n)+1) for the balanced bias parameter �t∗ by Lemma 5.3.2. Therefore,

we can relate the conductance of the set S to the probability mass of the set Ωk by

Φt∗(S) ≤ ∑x∈S,y∈S �t∗(x)Pt∗(x, y)min(�t∗(S), �t∗(S)) ≤ (c(n) + 1) ∑x∈Ωk ,y∈Ωk+1 �t∗(x)Pt∗(x, y) ≤ (c(n) + 1)�t∗(Ωk). (5.5)

Using Theorem 2.1.5 and setting " = 1/e, it follows that

Φ∗t ≥ 12(�t(1/e) + 1) . (5.6)

The minimality of Φ∗t together with Equation (5.6) and Equation (5.5) imply that

12(�t∗(1/e) + 1) ≤ Φ∗t∗ ≤ Φt∗(S) ≤ (c(n) + 1)�t∗(Ωk).
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Therefore, we can lower bound the target probability mass by

�t∗(Ωk) ≥ 12(c(n) + 1)(� (1/e) + 1) . (5.7)

Now we show that O(c(n)�t∗(1/e)) samples from �t∗ are needed in expectation in order to

generate an approximately uniform sample from the target set Ωk . Let X be a random variable

denoting the number of samples needed to generate an object of size k. Since X is a geometric

random variable parameterized by p = �t∗(Ωk), Equation (5.7) implies that

E[X] = p + 2(1 − p)p + 3(1 − p)2p + ⋯ = 1p ≤ 2(c(n) + 1)(�t∗(1/e) + 1) = O(c(n)�t∗(1/e)).
Lastly, since each sample can be generated in O(�t∗(")) time and because we assume that " ≤ 1/e,
we can approximately sample from Ωk in expected O(c(n)�t∗(")2) time. This analysis for k = R − 1
directly extends to the case k = R by the detailed balance equation, which completes the proof.

5.4 Sampling Integer Partitions

In this section we demonstrate how to use the balanced bias technique to e�ciently sample from

general classes of restricted integer partitions. Integer partitions have a natural representation as

Young diagrams, which formally are �nite subsets S ⊆ ℤ2≥0 with the property that if (a, b) ∈ S, then

{(i, j) ∈ ℤ2≥0 ∶ 0 ≤ i ≤ a and 0 ≤ j ≤ b} ⊆ S.
Young diagrams can be visualized as a connected set of unit squares on the integer lattice with a

corner at (0, 0) and a nonincreasing upper boundary from left to right. Each square in the Young

diagram must be supported below by the x-axis or another square and supported to the left by

the y-axis or another square. We are interested in region-restricted Young diagrams, a variant of

Young diagrams whose squares are restricted to lie in a connected region R ⊆ ℤ2≥0 such that each
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square is supported below and to the left by the boundary of R or another square. Note that we

use R in this section to denote a region instead of the rank of a poset. We will see that the rank of

the poset induced by the natural partial order on R-restricted Young diagrams is |R|.
We call Young diagrams S ⊆ ℤ2≥0 such that |S| = n unrestricted integer partitions of n and use

this term interchangeably with integer partitions. Many well-studied classes of restricted integer

partitions have natural interpretations as region-restricted Young diagrams. For example, the

set of integer partitions of n with at most k parts and with each part at most size � give rise to

the Gaussian binomial coe�cients and can be thought of as the set of Young diagrams of size n
contained in a k × � box.

(a) (b)

Figure 5.1: Examples of (a) unrestricted and (b) region-restricted integer partitions.

5.4.1 Biased Markov Chain on Integer Partitions

Let the state spaceΩ be the set of all Young diagrams restricted to lie in a region R. Young diagrams

have a natural graded partial order via inclusion, where x ≤ y if and only if x ⊆ y. It follows that

the rank of a diagram x is r(x) = |x|. The following Markov chain on the Hasse diagram of this
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graded poset makes local transitions in each step that add or remove a square on the boundary of

the Young diagram according to the Metropolis–Hastings algorithm [Has70]. It follows that the

stationary distribution is the Boltzmann distribution parameterized by the bias parameter �.

Algorithm 5.1 Biased Markov chain for sampling integer partitions restricted to the region R.
1: procedure IntegerPartitionMarkovChain(R, �, ")
2: Set x0 ← R
3: for t = 1 to ��(") do
4: Choose a neighbor y of xt uniformly at random with probability 1/(2Δ)
5: Set xt+1 ← y with probability min(1, �|y|−|xt |)
6: Set xt+1 ← xt with all remaining probability
7: return xt

Note that in Algorithm 5.1 we letΔ be an upper bound for the number of neighboring con�gurations

of x in the state space induced by R, for all partitions x ∈ Ω.

Throughout the rest of the chapter, we use  as an alias for the Markov chain in Algorithm 5.1.

The state space of the integer partitions Markov chain Ω is connected because any con�guration

can eventually reach the maximum con�guration x = R with positive probability. By construction,

the Markov chain is lazy (i.e., P(x, x) ≥ 1/2 for all x ∈ Ω) and reversible, so it follows that the

Markov chain is ergodic. Therefore,  has a unique stationary distribution � . Using the detailed

balance equation in Section 2.1, we see that �(x) ∝ �|x| for all x ∈ Ω, as desired.

Remark 5.4.1. Once we show that this Markov chain is rapidly mixing for the necessary values

of �, we can use Algorithm 5.1 to e�ciently approximate the number of integer partitions of size n
restricted to the region R to within an arbitrarily small relative error and failure probability. This

is a consequence of self-reducibility [Jer03]. To see this, observe that we can run  restricted to R
polynomially many times to compute an empirical mean for the height m of the �rst column in R.

Then we can use  to recursively approximate the number of partitions of size n − m restricted

to the new region R′ = {(i, j) ∈ R ∶ 1 ≤ i and j ≤ m} and return the corresponding product of the

conditional probabilities.
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5.4.2 Boltzmann Sampling with Balanced Bias

We start by presenting a very general and liberal theorem that describes how the Markov chain in

Algorithm 5.1 can be used to sample restricted integer partitions of a target size k. The bounds on

the running time of the algorithm are far from tight in most cases, but it does readily provide a

framework for obtaining polynomial-time sampling algorithms for a target set, provided one can

bound the mixing time of the Markov chain at all values of �t on the entire state space.

Theorem 5.4.2. Let � ∗(") = max1≤t≤|R|2 �t(") be the maximum mixing time of  for the region R.
There exists an algorithm to approximately uniformly sample restricted integer partitions of size k
restricted to the region R in expected O(|R|2Δ� ∗(")2) time.

Proof. If k = 0 or k = |R| then there is only one such partition, so we assume that k ∈ [|R| − 1]. By

de�nition we have |Ωi+1|/|Ωi | ≤ Δ, so it follows by induction that 1 ≤ |Ωi | ≤ Δi for all i ∈ {0, 1, … , |R|}.

Lemma 5.3.2 implies that there exists a balanced bias parameter �t∗ for some value t ∗ ∈ [|R|2].
Since � ∗(") is an upper bound on the mixing time for all t ∈ [|R|2], we can run Algorithm 5.1

independently with all the candidate inputs �t . The result follows from Theorem 5.3.3.

If more is known about the number of elements at each rank or the geometry of R, then we

can give explicit bounds on the running time of this algorithm. For example, if R is the region

of a skew Young diagram, a region contained between two Young diagrams (see Figure 5.1), then

we can adapt a recent mixing result of Levin and Peres [LP16] about biased exclusion processes

for this setting. We note that Theorem 5.4.3 uses the path coupling proof given in [GPR09] for

sampling biased lattice structures using exponential metrics.

Theorem 5.4.3 ([LP16]). Consider the biased exclusion process with bias � = �n = 2pn − 1 > 0 on the
segment of length 2n and with n particles. Set � = √pn/(1 − pn). For " > 0, if n is large enough, then

� (") ≤ 2n�2 [log (1/") + log [� (�n − 1� − 1 )2]] .
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It will also be useful in our analysis to use Wilson’s tight bound on the mixing time of the

unbiased exclusion process.

Theorem 5.4.4 ([Wil04]). The mixing time of the unbiased exclusion process on a segment of

length 2n with n particles satis�es

� (") ≤ 2� 2 [1 + o(1)]n3 log(n/").
Corollary 5.4.5. If the region R is a skew Young diagram contained in an n × n square, then we can

uniformly sample partitions of size k restricted to �tting in R in expected O(n20 log "−1) time.

Proof. The biased exclusion process on a path of length 2n with n particles is the same as the

Markov chain  when the restricting region is an n × n box. The proof of Theorem 5.4.3 uses a

path coupling argument (i.e., Theorem 2.1.4) that immediately extends to regions that are de�ned

by a skew Young diagram since the expected change in distance between any two adjacent states

in the restricted setting can be at most the change in distance in the original dynamics. Therefore,

we can obtain an upper bound for the mixing time of R when it is a skew Young diagram. Note

that this is really just a subinterval of the underlying poset.

Start by letting �n,t denote �t in an instance of size n. We analyze the cases �n,t < 1, �n,t = 1,
and �n,t > 1 separately, and then we bound the mixing time of  for all candidate values of �n,t .
A balanced bias exists by Lemma 5.3.2 because ai ≤ p(i) ≤ 2i for all i ∈ {0, 1, … , n2}, where p(k) is

the number of unrestricted integer partitions of k.

In the �rst case, we assume �t,n < 1. It follows that t ∈ [n2 − 1] since |R| = n2 and �n,t = 2t/n2−1.
Translating the Metropolis transition probabilities in  to the exclusion process notation gives us

pn,t = 11 + �n,t . (5.8)

Therefore, it follows from the de�nitions in the hypothesis of Theorem 5.4.3 and Equation (5.8)
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that �n,t = 2pn,t − 1 = 1 − �n,t1 + �n,t ,
and �n = √ pn,t1 − pn,t = √ 1�n,t .
We start by proving that 1/�2n,t ≤ 10n4 in order to use Theorem 5.4.3, First observe that in this case,

setting t = n2 − 1 minimizes �n,t , and hence maximizes the desired quantity. Since the extreme

value of the bias parameter is �n,n2−1 = 2 n2−1n2 −1 = (1/2)1/n2 ,
it follows that

( 1�n,t)2 ≤ (1 + �n,n2−11 − �n,n2−1)2 = (1 + (1/2)1/n21 − (1/2)1/n2)2 ≤ 10n2, (5.9)

where the �nal inequality in Equation (5.9) can be achieved by taking the logarithm of both sides.

