UNDERSTANDING VIRUS-HOST INTERACTIONS THROUGH SINGLE CELL AND WHOLE GENOME ANALYSIS

A Dissertation Presented to The Academic Faculty

by

Shengyun Peng

In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in Bioinformatics in the School of Biological Sciences

> Georgia Institute of Technology December 2018

COPYRIGHT © 2018 BY SHENGYUN PENG

UNDERSTANDING VIRUS-HOST INTERACTIONS THROUGH SINGLE CELL AND WHOLE GENOME ANALYSIS

Approved by:

Dr. Joshua S. Weitz, Advisor School of Biological Sciences & Physics *Georgia Institute of Technology*

Dr. I. King Jordan School of Biological Sciences Georgia Institute of Technology

Dr. Frank J. Stewart School of Biological Sciences *Georgia Institute of Technology* Dr. Ling Liu School of Computer Science *Georgia Institute of Technology*

Dr. Justin R. Meyer Division of Biological Sciences University of California San Diego

Date Approved: November 5, 2018

To my family and friends

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest thanks and sincere appreciation to my advisor Prof Joshua S. Weitz for his guidance and support during my Ph.D. journey from both the academic side and everyday life. From him, I learned by taking small steps how to think, analyze, solve research problems, as well as how to share and communicate with others as a scientist.

I would like to express my gratitude towards all of my committee members: Prof I. King Jordan, Prof Ling Liu, Prof Justin R. Meyer and Prof Frank J. Stewart for the extensive support and invaluable advice.

I am grateful to all my collaborators including Jacob H. Munson-McGee, Animesh Gupta, Prof Mark J. Young, Prof Rachel J. Whitaker, Samantha Dewerff and Dr. Ramunas Stepanauskas. I truly enjoyed working with such great collaborators. It is not possible to deliver all these results without their dedicated work.

I am also grateful to my friends and colleagues from the Weitz Group for their support and helpful discussions: Dr. Stephen Beckett, Daniel Muratore, Dr. David Demory, Dr. Chung Yin (Joey) Leung, Yu-hui Lin, Guanlin Li, Ashley Coenen, Rogelio Rodriguez, Qi An, Dr. Keith Paarporn, Dr. Charles Wigington, Dr. Luis Jover, Dr. Bradford Taylor, Dr. Ceyhun Eksin, Dr. Hayriye Gulbudak, Rong Jin, Dr. Hend Alrasheed, Walker Gussler and Devika Singh. I want to thank my friends and colleagues for making my graduate life exciting and colorful.

Last but not the least, I would like to thank my family Yihua Peng, Xinhua Han and Lu Wang for their love and support.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iv
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF SYMBOLS AND ABBREVIATIONS	xi
SUMMARY	xii
CHAPTER 1. INTRODUCTION	1
1.1 Virus and host	1
1.2 Virus life cycle	2
1.3 Host defense mechanisms	4
1.4 Virus-host interactions in natural environments	6
1.5 The linkage between infection/interaction and genetic ba	sis 8
1.6 Change of infection/interaction over time	9
1.7 Thesis summary	10
 UBIQUITOUS NETWORKS OF VIRUS-HOST INTERACTIO ENVIRONMENTS 2.1 Abstract 2.2 Introduction 2.3 Materials and Methods 2.3.1 Sample site 2.3.2 Single cell genome sequencing 2.3.3 Cellular classification 2.3.4 Hexamer frequency analysis 2.3.5 Viral sequence identification 2.3.6 CRISPR spacer sequence identification 	22112. 212 12 13 14 14 15 16 17 18
2.3.0 CKISER space sequence identification	10
2.4 Results and Discussion	20
CHAPTER 3. LINKING GENOTYPE WITH PHENOTYPE BACTERIOPHAGE LAMBDA AND ESCHERICHIA COLI IN NETWORK	IN THE NTERACTION 32
3.1 Abstract	32
3.2 Introduction	32
3.3 Materials and Methods	35
3.3.1 Experimental setup and data collection	33
3.3.7 Experimental setup and data concerton	33
2.2.2 France construction	30
3.3.5 Framework design	39
3.3.4 Model for predicting existence of phage infectivity	39

3.3.5 Model for predicting infection efficiency	40
3.3.6 Train-validation split and feature evaluation	41
3.3.7 Final model and predictions	42
3.4 Results	42
3.4.1 The mutation and cross-infection matrices for phage and host	42
3.4.2 Model for predicting phage-host interaction network	45
3.4.3 Model for predicting the efficiency of infection	48
3.4.4 Molecular mechanism behind the important features	50
3.5 Discussion	51
CHAPTER 4. GENOME SEQUENCING REVEALS A DISCONNECT	
BETWEEN COEVOLUTIONARY PATTERN AND PROCESS	55
4.1 Abstract	55
4.2 Introduction	56
4.3 Methods	59
4.3.1 Experimental setup and sample isolation	59
4.3.2 Pairwise infection assays	60
4.3.3 Analysis of Nestedness and Modularity	60
4.3.4 Resistance and infectivity calculation and statistical test	61
4.3.5 Time-shift analysis	62
4.3.6 Whole Genome Sequencing for λ and E. coli clones and pre-analysis	63
4.3.7 Mutation profile tables for isolated host and phage clones	64
4.3.8 Test for selection on phage samples	65
4.3.9 Phylogenetic reconstruction	65
4.3.10 Genomic analyses of whole community from Day 8	66
4.4 Results	67
4.4.1 Coevolutionary changes in resistance and infectivity	0/ 70
4.4.2 Time-shift analysis and signatures of coevolutionary dynamics	70
4.4.5 Bacteria and phage whole-genome sequence analysis	72
4.4.5 Whole population sequencing of the early community	75
4.4.6 Molecular mechanism underlying lean-frog dynamic	70
4.5 Discussion	78
CHADTED 5 CONCLUSION	01
UNAFIER 5. UUNULUSIUN 5.1 Summary of research advances	ð1 01
5.1 Descerch advances	01 Q1
5.1.2 Research advance 2	81
5.1.3 Research advance 3	82
5.2. The ubiquitous of viral-host interactions	82
5.3 The link between host range and genetic basis	83
5.4 The genotypical and phenotypical coevolution dynamic	84
5.5 Perspective	85
APPENDIX A. SUPPLEMENTARY INFORMATION FOR CHAPTER 2	86
APPENDIX B. SUPPLEMENTARY INFORMATION FOR CHAPTER 3	123

APPENDIX C. SUPPLEMENTARY INFORMATION FOR CHAPTER 4	191
REFRENCES	204

LIST OF TABLES

Table 1 – Reference genomes used in this study and a reference for each90
Table 2 – SAG sequencing and assembly statistics
Table 3 - Recruitment of reads from SAGs used in this study onto publicly available viral
metagenomes from other environments at 95% ID over 100bp112
Table 4 – Recruitment of reads from publically available SAGs onto the NL01 viral
dataset
Table 5 – Mutation profile tables for host
Table 6 – Mutation profile tables for phage138
Table 7 – Ordered features with non-zero coefficients from final model for step 1 based
on P+H:MF182
Table 8 – Ordered features with non-zero coefficients from final model for step 2 based
on P+H:MF186
Table 9 – Genomic variation present in the phage population on Day 8 of the coevolution
experiment as compared to the ancestral λ strain cI26 used in the study200
Table 10 – Genomic variation present in <i>E. coli</i> population on Day 8 compared to
ancestral genome (GenBank: CP000819.1)202

LIST OF FIGURES

Figure 1 – Life cycle of bacteriophage λ	.4
Figure 2 – Schematic of CRISPR-Cas system	.5
Figure 3 – Patterns of nested and modular bipartite virus-host interaction networks	.7
Figure 4 – Picture of the Yellowstone National Park NL01 hot spring from which cells	
were collected (Photo credit: Mark J. Young)1	15
Figure 5 – Cellular classification of SAGs	22
Figure 6 – Detection of viral types in 160 SAGs	26
Figure 7 – Ubiquitous interaction of multiple viruses with cells	29
Figure 8 – Experimental design of the cross-infection plaque assay	36
Figure 9 – Heatmaps showing the EOP value matrix as well as host and phage mutation	
profiles	14
Figure 10 – Model performance for different feature sets on validation set	46
Figure 11 – Results from final model for step 1 based on P+H:MF. P×H:MF and	
Joint:MF	47
Figure 12 – Results from final model for step 2 based on P+H:MF. P×H:MF and	
Joint: MF	49
Figure 13 – Phage (columns) and bacterial (rows) interaction network	58
Figure 14 – Host resistance and phage infectivity measured by pairwise plaque assay6	59
Figure 15 – Time-shift analysis results from different checkpoints	71
Figure 16 – Reconstructed phylogenomic trees of the hosts and phage	75
Figure 17 – Genomic diversity in whole population versus isolated clones on Day 8	77
Figure 18 – Heatmap of the percent of the SAG genome used to calculate ANI for all	
classified SAGs against 32 reference genomes	36
Figure 19 – Schematic overview of the logic pipeline used to classify single amplified	
genomes (SAG)	37
Figure 20 – Graphical representation showing the ratio of viral reads to assembled	
cellular contigs	38
Figure 21 – Receiver operating characteristic (ROC) curves assuming A. 5 viral sequence	ce
reads (750bp) or B. 2 viral sequence reads (300bp). Optimal hexanucleotide analysis cut	t
off values are indicated	
	39
Figure 22 – Distribution of the observed EOP values	39 23
Figure 22 – Distribution of the observed EOP values	89 23 24
Figure 22 – Distribution of the observed EOP values	89 23 24 25
Figure 22 – Distribution of the observed EOP values	89 23 24 25
Figure 22 – Distribution of the observed EOP values 12 Figure 23 – Model performance for different feature sets on training set 12 Figure 24 – Log transformed positive EOP value distribution 12 Figure 25 – Rank ordered coefficients from the final step 1 model (A) and step 2 model 12 (B) based on P+H:MF 12	89 23 24 25 26
Figure 22 – Distribution of the observed EOP values12Figure 23 – Model performance for different feature sets on training set12Figure 24 – Log transformed positive EOP value distribution12Figure 25 – Rank ordered coefficients from the final step 1 model (A) and step 2 model12(B) based on P+H:MF12Figure 26 – Results from final model for step 2 based on P+H:MF, P×H:MF and	89 23 24 25 26
Figure 22 – Distribution of the observed EOP values 12 Figure 23 – Model performance for different feature sets on training set 12 Figure 24 – Log transformed positive EOP value distribution 12 Figure 25 – Rank ordered coefficients from the final step 1 model (A) and step 2 model 12 B) based on P+H:MF 12 Figure 26 – Results from final model for step 2 based on P+H:MF, P×H:MF and 12 Joint:MF in log scale 12	 89 23 24 25 26 27
Figure 22 – Distribution of the observed EOP values 12 Figure 23 – Model performance for different feature sets on training set 12 Figure 24 – Log transformed positive EOP value distribution 12 Figure 25 – Rank ordered coefficients from the final step 1 model (A) and step 2 model 12 B) based on P+H:MF 12 Figure 26 – Results from final model for step 2 based on P+H:MF, P×H:MF and 12 Figure 27 – Results from final model for step 1 based on H:MF and P:MF 12 Figure 27 – Results from final model for step 1 based on H:MF and P:MF 12	 89 23 24 25 26 27 28
Figure 22 – Distribution of the observed EOP values 12 Figure 23 – Model performance for different feature sets on training set 12 Figure 24 – Log transformed positive EOP value distribution 12 Figure 25 – Rank ordered coefficients from the final step 1 model (A) and step 2 model 12 (B) based on P+H:MF 12 Figure 26 – Results from final model for step 2 based on P+H:MF, P×H:MF and 12 Figure 27 – Results from final model for step 1 based on H:MF and P:MF 12 Figure 28 – Results from final model for step 2 based on H:MF and P:MF 12 Figure 28 – Results from final model for step 2 based on H:MF and P:MF 12	 89 23 24 25 26 27 28 29
Figure 22 – Distribution of the observed EOP values12Figure 23 – Model performance for different feature sets on training set12Figure 24 – Log transformed positive EOP value distribution12Figure 25 – Rank ordered coefficients from the final step 1 model (A) and step 2 model12(B) based on P+H:MF12Figure 26 – Results from final model for step 2 based on P+H:MF, P×H:MF and12Joint:MF in log scale12Figure 27 – Results from final model for step 1 based on H:MF and P:MF12Figure 28 – Results from final model for step 2 based on H:MF and P:MF12Figure 29 – Temporal signal analysis for the host phylodynamic tree19	 89 23 24 25 26 27 28 29 21
Figure 22 – Distribution of the observed EOP values12Figure 23 – Model performance for different feature sets on training set12Figure 24 – Log transformed positive EOP value distribution12Figure 25 – Rank ordered coefficients from the final step 1 model (A) and step 2 model12(B) based on P+H:MF12Figure 26 – Results from final model for step 2 based on P+H:MF, P×H:MF and12Joint:MF in log scale12Figure 27 – Results from final model for step 1 based on H:MF and P:MF12Figure 28 – Results from final model for step 2 based on H:MF and P:MF12Figure 29 – Temporal signal analysis for the host phylodynamic tree19Figure 30 – Temporal signal analysis on the phage phylodynamic tree19	 89 23 24 25 26 27 28 29 29 21 22
Figure 22 – Distribution of the observed EOP values12Figure 23 – Model performance for different feature sets on training set12Figure 24 – Log transformed positive EOP value distribution12Figure 25 – Rank ordered coefficients from the final step 1 model (A) and step 2 model12(B) based on P+H:MF12Figure 26 – Results from final model for step 2 based on P+H:MF, P×H:MF and12Joint:MF in log scale12Figure 27 – Results from final model for step 1 based on H:MF and P:MF12Figure 28 – Results from final model for step 2 based on H:MF and P:MF12Figure 29 – Temporal signal analysis for the host phylodynamic tree19Figure 30 – Temporal signal analysis on the phage phylodynamic tree19Figure 31 – Recovered unique genomes for <i>E. coli</i> 19	 89 23 24 25 26 27 28 29 21 22 28 29 29 21 22 23

Figure $33 - D_N/D_S$ ratios for phage whole genome (A) and J protein region (B) across	
ampling days19)5
Figure 34 – Difference in genomic variation observed between whole population	
equencing and 11 isolated clones of λ on Day 819)6
Figure 35 – Difference in genomic variation observed between whole population	
equencing and 10 isolated clones of E. coli on Day 8	97
Figure 36 – Regression analysis of host genotype against coevolution time and phenotype	e
	18
Figure 37 – Regression analysis of phage genotype against coevolution time and	
henotype19	19

LIST OF SYMBOLS AND ABBREVIATIONS

- ANI Average Nucleotide Identity
- ANOVA Analysis of Variance
 - ARD Arms Race Dynamic
 - BPC Base Pair Coverage
- CRISPR Clustered Regularly Interspaced Short Palindromic Repeats
 - EFF Efficiency of Phage Infection
 - EOP Efficiency of Plaquing
 - FSD Fluctuating Selection Dynamic
 - H:MF Host-only Mutational Feature
- Joint:MF Combined Feature
 - MAE Mean Absolute Error
 - MDA Multiple Displacement Amplification
 - P:MF Phage-only Mutational Feature
- P+H:MF Phage and Host Mutational Feature
- P×H:MF Phage-cross-host Mutational Feature
 - PBIN Phage-bacterial Interactions Network
 - PCR Polymerase Chain Reaction
 - POA Presence or Absence of Successful Infection
 - SAG Single-cell Amplified Genomes
 - SCG Single-cell Genomics
 - SNP Single Nucleotide Polymorphism
 - VMR Virus-to-microbial Cell Ratio
 - YNP Yellowstone National Park

SUMMARY

Viruses and their microbial hosts are widely distributed in the environment, including in oceans, soils, fresh water, and even in extreme environments such as the deep ocean, hot springs and the upper atmosphere. Given the ubiquity of viruses of microbes, it is critical to understand virus-host interactions and their effects on ecosystem functioning. My work addresses the problem of virus-host interactions through three motivating questions: 1) to what extent do viruses and hosts interact in a given environment and who interacts with whom, 2) how do interactions shape the coevolutionary dynamics of viruses and hosts and 3) what is the genetic basis for determining both who infects whom and the efficiency of viral infections. Here, I report findings stemming from analysis of virus-host interactions in a natural environment (Yellowstone National Park hot springs) and from an experimental study of coevolution in vitro. First, I characterized virus-host interactions in a hot spring's environment, combining evidence from single-amplified genomes and metagenomes to characterize a natural virus-host interaction network, finding that the majority of cells were infected by one (or more) viruses. Second, I developed a new approach to infer the genetic basis for both qualitative and quantitative changes in virushost interactions unfolding during coevolution. In doing so, I leveraged whole genome analysis to identify novel mutational candidates that could drive large-scale changes in infectivity; the approach can also be applied to characterize the genotype-phenotype map in other phage-host systems. Overall, the findings help deepen our understanding of virushost interactions and the consequences of infection on complex virus and microbe communities.

CHAPTER 1. INTRODUCTION

1.1 Virus and host

Viruses can infect organisms in different domains from the tree of life, including Eukaryota, Bacteria and Archaea [1]. Since the discovery of the first virus – tobacco mosaic virus – in the 1890's, many different types of viruses have been discovered [2, 3]. These include viruses that infect plants, *i.e.* plant virus [4], viruses that infect bacteria, *i.e.* bacteriophage (or phage) [5], and viruses that infect archaea, *i.e.* archaea virus [6]. Viruses and their hosts can be found across different environments on our planet, such as the ocean, soils, fresh water and also even extreme conditions such as the deep ocean, hot springs and the upper atmosphere [7-15]. Among all hosts of viruses, the microbes – mainly bacteria, archaea and fungi – are the most abundant host types [16, 17]. Many studies have estimated the virus-to-microbial cell ratio (VMR) in different environments and showed that the viruses outnumber their hosts by orders of magnitude. For example, in the ocean, the estimated VMR is about 10:1 [18-20]. A recent study has found a nonlinear, power-law relation better describes the VMR [21].

Given the widespread abundance and distribution of viruses and their microbial hosts, the interactions between the two are also commonly observed in different environments and could have a profound ecological impact [22-24]. In fact, the initial discovery of bacteriophage in 1915 was based on the observed outcomes of phage-host interaction by Frederick Twort and Feilx D'Herelle [25-28]. Viruses mainly interact with hosts through infection. As a result, phage may be able to regulate the population size and density of their hosts. The host distributions, in turn, also determine the phage production and distribution [29]. Recent studies in oceans and lakes have shown that phages and their

hosts could impact climate change through the release of biogenic particles and dimethyl sulfide as a result of viral lysis [15, 30].

To systematically evaluate the phage-host interactions, many characteristics of the interactions such as burst size, latent period and lysis-lysogeny decision have been measured and investigated [31-35]. One important life history trait of viruses is the host range, which measures the variety of host cells that a virus can infect. Previous studies have shown that some viruses are generalists, that is they can infect a wide variety of host species, while others are specialists that only infect a few host strains [36-40].

1.2 Virus life cycle

Since viruses do not have their own metabolism system, they depend on their host cells to reproduce. Therefore, each step of viral replication involves interactions with host cells. For a virus to infect a host cell, it first attaches to the cell surface and injects its genome into the host cell [41]. After this step, the virus mainly interacts with its host through two different pathways: the lytic pathway or the lysogenic pathway [42-44]. For viruses that activate the lytic pathway, the virus chromosome integrates into the host genome. Virus genes are turned on and off to actively produce the viral DNA, head and tail proteins, and other components required for viral replication. New virus particles are assembled inside the host cell and eventually released to the environment after lysing of the host. For the lysogenic pathway, most virus genes are turned off after integration. The virus chromosome is passively replicated with the host multiplication. In this case, the host cell will not be 'killed' and the virus in lysogeny mode is described as 'temperate'. The host cell with the virus chromosome integrated into its own genome is called a lysogen and

the integrated virus is called a prophage. Studies have shown that the temperate phage can switch from lysogeny to lysis mode when the environment changes, such as introduction of irradiation from UV light [42].

The decision between a lytic cycle or a lysogenic cycle has been extensively studied using bacteriophage λ and its host *E. coli* as the model system [42, 43, 45, 46]. To attach to the host cell, λ phage binds to the cell surface with its *J* protein in the tail fiber. The *J* protein interacts with the *LamB* porin and the phage DNA is injected to the cytoplasm. Afterwards, the lysis-lysogeny decision for λ phage is mainly determined by one factor – the density of a protein that is called λ repressor, which is encoded by the *cI* gene. When its density is high, the phage will go into the lysogenic pathway and when its density is low, the phage will go into the lytic pathway. When UV light is introduced to a lysogen, the host protein *RecA* is activated and cleave the λ repressors under the threat of DNA damage. As a consequence, the density of λ repressor is reduced and the prophage switches from lysogeny mode to lysis mode (Figure 1).

Figure 1 – Life cycle of bacteriophage λ

The λ phage may go either lytic or lysogenic pathway after entering the host cell. The lysogen can be inducted with environmental factor change, such as UV light, and switch to lytic mode. Adapted and remade from Ptashne, M. 2004

1.3 Host defense mechanisms

In response to virus infection, hosts have developed different systems to resist viruses. Extracellular defense mechanisms of the host resist the viral infection through changes in outer membrane receptors caused by genetic mutations. Additionally, adaptive immunity of the host includes various types of mechanisms, including clustered regularly interspaced short palindromic repeats–CRISPR-associated proteins (CRISPR-Cas) [47-54], BREX [55, 56], DISARM [57] and so on. For example, the CRISPR-Cas system is an adaptive immune system of bacteria and archaea. This system is estimated to exist in about

40% of bacterial and 90% of archaeal genomes [48]. The system contains two parts: the CRISPR sequences mainly serve as a biological database for identifying foreign DNA while the *cas* sequences encode proteins that degrade the foreign DNA. There are two major classes for the CRISPR-Cas system, namely class 1 and class 2. They differ by the *cas* genes and the molecular mechanism which generates the CRISPR RNA (crRNA) and cleaves the foreign DNA. The CRISPR sequences comprise three parts: 1. Leader sequence, 2. Repeat sequences and 3. Spacer sequences (Figure 2). The leader sequence, which is located upstream of the CRISPR, is AT-rich and conservative. The repeat sequences are the identical contents to separate the spacer sequences and the length ranges from 23 - 47 bp. The spacer sequences, which are captured from phage or plasmid nucleic acid, are the main identifier to recognize the foreign DNA. The length ranges from 21 - 72 bp. Each different spacer sequence targets a specific foreign DNA fragment which allows a host to have adaptive immunity to multiple different phages. The common number of repeat-spacer units is less than 50.

Figure 2 – Schematic of CRISPR-Cas system

The green block indicates the cas genes in the CRISPR locus. L stands for the leader sequences and its typical length is 20 - 534 bp. The black diamonds represent the repeat sequences. The typical length of these invariant repeat sequences is 23 - 47 bp. The last black diamond with red outline indicates the end of CRISPR locus. The colored rectangle shows the spacer sequences. The spacer sequences are highly variable and are originally captured from the foreign DNA. The typical length of spacer sequences is 21 - 72 bp. There can be as many as 375 repeat-spacer units in one CRISPR locus.

1.4 Virus-host interactions in natural environments

In natural environments, virus-host interactions form bipartite interaction networks. In the bipartite network, the viruses and hosts form two disjoint and independent sets of vertices. The edges connect the vertices from one set with the other, rather than within each set. In this case, edges indicate interactions between viruses and hosts. Such networks have different patterns, including modular and nested patterns (Figure 3) [37, 58, 59]. In the modular networks, the edges that connects viruses and hosts tend to occur among distinct groups. In contrast, in the nested networks, the edges that connects viruses and hosts viruses and hosts typically forms a hierarchical structure. These interactions have a profound ecological impact [20, 29]. Therefore, it is fundamental to quantitatively characterize virus-microbe interaction networks and understand their impact on nutrient cycles, energy transformation, and ecosystem dynamics. This 'who infects whom' question remains one of the fundamental but open questions in studying virus-host interactions.

Figure 3 – **Patterns of nested and modular bipartite virus-host interaction networks** *Schematic showing the nested (left) and modular (right) patterns of the bipartite virus-host interaction networks. Adapted from Weitz et al. Trends in Microbiology, 2013.*

Traditional approaches to study virus-host systems depend on laboratory cultures. However, culture-based experiments are limited by the number of culturable virus and host strains and thus do not necessarily recapitulate virus-host interactions in natural environments. It is estimated that only 2% of all microbes on earth can be cultured [60-62]. Additionally, the behavior of the microbes in the cultured condition may not fully reflect their behavior under natural conditions. Since cross-infection experiments need to be done in a pairwise fashion, they require large amount of time and experimental work. In recent years, culture-independent approaches, such as metagenomic based approaches, have also been applied to study virus-host interactions [63-65]. While such approaches provide population level virus-host interactions in natural environments, they often lack the precision to capture within-population diversity.

In Chapter 2, we performed integrated analysis to characterize the structure of virus-host interactions in a Yellowstone National Park (YNP) hot spring microbial community. To reconstruct the virus-host interaction network, we applied bioinformatics approaches to analyze the single cell sequencing data and overlaid evidence at the single-cell level with viral and cellular community structure. We performed three sets of analysis to identify putative virus-host interactions. These analyses were hexanucelotide analysis, network-based analysis based on single cell sequencing and CRISPR-based analysis. Using these approaches, we were able to characterize virus-host interactions in an extreme environment and demonstrated that the virus-host interactions were ubiquitous and complex.

1.5 The linkage between infection/interaction and genetic basis

Host range is an important trait of the virus which can be measured based on virushost interactions. Such interactions present a strong selection on both the virus and the host. While virus and the host coevolve, both their genomes accumulate mutations that could potentially have an impact on host range. Many different approaches have been used to try to link the changes in host range with their genetic basis [66-71]. Previous studies have been focusing on a limited number of genes or mutations that were known to be involved in phage-host interaction [66, 67]. Recent studies analyzed the association between the host range and the genetic mutations at a genome-wide scale, but only from a static point of view rather than a coevolutionary perspective [68-70].

In chapter 3, we proposed a framework to link the changes in host range as well as the efficiency of phage infection with the changes in host and phage genetic profiles from a 37-day coevolution experiment. We constructed features based on whole-genome mutation profiles of phage and host and systematically evaluated the impact of these changes on host range and efficiency of infection. Our framework revealed both the genes that were previously known to participate in phage-host interactions and ones that could potentially participate. Since our approach is purely data-driven (*i.e.* it does not require prior knowledge on genes or mutations of specific phage or host strains) it could help prioritizing for the downstream validation on the mutations found to be important for virushost interaction systems, including the ones that are not the same as what we have used.

1.6 Change of infection/interaction over time

The interactions of bacteriophage and their hosts form a complex network [13, 37]. Yet such networks do not remain static over the phage-host coevolution. In fact, both the environment and the underlying genetic basis together shape the network of interactions over time. Under experimental conditions, the interactions between single-species phage and host can be characterized by host range. Two competing theories, namely the arms race dynamic (ARD) and the fluctuating selection dynamic (FSD), have emerged to explain the patterns of phage-host coevolutionary dynamics [72-76]. In ARD, both the host and virus populations accumulate "improved" alleles over time. In FSD, virus populations need to

constantly update the allele frequency in order to infect the currently most abundant host genotypes.

In chapter 4, we are not only interested in distinguishing between ARD and FSD based on the observed changes, but also, we are interested in evaluating the dynamics underlying the genetic basis, and how that can be related to the observed phenotypical dynamics. To do so, we investigated the dynamics of genotypes and phenotypes in coevolving virus-microbe, via analysis of full genome sequencing of *Escherichia coli* and bacteriophage λ . In contrast to expectations, we found that the emergence of resistant *E. coli* hosts and host-range mutant λ , in later stages of the experiment arose from rare subpopulations rather than the most recent, dominant lineages. This lineage leap-frog dynamic was enabled by fluctuations in ecological conditions that rescue rare lineages with increasing resistance and infectious genotypes, rather than enabling the progressive genomic changes envisioned in an arms race. We discussed the consequences of leapfrog dynamics for inferring evolutionary dynamics from phenotypes alone, whether in the case of coevolving phage-bacteria systems or in the evolution of human viruses in a changing landscape of adaptive immune cells.

1.7 Thesis summary

In this thesis, I propose to 1) Identify and characterize virus-host interaction networks under extreme environmental conditions, 2) Understand the driving forces in the arms race between the virus and its host by linking infectivity phenotypes with host and viral genomic mutations, and 3) Systematically characterize the evolutionary trajectories of viruses and hosts and identify the coevolutionary dynamics. For part 1, I have leveraged single cell sequencing technology with knowledge from metagenomics to reconstruct the complex virus-host interaction network based on samples from YNP hot springs [77]. By identifying virus-host interactions and characterizing the interaction networks, results from this chapter would improve our fundamental understanding of who infects whom under extreme environmental conditions. For part 2, I have modeled the observed virus-host interaction phenotypes and genetic profiles from a coevolutionary perspective and linked the phenotype and genotype for specific virus-host interactions. Results from this chapter would improve our understanding of the genetic basis for coevolution. For part 3, I have used computational approaches to reconstruct the coevolutionary trajectory of viruses and their hosts based on genotypical changes and phenotypical changes. Results from this chapter would reveal the consistency between both the genotypical and phenotypical coevolution dynamics. Taken together, the results showed that virus-host interactions are ubiquitous in natural environments, including extreme conditions. The virus-host interactions with the ubiquity and complexity, shapes the coevolution trajectory of both virus and host.

CHAPTER 2. A VIRUS OR MORE IN (NEARLY) EVERY CELL: UBIQUITOUS NETWORKS OF VIRUS-HOST INTERACTIONS IN EXTREME ENVIRONMENTS

Adapted from Munson-McGee, Jacob H., Shengyun Peng, Samantha Dewerff, Ramunas Stepanauskas, Rachel J. Whitaker, Joshua S. Weitz, and Mark J. Young. "A virus or more in (nearly) every cell: ubiquitous networks of virus-host interactions in extreme environments." The ISME journal (2018): 1.. Munson-McGee, Jacob H. and Shengyun Peng are the joint first-authors. Shengyun Peng designed the bioinformatics pipeline and performed the analysis for host and virus species identification and classification, as well as the reconstruction of the infection network at cellular and species level. In addition, the statistical test for contamination was conducted by Shengyun Peng.

2.1 Abstract

The application of viral and cellular metagenomics to natural environments has expanded our understanding of the structure, functioning, and diversity of microbial and viral communities. The high diversity of many communities, e.g., soils, surface ocean waters, and animal-associated microbiomes, make it difficult to establish virus-host associations at the single cell (rather than population) level, assign cellular hosts, or determine the extent of viral host range from metagenomics studies alone. Here we combine single-cell sequencing with environmental metagenomics to characterize the structure of virus-host associations in a Yellowstone National Park (YNP) hot spring microbial community. Leveraging the relatively low diversity of the YNP environment, we are able to overlay evidence at the single-cell level with contextualized viral and cellular community structure. Combining evidence from hexanucelotide analysis, single cell read mapping, network-based analytics, and CRISPR-based inference, we conservatively estimate that >60% of cells contain at least one virus type and a majority of these cells contain two or more virus types. Of the detected virus types, nearly 50% were found in more than 2 cellular clades, indicative of a broad host range. The new lens provided by the combination of metaviromics and single-cell genomics reveals virus-host interactions in extreme environments, provides evidence that extensive virus-host associations are common, and further expands the unseen impact of viruses on cellular life.

2.2 Introduction

For most natural environments, we lack a comprehensive inventory of both viruses, their microbial hosts and the virus-host networks they form [78, 79]. A comprehensive understanding is necessary because viruses likely play a central role in controlling microbial community structure and function [80-83]. Culture-based assays have revealed complex networks of infection between bacteriophage and bacterial hosts where a single bacteriophage is able to infect multiple bacterial species, and each bacterial species is a host for multiple different phage types [37, 59, 84, 85]. Comparative genomics of bacterial and archaeal strains also identified the presence of many different proviral elements [86-88]. However, culture-based infection assays and host range determination are limited in scope by the small number of microbial species and their viruses that can presently be cultured.

In recent years, several culture-independent methods have been developed to investigate host-virus associations [65]. These include analysis by metaviromics [13, 89],

CRISPR spacer sequences [90-92], phageFISH [93], viral tagging [94, 95], microfluidic digital PCR [96], and single-cell genomics (SCG) [97-100]. Of these methods, SCG has provided some of the most detailed in situ insights into virus-host associations. For example, analysis of 58 single-cell amplified genomes (SAGs) from marine surface bacterioplankton showed that 20 of the SAGs contained viral sequences, some of which were shown to be actively replicating [101]. As a second example, analysis of 127 uncultivated SUP05 bacterial SAGs from an oxygen minimum zone revealed that ~1/3 were infected and that viruses reshaped core cellular metabolism [98]. Yet, few studies combine methods to provide a comprehensive inventory of virus-host associations for the entire microbial community.

2.3 Materials and Methods

2.3.1 Sample site

Water samples (1 mL) were collected from the Nymph Lake 01 (NL01) hot spring in Yellowstone National Park (YNP, Figure 4). At the time of sampling, the hot spring conditions were 83.3°C, pH 2.45, and 1.085 mS conductivity. Samples were preserved on site with 5% glycerol and immediately flash frozen in a dry ice–ethanol bath. Samples were provided to the Bigelow Single Cell Genomics Center (Boothbay Harbor, ME).

Figure 4 – Picture of the Yellowstone National Park NL01 hot spring from which cells were collected (Photo credit: Mark J. Young)

2.3.2 Single cell genome sequencing

Flow cytometric separation of individual cells and whole genome amplification were performed at the Bigelow Laboratory Single Cell Genomics Center using previously described methods [102, 103]. Based on effective MDA amplification of genetic material, a 384–well plate was selected for low coverage shotgun sequencing with an Ilumina end-paired HiSeq. The obtained reads were trimmed with trimmomatic v0.32 [104], normalized with kmernorm 1.05 (https://sourceforge.net/projects/kmernorm/), and assembled with SPAdes version 3.0.0 [105]. All contigs over 2.2kb were used to estimate genome size and completeness using CheckM [106].

2.3.3 Cellular classification

Cells were classified based on average nucleotide identity (ANI) using an ANI.pl script (https://github.com/chjp/ANI). All cells were compared to previously sequenced single-cell genomes from the same hot spring (Munson-McGee et al., 2015) as well as 18 thermophile reference genomes (Table 1). ANI scores were combined with the percent of SAG base pairs to generate an ANI bar code for every SAG against the 32 reference genomes (https://github.com/psy106616/SAG hot spring YNP). All ANI matches covering <5% of the SAG genome were discarded. SAGs with two or more species present at \geq 91% ANI were examined for the presence of double cells. Twelve SAGs showed evidence of having two cells present. Eight of these SAGs were classified as double cells and the remaining 4 were unclassified and removed from further analysis. SAGs with only a single species present at \geq 95% ANI using at least 30% of the SAG genome were classified as belonging to the same species as the reference genome(s). SAGs that failed to meet the above categories (\geq 95% ANI, and or \geq 30% coverage) were classified as likely single cells (ANI≥95% coverage <30%) (14 SAGs) or unclassifiable (28 SAGs) and removed from further analysis. ANI results were clustered hierarchically and a heatmap of ANI (Figure 5) and bp coverage (Figure 18) was generated for every classified SAG against every reference genome. 16S rRNA sequences were identified in 8 SAGs and compared to the reference genomes as a means to evaluate the accuracy of ANI-based taxonomic identification.

2.3.4 Hexamer frequency analysis

The contigs from SAGs classified as the same species were grouped together for hexamer frequency analysis. The hexamer frequency distribution of the grouped SAGs as well as a dataset of the viral types present in the NL01 hot spring [13] were generated using VirusHostMatcher [107]. The virus-host pair with the lowest hexamer distance was calculated by d2* [107] and pairs with a distance value <0.3 were used as an indication of a potential virus-host pair.

2.3.5 *Viral sequence identification*

All sequence reads obtained from SAG sequencing were used as the query of a BLASTn search against the viral database previously described [13]. Reads with a significant match (e-value $<1.0^{-10}$) to the viral database were filtered and classified as having a viral origin if they matched at >95% nucleotide identity over 100 bp. Identified viral reads were subsequently mapped back to their viral group previously established using network analytics [13] using a custom script. Reads that mapped to multiple viral groups were assigned to the viral group with the most reads from that individual SAG to reduce false positives. To test if this mapping protocol resulted in false identification of viruses, controls were performed where the same SAG reads were mapped to the contigs from the Tara Oceans Virome (TOV) datasets (18SUR 66 Mbp and 18DCM 99 Mbp) [89] and a virome from the human gut (6 Mbp) [108] both of which were not expected to contain viruses found in hot spring environments. Additionally, sequence reads from 25 publically available SAGs generated from non-hot spring environments from the JGI IMG (http://jgi.doe.gov/) representing 10 bacterial and two archaeal phyla (703.7 million total reads) were compared against the viral database at the same stringency described above.

We used the following rationale to establish a threshold criteria for identifying virus-host associations within an individual SAG dataset. Since the estimated genome completeness for each SAG varied, we first determined the ratio of identified unique viral

sequence reads (average of 150bp in length) to the total unique host base pairs for each SAG. The number of unique viral base pairs was determined by mapping SAG reads to the NL01 viral dataset using BLASTn and removing any overlap to the reference viral genomes. The unique number of host base pairs was calculated using the ANI base composition statistic [109, 110] for each SAG calculated with respect to the 32 reference genomes, minus the unique viral base pairs. These ratios were compared to expected ratios using an average viral genome size of 30 kb, a host genome size from 1.5-3.0 MB, and assuming no sequencing bias towards either virus or host or a 2X bias towards virus or host (arbitrarily chosen to account for variation in amplification). Using this rationale, we determined that a minimum of 2-5 unique 150bp viral sequence reads should be present in an individual SAG dataset if that SAG were in fact infected by a virus.

After determining the profile of viral content in each individual SAG, the dataset was treated as a bipartite network. The BiMat algorithm [111] was applied to the bipartite viral–host network for modularity analysis. The binary network was generated using a minimum cutoff of 2 or 5 unique viral sequence reads from a SAG to the 110 viral groups previously identified in the NL01 hot spring [13].

2.3.6 CRISPR spacer sequence identification

CRISPR spacer sequences were identified in SAG contigs using Piler-CR [112]. Identified CRISPR spacer sequences were extracted and compared against the viral database with virus-host associations assigned to CRISPR spacer sequences that match \geq 90% identity over the entire spacer length. Contigs with CRISPR matches were selected and the viral group they belonged to was identified using a custom python script. As controls for the false identification of CRISPR spacer-virus associations, a CRISPR spacer dataset of 966 unique spacers from a human gut microbial community was analyzed against the NL01 viral database. In addition, the SAG CRISPR spacer sequences were compared to the viral dataset of the human gut bacterial community [108] under the same conditions described above.

2.3.7 Statistical test for contamination

To identify the possibility of sample contamination within adjacent wells on the 384-well plates during sample preparation, a statistical approach was used to evaluate the correlation between the physical distance and the sequence similarity between adjacent wells. First, the physical distance between two neighboring wells from the same row or the same column as a unit was defined. A distance matrix with all pairwise distances was computed based on the Euclidean distance between any two wells. Second, the sequence similarity between two wells was calculated based on the number of unique and shared viral groups of the two wells. The Jaccard index of a given pair of wells A and B was calculated as $J = (S_A \cap S_B)/(S_A \cup S_B)$, where S_A denotes the set of viral groups in SAG A and S_B denotes the set of detected viral groups in SAG B. Third, the Spearman's rank correlation was calculated to evaluate the relationship between physical distances of the wells and the Jaccard index. A series of distance cutoffs between 1.5 and 3 were used to calculate the Spearman's correlation of two wells to focus on the cross contamination in nearby wells. Finally, to evaluate the statistical significance of the observed Spearman's correlation coefficients at different distance cutoffs, a permutation test was performed to obtain the null distribution of the Spearman's coefficients. For the permutation test, the plate layout was randomly shuffled 100 times and the Spearman's correlation coefficients

were re-calculated at corresponding distance cutoffs. The observed Spearman's correlation coefficients were then compared with the null distributions.