To upper bound the �n,t term in Theorem 5.4.3, we expand the implicit geometric series and use

the fact that �n,t > 1 to get

�n,t (�nn,t − 1�n,t − 1)2 ≤ �n,t (n�nn,t)2 ≤ n2�n+1/2n,t ≤ n22n+1/2. (5.10)

The �nal inequality in Equation (5.10) is a consequence of the assumption that �n,t ≥ 1/2, for all

values of t ≥ 1. Taking the logarithm of Equation (5.10) shows that

log[�n,t (�nn,t − 1�n,t − 1)2] ≤ 2 log(n) + (n + 1/2) log(2).
Therefore, it follows that the mixing time in this case satis�es � (") = O(n3(log "−1 + n)) for all

candidate bias parameters �n,t by Theorem 5.4.3.
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In the unbiased case when �n,t = 1, we use Theorem 5.4.4 to show that the mixing time of 

is Θ(n3 log(n"−1)). Lastly, in the third case when �t,n > 1, we have t ∈ {n2 + 1, n2 + 2,… , n4}, so then

pn,t = �n,t1 + �n,t .
Therefore, translating to the exclusion process notation gives us

�n,t = �n,t − 1�n,t + 1
and �n,t = √�n,t .
By a similar analysis to before, t = n2 + 1 now maximizes the expression 1/�2n,t , so it follows that

( 1�n,t)2 ≤ (1 + �n,n2+11 − �n,n2+1)2 = (1 + 21/n21 − 21/n2)2 ≤ 10n4. (5.11)

Furthermore, since �n,t ≤ 2n2−1 and �n,t > 1, we have

�n,t (�nn,t − 1�n,t − 1)2 ≤ �n,t(n�nn,t)2 ≤ n2�n+1/2n,t ≤ n2 (2n2−1)n+1/2 . (5.12)

Taking the logarithm of Equation (5.12), we have

log[�n,t (�nn,t − 1�n,t − 1)2] ≤ 2 log(n) + (n2 − 1)(n + 1/2) log(2).
Using Theorem 5.4.3, it follows that the mixing time is �(") = O(n5(log "−1 + n3)). Therefore, for all

values of �t we have �t(") = O(n8 log "−1). Applying Theorem 5.4.2 using the fact that |R| ≤ n2 and

observing that ai ≤ 2i instead of the generous upper bound of Δ completes the proof.
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5.4.3 Sampling from Log-Concave Distributions

If more is known about the stationary distribution � , in particular the sequence (|Ωi |)∞i=0, we can

often dramatically improve the bound for the running time of a rejection sampling-based algorithm.

In this section we contrast the balanced bias framework to a tighter analysis and modi�ed algorithm

that exploits log-concavity for uniformly sampling integer partitions in expected O(n9/4) time. Our

main techniques involve a compressed representation of partitions and using log-concavity to

prove concentration of measure around partitions of the target size. This approach extends to a

variety of settings where log-concavity or concentration can be shown.

To e�ciently sample integer partitions of size n, we set �n = p(n − 1)/p(n), where p(n) is the

number of partitions of n, which forces the stationary distribution to concentrate near n. Since the

integer sequence (p(k))∞k=26 is log-concave [Nic78, DP14], it follows that the sequence (p(k)�kn)∞k=26 is

also log-concave, for any value of � ∈ ℝ≥0. Log-concave sequences of positive terms are unimodal,

and it can easily be shown that the mode of the stationary distribution is k = n for this value of �n.
Furthermore, we show how log-concavity forces an exponential decay on both sides of the mode,

which in turn gives us strong concentration.

First, we argue that we need only consider Young diagrams that lie under the curve y = 2n/x
when sampling partitions of n. This is a simple consequence of the fact that all Young diagrams

with squares above this curve necessarily have more than 2n squares total. We will elaborate on

our choice of using 2n instead of n later, but for now it su�ces to say that this choice can be used

to improve the rejection rate of our Markov chain Monte Carlo algorithm.

Proposition 5.4.6. A Young diagram that lies under the curve y = 2n/x can be stored inO(n1/2 log n)
space.

Proof. For any square in the Young diagram, both of its coordinates are not greater than
√2n,

otherwise it would lie above y = 2n/x . We can record the height of each column and the width

of each row in the range {0, 1, … , ⌊√2n⌋} to capture the position of every square in the diagram.
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Therefore, we can represent the diagram using exactly these 2⌊√2n⌋ heights and widths, each of

which require O(log n) bits to store.

Using the compressed representation in the previous proposition, it follows that there are

not more than O(n1/2) possible transitions at any state. To see this, note that our algorithms adds

or removes at most one square on the upper boundary in each step. We can further adapt this

technique in the case of any general region R that lies under the curve y = 2n/x .

Proposition 5.4.7. There are at most 4√2n potential transitions for any Young diagram that lies

under the curve y = 2n/x .
Proof. Observe that since the squares in any row or column must be connected, there are at most

two valid moves in any particular row or column. Therefore, by Proposition 5.4.6 there are at

most 4⌊√2n⌋ possible transitions from any such Young diagram.

We now shift our attention to bounding the bias parameter �n and analyzing its e�ect on the

mixing time of  and the concentration of the stationary distribution � . In 1918, Hardy and

Ramanujan [HR18] proved the classic asymptotic formula for the number of integer partitions:

p(n) ∼ 14√3ne�√2n/3. (5.13)

We use closely related bounds proved in [DP14] to give the following tight inequality for our

choice of bias �n. The proof of this result is deferred to Section 5.4.4. Then we bound the mixing

time of the Markov chain  in Algorithm 5.1 using our new bounds for �n and Theorem 5.4.3.

Lemma 5.4.8. Let �n = p(n − 1)/p(n). For all integers n ≥ 30, we have
1 − 2√n < �n < 1 − 1√n .
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Theorem 5.4.9. The Markov chain  in Algorithm 5.1 with bias �n = p(n − 1)/p(n) restricted to
the region R bounded by the curve y = 2n/x has mixing time � (") = O(n3/2(log "−1 + n1/2)).
Proof. We modify Theorem 5.4.3 and its proof in [LP16]. In this biased exclusion process we have,

we have � = �n, � = (1 − �)/(1 + �), and � = √1/�. By Proposition 5.4.7, there are at most 4√2n
transitions from any state, so for n large enough we have

� (") ≤ 8√2n�2 [log (1/") + log (diam (Ω))] , (5.14)

where diam(Ω) is the maximum length path between any two states in the underlying path

coupling metric, as de�ned in [LPW17]. Therefore, it follows that diam(Ω) ≤ 2|R|�2n, since this is

an upper bound on the distance between the maximum and minimum con�gurations. Observing

that |R| ≤ 2nH2n ≤ 2n(log(2n) + 1),
where Hn is the n-th harmonic number, it follows that we can upper bound the diameter by

diam(Ω) ≤ 4n(log(2n) + 1)�2n = 4n(log(2n) + 1)�−n.
Using Lemma 5.4.8 along with the inequality 1 + x ≤ ex , we have

log (�−n) ≤ log[(1 − 2√n)−n] = log [(1 + 2√n − 2)n] ≤ 3√n,
for su�ciently large values of n. It also follows from Lemma 5.4.8 that

1� = 1 + �1 − � < 1 + (1 − 1√n)1 − (1 − 1√n) = 2√n − 1. (5.15)

Applying Equation (5.15) and our upper bound for diam(Ω) in terms of log(�−n) to Equation (5.14),
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it follows that �(") = O(n3/2(log "−1 + n1/2)), as desired.

Another key observation we make for sampling integer partitions of size n is to try to salvage

integer partitions of size k > n instead of rejecting them. We need to be careful to ensure that

we preserve the uniform distribution when recycling partitions, but it turns out this can be done

relatively easily. For the rest of the section, we describe how this idea can be used to substantially

boost the acceptance rate of our Markov chain Monte Carlo algorithm.

For any k ≥ 0, consider the function fk ∶ Ωn → Ωn+k that maps a partition x = (x1, x2, … , xm)
of size n to the partition f (x) = (x1 + k, x2, … , xm) of size n + k. Recall that x1 ≥ x2 ≥ ⋯ ≥ xm since x
is a Young diagram. Clearly fk is injective, so we can consider the inverse map f −1k (y), when it is

well-de�ned, that subtracts k from y1 if y1 − k ≥ y2. We can perform this inversion procedure for

all k ≥ 0 in aggregate by de�ning the function gn ∶ Ω≥n → Ωn ∪ {null} such that for any integer

partition x = (x1, x2, … , x� ) ∈ Ω≥n, we have

gn(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(x1 − k, x2, … , x� ) if x1 + x2 + ⋯ + x� = n + k and x1 − k ≥ x2,
null otherwise. (5.16)

Note that for any k ≥ 0 that we use in this recycling technique, as long as the image set fk(Ωn) ⊆ Ω,

then the inversion gn(fk(Ωn)) preserves the uniform distribution on the target set Ωn.
The following result demonstrates the bene�t of using the inverse map gn(x) instead of simply

rejecting samples of size k ≠ n. The proof of Lemma 5.4.10 is a consequence of log-concavity, so

we defer the details to Section 5.4.4. For contrast, recall that standard rejection sampling gives us

an expected acceptance rate of O(n) using only the fact that the distribution is unimodal.

Lemma 5.4.10. Let x be a Young diagram sampled from the stationary distribution of, and let g
be the function de�ned in Equation (5.16). For su�ciently large values of n, we have

Pr(gn(x) is an integer partition of size n) ≥ 1160n1/4 .
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Putting together the ideas for reducing the space complexity and improving the rejection rate,

we now formally present our Markov chain Monte Carlo algorithm for approximately sampling

integer partitions of n uniformly at random.

Algorithm 5.2 Markov chain Monte Carlo algorithm for uniformly sampling integer partitions.
1: procedure RandomIntegerPartition(n, ")
2: Let R to be the region bounded below the curve y = 2n/x
3: Set � ← 1 − 1.5n−1/2
4: repeat
5: Sample x using IntegerPartitionMarkovChain(R, �, ")
6: until n ≤ |x| ≤ 2n and gn(x) ≠ null
7: return gn(x)

Note that we have the condition |x| ≤ 2n instead of |x| ≤ 2n log n in Algorithm 5.2 so that gn maps

to the target set Ωn uniformly. All partitions of size 2n are elements of Ω2n, but the same is not

true for larger partitions since the bounding region R is the curve y = 2n/x . We also note that

coupling from the past can be used e�ciently here to generate uniform samples exactly from the

uniform distribution (as opposed to "-close) because the underlying path coupling is monotone

and there is a single minimum and maximum con�guration [PW96, GPR09]. We conclude this

section with our main theorem for uniformly sampling integer partitions.