2.4 Results and Discussion

In this study, we combined single-cell genomics and community metagenomics to characterize virus-host interactions. Single cells were randomly isolated directly from hot spring samples, their genomes amplified and sequenced. 109,930,697 total paired end reads were produced from 307 single amplified genomes (SAGs, average ~358,000 reads per cell) with a maximum of 2,015,593 and a minimum of 3,823 reads per SAG (Table 2). A total of 34.1 Mbp was assembled ranging from a minimum total bp of 7,806 to a maximum of 380,184 with an average total assembled length of 110,997 bp per cell. This correlates to an average genome completeness of approximately 9% but ranges from <1% to 44% complete based on CheckM analysis.

In order to determine the cellular identity of each SAG a multistep process was developed (Figure 19). First, the Average Nucleotide Identity (ANI) [109, 110] for all contigs greater than 2kb for each SAG was calculated with respect to 32 reference genomes. The reference genomes consisted of a combination of SAGs previously sequenced at high depth (17-90% genome completeness) from the same hot spring and other complete or near complete thermophilic archaeal and bacterial reference genomes from the NCBI database (WGS release 212, February, 2016). Second, the percentage of sequence homology between a SAG and the reference genomes were determined. SAGs were hierarchically clustered and assigned to their closest cellular species based on ANI score in combination with the percentage of sequence homology between the SAG and its

closest reference genome (Figure 5, online Supplemental Table 3). We utilized an ANI score of 95% in combination with 30% sequence coverage to classify the majority of SAGs (253/307 SAGs). The 54 SAGs that were not classified were either double cells of the symbiont Nanoarchaea with its Acidocryptum host (8 examples, discussed below), or 46 SAG cells that failed to meet our classification criteria. These 54 SAGs were removed from further analysis. To further support cellular identification, all SAGs were examined for 16S rRNA gene sequences. 16S rRNA sequences were present in only 8 SAGs and cellular classification based on their 16S rRNA was determined by alignment to reference genomes. In all 8 cases, the 16S rRNA gene and ANI classifications produced the same result.

Figure 5 – Cellular classification of SAGs

Heatmap of the average nucleotide identity (ANI) of 253 classified single cell SAGs sequenced in this study compared against 32 reference genomes including 13 SAGs previously sequenced at high coverage from the same hot spring [29] (red text). SAGs were hierarchically clustered using complete linkage (left hierarchical dendrogram). The

column directly to the right of the hierarchical dendrogram indicates classified cell species (color key provided) for all SAGs classified as single cells. Partial length 16S rRNA sequences from the 32 reference genomes were used to construct a maximum likelihood phylogenetic tree and nodes with greater than 95% posterior probability are bolded. The E. coli strain served as the outgroup. The scale bar is in substitutions per site.

The classification of SAGs revealed a low-diversity microbial community consisting of 8 cellular clades, dominated by Archaea (Figure 5), consistent with our previous studies [113]. The 253 SAGs classified to one of 8 cellular clades. Of these, 247 were classified as one of 7 clades of Archaea (97.6%), 6 were classified as members of a single clade of Bacteria (2.4%), and none were classified as Eukaryotic. The vast majority (98%) of the Archaeal cells are members of the Crenarchaeota (241/247 SAGs) while Nanoarchaeota (6) make up the remaining 2.0%. The only bacterial species detected belonged to the Aquificales. The NL01 microbial community structure was nearly identical to the community structure determined by 16S rRNA amplicon sequencing from a sample taken 12 months previously. Overall, 6 of the 8 clades identified in this study have not been cultured to date, and these 6 uncultured clades comprise 96% of the SAGs in this study (244/253 SAGs).

As a first step in characterizing virus-host associations, we generated a distance matrix based on hexamer nucleotide analysis using the d2* metric [107] of the 8 cellular clades against the 110 viral types previously determined to be present in the hot spring [13] (online Supplemental Table 4). If the smallest measured d2* between a cell type and a virus type was <0.3 it was used as indication of a possible virus-host association. Previous studies have indicated that hexamer nucleotide analysis can be a useful predictor of virus-host associations, given a cutoff of <0.3 as a conservative identification of possible virus-host pairs [107]. Hexamer nucleotide analysis indicated that 61 virus types were associated

with the 7 archaeal cell types. The number of virus types associated with a particular archaeal cell type ranged from 28 virus types for the Acidilobus clade to 1 for the *Sulfolobus* sp 1, clade. Controls consisting of 75 bacterial genomes unlikely to serve as hosts for the hot spring viruses along with the grouped sequences from the 8 SAG cellular clades of this study, found no false virus-host associations to the bacterial genomes (online Supplemental Table 4). A limitation of hexanucleotide analysis is that it only suggests a possible virus-host association and does not indicate viral host range [107]. Moreover, hexanucelotide analysis lacks resolution when closely related cellular species/strains are compared [107]. Therefore, this analysis provides an indication of possible virus-host associations and not definitive proof of the association.

Further identification of individual virus types within each SAG was accomplished by mapping sequencing reads from individual SAGs to the 110 viral types present in NL01 previously established by network-based analytics using time-series community viromics data [13]. We first established a rationale for how many viral base pairs would be expected to be detected in given SAGs given the low level of genome completeness obtained (average host genome completion was 9%). This was accomplished by determining the ratio of viral sequence to host base pairs for each SAG (Figure 20) and comparing observed ratios to expectations (see Methods). We estimate that finding two or more unique SAG viral sequences (at least 300 bp) represents a reasonable minimum for detecting virus-host associations. A conservative threshold for virus-host association assumes a two-fold bias in sequence amplification, suggesting a threshold of five or more unique sequence reads (at least 750bp) to a given viral group in a SAG. Using the more conservative requirement of \geq 5 SAG viral reads (750bp) matching a virus type, viral sequences were detected in 160
of the 253 classified single cell SAGs (63% of SAGs) (Figure 6, online Supplemental Table 5), virus-host associations identified using the lower value of ≥ 2 viral reads (300 bp) matching a virus type are provided in online Supplemental Table 5. Viral sequences were detected in all cellular groups except for *Hydrogenobaculum*. Of the 110 viral types, 26, were detected (24% of total vial types) in the 253 SAGs. For example, over 49,851 reads mapped to 34.5kb of continuous sequence represented on the entirety of 3 contigs assembled from a single *Acidocryptum nanophilum* SAG (AD-903-K19). This 34.5kb segment likely represents the near-full length genome of a new archaeal virus.

Figure 6 – Detection of viral types in 160 SAGs

26 of 110 virus types were detected by BLASTn identification of SAG sequencing reads to NL01 viral community. Viral group numbers are taken from Bolduc et al.. Blue indicates the detection of a viral group in a SAG and white indicates that a viral group was not detected in a SAG. SAGs are grouped by cell type (vertical axis, a color key for cell the type is provided) and viral groups (horizontal axis) are ordered by detection frequency (top graph)

Next, we examined the number of virus types found in each infected SAG. Surprisingly, more than one viral type was detected in a majority of the cells. Of the 160 SAGs where viral reads were detected, 95 (59%) had \geq 750 bp sequence reads from 2 or more viral types, with an average of 2 viral types detected per cell (Figure 6). This data suggests that co-infection may be common in the hot spring environment. Indeed, 63% of cells randomly sampled by SAG analysis had evidence of virus association. Given the low depth of average SAG genome coverage (approx. 9%), we anticipate that actual association levels are much higher, suggesting that (nearly) all cells in the hot spring interact with viruses. This work extends the scope of virus associations measured in previous reports in marine environments where viral sequences were found in 30–50% of cells [98, 101].

Several lines of evidence indicate that the detected virus-host associations are biologically relevant and not a consequence of random associations. First, no sequencing reads from any of the 307 SAGs were recruited onto two much larger marine viral metagenomic or a human gut viral metagenomic datasets using the identical mapping stringency conditions (Table 3). Additionally, sequencing reads from 25 publicly available non-hot spring associated SAGs from the JGI IMG (https://img.jgi.doe.gov/) representing 10 bacterial and two archaeal phyla were compared against the viral database used in this study. These SAG's isolated from other environments, totaling 703.7 million reads, did not match any of the 110 viral groups used in this study at the same stringency settings (Table 4). These controls support the conclusion that the conditions used in this study strike a balance between viral detection sensitivity and stringency sufficient to detect biologically relevant virus-host associations in individual SAGs. Future targeted virus RTqPCR analysis on single cells should clarify if the detected viruses are actively replicating.

Analysis of CRISPR spacer sequences were used to detect additional virus-host associations. CRISPR spacer sequences were extracted from SAGs and mapped to the 110 viral types (online Supplemental Table 8). A total of 2,321 unique CRISPR spacer sequences were detected in 135 SAGs. Spacer sequences were found in all cell types except for the Nanobsidianus. Previous studies had also failed to identify CRISPR sequences in *Nanobsidianus* sp from YNP hot springs [113, 114]. CRISPR spacer-virus matches were found for 695 (30%) spacer sequences to 38 of the 110 viral types from 121 SAGs (90%) of spacer-containing SAGs). The majority of spacers with matches were found in Acidocryptum cells (541/695). Twenty-two viral types were identified by both read mapping and by CRISPR spacer matching to the same cellular species. As expected, controls of comparing 966 non-relevant CRISPR spacer sequences derived from the human gut microbial community to the 110 hot springs viral types failed to detect any virus-host associations under the same conditions. Overall, 47 of the 110 viral types (42%) were detected by either mapping of SAG reads or by SAG CRISPR spacer matching. Furthermore, 18 of these 47 virus types were predicted by hexamer distance analysis to the same host. Taken together, these 3 independent measures support the conclusion that virushost associations are a common feature in this hot spring environment.

It is worthwhile to retrospectively consider how useful it is to relay on ANI to accurately connect viruses to potential hosts. In this work we have the advantage of having internal standards of viral sequences present within individual SAGs to compare against ANI analysis at different threshold cut offs. We observe that ANI cut off values of <0.3 are reasonable values reduce detecting false positives while maintaining the detection of meaningful host-virus pairs.

The contextualized virus-host associations and CRISPR spacer analysis (Figure 7, online Supplemental Tables 8) provide complementary information on the realized and potential host range of viruses, respectively. By combining these two lines of evidence we asked: what is the host range of individual virus types? Twenty-four viruses infected only a single cellular clade. In contrast, 23 virus types were detected in >2 host genera within the *Sulfolobaceae* family. Every previously characterized virus detected was found in at least one new host species. For example, STIV previously shown to infect *S. solfataricus* [115], was also detected in *Acidocryptum* cells. These results demonstrate that culture-independent approaches can be used to investigate the host range of uncultured viruses across the entire microbial community. Despite finding multiple new associations, it is important to recognize that reported host ranges remain *lower bounds*, i.e., increased depth of sampling could reveal even more virus types within classified SAGs.

Figure 7 – Ubiquitous interaction of multiple viruses with cells

The heatmap indicates the detection frequency of 47 viral groups detected by BLASTn analysis or the matching of CRISPR spacer sequences. Viral groups are arranged from least frequently detected to the most frequently detected. Numbers below the heatmap are viral group numbers taken from [16] and numbers in parenthesis indicate the number of

species and cells that a group was detected in. The number after the species name on the right hand side is the number of cells classified as members of that species. Partial length 16S sequences from representative genomes were used to make a ML tree and nodes with greater than 0.95 posterior probability are bolded. The scale bar is in substitutions per base. Detected viral groups with described members are: group 0 = SIRV1, 2, group 23 = ASV1, SSV1, 2, 4-9, group 26 = ATV, group 28 = AFV1, group 29 = STIV1, 2 and group 32 = STST1, 2 and ARSV1

The inference methods in the present analysis are made possible by network-based analytics that determine viral groups but also limited by relatively low SAG coverage (~9%). As a consequence, we cannot easily distinguish actively replicating viruses within individual SAGs, define their viral lifestyles (lytic, lysogenic, or chronic) or define individual viruses at the species level. Despite these limitations, it is remarkable that we detect *in situ* the majority of host and viral types – currently identifiable from whole community sequencing projects – and their associations within a relatively low number of SAGs.

This work shows the advantage of combining single-cell genomics with metagenomics to establish a comprehensive understanding of virus-host associations in a focal environment. Unlike previous studies of virus-microbe interactions, we are able to contextualize virus-host infection networks and link the identity of viruses found in different cells. In doing so, we both identify the hosts and host-range of virus types. Guided by the knowledge of the overall virus community, the incorporation of SAG analysis – including contextualized community network mapping and CRISPR detection – allows for the identification of individual hosts and the host range of an individual virus type in a culture-independent fashion. This study shows that nearly all cells in the NL01 hot spring interact with viruses, that multiple, concurrent interactions are common, and that a broad spectrum of virus types from specialists to generalists coexist in a relatively low-diversity

community. These results should encourage the development of more robust empirical methods and theoretical models to assess the relevance of superinfection and a diversity of viral lifestyles in shaping natural communities.

CHAPTER 3. LINKING GENOTYPE WITH PHENOTYPE IN THE BACTERIOPHAGE LAMBDA AND ESCHERICHIA COLI INTERACTION NETWORK

This chapter is being prepared for publication as: Shengyun Peng, Chung Yin (Joey) Leung, Animesh Gupta, Justin R. Meyer and Joshua S. Weitz. 'Linking genotype with phenotype in the bacteriophage lambda and host interaction network'.

3.1 Abstract

Characterization of species interaction networks has led to a better understanding of microbial community structure and function. Interaction networks are typically established by phenotypic assays, little is known regarding the link between phenotypic changes and underlying changes in genotypes. Previous approaches and theories developed to address this question relies on prior knowledge of the functional role of the gene or mutation, and thus were typically limited by prior knowledge. In this study, we proposed a data-driven framework that systematically evaluated such link between phage-host interaction phenotype and genotype. We measured the changes in host range and efficiency of infection for bacteriophage λ strains sampled from a 37-day coevolution experiment. We also characterized the changes in the genetic profiles of both the phage strains and host strains based on whole genome sequencing data. A two-step framework was built to link the phenotypical changes in terms of the host range and efficiency of infection with the changes in the genetic profiles. Overall, our framework systematically evaluated the genetic basis for phage-host interaction phenotypes, identified several important genes that have been experimentally validated to participate in phage-host interactions and also revealed new genes that could potentially participate in the phage-host interaction.

3.2 Introduction

Next-generation sequencing technology has revealed widespread diversity in microbial communities [63, 77]. In parallel, the development of analytical tools to characterize species interaction networks has led to a better understanding of microbial community structure and function [116-118]. Despite the parallel rise of these fields, there have been relatively few exchanges between the two. Interaction networks are typically established by phenotypic assays and not genome sequences. Theoretically, it should be possible to predict the interaction network of microbial species from genome sequences alone, since their genetics determine traits which, in turn, modulate the identity, mode, and quantitative rate of interactions with other microbes. For example, a bacteriophage (phage) can only infect bacterial strains they can adhere to [119-121]; such adsorption requires expression of a cell-surface receptor (e.g., protein, lipid, carbohydrate). Despite significant progress in linking microbial genotypes to an interaction phenotype [23, 37, 58, 71, 122-127].

The problem of understanding the genetic basis for interactions requires the development of new computational approaches to construct a genotype-by-phenotype map. Current approaches to estimate this map try to correlate phenotypic differences with genetic variation (e.g., this is true for the broad scope of work in genome-wide associated studies [128-130]). The challenge for inferring interaction-associated phenotype, is that such interactions arise due to the interaction of multiple genotypes, e.g., phage and host

genotypes. For example, mutation-based association approaches have been used to find the combination of virus and host mutations that are associated with the virus-host interaction phenotype [68-70]. Such approaches have similarities to the more general problem of studying complex traits that are affected by gene by gene (G x G) interactions and gene by environment (G x E) interactions. The importance of such interactions may explain the "missing heritability" problem where genetic effects discovered by association analysis do not sum to the estimated heritability of the trait [131-133].

Predicting virus-microbe interactions is highly dependent on taxonomic scale. For example, computational approaches are increasingly used to predict the host range of viruses, e.g., leveraging tetranucleotide frequencies and other sequence-specific information (reviewed in *Edwards et al.* and *Dutilh et al.* [88, 134]). However, predicting strain-specific interactions remains poorly understood, particularly in light of the fact that taxonomic markers are a poor proxy for infection profiles [135]. Prior work on microevolutionary changes in infectivity have focused on changes to genes or proteins with known functions in model organisms [66, 67, 136]. Such approaches are dependent on the existing annotation of genes or mutations, and thus are limited by both the quality and quantity of annotations available. Such a dependence limits our ability to identify novel loci that could modulate infection phenotypes.

Here, our work aims to link whole genome-wide changes in both the phage and host with the observed changes in interaction phenotypes. We do so leveraging measurements of whole genotypes and phenotypes amongst coevolving populations of *Escherichia coli* B strain REL606 and bacteriophage λ strain cI26 during a 37 day experiment. By jointly measuring phenotypes and genotypes, we set out to develop a framework that could identify the link between genotypes and phenotypes. In doing so, we also address the question: do host mutations, virus mutations, or some combination, serve as better predictors of infection outcome?

3.3 Materials and Methods

3.3.1 Experimental setup and data collection

The *Escherichia coli* B strain REL606 and bacteriophage λ strain cI26 were used as ancestral strain for host and virus respectively (Figure 8). Phage and host were cocultured for a 37-day period. Samples were taken on checkpoint days for pairwise quantitative plaque assays as described in Chapter 4. The EOP value measures the efficiency of a phage infecting a derived host strain relative to that for infecting the ancestral strain. The EOP value for a phage, *j*, infecting a host, *i*, is computed as

$$e_{ij} = \frac{q_{(i,j)}}{q_{(anc,j)}} \times d^{S_{(i,j)}-S_{(anc,j)}},$$
 (1)

where $q_{(i,j)}$ is the number of plaques on the petri dish for phage *j* against host *i*, $q_{(anc,j)}$ is the number of plaques on the petri dish for phage *j* against the ancestral host strain, $s_{(i,j)}$ is the number of dilutions performed to get distinguishable and countable clear plaques for phage *j* against host *i*, $s_{(anc,j)}$ is the number of dilutions performed to get distinguishable and countable clear plaques for phage *j* against the ancestral host strain and *d* is the dilution ratio which is 5 in our experiment. A positive EOP value from the cross-infection plaque assay indicates a successful infection event for a given phage-host pair. In contrast, a zero EOP value indicates the absence of the infection event for a phage-host pair. A larger EOP value from the cross-infection plaque assay indicates that the phage can infect a given host more efficiently than infecting the ancestral host strain.

Figure 8 – Experimental design of the cross-infection plaque assay

For each phage and host samples taken from each checkpoint, the DNA extraction, library preparation and sequencing experiment was performed as described in Chapter 4. Mutation profiles based on the genome sequencing data were constructed using *breseq* as described in Chapter 4. In addition to the mutations revealed by *breseq* results, for both host and phage we created an artificial mutation as the indicator for the ancestral strain in order to add the ancestral strain into the mutation profile table. For this artificial mutation, only the ancestral strain is indicated to have this mutation. All other strains were shown to not have this mutation in the mutation profile table.

3.3.2 Feature construction

For a total number of U host samples and V phage samples, we denote the EOP value for the *i*-th host against *j*-th phage as e_{ij} where $i \in [1, U]$ and $j \in [1, V]$. Let N be the total number of unique mutations observed for the host and M be the total number of unique mutations observed for the host mutation profile H is a matrix of

dimension U by N, and the phage mutation profile P is a matrix of dimension V by M. Let h_{il} be an element from H, then $h_{il} = 1$ corresponds to the presence of the *l*-th mutation in the *i*-th host whereas $h_{il} = 0$ corresponds to the absence of the *l*-th mutation in the *i*th host. Similarly, let p_{jk} be an element from P, then $p_{jk} = 1$ corresponds to the presence of the *k*-th mutation in *j*-th phage whereas $p_{jk} = 0$ corresponds to the absence of the absence of the *k*-th mutation in the *j*-th phage.

Five sets of features were constructed based on the mutation profiles of the host and phage. The H:MF is constructed based on only the host mutation profiles. Model Φ that utilizes the H:MF can be represented as:

$$\phi_{ij}^{(1)} = \gamma_1 + \sum_{l=1}^N \alpha_l h_{il} , \qquad (2)$$

where γ_1 represents a scalar of the bias term and α_l is the coefficient for the *l*-th host mutation. γ_1 and α_l will be learned from the model. The model utilizing H:MF can also be represented in matrix form as:

$$\Phi^{(1)} = \Gamma_1 + H \cdot R_\alpha , \qquad (3)$$

where Γ_1 is a *U* by *V* matrix by repeating γ_1 , i.e. $\Gamma_1 = [\gamma_1]_{U \times V}$, R_{α} is a *N* by *V* matrix by stacking the same coefficient vector α horizontally, i.e. $[\alpha | \alpha | \cdots | \alpha | \alpha]_{N \times V}$.

The P:MF is constructed based on only the phage mutation profiles. Model Φ that utilizes the P:MF can be represented as:

$$\phi_{ij}^{(2)} = \gamma_2 + \sum_{k=1}^{M} \tilde{\alpha}_k p_{jk} , \qquad (4)$$

where γ_2 represents a scalar of the bias term and $\tilde{\alpha}_k$ is the coefficient for the *k*-th phage mutation. γ_2 and $\tilde{\alpha}_k$ will be learned from the model. The model utilizing P:MF can also be represented in matrix form as:

$$\Phi^{(2)} = \Gamma_2 + [P \cdot R_{\widetilde{\alpha}}]^T , \qquad (5)$$

where Γ_2 is a *U* by *V* matrix by repeating γ_2 and $R_{\tilde{\alpha}}$ is a *M* by *U* matrix by stacking the same coefficient vector $\tilde{\alpha}$ horizontally, i.e. $[\tilde{\alpha}|\tilde{\alpha}|\cdots|\tilde{\alpha}|\tilde{\alpha}]_{M\times U}$.

Model Φ that utilizes P+H:MF can be represented as:

$$\phi_{ij}^{(3)} = \gamma_3 + \sum_{l=1}^N \alpha_l h_{il} + \sum_{k=1}^M \tilde{\alpha}_k p_{jk} , \qquad (6)$$

where γ_3 represents a scalar of the bias term, α_l is the coefficient for the *l*-th host mutation and $\tilde{\alpha}_k$ is the coefficient for the *k*-th phage mutation. γ_3 , α_l and $\tilde{\alpha}_k$ will be learned from the model. The model utilizing P+H:MF can also be represented in matrix form as:

$$\Phi^{(3)} = \Gamma_3 + H \cdot R_\alpha + [P \cdot R_{\widetilde{\alpha}}]^T , \qquad (7)$$

where Γ_3 is a *U* by *V* matrix by repeating γ_3 , i.e. $\Gamma_3 = [\gamma_3]_{U \times V}$, R_{α} is a *N* by *V* matrix by stacking the same coefficient vector α horizontally, i.e. $[\alpha | \alpha | \cdots | \alpha | \alpha]_{N \times V}$ and R_{α} is a *M* by *U* matrix by stacking the same coefficient vector $\tilde{\alpha}$ horizontally, i.e. $[\tilde{\alpha} | \tilde{\alpha} | \cdots | \tilde{\alpha} | \tilde{\alpha}]_{M \times U}$. The assumption for P+H:MF is that the impact of mutations from both the phage or host have additive effects on the observed outcome.

Model Φ that utilizes P×H:MF as the input can be represented as:

$$\phi_{ij}^{(4)} = \gamma_4 + \sum_{l=1}^N \sum_{k=1}^M \beta_{lk} h_{il} p_{jk} , \qquad (8)$$

where γ_4 represents a scalar of the bias term, β_{lk} denotes the coefficient for the *l*-th host mutation and *k*-th phage mutation in the corresponding *i*-th host and *j*-th phage pair. γ_4 and β_{lk} will be learned from the model. The model utilizing P×H:MF can also be represented in the matrix form as:

$$\Phi^{(4)} = \Gamma_4 + H \cdot B \cdot P^T , \qquad (9)$$

where Γ_4 is a *U* by *V* matrix by repeating γ_4 , i.e. $\Gamma_4 = [\gamma_4]_{U \times V}$, B is the *N* by *M* coefficient matrix. The assumption for the P×H:MF is that the impact of the genetic mutations on the observed outcome comes from the additive effects of co-occurring phage-host mutation

pairs. In other words, $h_{il}p_{jk} = 1$ only when both the host *i* has mutation *l* and phage *j* has mutation *k*.

Based on the definition of P+H:MF and P×H:MF, it is natural to combine both features to get a more sophisticated input feature, Joint:MF, by adding up both effects. Model Φ that utilizes the Joint:MF can be represented as:

$$\phi_{ij}^{(5)} = \gamma_5 + \sum_{l=1}^N \alpha_l h_{il} + \sum_{k=1}^M \tilde{\alpha}_k p_{jk} + \sum_{l=1}^N \sum_{k=1}^M \beta_{lk} h_{il} p_{jk} .$$
(10)

The matrix form of Joint:MF is:

$$\Phi^{(5)} = \Gamma_5 + H \cdot R_{\alpha} + [P \cdot R_{\widetilde{\alpha}}]^T + H \cdot B \cdot P^T , \quad (11)$$

where Γ_5 is a *U* by *V* matrix by repeating γ_5 , i.e. $\Gamma_5 = [\gamma_5]_{U \times V}$.

3.3.3 Framework design

In order to link the phenotypical changes of phage-host interactions with their genotypes, we designed a framework comprised of two steps. This is because the capability of a phage to infect a host and the efficiency of a phage infecting a host may have different underlying molecular mechanisms. The first step of our framework is designed for predicting the existence of phage infectivity. The step 1 model tries to find the set of features that can best distinguish between the successful infections and the failed ones by using classification models. The second step is based on the subset of phage-host pairs where the host is susceptible to the phage (EOP > 0). The step 2 model of our framework is designed to evaluate the potential impact of the genotype on this observed phenotype by modeling the efficiency of the phage in infecting a host.

3.3.4 Model for predicting existence of phage infectivity

For a given phage-host pair, in order to determine the presence or absence of a successful infection event, we binarized the EOP values e_{ij} into 0 and 1, i.e.

$$d_{ij} = \mathbf{1}_{\{e_{ij} > 0\}}, \quad (12)$$

where $d_{ij} = 0$ indicates a failure of the infection and $d_{ij} = 1$ indicates success. As a result, this problem became a classification problem. Here we used logistic regression to model the relationship between mutation profiles and the existence of successful infection in phage-host pairs, that is

$$\phi_{ij}^{(\cdot)} = \ln\left(\frac{d_{ij}}{1 - d_{ij}}\right).$$
 (13)

Each of the five sets of features, namely H:MF, P:MF, P+H:MF, P×H:MF and Joint:MF, were used as the input features for the models $\phi_{ij}^{(1)}$, $\phi_{ij}^{(2)}$, $\phi_{ij}^{(3)}$, $\phi_{ij}^{(4)}$ and $\phi_{ij}^{(5)}$ respectively. In practice, we used LASSO for feature selection and regularization. The penalty term parameter for LASSO was determined by using 10-fold cross-validation on the training prediction classification data. Finally, the error, calculated as $\frac{\# False Positives + \# Fasle Negatives}{\# Taul a subscript{main}}$, was used to assess the performance for this model. The # Test Samples mean classification error was calculated by taking the mean of classification error from 200 runs.

3.3.5 Model for predicting infection efficiency

Since the EOP values are continuous, neither the zero-inflated Poisson or negative binomial models are appropriate for modeling the outcomes. As a result, we applied a log transformation on the positive EOP values to make the distribution more normal-like. For a given phage-host pair where a successful infection event is present, that is $e_{ij} > 0$, we denote the natural log transformed EOP value as:

$$e'_{ii} = \ln(e_{ii})$$
. (14)

Shapiro-Wilk test was performed to check the normality of the distribution of e'_{ij} .

Linear regression was used to model the relationship between mutation profiles and the intensity of successful infections in phage-host pairs, that is

$$\phi_{ij}^{(\cdot)} = e_{ij}' \,. \qquad (15)$$

Each of the five sets of features, namely H:MF, P:MF, P+H:MF, P×H:MF and Joint:MF, were used as the input features for the models $\phi_{ij}^{(1)}$, $\phi_{ij}^{(2)}$, $\phi_{ij}^{(3)}$, $\phi_{ij}^{(4)}$ and $\phi_{ij}^{(5)}$ respectively. For the linear model, we also used LASSO for feature selection and regularization. The penalty term parameter for LASSO was determined by using 10-fold cross-validation on the training data. Finally, the MAE was used to evaluate the performance of the model.

3.3.6 Train-validation split and feature evaluation

To assess the performance of different features for the logistic regression model, we performed 200 bootstrap runs to predict the existence of phage infection. Specifically, in each run the training set was generated by randomly select $U \times V$ samples from the entire dataset with replacement. The d_{ij} values that were not selected as training samples form the validation set. As a control, for each run, a null model was built to predict the outcomes by randomly sample d_{ij} values from a Bernoulli distribution $Bern(\hat{p})$ where \hat{p} is the maximum likelihood estimator (MLE) of the proportion of successful infection from the training set of that run. After the 200 runs, the training and validation prediction error were compared between pairs of the models including the null model and models based on H:MF, P:MF, P+H:MF, P×H:MF and Joint:MF.

Similarly, we also performed 200 bootstrap runs for the linear model to predict the infection efficiency. Specifically, in each run the training set was generated by randomly sample e'_{ij} with replacement. The size of e'_{ij} sampled as the training set in each run matches the total number of the e'_{ij} . The e'_{ij} that were not selected in the training set forms the

validation set. As a control, for each run, a null model was built by always predicting the efficiency of infection as the mean e'_{ij} of the training set for that run. After the 200 runs, the training and validation MAEs were compared between pairs of the models including the null model and models based on H:MF, P:MF, P+H:MF, P×H:MF and Joint:MF.

3.3.7 Final model and predictions

After comparing the training and validation performance of models based on H:MF, P:MF, P+H:MF, P×H:MF and Joint:MF with 200 bootstrap runs, a final model, which contains both the step 1 and step 2 model was constructed. The penalty term parameter for each of the step 1 and step 2 models was chosen as the mean of the best penalty term parameter from each of the 200 bootstrap runs. After model fitting, the predicted outcome \tilde{d}_{ij} for step 1 and \tilde{e}'_{ij} for step 2. For each step of the final models, the importance of feature was measured by the absolute value of coefficients learned from each step.

3.4 Results

3.4.1 The mutation and cross-infection matrices for phage and host

To quantify the relative quantity of plaques formed by a phage strain infecting a host strain, we computed the efficiency of plating (EOP) values for all phage-host pairs sampled during the 37-day coevolution experiments. The EOP value measures the relative quantity of plaques formed by a phage strain infecting a host strain. Details of the EOP calculation are described in the Materials and Methods section. The resulting EOP values exhibited a skewed distribution with 95% of values ranging from 0 to 1.5. At the beginning of the experiment, the ancestral host strain was susceptible to all phage strains (EOP > 0), while at the end of the experiment, the majority of the host samples from day 37 were

resistant to all phage strains (EOP = 0) (Figure 22). Overall, the EOP matrix showed the complexity of the observed phenotype from phage-host interactions (Figure 9). A total of 2295 phage-host interaction pairs were observed, among which 913 pairs denoted successful phage infections (EOP > 0) and 1382 denoted unsuccessful infections (EOP = 0). Since the observed positive EOP values span a wide range and has a long-tailed distribution, there was large variance in the observed phenotype in terms of the efficiency of phage infection (Figure 22). For the observed genotypes, the mutation profiles of the host and phage revealed a number of changes in their genomes, including 18 and 176 unique mutations for the host and phage, respectively (Figure 9, Table 5). As a result, we set out to develop a framework that links the changes in phage-host interactions to their respective genotypes.

Figure 9 – Heatmaps showing the EOP value matrix as well as host and phage mutation profiles

The upper panel is showing phage mutation profile. The left panel is showing host mutation profile. Black cell indicates the presence of a mutation. Gray cell represents the absence of a mutation. The heatmap is showing the EOP value bands. The color key showing the color and the corresponding EOP value range.

3.4.2 Model for predicting phage-host interaction network

We developed a framework for predicting the effect of genetic mutations on the presence or absence of successful infection (POA) of phage-host pairs embedded in a phage-microbe interaction network. We began with logistic regression models that utilize mutations as features to predict qualitative variation in the infection network, i.e., 'whom infects whom'. We classified different models in terms of the distinct feature sets that underlie predictions, including a host-only mutational feature (H:MF), a phage-only mutational feature (P:MF), and an additive phage and host mutational feature (P+H:MF). All of these models leveraged differences in phage or host genotypes. However, it is possible that combinations of mutations of phage and host act in a nonlinear way to impact phenotype. For that reason we also included the phage-cross-host mutational feature set (P×H:MF) as well as models that include both 'first-order' (phage and host mutations) and 'second-order' (phage-cross-host mutations) effects (i.e., the combined feature set model, Joint:MF). These features were constructed based on the genetic mutation profiles of the host and phage. By comparing the performance of the logistic regression models built based on different sets of features, we found that the additive phage and host model (P+H:MF) outperforms all other features on the validation set (P < 9.44e-5) with a mean classification error of 15.07% (Figures 10 and 23). Our results showed that the P+H:MF contains the best set of features for predicting the POA for a given phage-host pair. One explanation for this result could be that each of the important mutations that occurred during the coevolution process have sufficiently large effect size to impact the presence or absence of the interaction. Overall, we built a final model based on P+H:MF for step 1 (Figure 11). Feature importance analysis revealed 7 host mutations and 27 phage mutations that were shown to have a positive effect on the observed phage infection, comparing with 5 host mutations and 15 phage mutations that were shown to have a negative effect (Table

Figure 10 – Model performance for different feature sets on validation set

(A) Boxplot for validation set classification error for step 1 on 200 bootstrap runs for null model and models based on H:MF, P:MF, P+H:MF, P×H:MF and Joint:MF. (B) Boxplot for validation set MAE for step 2 on 200 bootstrap runs for null model and models based on H:MF, P:MF, P+H:MF, P×H:MF and Joint:MF.

Figure 11 – Results from final model for step 1 based on P+H:MF, P×H:MF and Joint:MF

Top panel: The true phage-host interaction network based on observed EOP from experiment. Middle panel: The predicted interaction network based on P+H:MF, $P \times H:MF$ and Joint:MF, respectively. Bottom panel: The coefficients learned from the P+H:MF, $P \times H:MF$ and Joint:MF features, respectively.

3.4.3 Model for predicting the efficiency of infection

As the next step in our framework, we extended the prior prediction framework so as to identify phage and host mutations that have large impacts on the efficiency of phage infection (EFF) with the presence of phage infection (EOP > 0). Since the log-transformed positive EOP values followed a normal distribution (P = 3.283e-8), here we used linear regression to model the quantitative impact of mutations on EFF (Figure 24). We examined models based on five sets of features, namely the H:MF, P:MF, P+H:MF, P×H:MF and Joint:MF. Model performances were compared based on the validation mean absolute error (MAE). The results showed that the linear regression model with the additive feature set (P+H:MF) gives the lowest validation MAE (P < 3.95e-14) with median MAE to be 1.05 (Figures 10 and 23). Overall, we built a final linear model based on P+H:MF for step 2 (Figure 12). Feature importance analysis revealed that there were 7 host mutations and 34 phage mutations that were shown to have a positive effect on promoting the efficiency of phage infection, compared with 7 host mutations and 33 phage mutations that were predicted to have a negative effect (Table 8).

Figure 12 – Results from final model for step 2 based on P+H:MF, P×H:MF and Joint:MF

Top panel: The true phage infection efficiency based on the observed positive EOP from experiment. Middle panel: The predicted infection efficiency based on P+H:MF, $P \times H:MF$ and Joint:MF, respectively. Bottom panel: The coefficients learned from the P+H:MF, $P \times H:MF$ and Joint:MF features, respectively.

3.4.4 Molecular mechanism behind the important features

Several putatively important mutations were revealed by the feature analysis using final predictive models for step 1 and step 2 (Figure 25). The top five important features that contributed to the increase of POA includes the indicator variable for the ancestral host strain, one point mutation in the phage S gene region, two mutations in the phage J gene region and one mutation in the *bor* gene region. For the decrease of POA, the top five important features included a 16 *bp* deletion in the host *manXYZ* gene region, three point mutations in the phage J gene region and one point mutation in the end of the genome. Similarly, the top five important features that contributed to the increase of EFF includes the indicator variable for the ancestral host strain and four mutations on the phage J gene region. For the decrease of EFF, the top five important features included one mutation in the intergenic region between *bor* and lambda *p78* gene region and four mutations in the phage J gene region.

A 16 *bp* deletion was found to be the most important feature for predicting POA, but was not found to be important for predicting EFF. The mutation profile table showed that this mutation was shared by 10 host strains, 2 of which were sampled from day 28 and 8 were from day 37. These 10 host strains were super-resistant, that is, the 10 host strains were resistant to the ancestral strain and all the phage isolates from the experiment. This mutation was located in the region of the host *ManXYZ* gene, which encodes the PTS mannose transporter subunit IID. This protein could be exploited by the phage to inject their DNA into the host. Our findings were consistent with a previous study that showed that the mutations in *ManXYZ* lead to the host super-resistant phenotype [66]. Another important feature was the ancestor indicator variable that was found to be important for the increase of both the POA and EFF. This was consistent with the fact that the ancestral host strain is susceptible to the ancestral phage strain as well as all the phage samples collected during the experiment. Finally, several mutations located in the phage J gene region were found to be important for both POA and EFF. The J gene encodes the tail fiber of phage λ which participated in the process of injecting phage DNA into the host. Thus, it played an important role in the host-phage interaction and the mutations in the J gene region could have a large impact on phage-host interaction [120, 137, 138]. This was consistent with our model predicting the mutations to be important for both POA and EFF.

3.5 Discussion

In this study, we developed a computational framework for predicting the network and efficiency of phage-host interactions by linking phenotypes with the genetic mutation profiles of both phage and host. The basis for our inference was an assumption that mutations can contribute directly, or via mutational-interactions, to changes in phenotype. Our comparative analysis revealed that an additive model that incorporates mutational effects of phage and host separately had the highest predictive value in linking genotype to phenotype. In doing so, the framework identified gene regions already recognized in mediating phage-bacteria infections for bacteriophage λ and *E*. coli. The model also identified important features that were located in gene regions that could potentially participate in phage-host not previously known to contribute to the phage-host interaction. Hence, the framework has the potential to identify novel genes and mutations that modulate virus-microbe interactions. For example, based on the feature importance analysis, we identified one mutation located in the phage *S* gene region that is found to be uniquely important for predicting the presence (or not) of infection. This gene encodes holin which is a small inner membrane protein required for phage-induced host lysis [139]. Notably, the phage-host interaction network observed in our experiment is based on the quantitative plaque assay, in which clearings (plaques) would appear where bacterial cells were infected and lysed by the phage [140, 141]. Thus, it was possible for the mutation in the S gene to have a direct impact on the lysis of the host cells, which would then have an impact on the final observed phenotype.

Another mutation that occurred in the phage *lom* gene region was exclusively important for the quantitative infection efficiency. The *lom* gene encodes an outer membrane protein that is putatively associated with the host's ability to adhere to human buccal epithelial cells [142]. Although this protein is not currently known to be directly involved in the process of phage infecting the host, the fact that it encodes an outer membrane protein and that it has an impact on the host phenotype suggest that it could have potential role in the phage-host interaction.