Theorem 5.4.11. The algorithm RandomIntegerPartition generates an integer partition of n
approximately uniformly at random in expected O(n7/4(log "−1 + n1/2)) time using O(n1/2 log n) space.
Proof. The proof is a direct consequence of Theorem 5.4.9, Lemma 5.4.10, and Proposition 5.4.6.

5.4.4 Bounding the Improved Rejection Rate

In this section we prove Lemma 5.4.8 and Lemma 5.4.10. Our analysis relies heavily on inequalities

for p(n) given in [DP14] and the Hardy–Ramanujan formula in Equation (5.13). In order to give

tight lower and upper bounds for �n, we start by restating using explicit bounds for p(n) in [DP14].
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For all integers n ≥ 2, de�ne the quantities

�n = �√24n − 16 , (5.17)

�n = √1224n − 1, (5.18)T (n) = �n [(1 − 1�n)e�n + (−1)n√2 e�n/2] . (5.19)

The function T (n) is the sum of the three largest terms in the Hardy-Ramanujan formula and the

explicit error bounds we use from [DP14] were �rst proved by Lehmer [Leh38]. In what follows,

we only prove the upper bound in Lemma 5.4.8 since the lower bound follows from an analogous

argument.

Lemma 5.4.12. For all integers n ≥ 2, we have
|||||p(n) − �n (1 − 1�n)e�n ||||| < 1 + e�n/2.

Proof. If follows from [DP14, Lemma 2.3 and Proposition 2.4] that

p(n) < T (n) + 1 + 16�3n e�n/2 < �n (1 − 1�n)e�n + 1 + e�n/2.
The lower bound follows similarly, and therefore completes the proof.

Now that we have a reasonably tight bound for p(n) in Lemma 5.4.12, we can prove Lemma 5.4.8

and obtain convenient lower and upper bounds for �n = p(n − 1)/p(n).
Proof of Lemma 5.4.8. It follows from Lemma 5.4.12 that for all n ≥ 14 we have

�n < 1 + e�n−1/2 + �n−1 (1 − 1�n−1) e�n−1− (1 + e�n/2) + �n (1 − 1�n) e�n = e�n−1e�n ⎛⎜⎜⎜⎝
e−�n−1 + e−�n−1/2 + �n−1 (1 − 1�n−1)− (e−�n + e−�n/2) + �n (1 − 1�n)

⎞⎟⎟⎟⎠ .
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We note that the lower bound for p(n) is initially negative, hence the assumption that n ≥ 14.
Furthermore, for all n ≥ 65 we have the inequality

e−�n + e−�n/2 < �nn (1 − 1�n) .
Therefore, it follows that

�n < e�n−1e�n ⎛⎜⎜⎜⎝
(1 + 1n−1) �n−1 (1 − 1�n−1)(1 − 1n) �n (1 − 1�n)

⎞⎟⎟⎟⎠ =
e�n−1e�n ( nn − 1)2(�3n (�n−1 − 1)�3n−1 (�n − 1)) .

Observing that for all n ≥ 2 we have �n−1 − �n < −�/√6n and

�3n (�n−1 − 1)�3n−1 (�n − 1) < nn − 1,
we use the inequality ex ≤ 1 + x + x2/2, for all x ≤ 0, to show that

�n < e�n−1e�n ( nn − 1)3 < e− �√6n ( nn − 1)3 ≤ (1 − �√6n + � 212n)( nn − 1)3 < 1 − 1√n .
The �nal inequality is true for all values of n ≥ 160. Verifying the claim numerically for 30 ≤ n < 160
completes the proof.

Now we analyze the rejection rate of Algorithm 5.2, which attempts to repurpose partitions of

size k ≥ n by truncating their largest part according to the function gn(x) de�ned in Equation (5.16).

By Hardy-Ramanujan formula in Equation (5.13) and the de�nition of asymptotic equivalence, for

any constant c > 0 and n su�ciently large, it follows that

1 − c4√3ne�√2n/3 ≤ p(n) ≤ 1 + c4√3ne�√2n/3.
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In particular, the Hardy-Ramanujan formula implies that for all n ≥ 20, we have

e−�k/√6n ≤ �kn ≤ ek/n−�k/√6n. (5.20)

Lemma 5.4.13. Let Zn be the partition function of the Boltzmann distribution parameterized by �n
from which Algorithm 5.2 samples. For su�ciently large values of n, we have Zn ≤ 40n3/4�nnp(n).
Proof. We can clearly use the generating function for integer partitions to upper bound Zn by

Zn ≤ ∞∑k=0 p(k)�kn .
Letting f (k) = p(k)�kn , the sequence (f (k))∞k=0 is log-concave for n ≥ 26 because (p(k))∞k=0 is log-

concave. Therefore, (f (k))∞k=0 is unimodal and reaches its maximum at k = n by our choice of �n.
Log-concavity further implies for all n ≥ 26 and k ≥ 1, we have the inequalities

f (n + k)f (n) ≥ f (n + 2k)f (n + k) ≥ f (n + 3k)f (n + 2k) ≥ … (5.21)

and

f (n − k)f (n) ≥ f (n − 2k)f (n − k) ≥ f (n − 3k)f (n − 2k) ≥ … (5.22)

These two sets of inequalities give us a strategy for upper bounding Zn. Observe that by

centering the sum at n and considering blocks of k consecutive terms, we have

kf (n) ≥ f (n) + f (n + 1) + … f (n + k − 1)kf (n + k) ≥ f (n + k) + f (n + k + 1) + ⋯ + f (n + 2k − 1)kf (n + 2k) ≥ f (n + 2k) + f (n + 2k + 1) + ⋯ + f (n + 3k − 1),
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and so forth. A similar set of inequalities can be derived to the left side of the mode. Normalizing

these block terms by f (n), we can exploit telescoping and Equation (5.21) to show that the

contribution of each block decreases geometrically. Concretely, log-concavity implies that

f (n + 2k)f (n) = f (n + k)f (n) ⋅ f (n + 2k)f (n + k) ≤ (f (n + k)f (n) )2.
Therefore, for any block size k ≥ 1, it follows that we can bound Zn geometrically by

Zn ≤ kf (n)( 11 − f (n+k)f (n) + 11 − f (n−k)f (n) ) . (5.23)

In particular, if both f (n + k)/f (n) and f (n − k)/f (n) are at most some �xed constant less than 1,
then we have Zn = O(kf (n)). Using the Hardy–Ramanujan formula and Equation (5.20), we have

f (k) = p(k)�kn ≤ 1 + c4√3k ek/n−�(k−2√kn)/√6n = 1 + c4√3k ek/n−�(√k−√n)2/√6n+�√n/6.
Setting n + k = n + 2n3/4 + √n = (√n + n1/4)2, it follows for large enough values of n that

f ([√n + n1/4]2) ≤ 1 + c4√3ne1.1−�/√6+�√n/6.
Therefore, we can then bound the density value at (√n + n1/4)2 relative to the maximum by

f ([√n + n1/4]2)f (n) ≤ 1+c4√3ne1.1−�/√6+�√n/61−c4√3ne�√2n/3−�√n/6 = 1 + c1 − c e1.1−�/√6. (5.24)

Setting c = 0.01, it immediately follows from Equation (5.24) that for large enough values of n,

f ([√n + n1/4]2)f (n) ≤ 1.010.99e1.1− �√6 < 0.85.
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Similarly, on the left side of the mode we also can derive the inequality

f ([√n − n1/4]2)f (n) < 0.85.
Therefore, we have Zn ≤ 40n3/4�nnp(n) since n + k ≤ n + 3n3/4, as desired.

We are now equipped to bound the rejection rate of Algorithm 5.2. The improved probability

that we obtain is a consequence of the concentration of log-concave distributions, our choice of �n,
and the truncation scheme used to validate some partitions of size k ≥ n.

Proof of Lemma 5.4.10. We use Lemma 5.4.13 and Lemma 5.4.8 to bound the probability that gn(x)
generates a partition of n successfully. In particular, observe that

Pr(gn(x) is an integer partition of size n) = n∑k=0 �n+kn p(n)Zn≥ 140n3/4 n∑k=0 �kn≥ 140n3/4 n∑k=0(1 − 2√n)k

= 140n3/4 ⋅ √n2 (1 − (1 − 2√n)n+1)≥ 1160n1/4 .
The second equality uses the closed-form for a �nite geometric series, and the last inequality uses

the fact that the rightmost term is at least 1/2.
5.5 Applications to Other Graded Posets

In this section we experimentally demonstrate the versatility of using a Markov chain that walks

along the edges of the Hasse diagram of a graded poset in order to uniformly sample elements of a

�xed rank. When this chain is rapidly mixing for all �t with t ∈ [R2], we can use Theorem 5.3.3 to
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generate approximately uniform samples of a target size in polynomial time. There are analogous

notions of self-reducibility for restricted families of permutations and lozenge tilings, similar to

region-restricted integer partitions. It follows that there exist fully polynomial-time approximation

schemes for these enumerations problems when we can e�ciently sample elements of a given

rank from their respective posets [Jer03].

5.5.1 Permutations with Fixed Inversion Number

Our �rst example considers permutations of n elements with a �xed number of inversions. The

Hasse diagram in this setting connects permutations that di�er by one adjacent transposition, and

the partial order is the weak Bruhat order on the symmetric group. It follows that the Markov chain

walks along edges of the permutohedron. In the unbiased case when � = 1, the nearest neighbor

Markov chain mixes in Θ(n3 log n) time [Wil04]. Furthermore, if the bias of this chain is a constant

then the dynamics converge in Θ(n2) time [BBHM05, GPR09]. The number of permutations of n
with k inversions is known to be log-concave in k, so standard Boltzmann sampling techniques

can be used. However, in restricted settings (i.e., subintervals of the poset), we can potentially use

our balanced bias method and avoid the need to bound the number permutations with k inversions

in the restricted setting.

5.5.2 Lozenge Tilings with Fixed Average Height

The next example we consider are Lozenge tilings of a triangular lattice region with �xed average

height. Lozenge tilings are pairs of adjacent equilateral regions in the triangular lattice, and the

height function maps lozenge tilings bijectively to plane partitions lying in an n × n × n box (e.g.,

see [LRS01]). It follows that lozenge tilings with a �xed average height of k are precisely the plane

partitions with volume k. The Markov chain that adds or remove a single cube on the surface of

the plane partition (which corresponds to rotating three nested lozenges by 180 degrees) is known

to mix rapidly in the unbiased case. Caputo et al. [CMT11] studied the biased version of this
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Markov chain with a preference towards removing cubes and showed that this chain converges

in O(n3) time. Applying the balanced bias method, we can use Boltzmann sampling to generate

random lozenge tilings with any target average height in polynomial time, as shown in Figure 5.2.

5.6 Summary and Discussion

Graded posets arise frequently throughout computer science, discrete mathematics, and statistical

physics. While it is natural to try to count the number of elements with a given rank, these

problems are often #P-complete. In this chapter, we work towards addressing these obstacles by

designing Markov chain Monte Carlo algorithms for approximate counting and uniform sampling.

We show that for certain classes of graded posets, biased Markov chains that walk along the

edges of Hasse diagrams allow us to approximately generate uniform samples from a given rank

in expected polynomial time. Our main contribution in this work is the method of Boltzmann

sampling with a balanced bias, which shows that in certain situations one can bound the rejection

rate of a Markov chain Monte Carlo algorithm using only its mixing time. We apply this technique

to the problem of sampling integer partitions of n subject to a variety of constraints for which

generating function-based methods break down. We also give an optimized Markov chain Monte

Carlo algorithm for uniformly sampling unrestricted integer partitions of n and explore how

this technique can be used for sampling permutations and lozenge tilings. An important future

direction of this work is to characterize the mixing time of biased Markov chains on Hasse diagrams

using only structural properties of the underlying graded poset. The design of provably e�cient

Markov chains on graded posets that perform global moves would also be of independent interest.
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(a) (b)

(c) (d)

Figure 5.2: Random lozenge tilings with average height (a) 5, (b) 15, (c) 35, (d) 50 percent of 753.
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CHAPTER 6

ANALYZING BOLTZMANN SAMPLERS FOR BOSE–EINSTEIN CONDENSATES

In this chapter we take a noticeably di�erent approach to Boltzmann sampling and use probabilistic

interpretations of ordinary generating functions instead of Markov chains to generate samples.

Speci�cally, we use techniques from analytic combinatorics to give provably e�cient sampling

algorithms for a broad class of weighted partitions and selections. This work primarily focuses on

a family of weighted partitions related to Bose–Einstein condensation from statistical physics.

6.1 Introduction

Bose–Einstein condensation is a quantum phenomena that occurs when subatomic particles

called bosons are cooled to nearly absolute zero. These particles behave as waves due to their

quantum nature, and their wavelength increases as their temperature decreases. At a low enough

temperature, the size of the waves exceeds the average distance between two particles and a

constant fraction of bosons enter their ground state. These particles then coalesce into a single

collective quantum wave called a Bose–Einstein condensate, which can, incredibly, be observed at

the macroscopic scale.

In statistical physics, such thermodynamic systems are often modeled in one of three settings:

the microcanonical ensemble, where both the number of particles and the total energy in the system

are kept constant; the canonical ensemble, where the number of particles is constant but the energy

is allowed to vary; and the grand canonical ensemble, where both the number of particles and

energy can vary. A substantial amount of research has focused on understanding the asymptotic

behavior of Bose–Einstein condensates in the microcanonical and canonical ensembles [BP83,

CD14]. In this chapter, we give a provably e�cient algorithm for uniformly sampling Bose–
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Einstein condensate con�gurations from the microcanonical ensemble in the low-temperature

regime when the number of particles is greater than or equal to the total energy in the system.

This approach allows us to explore the thermodynamic properties of systems with millions of

noninteracting bosons instead of relying solely on its limiting behavior.

Random sampling is widely used across scienti�c disciplines when exact solutions are unavail-

able. In many settings, Boltzmann samplers have proven to be particularly useful for sampling

combinatorial objects of a �xed size. The state space  includes con�gurations of all sizes, and the

Boltzmann distribution assigns a con�guration 
 ∈  probability Pr�(
 ) ∝ �k , where k is the size

of 
 and � ∈ ℝ>0 is a parameter of the system that biases the distribution toward con�gurations

of the desired size. Boltzmann sampling is most e�ective if the sampling procedure on (, Pr�)
is e�cient on and rejection sampling (i.e., outputting objects of the desired size and rejecting all

others) succeeds with high enough probability to produce samples of the desired size in expected

polynomial time.

Generating random integer partitions is an illustrative example for demonstrating the e�ec-

tiveness of Boltzmann sampling. Integer partitions arise throughout many areas of mathematics

and physics (e.g., random matrices [Oko02], representation theory [Jam06], and self-assembly pro-

cesses [GPR09]), and they are closely related to Bose–Einstein condensates. An integer partition

of n is a nonincreasing sequence of positive integers that sums to n, and the simplest method for

uniformly sampling partitions is based on the dynamic programming algorithm of Nijenhuis and

Wilf [NW78]. This approach relies on exact counting and requires O(n2.5) time and space. Alterna-

tively, one can use Boltzmann sampling to generate partitions biased to have size close to n, and

then use rejection sampling to only output objects of the desired size. Somewhat surprisingly, this

approach can lead to substantially more e�cient algorithms. Arratia and Tavaré [AT94] showed

that integer partitions and many other objects with multiplicative generating functions can be sam-

pled from Boltzmann distributions using independent random processes. Duchon et al. [DFLS04]

turned this idea into a systematic Boltzmann sampling framework using techniques from analytic
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combinatorics. Their approach o�ers a Boltzmann sampler for integer partitions with time and

space complexity that is linear in the size of partition produced. Arratia and DeSalvo [AD16] then

leveraged additional symmetries to develop an algorithm for sampling integer partitions of n in

expected O(√n) time. Taking a rather di�erent approach, Bhakta et al. [BCFR17] also recently

used Boltzmann distributions and rejection sampling to design the �rst rigorous Markov chain

Monte Carlo algorithm for sampling partitions.

While Boltzmann sampling is known to be quite e�ective for a vast collection of problems in

statistical physics and combinatorics, many applications lack rigorous arguments that show the

rejection sampling is e�cient. In this chapter, we give a provably e�cient Boltzmann sampler

for Bose–Einstein condensates and we rigorously bound the rejection rate through singularity

analysis of Dirichlet generating functions. Our techniques naturally extend to a broad class of

multiplicative objects known as weighted partitions, which generalize integer partitions, plane

partitions, and Bose–Einstein condensates.

The primary focus of this work is the design and analysis of an algorithm for uniformly

sampling Bose–Einstein condensates in an idealized microcanonical setting with limited interac-

tions between particles. We can view Bose–Einstein condensates combinatorially as weighted

partitions with bk = (k+3−13−1 ) types of summands of size k. Each of the bk summands corresponds

to a degenerate energy state of a boson with energy k. We think of each of these energy states

as multisets on three di�erent colors with cardinality k. Since Bose-Einstein con�gurations are

unordered collections of bosons, these con�gurations can be understood as multisets of bosons,

or equivalently weighted partitions. It follows that we can visualize Bose–Einstein condensates

by coloring Young diagrams. Every column corresponds to the energy state of a particle, and

the columns are sorted lexicographically to produce a partition. In a microcanonical ensemble

with m particles and energy n, the number of particles in their ground state is m minus the width

of the Young diagram. Bose–Einstein condensation occurs when the width of the expected Young

diagram is at most a constant fraction of m, the number of particles.
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Figure 6.1: Young diagrams corresponding to Bose–Einstein condensates with shape (2, 1), where
the colors (gray, green, blue) correspond to the numbers (1, 2, 3).

In the language of analytic combinatorics, Bose–Einstein condensates are given by the combi-

natorial class MSet(MSet≥1(3)). For example, when n = 2 there are 12 possible con�gurations: if

there is one particle with energy 2 we have the states {{1, 1}}, {{1, 2}}, {{1, 3}}, {{2, 2}}, {{2, 3}},{{3, 3}}, and if there are two particles each with energy 1 we have the states {{1}, {1}}, {{1}, {2}},{{1}, {3}}, {{2}, {2}} {{2}, {3}}, {{3}, {3}}. When n = 3 there are 38 such con�gurations: 10 if

there is one particle with energy 3, 18 corresponding to the Young diagram with shape (2, 1) where

one particle has energy 2 and one has energy 1 (see, e.g., Figure 6.1), and 10 when there are three

particles with energy 1. We remark that Bendkowski, Bodini, and Dovgal [BBD18] also recently

used techniques from analytic combinatorics to investigate algorithms for sampling Bose–Einstein

condensates and weighted partitions. Their work, however, focuses on a �ne-grained tuning

algorithm based on convex optimization for the nonuniform problem of targeted multiparametric

Boltzmann sampling, and it does not fully analyze the corresponding rejection rates.

6.1.1 Main Results

Our complexity analysis follows the conventions in [BFP10, BLR14, Fla07, FFP07] and assumes the

real-arithmetic model of computation, an oracle that evaluates a generating function within its

radius of convergence in constant time, and a root-�nding oracle. The main contribution of our

work is a new approach for rigorously analyzing algorithms that sample from the Bose–Einstein

distribution in low-temperature microcanonical ensembles when the number of particles exceeds

the total energy. In particular, we give a provably e�cient algorithm for uniformly sampling

Bose–Einstein condensates by constructing a linear-time Boltzmann sampler using the framework

established in [FFP07], and then we bound its rejection rate through singularity analysis of an

associated Dirichlet generating function.
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Theorem 6.1.1. There exists a uniform sampling algorithm for Bose–Einstein condensates of size n
that runs in expected O(n1.625) time and uses O(n) space.
Our algorithm e�ciently generates samples of size n exactly from the uniform distribution in

expected polynomial time, which allows us to rigorously study the expected width of Young

diagrams arising from random con�gurations (or, equivalently, the fraction of particles in a Bose–

Einstein condensate occupying their ground state) without relying on the limiting properties

given in [Yak12].

The singularity analysis used in the proofs generalizes to a broader family of weighted parti-

tions, including integer partitions and plane partitions [BFP10]. To see this, call a positive integer

sequence of degree r be a sequence of positive integers (bk)∞k=1 such that bk = p(k) for some poly-

nomial p(x) = a0 + a1x + ⋯ + arx r ∈ ℝ[x], with deg(p) = r . We show how the rightmost pole of

the Dirichlet generating function for the sequence (bk)∞k=1 and its residue are related to ar , the

leading coe�cient of p(x), which we then use to establish rigorous rejection rates for Boltzmann

sampling.

Our second main result gives guarantees for algorithms that generate uniform samples from a

broad class of weighted partitions and selections. The running time of these algorithms is given

as a function of the degree of the parameterizing polynomial.

Theorem 6.1.2. There exists a uniform sampling algorithm for any class of weighted partitions or

selections parameterized by a positive integer sequence of degree r for objects of size n that runs in

expected time O(nr+1+(r+3)/(2r+4)) and uses O(n) space.
In particular, the number of samples needed in expectation isO(n(r+3)/(2r+4)), which is asymptotically

tight by Theorem 6.2.6. If r = 0 (e.g., integer partitions) we need O(n3/4) samples, and as r → ∞
the number of required samples converges to O(√n). We note that DeSalvo and Menz [DM16]

independently developed a recent probabilistic model that gives a central limit theorem for the

same family of weighted partitions and selections that circumvents the singularity analysis of

147



Dirichlet generating functions.