Although our analysis suggested that individual mutations act independently, rather than together, to determine infection outcome, we recognized that this finding may reflect the nature of our training and test sets. During the model construction, regularization terms were used for each of the five models built based on H:MF, P:MF, P+H:MF, P×H:MF and Joint:MF. At the training stage, P+H:MF did not outperform the P×H:MF and Joint:MF models both in step 1 and step 2. However, at the test stage, the P+H:MF model outperformed both the P×H:MF and Joint:MF models. Nevertheless, it was possible that the performance of P×H:MF and Joint:MF models was limited by the number of samples observed. There were many possible combinations of phage-host mutation pairs in the feature space of P×H:MF and Joint:MF, but majority of them were not observed. Although expanding the feature space allows the model to capture the interaction between host and phage mutation pairs, however, when more features were introduced to the linear model, due to the limited number of samples, the system became under-determined. Even with the penalty terms, the solution was still suboptimal. It may be worthwhile to consider the P×H:MF or Joint:MF models in future work, particularly given a larger number of samples.

Our inference framework could detect the importance of previously identified adaptive mutations that modify phage-host interactions. However, we must be cognizant of the potential for both false positives and false negatives. False detection may arise due to evolutionary effects including genetic hitchhiking of neutral mutations, recombination, and identification of adaptive mutations that are unrelated to the infection process. Moreover, we did not expect the identification of adaptive mutations to be comprehensive. We linked genotype to phenotypic changes arising in a specific coevolutionary process as measured by a subset of clonal phage and host isolates, hence there will be significant regimes of mutational space left unexplored.

In summary, we have developed a framework for predicting genotypic drivers of both the qualitative and quantitative nature of host-pathogen interactions. In doing so the framework recapitulated the finding of mutations known to influence infection outcome as well as novel sites. In doing so, this framework could help prioritize molecular work to identify novel drivers of infection. Although we applied this framework in the context of phage-bacteria coevolutionary dynamics, the data-driven approach does not necessarily require prior knowledge on specific genes or mutations and can be applied to other hostpathogen coevolution systems as well.

CHAPTER 4. GENOME SEQUENCING REVEALS A DISCONNECT BETWEEN COEVOLUTIONARY PATTERN AND PROCESS

This chapter is being prepared for publication as: Animesh Gupta*, Shengyun Peng*, Chung Yin Leung, Joshua S. Weitz and Justin R. Meyer. 'Genome sequencing reveals a disconnect between coevolutionary pattern and process'. Animesh Gupta*, Shengyun Peng* contributed equally. Shengyun Peng performed bioinformatics analysis for the coevolution dynamic and phylodynamic analysis, including constructing the host and phage mutation profile from raw sequencing data, performing the time-shift analysis and reconstructing the phylodynamic trees, running tests for selection on phage samples and jointly proposing the leap-frog dynamic hypothesis.

4.1 Abstract

New analytical techniques have revealed that ecological networks, whether they are between antagonists like hosts and parasites or cooperators like pollinators and flowers, possess similar nonrandom patterns. The first step to understanding why these network structures exist is to understand how they evolved in the first place. Here we studied *E. coli* and bacteriophage λ 's coevolution under controlled laboratory settings. The experiment was initiated with isogenic strains, but they rapidly evolved to form a rich interaction network. Like most phage-bacterial interactions networks (PBINs), the structure was nested such that the host-range of an ancestral phage fell within the more derived genotypes. This pattern has been predicted to occur through arms race dynamics, where bacteria gain ever increasing resistance and phages expand their host ranges to infect the resistant bacteria. Full genome sequencing revealed a much more complex progression. Multiple lineages of the bacteria and phage coexist and the lineages that dominate late in the arms race evolve from cryptic subpopulations rather the dominant lineage. These findings help resolve the mechanisms underlying PBIN structure and provide a cautionary example of the pitfalls with applying parsimony to interpreting evolutionary process from pattern.

4.2 Introduction

Phage and their bacterial hosts are ubiquitous in nature and play a key role in regulating microbial ecosystems [37, 89, 143, 144]. These viruses have multifaceted effects: Phages drive mortality which can regulate bacterial population size and enhance nutrient cycling [145, 146]. The mortality also triggers bacteria to evolve resistance through a number of mechanisms including resistance mutations or even the develop diverse anti-phage defense systems, including CRISPR-Cas and restriction-modification proteins [147]. The proliferation of defense strategies can impact bacterial diversity [84, 148], which can feedback to trigger the evolution of phage counter defenses and drive their diversification too [147, 149-151]. As a result, such interactions between antagonistically coevolving host and phage can drive the formation of complex interaction networks [58, 59]. These eco-evolutionary dynamics often have profound impacts on the larger ecosystems the microbes are embedded in [22-24].

One common way to study the complex networks that develop between phage and bacteria is to construct a phage-bacteria interaction networks (PBINs) [37]. PBINs are bipartite matrices with values that describe how well each phage can infect each bacterial

strain. The data for the matrices is typically collected by challenge experiments, where an array of different hosts is subjected to infection by an array of phage types. PBINs have been used to generate hypothesis for the types of coevolutionary dynamics that occur between phages and their hosts. For example, the most common PBIN structure observed is called nested [59], where phage host ranges fall one within another like a set of Russian dolls. Nested structures are thought to arise from arms race dynamics (ARD) where bacteria evolve resistance, and phages counter by expanding their host-range to include the new resistant type [152, 153]. Phage continue to evolve towards a broader host-range (and, similarly, host towards increasing the number of phages they are resistant to) giving rise to nestedness [154, 155].

An alternative structure is modular where phages have more specialized hostranges. The phrase modularity stems from the observation that groups of phages tend to infect the same bacteria creating dense clumps of interactions in the network. Modularity is thought to arise from an alternative coevolutionary sequence known as fluctuating selection dynamics (FSD) [74-76, 152]. Under this dynamic, bacteria evolve resistance and when the phage counters it, it loses infectivity on other bacteria, resulting in narrow hostranges. The dynamic is fluctuating because a range of hosts and phages can be maintained by negative frequency-dependent selection that leads to kill-the-winner fluctuations [156]. While ARD and FSD are two examples, the patterns in the network can be more complex and even share characteristics of both [157].

The different coevolutionary dynamics are thought to arise from the underlying genetic architecture of their interactions. ARD is commonly referred to as gene-for-gene because it is thought that the interaction between the phage and bacteria depends on a number of different genes. Bacteria evolve resistance through disrupting one locus, and then phage respond by not requiring that locus for infection. By reducing the number of host genes required for infection the coevolved phages will be able to infect the contemporary and ancestral bacterial genotypes. FSD is often called allele-for-allele (or matching alleles) because it is thought that this type of coevolution occurs when the interaction is controlled by a single locus. For example, the bacteria could evolve resistance by altering the phage receptor to deflect infection, and then the phages could evolve to exploit the new receptor at the cost of losing function on the ancestral form. This is often referred to as lock and key dynamics, where there are specialized keys that open specific locks.

Ideally, in order to determine how different coevolutionary dynamics yield different PBINs, times series of the changing interactions would be measured, as well as full genome sequencing to determine the genetic architecture of their coevolution. Previous studies have used phenotypic assays to determine how host range and resistance change over coevolutionary time [158]. Others have attempted to analyze the genetic basis of coevolution by linking mutations in the host or virus to resistance or host range expansion, respectively [159]. To the best of our knowledge, no study has measured PBINs and also sequenced full genomes of both the host and bacteria.

To provide a more comprehensive understanding of the formation of PBINs, we measured the changes in cross-infectivity using pairwise quantitative plaque assay amongst 51 host and 45 phage strains sampled at different times in a 37-day coevolution experiment. We constructed the PBINs to identify if they show any patterns of modularity on nestedness and then confirmed the type of coevolutionary dynamics at play using time-shift analysis.

We also sequenced the whole genomes of isolated phage and host strains to understand the genomics of coevolution.

4.3 Methods

4.3.1 Experimental setup and sample isolation

Meyer et. al [40] performed the original coevolution experiment with the strain REL606 of *Escherichia coli* B and an obligatory lytic strain of λ . Both, *E. coli* and λ , were co-cultured in a carbon-limited minimal glucose media at 37°C and allowed to evolve for 37 days by transferring 1% of the community to fresh medium at the end of each day. Periodically, 2 ml of community was preserved by adding ~15% of glycerol and freezing the mixture at -80 °C.

We randomly isolated ten host and eleven phage clones from frozen stocks of a population from days 8, 15, 22, 28 and 37. In total, 50 strains of *E*. coli and 44 λ s were isolated from the coevolution experiment (no phage were detected on day 37). To isolate bacterial clones, a small amount of frozen population was diluted in 0.9% *wv* sodium chloride solution and then spread on a Luria-Bertani (LB) agar plates [41]. The plates were then incubated at 37 °C for 24 h to pick individual colonies. The picked colonies were restreaked and grown two more times on LB agar plates in the same manner to get rid of any phage particles. Finally, ten colonies from each day-timepoint were picked at random and grown overnight at 37 °C to run pairwise infection assays. These isolated clones were also preserved with ~15% of glycerol at -80 °C.

Phage clones were isolated by first mixing appropriate dilution (in sodium chloride) of frozen community with 4 ml of molten (~50 °C) soft agar (LB agar except with only

0.8% wv agar) and ~5 x 10⁸ cells of bacterial strain REL606, and then pouring the mixture over an LB agar plate. The plates were dried and incubated overnight at 37 °C to pick 11 individual plaques at random. Clonal phage stocks were made by growing these picked plaques overnight with ~5 x 10⁸ bacterial cells in 4 ml of the evolution medium shaken at 220 rpm and 37 °C. Stocks were created the next morning by removing cells with centrifugation and treatment with 100 µl chloroform. 2 ml of phage was also preserved with 15% of glycerol at -80 °C.

4.3.2 Pairwise infection assays

Pairwise quantitative infection assays were performed for all the combination of host strains and phage strains isolated (online Supplemental Table 1 at https://github.com/speng32/thesis_supp_files). Specifically, 7 serial 1/10th dilutions were made of each phage culture. 2 μ l of each dilution plus the full-strength phage stock was spotted on top of *E. coli* lawns. Bacterial lawns were made for every single genotype and REL606, meaning 17,952 spots were plated. Efficiency of plaquing (EOP) was calculated as the phage density calculated on a coevolved isolate divided by the density calculated on the sensitive REL606 ancestor. This method provides a quantitative measurement for the infectivity of a given phage on a specific host.

4.3.3 Analysis of Nestedness and Modularity

BiMat [111] was used to assess the nestedness of the PBIN. The raw EOP value matrix was binarized into 0 for EOP = 0 and 1 for EOP > 0. Two preprocessing setting were applied on the input EOP matrix. In the first setting (setting 1), the rows and columns that contain all zeros were removed. In the second setting (setting 2), a row with all 1's was added to the EOP value matrix to represent that the ancestral host strain can be infected
by all phage strains. *BiMat* was ran with each of the two preprocessed EOP matrix as input with default settings and revealed qualitatively similar results. Here we report on results from setting 1.

4.3.4 Resistance and infectivity calculation and statistical test

For a total number of *n* host samples and *m* phage samples, we denote the EOP value for the *i*th host sample against *j*th phage sample as e_{ij} where $i \in [1, n]$ and $j \in [1, m]$. We denote the five checkpoint days of day 8, 15, 22, 28 and 37 for host by *k*, where k = 1,2,3,4,5, and the four checkpoint days of day 8, 15, 22 and 28 for phage by *l* where l = 1,2,3,4. Host resistance for a host sample *i* is calculated as

$$r_i = \sum_{j=1}^m \mathbf{1}_{\{e_{ij} > 0\}},$$
 (16)

which measures the number of phage strains that the host is resistant to. The host range of a phage sample j is calculated as

$$h_j = \sum_{i=1}^n \mathbf{1}_{\{e_{ij} > 0\}},$$
 (17)

which measures the number of host strains that the phage can successfully infect. The resistance percentage for each checkpoint of host is calculated as

$$RP_k = \frac{\sum_{i \in A_k} r_i}{m \times |A_k|}, \quad (18)$$

where A_k denotes the range of the host sample that belongs to the *k*th checkpoint and $|A_k|$ denotes the cardinality of the set A_k , i.e. the number of host samples at the *k*th checkpoint. The host range percentage for each checkpoint of phage is calculated as

$$HP_l = \frac{\sum_{j \in B_l} h_j}{n \times |B_l|}, \quad (19)$$

where B_l denotes the range of the phage sample that belongs to the *l*th checkpoint and $|A_k|$ denotes the cardinality of the set B_l , i.e. the number of phage samples at the *l*th checkpoint.

To evaluate the changes of in the resistance of host and the host range of phage, we used Analysis of Variance (ANOVA) to compare these measurements across different sampling days.

4.3.5 *Time-shift analysis*

We performed time-shift analysis to compare the mean EOP values of samples when they interact with their past, contemporary and future counterparts. For the host sample i, the average EOP value from interactions with phages from checkpoint l is calculated as

$$EB_{il} = \frac{\sum_{j \in B_l} e_{ij}}{|B_l|}.$$
 (20)

Each data point on the host time-shift curve represents an EB_{il} value and the values from the same host were connected with dotted lines. For the phage sample *j*, the average EOP value from interactions with hosts from checkpoint *k* is calculated as

$$EP_{jk} = \frac{\sum_{i \in A_k} e_{ij}}{|A_k|}.$$
 (21)

Each data point on the phage time-shift curve represents an EP_{jk} value and the values from the same phage were connected with dotted lines.

To test if there is a significant increasing trend in the host time-shift curves, we performed one-sided paired t-test by comparing the average EOP values from the last phage checkpoint – day 28 – against that from each previous checkpoint, namely day 8, 15 and 22. Similarly, to test if there is a significant decreasing trend in the phage time-shift curves, we also performed one-sided paired t-test by comparing the average EOP values from the initial host checkpoint – day 8 – against that from each later checkpoint, namely day 15, 22, 28 and 37.

4.3.6 Whole Genome Sequencing for λ and E. coli clones and pre-analysis

4.3.6.1 <u>Preparing clonal λ stocks for DNA extraction</u>

 λ clones from each timepoint were revived by growing ~3 µl of frozen stocks overnight with 100µl of ~5x10⁹ cells of strain DH5α (a *E. coli* K-12 derivative) at 37 °C in 4 ml of LBM9 medium shaken at 220 rpm supplemented with 40 µl of additional 1M magnesium sulphate to facilitate λ growth, where LBM9 is 10 g tryptone, 5 g yeast extract, 12.8 g sodium phosphate heptahydrate, 3 g potassium phosphate monobasic, 0.5 g sodium chloride, 1 g ammonium chloride, 1.2 g magnesium sulphate, 11 mg calcium chloride per L water. 100 µl of chloroform was added to the overnight cultures to kill the host cells, and then centrifuged at 3900rpm for 10 min to pellet the cells and debris. λ lysates obtained were filtered and stored at 4°C with 2% chloroform. 10 µl of these λ lysates were again grown overnight with DH5α in the same manner to propagate high phage densities for genomic DNA extraction. Final λ stocks were obtained by centrifuging the overnight λ cultures at 3900 rpm for 10 min and then filtering it with 0.22 µm filter tips to remove all cells and debris.

4.3.6.2 <u>Removal of any bacterial DNA</u>

Any remaining bacterial DNA was first removed from λ stocks before extracting λ DNA. 1 mL of the λ stocks was added to 200 µL of ice cold L2 buffer (PEG6000/NaCl from TekNova Cat #P4168) in 1.5 ml centrifuge tubes and mixed well by inverting the tubes. These were incubated for 1 h before centrifuging tubes at 4°C for 10 min at 12,000 g. Supernatant was discarded, and tubes were dried by inverting for 10 min. 100 µl of DNase solution (65 µl molecular biology grade water with 10 µl of 10x DNase I buffer and

25 μl of DNase I (RNase free) from New England Biolabs) was carefully pipetted into the tubes to resuspend the pellets. The suspended solution was incubated for 1 hr at 37°C before a heat shock of 10 min at 75°C after which tubes were placed on ice before extracting DNA.

4.3.6.3 Extraction of λ genomic DNA

We used Invitrogen's PureLink Pro 96 Genomic DNA kit (Catalog no. K1821-04A) to extract λ genomic DNA. Purified λ from above was transfer into wells of 96 Deep Well Block provided in kit and kit protocol was followed from step 3 of 'Preparing lysates for gram negative bacterial cells'.

4.3.6.4 <u>Preparing clonal E. coli stocks for DNA extraction</u>

E. coli clonal stocks were revived by growing $\sim 3 \mu l$ of frozen stocks overnight in LB.

4.3.6.5 Extraction of E. coli genomic DNA

Invitrogen's PureLink Pro 96 Genomic DNA kit (Catalog no. K1821-04A) was used to extract genomic DNA from overnight cultures of *E. coli* clonal stocks.

4.3.6.6 <u>Preparation of genomic library and sequencing</u>

We used ref. [46] for both *E. coli* and λ to prepare genomic libraries. Sequencing was done at UC San Diego IGM Genomics using paired-end Illumina HiSeq 4000 platform.

4.3.6.7 <u>Pre-analysis of sequenced reads</u>

After collecting the raw reads, the adapters were removed using cutadapt [160] and quality control (QC) was performed for each isolated strain using FastQC [161].

4.3.7 Mutation profile tables for isolated host and phage clones

The QC filtered sequencing reads were then analyzed using the *breseq* (v0.32.1)pipeline [162]. We ran the pipeline in the consensus mode with default parameters except for the consensus-frequency-cutoff, which was set to 0.5. The breseq pipeline first aligns the reads to the reference genome using bowtie2 [163]. It then analyzes the mapped reads to identify mutations based on new junction, missing coverage and read alignment evidences. Finally, it generates a summary mutation profile table with a list of mutations and 2 corresponding evidence (online Supplemental Table at https://github.com/speng32/thesis supp files). The same breseq settings were used to analyze both host and phage data.

4.3.8 Test for selection on phage samples

The D_N/D_S ratio was computed for phage whole genome as well as phage J protein region to test for the presence of selection [164, 165]. We only performed this test for phage since their evolution was dominated by nucleotide substitutions in protein coding genes, and the host mutation profiles consisted of many large indels and intergenic changes. To compute the D_N/D_S ratio, a pseudo count of $\alpha = 0.5$ was added to both the D_N and D_S counts to avoid dividing by zeros.

4.3.9 Phylogenetic reconstruction

Due to the prevalence of large insertions and deletions in the host genomes, conventional nucleotide substitution models were not suitable for estimating the host phylogenetic tree. However, such models are still suitable for estimating the maximumlikelihood phylogenetic tree for phage genomes. As a result, two different approaches were taken to reconstruct the evolutionary trajectories of the host and virus. To construct the phage phylogeny, multiple sequence alignments were performed for all recovered genomes and the ancestral genome using *mafft* (v7.305b) [166] with default settings except that retree was set to 2 and maxiterate was set to 1000. A maximum likelihood tree was constructed using *raxml-ng* [167]. We performed root-to-tip regression analysis to confirm the existence of temporal signal in the maximum likelihood tree (Figures 29 and 30). This was done by regressing tip distance from the root against the sample time. The significance of correlation between tip distance from the root and the sample time was evaluated by comparing the observed with the null distribution of coefficient of determination (R^2). The null distribution of R^2 was generated by randomly permuting the sample times for 500 times. Finally, the *TreeTime* [168] program was used to generate the phylogenetic tree.

To reconstruct the host evolutionary trajectory, a pairwise Hamming distance matrix was first computed using the R packages *e1071* and *phangorn* [169]. Specifically, the hamming distance between a pair of host genomes was calculated as the number of different mutations from the two genomes. This approach is different from the approaches used by nucleotide substitution models where each base pair change in the two genomes was counted as a single mutation event. The neighbor-joining (NJ) trees were then built based on the hamming distance matrix using *T-REX* [170]. Similar root-to-tip regression analysis was performed to confirm the temporal signal as described in the previous paragraph. Finally, the *TreeTime* program was used to build the host phylodynamic tree.

4.3.10 Genomic analyses of whole community from Day 8

120 µl of frozen stock of whole community was grown for 24 h in 10 ml of media similar to the original coevolution experiment [40] to revive the population. Phage and bacteria were then separated, and their genomic DNA was extracted in the same manner as described above for clonal stocks. Genomic library was prepared using NexteraXT kit at UC San Diego IGM Genomics. IGM also sequenced the samples using 75 base single reads on the Illumina HiSeq 4000 platform. *breseq* v0.32.0 was used to analyze whole population sequencing data of Day 8. We ran *breseq* in polymorphism mode with default settings to construct the mutation profile tables.

4.4 Results

4.4.1 Coevolutionary changes in resistance and infectivity

To study the coevolutionary arms race between *E. coli* and λ , we quantified changes in cross-infectivity amongst multiple host and phage strains sampled at different timepoints from the coevolution experiment (Figure 8). We isolated ten host and eleven phage clones from populations preserved at Day 8, 15, 22, 28 and 37 (no phage at day 37 due to extinction), and performed quantitative pairwise plaque assays between them (online Supplemental Table 1 at https://github.com/speng32/thesis_supp_files). The crossinfection matrix revealed a complex but ordered pattern of nestedness as is typically observed in most phage-bacterial interaction networks (PBINs) (Figure 13) [43]. Additionally, we did not uncover evidence for a modular pattern based on *bimat* result (data not shown). The ordered pattern of nestedness emerges when an arms race between bacteria and phage leads to bacteria evolving resistance and phage evolving counterresistance to it while retaining the ability to infect the previous sensitive host.

Figure 13 – Phage (columns) and bacterial (rows) interaction network

The Filled squares indicate a combination of host and phage that result in successful interactions. The original network was reassembled to maximize nestedness using the software BiMat. The red line highlights the isocline using the NTC algorithm. The nestedness value of the network based on NODF algorithm is 0.839. Null models based on 200 random shuffles have a mean of 0.638 and std of 0.011.

Note that although all isolated hosts on Day 8 were resistant to all Day 8 phage clones (Figure 14), the phage population did not go extinct in the coevolution experiment due to "leaky-resistance" of host [42]. This is a phenomenon where a small fraction of susceptible host cells is maintained because of a high rate of genetic reversion from resistant to susceptible. The reversion rate is high enough to sustain the phage population through daily serial dilution transfers, but lower than what we can sample from picking individual colonies. Eventually, resistance levels had reached such high levels and the reversion rate was low enough that the phage went extinct sometime between days 28 and 37.

Figure 14 – Host resistance and phage infectivity measured by pairwise plaque assay

(A) Heatmap showing the plaque assay result where grey cells represent no infection, yellow represents low infectivity and red represents high infectivity. (B) Line plot showing the resistance percentage of host and the host range percentage of phage at each checkpoint. (C) Boxplot showing the average resistance of hosts from the same sampling day across five checkpoints. (D) Boxplot showing the average infectivity of phages from the same sampling day across four checkpoints. The statistical significance of the difference between the average resistance and host range from different checkpoints were evaluated using ANOVA.

In line with the nested pattern, Figure 14B shows the average increase in hostresistance by *E*. coli and average increase in host range by λ with time. For *E*. *coli*, the resistance percentage – the proportion of host genomes from a given sampling day that are resistant to infection –increases monotonically as the coevolution time increases; and for λ too, the host range percentage – the proportion of host genomes that can be infected by phage sampled at a given day – also increases with time. ANOVA results show that the resistance of the host increased significantly (P = 4.453e-09, F = 51.01) during the experiment (Figure 14C). Similarly, by comparing the infectivity of the phage samples from different days, we also observe significant changes (P = 4.143e-17, F = 188.81) in host-range (Figure 14D) over the course of the coevolution experiment.

4.4.2 Time-shift analysis and signatures of coevolutionary dynamics

To further dissect the complex network of cross-infection, we zoomed in on each sampling day and performed a time-shift analysis on host and phage clones isolated from that day against their counterparts from the past, contemporary and the future. Specifically, we compared the EOP values that quantifies the interaction between hosts and phage isolated from any two given days. A higher EOP value implies lower host resistance or higher phage infectivity. A mean EOP value was calculated for each host isolate from its EOP values with all the phage isolates from a given day. These mean EOP values of host clones isolated from a given day were then plotted over time (Figure 15B). Host samples from Day 8 showed increased susceptibility to λ isolated from future days when compared with λ clones isolated from Day 8 (P < 2.546e-4). For days 15 and 22, hosts had higher EOP for phage samples from the future versus that from the past and contemporary (P < 2.883e-3 and P < 1.923e-4). Hosts isolated from Day 28 and 37 showed similar resistance to previous days; no future phage population were present for hosts isolated from Day 28 and 37. Similar analysis was performed for phage isolates, where mean EOP values of all

phage isolates from a given day were plotted for different days (Figure 15C). Since all isolated hosts were resistant to all Day 8 phages, all EOP values were zero for Day 8 phages. No statistically significant difference was observed in mean EOP values across time for phage isolates from day 15. However, for phage samples from day 22 and 28, infectivity on past hosts were higher than that from contemporary and the future (P < 3.173e-7 and P < 2.417e-4). This pattern is consistent with the arms race dynamics (ARD), where the infectivity of the evolved phage on hosts from the past is always higher than that on hosts from the future [158].

Figure 15 – Time-shift analysis results from different checkpoints

(A) Schematic for the time-shift analysis that compares the mean EOP from hosts or phages interacting with their counterparts from the past, contemporary and the future. (B) Time-shift results from host checkpoints day 8, 15, 22, 28 and 37, respectively. The gray dotted line shows the time-shift curve for each individual host and the black line shows the average. The vertical dashed line represents the host sample day. The P-values shown here are the maximum P-value from one-sided paired t tests comparing the final checkpoints day 8, 15, 22 and 28 respectively. The gray dotted line shows the time-shift curve for each individual phage and the black line shows the average. The vertical dashed line represents the host sample day. The province for each individual phage and the black line shows the average. The vertical dashed line represents the average from phage checkpoints day 8, 15, 22 and 28 respectively. The gray dotted line shows the time-shift curve for each individual phage and the black line shows the average. The vertical dashed line represents the phage sample day. The P-values shown here are the maximum P-value from one-sided paired t tests comparing the initial checkpoints with each of the later checkpoints.

4.4.3 Bacteria and phage whole-genome sequence analysis

Whole genome sequencing revealed a total of 18 and 176 unique mutations for the host and phage strains respectively, resulting in 15 unique host genotypes and 34 unique phage genotypes (Figures 31, 32 and online Supplemental Tables 2 and 3 at https://github.com/speng32/thesis supp files). For E. coli, the 18 unique mutations consist of 7 nonsynonymous point mutations, 1 intergenic point mutation, 7 deletions and 3 duplications. These 18 unique mutations collectively affected a total of 1,021 nucleotides in the ancestral genome. The most abundant mutation that occurred in 38 out of 50 host genomes was a frameshift mutation caused by a 25-base duplication in the *malT* gene. This is consistent with the previously observed mutations from the coevolution experiment [40]. MalT is a positive regulator of an outer-membrane LamB protein of E. coli that λ uses to infect E. coli. The mutation in the malT gene of E. coli interferes with the expression of *lamB*, and confers resistance to phage. A frameshift mutation in the *manZ* gene emerges later in the experiment which was previously shown to confer high levels of resistance [40]. It appears to have the same affect here, all of the host with this mutation are resistant to all λ genotypes. manZ encodes an inner-membrane pore protein which transports λ 's DNA across E. coli's inner membrane. Another common mutation was a 777 bp deletion that was detected in 15 genomes. This mutation caused by the excision of an IS element and is known to occur at a high rate in REL606 [171]. None of the affected genes (ECB RS14915 which encodes the SDR family oxidoreductase, ECB RS14920 which encodes the IS1 family transposase and ECB RS14925 which encodes a hypothetical protein) are known to have any effect on λ resistance [172]. This mutation is likely just a genomic hitchhiker that occurs because of its high mutation rate.

In λ isolates, a total of 176 unique mutations consisting of 53 nonsynonymous SNPs, 87 synonymous SNPs, 2 insertions, 3 deletions and 31 intergenic mutations, affecting a total of 182 nucleotides were identified. All the insertions and deletions detected were small indels that involved only 1 or 2 bases. Out of all mutations, 116 were in the *J* gene which encodes the host recognition protein of λ . J protein initiates infection by binding to *E. coli*'s LamB protein and some of these J mutations have been shown to increase adsorption rates to LamB and allow λ to exploit a novel receptor, OmpF [173, 174]. During the coevolution, we observed strongest selection for phage on Day 8 (Figure 33) and as phage population approached extinction by Day 37, the D_N/D_S ratio decreased. Overall, the high D_N/D_S shows that the phage experienced strong selection throughout the study in line with the ARD model.

4.4.4 Phylogenomics of coevolving phage and bacteria

A typical ARD pattern was observed in the λ -*E. coli* interaction network, but was it driven by the gene-for-gene model of coevolution at the genomic level? To answer this, we reconstructed the phylogenetic trees for both host and phage from whole genome sequences sampled at different days (Figure 16). Due to the prevalence of large insertions and deletions in the host genomes, conventional substitution models were not suitable to estimate phylogenetic trees for the host. The temporal signal was checked (Figures 29 and 30). As a result, we used an alternative approach as described in the Methods. We consider the ancestral strain as the root and all samples collected between the root and the last sample day as derived strains. Samples on the last day are described as the final strains. A typical ARD pattern at the genomic level would result in a directed phylogenetic tree where at each timestep the most dominant genotype is carried forward by accumulating more mutation in response to higher selection pressure by phage. This would result in the derived strains of Day 37 (tip of the tree) to be the furthest away from the ancestral strain (root of the tree). But interestingly, the phylogenomic pattern of host indicates a much more complex dynamic. We see that the strain with the highest level of resistance occurs at Day 37 (marked in red), but it is in fact most closely related to the sensitive ancestor. None of the intermediate derived strains were predicted to be the ancestor for the most dominant types present at the end of the coevolution. We hypothesize that this lineage had evolved early on in the experiment, but had remained at low levels until later in the experiment when broad host-range phages evolve and apply more pressure on the bacteria. We call this a 'leap-frog' dynamic where a rare lineage overtakes a dominant lineage later during coevolution.

A similar leap-frog dynamic was observed from the phylogenomics of λ (Figure 16B). None of the derived strains from Day 8 were predicted to be the ancestor of the final strains sampled on Day 28. When we compared the number of derived strains on the early dominant branch (green) versus the dominant later branch (blue), there was a gradual shift from day 8 and 28. The majority of the genotypes on Day 8 were located on the green branch, whereas by Day 22, about half the population had shifted to blue branch. Finally, all the genotypes of Day 28 were located on the blue branch.

Figure 16 – Reconstructed phylogenomic trees of the hosts and phage

(A) The host phylodynamic tree reconstructed based on host mutation profiles. All superresistant host strains are located on the red branch. The bar above the time scale represents the proportion of host strains from each colored branch across different checkpoints. (B) The phage phylodynamic tree reconstructed based on the phage mutation profiles. All day 28 phage strains are located on the blue branch. The bar below the time scale represents the proportion of host strains from each colored branch across different checkpoints.

4.4.5 Whole population sequencing of the early community

To test whether the later dominant lineages were present earlier, we sequenced full genomes of *E. coli* and λ extracted from the mixed community on day 8. We predicted that we would be able to detect mutations that were on the late-dominant lineages that we not observed in the early-dominant lineages. Indeed, we uncovered the 16-*base* deletion in the *manZ* gene for *E. coli* and the single base substitution in *H* gene of λ which defined the final dominant clade in the coevolution (Figure 17, Tables 9 and 10). This confirms our lineage leap-frog dynamic hypothesis where a rare lineage from earlier timesteps emerges later in the arms race. Notably, the population sequencing revealed many more mutations than observed by sequencing isolates (Figures 34 and 35), suggesting that there are high levels of cryptic genetic variants in this coevolving population. As seen for the *manX* and H mutations, this variation can provide the genetic 'ammunition' important for later stages of the arms race.

Figure 17 – Genomic diversity in whole population versus isolated clones on Day 8

The outer gray ring represents the whole population and the inner black circles represent all the isolated clones at Day 8 for a) E. coli b) λ . All the marks show different mutations present in them. The mutations marked in red (in gene manZ for E. coli and H for λ) is in the lineage dominant at the end of coevolution but whose evidence is found only in whole population sequencing.

4.4.6 Molecular mechanism underlying leap-frog dynamic

In order to study the molecular mechanism underlying the observed coevolutionary dynamics, we analyzed the gene functional annotation of several key players in the phage-host interaction. The ancestral phage strain uses the J protein to target the host porin LamB and injects the phage DNA into the periplasm [175, 176]. One positive regulator of the LamB porin is the HTH-type transcriptional regulator *malT*. As a result, mutations in the host malT protein downregulates the expression of LamB and affects phage-host interaction by mitigating λ 's ability to exploit LamB.

Our results show that during the early stage of our experiment, the most common mutation in host genotypes – the 25-base duplication within the gene region that encodes

malT – occurs amongst many of the day 8 host strains. As the coevolution plays forward, the majority of the derived host strains from later days, including all Day 15 and Day 22 derived strains, also carries this duplication. In contrast, none of the super-resistant strains of Day 37 have this mutation. Instead, they have a common 16-base deletion in the manXYZ gene. This gene encodes a permease for mannose, which is an inner membrane protein that λ uses to finally inject its DNA into the cytoplasm of the cell after attaching to an outer membrane protein of E. coli [177, 178]. Mutations in manXYZ have been shown to lead to the super-resistant phenotype in host strains [66]. But manXYZ gene is also shown to help E. coli uptake glucose, so mutation in this gene should hinder E. coli's growth rate in our experimental conditions. Alternatively, *malT* mutants have been shown to confer a slight benefit to growth rate in glucose medium [45]. Thus, the hosts with manXYZ mutations were overshadowed by *malT* which experienced high levels of cost-free resistance. As λ evolved to use a new receptor and increase its infectivity, manZ mutant's superior levels of resistance began to payoff. Cryptic genetic variation that arose early during the arms race were selected for at later stages when the ecology of the system, namely phage infectivity, change to favor its rise.

4.5 Discussion

To comprehensively understand the dynamics of λ -*E. coli* coevolution at different levels, we constructed the PBINs at phenotypic level and analyzed whole genomes of both λ and *E. coli*. We measured cross-infectivity amongst 51 hosts and 45 viruses sampled at 5 different days that coevolved over the course of a 37-day coevolution experiment and performed time-shift analysis on the observed changes. We then also sequenced all hostphage strains used to construct the PBINs and whole community of host-phage from a single day of an early timepoint of coevolution to relate interactions at phenotypic level with dynamics at genomic level.

The nested pattern of λ -*E. coli* PBIN revealed a typical ARD between phage and its bacterial host. However, the genomic data revealed that the arms race was not driven by this model's predicted steady accumulation of resistance or host-range mutations. Instead, the genomic data revealed 'leap-frog' dynamics for both the host and virus where an "old" lineage is maintained in the population for long duration until the ecological conditions change to favor it and drive it to dominance. The genomic data are more in line with FSD, where a large number of variants can be maintained in a population and different types are selected at varying times during coevolution. Reality falls somewhere in the middle of these two coevolutionary models.

The assumption of parsimony led to the misinterpretation of the dynamics that yield nestedness. A single evolving lineage is much more likely than a huge diversity of contending lineages. However, the reality is that the eco-evolutionary dynamics observed here yield the emergence and maintenance of vast genetic diversity and much more complex dynamics. This realization in line with other recent genomic-based studies that have reveal much more rare genetic variation than previously anticipated [179]. Our result for viruses is particularly important because the parsimonious assumption that modern lineages stem from previously observed lineages is also made for constructing phylogenies of human viruses such as influenza [180]. If this assumption is flawed for influenza, then researchers may misinterpret the number of molecular changes and its evolutionary

dynamics. This would interfere with the analysis of its genomic evolution and subsequently, predictions for future strains and vaccine development.

CHAPTER 5. CONCLUSION

5.1 Summary of research advances

5.1.1 Research advance 1

An integrated analysis based on single cell sequencing, metagenomics and bioinformatics approaches was applied to evaluate virus-host interaction in a Yellowstone National Park (YNP) hot spring. The recovered virus-host relationships at both cell and species levels illustrated the ubiquity and complexity of the virus-host interaction network. Specifically, the results shown that the majority of the hosts in the environment contain viruses. Furthermore, most host cells contain viruses from multiple different viral partitions. In turn, within the relatively low-diversity community, the coexistence of a broad spectrum of virus types from specialists to generalists was observed. Taken together, these results should inspire new methods to assess the relevance of superinfection and the variation in the viral lifestyles in natural environments.

5.1.2 Research advance 2

During a coevolutionary experiment, the phenotype of phage-host interactions was quantified using quantitative plaque assays. Whole genome sequencing was performed for the isolated strains at different time points to reveal the genotypical variations that had occurred and accumulated. Machine learning algorithms were applied to link the phenotypical changes and genotypical changes. Quantitative models were built based on a two-step modelling framework and different sets of features. The outcomes revealed important genes, some of which have been experimentally validated for their roles in phage-host interactions, while others were genes that could potentially be involved. The flexibility of this framework allows for application on data from other host-pathogen system to reveal the most impactful mutations during the coevolution process in a quantitative way.

5.1.3 Research advance 3

Time-shift analysis was performed based on the host range of phage during the coevolutionary experiment. The arms-race dynamic (ARD) pattern was observed from the result of time-shift analysis. The phylodynamic trees for both host and phage were reconstructed based on the mutation profiles and sampling day to provide a comprehensive understanding of the coevolutionary process. The phylodynamic trees revealed a leap-frog dynamic which suggested that the current populations arose from rare subpopulations rather than the most recent, dominant lineages. The different conclusions based on phenotype and genotype evidences reveals that coevolutionary dynamics are much more complex than simple models can explain. The assumptions of linear genomic evolution could lead to misinterpretations of the evolutionary pattern and process.

5.2 The ubiquitous of viral-host interactions

In Chapter 2, we characterized the structure of virus-host interactions in a Yellowstone National Park (YNP) hot spring microbial community to quantitatively measure the extend of virus-host interactions in natural environments. By performing an integrated hexanucelotide, single cell sequencing and CRISPR-based analysis, we conservatively estimated that >60% of host cells contain at least one virus type. The majority of these cells contain two or more virus types. In conclusion, in the published work, we found that nearly all cells in the YNP NL01 hot spring interact with viruses, that

multiple, concurrent interactions are common and that a broad spectrum of virus types from specialists to generalists coexist in a relatively low-diversity community [77].

These results should encourage the development of more robust empirical methods and theoretical models to assess the relevance of superinfection and a diversity of viral lifestyles in shaping natural communities. Current single-cell sequencing results do not fully capture the diverse sequences found in a cell due to coverage limitations. Highercoverage sequencing data would provide more confidence and possibly new insights for investigating superinfection. Beyond the ubiquity of the virus-host interaction network in the hot spring, the viral lifestyles can also be further characterized across different spatial and temporal scales. Time series samples can be used to further investigate the dynamics of the virus-host interaction network. If we consider different hot springs as independent systems, by including samples from other similar hot springs, we could assess the diversity and similarity of the virus-host interaction networks.

5.3 The link between host range and genetic basis

Given a pair of virus and host that is known to interact with each other, in this case bacteriophage λ and *Escherichia coli*, we measured the changes in host range and the genetic profiles of both phage and *E. coli*. We proposed a two-step framework to link the phenotypical changes in terms of the host range and efficiency of infection with the changes in the genetic profiles. Overall, our framework confirmed several genes that were consistent with experimental validations, suggesting that our framework is capable of identifying the mutations in canonical genes that were known to involve in phage-host interactions. Our framework also revealed several genes that could potentially participate in such interactions, suggesting that it is capable of discovering novel genes that could participate in phage-host interactions. Although downstream experimental validation on the mutation or mutation pairs found are still necessary to confirm our newly identified sites, our framework can help prioritize experiments that genetically manipulate phage and host genomes.