6.1.2 Techniques

The Boltzmann sampling framework in [DFLS04, Fla07, FFP07] provides an approach for sampling

from Boltzmann distributions in polynomial time by interpreting the ordinary generating functions

of these objects as probabilistic processes. However, this does not guarantee the rejection sampling

component will be e�cient. In order to lower bound the probability of generating an object of

the target size, we rely on the Khintchine–Meinardus probabilistic method [GSE08, GS12, Gra18]

and show that it holds for a broad class of weighted partitions and selections. For sampling

Bose–Einstein condensates in particular, we give an improved algorithm based on the symbolic

method of analytic combinatorics that exploits the underlying combinatorial structure instead of

simply using independent geometric random variables for each energy state (i.e., Theorem 6.1.1

versus Theorem 6.1.2 with r = 2).
The goal of the Khintchine–Meinardus probabilistic is to asymptotically enumerate combi-

natorial objects through singularity analysis of Dirichlet generating functions. To analyze our

algorithms, we use an intermediate local limit theorem from this theory. Only recently were

these enumeration techniques extended to handle Dirichlet series with multiple poles on the

real axis [GS12]. This allows for the analysis of Boses–Einstein condensates and other weighted

partitions parameterized by nonconstant integer sequences. In this chapter, we show that the

Dirichlet series for classes of weighted partitions parameterized by positive integer sequences are

linear combinations of shifted and scaled Riemann zeta functions, and thus amenable to singularity

analysis. Using bounds for the zeta function from analytic number theory, we show that the local

limit theorem in [GS12] holds for Bose–Einstein condensates. Then we bound the residue of the

rightmost pole of the Dirichlet generating function by viewing the parameterizing polynomial p(x)
as a Newtown-interpolating polynomial, which yields a convenient lemma for rejection rates.

In the process of analyzing a subroutine of our enhanced Boltzmann sampler for Bose–
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Einstein condensates, we also develop a new tail inequality for the negative binomial distribution

(Lemma 6.5.4) that is tighter than the standard Cherno�-type inequality for this use case. We

believe the singularity analysis of Dirichlet series in this chapter will be valuable for a wide variety

of sampling problems in combinatorics and statistical physics, where the objects of interest can

be decomposed into noninteracting components and when transfer theorems for their ordinary

generating functions are not applicable.

6.2 Preliminaries

We start by presenting several tools and key concepts for our sampling algorithms. First, we

introduce the fundamental ideas of Boltzmann sampling for unlabeled objects and the symbolic

method from analytic combinatorics. Next, we use the symbolic method to de�ne two families of

multiplicative objects called weighted partitions (a generalization of Bose–Einstein condensates)

and selections. Then we �nish by presenting a local limit theorem for these objects developed in

the Khintchine–Meinardus probabilistic method, which we ultimately use to bound the rejection

rate of our Boltzmann samplers.

6.2.1 Boltzmann Sampling

A combinatorial class  is a �nite or countably in�nite set equipped with a size function | ⋅ | ∶
 → ℤ≥0 such that the number of elements of any given size is �nite. For a class , let ck denote

the number of elements of size k. The counting sequence of  is the integer sequence (ck)∞k=0, and

the ordinary generating function of  is

C(z) = ∞∑k=0 ckzk = ∑
∈ z |
 |.
De�nition 6.2.1. The Boltzmann distribution of a class  parameterized by � ∈ (0, �C) is the
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probability distribution, for all 
 ∈ , de�ned as

Pr�(
 ) = �|
 |C(�) ,
where �C is the radius of convergence of C(z). A Boltzmann sampler ΓC(�) for a class  is an

algorithm that generates objects from  according to the Boltzmann distribution with parameter �.

The size of an object generated by ΓC(�) is a random variable denoted by U with the probability

distribution

Pr�(U = n) = cn�nC(�) .
All objects of size n occur with equal probability, so if ΓC(�) returns an object 
 of size n, then 
 is

a uniform random sample among all size n objects in . This means we can use rejection sampling

to generate objects of size n uniformly at random. However, for this technique to be e�ective,

we need an e�cient sampling algorithm ΓC(�) as well as a provably low rate of rejection for the

target size n.

We assume that  contains in�nitely many objects, n is feasible (i.e., cn ≥ 1), and that n is not

the smallest feasible size in . In order to maximize the probability of generating an object of

size n, we tune the Boltzmann sampler so that E�[U ] = n. To see why this strategy works, observe

that the quotient rule gives us

dd�Pr�(U = n) = cn�n−1C(�) (n − E�[U ]), (6.1)

where E�[U ] = �C′(�)/C(�). Since  contains objects of di�erent sizes, it follows that

dd�E�[U ] = Var�(U )� > 0. (6.2)

The equality in Equation (6.2) is a property of Boltzmann distributions that can easily be seen
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by di�erentiating the series E�[U ] = ∑∞k=0 kck�k/C(�), and the inequality holds because U is a

nonconstant random variable and � ∈ (0, �C). Therefore, E�[U ] is strictly increasing, which implies

that �n is unique. It follows from Equation (6.1) that �n maximizes Pr�(U = n).
6.2.2 Symbolic Method

The symbolic method from analytic combinatorics is a convenient language for describing Bose–

Einstein condensates and constructing classes of weighted partitions and selections. There are

two primitive combinatorial classes in the symbolic method: the neutral class  and the atomic

class . The class  contains a single element of size 0 called the neutral object, and the class 

contains a single element of size 1 called an atom. Neutral objects are used to mark objects as

di�erent and atoms are combined to form larger combinatorial objects. For example, atoms are

often vertices in a tree or characters in a word. We can express a rich family of discrete structures

using these primitive classes along with the following operators.

Cartesian Product. The Cartesian product of  and  is the class

 =  ×  = {(�, �) ∶ � ∈ , � ∈ }.
The size of the tuple 
 = (�, �) ∈  is de�ned to be |
 | = |�| + |�|, and the generating function

for  is the discrete convolution C(z) = A(z)B(z).
Combinatorial Sum. The combinatorial sum (disjoint union) of  and  is

 =  +  = (1 ×) ∪ (2 × ),
where 1 and 2 are two di�erent neutral classes. The size of an element in  is the same as in its

class of origin, so the ordinary generating function for  is C(z) = A(z) + B(z).
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Sequence Construction. The sequence of a class  with b0 = 0 is the in�nite sum

 = Seq() =  +  + ( × ) + ( ×  × ) + ⋯ ,
and the corresponding generating function for  is

C(z) = 1 + B(z) + B(z)2 + B(z)3 + ⋯ = 11 − B(z) .
Power Set Construction. The power set of  is the class of all subsets of . Formally, the

power set is given by the product

 = PSet() = ∏�∈( + {�}).
Each factor can be interpreted as an independent decision about whether or not to include the

object � ∈  in the subsets. The generating function for  is

C(z) = ∏�∈(1 + z |�|) = ∞∏k=1(1 + zk)bk .
Multiset Construction. The multiset of a class  with b0 = 0 is de�ned to be

 = MSet() = ∏�∈ Seq({�}).
The elements of  are multisets of the objects in , and we can think of them as �nite tuples

of objects � ∈  (possibly repeated) sorted in a canonical order. It follows from the previous

operators that the generating function for  can be written as

C(z) = ∏�∈(1 − z |�|)−1 = ∞∏k=1(1 − zk)−bk .
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It is also useful to consider the exp-log transform of C(z) = exp(log C(z)), which gives us

C(z) = exp( ∞∑k=1 bk log(1 − zk)−1)= exp( ∞∑k=1 bk ∞∑j=1 zkjj )= ∞∏k=1 exp(1kB(zk)). (6.3)

The second equality follows from expanding the logarithm

log(1 + z) = z − z22 + z33 − … ,
and the third equality results from exchanging the order the summations [FS09]. Both inter-

pretations of the multiset construction are essential to our algorithm and analysis because they

demonstrate exactly how Bose–Einstein condensates decompose into combinatorial atoms.

6.2.3 Bose–Einstein Condensates and Weighted Partitions

The central object of study in the Khintchine–Meinardus probabilistic method are weighted

partitions, which are unlabeled multiplicative objects that generalize integer partitions and Bose–

Einstein condensates.

De�nition 6.2.2. The class  (1) of weighted partitions with bk di�erent types of summands of

size k ≥ 1 is implicitly de�ned by the generating function

C (1)(z) def= ∞∑k=0 c(1)k zk = ∞∏k=1(1 − zk)−bk .
Equivalently,  (1) = MSet() is parameterized by the class  of permissible summands.

Setting bk = 1 for all k ≥ 1 recovers the generating function for integer partitions since integer

partitions consider only one type of summand of size k. Now that we have de�ned weighted

153



partitions, we can formally de�ne Bose–Einstein condensates.

De�nition 6.2.3. Bose–Einstein condensates are weighted partitions with the parameters

bk = (k + 22 ).
In the language of analytic combinatorics, they are the class MSet(MSet≥1(3)).
The parameterizing class MSet≥1(3) is the set of all nonempty multisets of 3 di�erent colored

atoms. There are (k+3−13−1 ) such multisets of size k, each corresponding to a di�erent type of

summand. From a physics point of view, multisets of size k in MSet≥1(3) are isomorphic to three-

dimensional degenerage energy states of a boson with energy k. Since Bose–Einstien condensates

are unordered collections of bosons, an object of size n in MSet(MSet≥1(3)) uniquely corresponds

to a Bose–Einstein condensate with total energy n.

For the problem of uniform sampling, it is bene�cial to work with the truncated class of

weighted partitions (1)n whose generating function is

C (1)n (z) def= n∏k=1(1 − zk)−bk ,
since it completely contains the target set of objects of size n.

Next, we de�ne an analog of weighted partitions called selections, which are fundamental to

Fermi–Dirac statistics from physics and correspond to the power set construction.

De�nition 6.2.4. The class  (2) of selections with bk di�erent types of summands of size k ≥ 1 is

implicitly de�ned by the generating function

C (2)(z) def= ∞∑k=0 c(2)k zk = ∞∑k=1(1 + zk)bk .
Equivalently, the class  (2) = PSet() is parameterized by the class  of permissible summands.
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The truncated class  (2)n and its generating function C (2)n are de�ned similarly.

Finally, we de�ne a random variable for the size of a weighted partition or selection when generated

from the Boltzmann distribution of a truncated class.

De�nition 6.2.5. Let U (i)n be the random variable for the size of an object generated by ΓC (i)n (�).
6.2.4 Khintchine–Meinardus Probabilistic Method

We use the Khintchine–Meinardus probabilistic method to lower bound Pr(U (i)n = n), that is, the

probability that our algorithms sample an object of the target size. Meinardus �rst established an

asymptotic equivalence between the number of weighted partitions c(1)n and the analytic behavior

of the Dirichlet series D(s) def= ∞∑k=1 bkk−s ,
where s = � + it is a complex variable, in 1954 by using the saddle-point method under somewhat

restrictive conditions [Mei54]. Several decades later, Granovsky, Stark, and Erlihson [GSE08]

extended Meinardus’ theorem by using Khintchine’s probabilistic method to include new multi-

plicative combinatorial objects such as selections and assemblies [Khi11]. Granovsky and Stark

[GS12] generalized their results to include families of weighted partitions such that the corre-

sponding series D(s) has multiple singularities on the positive real axis. This includes the class

of Bose–Einstein condensates. In short, to use the Khintchine–Meinardus probabilistic method

for weighted partitions, one must show that the Dirichlet series D(s) satis�es the following

conditions [GS12]:

(I) The series D(s) has r ≥ 1 simple poles at real positions 0 < �1 < �2 < ⋯ < �r with positive

residues A1, A2, … , Ar , respectively, and is analytic in the half-plane � > �r > 0. Moreover,

there is a constant 0 < C0 ≤ 1 such that the function D(s) has a meromorphic continuation

to the half-plane

 = {s ∶ � ≥ −C0},
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on which it is analytic except for above the r simple poles.

(II) There is a constant C1 > 0 such that

D(s) = O(|t|C1),
uniformly for s = � + it ∈ , as t → ∞.

(III) For � > 0 small enough and some " > 0, we have

2 ∞∑k=1 bke−k� sin2(�k�) ≥ (i)(1 + �r2 + ")|log �|,
for all

√� ≤ |�| ≤ 1/2, where the constant (i) is de�ned by

(i) = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4log 5 if i = 1,4 if i = 2

Now we present a local limit theorem for weighted partitions and selections. We use this

result to prove asymptotically tight rejection rates for our Boltzmann sampler as a function of the

rightmost pole of D(s). In this statement, Γ(z) is the gamma function and � (s) is the Riemann zeta

function.

Theorem 6.2.6 ([GS12, Local Limit Theorem]). If conditions (I)–(III) above hold, then

Pr�n(U (i)n = n) ∼ 1√2�Var(U (i)n ) ∼ 1√2�K (i)2 ( K (i)2�r + 1) 2+�r2(�r +1)n− 2+�r2(�r +1) ,
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as n → ∞, where the constants K (i)2 are de�ned by

K (i)2 = ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ArΓ(�r + 2)� (�r + 1) if i = 1,Ar (1 − 2−�r )Γ(�r + 2)� (�r + 1) if i = 2.

6.3 Sampling Algorithms

In this section we present our sampling algorithms for Bose–Einstein condensates and a broad

class of weighted partitions and selections. The core idea behind our algorithms is that these

random objects can be generated by systematically combining the results of independent random

processes that draw from simpler probability distributions. We begin by de�ning several of the

primitive distributions that are fundamental to the subroutines of our algorithms.

We let Geometric(�) denote the geometric distribution with success probability � and probability

density function Pr�(k) = (1 − �)k�, for all k ∈ ℤ≥0. Similarly, let Bernoulli(�) denote the Bernoulli

distribution with success probability �. We heavily rely on the next two distributions in order to

fully exploit the structure of Bose–Einstein condensates. These allow us to design a substantially

more e�cient and better-tailored algorithm.

Poisson Distribution. Let Poisson(�) denote the Poisson distribution with rate parameter � and

probability density function

Pr�(k) = �ke�k! ,
for all k ∈ ℤ≥0. The zero-truncated Poisson distribution Poisson≥1(�) (i.e., conditioned on the eventk ≥ 1) with rate parameter � has the probability density function

Pr�(k) = �k(e� − 1)k! .
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Negative Binomial Distribution. Let NegativeBinomial(r , �) denote the negative binomial

distribution with r failures, success probability �, and probability density function

Pr�(k) = (k + r − 1r − 1 )�k(1 − �)r ,
for all k ∈ ℤ≥0. The zero-truncated negative binomial distribution is NegativeBinomial≥1(r , �).
6.3.1 Sampling Bose–Einstein Condensates

Our sampling algorithm RandomBoseEinsteinCondensate for Bose–Einstein condensates of

size n is given in Algorithm 6.1. Recall that the truncated class of Bose–Einstein condensates

that we consider is MSet(MSet1..n(3)). The �rst of the two main subroutines in Algorithm 6.1

is the templated Boltzmann sampler for the class MSet(), where  is any combinatorial class

with a0 = 0. The second subroutine ΓMSet1..n[d](�) is a Boltzmann sampler for the nonempty

multisets of d di�erent colored atoms of cardinality at most n. We show in Section 6.5 that we can

e�ciently implement ΓMSet1..n[d](�) for values of �kn by using ΓMSet≥1[d](�) and rejection

sampling.
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Algorithm 6.1 Algorithm for uniformly sampling Bose–Einstein condensates of size n.
1: procedure RandomBoseEinsteinCondensate(n)
2: �n ← Solution to ∑nk=1 k(k+22 )�k/(1 − �k) = n
3: repeat
4: 
 ← ΓMSet[MSet1..n(3)](�n)
5: until |
 | = n
6: return 

7: procedure ΓMSet[](�)
8: 
 ← Empty associative array
9: k0 ← MaxIndex(A, �)

10: for k = 1 to k0 do
11: if k < k0 then
12: m ← Poisson(A(�k)/k)
13: else
14: m ← Poisson≥1(A(�k)/k)
15: for j = 1 to m do
16: � ← ΓA(�k)
17: 
[�] ← 
[�] + k
18: return 

19: procedure ΓMSet1..n[d](�)
20: repeat
21: m ← NegativeBinomial≥1(d, �)
22: until m ≤ n
23: return RandomMultiset(m, d)

The templated subroutine ΓMSet[](�) repeatedly makes calls to the sampler of the input

class ΓA(�k) for di�erent values of k and is part of the Boltzmann sampling framework for

combinatorial classes that can be constructed using the symbolic method [FFP07]. The algorithmΓMSet[](�) is a manifestation of the exp-log transform of the generating function for the multiset

construction in Equation (6.3) that leverages the observation that a geometric random variable can

be decomposed into an in�nite sum of independent, scaled Poisson random variables. Concretely,

if (Yk)∞k=1 is a sequence of independent random variables such that Yk ∼ Poisson(�k/k) with � < 1
and we let X = ∑∞k=1 kYk , then the random variable X ∼ Geometric(1 − �). We direct the reader

to the proof of [FFP07, Proposition 2.1] for more details. This implementation of MSet[](�)
samples from the distribution MaxIndex(A, �), which is de�ned to have the cumulative density
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function

Pr�(U ≤ k) = ∏kj=1 exp( 1jA(�j))∏∞j=1 exp( 1jA(�j)) = ∞∏j=k+1 exp(−1j A(�j)), (6.4)

with support k ∈ ℤ≥1. In our model of computation, sampling from the distributionMaxIndex(A, �)
is e�cient. The following result gives guarantees for the time and space complexity of theΓMSet[](�) subroutine.

Proposition 6.3.1 ([FFP07]). The algorithm ΓMSet[](
 ) is a valid Boltzmann sampler forMSet().
Moreover, if the time and space complexities of ΓA(�) are, in the worst case, linear in the size of the

object produced, the time and space complexities of ΓMSet[](
 ) are also linear in the size of the

object produced.

For the second subroutine ΓMSet1..n[d](�), our crucial observation is that a negative binomial

experiment with d failures can be interpreted as a multiset of d di�erent colored atoms using

the classic combinatorial idea of stars and bars. In such an experiment, a successful trial adds

a new atom of the current color and a failing trial inserts a new bar that separates atoms of

di�erent colors. This process allows us to e�ciently use the zero-truncated negative binomial

distribution to implement ΓMSet≥1[d](�). In particular, once m is determined, the function

RandomMultiset(m, d) returns one of the (m+d−1d−1 ) multisets of size m uniformly at random.

6.3.2 Sampling Weighted Partitions and Selections

Next, we consider the more general problem of uniformly sampling weighted partitions or se-

lections of size n. The primary subroutine for the algorithms RandomWeightedPartition and

RandomSelection in Algorithm 6.2 is the Boltzmann sampler ΓC (i)n (�). This procedure is the

natural algorithmic interpretation of the truncated generating functions for weighted partitions
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and selections that iterates over all types of summands of size at most n and determines how

many parts of each type appear in the �nal object. The complete factorization of these generating

functions corresponds to the decomposable structure that allows us to leverage independent

random processes.

Algorithm 6.2 Sampling Algorithms for weighted partitions and selections of size n.
1: procedure RandomWeightedPartition(n)
2: �n ← Solution to ∑nk=1 kbk�k/(1 − �k) = n
3: repeat
4: 
 ← ΓC (1)n (�n)
5: until |
 | = n
6: return 

7: procedure RandomSelection(n)
8: �n ← Solution to ∑nk=1 kbk�k/(1 + �k) = n
9: repeat

10: 
 ← ΓC (2)n (�n)
11: until |
 | = n
12: return 

13: procedure ΓC (i)n (�)
14: 
 ← Empty associative array
15: for k = 1 to n do
16: for j = 1 to bk do
17: if i = 1 then ⊳ Weighted partitions
18: m ← Geometric(1 − �k)
19: else ⊳ Selections
20: m ← Bernoulli(�k/(1 + �k))
21: if m ≥ 1 then
22: 
[(k, j)] ← m
23: return 

6.4 Analysis

Now we analyze the running time and space complexity of the procedures in Algorithm 6.1 and

Algorithm 6.2. In particular, we bound the rejection rates of these Boltzmann samplers through

the singularity analysis of an associated Dirichlet generating function and using the Khintchine–
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Meinardus probabilistic method. Once we establish guarantees for these rejection rates, we prove

our two main theorems about algorithms for uniformly sampling Bose–Einstein condensates,

weighted partitions, and selections.

6.4.1 Tuning the Boltzmann Samplers

The product form of the generating functions for weighted partitions and selections has a useful

probabilistic interpretation in the context of Boltzmann sampling. For the two truncated classes,

we have U (i)n = n∑k=1 bk∑j=1 kY (i)k,j , (6.5)

where

Y (i)k,j ∼
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Geometric(1 − �k) if i = 1,
Bernoulli( �k1+�k) if i = 2.