For future work, experimental validations could be performed to evaluate the role of the novel genes predicted to be involved with the infection process (S and lom). Also, it is possible that the models which we term P×H:MF and Joint:MF have not yet reached their full potential due to the limited number of samples. These models could be refined given more sample data Finally, since our framework is very flexible, the logistic regression and linear regression used in the two steps can be replace by other models that also generate classification and regression results.

5.4 The genotypical and phenotypical coevolution dynamic

Under experimental conditions, samples taken at different checkpoints not only allow us to observe the genotypical and phenotypical changes, but also allow us to track the patterns of coevolution dynamic. Therefore, we investigated the dynamics of genotypes and phenotypes in coevolving virus-microbe, via analysis of full genome sequencing of *Escherichia coli* and bacteriophage λ . In contrast, we found that the phenotypical changes support the arms race dynamic. We also found that the emergence of resistant *E. coli* hosts and host-range mutant λ phage in later stages of the experiment arose from rare subpopulations rather than recent, dominant lineages. This lineage leap-frog dynamic is enabled by fluctuations in ecological conditions that rescue rare lineages with increasing resistance and infectious genotypes, rather than enabling the progressive genomic changes envisioned in an arms race.

Due to the limit number of samples taken at each checkpoint, we were not able to the shift in allele frequency spectrum in either host or phage. By performing metagenomic sequencing and analysis, such results would provide additional evidence to support the phage-host interaction dynamic.

5.5 Perspective

Taken together, our results showed that virus-host interactions are ubiquitous in natural environments, including extreme conditions. The observed virus-host interaction network that consists virus species that are generalists and specialists is highly complex. The observed changes in phage-host interactions can be tied to the genetic basis. And the theoretical framework based on genotypical changes, in turn, can also reveal potential genes that could participate in phage-host interactions. From a coevolutionary stand point, the observed phenotypical changes support the arms race dynamic while the genotypical changes supports the leap-frog dynamic. This shows the complexity in virus-host coevolution dynamic. In conclusion, virus-host interactions with the ubiquity and complexity, shape the coevolution trajectory of both virus and host and have a profound impact on the ecology of various environments.

APPENDIX A. SUPPLEMENTARY INFORMATION FOR CHAPTER 2

Figure 18 – Heatmap of the percent of the SAG genome used to calculate ANI for all classified SAGs against 32 reference genomes

SAGs are in the same order as Figure 5. Matches where less then 5% of the SAG genome was used were removed as were matches with a corresponding ANI < 70%.

Figure 19 – Schematic overview of the logic pipeline used to classify single amplified genomes (SAG)

The average nucleotide identity (ANI) was calculated using the script provided here (https://github.com/chjp/ANI) and the base pair coverage (BPC) was calculated using a custom perl script. Numbers in parenthesis indicate the number of SAGs at each step of the pipeline.

Figure 20 – Graphical representation showing the ratio of viral reads to assembled cellular contigs

The boxes showing expected biases were calculated using 30kb as the average size of thermophilic Archaeal viral genomes and an average thermophilic Archaeal genome size of 1.5-2Mbp. On all graphs different read cutoff levels from 1-10 150bp are shown. A. The number of infected SAGs, **B**. the percentage of infected SAGs with two or more viral types present, and **C**. the average number of viral partitions present per infected SAG.

Figure 21 – Receiver operating characteristic (ROC) curves assuming A. 5 viral sequence reads (750bp) or B. 2 viral sequence reads (300bp). Optimal hexanucleotide analysis cut off values are indicated.

Reference Genome	Reference
Hydrogenobaculum sp. 3684	GCA_000213785.1
Metallosphaera yellowstonensis MK1	GCA_000243315.1
Nanoarchaeum equitans	GCA_000008085.1
Nanodsidianus stetteri	GCA_000387965.1
Sulfolobus acidocaldarius DSM 639	GCA_000012285.1
Sulfolobus islandicus HVE10/4	GCA_000189575.1
Sulfolobus solfataricus P2	GCA_000007005.1
Sulfolobus tokodaii str. 7	GCA_000011205.1
Vulcanisaeta distributa DSM 14429	GCA_000148385.1
Vulcanisaeta moutnovskia 768-28	GCA_000190315.1
Nanoarchaeota archaeon 7A	GCA_001552015.1
Acidilobus sp. 7A	CP010515.1
Ignicoccus hospitalis KIN4/I	GCA_000017945.1
Acidilobus sulfurireducans	636559880
Acidilobus saccharovorans 345-15	GCA_000144915.1
Acidianus hospitalis W1	GCA_000213215.1
Acidocryptum nanophilium	GCA_000389735.1
Escherichia coli str. K-12 substr. MDS42	GCA_000350185.1

Table 1 – Reference genomes used in this study and a reference for each

		#							
		reads							
		used			#				
		for	kmern		passi	Ma			
		detect	orm		ng	Х			estimate
		ion of	normal		conti	con			d
	Raw	viral	ized	#	gs	tig	Total		compleat
	read	seque	read	cont	(2200	len	contig	%G	eness
SAG	count	nces	count	igs	bp)	gth	length	С	(CheckM)
AD-									
903-						222		47.4	
A01	100471	89488	23257	48	8	70	69548	98	12.15
AD-									
903-		10796				192		45.9	
A03	119883	5	36931	50	14	44	138597	16	7.94
AD-									
903-		11388				233		45.2	
A04	128054	9	45843	34	10	09	119997	35	13.39
AD-		40000						47.6	
903-		12309			47	289		47.6	~~ ~~
A05	140374	8	33594	81	1/	43	155754	93	22.92
AD-		17064				200		20 5	
903-	200777	1/964	22202	21	2	380	40525	39.5	0
AU6	200777	ð	23292	21	3	33	48525	/1	0
AD-						240		56.0	
903-	72020	65001	20117	10	0	249	00210	20.8 1E	12 5
	/3029	02901	20417	42	9	05	09210	45	15.5
AD-						220		110	
202- 202-	02500	82440	27694	10	0	529 25	107121	44.9 //1	0.25
ΔD-	92309	02440	57004	40	5	25	10/151	41	9.55
903-		16563				257		<u> 18</u>	
Δ10	187508	10505 N	45300	50	15	257 46	116872	-0. - 37	5 03
	10/200	0	-5500	50	10	70	110072		5.05
903-		17188				407		37 S	
A11	191486	2	64955	155	34	75	280405	99	5.66
AD-	191400	2	0.555	100	97	, 5	200403	55	5.00
903-						273		45.0	
A13	107595	99068	19382	34	4	07	52237	66	5.69
	20/000	22000	10002	5.	•	0,	3223,		0.00

Table 2 – SAG sequencing and assembly statistics

AD-									
903-		17966				392		45.9	
A14	200800	4	52037	39	12	71	139785	08	16.27
AD-									
903-		13307				223		55.6	
A15	150544	8	15413	31	3	97	38521	22	2.54
AD-									
903-		18452				115		44.5	
A16	208077	3	35396	51	13	94	90030	47	0
AD-									
903-		11649				218		43.6	
A17	135403	2	13566	16	1	78	21878	28	0
AD-									
903-		21516				253		45.6	
A18	240202	5	44136	59	13	71	102516	49	5.3
AD-									
903-		18875				199		43.6	
A19	207275	7	26692	41	9	52	72682	39	4.98
AD-									
903-		24201				142		42.4	
A20	272779	6	13726	22	4	00	31359	82	0
AD-									
903-		18709				367		41.9	
A21	205241	3	44402	43	8	96	106701	39	0.72
AD-									
903-		18631				308		36.3	
A22	204937	9	69606	74	21	58	206855	73	8.33
AD-									
903-		16447				305		35.9	
A23	179304	1	57417	139	23	86	203424	47	0
AD-									
903-		64114				208		24.4	
B02	678240	0	60562	113	24	45	135497	99	16.74
AD-									
903-		38358				119		25.3	
B03	419087	5	9446	8	1	72	11972	51	0
AD-									
903-		62844				709		42.6	
B04	698749	4	23512	41	6	6	27250	31	0
AD-									
903-		25011				375		48.4	
B05	272043	9	38854	53	11	09	118992	98	22.1

AD-									
903-		32326				128		46.4	
B06	360490	0	39360	36	8	18	73617	06	9.35
AD-									
903-		24121				179		49.1	
B07	265267	7	23829	32	7	58	63586	44	16.67
AD-									
903-		50314				217		46.6	
B08	546145	9	34381	43	11	64	80526	66	9.71
AD-									
903-		36392				145		45.4	
B09	398828	6	70584	99	28	08	166277	13	16.18
AD-									
903-		43531				172		45.3	
B10	497786	0	43734	54	15	11	98022	63	4.17
AD-									
903-		51826				213		37.4	
B11	574522	3	76753	153	34	09	264582	49	19.81
AD-									
903-						117		45.8	
B13	3823	3501	2468	6	2	53	18891	95	0
AD-									
903-	110479	10330				209		38.2	
B14	4	18	25785	33	5	60	39537	76	0
AD-									
903-		45675				468		33.8	
B15	490446	8	92052	165	28	30	274936	85	13.21
AD-									
903-		54390				248		47.1	
B16	595155	6	56018	33	9	65	99206	64	5.61
AD-									
903-		13963				386		46.8	
B17	155163	9	66610	97	19	87	207869	49	22.32
AD-									
903-		38626				431		45.3	
B18	427723	3	90459	63	18	99	219613	1	18.22
AD-									
903-		22012				262		49.2	
B19	244343	5	81805	99	22	23	216512	44	10.28
AD-									
903-		40278				217		49.2	
B20	444430	8	44790	65	17	56	117780	16	6.54

AD-									
903-		27859				327		48.2	
B21	306411	9	79289	99	22	41	204363	61	22.43
AD-									
903-		61416	12635			456		28.9	
B22	653923	8	5	326	52	90	366447	84	29.52
AD-									
903-		37788				178		46.3	
B23	412057	8	24206	42	7	78	50838	92	4.67
AD-									
903-		19718				152		45.4	
C02	214880	0	16364	45	10	17	69577	63	6.54
AD-									
903-		16036				287		35.8	
C03	173582	6	51786	92	24	39	191594	74	17.45
AD-									
903-		13880				187		47.5	
C04	155712	7	17869	20	5	44	55234	47	13.69
AD-									
903-						348		44.9	
C05	110731	97279	30638	75	7	89	76705	59	6.54
AD-									
903-		30012				189		46.1	
C06	331090	7	22066	22	3	63	39872	5	5.61
AD-									
903-		14062				238		39.6	
C07	155551	9	17684	22	4	98	38678	92	0.93
AD-									
903-		19354				300		45.6	
C08	211324	2	33802	39	11	31	93715	79	12.15
AD-									
903-		13386				202		35.6	
C09	143290	9	40446	123	23	59	178139	87	17.81
AD-									
903-		30797				122		49.1	
C10	342216	1	35259	68	17	41	93523	62	11.01
AD-									
903-		23807				217		48.7	
C11	266981	9	48236	56	14	50	111818	96	12.22
AD-									
903-						250		46.3	
C13	106411	97919	34849	18	8	50	87387	5	10.52

AD-									
903-		36997				197		45.9	
C14	405952	5	39466	57	14	76	105023	23	11.21
AD-									
903-		11153				432		44.8	
C15	124592	2	55906	130	26	23	235079	15	15.03
AD-									
903-		28544				219		47.3	
C16	313830	4	56573	95	23	73	161555	63	14.56
AD-									
903-		22295				291		42.1	
C17	247672	7	25088	13	3	73	48566	04	0
AD-									
903-		25612				162		43.3	
C18	276997	1	21194	42	10	07	66105	4	4.36
AD-									
903-		25153				249		47.0	
C19	278192	6	61529	84	22	82	191138	51	24.06
AD-									
903-		20367				341		42.8	
C20	223445	9	26520	17	3	10	66280	77	7.94
AD-									
903-		29248				166		43.8	
C22	321288	8	14661	41	5	64	42617	3	5.61
AD-									
903-		38235				101		46.3	
C23	424486	1	15500	34	8	32	37344	18	0.93
AD-									
903-		32936				439		46.9	
D02	358701	1	86518	120	22	11	253179	45	21.27
AD-									
903-		44009				208		50.0	
D03	497286	8	31395	27	6	22	57368	58	12.26
AD-									
903-		45697				417		48.7	
D04	509470	7	81984	111	18	01	179617	87	18.99
AD-									
903-		21193				307		56.5	
D05	232802	5	46831	56	8	06	108462	36	18.04
AD-									
903-	120722	11094				245		34.7	
D06	8	61	81002	61	13	55	157470	32	8.33

AD-									
903-		25014				350		45.0	
D07	277844	0	40538	79	10	57	131076	93	12.62
AD-									
903-		35182				213		45.5	
D08	388666	3	47120	102	19	99	158407	95	2.34
AD-									
903-		42881				159		43.3	
D09	465403	7	44123	96	23	86	145689	92	5.49
AD-									
903-		49373				343		49.7	
D10	550113	1	70384	66	14	62	159368	19	21.03
AD-									
903-		36503				454		48.0	
D11	407415	8	69505	72	16	33	196464	64	20.54
AD-									
903-		59811				355		36.5	
D13	640209	0	54973	85	17	74	171761	21	7.33
AD-									
903-	102998	94354				414		46.8	
D14	8	0	84028	78	11	53	173492	08	20.63
AD-									
903-		54322				149		44.8	
D15	600335	9	27240	35	7	64	48798	32	6.25
AD-									
903-	103498	94756				151		43.7	
D16	3	4	33255	26	6	76	52624	73	7.94
AD-									
903-		27903				403		56.5	
D17	311585	1	53613	60	9	65	114927	63	16.04
AD-									
903-		73186				303		48.3	
D18	806707	3	93289	100	27	48	263014	42	21.49
AD-									
903-		40320				386		47.3	
D19	445725	6	54393	39	12	08	126888	46	11.29
AD-									
903-	100420	91533				401		55.6	
D20	2	4	52131	41	8	71	97823	46	7.55
AD-									
903-		68066				136		52.0	
D21	757993	8	14516	40	4	59	39813	73	3.74
AD-									
------	--------	-------	-------	-----	----	-----	--------	------	-------
903-		48727				246		39.2	
D22	529452	9	24885	25	3	99	35515	71	0
AD-									
903-		64565				180		35.9	
D23	689545	7	77472	178	30	43	188113	06	22.92
AD-									
903-		14588				235		49.0	
E02	160046	6	35583	55	14	08	98517	73	10.28
AD-									
903-		23207				161		45.0	
E03	248566	3	17525	34	8	63	54650	96	0
AD-									
903-		12846				364		34.5	
E04	140335	4	50949	108	15	77	157606	87	13.58
AD-									
903-		12337				203		45.3	
E05	139390	5	58242	38	15	74	148891	77	14.8
AD-									
903-		16084				140		43.9	
E06	176576	7	30170	37	7	06	59642	77	6.54
AD-									
903-						167		48.7	
E07	96517	87317	11120	12	2	01	18826	78	9.52
AD-									
903-		18264				215		47.9	
E08	198605	2	31853	42	8	24	75856	25	6.11
AD-									
903-						353		36.3	
E09	99414	93514	45185	81	13	65	152846	2	22.64
AD-									
903-		16828				289		48.1	
E10	185324	2	39262	55	13	47	95607	45	3.89
AD-									
903-		13165				260		44.1	
E11	144388	8	37267	26	10	02	109422	69	15.18
AD-									
903-		45320				958		44.6	
E13	502627	1	19436	26	6	9	21681	2	0
AD-									
903-		13945				144		49.0	
E15	153356	9	15191	28	8	47	49257	43	6.54

AD-									
903-		35456				286		44.7	
E16	384001	6	26034	31	4	87	46411	93	0
AD-									
903-						247		48.2	
E17	76615	69564	19338	23	7	51	52419	57	6.54
AD-									
903-		18928				517		50.0	
E18	208233	1	8121	11	2	9	10046	9	0
AD-									
903-		24511				166		50.3	
E20	269328	0	44793	52	12	93	95808	02	9.35
AD-									
903-		12169				323		37.6	
E21	130674	7	75294	192	49	13	360212	08	31.15
AD-									
903-		17497				159		42.7	
E22	192756	7	22696	17	4	80	48739	34	8.93
AD-									
903-		11249				190		43.2	
E23	121473	9	16657	30	3	61	33299	24	2.8
AD-		34908		_		257		46.9	
903-F02	384592	1	40053	76	22	37	127512	51	9.66
AD-		16809			-	242		47.9	
903-F03	193704	1	20919	35	6	54	67716	47	14.88
AD-		30357				298		47.0	
903-F04	342714	4	54546	66	15	13	145560	35	10.28
AD-		27177		~ -		124	405005	25.1	10.00
903-F05	290196	0	43797	97	23	80	125027	23	19.63
AD-	176166	15595				303		55.9	
903-F06	6	82	80868	79	15	51	125/15	24	15.57
AD-	240042	20047	57400	466	24	1/1	474240	34.2	42.20
903-F07	219813	/	57106	166	24	90	1/1349	6/	13.39
AD-	202044	36240	00004	101	20	1/0	265224	37.7	46.07
903-F08	393941	2	82284	181	39	36	265234	01	16.87
	244724	19487	26024	40	0	209	C2C05	43.9	0.02
903-F09	211/34	8 50400	26931	43	8	21	63605	45	0.93
AD-	570000	50488	50240	70	47	303	140000	46.6	20.07
903-F10	570622	9 17000	58310	79	17	67	146839	76	20.87
AD-	102674	17062	22700	25	4.4	192	00000	43.2	0
203-FTT	1970/1	⊂ ₄ ₄دדר	33/88	35	ΤŢ	34 654	80909	50 4 م 1	U
	206110	27314	27020	77	1	054 64	CEACA	40.1 EC	0
202-213	ζάρτια	3	3/829	27	T	64	00464	סכ	U

AD-		40792				199		43.8	
903-F14	458383	6	34429	40	5	54	58644	46	0
AD-		19651				174		46.3	
903-F15	221212	4	50569	83	18	13	133435	15	4.67
AD-		48711				379		45.7	
903-F16	541642	5	44305	31	6	34	83506	52	0
AD-		21631				264		47.0	
903-F17	239646	3	34649	76	10	10	106880	49	15.26
AD-		68040				923		24.6	
903-F18	728266	9	26078	76	13	1	59029	03	12.31
AD-		37579				216		47.6	
903-F19	420418	9	26595	38	7	00	66406	63	11.75
AD-		28601				738		47.4	
903-F20	321815	7	72206	159	22	39	210397	62	9.35
AD-		35230				107		45.2	
903-F21	391605	9	36301	38	16	59	81255	98	7.48
AD-		32497				381		47.0	
903-F22	362619	7	83879	120	18	77	197529	95	21.43
AD-		19333				258		45.0	
903-F23	214444	4	30753	35	4	37	75172	91	12.5
AD-									
903-		15930				452		37.8	
G02	172898	7	63343	101	19	18	243318	23	31.13
AD-									
903-		23002				998		44.9	
G03	251049	9	17769	14	6	0	36494	88	7.54
AD-									
903-		13793				487		35.7	
G04	152293	7	53429	91	21	75	229489	62	21.79
AD-									
903-		14062				272		36.4	
G05	156927	3	17938	33	3	64	39301	24	0
AD-									
903-		17255				272		45.1	
G06	194630	6	72241	161	39	93	266786	57	13.08
AD-									
903-		11683				356			
G07	127442	7	37474	81	16	28	135407	37.8	5.66
AD-									
903-		33018				281		46.1	
G08	365418	6	39312	64	9	17	100051	22	14.68
AD-									
903-						229		45.5	
G09	44757	40936	26925	75	13	22	118586	18	15.26

AD-									
903-		22318				297		46.9	
G10	253657	7	76776	69	17	46	176496	19	8.41
AD-									
903-						204		44.4	
G11	89343	79135	29175	39	10	51	78339	89	4.67
AD-									
903-		16167				556		42.6	
G13	175445	3	8093	10	3	4	12082	17	0
AD-									
903-		17448				255		48.7	
G14	195057	4	56369	44	13	00	148492	68	8.94
AD-									
903-						160		37.6	
G15	102803	93996	17084	60	8	08	53281	64	3.77
AD-									
903-		34324				230		42.2	
G16	378895	8	33887	38	7	61	75413	95	0
AD-									
903-		13855				244		45.7	
G17	155264	7	20310	36	4	76	42931	73	0.93
AD-									
903-		28180				385		45.1	
G18	310565	9	42038	28	6	86	84366	89	7.48
AD-									
903-		35926				447		45.6	
G20	391458	4	41624	74	9	32	120937	22	7.48
AD-									
903-		20589				244		45.6	
G21	226349	8	30258	42	8	05	89584	32	11.21
AD-		_						_	
903-		14655		_	_	406		37.2	
G22	160932	1	66204	79	18	89	182973	18	9.72
AD-									
903-		30491				263		41.1	-
G23	330023	2	18527	13	2	12	29585	63	0
AD-		26421				217		44.9	-
903-102	288621	2	28304	35	9	88	81517	54	0
AD-		12024			_	381		55.6	
903-103	130512	1	37987	33	7	84	106953	18	9.18
AD-	074 00 0	25023	44450	4.5	-	155	20/52	39.2	•
903-104	2/1626	0	11152	16	6	20	30452	39	0
AD-	470004	15569	C 4 5 6 5		4 -	2/9	400000	48.3	
903-105	1/2321	6	64535	74	15	92	186668	99	7.94

AD-		12717				218		49.8	
903-106	140309	1	20105	15	4	81	38216	87	4.67
AD-						211		46.1	
903-107	46031	39318	15613	3	2	23	23775	7	0
AD-		20943				340		44.6	
903-108	224189	1	27155	50	11	57	89612	26	0.93
AD-		18036				101		25.3	
903-109	189422	4	46066	125	32	35	142641	75	17.45
AD-		41118				370		34.2	
903-I10	445873	6	95211	165	40	33	331117	5	19.82
AD-		16471				125		49.9	
903-I11	183599	9	31557	42	11	40	80126	91	12.79
AD-						138		48.8	
903-I13	93771	87081	24213	24	8	10	63847	07	14.78
AD-		43844				278		28.8	
903-I14	464941	6	63077	98	26	52	153465	98	14.05
AD-		23128				776		44.3	
903-I15	251530	3	19088	39	9	2	43880	44	4.67
AD-		32868				146		43.8	
903-I16	353196	5	22919	27	5	37	44672	84	9.13
AD-		10603				288		47.6	
903-I17	116059	0	35540	61	13	47	118374	8	0
AD-		31493				358		47.2	
903-I18	341901	2	87368	72	19	12	236476	97	13.08
AD-		21812				277		38.6	
903-119	235402	6	81324	109	28	32	278422	01	11.32
AD-		26920				279		48.2	
903-120	291173	8	51244	28	9	69	135345	27	12.15
AD-		11945				511		35.2	
903-121	128388	2	39094	86	9	73	134118	97	9.51
AD-		28750				174		46.6	
903-122	310485	8	32154	33	8	57	66439	7	9.52
AD-		20566				190		54.9	
903-123	222178	4	16085	9	3	65	25261	42	1.89
AD-		53137				149		46.9	
903-J02	583686	8	36596	60	13	25	95673	4	10.28
AD-		24250				349		47.4	
903-J03	276137	4	47620	80	18	67	171712	04	22.52
AD-		31660				530		43.1	
903-J04	354770	4	31009	11	1	05	53005	81	0
AD-		23590				235		51.6	
903-J05	259664	7	23000	9	2	96	41467	39	3.16
AD-		58336				417		35.4	
903-J06	635879	3	39819	67	8	61	98023	12	8.33

AD-		43499				275		48.5	
903-J07	481745	5	63278	59	14	51	126728	73	0
AD-		79520				236		50.1	
903-J08	875503	3	49723	51	11	95	102757	13	11.9
AD-		35098				165		46.9	
903-J09	377959	9	56911	70	19	11	163305	39	17.4
AD-		69741				422		43.4	
903-J10	785150	9	39918	16	3	10	69350	48	0
AD-		63310				252		47.4	
903-J11	704524	0	47961	76	17	98	139257	73	17.76
AD-		41028				430		47.5	
903-J13	446549	6	77162	112	26	70	213926	94	13.1
AD-	115518	10419				296		48.5	
903-J14	8	88	73183	82	19	36	165668	62	8.33
AD-		37379				400		55.5	
903-J15	414357	5	77618	55	12	90	166189	3	23.66
AD-		65869				321		47.7	
903-J16	725972	6	79051	55	16	09	176760	83	22.62
AD-		55544				301		46.3	
903-J17	612359	5	46343	72	14	04	120616	52	11.21
AD-						124		57.5	
903-J18	21234	19145	13909	23	5	61	38071	61	3.77
AD-		63840				227		48.4	
903-J19	726416	6	62342	63	18	95	135363	53	16.51
AD-		82564				164		43.6	
903-J20	895294	6	28347	50	11	97	73674	83	1.87
AD-		50071				468		45.1	
903-J21	551418	6	42088	80	15	22	125846	85	0
AD-		88285				319		47.6	
903-J22	969594	5	91881	68	17	99	198375	09	11.21
AD-		69700				132		49.3	
903-J23	751614	8	16348	39	5	81	33575	88	0
AD-									
903-		13016				157		45.6	
K02	142318	3	32200	78	15	44	110768	14	11.9
AD-									
903-		14319				205		37.8	
K03	155540	9	57480	104	23	79	199191	76	14.88
AD-									
903-		33170				396		42.7	
K04	363412	8	20829	30	2	03	46085	9	1.87
AD-									
903-		15042				294		45.1	
K05	168591	8	30926	69	12	69	100219	07	5.61

AD-									
903-		27771				206		45.2	
К06	307281	5	48550	71	14	05	115914	46	11.21
AD-									
903-		17449				297		46.2	
K07	191609	7	36481	21	7	77	74573	54	16.94
AD-									
903-		15845				132		40.8	
K08	176366	2	18701	32	9	05	45550	06	7.94
AD-									
903-		16974				250		44.8	
к09	181645	3	35579	40	7	45	89720	77	2.18
AD-									
903-		39995				540		56.7	
К10	448568	1	82108	70	13	45	185528	69	21.17
AD-									
903-		17895				193		49.3	
K11	201878	0	48087	66	15	80	96268	4	14.98
AD-									
903-						314		48.5	
K13	100175	91914	18049	15	4	84	39427	94	13.1
AD-									
903-		20392				298		44.5	
K14	226359	0	40667	44	13	42	116922	79	14.29
AD-									
903-						137		51.6	
K15	78010	70106	25600	27	13	01	85305	72	12.77
AD-									
903-		28201				289		44.1	
K16	311608	4	51504	56	12	61	119492	59	10.32
AD-									
903-		11138				450		33.6	
K17	124693	2	2884	6	3	2	9162	17	0
AD-									
903-		17457				214		54.7	
K18	194219	5	44111	62	10	29	85259	13	8.39
AD-									
903-		30228				195		44.4	
K19	333253	6	21559	29	6	56	50710	05	0
AD-									
903-		29236				659		50.4	
К20	324255	7	12382	25	4	6	18701	95	3.12

	20091				260		37.9	
217414	2	87227	245	46	68	331809	62	27.38
	17271				155		43.5	
193016	8	33439	37	6	81	61540	96	0
	29369				305		48.7	
320532	5	45897	83	13	56	139295	52	15.89
103105	95796				432		44.4	
7	6	15642	31	5	4	15022	55	0
	22833				225		44.1	
259575	2	45295	86	16	33	144408	44	6.85
	58270				190		29.1	
633934	5	61349	88	17	64	127134	54	14.49
	33130				160		47.7	
364420	5	31578	21	11	09	63799	66	13.1
					465		54.1	
7246	6434	2762	6	2	9	7806	51	0
	32915				253		36.7	
354781	3	56341	128	32	47	237751	86	23.1
	84296				323		36.1	
913628	1	97360	145	35	30	258152	71	21.39
165158	15303				985		48.9	
0	95	42422	47	14	8	67935	91	0
201559	18168				219		60.0	
3	14	45220	50	11	03	79617	51	0
	35153				375		44.3	
386390	3	28368	61	14	47	110313	57	7.48
	35331				198		43.1	
380432	4	19022	24	4	15	45091	55	0
	48091				113		48.7	
524921	0	22227	34	10	59	54512	31	0
	62683				137		51.5	
702670	2	20084	29	4	39	45012	2	0
	16081				384		47.8	
182860	8	47843	98	11	58	133646	08	7.48
	40805				361		47.6	
446119	2	75412	52	17	35	172690	41	16.2
	45543				211		46.4	
503493	5	53138	54	11	07	128501	78	5.61
	33369				216		47.3	
367342	3	42806	86	16	69	122537	51	18.15
	217414 193016 320532 103105 7 259575 633934 364420 7246 354781 913628 165158 0 201559 3 386390 380432 524921 702670 380432 524921 702670 182860 182860 182860	200912174142009117271319301617271203091332053295796103105957967225957522339345364420572466434354781316515815303095201559181683143639033863903386390338043244809125249210626832702670216081840805250349353673423	21741420091 28722719301617271 83343919301629369 545897551564220532515642205372452952595752452953644205613493644205315783547813563411031281973603547813563411051581530395105158153034242220155918168452203863903283683804324190224809122227702670220084162860847843182860847843446119275412446119275412503493553138367342353138	21741420091 28722724519301617271 8334393719301629369 545897833205325 9579645897831031055 9579615642312595752 5827061349883644205 5827061349883644205 311578613496172466434 32915276263547813 563411289136281 15303 095424224716515814 351531301453863903 3515328368613863903 3513328368613804324 400120084291626337026702 1608120084291828608 4080547843984461192 5 3336953138545034935 333695313854	20091200918722724546193016 1^{7271} 33439376193016 8^{93796} 458978313320532 5^{5} 458978313320532 5^{6} 15642315320532 2^{2} 4529586162283315642315259575 2^{2} 45295861658270613498817364420 5^{1} 3157821117246 6434 276262354781 3_{3} 5634112832913628197360145351651581530314452205011386390 3_{3} 28368611438043241902224448091122018410386390 3_{5153} 19022341038043241902224418286084784398111828608478439811182860847843981118286055131854114461192754125217455435313365411503493531336541150349353133654115034935313365411503493 </td <td>217414 20091 87227 245 46 68 193016 17271 33439 37 6 155 193016 29369 33439 37 6 155 103105 5 45897 83 13 56 103105 5 45897 83 13 56 7 6 15642 31 5 4 22833 15 5 6 33 100 633934 5 61349 88 17 64 33130 31578 21 11 96 7 6 31578 21 11 96 7 6 31578 21 11 97 7 6 56341 128 30 98 7 84296 7 48 30 98 9 14 88 11 98 30 98 10 53 42422 47 14 8 10 35136 30</td> <td>21741420091 28722724546260 683180919301017271 833439376155 816154019301029369 9579645897831356 81139295 822053755 9579615642315422995752 5827045295861633 9076 58270215561349881764 1271343644205 3157831578211160 1603644205 3157831578211160 16072466434 3291627626297354783 84296563411283247 177354793563411283247 160217134 160736481 95973601453530 95258152 9859136281 15303973601476 1137 9859136281 15303973601133 97617 351331601312868611447 1133804324 40901902224415 160813804324 4091902224415 1763804324 4091902224455 36134461192 2 47541252 417 3614461192 4 5 333687541252 417 361</td> <td>217414 20091 87227 245 260 260 31809 372 193016 17271 33439 37 6 155 61540 315 193016 18 33439 37 6 155 61540 31 320532 55 45897 83 13 56 139295 52 103107 6 15642 31 5 432 44.4 22833 155 45295 86 16 33 14408 44 259575 2 45295 86 16 33 14408 44 33130 31578 21 11 60 47.7 51 364420 5 61349 88 17 64 127144 54 33130 31578 21 11 60 45.7 51 364420 5 51536 29 7806 51 51 32915 23915 1 28 22 97 86 51 51 51</td>	217414 20091 87227 245 46 68 193016 17271 33439 37 6 155 193016 29369 33439 37 6 155 103105 5 45897 83 13 56 103105 5 45897 83 13 56 7 6 15642 31 5 4 22833 15 5 6 33 100 633934 5 61349 88 17 64 33130 31578 21 11 96 7 6 31578 21 11 96 7 6 31578 21 11 97 7 6 56341 128 30 98 7 84296 7 48 30 98 9 14 88 11 98 30 98 10 53 42422 47 14 8 10 35136 30	21741420091 28722724546260 683180919301017271 833439376155 816154019301029369 9579645897831356 81139295 822053755 9579615642315422995752 5827045295861633 9076 58270215561349881764 1271343644205 3157831578211160 1603644205 3157831578211160 16072466434 3291627626297354783 84296563411283247 177354793563411283247 160217134 160736481 95973601453530 95258152 9859136281 15303973601476 1137 9859136281 15303973601133 97617 351331601312868611447 1133804324 40901902224415 160813804324 4091902224415 1763804324 4091902224455 36134461192 2 47541252 417 3614461192 4 5 333687541252 417 361	217414 20091 87227 245 260 260 31809 372 193016 17271 33439 37 6 155 61540 315 193016 18 33439 37 6 155 61540 31 320532 55 45897 83 13 56 139295 52 103107 6 15642 31 5 432 44.4 22833 155 45295 86 16 33 14408 44 259575 2 45295 86 16 33 14408 44 33130 31578 21 11 60 47.7 51 364420 5 61349 88 17 64 127144 54 33130 31578 21 11 60 45.7 51 364420 5 51536 29 7806 51 51 32915 23915 1 28 22 97 86 51 51 51

AD-		67671				880		42.5	
903-L21	733442	6	13873	19	4	0	21278	79	0
AD-		43490				231		46.2	
903-L22	477737	2	35461	42	9	31	76889	38	4.21
AD-		68819				163		47.7	
903-L23 AD-	750709	0	26418	38	10	28	55660	38	0
903-		15640				249		37.8	
M02	169464	3	38924	79	16	40	139857	31	18.13
AD-		-							
903-		11916				218		56.0	
M03	132914	2	17943	22	2	24	29929	29	14.15
AD-									
903-		13889				203		43.1	
M04	158179	2	23510	24	4	83	50222	64	0
AD-									
903-		10239				290		37.9	
M05	115250	5	65870	123	34	70	289651	99	20.75
AD-									
903-		19470				281		44.6	
M06	216539	4	40597	41	9	33	113094	73	3.74
AD-									
903-		10155				264		47.0	
M07	112558	7	36101	47	9	22	115275	94	10.71
AD-									
903-		13158				322		46.1	
M08	146360	3	37319	57	16	78	119958	63	11.92
AD-									
903-		35398				600		37.6	
M10	398458	5	15842	27	6	7	24274	41	0
AD-						_			
903-		10248			_	197		46.2	
M11	116366	4	27352	37	8	43	58770	75	0
AD-		40700							
903-	40000	12789				234	00074	45.2	
M13	139637	1	34997	76	13	44	83371	64	2.08
AD-		24220				405		40.2	
903-	220022	21338	45 420	50	4.0	135	445527	48.3	40 55
	239933	ŏ	45428	59	тρ	Ub	11223/	12	13.55
AD-		11500				650		12 7	
903- M415	120407	00211	27400	10	n	050 רח	75255	4Z./	0
1112	130497	ŏ	Z1130	13	2	53	10300	24	U

AD-									
903-		16971				263		44.5	
M16	190885	6	39103	74	12	39	124587	77	6.54
AD-									
903-		26329				102		47.8	
M17	300376	4	32232	43	9	16	51795	06	0
AD-									
903-		17520				263		47.3	
M18	197109	2	49988	56	14	21	122825	08	0
AD-									
903-						144		46.1	
M19	106814	94572	19262	29	7	85	45665	01	8.93
AD-									
903-		32466				243		29.8	
M20	347919	4	55406	141	29	29	170645	73	22.66
AD-									
903-		11659				406		46.0	
M21	129482	4	57691	62	13	81	180122	44	23.36
AD-									
903-		54646				498		51.3	
M23	609372	4	15583	20	3	9	12295	54	0
AD-									
903-		32544				521		37.1	
N02	354188	5	74849	148	17	28	222312	77	43.55
AD-									
903-		19566				186		46.1	
N03	219203	3	32911	46	12	11	96956	02	7.48
AD-									
903-	107478	94459				733		55.7	
N04	7	1	17731	35	3	9	13117	29	0.94
AD-									
903-		39830				191		25.1	
N05	426180	8	62382	190	38	72	214087	46	26.01
AD-									
903-		34929				292		47.6	
N06	391922	5	38888	52	10	85	93324	5	16.31
AD-									
903-		62837				367		45.1	
N07	681087	7	48273	52	12	59	113524	13	18.89
AD-									
903-		55030				173		47.7	
N08	610591	3	26532	19	4	58	42076	83	11.21

AD-									
903-		45250				161		47.8	
N09	484178	4	38840	45	11	44	86783	15	9.35
AD-									
903-		64400				166		47.4	
N10	724359	1	57090	94	18	49	117738	41	10.28
AD-									
903-		68137				203		48.8	
N11	772965	5	58542	85	17	83	126658	07	10.75
AD-									
903-		73285				311		44.0	
N13	791804	8	33938	52	10	34	79046	11	8.88
AD-									
903-		53656				481		47.5	
N14	593392	4	36501	59	11	40	88495	04	15.11
AD-									
903-		31471				247		49.1	
N16	351243	4	31435	32	9	21	73396	21	0
AD-									
903-	102355	93050				167		34.9	
N17	1	2	54856	76	16	21	93659	97	3.57
AD-									
903-		12536				774		58.3	
N18	141077	6	7269	9	3	1	17604	22	0
AD-									
903-		55575				179		47.3	
N19	613095	3	33385	29	10	52	77547	97	14.49
AD-									
903-		55307				284		42.2	
N20	604042	5	25975	20	3	10	44806	76	6.07
AD-									
903-		33863				455		49.0	
N21	372124	1	78256	58	16	32	177121	61	15.42
AD-									
903-		53627	12242			404		36.3	
N22	586216	5	4	240	45	33	380184	95	24.29
AD-									
903-		31681				296		48.6	
N23	344755	6	57190	60	16	44	170110	79	26.88
AD-									
903-		20027				200		45.8	
002	219015	2	49742	87	17	58	149094	58	20.04

AD-									
903-		10931				225		46.7	
003	120603	4	21390	13	3	21	46723	46	6.54
AD-									
903-		15268				200		36.4	
004	172416	0	36019	112	16	70	125398	99	7.23
AD-									
903-		18065				198		43.6	
005	200554	5	23152	34	6	93	53344	9	0
AD-									
903-		33574				898		46.7	
006	374728	7	20369	42	7	6	34249	66	3.74
AD-									
903-		19756				129		34.1	
007	214368	7	61612	118	36	59	192528	06	8.33
AD-									
903-		11303				211		46.3	
008	125055	6	29077	31	9	61	78800	93	13.99
AD-									
903-						241		45.7	
009	57262	51840	20623	61	11	96	78191	94	0
AD-									
903-		25575				200		41.8	
010	289296	1	39001	45	11	76	71545	94	0
AD-									
903-		21569				132		49.4	
011	244715	6	33301	49	9	62	56953	69	9.35
AD-									
903-		13099				101		48.6	
013	142917	2	25433	49	14	14	77071	77	0
AD-									
903-		30193				363		46.2	
014	329748	1	61630	35	11	87	166676	3	10.75
AD-									
903-		14406				311		57.7	
015	160923	2	37136	29	4	18	77599	4	13.21
AD-									
903-		39967				140		44.2	
016	448961	1	68069	92	26	51	146318	95	4.67
AD-									
903-						146		48.2	
017	53137	46964	18112	40	6	58	46921	53	0