This decomposition follows from iterating over all of the types of summands of size at most n and

viewing the number of times each part appears in the �nal object as a random variable. The key

observation here is that these processes are independent of one another.

Lemma 6.4.1. For any 0 ≤ � < 1, we have
E�[U (i)n ] = n∑k=1 kbk( �k1 + (−1)i�k).

Proof. The result follows from the linearity of expectation and the means of the variables Yk,j .
6.4.2 Bounding the Rejection Rate for Weighted Partitions and Selections

In this subsection we show that the local limit theorem in Theorem 6.2.6 holds for a broad family

of weighted partitions and selections, which in turn yields a rigorous rejection rate for all of our

sampling algorithms. In particular, for any class of weighted partitions or selections parameterized
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(a) (b)

Figure 6.2: Complex three-dimensional plots of (a) the Riemann zeta function and (b) the Dirichlet
generating function for Bose–Einstein condensates in the neighborhood of their singularities.

by a positive integer sequence of degree r , we bound the residue of the rightmost pole of the

Dirichlet series D(s) and therefore obtain a tight lower bound for Pr�n (U (i)n = n) as a function of

the degree r .
De�nition 6.4.2. Let a positive integer sequence of degree r be a sequence of positive integers (bk)∞k=1
such that bk = p(k) for the polynomial

p(x) = a0 + a1x + ⋯ + arx r ∈ ℝ[x],
where deg(p) = r .

In order to interface with the Khintchine–Meinardus probabilistic method, we need to use

results from analytic number theory about the Riemann zeta function. The Riemann zeta func-

tion � (s), with s = � + it , is de�ned as the analytic continuation of the convergent series

� (s) = ∞∑n=1 1ns ,
for all � > 1, into the entire complex plane. The only singularity of � (s) is a simple pole at s = 1.

163



The following lemma shows that the Dirichlet generating functionD(s) for the sequence (bk)∞k=1
is a linear combination of shifted Riemann zeta functions scaled by the coe�cients of their

parameterizing polynomial p(x). We illustrate this With this, we can easily compute the residues

of the poles of D(s) and satisfy conditions (I)–(III) in Section 6.2.4.

Lemma 6.4.3. If (bk)∞k=1 is a positive integer sequence of degree r , its Dirichlet generating series is
D(s) = r∑k=0 ak� (s − k),

and it satis�es conditions (I)–(III). Moreover, D(s) has at most r + 1 simple poles on the positive real

axis at positions �k = k + 1 with residue Ak = ak if and only if ak ≠ 0, for k ∈ {0, 1, … , r}.
Proof. The Riemann zeta function converges uniformly and is analytic on ℂ ⧵ {1}, so

D(s) = ∞∑k=1 bkks= ∞∑k=1 a0 + a1k + ⋯ + arkrks= r∑k=0 ak� (s − k).
Since � (s) has a simple pole at s = 1 with residue 1, the result about the poles and residues of D(s)
immediately follows. We can satisfy condition (I) by setting C0 = 1. For condition (II), we setC1 = 2 + r since D(s) is a linear combination of shifted zeta functions and use the follow fact in

[BD04, Section 8.2]:

� (s) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
O(t1/2−�) if � < 0,O(t) if 0 ≤ � ≤ 1,O(1) if 1 < �.

To show condition (III), we follow an approach similar to the proof of [GSE08, Lemma 1],

which uses the following inequality of Karatsuba and Voronin [KV92, Section 4.2, Lemma 1] for
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trigonometric sums related to the Riemann zeta function. This result states that for all positive

integers m, we have 2 m∑k=1 sin2(�k�) ≥ m(1 − min(1, 12m|�|)). (6.6)

By assumption, (bk)∞k=1 is a sequence of positive integers and 0 < √� ≤ |�| ≤ 1/2, so

2 ∞∑k=1 bke−k� sin2(�k�) ≥ 2 m∑k=1 e−k� sin2(�k�)≥ e−m�m(1 − min(1, 12m|�|)).
Using Equation (6.6), we set m = ⌈1/(2|�|) + 1/�⌉ ≥ 1 so that

2 ∞∑k=1 bke−k� sin2(�k�) ≥ e−m�(m − 12|�|)≥ e−( 12|�|+ 1� +1)��−1≥ e−( √�2 +1+�)�−1.
Recall that the position of the pole �r = r + 1 is �xed and (i) is constant. Therefore, it follows

that e−( √�2 +1+�) 1�|log �| ≥ (i)(1 + �r2 + "),
for a su�ciently small value of � and taking " = 1, which completes the proof.

Now we use Lemma 6.4.3 and the method of �nite di�erences to lower bound the rightmost

residue Ar , which allows us to more conveniently analyze the rejection rates of our algorithms

using the local limit theorem. Speci�cally, we bound the coe�cients of p(x) in the binomial basis

centered at x = 0, as illustrated in [BFT16].

De�nition 6.4.4. Let the forward di�erence operator Δ denote

Δp(x) = p(x + 1) − p(x).
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We recursively de�ne higher order di�erences by

Δnp(x) = Δn−1p(x + 1) − Δn−1p(x).
Viewing p(x) as a Newton interpolating polynomial, we can recover the change of basis

p(x) = r∑j=0Δjp(0)(xj ).
The following result is a simple consequence of this binomial basis representation and states that

integer-valued polynomials necessarily have integer-valued forward di�erences.

Lemma 6.4.5 ([Sta11]). Let p(x) ∈ ℝ[x] be a polynomial of degree r . We have the property p(n) ∈ ℤ,
for all n ∈ ℤ, if and only if Δjp(0) ∈ ℤ, for all 0 ≤ j ≤ r .

Now we can present our lower bound on the rightmost residue Ar , which we use with the

local limit theorem (Theorem 6.2.6) to obtain a more convenient rejection rate.

Lemma 6.4.6. If (bk)∞k=1 is a positive integer sequence of degree r , then for n su�ciently large, we

have

Pr�n(U (i)n = n) ≥ 12√2� ((r + 2)n)− r+32(r+2) .
Proof. Theorem 6.2.6 holds for U (i)n by Lemma 6.4.3. Since (bk)∞k=1 is a positive integer sequence

of degree r , Lemma 6.4.5 implies that p(x) has integral coe�cients Δjp(0) in the binomial basis.

Therefore, the leading coe�cient in the binomial basis Δrp(0) is a positive integer, so the leading

coe�cient in the monomial basis ar satis�es

ar = Δrp(0) ⋅ [x r ] (xr) = Δrp(0) ⋅ [x r ] x(x − 1)… (x − r + 1)r! ≥ 1r! .
In the equation above, the [xk] operator extracts the coe�cient of xk . The residue Ar = ar by

166



Lemma 6.4.3, so we can lower bound K (i)2 by

K (i)2 ≥ Ar2 Γ(�r + 2)� (�r + 1) ≥ 12r! (r + 2)! ≥ 1,
since �r = r + 1 and � (n) ≥ 1, for all n ≥ 2. It follows that for " = 1/2 and n su�ciently large,

Theorem 6.2.6 gives us

Pr�n(U (i)n = n) ≥ (1 − ") 1√2�K (i)2 ( K (i)2(�r + 1)n) 2+�r2(�r +1)

≥ 12√2� (K (i)2 ) 12(r+2) ((r + 2)n)− r+32(r+2)
≥ 12√2� ((r + 2)n)− r+32(r+2) ,

which completes the proof.

6.4.3 Proof of the Main Theorems

Recall that we follow the convention of using the real-arithmetic model of computation and

an oracle that can evaluate a generating function within its radius of convergence in constant

time [BFP10, FFP07]. A consequence of this assumption is that we can sample from the distributions

Geometric(�), Poisson(�), MaxIndex(A, �), etc., iteratively in O(m) time, where m is the value of

the generated sample.

We now proceed by proving our two main theorems, which we restate for convenience.

Theorem 6.1.1. There exists a uniform sampling algorithm for Bose–Einstein condensates of size n
that runs in expected O(n1.625) time and uses O(n) space.
Proof. We analyze the time and space complexity of RandomBoseEinsteinCondensate and its

subroutines in Algorithm 6.1. We can compute the exact value of �n in the tuning step in O(1) time

using the root-�nding oracle and Lemma 6.4.1. The Boltzmann sampler ΓMSet[MSet1..n(3)](�n)
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is called at most O(n5/8) times in expectation before generating an object of size n by Lemma 6.4.6

since Bose–Einstein condensates are parameterized by a positive integer sequence of degree r = 2.

We implement this Boltzmann sampler using the subroutines ΓMSet[](�) and ΓMSet1..n[d](�).
Lemma 6.5.1 ensures that the time and space complexities of ΓMSet1..n[d](�) are linear in the size

of the object produced. Proposition 6.3.1 and our choice of �n guarantees that ΓMSet[](�) runs

in expected O(n) time and space. Therefore, RandomBoseEinsteinCondensate runs in O(n1.625)
time and uses O(n) space in expectation.

In order to use deterministic O(n) space, we can modify the Boltzmann sampler to reject

partially constructed objects if their size is at least 2n. By Markov’s inequality, this re�ned

Boltzmann sampler outputs objects of size less than 2n from the new conditional Boltzmann

distribution with probability at least

1 − Pr�n(U (1)n ≥ 2n) ≥ 1 − E�n[U (1)n ]2n= 12.
Therefore, at most a constant number of trials are needed in expectation to sample from this

tail-truncated Boltzmann distribution.

The singularity analysis in Lemma 6.4.3 and Lemma 6.4.6 holds for all classes of weighted

partitions and selections parameterized by a positive integer sequence of degree r . However, we

need a more general Boltzmann sampler to generate these multiplicative objects. The truncated

class  (1)n of weighted partitions has the generating function

C (1)n (z) = n∏k=1(1 − zk)−bk ,
so we can use independent geometric random variables to randomly sample the number of

parts each type of summand contributes to the �nal con�guration. For selections, the truncated
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generating function C (2)n analogously implies that we can use independent Bernoulli random

variables to sample from the corresponding Boltzmann distribution. See Boltzmann samplers for

the Cartesian product, sequence construction, and power set operator in [FFP07] for more details.