AD-									
903-		20798				298		46.3	
018	230345	1	45941	54	14	11	120471	01	13.75
AD-									
903-		12270				289		45.5	
019	137196	1	33481	43	12	33	91366	26	17.46
AD-									
903-		33423				212		45.9	
021	367031	0	40981	48	15	39	103822	16	7.67
AD-									
903-		30690				133		45.4	
020	335531	7	37321	69	13	01	88898	45	1.87
AD-									
903-		27907				291		44.6	
022	309077	9	27079	58	8	97	73173	68	8.33
AD-									
903-		13578				292		47.4	
023	151651	2	46975	71	15	09	161141	06	4.67
AD-									
903-		15926				354		43.8	
P01	177384	9	23422	36	3	71	42582	21	5.61
AD-									
903-		32568				281		48.4	
P02	355904	1	82174	81	19	79	194991	49	19.62
AD-									
903-		18475				229		35.1	
P03	208122	2	32534	72	12	17	93763	54	4.25
AD-									
903-		32789				243		47.3	
P04	369542	9	60826	73	22	51	138248	47	0
AD-									
903-		14941				184		46.1	
P05	168232	1	29218	29	6	05	52686	17	0
AD-									
903-		31670				351		46.0	
P06	420810	0	30433	42	4	13	64385	6	2.8
AD-									
903-		16504				273		44.8	
P07	184389	6	32008	39	7	88	60793	47	6.07
AD-									
903-		42578				172		48.5	
P08	460642	2	40291	55	15	62	128854	63	8.1

AD-									
903-		26128				286		43.7	
P09	281557	5	25357	20	2	36	47325	76	5.61
AD-									
903-		39069				296		49.9	
P10	435351	6	73962	69	22	78	200362	67	20
AD-									
903-		25222				314		43.4	
P11	280341	7	44059	47	5	99	82231	11	0
AD-									
903-		29711				222		46.5	
P13	324655	6	36584	61	7	36	71387	57	9.52
AD-									
903-		53872				214		48.3	
P14	592297	8	65782	61	21	39	166972	28	23.63
AD-									
903-		41964				246		24.6	
P15	445704	4	97790	149	42	86	283077	04	35.9
AD-									
903-		62324				145		25.7	
P16	666411	9	83571	149	37	87	192530	15	29.55
AD-									
903-		19192				218		48.4	
P17	218524	9	48603	69	14	06	129102	11	17.32
AD-									
903-		50747				109		47.9	
P18	565945	4	14250	17	2	93	17335	67	0
AD-									
903-		40082				177		49.7	
P19	454206	5	51279	75	13	77	115701	91	0
AD-									
903-		64742				221		47.0	
P20	712766	6	30095	47	10	97	91972	06	4.67
AD-									
903-		17087				181		46.6	
P21	192733	3	27876	37	5	09	51469	07	0
AD-									
903-		27286				382		47.4	
P22	304463	4	58367	49	9	67	126585	89	0
AD-									
903-		23397				605	_	48.5	
P23	260512	8	54430	76	8	77	113015	2	22.1

109930	99777	12933	738	340763
697	660	961	39	09
358080.				110997
4463				.749
201559				
3				380184
3823				7806

		Number of	TOV 18	τον	Human
SAG	Species	SAG reads	SUR	18DCM	gut
AD-903-A01	A. nanophilium	89488	0	0	0
AD-903-A03	A. nanophilium	107965	0	0	0
AD-903-A04	A. nanophilium	113889	0	0	0
AD-903-A05	A. nanophilium	123098	0	0	0
AD-903-A06	Unclassified	179648	0	0	0
AD-903-A07	Acidilobus sp	65901	0	0	0
AD-903-A08	Vulcanisaeta sp	82440	0	0	0
AD-903-A10	A. nanophilium	165630	0	0	0
AD-903-A11	Sulfolobus sp 2	171882	0	0	0
AD-903-A13	A. nanophilium	99068	0	0	0
AD-903-A14	A. nanophilium	179664	0	0	0
AD-903-A15	Acidilobus sp	133078	0	0	0
	Likely Vulcanisaeta				
AD-903-A16	sp	184523	0	0	0
AD-903-A17	Unclassified	116492	0	0	0
AD-903-A18	A. nanophilium	215165	0	0	0
AD-903-A19	A. nanophilium	188757	0	0	0
AD-903-A20	Unclassified	242016	0	0	0
AD-903-A21	A. nanophilium	187093	0	0	0
	Likely Sulfolobus sp				
AD-903-A22	1	186319	0	0	0
AD-903-A23	Sulfolobus sp 1	164471	0	0	0
AD-903-B02	Unclassified	641140	0	0	0
AD-903-B03	Unclassified	383585	0	0	0
AD-903-B04	Vulcanisaeta sp	628444	0	0	0
AD-903-B05	A. nanophilium	250119	0	0	0
AD-903-B06	A. nanophilium	323260	0	0	0
AD-903-B07	A. nanophilium	241217	0	0	0
AD-903-B08	A. nanophilium	503149	0	0	0
AD-903-B09	Vulcanisaeta sp	363926	0	0	0
AD-903-B10	A. nanophilium	435310	0	0	0
AD-903-B11	Sulfolobus sp 2	518263	0	0	0
	Likely A.				
	nanophilium &	25.24			
AD-903-B13	Metallosphaera	3501	0	0	0

Table 3 – Recruitment of reads from SAGs used in this study onto publicly availableviral metagenomes from other environments at 95% ID over 100bp

	yellowstonensis MK1				
	A. nanophilium &				
AD-903-B14	Nanoarchaea	1033018	0	0	0
		156750			
AD-903-B15	VV I	430738	0	0	0
AD-903-B16	A. nanophilium	543906	0	0	0
AD-903-B17	A. nanophilium	139639	0	0	0
AD-903-B18	Vulcanisaeta sp	386263	0	0	0
AD-903-B19	A. nanophilium	220125	0	0	0
AD-903-B20	A. nanophilium	402788	0	0	0
AD-903-B21	A. nanophilium	278599	0	0	0
	Nanoarchaea &	C141C0		_	
AD-903-B22		014108	0	0	0
AD-903-B23	Unclassified	3//888	0	0	0
AD-903-C02	A. nanophilium	19/180	0	0	0
AD-903-C03	Sulfolobus sp 1	160366	0	0	0
AD-903-C04	A. nanophilium	138807	0	0	0
AD-903-C05	Vulcanisaeta sp	97279	0	0	0
AD-903-C06	A. nanophilium	300127	0	0	0
AD-903-C07	A. nanophilium	140629	0	0	0
AD-903-C08	A. nanophilium	193542	0	0	0
	Likely Sulfolobus sp				
AD-903-C09	1	133869	0	0	0
AD-903-C10	A. nanophilium	307971	0	0	0
AD-903-C11	A. nanophilium	238079	0	0	0
AD-903-C13	A. nanophilium	97919	0	0	0
AD-903-C14	A. nanophilium	369975	0	0	0
AD-903-C15	Vulcanisaeta sp	111532	0	0	0
AD-903-C16	A. nanophilium	285444	0	0	0
AD-903-C17	A. nanophilium	222957	0	0	0
AD-903-C18	A. nanophilium	256121	0	0	0
AD-903-C19	A. nanophilium	251536	0	0	0
AD-903-C20	A. nanophilium	203679	0	0	0
AD-903-C22	A. nanophilium	292488	0	0	0
AD-903-C23	A. nanophilium	382351	0	0	0
AD-903-D02	A. nanophilium	329361	0	0	0
AD-903-D03	A. nanophilium	440098	0	0	0
AD-903-D04	A. nanophilium	456977	0	0	0
AD-903-D05	Acidilobus sp	211935	0	0	0

	Hydrogenobaculum				
AD-903-D06	sp. 3684	1109461	0	0	0
AD-903-D07	Vulcanisaeta sp	250140	0	0	0
AD-903-D08	Vulcanisaeta sp	351823	0	0	0
	A. nanophilium &				
AD-903-D09	Nanoarchaea	428817	0	0	0
AD-903-D10	A. nanophilium	493731	0	0	0
AD-903-D11	A. nanophilium	365038	0	0	0
	Likely Sulfolobus sp				
AD-903-D13	1	598110	0	0	0
AD-903-D14	A. nanophilium	943540	0	0	0
AD-903-D15	A. nanophilium	543229	0	0	0
AD-903-D16	A. nanophilium	947564	0	0	0
AD-903-D17	Acidilobus sp	279031	0	0	0
AD-903-D18	A. nanophilium	731863	0	0	0
AD-903-D19	A. nanophilium	403206	0	0	0
AD-903-D20	Acidilobus sp	915334	0	0	0
AD-903-D21	A. nanophilium	680668	0	0	0
AD-903-D22	A. nanophilium	487279	0	0	0
	Nanoarchaea &				
AD-903-D23	Vulcanisaeta sp	645657	0	0	0
AD-903-E02	A. nanophilium	145886	0	0	0
AD-903-E03	A. nanophilium	232073	0	0	0
	Hydrogenobaculum				
AD-903-E04	sp. 3684	128464	0	0	0
	Likely Vulcanisaeta	400075			
AD-903-E05	sp	123375	0	0	0
AD-903-E06	A. nanophilium	160847	0	0	0
AD-903-E07	A. nanophilium	87317	0	0	0
AD-903-E08	A. nanophilium	182642	0	0	0
AD-903-E09	Sulfolobus sp 2	93514	0	0	0
AD-903-E10	A. nanophilium	168282	0	0	0
AD-903-E11	A. nanophilium	131658	0	0	0
AD-903-E13	A. nanophilium	453201	0	0	0
AD-903-E15	A. nanophilium	139459	0	0	0
AD-903-E16	A. nanophilium	354566	0	0	0
AD-903-E17	A. nanophilium	69564	0	0	0
AD-903-E18	Unclassified	189281	0	0	0
AD-903-E20	A. nanophilium	245110	0	0	0
AD-903-E21	Sulfolobus sp 2	121697	0	0	0
AD-903-E22	A. nanophilium	174977	0	0	0

	Likely A.				
	nanophilium &				
AD-903-E23	Sulfolobus sp 1	112499	0	0	0
AD-903-F02	A. nanophilium	349081	0	0	0
AD-903-F03	A. nanophilium	168091	0	0	0
AD-903-F04	A. nanophilium	303574	0	0	0
AD-903-F05	Nanoarchaea	271770	0	0	0
AD-903-F06	Acidilobus sp	1559582	0	0	0
	Hydrogenobaculum				
AD-903-F07	sp. 3684	200477	0	0	0
AD-903-F08	Sulfolobus sp 2	362402	0	0	0
AD-903-F09	Unclassified	194878	0	0	0
AD-903-F10	A. nanophilium	504889	0	0	0
	Likely A.				
	nanophilium &	470005			
AD-903-F11	Sulfolobus sp 1	170625	0	0	0
AD-903-F13	Unclassified	273143	0	0	0
AD-903-F14	Unclassified	407926	0	0	0
	Likely vuicanisaeta	106514		<u>^</u>	
AD-903-F15	sµ A nananhilium	190514	0	0	0
AD-903-F10	A. nanophilium	40/115	0	0	0
AD-903-F17	A. Hanophilium	210313	0	0	0
AD-903-F16		080409	0	0	0
AD-903-F19	A. nanophilium	375799	0	0	0
AD-903-F20		280017	0	0	0
AD-903-F21	A. nanophilium	352309	0	0	0
AD-903-F22	A. nanophilium	324977	0	0	0
AD-903-F23	A. Hallophilium	195554	0	0	0
AD-903-G02	Sullolobus sp 2	159307	0	0	0
AD-903-G03	A. nanophilium Likely Sulfolobus sp	230029	0	0	0
AD-903-G04	1	137937	0	0	0
	Acidianus hospitalis	137337	0	0	U
AD-903-G05	W1	140623	0	0	0
AD-903-G06	Vulcanisaeta sp	172556	0	0	0
AD-903-G07	Sulfolobus sp 2	116837	0	0	0
AD-903-G08	A. nanophilium	330186	0	0	0
AD-903-G09	Vulcanisaeta sp	40936	0	0	0
AD-903-G10	A. nanophilium	223187	0	0	0
AD-903-G11	Unclassified	79135	0	0	0
AD-903-G13	Unclassified	161673	0	0	0

AD-903-G14	A. nanophilium Likely Sulfolobus sp	174484	0	0	0
AD-903-G15	2	93996	0	0	0
AD-903-G16	A. nanophilium	343248	0	0	0
AD-903-G17	A. nanophilium	138557	0	0	0
AD-903-G18	A. nanophilium	281809	0	0	0
AD-903-G20	A. nanophilium	359264	0	0	0
AD-903-G21	A. nanophilium	205898	0	0	0
	Likely Sulfolobus sp				
AD-903-G22	1	146551	0	0	0
AD-903-G23	A. nanophilium	304912	0	0	0
AD-903-102	Vulcanisaeta sp	264212	0	0	0
AD-903-103	Acidilobus sp	120241	0	0	0
AD-903-104	Unclassified	250230	0	0	0
AD-903-105	A. nanophilium	155696	0	0	0
AD-903-106	A. nanophilium	127171	0	0	0
AD-903-107	A. nanophilium	39318	0	0	0
AD-903-108	A. nanophilium	209431	0	0	0
AD-903-109	Unclassified	180364	0	0	0
	Hydrogenobaculum				
AD-903-I10	sp. 3684	411186	0	0	0
AD-903-I11	A. nanophilium	164719	0	0	0
AD-903-I13	A. nanophilium	87081	0	0	0
	A. nanophilium &				
AD-903-I14	Nanoarchaea	438446	0	0	0
AD-903-I15	A. nanophilium	231283	0	0	0
AD-903-I16	A. nanophilium	328685	0	0	0
AD-903-I17	A. nanophilium	106030	0	0	0
AD-903-I18	A. nanophilium	314932	0	0	0
AD-903-I19	Sulfolobus sp 2	218126	0	0	0
AD-903-120	A. nanophilium	269208	0	0	0
	Hydrogenobaculum				
AD-903-I21	sp. 3684	119452	0	0	0
AD-903-122	A. nanophilium	287508	0	0	0
AD-903-123	Acidilobus sp	205664	0	0	0
AD-903-J02	A. nanophilium	531378	0	0	0
AD-903-J03	A. nanophilium	242504	0	0	0
AD-903-J04	Unclassified	316604	0	0	0
AD-903-J05	Unclassified	235907	0	0	0
AD-903-J06	Sulfolobus sp 1	583363	0	0	0
AD-903-J07	A. nanophilium	434995	0	0	0

AD-903-J08	A. nanophilium	795203	0	0	0
AD-903-J09	A. nanophilium	350989	0	0	0
AD-903-J10	Unclassified	697419	0	0	0
AD-903-J11	A. nanophilium	633100	0	0	0
AD-903-J13	A. nanophilium	410286	0	0	0
AD-903-J14	A. nanophilium	1041988	0	0	0
AD-903-J15	Acidilobus sp	373795	0	0	0
AD-903-J16	A. nanophilium	658696	0	0	0
AD-903-J17	A. nanophilium	555445	0	0	0
AD-903-J18	Acidilobus sp	19145	0	0	0
AD-903-J19	A. nanophilium	638406	0	0	0
AD-903-J20	A. nanophilium	825646	0	0	0
AD-903-J21	A. nanophilium	500716	0	0	0
AD-903-J22	A. nanophilium	882855	0	0	0
AD-903-J23	A. nanophilium	697008	0	0	0
AD-903-K02	A. nanophilium	130163	0	0	0
AD-903-K03	Sulfolobus sp 2	143199	0	0	0
AD-903-K04	A. nanophilium	331708	0	0	0
AD-903-K05	A. nanophilium	150428	0	0	0
AD-903-K06	A. nanophilium	277715	0	0	0
AD-903-K07	A. nanophilium	174497	0	0	0
	Likely A.				
AD-903-K08	nanophilium	158452	0	0	0
AD-903-K09	A. nanophilium	169743	0	0	0
AD-903-K10	Acidilobus sp	399951	0	0	0
AD-903-K11	A. nanophilium	178950	0	0	0
AD-903-K13	A. nanophilium	91914	0	0	0
AD-903-K14	A. nanophilium	203920	0	0	0
AD-903-K15	A. nanophilium	70106	0	0	0
AD-903-K16	A. nanophilium	282014	0	0	0
AD-903-K17	A. nanophilium	111382	0	0	0
AD-903-K18	Acidilobus sp	174575	0	0	0
AD-903-K19	A. nanophilium	302286	0	0	0
AD-903-K20	A. nanophilium	292367	0	0	0
AD-903-K21	Sulfolobus sp 2	200912	0	0	0
AD-903-K22	Unclassified	172718	0	0	0
AD-903-K23	A. nanophilium	293695	0	0	0
AD-903-L02	A. nanophilium	957966	0	0	0
AD-903-L03	Vulcanisaeta sp	228332	0	0	0
AD-903-L04	Nanoarchaea	582705	0	0	0

AD-903-L05	A. nanophilium	331305	0	0	0
AD-903-L06	Unclassified	6434	0	0	0
AD-903-L07	Sulfolobus sp 2 Likely Sulfolobus sp	329153	0	0	0
AD-903-L08	1	842961	0	0	0
AD-903-L09	A. nanophilium	1530395	0	0	0
AD-903-L10	Unclassified	1816814	0	0	0
AD-903-L11	A. nanophilium Likely A.	351533	0	0	0
	nanophilium &				
AD-903-L13	Sulfolobus sp 1	353314	0	0	0
AD-903-L14	A. nanophilium	480910	0	0	0
AD-903-L16	A. nanophilium	626832	0	0	0
AD-903-L17	Unclassified	160818	0	0	0
AD-903-L18	A. nanophilium	408052	0	0	0
AD-903-L19	A. nanophilium	455435	0	0	0
AD-903-L20	A. nanophilium	333693	0	0	0
	A. nanophilium &				
AD-903-L21	Sulfolobus sp 1	676716	0	0	0
AD-903-L22	A. nanophilium	434902	0	0	0
AD-903-L23	A. nanophilium	688190	0	0	0
AD-903-M02	Sulfolobus sp 2	156403	0	0	0
AD-903-M03	Acidilobus sp	119162	0	0	0
AD-903-M04	A. nanophilium Likely Sulfolobus sp	138892	0	0	0
AD-903-M05	2	102395	0	0	0
AD-903-M06	A. nanophilium	194704	0	0	0
AD-903-M07	A. nanophilium	101557	0	0	0
AD-903-M08	A. nanophilium	131583	0	0	0
AD-903-M10	Unclassified	353985	0	0	0
AD-903-M11	A. nanophilium A. nanophilium &	102484	0	0	0
AD-903-M13	Nanoarchaea	127891	0	0	0
AD-903-M14	A. nanophilium	213388	0	0	0
AD-903-M15	Unclassified	115868	0	0	0
AD-903-M16	Vulcanisaeta sp	169716	0	0	0
AD-903-M17	A. nanophilium	263294	0	0	0
AD-903-M18	A. nanophilium	175202	0	0	0
AD-903-M19	A. nanophilium Nanoarchaea &	94572	0	0	0
AD-903-M20	Sulfolobus sp 2	324664	0	0	0

AD-903-M21	A. nanophilium	116594	0	0	0
AD-903-M23	A. nanophilium	546464	0	0	0
AD-903-N02	Sulfolobus sp 2	325445	0	0	0
AD-903-N03	A. nanophilium	195663	0	0	0
AD-903-N04	Acidilobus sp	944591	0	0	0
AD-903-N05	Nanoarchaea	398308	0	0	0
AD-903-N06	A. nanophilium	349295	0	0	0
AD-903-N07	A. nanophilium	628377	0	0	0
AD-903-N08	A. nanophilium	550303	0	0	0
AD-903-N09	A. nanophilium	452504	0	0	0
AD-903-N10	A. nanophilium	644001	0	0	0
AD-903-N11	A. nanophilium	681375	0	0	0
AD-903-N13	A. nanophilium	732858	0	0	0
AD-903-N14	A. nanophilium	536564	0	0	0
AD-903-N15			0	0	0
AD-903-N16	A. nanophilium	314714	0	0	0
	Hydrogenobaculum				
AD-903-N17	sp. 3684	930502	0	0	0
AD-903-N18	Acidilobus sp	125366	0	0	0
AD-903-N19	A. nanophilium	555753	0	0	0
AD-903-N20	A. nanophilium	553075	0	0	0
AD-903-N21	A. nanophilium	338631	0	0	0
AD-903-N22	Sulfolobus sp 1	536275	0	0	0
AD-903-N23	A. nanophilium	316816	0	0	0
AD-903-002	A. nanophilium	200272	0	0	0
AD-903-003	A. nanophilium	109314	0	0	0
	Likely Sulfolobus sp				
AD-903-004	1	152680	0	0	0
AD-903-005	A. nanophilium	180655	0	0	0
AD-903-006	A. nanophilium	335747	0	0	0
	Acidianus nospitalis	107567	_		-
AD-903-007	VV I	19/50/	0	0	0
AD-903-008	A. nanophilium	L13030	0	0	0
AD-903-009	Vuicanisaeta sp	51840	0	0	0
۵D-903-010	nanonhilium	255751	0	0	0
AD-903-011	Δ nanophilium	215696	0	0	0
ΔD-903-013	Δ nanophilium	130902	0	0	0
VD-003-013	A nanophilium	201021	0	0	0
AD-903-014 AD-002-015		1///062	U	0	0
	Aciulionus sp Vulcanicaata ca	200671	U	0	0
AD-202-010	vuicanisaeta sp	2220/1	0	0	0

AD-903-017	A. nanophilium	46964	0	0	0
AD-903-018	A. nanophilium	207981	0	0	0
AD-903-019	A. nanophilium	122701	0	0	0
AD-903-020	A. nanophilium	334230	0	0	0
AD-903-021	A. nanophilium	306907	0	0	0
AD-903-022	A. nanophilium	279079	0	0	0
AD-903-023	A. nanophilium	135782	0	0	0
AD-903-P01	A. nanophilium	159269	0	0	0
AD-903-P02	A. nanophilium	325681	0	0	0
AD-903-P03	Unclassified	184752	0	0	0
AD-903-P04	Unclassified	327899	0	0	0
AD-903-P05	A. nanophilium	149411	0	0	0
AD-903-P06	A. nanophilium	316700	0	0	0
AD-903-P07	A. nanophilium	165046	0	0	0
AD-903-P08	A. nanophilium	425782	0	0	0
AD-903-P09	A. nanophilium	261285	0	0	0
AD-903-P10	A. nanophilium	390696	0	0	0
AD-903-P11	A. nanophilium	252227	0	0	0
AD-903-P13	A. nanophilium	297116	0	0	0
AD-903-P14	A. nanophilium	538728	0	0	0
AD-903-P15	Nanoarchaea	419644	0	0	0
AD-903-P16	Nanoarchaea	623249	0	0	0
AD-903-P17	A. nanophilium	191929	0	0	0
AD-903-P18	Unclassified	507474	0	0	0
AD-903-P19	A. nanophilium	400825	0	0	0
AD-903-P20	A. nanophilium	647426	0	0	0
AD-903-P21	A. nanophilium	170873	0	0	0
AD-903-P22	Unclassified	272864	0	0	0
AD-903-P23	A. nanophilium	233978	0	0	0

Table 4 – Recruitment of reads from publically available SAGs onto the NL01 viral dataset

				#	% of		
				read	reads		#
				S	that		reads
				mat	match		mappi
			Max	ch	NL10	#	ng to
		%	read	NL1	viral	major	major
metagenome used in this study at 95%		G	Leng	0	netwo	partiti	partiti
ID over 100bp	# reads	С	th	viral	rk	ons hit	ons
Acidobacteria_bacterium_SCGC_AAA001	2455859	4			1.42E-		
-123	8	9	157	349	03	0	0
Acidobacteria_bacterium_SCGC_AAA003	1742308	5			8.04E-		
-J17	2	6	157	14	05	0	0
	2821851	4			3.54E-		
actinobacterium SCGC AAA027-D23	0	6	150	1	06	0	0
alpha proteobacterium SCGC AAA027-	3205139	2			0.00E+		
C06	8	7	150	0	00	0	0
Bacteroidetes_bacterium_SCGC_AD-	1520743	3			0.00E+		
308-D03v2	8	4	150	0	00	0	0
Bacteroidetes_bacterium_SCGC_AD-	2874384	3			0.00E+		
311-C03v2	4	2	150	0	00	0	0
beta proteobacterium SCGC AAA024-	3339880	4			2.99E-		
K11	0	8	150	1	06	0	0
candidate division OP8 bacterium SCGC	2850810	3			0.00E+		
AC-335-L06	8	5	150	0	00	0	0
Chloroflexi_bacterium_SCGC_AC-	1812229	5			0.00E+		
312_J06v2	8	1	150	0	00	0	0
	2000742	3			1.00E-		
Colwellia_sp_SCGC_AC281-C22	4	5	150	2	05	0	0
Deferribacteres_bacterium_SCGC_AC-	2066415	4			0.00E+		
312_E04v2	4	0	146	0	00	0	0
Deltaproteobacteria bacterium	2860193	4			0.00E+		
SCGC_AC-312_D19v2	0	0	151	0	00	0	0
Desulfovibrionales_bacterium_SCGC_AC	2806918	4			0.00E+		
-335-L09	6	1	150	0	00	0	0
Epsilonproteobacteria_bacterium_SCGC	7338475	3			0.00E+		
AD-305-P03v2	2	7	146	0	00	0	0
_	3006722	3			3.33E-		
Eudoraea sp SCGC 5250	6	7	150	1	06	0	0
Euryarchaeota archaeon SCGC AB-633-	3159721	3			0.00E+		
,	6	4	157	0	00	0	0
Firmicutes bacterium SCGC AC-699-	2635516	4			2.09E-		
C23	6	9	150	55	04	0	0
Firmicutes bacterium SCGC AC-699-	2959272	4			0.00E+	-	-
M18	0	8	150	0	00	0	0
Gammaproteobacteria bacterium SCGC	2377932	4		5	2.02E-	5	Ũ
AAA003-E02	0	5	150	48	04	0	0
Gemmatimonadetes bacterium SCGC	3012918	5	100	.0	7.30F-	5	Ū
AAA007-L19	2	2	157	22	05	0	0
· · · · · · · · · · · · · · · · · · ·	_	-				-	-

Halothiobacillaceae_bacterium_SCGC_A	3002704	4			3.33E-		
В-674-Е03	2	6	150	1	06	0	0
Ignavibacteriaceae_bacterium_SCGC_AB	2994974	2			1.94E-		
-674-D06	0	7	150	58	04	0	0
Lentisphaerae_bacterium_SCGC_AAA28	2282908	4			0.00E+		
3-D08	8	4	150	0	00	0	0
Nitrospirae_bacterium_SCGC_AB-219-	2980948	4			0.00E+		
C22	2	6	157	0	00	0	0
Thaumarchaeota_archaeon_SCGC_AAA2	2255999	3			0.00E+		
87-E17	8	4	150	0	00	0	0
	7036557				7.84E-		
Total	02			552	05	0	0
	2814622	4		22.0			
Average	8.08	1		8		0	0

Figure 22 – Distribution of the observed EOP values

(A) Overall distribution of the EOP values. (B) Distribution of positive EOP values only.

Figure 23 – Model performance for different feature sets on training set

(A) Boxplot of training set classification error for step 1 based on 200 bootstrap runs for null model and models based on H:MF, P:MF, P+H:MF, P×H:MF and Joint:MF. (B) Boxplot of training set MAE for step 2 on 200 bootstrap runs for null model and models based on H:MF, P:MF, P+H:MF, P×H:MF and Joint:MF.

Figure 24 – Log transformed positive EOP value distribution

(A) Distribution of the log positive EOP values (B) Q-Q plot for log positive EOP values against normal quantiles. P value calculated from Shapiro-Wilk test.

Figure 25 – Rank ordered coefficients from the final step 1 model (A) and step 2 model (B) based on P+H:MF

Figure 26 – Results from final model for step 2 based on P+H:MF, P×H:MF and Joint:MF in log scale

Top panel: The true log transformed phage infection efficiency based on observed positive EOP from experiment. Middle panel: The predicted log transformed phage infection efficiency based on P+H:MF, $P \times H:MF$ and Joint:MF, respectively. Bottom panel: The coefficients learned from the P+H:MF, $P \times H:MF$ and Joint:MF features, respectively.

Figure 27 – Results from final model for step 1 based on H:MF and P:MF

Top panel: The predicted interaction network based on H:MF and P:MF, respectively. Bottom panel: The coefficients learned from the H:MF and P:MF features, respectively.

Figure 28 – Results from final model for step 2 based on H:MF and P:MF

Top panel: The predicted infection efficiency based on H:MF and P:MF, respectively. Mid panel: The predicted log transformed phage infection efficiency based on H:MF and P:MF, respectively. Bottom panel: The coefficients learned from the H:MF and P:MF features, respectively.

posi tion	mutation	B_D 8 1	B_D_ 8 2	B D 8 3	B D 8 4	B D 8 5
1,00						
3,27 1	G→T					
1,00						
4,19 1	A→C					
1,02						
7,15 4	C→A					
1,17	0 //					
3,07 8	G→A					
1,36						
8,32 6	C→A					
1,88	0 //					
1,80 2	Λ10 bp				100%	
1,88	210.00				10070	
2,91	A16 bp					
2,10						
3,91						
2,10	(CCAG)/→8					
3,91				100%		1000/
o 2,24	(CCAG)7→10			100%		100%
7,49						
3	Δ1 bp					
1,52						
5 2,40	3 bp→AA					
1,52	. .					
9 3.02	A→I					
3,94	A 777 I					
5 3.48						
2,70	GGCGGAGCTGCC)1		4000/	1000/	1000/	4000/
6 3.48	→2		100%	100%	100%	100%
2,80						
2 3 48	Δ141 bp					
2,94		100				
3 4 21	A→C	%				
4,27						
2	Δ12 bp					
8,02						
7	Δ1 bp					
tion	B_D_8_6	<u>В</u> _8 7	В_D_ 8_8	B_D_8 9	B_D_8_10	B_D_15_1
1,00			_			
3,27 1						

Table 5 – Mutation profile tables for host

1 00				1			
4,19							
1,02 7,15 4							
1,17 3,07 8							
1,36 8,32 6							
1,88 1,80 2							
1,88 2,91 5							
2,10 3,91 8							
2,10 3,91 8							
2,24 7,49 3							
2,40 1,52 5		100%					
2,40 1,52 9		100%					
3,02 3,94 5							
3,48 2,70 6		100%		100%	100%	100%	100%
3,48 2,80 2							
3,48 2,94 3							
4,21 4,27 2							
4,22 8,02 7			100 %				
posi tion	B_D_15_2		 15 3	B_D_ 15_4	B_D_15_5	B_D_15_6	B_D_15_7
1,00 3,27 1							
1,00 4,19 1							
1,02 7,15 4							100%
1,17 3,07							

1,36							
8,32 6							
1,88 1,80 2							
1,88 2,91 5							
2,10 3,91 8		100%					
2,10 3,91 8		,					
2,24 7,49 3							
2,40 1,52 5							
2,40 1,52 9							
3,02 3,94 5			100 %	100%	100%	100%	100%
3,48 2,70 6		100%	100 %	100%	100%	100%	100%
3,48 2,80 2							
3,48 2,94 3							
4,21 4,27 2							
4,22 8,02 7							
posi	D D 15 9		B_D _15_	B_D_ 15_1	B D 22 4	B D 22 2	р <u>22 2</u>
1,00 3,27	B_D_13_6		9	0	<u>Б_</u> Д_22_1	<u> </u>	<u></u>
1,00 4,19							
1,02 7,15							
1,17 3,07 8							
1,36 8,32 6							
1,88 1,80 2							
1,88 2,91 5							
2,10 3,91 8							
---	----------	------	------------------	--------------	----------	----------	----------
2,10 3,91 8							
2,24 7,49 3							
2,40 1,52 5							
2,40 1,52 9							
3,02 3,94 5		100%	?	100%	?	100%	100%
3,48 2,70 6		100%	100 %	100%	100%	100%	100%
3,48 2,80 2							
3,48 2,94 3							
4,21 4,27 2							
4,22 8,02 7							
posi tion	B_D_22_4		B_D _22_ 5	B_D_ 22_6	B_D_22_7	B_D_22_8	B_D_22_9
posi tion 1,00 3,27 1	B_D_22_4		B_D _22_ 5	B_D_ 22_6	B_D_22_7	B_D_22_8	B_D_22_9
posi tion 1,00 3,27 1 1,00 4,19 1	B_D_22_4		B_D _22_ 5	B_D_ 22_6	B_D_22_7	B_D_22_8	B_D_22_9
posi tion 1,00 3,27 1 1,00 4,19 1 1,02 7,15 4	B_D_22_4		B_D _22_ 5	B_D_ 22_6	B_D_22_7	B_D_22_8	B_D_22_9
posi tion 1,00 3,27 1 1,00 4,19 1 1,02 7,15 4 1,17 3,07 8	B_D_22_4		B_D _22_ 5	B_D_ 22_6	B_D_22_7	B_D_22_8	B_D_22_9
posi tion 1,00 3,27 1 1,00 4,19 1 1,02 7,15 4 1,02 7,15 4 1,17 3,07 8 1,36 8,32 6	B_D_22_4		B_D _22_ 5	B_D_ 22_6	B_D_22_7	B_D_22_8	B_D_22_9
posi tion 1,00 3,27 1 1,00 4,19 1 1,02 7,15 4 1,17 3,07 8 1,36 8,32 6 1,88 1,80 2	B_D_22_4		B_D _22_ 5	B_D_ 22_6	B_D_22_7	B_D_22_8	B_D_22_9
posi tion 1,00 3,27 1 1,00 4,19 1 1,02 7,15 4 1,17 3,07 8 1,36 8,32 6 1,88 1,80 2 1,88 2,91 5	B_D_22_4		B_D _22_ 5	B_D_ 22_6	B_D_22_7	B_D_22_8	B_D_22_9
posi tion 1,00 3,27 1 1,00 4,19 1 1,02 7,15 4 1,02 7,15 4 1,02 7,15 4 1,17 3,07 8 1,36 8,32 6 1,88 1,80 2 1,88 2,91 5 2,10 3,91 8	B_D_22_4		B_D _22_ 5	B_D_ 22_6	B_D_22_7	B_D_22_8	B_D_22_9
posi tion 1,00 3,27 1 1,00 4,19 1 1,02 7,15 4 1,17 3,07 8 1,36 8,32 6 1,88 1,80 2 1,88 2,91 5 2,10 3,91 8 2,10 3,91 8	B_D_22_4		B_D _22_ 5	B_D_ 22_6	B_D_22_7	B_D_22_8	B_D_22_9

2,40 1,52 5							
2,40 1,52 9							
3,02 3,94 5		100%	100	2	100%	100%	2
3,48 2,70 6		100%	100	100%	100%	100%	- 100%
3,48 2,80 2							
3,48 2,94 3							
4,21 4,27 2							
4,22 8,02 7							
posi tion	B_D_22_10		B_D _28_ 1	B_D_ 28_2	B_D_28_3	B_D_28_4	B_D_28_5
1,00 3,27 1							
1,00 4,19 1				100%			
1,02 7,15 4							
1,17 3,07 8							
1,36 8,32 6							
1,88 1,80 2							
1,88 2,91 5							
2,10 3,91 8							
2,10 3,91 8							
2,24 7,49 3						100%	
2,40 1,52 5							
2,40 1,52 9							
3,02 3,94 5	?		100 %			?	

3,48 2,70 6		100%	100 %	100%	100%	100%	100%
3,48 2,80 2							
3,48 2,94 3							
4,21 4,27 2							
4,22 8,02 7							
-							
posi tion	B_D_28_6		B_D _28_ 7	B_D_ 28_8	B_D_28_9	B_D_28_10	B_D_37_1
1,00 3,27 1		100%		100%			100%
1,00 4,19 1							
1,02 7,15 4							
1,17 3,07 8				100%			
1,36 8,32						100%	
1,88 1,80						100 /1	
1,88 2,91		100%		100%			100%
2,10 3,91		100%		100%			100%
8 2,10 3,91							
2,24 7,49							
2,40 1,52 5							
2,40 1,52 9							
3,02 3,94 5							
3,48 2,70 6			100 %		100%	100%	
3,48 2,80 2				100%	100 /0	10070	
3,48 2,94 3							

4,21 4,27 2							
4,22 8,02 7							
posi tion	B_D_37_2		B_D _37_ 3	B_D_ 37_4	B_D_37_5	B_D_37_6	B_D_37_7
1,00 3,27 1	1	100%	100 %	100%	100%	100%	
1,00 4,19 1							
1,02 7,15 4							
1,17 3,07 8							
1,36 8,32 6							
1,88 1,80 2							
1,88 2,91 5	1	100%	100 %	100%	100%	100%	
2,10 3,91 8							
2,10 3,91 8							
2,24 7,49 3							
2,40 1,52 5							
2,40 1,52 9							
3,02 3,94 5							
3,48 2,70 6							100%
3,48 2,80 2					?		
3,48 2,94 3							
4,21 4,27 2	1	100%	100 %	100%	100%	100%	
4,22 8,02 7							

posi		B_D 37	B_D_ 37 1			
tion	B_D_37_8	9	0	annotation	gene	description
1,00						
3,27	1000/		1000/	N268K (AA <u>C</u>		
1 00	100%		100%	→AA <u>A</u>)	$ECB_RS04930 \leftarrow$	
4,19				intergenic (-1	$/ \leftarrow FCB RS04930 \leftarrow$	PhoE/asparaginetRNA
1				17/+485)	5	ligase
1,02						-
7,15				L34M (<u>C</u> TG		ABC transporter
4				→ <u>A</u> TG)	$ECB_RS05030 \rightarrow$	ATP-binding protein
3.07				W214* (TGG		PTS alucose EIICB
8				→TAG)	ECB RS05820 \rightarrow	component
1,36						
8,32				<mark>N90K</mark> (AA <u>C</u>		thiosulfate sulfurtransferase
6				→AA <u>A</u>)	$ECB_RS06835 \rightarrow$	PspE
1,88				ooding (142		PIS manpage/fruetage/gerhage
2				151/801 nt)	FCB RS09445 \rightarrow	transporter subunit IIC
1,88						
2,91				coding (442-		PTS mannose transporter
5	100%		100%	457/852 nt)	$ECB_RS09450 \rightarrow$	subunit IID
2,10				anding (195/2		
3,91				16 nt)	FCB RS23820 \rightarrow	hypothetical protein
2,10				To my		
3,91				coding (185/2		
8				16 nt)	$ECB_RS23820 \rightarrow$	hypothetical protein
2,24						cytochrome c biogenesis
7,49				24 nt)	ECB_R\$11220 ←	CcmA
2,40				coding (1297		multifunctional fatty acid
1,52				-1299/2145 n		oxidation complex subunit
5				t)	$ECB_RS11915 \leftarrow$	alpha
2,40						multifunctional fatty acid
9				$\rightarrow AAC)$	FCB_R\$11915 ←	alpha
3.02				<u>,,,,,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		IECB RS149151.
3,94		100			[ECB_RS14915]–	ECB_RS14920,
5		%			[ECB_RS14925]	[ECB_RS14925]
3,48		100		ooding (1022/		transprintional regulator
2,70		100		2706 nt)	FCB RS17295 \rightarrow	MalT
3,48		/0		coding (1118		- Mart
2,80				-1258/2706 n		transcriptional regulator
2			100%	t)	$ECB_RS17295 \rightarrow$	MalT
3,48						transprintional regulator
3				→CCA)	ECB RS17295 \rightarrow	MalT
4,21				coding (1584		
4,27				-1595/1650 n		glucose-6-phosphate
2	100%		100%	t)	$ECB_RS20720 \rightarrow$	isomerase
4,22				coding (112E/		
0,02 7				1341 nt)	lamB →	maltoporin

175 $T \rightarrow G$ 175 327 $C \rightarrow T$ 1 332 $A \rightarrow G$ 1 334 $G \rightarrow A$ 1 412 $G \rightarrow A$ 1 412 $G \rightarrow A$ 1 483 $A \rightarrow G$ 1 489 $G \rightarrow A$ 1 489 $G \rightarrow A$ 1 583 $C \rightarrow A$ 1 9,067 $T \rightarrow C$ 1 11,45 1 1 15,89 0 A \rightarrow G 0 $A \rightarrow G$ 100% 16,21 7 7 7 $T \rightarrow C$ 1 16,21 7 1 7 $T \rightarrow C$ 1 16,22 7 1 7 $T \rightarrow C$ 1 16,23 9 $A \rightarrow G$ 1 9 $A \rightarrow G$ 1 1 16,31 2 bp \rightarrow CC 1 1 16,44 $O T$ 1 1	positi on	mutati on	P_D_8_ 1	P_D_8_ 2	P D 8 3	P D 8 4	P D 8 5
327 $C \rightarrow T$ 322 $A \rightarrow G$ 384 $G \rightarrow A$ 412 $G \rightarrow A$ 429 $A \rightarrow G$ 483 $A \rightarrow G$ 483 $A \rightarrow G$ 483 $A \rightarrow G$ 583 $C \rightarrow A$ 583 $C \rightarrow A$ 11.45 $C \rightarrow T$ 15.89 O 0 $A \rightarrow G$ 16.21 $G \rightarrow T$ 16.22 $T \rightarrow C$ 7 $T \rightarrow C$ 16.29 $9 \rightarrow A \rightarrow G$ $9 \rightarrow A \rightarrow G$ 100% 16.31 $2 bp \rightarrow CC$ 16.44 $0 = T \rightarrow C$	175	T→G					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	327	C-JT					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	222						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	332	A→G					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	384	G→A					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	412	G→A					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	429	A→G					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	483	A→G					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	489	G→A					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	583	C→A					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9,067	T→C					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11,45 1	C→T					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15,89						100%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16,21	<u>A-0</u>					100 /8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8 16,22	G→I					
9 $A \rightarrow G$ 16,31 82 bp \rightarrow CC16,35 0T \rightarrow C16,44 16,44D	7 16,29	T→C					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	A→G					
$\begin{array}{c c} 10,33\\ \hline 0 & T \rightarrow C \\ \hline 16,44\\ \hline 0 & T \\ \hline \end{array}$	8	2 bp→C0					
	0	T→C					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16,44 9	C→T			1009	%	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16,48 5	G→C			?		
$\begin{bmatrix} 16,49 \\ 7 \\ A \rightarrow G \end{bmatrix}$	16,49 7	A→G					
16,52 4	16,52	C JT					
	4						
6 G→A ? 16,59	6 16,59	G→A			?		
9 G→A 16,60	9 16,60	G→A					
6 2 bp→GT 16 72	6	2 bp→G	Г 				
$\begin{array}{c c} 1 & 1 \\ 5 & C \rightarrow T \end{array}$	5	C→T					
$\begin{array}{c c} 10,77\\ 4 & 2 \text{ bp} \rightarrow \text{CT} \end{array}$	4	2 bp→C1	-				
16,79 1 T→C	16,79 1	T→C					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16,79 4	T→C					
$\begin{bmatrix} 16,86 \\ 6 \\ A \rightarrow G \end{bmatrix}$	16,86 6	A→G					
	16,86 9						

Table 6 – Mutation profile tables for phage

16,89				
3	T→C			
16,90 2	C→G			
16,90				
5 16.90	C→T			
8	A→C			
16,93 8	T→C			
16,97			100%	
∠ 16,98	A→C		100%	
0	T→C		?	
3	T→G		?	
16,98 6	T→C			
16,99	1 /0			
8	G→A		100%	
9	C→T			
17,05 5	T→C			
17,05				
9 17,08	G→A			
1	+G			
2	A→C			
17,08 5	Δ1 bp			
17,08				
8 17,09	C→G			
0	A→G			
6	A→G			
17,16 0	T→C			
17,18	A			
17,20	A-70			
0	C→T			
1	A→C			
17,28 0	G→A			
17,32 8	A→C.			
17,33	<i>A</i> -70			
4 17.34	T→C			
3	G→A			
1/,39	T→C			
17,40 9	T→C			
17,42				
1 17.42	G→C			
4	A→C			
17,43 0	C→T			
17,43	AC			
5	א→ט	1		

17 45			
17,45 7	T→C		
17,46 6	C JT		
17,46			
9	T→C		
8	2 bp→GG		
17,48 7	C→T		
17,49 4	A→C		
17,50 2	G→A		
17,53 5	A→T		
17,54 7	G→A		
17,55 6	G→T		
17,58			
17,61			
17,65	A→G		
17,65	2 hn→CA		
17,67			
17,67			
17,71	C→G		
17,72	C→G		
17,75			
9 17,77	A→G		
5	A→G		
8	+CA		
17,79 3	G→A		
17,79 5	Δ2 bp		
17,79 6	T→C		
17,79	A1 bp		
17,80	то		
5 17,86			
2			
8 17,91	T→C		
3 17,91	C→T		
6	C→T		
9	T→C		
17,92 1	G→A		
17,92 3	G→C		
_ ~		1	

17,92 8	C→T					
17,93 7	2 bp→A1	F				
17,93 7	4 bp→A1	TCC				
17,94 0	A→C					
17,94 3	T→C					
17,94 6	C→T					
17,95 0	G→A					
17,96 4	2 bp→A0	3				
18,25 5	G→T					
18,25 7	2 bp→G ⁻	Г				
18,26 5	A→G					
18,26 7	C→T					
18,28 5	C→A					
18,29 7	4 bp→A1	ΓΑΤ				
18,30 9	C→T					
18,33 0	C→T					
18,34 2	C→A					
18,46 3	A→G		100%			
18,50 3	C→T	100%	100%	100%	100%	100%
18,53 5	A→C		100%			
18,53 8	A→G					
18,73 1	C→T					
18,73 4	T→C	100%	100%	100%	100%	100%
18,81 4	C→T					
18,82 3	G→A	100%	100%	100%	100%	100%
18,82 5	T→A					
18,82 5	T→G		100%			
18,86 8	A→C				100%	100%
18,86 8	A→G					
18,86 8	A→T		100%			
18,88 4	T→C					
19,26 0	T→C					
19,79 1	C→G					

20,20			
39,18			
3	(G) _{5→6}		
8	G→A		
40,14 0	T→C		
40,15 8	G→A		
40,16			
40,16			
6 40,18	C→A		
9 40.19	G→A		
4	T→G		
40,43 4	T→C		
40,60 1	G→A		
40,61 2	T→C		
40,61	C JT		
40,62			
5 40,63	A→C		
7 40.66	A→G		
3	C→T		
2	C→T		
40,68 3	2 bp→CC		
40,72 3	2 bp→TT		
40,89 8	G→C		
40,90	TO		
40,90			
9 40,91	T→A		
2	2 bp→GT		
40,91 9	Δ1 bp		
40,92 9	C→T		
40,93 1	T→C		
40,93	+T		
40,93	0 T		
9 40,94	G→I		
6 40.95	C→G		
7	T→C		
3	A→C		
42,10 4	2 bp→AC		
42,11 5	C→T		

42,12 0	T→A					
42,12	TIC					
42,13						
1 42,16	2 bp→G					
5 42,20	C→T					
7 42.30	G→A					
0	C→A					
2	C→G					
42,43	2 bp→A0	G				
42,43 7	C→T					
42,44 9	T→C					
42,46 4	C→T					
42,47	C JT					
42,47						
42,49	A→G					
1	T→C					
positi	P_D_8	P_D_8_	P_D_8_			
on	_6	7	8	P_D_8_9	P_D_8_10	P_D_8_11
175						
175 327						
175 327 332						
175 327 332 384						
175 327 332 384 412						
175 327 332 384 412 429						
175 327 332 384 412 429 483						
175 327 332 384 412 429 483 489						
175 327 332 384 412 429 483 489 583						
175 327 332 384 412 429 483 489 583						
175 327 332 384 412 429 483 489 583 9,067 11,45	100%					
175 327 332 384 412 429 483 489 583 9,067 11,45 1 15,89	100%					
175 327 332 384 412 429 483 489 583 9,067 11,45 1 15,89 0 16,21	100%					
175 327 332 384 412 429 483 489 583 9,067 11,45 1 15,89 0 16,21 8 16,22	100%					
175 327 332 384 412 429 483 489 583 9,067 11,45 1 15,89 0 16,21 8 16,22 7 16,29	100%					
175 327 332 384 412 429 483 489 583 9,067 11,45 1 15,89 0 16,21 8 16,22 7 16,29 9	100%					
175 327 332 384 412 429 483 489 583 9,067 11,45 1 5,89 0 16,21 8 16,22 7 16,29 9 16,31 8						

16,44 9			
16,48 5			
16,49 7			
16,52 4			
16,59 6			
16,59 9			
16,60 6			
16,72 5			
16,77 4			
16,79 1			
16,79 4			
16,86 6			
16,86 9			
16,89 3			
16,90 2			
16,90 5			
16,90 8			
16,93 8			
16,97 2			
16,98 0			
16,98 3			
16,98 6			
16,99 8			
17,04 9			
17,05 5			
17,05 9			
17,08 1			
17,08 2			
17,08 5			
17,08 8			
17,09 0			
17,13 6			
17,16 0			

17,18			
3			
0			
17,21			
17,28 0			
17,32 8			
17,33			
17,34			
17,39			
17,40			
9 17,42			
1 17,42			
4			
0			
17,43 3			
17,45 7			
17,46 6			
17,46 9			
17,47 8			
17,48 7			
17,49 4			
17,50			
17,53			
17,54 7			
17,55 6			
17,58			
17,61			
17,65			
17,65			
9 17,67			
17,67			
9 17,71			
17,72			
17,75			
9 17,77			
5			

L .						
17,78 8						
17,79 3						
17,79 5						
17,79						
17,79						
17,80						
17,86						
17,86						
17,91						
17,91						
17,91						
9 17,92						
17,92						
17,92						
o 17,93						
7 17,93						
17,94						
17,94						
3 17,94						
17,95						
17,96						
4 18,25						
5 18,25						
18,26						
5 18,26						
18,28						
18,29						
18,30						
9 18,33						
18,34						
∠ 18,46						
3 18,50	4000/	4000/	4000/	100%	400%	1000/
3 18,53	100%	100%	100%	100%	100%	100%
5						

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18,53 8						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18,73 1						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18,73 4		100%	100%		100%	100%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18,81		10070	100 /0		100 /0	100 /1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18,82		100%	100%	100%	100%	100%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	18,82		100%	100%	100%	100%	100 %
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5 18,82						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5 18,86						100%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8 18,86						100%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8 18,86						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8 18,88						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4 19,26	100%					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0 19,79						
	1 20,20						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0 39,18	100%					
8 100% 40,14 100% 100% 40,15 100% 40,16 100% 40,16 100% 40,16 100% 40,18 100% 40,18 100% 40,19 100% 40,19 100% 40,19 100% 40,19 100% 40,19 100% 40,19 100% 40,19 100% 40,19 100% 40,60 100% 40,61 100% 40,62 100%	3 39.19						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8 40 14						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0						100%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8						100%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1						100%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	40,16 6						100%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40,18 9						100%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40,19 4						100%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40,43 4						100%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40,60 1						100%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40,61 2						100%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40,61 6						100%
40,63 100% 7 100% 40,66 100% 3 1 40,67 1 2 1 40,68 1 3 1 40,72 1 3 1	40,62 5						100%
40,66 3	40,63 7						100%
40,67 2	40,66 3						
40,68 3 3 40,72 3 3 40,89 40	40,67 2						
40,72 3 40,89	40,68						
40,89	40,72						
	40,89						

10.00	1	1	1			
40,90 5						
40,90						
40,91						
2 40.91						
9						
40,92 9						
40,93 1						
40,93						
40,93						
9 40.94						
6						
40,95 7						
40,97 3						
42,10						
42,11						
5 42,12						
0						
9						
42,13 1						
42,16 5						
42,20						100%
42,30						100%
0 42,43						100%
2						
42,43 4						
42,43 7						
42,44 o						
42,46						
4 42,47						
2						
6						
42,49 1						
positi on	P_D_1 5_1	P_D_15 _2	P_D_15 _3	P_D_15_4	P_D_15_5	P_D_15_6
175						
327						
332						
384						
004				l		

412				
429				
483				
489				
583				
9,067				
11,45 1	100%	100%	100%	
15,89 0	100%	100%		
16,21 8	100%	100%		
16,22 7	100%	100%		
16,29 9	100%	100%		
16,31 8	100%	100%		
16,35 0	100%	100%		
16,44 9	100%	100%		
16,48 5	100%	100%		
16,49 7	100%	100%		
16,52 4	100%	100%		
16,59 6	100%	100%		
16,59 9	100%	100%		
16,60 6	100%	100%		
16,72 5	100%	100%		
16,77 4	100%	100%		
16,79 1	100%	100%		
16,79 4	100%	100%		
16,86 6	100%	100%		
16,86 9	100%	100%		
16,89 3	100%	100%		
16,90 2	100%	100%		
16,90 5	100%	100%		
16,90 8	100%	100%		
16,93 8	100%	100%		
16,97 2	100%	100%		
16,98 0	100%	100%		

16.98				
3	100%	100%		
16,98 6	100%	100%		
16,99 8	100%	100%		
17,04 9		100%	100%	
17,05 5		100%	100%	
17,05 9		100%	100%	
17,08		100%	100%	
17,08 2		100%	100%	
17,08 5		100%	100%	
17,08 8		100%	100%	
17,09 0		100%	100%	
17,13 6		100%	100%	
17,16 0		100%	100%	
17,18 3		100%	100%	
17,20 0		100%	100%	
17,21 1		100%	100%	
17,28 0		100%	100%	
17,32 8		100%	100%	
17,33 4		100%	100%	
17,34 3		100%	100%	
17,39 1		100%	100%	
17,40 9		100%	100%	
17,42 1		100%	100%	
17,42 4		100%	100%	
17,43 0		100%	100%	
17,43 3		100%	100%	
17,45 7		100%	100%	
17,46 6		100%	100%	
17,46 9		100%	100%	
17,47 8		100%	100%	
17,48 7		100%	100%	
17,49 4		100%	100%	
17,50 2		100%	100%	

17,53 5	100%	100%	
17,54 7	100%	100%	
17,55 6	100%	100%	
17,58 6	100%	100%	
17,61 3	100%	100%	
17,65 2	100%	100%	
17,65 9	100%	100%	
17,67 3	100%	100%	
17,67 9	100%	100%	
17,71 2	100%		
17,72 1	100%	100%	
17,75 9	100%	100%	
17,77 5	100%	100%	
17,78 8			
17,79 3		?	
17,79 5			
17,79 6		100%	
17,79 7	100%		
17,80 5	100%	100%	
17,86 2	100%	100%	
17,86 8	100%	100%	
17,91 3	100%	100%	
17,91 6	100%	100%	
17,91 9	100%	100%	
17,92 1	100%	100%	
17,92 3	100%	100%	
17,92 8	100%	100%	
17,93 7		100%	
17,93 7	100%		
17,94 0		100%	
17,94 3	100%	?	
17,94 6	100%	?	
17,95 0	100%	100%	

17,96 4			100%	2		
18,25			100%			
5 18,25			100%	?		
7 18,26			100%	?		
5 18.26			100%	100%		
7			100%	100%		
5			100%	100%		
18,29 7			100%	100%		
18,30 9			100%			
18,33 0			100%			
18,34			100%			
18,46			100 /0			
3 18,50						
3 18,53	100%	100%	100%	100%	100%	100%
5 18.53						
8	100%		100%	100%		
1						
18,73 4	100%	100%	100%		100%	100%
18,81 4	100%		100%	100%		
18,82 3	100%	100%	100%	100%	100%	100%
18,82	100%		100%	100%		
18,82	100 %		100 /8	100 %		
5 18,86						
8 18,86			100%			
8 18.86	100%					
8				100%		
4						
19,26 0						
19,79 1						
20,20 0						
39,18 3						
39,19						
o 40,14			1			
0 40,15						
8 40.16						
1						
40,16 6						

40,18			
9			
40,19			
40,43			
40,60			
40,61			
40,61 6			
40,62 5			
40,63 7			
40,66 3			
40,67 2			
40,68 3			
40,72 3			
40,89 8			
40,90 5			
40,90 9			
40,91 2			
40,91 9			
40,92 9			
40,93 1			
40,93 3			
40,93 9			
40,94 6			
40,95 7			
40,97 3			
42,10 4			
42,11 5			
42,12 0			
42,12 9			
42,13 1			
42,16 5			
42,20 7			
42,30 0			
42,43 2			

42,43 4						
42,43						
42,44						
9 42,46						
4 42,47						
2 42,47						
6 42,49						
1						
positi	P_D_1	P_D_15	P_D_15			
on	5_7	_8	_9	P_D_15_10	P_D_15_11	P_D_22_1
175						
327						
332						
384						
412						
429						
483						
489						
583						
9,067						
11,45 1	100%		100%		100%	100%
15,89 0			100%	100%	100%	
16,21			100%	100%	100%	
16,22			100%	100%	100%	
16,29			100%	100%	100%	
9 16,31			100%	100%	100%	
8 16,35			100%	100%	100%	
0 16,44			100%	100%	100%	
9 16,48			100%	100%	100%	
5			100%	100%	100%	
7			100%	100%	100%	
4			100%	100%	100%	
6			100%	100%	100%	
9			100%	100%	100%	
16,60 6			100%	100%	100%	

16,72 5	100%	100%	100%	100%	
16,77 4	100%	100%	100%	100%	
16,79 1	100%	100%	100%	100%	
16,79 4	100%	100%	100%	100%	
16,86 6	100%	100%	100%	100%	
16,86 9	100%	100%	100%	100%	
16,89 3	100%	100%	100%	100%	
16,90 2	100%	100%	100%	100%	
16,90 5	100%	100%	100%	100%	
16,90 8	100%	100%	100%	100%	
16,93 8	100%	100%	100%	100%	
16,97 2	100%	100%	100%	100%	
16,98 0	100%	100%	100%	100%	
16,98 3	100%	100%	100%	100%	
16,98 6	100%	100%	100%	100%	
16,99 8		100%	100%	100%	
17,04 9		100%	100%	100%	100%
17,05 5		100%	100%	100%	100%
17,05 9		100%	100%	100%	100%
17,08 1		100%		100%	100%
17,08 2		100%	100%	100%	100%
17,08 5		100%	100%	100%	100%
17,08 8		100%	100%	100%	100%
17,09 0		100%	100%	100%	100%
17,13 6		100%	100%	100%	100%
17,16 0		100%	100%	100%	100%
17,18 3		100%	100%	100%	100%
17,20 0		100%	100%	100%	100%
17,21 1		100%	100%	100%	100%
17,28 0		100%	100%	100%	100%
17,32 8		100%	100%	100%	100%
17,33 4		100%	100%	100%	100%
17,34 3		<u>10</u> 0%	100%	100%	100%

17,39				
1	100%	100%	100%	100%
9	100%	100%	100%	100%
17,42 1	100%	100%	100%	100%
17,42 4	100%	100%	100%	100%
17,43 0	100%	100%	100%	100%
17,43 3	100%	100%	100%	100%
17,45	100%	100%	100%	100%
17,46 6	100%	100%	100%	100%
17,46 9	100%	100%	100%	100%
17,47 8	100%	100%	100%	100%
17,48	100%	100%	100%	100%
17,49	100%	100%	100%	100%
4 17,50	100%	100%	100%	100%
2 17,53	100%	100%	100%	100%
5	100%	100%	100%	100%
7	100%	100%	100%	100%
6	100%	100%	100%	100%
17,58 6	100%	100%	100%	100%
17,61 3	100%	100%	100%	100%
17,65 2	100%	100%	100%	100%
17,65 9	100%	100%	100%	100%
17,67 3	100%	100%	100%	100%
17,67 9	100%	100%	100%	100%
17,71 2	100%	100%	100%	
17,72 1	100%	100%	100%	100%
17,75 9	100%	100%	100%	100%
17,77 5	100%	100%	100%	100%
17,78 8	100%		100%	
17,79 3				
17,79 5	100%		100%	
17,79 6	Λ	100%	Δ	?
17,79		10070		-
17,80	400%	4000/	4000/	4000/
5 17,86	100%	100%	100%	100%
2	100%	100%	100%	100%

17,86 8			100%	100%	100%	100%
17,91 3				?		100%
17,91				2		100%
17,91 9						100%
17,92				2		100%
17,92				2		100%
17,92				2		100%
8 17,93				?		100%
17,93						
7 17,94						100%
0 17,94						
3 17,94						100%
6 17,95						100%
0						100%
4						100%
5						100%
7						100%
5				?		100%
18,26 7				?		100%
18,28 5				100%		100%
18,29 7				100%		100%
18,30 9			100%	100%	100%	
18,33 0				100%		
18,34 2				100%		
18,46 3						
18,50 3	100%	100%	100%	100%	100%	100%
18,53 5						
18,53	100%	100%	100%	100%	100%	100%
18,73	100%				10070	10070
18,73	100 /0	100%	100%		100%	
18,81		100%	100%		100%	1000/
4	40001	100%	100%	4000	100%	100%
3 18,82	100%	100%	100%	100%	100%	100%
5 18,82		100%	100%		100%	100%
5						

18,86 8		100%		100%	
18,86 8					
18,86					100%
18,88					100 /8
4					100%
0 19,79					100%
1 20,20	100	%	100%		
0 39,18					
3 39,19	100	%			100%
8 40,14					
0 40.15					
8 40.16					
1 40.16					
6					
40,18 9					
40,19					
40,43 4		100%			
40,60 1		100%			
40,61 2		100%			
40,61 6		100%			
40,62 5		100%			
40,63 7		100%			
40,66		100%			
40,67		100%			
40,68		100%			
40,72		100%			
3 40,89		100%			
8 40,90		100%			
5 40,90		100%			
9 40,91		100%			
2 40.91		100%			
9 40.92		100%			
9 40.02		100%			
1		100%			
40,93 3		100%			

40,93 9			100%			
40,94			100%			
40,95			100%			
40,97			100%			
3 42,10			100%			
4 42,11			100%			
5 42,12			100%			
0 42,12			100%			
9 42.13			100%			
1 42.16			100%			
5			100%			
7			100%			
42,30 0			100%			
42,43 2			100%			
42,43 4			100%			
42,43 7			100%			
42,44 9			100%			
42,46 4			100%			
42,47 2			100%			
42,47			100%			
42,49			100%			
-			100 %			
positi on	P_D_2 2 2	P_D_22 3	P_D_22 4	PD 22 5	PD 22 6	PD 22 7
175						·
327						
222						
004						
384						
412						
429						
483						
489						
583						
9,067						
1						100%

45.00			
15,89 0			
16,21			
8			
7			
16,29 9			
16,31 8			
16,35 0			
16,44 9			
16,48			
16,49 7			
16,52			
4 16,59			
6 16,59			
9 16,60			
6 16,72			
5 16,77			
4 16,79			
1 16,79			
4			
6 16.86			
9			
3			
2			
16,90 5			
16,90 8			
16,93 8			
16,97 2			
16,98 0			
16,98 3			
16,98 6			
16,99 8			
17,04 9			100%
17,05			100%
17,05			100%
9 17,08			<u>{</u>
1			

17,08 2				
17,08 5				
17,08				
17,09				
17,13				
17,16				
17,18				
17,20				
17,21				
17,28				100%
17,32				100%
8 17,33				?
4				100%
3 17,39				100%
1 17,40				100%
9 17,42				100%
1 17,42				100%
4				100%
0				100%
3				100%
7				100%
6				100%
9				100%
8				100%
17,48				100%
17,49 4				100%
17,50 2				100%
17,53 5				100%
17,54 7				100%
17,55 6				100%
17,58 6				100%
17,61 3				
17,65 2				
17,65 9				
~	1	1		

17,67			2
17,67			
9 17,71			?
2			
1			 100%
17,75 9			 100%
17,77 5			?
17,78 8			
17,79			
3 17,79			
5 17,79			
6			
7			
17,80 5			
17,86 2			100%
17,86 8			100%
17,91			
17,91			
17,91			
9 17,92			
17,92			
17,92			
8 17,93			
7 17,93			
7			
0			
17,94 3			
17,94 6			
17,95 0	 		
17,96 4			
18,25 5			
18,25 7			
18,26 5			
18,26			
18,28			
5 18,29			
7			

18,30 9						
18,33						
18,34						
2 18,46						
18,50 3	100%	100%	100%	100%	100%	100%
18,53	100 /0	10070	100 /0	10078	10070	10070
18,53 8						100%
18,73 1						
18,73 4	100%		100%	100%	100%	100%
18,81 4						
18,82 3	100%		100%	100%	100%	100%
18,82 5						
18,82 5						
18,86 8						
18,86 8						
18,86 8						
18,88 4		100%				
19,26 0						
19,79 1						
20,20 0						
39,18 3						
39,19 8		100%				
40,14 0						
40,15 8						
40,16 1						
40,16 6						
40,18 9						
40,19						
40,43						
40,60						
40,61						
40,61						
40,62 5						

40.63			
7			
40,66 3			
40,67			
2			
40,68 3			
40,72 3			
40,89 8			
40,90			
40,90			
9 40,91			
2			
9			
40,92 9			
40,93 1			
40,93 3			
40,93 9			
40,94			
40,95			
7 40,97			
3 42 10			
4			
5			
42,12 0			
42,12 9			
42,13 1			
42,16 5			
42,20 7			
42,30 0			
42,43			
42,43			
4 42,43			
/ 42,44			
9 42,46			
4 42 47			
2			
42,47 6			
42,49 1			

positi P_D_2 P_D_22 P_D_22 on 2_8 _9 _10 P_D_22_11 P_D_28_1 P_D_28_2	
175	
327	
332	
384	
412	
420	
483	
480	
0.067	
11,45 1 100% 100% 100% 100%	100%
15,89 0	100 %
16,21	
16,31	
16,35	
16,44	
16,48	
5 16,49	
16,52	
16,59	
6 16,59	
9 16,60	
6 16,72	
5 16,77	
4 16,79 1 <td></td>	
1 1 16,79 1	
4 16,86	
6 16,86	
9 16,89	

16,90 2						
16,90						
16,90						
8 16,93						
8 16,97						
2 16,98						
0 16,98						
3 16,98						
6 16.99						
8						
9	100%	100%	100%	100%	100%	100%
5	100%	100%	100%	100%	100%	100%
17,05 9	100%	100%	100%	100%	100%	100%
17,08 1		100%	100%		100%	100%
17,08 2		100%	100%	100%	100%	100%
17,08 5		100%	100%	100%	100%	100%
17,08 8	100%	100%	100%	100%	100%	100%
17,09 0	100%	100%	100%	100%	100%	100%
17,13 6	100%	100%	100%	100%	100%	100%
17,16 0	100%	100%	100%	100%	100%	100%
17,18 3	100%	100%	100%	100%	100%	100%
17,20 0	100%	100%	100%	100%	100%	100%
17,21 1	100%	100%	100%	100%	100%	100%
17,28 0	100%	100%	100%	100%	100%	100%
17,32 8	100%	100%	100%	100%	100%	100%
17,33 4	100%	100%	100%	100%	100%	100%
17,34 3	100%	100%	100%	100%	100%	100%
17,39	100%	100%	100%	100%	100%	100%
17,40 9	100%	100%	100%	100%	100%	100%
17,42	100%	100%	100%	100%	100%	100%
17,42	100%	100%	100%	100%	100%	100%
17,43	100%	100%	100%	100%	100%	100%
17,43	100%	100%	100%	100%	100%	100%
3 17,45	100%	100%	100%	100%	100%	100%
7	100%	100%	100%	100%	100%	100%

17,46 6	100%	100%	100%	100%	100%	100%
17,46 9	100%	100%	100%	100%	100%	100%
17,47 8	100%	100%	100%	100%	100%	100%
17,48 7	100%	100%	100%	100%	100%	100%
17,49 4	100%	100%	100%	100%	100%	100%
17,50	100%	100%	100%	100%	100%	100%
17,53	100%	100%	100%	100%	100%	100%
17,54	100%	100%	100%	100%	100%	100%
17,55	100%	100%	100%	100%	100%	100%
6 17,58	100%	100%	100%	100%	100%	100%
6 17,61	100%	100%	100%	100%	100%	100%
3 17,65	100%	100%	100%	100%	100%	100%
2 17,65	100%	100%	100%	100%	100%	100%
9 17,67	100%	100%	100%	100%	100%	100%
3	100%	100%	100%	100%	100%	100%
9	100%	100%	100%	100%	100%	100%
2						
17,72	100%	100%	100%	100%	100%	100%
9	100%	100%	100%	100%	100%	100%
5	100%	100%	100%	100%	100%	100%
17,78 8						100%
17,79 3				100%	?	
17,79 5			100%			100%
17,79 6	?		Δ	100%	100%	Δ
17,79 7		100%				
17,80 5	100%	100%	100%	100%	100%	100%
17,86 2	100%	100%	100%	100%	100%	100%
17,86 8	100%	100%	100%	100%	100%	100%
17,91	2	100%		100%	100%	10070
17,91		100%		100%	100%	
17,91		100%		100%	100%	
9 17,92		100%		100%	100%	
1 17,92		100%		100%	100%	
3 17,92		100%		100%	100%	
8		100%		100%	100%	

17,93 7		?				
17,93 7		?		100%	100%	
17,94 0		?				
17,94 3		?		100%	100%	
17,94 6		?		100%	100%	
17,95 0		?		100%	100%	
17,96 4				100%	100%	
18,25 5		100%		100%	100%	
18,25 7		100%		100%	100%	
18,26 5		100%		100%	100%	
18,26 7		100%		100%	100%	
18,28 5	100%	100%		100%	100%	
18,29 7	100%	100%		100%	100%	
18,30 9						
18,33 0						
18,34 2						
18,46 3						
18,50 3	100%	100%	100%	100%	100%	100%
18,53 5						
18,53 8	100%	100%	100%	100%	100%	100%
18,73 1						
18,73 4	100%	100%	100%			
18,81 4	100%	100%	100%	100%	100%	100%
18,82 3	100%	100%	100%	100%	100%	100%
18,82 5		100%	100%	100%	100%	100%
18,82 5						
18,86 8		100%	100%			
18,86 8						
18,86 8				100%	100%	100%
18,88 4						
19,26 0		100%		100%		100%
19,79 1						
20,20 0						
39,18 3	100%	100%	100%	100%	100%	100%
------------	------	------	------	------	------	------
39,19 8						
40,14						
40,15						
40,16						
40,16						
40,18						
9 40,19						
4 40,43						
4 40,60						
1 40,61						
2 40,61						
6 40.62						
5						
7						
3	100%					
2	100%					
40,68	?					
40,72 3						
40,89 8						
40,90 5						
40,90 9						
40,91 2						
40,91 9						
40,92 9						
40,93						
40,93						
40,93						
40,94						
40,95						
40,97						
3 42,10						
4 42,11						
5 42,12						
0						

42,12 9						
42,13						
42,16	1000/					
42,20	100%					
42,30	100%					
0 42,43	100%					
2 42,43						
4 42,43						
7 42.44						
9 42.46						
4						
2						
42,47 6						
42,49 1						
positi on	P_D_2 8_3	P_D_28 _4	P_D_28 _5	P_D_28_6	P_D_28_7	P_D_28_8
175						100%
327						100%
332						100%
384						100%
412						100%
429						100%
483						100%
490						100%
502						100%
0.007						100%
9,067	40000	4000/	4000			
1 15,89	100%	100%	100%	100%	100%	100%
0 16,21						
8 16,22						
7 16,29						
9 16.31						
8	1			1		
10,35						
0						

10.10						
16,48 5						
16,49						
7 16.52						
4						
16,59 6						
16,59						
16,60						
6 16.72						
5						
16,77 4						
16,79 1						
16,79						
4 16,86						
6						
9						
16,89 3						
16,90						
2 16,90						
5 16.90						
8						
16,93 8						
16,97 2						
16,98						
0 16,98						
3						
6						
16,99 8						
17,04 o	100%	100%	100%	100%	100%	100%
17,05	100 %	100 /8	100 %	100 %	100 %	100 //
5	100%	100%	100%	100%	100%	100%
9	100%	100%	100%	100%	100%	100%
17,08	100%	100%	100%	100%	100%	100%
17,08 2	100%	100%	100%	100%	100%	100%
17,08	4000/	1000/	1000/	4000/	4000/	4000/
5 17,08	100%	100%	100%	100%	100%	100%
8 17 00	100%	100%	100%	100%	100%	100%
0	100%	100%	100%	100%	100%	100%
17,13 6	100%	100%	100%	100%	100%	100%
17,16	100%	10.0%	100%	100%	100%	1000/
17,18	100%	100%	100%	100%	100%	100%
3	100%	100%	100%	100%	100%	100%

17,20						
0	100%	100%	100%	100%	100%	100%
1	100%	100%	100%	100%	100%	100%
17,28 0	100%	100%	100%	100%	100%	100%
17,32 8	100%	100%	100%	100%	100%	100%
17,33 4	100%	100%	100%	100%	100%	100%
17,34	100%	100%	100%	100%	100%	100%
17,39	100%	100%	100%	100%	100%	100%
17,40	100%	100%	100%	100%	100%	100%
9 17,42	100%	100%	100%	100%	100%	100%
1 17,42	100%	100%	100%	100%	100%	100%
4	100%	100%	100%	100%	100%	100%
0	100%	100%	100%	100%	100%	100%
3	100%	100%	100%	100%	100%	100%
17,45 7	100%	100%	100%	100%	100%	100%
17,46 6	100%	100%	100%	100%	100%	100%
17,46 9	100%	100%	100%	100%	100%	100%
17,47 8	100%	100%	100%	100%	100%	100%
17,48 7	100%	100%	100%	100%	100%	100%
17,49 4	100%	100%	100%	100%	100%	100%
17,50	100%	100%	100%	100%	100%	100%
17,53	100%	100%	100%	100%	100%	100%
17,54	100%	100%	100%	100%	100%	100%
17,55	100%	100%	100%	100%	100%	100%
0 17,58	100%	100%	100%	100%	100%	100%
6 17,61	100%	100%	100%	100%	100%	100%
3 17,65	100%	100%	100%	100%	100%	100%
2 17.65	100%	100%	100%	100%	100%	100%
9	100%	100%	100%	100%	100%	100%
3	100%	100%	100%	100%	100%	100%
9	100%	100%	100%	100%	100%	100%
17,71 2						
17,72 1	100%	100%	100%	100%	100%	100%
17,75 9	100%	100%	100%	100%	100%	100%
17,77 5	100%	100%	100%	100%	100%	100%
17,78 8					100%	
-					/0	

17,79 3		?	100%			
17,79 5		100%		100%	100%	100%
17,79 6	100%	Δ	100%	Δ	Δ	Δ
17,79 7						
17,80 5	100%	100%	100%	100%	100%	100%
17,86 2	100%	100%	100%	100%	100%	100%
17,86 8	100%	100%	100%	100%	100%	100%
17,91 3						
17,91 6						
17,91 9						
17,92 1						
17,92 3						
17,92 8						
17,93 7						
17,93 7						
17,94 0						
17,94 3						
17,94 6						
17,95 0						
17,96 4						
18,25 5						
18,25 7						
18,26 5						
18,26 7						
18,28 5		100%				
18,29 7		100%				
18,30 9						
18,33 0						
18,34 2						
18,46 3						
18,50 3	100%	100%	100%	100%	100%	100%
18,53 5						
18,53 8	100%	100%	100%	100%	100%	100%

18,73 1						
18,73 4		100%	100%	100%		100%
18,81 4	100%	100%	100%	100%	100%	100%
18,82 3	100%	100%	100%	100%	100%	100%
18,82 5	100%	100%	100%	100%	100%	100%
18,82 5						
18,86 8		100%	100%	100%		100%
18,86 8						
18,86 8	100%				100%	
18,88 4						
19,26 0	100%	100%	100%	100%		100%
19,79 1						
20,20 0						
39,18 3	100%	100%	100%	100%	100%	100%
39,19 8						
40,14 0			100%			100%
40,15 8			100%			100%
40,16 1			100%			100%
40,16 6			100%			100%
40,18 9			100%			100%
40,19 4			100%			100%
40,43 4			100%			100%
40,60 1	100%		100%			100%
40,61 2	100%		100%			100%
40,61 6	100%		100%			100%
40,62 5	100%		100%			100%
40,63 7	100%		100%			100%
40,66 3	100%		100%			100%
40,67 2	100%		100%			100%
40,68 3	100%		100%			100%
40,72 3	100%					
40,89 8	?					
40,90 5	?					