Theorem 6.1.2. There exists a uniform sampling algorithm for any class of weighted partitions or

selections parameterized by a positive integer sequence of degree r for objects of size n that runs in

expected time O(nr+1+(r+3)/(2r+4)) and uses O(n) space.
Proof. We start by considering weighted partitions and the procedure RandomWeightedParti-

tion in Algorithm 6.2. The tuning step is the same as in the proof of Theorem 6.1.1 and takes

constant time in our model of computation. The Boltzmann distribution for the truncated class (1)n
is the product of n∑k=1 bk = O(nr+1)
geometric distributions, and sampling from each of these geometric distributions takes time and

space proportional to the number they output. The total number of positive geometric trials

performed across all of the O(nr+1) distributions is O(n) by our choice of �n. Therefore, the

time and space complexities of ΓC (1)n (�n) are O(nr+1) and O(n) in expectation, respectively. Using

Markov’s inequality as in the proof of Theorem 6.1.1, we can also guarantee that the algorithm

uses deterministic O(n) space. Since the number of summands (bk)∞k=1 is given by a positive integer

sequence of degree r , we can use Lemma 6.4.6 to bound the rejection rate. We expect to generate a

weighted partition of size n in O(n(r+3)/(2r+4)) calls to ΓC (1)n (�n), so the result for weighted partitions

follows. The analysis for selections is similar, but we sample from Bernoulli distributions instead

of from geometric distributions.

6.5 Sampling from Truncated Negative Binomial Distributions

In this section we investigate properties of negative binomial distributions in the context of

rejection sampling. Speci�cally, our main result (Lemma 6.5.1) shows that the rejection sampling
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in the subroutine ΓMSet1..n[d](�) of Algorithm 6.1 requires a constant number of trials in

expectation each time it is called by the multiset sampler ΓMSet[](�). We generalize our

analysis from the case d = 3 (i.e., Bose–Einstein condensates) to d ≥ 1 so that our arguments

can be used in other contexts. One of the highlights of our analysis is a simple but e�ective tail

inequality for negative binomial random variables parameterized by high success probabilities

(Lemma 6.5.4) that outperforms the standard Cherno�-type inequality in this setting.

For the remainder of the chapter, let [n] = {1, 2, … , n} and let V be the random variable for the

size of an object drawn from ΓMSet≥1(d)(�). The symbolic method implies that the generating

function for  = MSet(d) (the multisets of d distinct atoms) is

B(z) = ∞∑k=0(k + d − 1d − 1 )zk = 1(1 − z)d ,
so it follows that V ∼ NegativeBinomial≥1(d, �). We also let W ∼ NegativeBinomial(d, �).
Lemma 6.5.1. For n su�ciently large and all k ∈ [n], we have

Pr�kn (V ≤ n) ≥ 12.
We prove Lemma 6.5.1 using three prerequisite lemmas. First, recall that the probability mass

function for the negative binomial distribution is

Pr�(W = k) = (k + d − 1d − 1 )�k(1 − �)d , (6.7)

The cumulative distribution function for W can be written as

Pr�(W ≤ k) = 1 − I�(k + 1, d), (6.8)
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where I�(a, b) is the regularized incomplete beta function de�ned as

I�(a, b) def= B�(a, b)B1(a, b) ,
with B�(a, b) def= ∫ �

0 ta−1(1 − t)b−1dt.
The �rst of the three lemmas (Lemma 6.5.2) shows that it su�ces to lower bound the success

probability in the subroutine ΓMSet1..n[d](�k) for k = 1 instead of all k ∈ [n].
Lemma 6.5.2. For all k ∈ [n], we have

Pr�kn (V ≤ n) ≥ Pr�n (V ≤ n).
Proof. Using the probability mass function Equation (6.7) and cumulative density function Equa-

tion (6.8), observe that the conditional probability for the zero-truncated negative binomial distri-

bution is

Pr�kn (V ≤ n) = Pr�kn (W ≤ n) − Pr�kn (W = 0)1 − Pr�kn (W = 0)= 1 − I�kn (n + 1, d) − (1 − �kn)d1 − (1 − �kn)d= 1 − I�kn (n + 1, d)1 − (1 − �kn)d .
The integrand of the beta function ta−1(1 − t)b−1 is positive on (0, 1) and �n ∈ (0, 1), so it follows

that 1 − I�kn (n + 1, d)1 − (1 − �kn)d ≥ 1 − I�n (n + 1, d)1 − (1 − �n)d ,
for all k ∈ [n], which concludes the proof.
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Therefore, it is su�cient to consider the case k = 1 when analyzing the rejection rate for sampling

from the zero-truncated distribution NegativeBinomial≥1(d, �kn).
The second prerequisite lemma (Lemma 6.5.3) gives an upper bound and lower bound for �n

using an asymptotic formula from the Khintchine–Meinardus probabilsitic method.

Lemma 6.5.3. In the algorithmMSet(MSet1..n(d)), for n su�ciently large, the value of �n satis�es
exp(−2n− 1d+1) ≤ �n ≤ exp(−12n− 1d+1).

Proof. Let �n = e−�n . Equation (32) in [GS12] asserts that as n → ∞, �n satis�es

�n ∼ (ArΓ(�r )� (�r + 1)�r ) 1�r +1n− 1�r +1 .
In this setting, the degree of the polynomial parameterizing the sequence bk = (k+d−1d−1 ) is r = d − 1.

Therefore, Lemma 6.4.3 implies that the rightmost pole is �r = d and its residue is Ar = 1/(d − 1)!.
Since Γ(�r ) = (d − 1)!, we have �n ∼ (� (d + 1)d) 1d+1n− 1d+1 ,
as n → ∞. Therefore, for any " > 0 and n su�ciently large, we have the inequalities

�n ≥ (1 − ")(� (d + 1)d) 1d+1n− 1d+1 ,
and

�n ≤ (1 + ")(� (d + 1)d) 1d+1n− 1d+1 .
Since d ≥ 1, we know that the Riemann zeta function satis�es 1 ≤ � (d + 1) ≤ � (2) = � 2/6. Using

these bounds and setting " = 1/3 completes the proof.
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The third prerequisite lemma (Lemma 6.5.4) is a new tail inequality for negative binomial

random variables. Although our derivation is easily understood using standard techniques from

enumerative combinatorics, this inequality captures an ample amount of probability mass for all

integers n ≥ 0. It is empirically tighter than the Cherno�-type inequality as n → ∞ and �n → 1.
Lemma 6.5.4 (Negative Binomial Tail Inequality). If W ∼ NegativeBinomial(d, �), then for all

integers n ≥ 0, we have
Pr(W > n) ≤ 1 − (1 − �n/d)d .

Proof. Let m = ⌊n/d⌋ and observe that

n∑k=0(k + d − 1d − 1 )�k ≥ ( m∑k=0 �k)d .
This inequality has a direct combinatorial interpretation in terms of weak d-compositions. The

left-hand side is the truncated ordinary generating function for weak compositions of k into d
parts, while the right-hand side is the ordinary generating function for weak compositions of k
into d parts of size at most m. Using a property of geometric sequences, it follows that

( m∑k=0 �k)d = (1 − �m+11 − � )d ≥ (1 − �n/d)d (1 − �)−d ,
since 0 < � < 1. Therefore, the probability mass function in Equation (6.7) and the two inequalities

above imply that

Pr(W > n) = 1 − Pr(W ≤ n)= 1 − n∑k=0(k + d − 1d − 1 )�k(1 − �)d≤ 1 − (1 − �n/d)d ,
as desired.
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We can now prove Lamma 6.5.1 by combining the three prerequisite lemmas and using the

de�nition of the probability mass function for the negative binomial distribution.

Proof of Lemma 6.5.1. We only need to consider the case when k = 1 by Lemma 6.5.2. Using

Lemma 6.5.4 and Lemma 6.7, we have

Pr�n (V ≤ n) = Pr�n (W ∈ [n])
Pr�n (W ≥ 1)≥ Pr�n (W ≤ n) − Pr�n (W = 0)≥ (1 − �n/dn )d − (1 − �n)d .

The upper and lower bounds for �n obtained in Lemma 6.5.3 imply that

(1 − �n/dn )d − (1 − �n)d ≥ (1 − exp(− 12d n dd+1))d − (1 − exp(−2n− 1d+1))d ≥ 12,
for su�ciently large values of n because we have the limits

limn→∞ exp(−n dd+1) = 0,
and limn→∞ exp(−n− 1d+1) = 1.
This completes the proof.

6.6 Summary and Discussion

In this chapter we have shown how to analyze the time complexity of Boltzmann samplers for

a family of weighted partitions (including Bose–Einstein condensates) and selections through

the singularity analysis of Dirichlet generating functions. We do so by relating the degree of
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the polynomial that parameterizes the sequence (bk)∞k=1 to the rejection rate of our sampling

algorithms through the local limit theorem in [GS12]. The main observation in our analysis is that

the Dirichlet generating function for a positive integer sequence of degree r is a linear combination

of shifted and scaled Riemann zeta functions. This allows us to apply results from analytic number

theory to analyze the poles of these functions. In our analysis, we also use Newton interpolating

polynomials to bound residues and we develop a new negative binomial tail inequality to analyze

an intermediate rejection rate.

Future directions of this work include analyzing these kinds of generating-function based

sampling algorithms in the interval or �oating-point arithmetic models of computation, as opposed

to the idealized real-arithmetic model. The primary question to address here is how accurate the

approximation of �n needs to be in order to achieve a similar rejection rate, since �n approaches

an essential singularity of the generating function for weighted partitions C (1)n (z).
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CHAPTER 7

CONCLUSION

The research in this dissertation introduces several new probabilistic techniques for designing

Markov chain Monte Carlo algorithms and analyzing the rate at which various lattice models in

statistical physics converge to equilibrium. We start by showing that the mixing time of Glauber

dynamics for the six-vertex model can be exponentially slow in its ordered phases, resolving a

widely-believed conjecture about the dynamics of weighted, intersecting lattice path models. In

particular, we show there exist boundary conditions for which local Markov chains are slowly

mixing in all of the ferroelectric phase. We also analyze the Glauber dynamics in the antiferroelec-

tric phase subject to free boundary conditions and signi�cantly extend the subregion for which

Glauber dynamics was previously known to be slow mixing [Liu18]. Next, we leverage connections

between random walks and electrical networks to prove nearly tight bounds for the transience

class of the Abelian sandpile model, closing an open problem of Babai and Gorodevsky [BG07].

In the following chapter, we present a new technique called Boltzmann sampling with balanced

bias, which allows us to design Markov chain Monte Carlo algorithms for uniformly sampling

elements with a �xed rank from a particular family of graded posets in polynomial time. We then

explore how this approach applies to uniformly sampling integer partitions subject to a variety of

geometric constraints. Lastly, we take a noticeably di�erent approach to Boltzmann sampling and

use ideas from analytic combinatorics to design uniform sampling algorithms for combinatorial

objects with multiplicative structure. This chapter primarily focuses on sampling Bose–Einstein

condensates and bounding rejection rates through the analysis of Dirichlet generating functions.
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