40,90 9	2					
40,91						
40,91	? 					
9 40,92	100%					
9 40,93	?					
1 40.93	?					
3	100%					
40,93 9	100%					
40,94 6	100%					
40,95 7	100%					
40,97 3	?					
42,10	2					
42,11	:		100%			
5 42,12	100%		100%			
0 42,12	100%		100%			
9 42.13	100%		100%			
1	100%		100%			
42,10 5	100%		100%			100%
42,20 7	100%		100%			100%
42,30 0			100%			100%
42,43 2			100%			100%
42,43 4			100%			100%
42,43			100%			100%
42,44			100 /0			100%
42,46						100%
4 42,47						100%
2 42,47						100%
6 42,49						100%
1						100%
positi	P_D 2	P_D 28	P_D 28			
on	8_9	_10	_11	annotation	gene	description
175				intergenic (–/-15)	$-/ \rightarrow nu1$	–/DNA packaging protein
327				V46V (GT <u>C</u> →GT <u>T</u>)	nu1 →	DNA packaging protein
332				κ48κ (Α <u>Α</u> Α→Α <u>G</u> Α)	nu1 →	DNA packaging protein
384				E65E (GA <u>G</u> →GA <u>A</u>)	nu1 →	DNA packaging protein
412		100%		A75T (<u>G</u> CA→ <u>A</u> CA)	nu1 →	DNA packaging protein

400		1009/		G80G (GG <u>A</u> →GG		DNA pockaging protoin
429		100%		<u> </u>	$nu \rightarrow$	
483		100%			nu1 →	DNA packaging protein
489		100%		K100K (AA <u>G</u> →AA <u>A</u>)	nu1 →	DNA packaging protein
583		100%			nu1	DNA packaging protein
505		100 /0		R38R (CG <u>T</u> →CG <u>C</u>		Dive packaging protein
9,067					$V \rightarrow$	tail component
1	100%	100%	100%	A304V (G <u>C</u> A→G <u>T</u> A)	$H \rightarrow$	tail component
15,89 0				D129G (G <u>A</u> C→G <u>G</u> C)	$J \rightarrow$	tail:host specificity protein
16,21				L238L (CT <u>G</u> →CT <u>T</u>)		tail-bast aposificity protoin
16,22				R241R (CG <mark>T</mark> →CG	$J \rightarrow$	
7					$J \rightarrow$	tail:host specificity protein
16,29 9				N205N (AA <u>A</u> →AA <mark>G</mark>)	$J \rightarrow$	tail:host specificity protein
16,31 8				coding (814-815/33 99 nt)	$J \rightarrow$	tail host specificity protein
16,35				H282H (CA <u>T</u> →CA		
0 16.44				<u>C</u>) G315G (GG <mark>C</mark> →GG	$J \rightarrow$	tail:host specificity protein
9				<u>T</u>)	$J \rightarrow$	tail:host specificity protein
16,48 5				A327A (GC <u>G</u> →GC <u>C</u>)	$J \rightarrow$	tail:host specificity protein
16,49				T331T (AC <u>A</u> →AC <u>G</u>		tail:bost specificity protein
16,52) S340S (AG <mark>C</mark> →AG	$J \rightarrow$	
4					$J \rightarrow$	tail:host specificity protein
6				P304P (CC <u>G</u> →CC <u>A</u>)	$J \rightarrow$	tail:host specificity protein
16,59 9				S365S (TC <u>G</u> →TC <u>A</u>)	$J \rightarrow$	tail host specificity protein
16,60				coding (1102-1103/		
6 16,72				3399 nt) N407N (AAC→AAT	$J \rightarrow$	tail:host specificity protein
5)	$J \rightarrow$	tail:host specificity protein
16,77 4				coding (1270-1271/ 3399 nt)	$J \rightarrow$	tail:host specificity protein
16,79 1				N429N (AA <u>T</u> →AA <mark>C</mark>		tail:bost specificity protein
16,79) V430V (GT <u>T</u> →GT <u>C</u>	J	
4					$J \rightarrow$	tail:host specificity protein
6)	$J \rightarrow$	tail:host specificity protein
16,86 9				E455E (GA <u>A</u> →GA	$J \rightarrow$	tail host specificity protein
16,89				D463D (GA <u>T</u> →GA		
3 16.90				<u>C)</u> V466V (GT <mark>C</mark> →GT	$J \rightarrow$	tail:host specificity protein
2				<u>G</u>)	$J \rightarrow$	tail:host specificity protein
16,90 5				G467G (GG <u>C</u> →GG <u>T</u>)	$J \rightarrow$	tail:host specificity protein
16,90				A468A (GC <u>A</u> →GC		tail:bost specificity protein
16,93				<u>∪</u>) V478V (GT <u>T</u> →GT <u>C</u>	J	
8					$J \rightarrow$	tail:host specificity protein
2				C)	$J \rightarrow$	tail:host specificity protein
16,98 0				G492G (GG <u>T</u> →GG C)	$J \rightarrow$	tail:host specificity protein
16,98				G493G (GG <u>T</u> →GG		
3				<u>G</u>)	$J \rightarrow$	tail:host specificity protein

16,98				R494R (CG <mark>T</mark> →CG		
6 16.99				<u>C</u>) V498V (GT <mark>G</mark> →GT	$J \rightarrow$	tail:host specificity protein
8				<u>A</u>)	$J \rightarrow$	tail:host specificity protein
17,04 9	100%	100%	100%	S515S (TC <u>C</u> →TC <u>T</u>)	$J \rightarrow$	tail:host specificity protein
17,05	100%	100%	100%	G517G (GG <u>T</u> →GG		tail:bast specificity protein
17,05	100 %	100 %	100 %	<u>C)</u> A519T (<u>G</u> CG→ <u>A</u> C	$J \rightarrow$	
9 17.08	100%	100%	100%	G) coding (1577/3399	$J \rightarrow$	tail:host specificity protein
1	100%	100%	100%	nt)	$J \rightarrow$	tail:host specificity protein
17,08 2	100%	100%	100%	G526G (GG <u>A</u> →GG <u>C</u>)	$J \rightarrow$	tail:host specificity protein
17,08 5	100%	100%	100%	coding (1581/3399	\rightarrow	tail:host specificity protein
17,08	10070	10070	100 /0	G528G (GG <mark>C</mark> →GG	0	
8 17.09	100%	100%	100%	<u>G</u>) N529S (AAT→AGT	$J \rightarrow$	tail:host specificity protein
0	100%	100%	100%		$J \rightarrow$	tail:host specificity protein
6	100%	100%	100%	v544v (GT <u>A</u> →GT <u>G</u>)	$J \rightarrow$	tail:host specificity protein
17,16 0	100%	100%	100%	G552G (GG <u>T</u> →GG	$J \rightarrow$	tail:host specificity protein
17,18	1000/	1000/	100%	E560G (G <u>A</u> G→G <u>G</u>		
3	100%	100%	100%	G) L566L (CTG→TTG	$J \rightarrow$	tail:host specificity protein
0	100%	100%	100%		$J \rightarrow$	tail:host specificity protein
17,21	100%	100%	100%	R569R (CG <u>A</u> →CG <u>C</u>)	$J \rightarrow$	tail:host specificity protein
17,28 0	100%	100%	100%	V592V (GT <u>G</u> →GT A)	$J \rightarrow$	tail:host specificity protein
17,32	1000/	1000/	100%	E608D (GA <u>A</u> →GA		
8 17,33	100%	100%	100%	<u>C</u>) S610S (AGT→AG	$J \rightarrow$	tail:host specificity protein
4	100%	100%	100%		$J \rightarrow$	tail:host specificity protein
3	100%	100%	100%	vorsv (Gr <u>G</u> →Gr <u>A</u>)	$J \rightarrow$	tail:host specificity protein
17,39 1	100%	100%	100%	T629T (AC <u>T</u> →AC <u>C</u>)	$J \rightarrow$	tail:host specificity protein
17,40	100%	100%	100%	Y635Y (TA <u>T</u> →TA <u>C</u>		tail:bast aposificity protain
9 17,42	100 %	100%	100%) A639A (GC <u>G</u> →GC	$J \rightarrow$	
1	100%	100%	100%	<u>C</u>) R640R (CGA→CG	$J \rightarrow$	tail:host specificity protein
4	100%	100%	100%	<u>C</u>)	$J \rightarrow$	tail:host specificity protein
17,43 0	100%	100%	100%	D642D (GA <u>C</u> →GA <u>T</u>)	$J \rightarrow$	tail:host specificity protein
17,43	100%	100%	100%	T643T (AC <u>A</u> →AC <u>G</u>		tail:bast specificity protein
17,45	100 %	100 %	100 %) S651S (AG <mark>T</mark> →AG	$J \rightarrow$	
7	100%	100%	100%	<u>C</u>) L654L (CTC→CTT)	$J \rightarrow$	tail:host specificity protein
6	100%	100%	100%		$J \rightarrow$	tail:host specificity protein
17,46 9	100%	100%	100%	кбээк (СС <u>Г</u> →СС <u>С</u>)	$J \rightarrow$	tail:host specificity protein
17,47 8	100%	100%	100%	coding (1974-1975/ 3399 nt)	$J \rightarrow$	tail host specificity protein
17,48	4000/	4000/	4000/	D661D (GA <u>C</u> →GA		
/ 17,49	100%	100%	100%	<u>⊥)</u> S664R (<u>A</u> GT→ <u>C</u> G	$J \rightarrow$	tail:nost specificity protein
4	100%	100%	100%		$J \rightarrow$	tail:host specificity protein
2	100%	100%	100%		$J \rightarrow$	tail:host specificity protein
17,53	100%	100%	100%	T677T (AC <u>A</u> →AC <u>T</u>)	$J \rightarrow$	tail:host specificity protein

17,54				T681T (AC <u>G</u> →AC <u>A</u>		
7	100%	100%	100%)	$J \rightarrow$	tail:host specificity protein
17,55 6	100%	100%	100%	A684A (GC <u>G</u> →GC T)	$J \rightarrow$	tail:host specificity protein
17,58				A694A (GC <mark>G</mark> →GC	-	
6	100%	100%	100%	<u>A)</u>	$J \rightarrow$	tail:host specificity protein
17,61 3	100%	100%	100%	D703E (GA <u>I</u> →GA G)	$J \rightarrow$	tail:host specificity protein
17,65	10001	10001	1000/	A716A (GC <u>A</u> →GC		
2	100%	100%	100%	<u>G</u>) coding (2155-2156/	$J \rightarrow$	tail:host specificity protein
9	100%	100%	100%	3399 nt)	$J \rightarrow$	tail:host specificity protein
17,67	100%	100%	100%	T723T (AC <u>G</u> →AC <u>A</u>		tail-bast aposificity protoin
17,67	100 %	100 %	100 /6) G725G (GG <mark>C</mark> →GG	J →	
9	100%	100%	100%	<u>G</u>)	$J \rightarrow$	tail:host specificity protein
17,71 2				A736A (GC <u>C</u> →GC G)	$J \rightarrow$	tail:host specificity protein
17,72				D739D (GA <mark>C</mark> →GA	-	
1	100%	100%	100%	\underline{I})	$J \rightarrow$	tail:host specificity protein
9	100%	100%	100%	G)	$J \rightarrow$	tail:host specificity protein
17,77	4000/	1000/	4000/	R757R (AG <u>A</u> →AG		
5	100%	100%	100%	<u>G</u>) coding (2284/3399	$J \rightarrow$	tail:host specificity protein
8				nt)	$J \rightarrow$	tail:host specificity protein
17,79	100%	2		T763T (AC <u>G</u> →AC <u>A</u>	1	tail-bast aposificity protoin
3 17,79	100%	<u>؛</u>) coding (2291-2292/	$J \rightarrow$	
5			100%	3399 nt)	$J \rightarrow$	tail:host specificity protein
17,79 6	100%	100%	Λ	R764R (CG <u>T</u> →CG	$J \rightarrow$	tail host specificity protein
17,79	10070	10070		coding (2293/3399		
7				nt)	$J \rightarrow$	tail:host specificity protein
5	100%	100%	100%	<u>C</u>)	$J \rightarrow$	tail:host specificity protein
17,86	4000/	1000/	4000/	Y786Y (TA <u>C</u> →TA <u>T</u>		
2	100%	100%	100%) Y788Y (TAT →TAC	$J \rightarrow$	tail:host specificity protein
8	100%	100%	100%)	$J \rightarrow$	tail:host specificity protein
17,91 3				A803A (GC <u>C</u> →GC		tail host specificity protein
17,91) V804V (GT <u>C</u> →GT <u>T</u>	J	
6)	$J \rightarrow$	tail:host specificity protein
17,91 9				G805G (GG <u>1</u> →GG C)	$J \rightarrow$	tail:host specificity protein
17,92				R806Q (C <u>G</u> G→C <u>A</u>		
1					$J \rightarrow$	tail:host specificity protein
3				G)	$J \rightarrow$	tail:host specificity protein
17,92				S808S (AG <u>C</u> →AG		tail:bast specificity protein
17,93				<u></u> coding (2433-2434/	0→	
7				3399 nt)	$J \rightarrow$	tail:host specificity protein
17,93 7				coding (2433-2436/ 3399 nt)	$J \rightarrow$	tail:host specificity protein
17,94				E812D (GA <u>A</u> →GA		
0					$J \rightarrow$	tail:host specificity protein
3				00130 (00 <u>1</u> →00 <u>C</u>)	$J \rightarrow$	tail:host specificity protein
17,94				Y814Y (TA <u>C</u> →TA <u>T</u>	,	
ь 17.95) D816N (GAT→AAT	$J \rightarrow$	taii:nost specificity protein
0)	$J \rightarrow$	tail:host specificity protein
17,96				coding (2460-2461/		tail-bost specificity protoin
-				5555 mj	0 -	

18,25				V917V (GT <u>G</u> →GT <u>T</u>		
5)	$J \rightarrow$	tail:host specificity protein
7				3399 nt)	$J \rightarrow$	tail:host specificity protein
18,26 5				N921D (<u>A</u> AC→ <u>G</u> A T)	$J \rightarrow$	tail:host specificity protein
18,26 7				N921D (AA <mark>C</mark> →GA <u>T</u>)	$J \rightarrow$	tail:host specificity protein
18,28 5				D927E (GA <u>C</u> →GA A)	$J \rightarrow$	tail:host specificity protein
18,29				coding (2793-2796/	,	teilde et en esificit a meteix
7 18,30				A935A (GC <u>C</u> →GC	$J \rightarrow$	tail:nost specificity protein
9					$J \rightarrow$	tail:host specificity protein
0				<u>I)</u>	$J \rightarrow$	tail:host specificity protein
18,34 2				A946A (GC <u>C</u> →GC A)	$J \rightarrow$	tail:host specificity protein
18,46				T987A (<u>A</u> CG→ <u>G</u> C	,	tail boat an acificity protain
3 18,50				G) A1000V (G <u>C</u> G→G	$J \rightarrow$	tail:nost specificity protein
3	100%	100%	100%	<u>T</u> G)	$J \rightarrow$	tail:host specificity protein
18,53 5				GC)	$J \rightarrow$	tail:host specificity protein
18,53 8	100%	100%	100%	<mark>S1012G (A</mark> GT→ <mark>G</mark> GT)	$J \rightarrow$	tail:host specificity protein
18,73				A1076V (G <u>C</u> G→G		
1 18,73				<u>I</u> G) V1077A (GTA→GC	$J \rightarrow$	tail:host specificity protein
4	100%	100%	100%	A)	$J \rightarrow$	tail:host specificity protein
18,81 4	100%	100%	100%	H1104Y (<u>C</u> AT→ <u>I</u> A T)	$J \rightarrow$	tail:host specificity protein
18,82 3	100%	100%	100%	D1107K (<u>G</u> AT→ <mark>A</mark> A G)	$J \rightarrow$	tail:host specificity protein
18,82	100%	100%	100%	D1107K (GA <u>T</u> →AA		toil heat an acificity protein
18,82	100%	100%	100%	<u>A)</u> D1107K (GA <u>T</u> →AA	$J \rightarrow$	
5				<u>G)</u> 1122 (ATT→CTT	$J \rightarrow$	tail:host specificity protein
8	100%	100%)	$J \rightarrow$	tail:host specificity protein
18,86 8				I1122V (<u>A</u> TT→ <u>G</u> TT)	$J \rightarrow$	tail:host specificity protein
18,86 8			100%	I1122F (<u>A</u> TT→ <u>T</u> TT)	$J \rightarrow$	tail host specificity protein
18,88				L1127P (C <u>T</u> G→C <u>C</u>		
4 19,26				G) L99P (CTG→CCG)	$J \rightarrow$	tail:host specificity protein
0		100%	100%		$lom \rightarrow$	outer host membrane
19,79 1				R48G (<u>C</u> GT→ <u>G</u> GT)	orf-401 \rightarrow	Tail fiber protein
20,20 0				E184G (G <u>A</u> A→G <u>G</u> A)	orf-401 \rightarrow	Tail fiber protein
39,18 3	100%	100%	100%	intergenic (+364/-7)	orf-64 \rightarrow / \rightarrow S	hypothetical protein/anti-holin
39,19						onti bolin
8 40,14				$\frac{M3I}{R57R} (CGT \rightarrow CGC$	$S \rightarrow$	anti-nolin
0					$Rz \rightarrow$	cell lysis protein
40,15 8)	$Rz \rightarrow$	cell lysis protein
40,16 1				L64L (CT <mark>C</mark> →CT <mark>G</mark>)	$Rz \rightarrow$	cell lysis protein
40,16 6				A66E (G <u>C</u> A→G <u>A</u> A)	$Rz \rightarrow$	cell lysis protein
40,18						
9		100%		<mark>D74N (G</mark> AT→ <u>A</u> AT)	Rz →	cell lysis protein

40.19		A75A (GCT→GCG)		
4	100%	、 _ ,	$Rz \rightarrow$	cell lysis protein
40,43				cell lysis protein/Bor protein
4	100%	intergenic (+3/+29)	$Rz \rightarrow / \leftarrow bor$	precursor
40,60				
1	100%	V52V (GT <u>C</u> →GT <u>T</u>)	bor \leftarrow	Bor protein precursor
40,61	(K49E (<u>A</u> AG→ <u>G</u> AG)		
2	100%		bor \leftarrow	Bor protein precursor
40,61	1000/	G47G (GG <mark>G</mark> →GG	h	Des sectois secondos
0	100%	<u>A</u>)	$\rightarrow 100$	Bor protein precursor
40,62 5	100%	SAAS (TCT STCC)	bor (Bor protein precursor
40.63	10076	$\frac{3443}{10} (10 - 100)$	b0i ←	
7	100%		hor ←	Bor protein precursor
40.66		A32T (GCA→ACA)		
3	100%		bor ←	Bor protein precursor
40.67		A29T (GCA→ACA)		
2	100%		bor \leftarrow	Bor protein precursor
40,68		coding (73-74/294		
3	100%	nt)	bor \leftarrow	Bor protein precursor
40,72		coding (33-34/294		
3		nt)	bor \leftarrow	Bor protein precursor
40,89		intergenic (-142/+1	bor \leftarrow / \leftarrow lamb	Bor protein precursor/putative
8		49)	dap78	envelope protein
40,90		intergenic (-149/+1	bor $\leftarrow / \leftarrow lamb$	Bor protein precursor/putative
5		42)	dap78	envelope protein
40,90		intergenic (-153/+1	bor $\leftarrow / \leftarrow lamb$	Bor protein precursor/putative
9		JO)	uapro	Per protein procure ar/outative
40,91		34)	$b01 \leftarrow 1 \leftarrow lattibdan78$	envelope protein
40.91		intergenic (-163/+1	bor ← / ← lamb	Bor protein precursor/putative
9		28)	dan78	envelope protein
40.92		intergenic (-173/+1	bor $\leftarrow / \leftarrow lamb$	Bor protein precursor/putative
9		18)	dap78	envelope protein
40,93		intergenic (-175/+1	bor \leftarrow / \leftarrow lamb	Bor protein precursor/putative
1		16)	dap78	envelope protein
40,93		intergenic (-177/+1	bor \leftarrow / \leftarrow lamb	Bor protein precursor/putative
3		14)	dap78	envelope protein
40,93		intergenic (-183/+1	$bor \leftarrow / \leftarrow lamb$	Bor protein precursor/putative
9		08)	dap78	envelope protein
40,94		intergenic (-190/+1	bor \leftarrow / \leftarrow lamb	Bor protein precursor/putative
6		01)	dap78	envelope protein
40,95		intergenic (-201/+9	bor $\leftarrow / \leftarrow lamb$	Bor protein precursor/putative
/		U)	bar: /: lomb	Per protein proguraer/putative
40,97		4)	dan78	envelope protein
42 10		·····	$lambdan79 \rightarrow l$	
42,10		intergenic (+155/-)	–	hypothetical protein/-
42.11		go	lambdap79 \rightarrow /	NE sure en er er en a
5		intergenic (+166/-)	_	hypothetical protein/-
42,12			lambdap79 \rightarrow /	
0		intergenic (+171/-)	- ,	hypothetical protein/-
42,12			lambdap79 \rightarrow /	
9		intergenic (+180/-)	-	hypothetical protein/-
42,13			lambdap79 → /	
1		intergenic (+182/-)	-	hypothetical protein/-
42,16			lambdap79 \rightarrow /	
5	100%	Intergenic (+216/–)	-	nypotnetical protein/–
42,20	4000/	internenia (+050/)	iambdap79 → l	by pathotical protoin/
1 10 20	100%	intergenic (+258/–)	-	nypotnetical protein/–
42,30	1000/	intergenic (+351/)	iannuap19 → / _	hypothetical protein/-
42 43	100%		lambdan70 、/	
2	100%	intergenic (+483/_)		hypothetical protein/-
42.43	10070		lambdan79 \rightarrow /	
4	100%	intergenic (+485/-)	_	hypothetical protein/-

42,43			lambdap79 \rightarrow /	
7	100%	intergenic (+488/-)	-	hypothetical protein/-
42,44			$lambdap79 \rightarrow l$	
9	100%	intergenic (+500/-)	-	hypothetical protein/-
42,46			$lambdap79 \rightarrow l$	
4	100%	intergenic (+515/-)	-	hypothetical protein/-
42,47			$lambdap79 \rightarrow l$	
2	100%	intergenic (+523/-)	-	hypothetical protein/-
42,47			$lambdap79 \rightarrow l$	
6	100%	intergenic (+527/-)	-	hypothetical protein/-
42,49			$lambdap79 \rightarrow l$	
1	100%	intergenic (+542/–)	-	hypothetical protein/-

Taile Val Val Title Title <thtitle< th=""> <thtitle< th=""> <thtitl< th=""><th></th><th>coef_</th><th>po siti</th><th>mutation</th><th>annotation</th><th></th><th>description</th><th>init_ap pear_ dov</th></thtitl<></thtitle<></thtitle<>		coef_	po siti	mutation	annotation		description	init_ap pear_ dov
B.4.98 B2 1259 B2 91 Coding (44 2-457/852 ECB_RS09450 PTS mannose transporter subunit IID 28 phage _mut_ 2.80 18 11122 (AT 1 1 1 1 1 1 1 28 phage _mut_ 568 A→C T → CTT) J → protein 8 phage 2.14 18 11122 (AT 1 1.32 1.31 1.31 1.31 1.32 1.31 1.32 1.31 1.32 1.31 1.32 1.31 1.32 1.31 1.32 1.31 1.32 1.31 1.32 1.31 1.32 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31	name	vai	18	mutation	annotation	gene	description	uay
bac. m 1250 91 2.457/852 ECB_RS09450 PTS manose transporter subunit IID 28 phage _mut. 2.860 18		8,498	82		codina (44			
ut. 6 11 5 ∆ 16 bp mt) → transporter subunit IID 28 phage 2.860 18 - T T T T T tall host specificity T phage 2.14 18 - T → T T → T T → T T <t< th=""><th>bac_m</th><th>1259</th><th>91</th><th></th><th>2-457/852</th><th>ECB_RS09450</th><th>PTS mannose</th><th></th></t<>	bac_m	1259	91		2-457/852	ECB_RS09450	PTS mannose	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ut_6	11	5	Δ16 bp	nt)	→	transporter subunit IID	28
phage mut_ 124 2.860 95 18 8 A→C 1112L (AT T→CTT) tallhost specificity protein failhost specificity protein 8 phage mut_ 126 61 8 A→T T→TTT) J→ protein 8 phage mut_ 6098 97 S490R (AG S6 T→TTT) J→ protein 8 phage mut_ 546 1940 16 S490R (AG C→C C→CGC) J→ protein 8 phage mut_ 126 1.940 16 S490R (AG C→A 1.940 16 8 1.940 1.6 8 phage 1.22 A→C C→CGC) J → protein 8 8 phage 1.25 8.2 (AGTGGGAACTG CGGGCGAGACTG 0.227206 nt) coding (10 ECB_RS17295 transcriptional regulator MaiT 8 1.056 0.4 ECB_RS04930 phosphoporin MaiT 8 phage mut_ 10 16 C→C T→CGC) V → tail component 8 phage mut_ 100 16 C→T GG→GGT) J → tail:hos		-						
Initial 362 60 A→C T→CTT J→ Initial Nois specificity 8 phage 1.14 18 1122F (AT) 1 → protein 8 mut 9397 86 A→T T→TTT J→ protein 8 phage 1.940 16 A→C C→TTT J→ protein 8 phage 1.940 16 A→C C→CCGC) J→ protein 8 phage 1.940 16 A→C C→CGC) J→ protein 8 phage 1.422 A→C C→CGC) J→ protein 8 phage 1.422 A→C C→CGC) J→ protein 8 phage 1.422 A→C C→CGC) J→ matherapecificity protein 8 tut_1 36 CCJ+2 22/2706 mJ → MaIT 8 tut_1 73 A→C -177/485 04935 18 phoE/asparaginetRNA 18 phage 0.826 P P P <th>phage</th> <th>2.860</th> <th>18</th> <th></th> <th>11100L (AT</th> <th></th> <th>tail:boat aposifisity</th> <th></th>	phage	2.860	18		11100L (AT		tail:boat aposifisity	
12. 0.0 0.0 1.0 0.0 product product </th <th>_mut_ 124</th> <th>95 Store</th> <th>8</th> <th>A→C</th> <th>T→CTT)</th> <th>.1 →</th> <th>protein</th> <th>8</th>	_mut_ 124	95 Store	8	A→C	T→CTT)	.1 →	protein	8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-	Ŭ			5	protoni	
	phage	2.114	18					
126 61 8 A→T T→TTT J→ protein 8 phage 1.940 16 S490R (AG tail:host specificity grotein 8 phage 1.42 42 A→C C→CGC J→ protein 8 phage 1.42 42 Imtergenic (lambdap79 → / hypothetical protein/~ 8 bage_m 1.425 82 (AGTGGGAACTG coding (10 ECB_RS17295 transcriptional regulator MalT 8 bag_m 1.056 04 posterial A→C -117/+485 04935 ligase 28 phage 0.92 P F F CB_RS17295 transcriptional regulator MalT 8 ut_1 73 1 A→C -117/+485 04935 ligase 28 phage 0.892 P F FECB_RS14915 phosphoporin Phosphoporin<	_mut_	9397	86		I1122F (AT		tail:host specificity	
phage mut. 1.940 6098 16 99 2 A→C C→CGC J→ tail:host specificity protein 8 phage mut. 1.422 42 intergenic (-34 iambdap79 → / -34 hypothetical protein/- 36 8 168 93 0 C→A +351/- +351/- - hypothetical protein/- - 8 1.325 82 (AGTGGGAACTG GCGCGCGAGCTG coding (10 CCJ1+2 ECB_RS17295 transcriptional regulator MaIT 8 1.056 04 CCJ1+2 2/2706 nt) ECB_RS04930 phosphoporin PhoE/asparagine-tRNA 28 phage 0.892 0 - - 44 28 phage 0.892 0 - - 14 8 mut. 10 15 67 T→C T→CC 7 - tail component 8 phage 0.801 16 G315G (G GC→GCG) J→ protein 8 phage 0.762 18 H1104Y (C 464 J→ H1104Y (C 464 J→ <th>126</th> <th>61</th> <th>8</th> <th>A→T</th> <th>T→TTT)</th> <th>J→</th> <th>protein</th> <th>8</th>	126	61	8	A→T	T→TTT)	J→	protein	8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	nhage	1 940	16					
36 09 2 A→C C→CGC) J→ protein 8 phage mut 1.422 42 intergenic (mut_ lambdap79 → / +351/-) hypothetical protein/- 8 bac_m 34 C→A +351/-) - hypothetical protein/- 8 bac_m 1.325 82 (AGTGGGAACTG GCGCGGAGCTG COLI + 2 coding (10 22/2706 nt) ECB_RS17295 transcriptional regulator MaIT 8 bac_m 1025 19 ECB_RS17295 phosphoporin PhoE/asparaginetRNA Phosphoporin PhoE/asparaginetRNA 8 phage 0.892 - - - - - 8 phage 0.892 - - - 117/485) 04935 igase 28 phage 0.892 - - - - - 1 mut_1 73 1 A→C -117/485) 04935 igase 28 phage 0.892 - - - tail component 8	mut	6098	97		S490R (AG		tail:host specificity	
phage mut_ 168 1.422 548 42 30 - - - Iambdap79 → / +351/-) - hypothetical protein/- 8 bac_m 1.325 82 5447 (AGTGGGAACTG GCGGCGAGACTG CGGGCGAGACTG CGGGCGAGACTG CGGGCGAGACTG CCding (10 ECB_RS17295 transcriptional regulator 8 ut_13 33 6 C)+2 22/2706 nt) → MalT 8 bac_m 1.056 0.4 intergenic (1025 intergenic (1025 phosphoporin PhoE/asparaginetRNA phosphoporin PhoE/asparaginetRNA 8 phage _mut_ 102 0.892	36	09	2	A→C	C→CGČ)	J →	protein	8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-						
Intergence (lambcap/y → / hypothetical protein/- 8 168 93 0 C→A +351/-) - hypothetical protein/- 8 bac_m 1.325 82 (AGTGGGAACTG GCGCGCGAGGTG Coding (10 ECB_RS17295 transcriptional regulator mascriptional regulator MaiT 8 ut_13 33 6 CC)1→2 22/2706 nt) → mascriptional regulator MaiT 8 bac_m 1.056 04 ECB_RS04930 phosphoporin PhoE/asparaginetRNA 28 phage 0.892	phage	1.422	42		intorgania (lombdor 70 × /		
Ibo Ibo <th< th=""><th>_mut_ 168</th><th>5485 93</th><th>30</th><th>C→A</th><th>intergenic (+351/)</th><th>$ambdap79 \rightarrow 7$</th><th>hypothetical protein/-</th><th>8</th></th<>	_mut_ 168	5485 93	30	C→A	intergenic (+351/)	$ambdap79 \rightarrow 7$	hypothetical protein/-	8
bac_m 1.325 82 (AGTGGGAACTG GCGGCGAGACTG CC) 1→2 coding (10 22/2706 nt) ECB_RS17295 transcriptional regulator MalT 8 1.056 04 intergenic (10 ECB_RS04930 + / + ECB_RS phosphoporin pho/2495 phosphoporin phosphoporin Phosphoporin 8 phage mut_ 1.325 19 intergenic (-117/485) ECB_RS04930 + / + ECB_RS phosphoporin Phosphosporin phage mut_ 0.892 - - - - 17/485) 04935 iigase 28 phage mut_ 0.892 -		-	34					5
bac_m 5447 70 GCGGCCGAGCTG coding (10) ECB_RS17295 transcriptional regulator ut_1 33 6 CC) → 2 22/2706 nt) → MalT 8 bac_m 105 04 22/2706 nt) → MalT 8 bac_m 1025 19 intergenic (+ / + ECB_RS04930 phosphoporin + / + ECB_RS04930 phosphoporin PhoE/asparaginetRNA 28 phage 0.892		1.325	82	(AGTGGGAACTG				
ut_13 33 6 CC)1→2 22/2706 mt) → MalT 8 intergence 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1 A→C -117/+485) 04935 phosphoprin PhoE/asparagine-tRNA 10 28 phage 0.892	bac_m	5447	70	GCGGCGGAGCTG	coding (10	ECB_RS17295	transcriptional regulator	
1.056 10 Image: triangle integration (1) FCB_RS04930 phosphoporin PhoE/asparagine-tRNA 28 phage 0.892 Image: triangle integration (1) -117/+485) 04935 ligase 28 phage 0.892 Image: triangle integration (1) T→C T→CGC) V → tail component 8 phage 0.826 Image: triangle integration (1) T→C T→CGC) V → tail component 8 phage 0.826 Image: triangle integration (1) T→C T→CGC) V → tail component 8 phage 0.826 Image: triangle integration (1) T→C T→CGC) V → tail component 8 phage 0.826 Image: triangle integration (1) T→C T→CGC) V → tail component 8 phage 0.801 16 Image: triangle integration (1) T T T T Image: triangle integration (1) G315G (G) Image: triangle integration (1) T T T T T T T T T T T T T	ut_13	33	6	CC)1→2	22/2706 nt)	→	MalT	8
bac_m 1025 19 intergenic (-117/+485) ← / ← ECB_RS PhoE/asparagine-tRNA ligase 28 phage 0.892 - - - - Hof/asparagine-tRNA 1 mut_ 7270 90 R38R (CG -		1 056	04			ECB BS04930	phosphoporin	
ut_1 73 1 A→C -117/+485) 04935 ligase 28 phage 0.892 - R38R (CG V → tail component 8 phage 0.826 T→C T→C T→CGC) V → tail component 8 phage 0.826 - - - - - - - - 8 phage 0.826 - - - - - - - - 8 phage 0.826 - <th>bac m</th> <th>1025</th> <th>19</th> <th></th> <th>intergenic (</th> <th>\leftarrow / \leftarrow ECB RS</th> <th>PhoE/asparaginetRNA</th> <th></th>	bac m	1025	19		intergenic (\leftarrow / \leftarrow ECB RS	PhoE/asparaginetRNA	
phage _mut_ 0.892 7270 90 67 T→C R38R (CG T→CGC) V → tail component 8 0 15 67 T→C T→CGC) V → tail component 8 phage an 0.826 - - - - - 8 phage an 0.801 16 - - - - NA phage an 0.801 16 - - - - - NA phage an 0.801 16 - - - - - NA NA </th <th>ut_1</th> <th>73</th> <th>1</th> <th>A→C</th> <th>-117/+485)</th> <th>04935</th> <th>ligase</th> <th>28</th>	ut_1	73	1	A→C	-117/+485)	04935	ligase	28
phage _mut_ 0.892 7270 90 67 T→C T→CGC V → tail component 8 10 15 67 T→C T→CGC) V → tail component 8 phage _an 28 NA NA NA NA NA NA phage _an 0.801 16 G315G (G _GC→GGT) J → protein 8 phage _mut_ 6454 44 G315G (G _GC→GGT) J → protein 8 phage _mut_ 906 81 H1104Y (C _AT→TAT) J → protein 15 0.782 18 H1104Y (C _AT→TAT) J → protein 15 0.776 23 [ECB_RS14915] [ECB_RS14915] 15 0.776 23 [ECB_RS14925] 15 15 phage 0.633 18 [ECB_RS14925] 15 15 phage 0.633 18 [G→GCG] J → PTS mannose/fructose/sorbo se transporter subunit 8 0.413 81 coding (14 2-151/801 ECB_RS0445 se transporter subunit 0		-						
Intract 72/0 90 T→C T→CGC V → tail component 8 10 15 67 T→C T→CGC) V → tail component 8 0.826 8 phage 5034 phage 0.801 16 phage 0.801 16 .	phage	0.892	~~~					
10 11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 0 <th>_mut_ 10</th> <th>1270</th> <th>90 67</th> <th>T→C</th> <th>T→CGC)</th> <th>$V \rightarrow$</th> <th>tail component</th> <th>8</th>	_mut_ 10	1270	90 67	T→C	T→CGC)	$V \rightarrow$	tail component	8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-	07		1 (000)			0
phage an 5034 28 NA NA NA NA phage ancestor indicator NA phage _mut_ 6454 0.801 16 G315G (G GC→GGT) tail:host specificity tail:host specificity phage _mut_ 18 0.9 9 C→T G315G (G GC→GGT) tail:host specificity tail:host specificity phage _mut_ 120 0.782 18 tail:host specificity tail:host specificity tail:host specificity 120 6 4 C→T AT→TAT) J → protein 15 0.776 23 Image ancestor indicator 15 Image ancestor indicator 15 0.776 23 Image ancestor indicator Image ancestor indicator 15 bac_m 9456 94 Image ancestor indicator 15 Image ancestor 0.633 18 Image ancestor Image ancestor indicator Image ancestor 0.413 81 Image ancestor Image ancestor Image ancestor 0.413 81 Image ancestor Image ancestor Image ances		0.826						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	phage	5034						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_an	28	NA	NA	NA	NA	phage ancestor indicator	NA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	nhage	0.801	16					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_mut	6454	44		G315G (G		tail:host specificity	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	09	9	C→T	GC→GĠT)	J →	protein	8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ι. –	-						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	phage	0.782	18				tail-boat apositisity	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_mut_ 120	9064	01 	C→T	AT→TAT)	→	protein	15
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	30	- ·			p. 50011	10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.776	23			j_	[ECB_RS14915],	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	bac_m	9456	94			[ECB_RS14925	ECB_RS14920,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ut_12	48	5	∆777 bp]]	[ECB_RS14925]	15
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	nhage	0.633	18					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	mut	7617	46		T987A (AC		tail:host specificity	
- 18 PTS 0.413 81 coding (14 mannose/fructose/sorbo bac_m 5954 80 2-151/801 ECB_RS09445 se transporter subunit	114	06	3	A→G	G→GCG)	J →	protein	8
bac_m 0.413 81 coding (14 mannose/fructose/sorbo bac_m 5954 80 2-151/801 ECB_RS09445 se transporter subunit		-	18				PTS	
bac_m 5954 80 2-151/801 ECB_RS09445 se transporter subunit		0.413	81		coding (14		mannose/fructose/sorbo	
$ \mathbf{n}_{1} \mathbf{n}_{2} \mathbf{n}_{2} \mathbf{n}_{1} \mathbf{n}_{2} \mathbf{n}_{2} \mathbf{n}_{2} \mathbf{n}_{1} \mathbf{n}_{2} n$	Dac_m	5954 03	20 20	A10 bp	2-151/801 nt)		se transporter subunit	Q

Table 7 – Ordered features with non-zero coefficients from final model for step 1 based on P+H:MF

phage _mut_	- 0.018 6334	16 99		V498V (GT		tail:host specificity	
40	63	8	G→A	G→GTÀ)	J →	protein	8
phage _mut_ 123	- 0.018 0022 24	18 82 5	T→G	D1107K (G AT→AAG)	J →	tail:host specificity protein	8
phage _mut_ 89	0.007 3574 29	17 80 5	T→C	G767G (G GT→GGC)	J →	tail:host specificity protein	15
phage _mut_ 109	0.005 0892 04	18 28 5	C→A	D927E (GA C→GAA)	→ ل	tail:host specificity protein	15
phage _mut_ 110	0.002 7452 51	18 29 7	4 bp→ATAT	coding (27 93-2796/33 99 nt)	J →	tail:host specificity protein	15
phage _mut_ 116	0.001 3844 01	18 53 5	A→C	S1011R (A	.1 →	tail:host specificity	8
phage _mut_ 57	1.02E -15	17 34 3	G→A	V613V (GT G→GTA)	J →	tail:host specificity protein	15
phage _mut_ 56	4.06E -15	17 33 4	T→C	S610S (AG T→AGC)	J →	tail:host specificity protein	15
phage _mut_ 102	5.35E -15	17 94 6	C→T	Y814Y (TA C→TAT)	J →	tail:host specificity protein	15
bac_m	1.97E	24 01 52		1432N (AT	ECB_RS11915	multifunctional fatty acid oxidation complex	٥
phage mut	2.00E	17 05		G517G (G		tail:host specificity	0
42	-14	5	T→C	GT→GGC)	J →	protein	15
phage _mut_ 46	3.89E -14	17 08 5	Δ1 bp	coding (15 81/3399 nt)	→ ل	tail:host specificity protein	15
phage _mut_ 101	4.58E -14	17 94 3	T→C	G813G (G GT→GGC)	J →	tail:host specificity protein	15
phage _mut_ 70	4.64E -06	17 50 2	G→A	R666R (C GG→CGA)	J →	tail:host specificity protein	15
phage _mut_ 54	0.001 9410 74	17 28 0	G→A	V592V (GT G→GTA)	J →	tail:host specificity protein	15
phage _mut_ 69	0.002 8279 43	17 49 4	A→C	S664R (AG T→CGT)	J →	tail:host specificity protein	15
phage _mut_ 141	0.004 0264 5	40 61 2	T→C	K49E (AAG →GAG)	bor ←	Bor protein precursor	8
phage _mut_ 113	0.008 5208 3	18 34 2	C→A	A946A (GC C→GCA)	→ L	tail:host specificity protein	15
phage _mut_ 115	0.065 6503 24	18 50 3	C→T	A1000V (G CG→GTG)	J →	tail:host specificity protein	8

phage	0.087	17		coding (24			
mut	0458	96		60-2461/33		tail:host specificity	
104	29	4	2 bp→AG	99 nt)	J→	protein	15
phage	0.149	40					
IIIut 140	4031	1	G→A	v52v (GTC →GTT)	bor ←	Bor protein precursor	8
phage	0 266	18	G	(arr)			0
mut	6851	33		G942G (G		tail:host specificity	
112	01	0	C→T	GC→GGT)	J →	protein	15
		21					
	0.352	03					
bac_m	5469	91		coding (18	ECB_RS23820		
ut_7	6	8	(CCAG)7→8	5/216 nt)	\rightarrow	hypothetical protein	15
phage	0.456	11		10000			
mut	1/88	45	C→T			tail component	15
	1	10	0-71	A (GIA)	11 -7		15
	0 479	27					
bac m	1361	15		L34M (CT	ECB RS05030	ABC transporter	
ut_2	52	4	C→A	G→ATG)	\rightarrow –	ATP-binding protein	15
phage	0.510	17		coding (24			
mut	9101	93		33-2436/33		tail:host specificity	
99	14	7	4 bp→ATCC	99 nt)	J →	protein	15
phage	0.565	17		anding (1E		toil boot oppointion	
mut 44	86	1	+G	77/3399 nt)	1 →	notein	15
nhage	0.622	17	TO	77700000 110	0	protein	10
mut	6995	04		S515S (TC		tail:host specificity	
41	72	9	C→T	C→TCT)	J →	protein	15
		22					
	0.687	47				cytochrome c biogenesis	
bac_m	7686	49		coding (14	ECB_RS11220	ATP-binding export	
ut_9	43	3	Δ1 bp	1/624 nt)	←	protein CcmA	28
	0.687	24		coding (12		multifunctional fatty acid	
hac m	7747	52		97-1299/21	ECB BS11915	oxidation complex	
ut 10	76	5	3 bp→AA	45 nt)	←	subunit alpha	8
_		21	'	,		•	
	1.049	03					
bac_m	4133	91		coding (18	ECB_RS23820		
ut_8	08	8	(CCAG)7→10	5/216 nt)	→	hypothetical protein	8
phage	1.077	17				toil boot oppointion	
mut 87	5490 56	79	T→C	GT→CGC)	1 →	notein	15
phage	1 240	17			0	protein	10
mut	5483	95		D816N (GA		tail:host specificity	
103	09	0	G→A	T→AAT)	J →	protein	15
phage	1.252	18					
mut	3858	53		S1012G (A		tail:host specificity	
11/	66	8	A→G	GI→GGI)	J →	protein	15
pnage	1.298	1/ 70		coding (22		tail bost specificity	
mut 84	58	70 8	+CA	84/3399 nt)	.1 →	protein	15
phage	1.523	40	10/1	0 1100000 110	0		10
mut	5278	68		coding (73-			
147	9	3	2 bp→CC	74/294 nt)	bor ←	Bor protein precursor	15
phage	1.876	18					
mut	9191	73	TIO	V1077A (G		tail:host specificity	
119 nhara	9	4	I→C	TA→GCA)	J →	protein	8
mut	2.295 7774	17 08		G526G (G		tail host specificity	
45	71	2	A→C	GA→GGC)	J →	protein	15
	4 368	_	-				
bac_a	9719						
n	65	NA	NA	NA	NA	host ancestor indicator	NA

phage	4.390	39					
mut	9509	19		M3I (ATG			
132	04	8	G→A	→ATA)	S →	anti-holin	22

	coef_	po siti					init_ap pear_
name	val	on	mutation	annotation	gene	description	day
phage	2.532	40				Bor protein	
mut	0135	89		intergenic (bor ← / ← lamb	precursor/putative	
149	43	8	G→C	-142/+149)	dap78	envelope protein	15
nhage	2 161	17					
mut	1520	80		G767G (G		tail:host specificity	
89	65	5	T→C	GT→GGC)	J →	protein	15
	-						
phage	2.130	18 73		A1076V (G		tail-host specificity	
118	39	1	C→T	CG→GTG)	J →	protein	15
	-			, í		•	
phage	2.051	17		05000 (0			
mut 45	3609	08 2	A→C	G526G (G		tail:host specificity	15
43	-	2	A /O		5 ,	protein	15
phage	1.747	17					
mut	1642	79	Adha	coding (22		tail:host specificity	45
88	92	1	ДГрр	93/3399 ht)	J →	protein	15
phage	1.663	42					
mut	9685	43		intergenic (lambdap79 \rightarrow /		
169	18	2	C→G	+483/–)	-	hypothetical protein/-	15
nhaqe	- 1 372	18					
mut	5574	25		V917V (GT		tail:host specificity	
105	6	5	G→T	G→GTŤ)	J →	protein	15
	-						
phage	1.293	40 43		intergenic (cell lysis protein/Bor	
139	44	4	T→C	+3/+29)	$Rz \rightarrow / \leftarrow bor$	protein precursor	8
	-			, ,			
phage	1.147	18					
mut 125	0544 41	86	A→G	11122V (A1 T→GTT)	1 ->	tail:host specificity	15
125	-	0	A M	i varij	0	protein	15
phage	1.070	18					
mut	6551	86	A . T	11122F (AT		tail:host specificity	
120	53	8	A→I	1→111)	J →	protein	8
phage	0.820	39					
mut	4981	18		intergenic (hypothetical	
131	93	3	(G)5→6	+364/-7)	orf-64 \rightarrow / \rightarrow S	protein/anti-holin	15
phage	0 774	17		coding (22			
mut	9921	79		91-2292/33		tail:host specificity	
86	48	5	Δ2 bp	99 nt)	J →	protein	15
nhore	-	17					
mut	1314	05		A519T (GC		tail host specificity	
43	64	9	G→A	G→ACG)	J →	protein	15
_	-						
phage	0.720	15		D1200 (C		tail:boot.opocificity	
mut 12	32	89 0	A→G	AC→GGC)	J →	protein	8

Table 8 – Ordered features with non-zero coefficients from final model for step 2 based on P+H:MF

	-	22 47				cytochrome c biogenesis	
bac_m	5765	49		coding (14	ECB_RS11220	ATP-binding export	
ut_9	68	3	Δ1 bp	1/624 nt)	←	protein CcmA	28
	- 0 400	13 68					
bac_m	2262	32		N90K (AAC	ECB_RS06835	thiosulfate	
ut_4	47	6	C→A	→AAA)	→	sulfurtransferase PspE	28
	-	30			[ECB_RS14915	IECB 851/0151	
bac m	8273	23 94			J- [ECB RS14925	ECB RS14920,	
ut_12	89	5	∆777 bp		j	[ECB_RS14925]	15
nhana	-	17					
mut	0.383 9986	08		G528G (G		tail:host specificity	
47	68	8	C→G	GC→GGG)	J →	protein	15
nhana	-	10					
mut	0.288 2442	44		G315G (G		tail host specificity	
18	73	9	C→T	GC→GGT)	$J \rightarrow$	protein	8
	-	34	(40700044070				
bac m	0.252	82 70	GCGGCGGAGCTG	coding (10	FCB BS17295	transcriptional regulator	
ut_13	24	6	CC)1→2	22/2706 nt)	→	MalT	8
	-	34					
hac m	0.226	82 94		0420P (CA	ECB BS17295	transcriptional regulator	
ut_15	55	3	A→C	A→CCA)	→	MalT	8
		1					
pnage mut	0.185	17 32		E608D (GA		tail host specificity	
 55	27	8	A→C	A→GAC)	J →	protein	15
	-	18				PTS	
bac m	0.161 5077	81 80		coding (14 2-151/801	ECB BS09445	mannose/tructose/sorbo	
ut_5	83	2	∆10 bp	nt)	→	liC	8
	-	47					
pnage mut	7523	61		D703F (GA		tail host specificity	
 75	32	3	T→G	T→GAG)	J →	protein	15
	-	40					
pnage mut	0.130	42 30		intergenic (lambdan79 → /		
168	94	0	C→A	+351/)		hypothetical protein/-	8
	-	21					
bac m	4527	91		codina (18	ECB RS23820		
ut_7	8	8	(CCAG)7→8	5/216 nt)	→	hypothetical protein	15
nhore	-	17					
mut	1042	77		B757B (AG		tail:host specificity	
83	87	5	A→G	A→AGG)	J →	protein	15
nhore	-	40				Box protoin	
pnage mut	0.079 2582	40 92		intergenic (bor ← / ← lamb	precursor/putative	
154	97	9	C→T	-173/+118)	dap78	envelope protein	15
nhere	-	17					
pnage mut	9233	17 79		T763T (AC		tail:host specificity	
85	29	3	G→A	G→ACA)	J →	protein	22
nkara	-	40				Box protein	
pnage mut	0.031 3453	40 97		intergenic (bor ← / ← lamb	bor protein	
160	29	3	A→C	-217/+74)	dap78	envelope protein	15

	-	10					
pnage	0.020	16 21		1238L (CT		tail host specificity	
13	09	8	G→T	G→CTT)	J →	protein	15
-	-						
phage	0.001	19 70		P496 (CG			
_iiiui 129	9	1	C→G	T→GGT)	orf-401 →	Tail fiber protein	15
phage	-	42		,		'	
mut	4.19E	43		intergenic (lambdap79 \rightarrow /		
170 phago	-14	16	2 bp→AG	+485/)	-	nypotnetical protein/-	15
mut	3.11E	99		V498V (GT		tail:host specificity	
40	-15	8	G→A	G→GTA)	J →	protein	8
phage	-	40		,		Bor protein	
mut 150	1.34E	90 5	T→C	Intergenic (bor ← / ← lamb	precursor/putative	15
phage	- 15	42	1.0	-143/+142)	dapro		10
mut	1.05E	10		intergenic (lambdap79 \rightarrow /		
161	-15	4	2 bp→AC	+155/)	-	hypothetical protein/-	15
pnage mut	- 9.91F	17 65		A716A (GC		tail host specificity	
mat 76	-16	2	A→G	A→GCG)	J →	protein	15
phage	-	40				Bor protein	
mut	5.88E	93	Tac	intergenic (bor \leftarrow / \leftarrow lamb	precursor/putative	15
phage	-10	16	1-0	-175/+116)	uap7o		15
mut	5.15E	29		K265K (AA		tail:host specificity	
15	-16	9	A→G	A→AAG)	J →	protein	15
phage	- 4 47E	16 22		B241B (C		tail:bost specificity	
14	-17	7	T→C	GT→CGC)	J →	protein	15
phage		17		, í		•	
mut	2.66E	94	T . O	G813G (G		tail:host specificity	4.5
phage	-17	17	1→0	GT→GGC)	J →	protein	15
mut	4.48E	05		G517G (G		tail:host specificity	
42	-17	5	T→C	GT→GGC)	J →	protein	15
phage	5 51E	17 04		V814V (TA		tail host specificity	
102	-17	6	C→T	C→TAT)	J →	protein	15
phage		40		,		Bor protein	
mut	1.84E	93	0.1	intergenic (bor \leftarrow / \leftarrow lamb	precursor/putative	4.5
157 nhage	-16	17	G→I	-183/+108)	dap78	envelope protein	15
mut	2.16E	75		Q752R (CA		tail:host specificity	
82	-16	9	A→G	G→CGG)	J →	protein	15
phage	2 10⊏	17 ุรุธ		Y788V (TA		tail host enertificity	
_iiiui91	-16	8	T→C	T→TAC)	J →	protein	15
phage		17		, í			
mut	2.24E	39	T	T629T (AC		tail:host specificity	45
58 phage	-16	18	1→0	T→ACC)	J →	protein	15
mut	2.97E	53		S1011R (A		tail:host specificity	
116	-16	5	A→C	GC→CGC)	J →	protein	8
phage	3 00 -	40 15		A63A (GC			
134	-16	8	G→A	G→GCA)	Rz →	cell lysis protein	8
phage				,			
mut	5.01E	32	C→T	V46V (GTC		DNA packaging protain	00
∠ phage	-10	40	071	- - GII)		DIVA packaging protein	28
mut	4.02E	61		K49E (AAG			
141	-15	2	T→C	→GAG)	bor ←	Bor protein precursor	8

		24					
		01				multifunctional fatty acid	
bac_m	2.05E	52		1432N (AT	ECB_RS11915	oxidation complex	
ut_11	-14	9	A→T	C→AAC)	←	subunit alpha	8
phage		18					
mut	1.37E	82	T . O	D1107K (G		tail:host specificity	0
123	-07	5	I→G	AT→AAG)	J→	protein	8
pnage	0.016	42		internetic (lavab davi 70 v /		
mut	7332	20		Intergenic ($ambdap79 \rightarrow 7$	hypothetical protain/	0
107	22	/	G-A	+200/-)	-	hypothetical protein/-	0
pnage	0.020	17		intorgonio (
mut	2340	5	TAC	(15)	/ -> put	-/DNA packaging	20
nhage	0.032	40	T /U		-/ / nu i	Bor protein	20
mut	7007	40		intergenic (bor \leftarrow / \leftarrow lamb	precursor/putative	
156	73	3	+T	-177/+114	dan78	envelope protein	15
nhage	0.082	40		11111114)	dapro	Bor protein	10
mut	7083	91		intergenic (bor ← / ← lamb	precursor/putative	
153	64	9	Δ1 bp	-163/+128)	dap78	envelope protein	15
phage	0.117	17				p - p	
mut	8634	86		Y786Y (TA		tail:host specificitv	
90	11	2	C→T	C→TAT)	J →	protein	15
phage	0.144	17		Í Í			
mut	1211	72		D739D (GA		tail:host specificity	
81	08	1	C→T	C→GAT)	J →	protein	15
phage	0.175	18					
mut	9138	28		D927E (GA		tail:host specificity	
109	07	5	C→A	C→GAA)	J →	protein	15
phage	0.176	17					
mut	2285	33		S610S (AG		tail:host specificity	
56	14	4	T→C	T→AGC)	J →	protein	15
phage	0.186	40					
mut	7210	60		V52V (GTC			
140	57	1	G→A	→GII)	bor ←	Bor protein precursor	8
	0.000	10				u ha a a ha a a via	
haa m	0.203	10		intorgonio (Phosphoponin RhoE(concreating tRNA	
ut 1	11	19	A→C	-117/+485)	0/035	ligase	28
nhage	0.215	17	A /O	-117/+403)	04333	ligase	20
mut	4888	28		V592V (GT		tail host specificity	
54	32	0	G→A	G→GTA)	J →	protein	15
phage	0.316	17			-		
mut	7206	04		S515S (TC		tail:host specificity	
41	3	9	C→T	C→TCT)	J →	protein	15
phage	0.345	18					
mut	6242	46		T987A (AC		tail:host specificity	
114	15	3	A→G	G→GCG)	J →	protein	8
phage	0.404	18					
mut	0029	86		11122L (AT	.	tail:host specificity	_
124	65	8	A→C	T→CTT)	J →	protein	8
phage	0.453	40					
mut	1654	14	T . O		D - 1	a all husia investation	_
133	/4	0	I→C	T→CGC)	riz →	cell lysis protein	8
pnage	0.559	40		ooding (00			
mut 1/19	2337	12	2 hn→TT	34/204 pt)	bor ←	Bor protein precureor	15
140	22	24	2 0P / 11	04/234 III)			10
	0 608	01		coding (12		multifunctional fatty acid	
bac m	5108	52		97-1299/21	FCB BS11915	oxidation complex	
ut 10	22	5	3 bp→AA	45 nt)	←	subunit alpha	8
		42		,			
	0.639	28					
bac_m	5393	02		coding (11			
ut_17	86	7	Δ1 bp	25/1341 nt)	lamB →	maltoporin	8

		21					
	0.738	03					
bac_m	6932	91		coding (18	ECB_RS23820		
ut_8	16	8	(CCAG)7→10	5/216 nt)	\rightarrow	hypothetical protein	8
		10					
	0.900	27					
bac_m	1832	15		L34M (CT	ECB_RS05030	ABC transporter	
ut_2	76	4	C→A	G→ATG)	\rightarrow	ATP-binding protein	15
phage	0.958	39					
mut	4000	19		M3I (ATG			
132	64	8	G→A	→ATA)	S →	anti-holin	22
phage	1.379	17					
mut	2236	95		D816N (GA		tail:host specificity	
103	34	0	G→A	T→AAT)	J →	protein	15
phage	1.808	19					
mut	8897	26		L99P (CTG			
128	93	0	T→C	→CCG)	lom →	outer host membrane	22
	2.212						
bac_a	6278						
n	51	NA	NA	NA	NA	host ancestor indicator	NA
phage	2.382	17					
mut	8542	78		coding (22		tail:host specificity	
84	8	8	+CA	84/3399 nt)	J →	protein	15
phage	2.559	17					
mut	9497	79		R764R (C		tail:host specificity	
87	54	6	T→C	GT→CGC)	J →	protein	15
phage	2.673	17					
mut	1136	08		coding (15		tail:host specificity	
44	2	1	+G	77/3399 nt)	J →	protein	15
phage	2.824	17		coding (24			
mut	2102	93		33-2436/33		tail:host specificity	
99	84	7	4 bp→ATCC	99 nt)	J →	protein	15

APPENDIX C. SUPPLEMENTARY INFORMATION FOR CHAPTER 4

Figure 29 – Temporal signal analysis for the host phylodynamic tree

(A) Root-to-tip regression analysis results from the neighbor-joining tree based on hamming distance matrix for E. coli. (B) Significance level assessed by comparing the fitted R squared value versus 500 random permuted ones.

Figure 30 – Temporal signal analysis on the phage phylodynamic tree

(A) Root-to-tip regression analysis results from the maximum likelihood tree built for phage. (B) Significance level assessed by comparing the fitted R squared value versus 500 random permuted ones.

Figure 31 – Recovered unique genomes for *E. coli*

The outer gray ring represents the reference host genome. The orange bars represent the genes that harbors the observed mutation. The colored rings represent samples taken during the experiment. The color groups represent the sampling days. Inner grey bars represent the unique mutations observed from all samples. Different shades of the same color represent different unique genotypes from the same sampling day. White gaps in the genome rings indicate the location of observed mutations.

Figure 32 – Recovered unique genomes for the bacteriophage λ

The outer gray ring represents the reference phage genome. The inner grey bars represent the genes that harbors the observed mutations. The colored rings represent samples taken during the experiment. The color groups represent the sampling days. Different shades of the same color represent different unique genotypes from the same sampling day. White gaps in the genome rings indicate the location of observed mutations.

Figure 33 – D_N/D_S ratios for phage whole genome (A) and J protein region (B) across sampling days

Figure 34 – Difference in genomic variation observed between whole population sequencing and 11 isolated clones of λ on Day 8

The large error bar for clones is because of a recombination event between prophage and a single clone isolated on Day 8.

Figure 35 – Difference in genomic variation observed between whole population sequencing and 10 isolated clones of *E. coli* on Day 8

Figure 36 – Regression analysis of host genotype against coevolution time and phenotype

(A) Regression of the number of mutations in E. coli samples against sampling time (B) Regression of the number of mutations against host resistance. Jittering is applied for better visualization. Significance level assessed by comparing the fitted R squared value vs 500 random permuted ones for the regression against time (C) and regression against phenotype (D).

Figure 37 – Regression analysis of phage genotype against coevolution time and phenotype

(A) Regression of the number of mutations in bacteriophage λ samples against sampling time. (B) Regression of the number of mutations against host resistance. Jittering is applied for better visualization. Significance level assessed by comparing the fitted R squared value vs 500 random permuted ones for the regression against time (C) and regression against phenotype (D).

Genome Location	Mutatio n	Amino acid change	Gen e	Product
11,445	C→T	A->V	$H \rightarrow$	Tail component
11,451	C→T	A->V	$H \rightarrow$	Tail component
15,890	A→G	D->G	$J \rightarrow$	Tail- host specificity protein
16,218	G→T		$J \rightarrow$	Tail- host specificity protein
16,227	T→C		$J \rightarrow$	Tail- host specificity protein
16,299	A→G		$J \rightarrow$	Tail- host specificity protein
16,318	A→C	M->L	$J \rightarrow$	Tail- host specificity protein
16,319	T→C	M->T	$J \rightarrow$	Tail- host specificity protein
16,350	T→C		$J \rightarrow$	Tail- host specificity protein
16,449	C→T		$J \rightarrow$	Tail- host specificity protein
16,485	G→C		$J \rightarrow$	Tail- host specificity protein
16,497	A→G		$J \rightarrow$	Tail- host specificity protein
16,524	C→T		$J \rightarrow$	Tail- host specificity protein
16,596	G→A		$J \rightarrow$	Tail- host specificity protein
16,599	G→A		$J \rightarrow$	Tail- host specificity protein
16,606	A→G	T->A	$J \rightarrow$	Tail- host specificity protein
16,607	C→T	T->M	$J \rightarrow$	Tail- host specificity protein
16,725	$C \rightarrow T$		$J \rightarrow$	Tail- host specificity protein
16,774	G→C	A->P	$J \rightarrow$	Tail- host specificity protein
16,775	$C \rightarrow T$	A->V	$J \rightarrow$	Tail- host specificity protein
16,791	T→C		$J \rightarrow$	Tail- host specificity protein
16,794	T→C		$J \rightarrow$	Tail- host specificity protein
16,866	A→G		$J \rightarrow$	Tail- host specificity protein

Table 9 – Genomic variation present in the phage population on Day 8 of the coevolution experiment as compared to the ancestral λ strain cI26 used in the study

16,869	A→G		$J \rightarrow$	Tail- host specificity protein
16,893	T→C		$J \rightarrow$	Tail- host specificity protein
16,902	C→G		$J \rightarrow$	Tail- host specificity protein
16,905	C→T		$J \rightarrow$	Tail- host specificity protein
16,908	А→С		$J \rightarrow$	Tail- host specificity protein
16,938	T→C		$J \rightarrow$	Tail- host specificity protein
16,972	А→С	S->R	$J \rightarrow$	Tail- host specificity protein
16,980	T→C		$J \rightarrow$	Tail- host specificity protein
16,983	T→G		$J \rightarrow$	Tail- host specificity protein
16,986	T→C		$J \rightarrow$	Tail- host specificity protein
16,998	G→A		$J \rightarrow$	Tail- host specificity protein
18,503	$C \rightarrow T$	A->V	$J \rightarrow$	Tail- host specificity protein
18,734	$T \rightarrow C$	<i>V->A</i>	$J \rightarrow$	Tail- host specificity protein
18,823	$G {\rightarrow} A$	D->N	$J \rightarrow$	Tail- host specificity protein
18,868	$A {\rightarrow} T$	<i>I->F</i>	$J \rightarrow$	Tail- host specificity protein

Genome Location	Mutati on	Gene	Product
38,192	G→T	$carB \rightarrow / \rightarrow c$ aiF	carbamoyl-phosphate synthase large subunit/DNA-binding transcriptional activator
38,193	C→T	$carB \rightarrow / \rightarrow c$ aiF	carbamoyl-phosphate synthase large subunit/DNA-binding transcriptional activator
38,194	$C \rightarrow T$	$carB \rightarrow / \rightarrow c$ aiF	carbamoyl-phosphate synthase large subunit/DNA-binding transcriptional activator
38,195	C→T	$carB \rightarrow / \rightarrow c$ aiF	carbamoyl-phosphate synthase large subunit/DNA-binding transcriptional activator
38,196	A→T	$carB \rightarrow / \rightarrow c$ aiF	carbamoyl-phosphate synthase large subunit/DNA-binding transcriptional activator
38,199	A→T	$carB \rightarrow / \rightarrow c$ aiF	carbamoyl-phosphate synthase large subunit/DNA-binding transcriptional activator
38,200	A→T	$carB \rightarrow / \rightarrow c$ aiF	carbamoyl-phosphate synthase large subunit/DNA-binding transcriptional activator
386,921	C→T	$phoR \rightarrow$	sensory histidine kinase in two-component regulatory system with PhoB
519,803	$G \rightarrow T$	$fdrA \rightarrow$	membrane protein FdrA
519,808	A→C	$fdrA \rightarrow$	membrane protein FdrA
560,154	C→T	$ompT \leftarrow$	outer membrane protease VII (outer membrane protein 3b)
863,867	G→A	$yliC \rightarrow$	predicted peptide transporter subunit: membrane component of ABC superfamily
863,868	G→T	$yliC \rightarrow$	predicted peptide transporter subunit: membrane component of ABC superfamily
863,873	А→С	$yliC \rightarrow$	predicted peptide transporter subunit: membrane component of ABC superfamily
863,874	T→C	$yliC \rightarrow$	predicted peptide transporter subunit: membrane component of ABC superfamily
949,387	G→A	$trxB \leftarrow / \rightarrow lr$ p	thioredoxin reductase, FAD/NAD(P)-binding/DNA-binding transcriptional dual regulator, leucine-binding
1,368,412 :1	(T) _{9→10}	$pspE \rightarrow / \rightarrow y$ cjM	thiosulfate:cyanide sulfurtransferase (rhodanese)/predicted glucosyltransferase
1,418,284	$G \rightarrow T$	$rzpR \rightarrow$	predicted defective peptidase
1,605,635	$\Delta 1 \text{ bp}$	$stfR \leftarrow$	predicted tail fiber protein
1,605,636	T→G	$stfR \leftarrow$	predicted tail fiber protein
1,605,637	$G \rightarrow T$	$stfR \leftarrow$	predicted tail fiber protein
1,605,637 :1	+T	$stfR \leftarrow$	predicted tail fiber protein
1,881,837	Δ1 bp	$manY \rightarrow$	mannose-specific enzyme IIC component of PTS
1,881,838	Δ1 bp	$manY \rightarrow$	mannose-specific enzyme IIC component of PTS
1,882,021	C→T	$manY \rightarrow$	mannose-specific enzyme IIC component of PTS

Table 10 – Genomic variation present in *E. coli* population on Day 8 compared to
ancestral genome (GenBank: CP000819.1)

1,882,908 :1	+A	$manZ \rightarrow$	mannose-specific enzyme IID component of PTS
1,882,915	Δ16 bp	$manZ \rightarrow$	mannose-specific enzyme IID component of PTS
2,111,270	С→А	$\begin{array}{c} ECB_01999 \\ \rightarrow \end{array}$	putative phage protein
2,250,122 :1	+G	$napG \leftarrow$	quinol dehydrogenase periplasmic component
2,250,126	A→C	$napG \leftarrow$	quinol dehydrogenase periplasmic component
2,250,129	$\Delta 1 \text{ bp}$	$napG \leftarrow$	quinol dehydrogenase periplasmic component
2,310,865	G→A	$yfaZ \leftarrow / \rightarrow y$ faO	predicted outer membrane porin protein/predicted NUDIX hydrolase
2,310,868	С→А	$yfaZ \leftarrow / \rightarrow y$ faO	predicted outer membrane porin protein/predicted NUDIX hydrolase
2,401,525	$\Delta 1 \text{ bp}$	yfcX←	fused enoyl-CoA hydratase and epimerase and isomerase/3-hydroxyacyl-CoA dehydrogenase
2,401,526	G→A	yfcX←	fused enoyl-CoA hydratase and epimerase and isomerase/3-hydroxyacyl-CoA dehydrogenase
2,401,527	С→А	yfcX←	fused enoyl-CoA hydratase and epimerase and isomerase/3-hydroxyacyl-CoA dehydrogenase
2,401,529	A→T	yfcX←	fused enoyl-CoA hydratase and epimerase and isomerase/3-hydroxyacyl-CoA dehydrogenase
2,940,619	A→T	$ygfB \leftarrow$	hypothetical protein
3,000,508	C→G	$flu \rightarrow$	antigen 43 (Ag43) phase-variable biofilm formation autotransporter
3,482,706 :1	25-bp duplicati on	$malT \rightarrow$	transcriptional regulator MalT
3,483,094 :1	+C	$malT \rightarrow$	transcriptional regulator MalT
3,483,094 :2	+T	$malT \rightarrow$	transcriptional regulator MalT
3,942,902	Т→А	$yifK \rightarrow$	predicted transporter
4,236,155	T→A	$lexA \rightarrow$	LexA repressor
4,236,156	Т→А	$lexA \rightarrow$	LexA repressor
4,236,158	C→G	$lexA \rightarrow$	LexA repressor
4,236,160	T→A	$lexA \rightarrow$	LexA repressor
4,236,161	T→A	$lexA \rightarrow$	LexA repressor
4,300,483	$C \rightarrow T$	$phnG \leftarrow$	carbon-phosphorus lyase complex subunit
4,504,878	Т→А	$insA-25 \rightarrow / \rightarrow ECB_0416$ 2	IS1 protein InsA/hypothetical protein
4,537,685	A→T	$yjiC \leftarrow / \rightarrow yj$ iD	hypothetical protein/DNA replication/recombination/repair protein

REFRENCES

1. Koonin EV, Senkevich TG, Dolja VV. The ancient Virus World and evolution of cells. Biol Direct. 2006;1:29. Epub 2006/09/21. doi: 10.1186/1745-6150-1-29. PubMed PMID: 16984643; PubMed Central PMCID: PMCPMC1594570.

2. Breitbart M, Rohwer F. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 2005;13(6):278-84. Epub 2005/06/07. doi: 10.1016/j.tim.2005.04.003. PubMed PMID: 15936660.

3. Lecoq H. [Discovery of the first virus, the tobacco mosaic virus: 1892 or 1898?]. C R Acad Sci III. 2001;324(10):929-33. Epub 2001/09/26. PubMed PMID: 11570281.

4. Khelifa M, Masse D, Blanc S, Drucker M. Evaluation of the minimal replication time of Cauliflower mosaic virus in different hosts. Virology. 2010;396(2):238-45. Epub 2009/11/17. doi: 10.1016/j.virol.2009.032. PubMed PMID: 19913268.

5. Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Ruger W. Bacteriophage T4 genome. Microbiol Mol Biol Rev. 2003;67(1):86-156, table of contents. Epub 2003/03/11. PubMed PMID: 12626685; PubMed Central PMCID: PMCPMC150520.

6. Prangishvili D, Forterre P, Garrett RA. Viruses of the Archaea: a unifying view. Nat Rev Microbiol. 2006;4(11):837-48. Epub 2006/10/17. doi: 10.1038/nrmicro1527. PubMed PMID: 17041631.

7. Suttle CA. Viruses in the sea. Nature. 2005;437(7057):356-61. Epub 2005/09/16. doi: 10.1038/nature04160. PubMed PMID: 16163346.

8. Paul JH, Sullivan MB, Segall AM, Rohwer F. Marine phage genomics. Comp Biochem Physiol B Biochem Mol Biol. 2002;133(4):463-76. Epub 2002/12/10. PubMed PMID: 12470812.

9. Paul JH, Sullivan MB. Marine phage genomics: what have we learned? Curr Opin Biotechnol. 2005;16(3):299-307. Epub 2005/06/18. doi: 10.1016/j.copbio.2005.03.007. PubMed PMID: 15961031.

10. Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148(6):1258-70. Epub 2012/03/20. doi: 10.1016/j.cell.2012.01.035. PubMed PMID: 22424233; PubMed Central PMCID: PMCPMC5050011.

11. Kinross JM, Darzi AW, Nicholson JK. Gut microbiome-host interactions in health and disease. Genome Med. 2011;3(3):14. Epub 2011/03/12. doi: 10.1186/gm228. PubMed PMID: 21392406; PubMed Central PMCID: PMCPMC3092099.

12. Schoenfeld T, Patterson M, Richardson PM, Wommack KE, Young M, Mead D. Assembly of viral metagenomes from yellowstone hot springs. Appl Environ Microbiol.
2008;74(13):4164-74. Epub 2008/04/29. doi: 10.1128/AEM.02598-07. PubMed PMID: 18441115; PubMed Central PMCID: PMCPMC2446518.

13. Bolduc B, Wirth JF, Mazurie A, Young MJ. Viral assemblage composition in Yellowstone acidic hot springs assessed by network analysis. ISME J. 2015;9(10):2162-77. Epub 2015/07/01. doi: 10.1038/ismej.2015.28. PubMed PMID: 26125684; PubMed Central PMCID: PMCPMC4579470.

14. Peterson JF. Electron microscopy of soil-borne wheat mosaic virus in host cells. Virology. 1970;42(2):304-10. Epub 1970/10/01. PubMed PMID: 4099066.

15. DeLeon-Rodriguez N, Lathem TL, Rodriguez RL, Barazesh JM, Anderson BE, Beyersdorf AJ, et al. Microbiome of the upper troposphere: species composition and prevalence, effects of tropical storms, and atmospheric implications. Proc Natl Acad Sci U S A. 2013;110(7):2575-80. Epub 2013/01/30. doi: 10.1073/pnas.1212089110. PubMed PMID: 23359712; PubMed Central PMCID: PMCPMC3574924.

16. Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A. 1998;95(12):6578-83. Epub 1998/06/17. PubMed PMID: 9618454; PubMed Central PMCID: PMCPMC33863.

17. Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D'Hondt S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci U S A. 2012;109(40):16213-6. Epub 2012/08/29. doi: 10.1073/pnas.1203849109. PubMed PMID: 22927371; PubMed Central PMCID: PMCPMC3479597.

18. Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiol Rev. 2004;28(2):127-81. Epub 2004/04/28. doi: 10.1016/j.femsre.2003.08.001. PubMed PMID: 15109783.

19. Milo R, Jorgensen P, Moran U, Weber G, Springer M. BioNumbers--the database of key numbers in molecular and cell biology. Nucleic Acids Res. 2010;38(Database issue):D750-3. Epub 2009/10/27. doi: 10.1093/nar/gkp889. PubMed PMID: 19854939; PubMed Central PMCID: PMCPMC2808940.

20. Thingstad TF. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnology and Oceanography. 2000;45(6):1320-8.

21. Wigington CH, Sonderegger D, Brussaard CP, Buchan A, Finke JF, Fuhrman JA, et al. Re-examination of the relationship between marine virus and microbial cell abundances. Nat Microbiol. 2016;1:15024. Epub 2016/08/31. doi: 10.1038/nmicrobiol.2015.24. PubMed PMID: 27572161.

22. Bohannan BJM, Lenski RE. The Relative Importance of Competition and Predation Varies with Productivity in a Model Community. Am Nat. 2000;156(4):329-40. Epub 2000/10/01. doi: 10.1086/303393. PubMed PMID: 29592139.

23. Koskella B, Brockhurst MA. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev. 2014;38(5):916-31. Epub 2014/03/13. doi: 10.1111/1574-6976.12072. PubMed PMID: 24617569; PubMed Central PMCID: PMCPMC4257071.

24. Rodriguez-Valera F, Martin-Cuadrado AB, Rodriguez-Brito B, Pasic L, Thingstad TF, Rohwer F, et al. Explaining microbial population genomics through phage predation. Nat Rev Microbiol. 2009;7(11):828-36. Epub 2009/10/17. doi: 10.1038/nrmicro2235. PubMed PMID: 19834481.

25. Twort FW. Further Investigations on the Nature of Ultra-Microscopic Viruses and their Cultivation. J Hyg (Lond). 1936;36(2):204-35. Epub 1936/06/01. PubMed PMID: 20475326; PubMed Central PMCID: PMCPMC2170983.

26. Keen EC. A century of phage research: bacteriophages and the shaping of modern biology. Bioessays. 2015;37(1):6-9. Epub 2014/12/19. doi: 10.1002/bies.201400152. PubMed PMID: 25521633; PubMed Central PMCID: PMCPMC4418462.

27. Taylor MW. The Discovery of Bacteriophage and the d'Herelle Controversy. Viruses and Man: A History of Interactions: Springer; 2014. p. 53-61.

28. Duckworth DH. " Who discovered bacteriophage?". Bacteriological reviews. 1976;40(4):793.

29. Chibani-Chennoufi S, Bruttin A, Dillmann ML, Brussow H. Phage-host interaction: an ecological perspective. J Bacteriol. 2004;186(12):3677-86. Epub 2004/06/04. doi: 10.1128/JB.186.12.3677-3686.2004. PubMed PMID: 15175280; PubMed Central PMCID: PMCPMC419959.

30. Danovaro R, Corinaldesi C, Dell'anno A, Fuhrman JA, Middelburg JJ, Noble RT, et al. Marine viruses and global climate change. FEMS Microbiol Rev. 2011;35(6):993-1034. Epub 2011/01/06. doi: 10.1111/j.1574-6976.2010.00258.x. PubMed PMID: 21204862.

31. Deveau H, Barrangou R, Garneau JE, Labonte J, Fremaux C, Boyaval P, et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol. 2008;190(4):1390-400. Epub 2007/12/11. doi: 10.1128/JB.01412-07. PubMed PMID: 18065545; PubMed Central PMCID: PMCPMC2238228.

32. Abedon ST, Herschler TD, Stopar D. Bacteriophage latent-period evolution as a response to resource availability. Appl Environ Microbiol. 2001;67(9):4233-41. Epub 2001/08/30. PubMed PMID: 11526028; PubMed Central PMCID: PMCPMC93152.

33. Bohannan BJ, Lenski RE. Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecology letters. 2000;3(4):362-77.

34. Hadas H, Einav M, Fishov I, Zaritsky A. Bacteriophage T4 development depends on the physiology of its host Escherichia coli. Microbiology. 1997;143 (Pt 1):179-85. Epub 1997/01/01. doi: 10.1099/00221287-143-1-179. PubMed PMID: 9025292.

35. Lederberg EM, Lederberg J. Genetic Studies of Lysogenicity in Escherichia Coli. Genetics. 1953;38(1):51-64. Epub 1953/01/01. PubMed PMID: 17247421; PubMed Central PMCID: PMCPMC1209586.

36. Dekel-Bird NP, Sabehi G, Mosevitzky B, Lindell D. Host-dependent differences in abundance, composition and host range of cyanophages from the Red Sea. Environ Microbiol. 2015;17(4):1286-99. Epub 2014/07/22. doi: 10.1111/1462-2920.12569. PubMed PMID: 25041521.

37. Weitz JS, Poisot T, Meyer JR, Flores CO, Valverde S, Sullivan MB, et al. Phagebacteria infection networks. Trends Microbiol. 2013;21(2):82-91. Epub 2012/12/19. doi: 10.1016/j.tim.2012.11.003. PubMed PMID: 23245704.

38. Elena SF, Agudelo-Romero P, Lalic J. The evolution of viruses in multi-host fitness landscapes. Open Virol J. 2009;3:1-6. Epub 2009/07/03. doi: 10.2174/1874357900903010001. PubMed PMID: 19572052; PubMed Central PMCID: PMCPMC2703199.

39. Sullivan MB, Waterbury JB, Chisholm SW. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature. 2003;424(6952):1047-51. Epub 2003/08/29. doi: 10.1038/nature01929. PubMed PMID: 12944965.

40. Woolhouse ME, Taylor LH, Haydon DT. Population biology of multihost pathogens. Science. 2001;292(5519):1109-12. Epub 2001/05/16. PubMed PMID: 11352066.

41. Orlova EV. How viruses infect bacteria? EMBO J. 2009;28(7):797-8. Epub 2009/04/09. doi: 10.1038/emboj.2009.71. PubMed PMID: 19352408; PubMed Central PMCID: PMCPMC2670874.

42. Herskowitz I, Hagen D. The lysis-lysogeny decision of phage lambda: explicit programming and responsiveness. Annu Rev Genet. 1980;14:399-445. Epub 1980/01/01. doi: 10.1146/annurev.ge.14.120180.002151. PubMed PMID: 6452089.

43. Erez Z, Steinberger-Levy I, Shamir M, Doron S, Stokar-Avihail A, Peleg Y, et al. Communication between viruses guides lysis-lysogeny decisions. Nature. 2017;541(7638):488-93. Epub 2017/01/19. doi: 10.1038/nature21049. PubMed PMID: 28099413; PubMed Central PMCID: PMCPMC5378303.

44. Weitz JS, Beckett SJ, Brum JR, Cael BB, Dushoff J. Lysis, lysogeny and virusmicrobe ratios. Nature. 2017;549(7672):E1-E3. Epub 2017/09/22. doi: 10.1038/nature23295. PubMed PMID: 28933438. 45. Ptashne M. A genetic switch: phage lambda revisited: Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY:; 2004.

46. Ackers GK, Johnson AD, Shea MA. Quantitative model for gene regulation by lambda phage repressor. Proc Natl Acad Sci U S A. 1982;79(4):1129-33. Epub 1982/02/01. PubMed PMID: 6461856; PubMed Central PMCID: PMCPMC345914.

47. Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010;468(7320):67-71. Epub 2010/11/05. doi: 10.1038/nature09523. PubMed PMID: 21048762.

48. Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010;327(5962):167-70. Epub 2010/01/09. doi: 10.1126/science.1179555. PubMed PMID: 20056882.

49. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. 2011;9(6):467-77. Epub 2011/05/10. doi: 10.1038/nrmicro2577. PubMed PMID: 21552286; PubMed Central PMCID: PMCPMC3380444.

50. Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet. 2011;45:273-97. Epub 2011/11/09. doi: 10.1146/annurev-genet-110410-132430. PubMed PMID: 22060043.

51. Deveau H, Garneau JE, Moineau S. CRISPR/Cas system and its role in phagebacteria interactions. Annu Rev Microbiol. 2010;64:475-93. Epub 2010/06/10. doi: 10.1146/annurev.micro.112408.134123. PubMed PMID: 20528693.

52. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. 2015;13(11):722-36. Epub 2015/09/29. doi: 10.1038/nrmicro3569. PubMed PMID: 26411297; PubMed Central PMCID: PMCPMC5426118.

53. Barrangou R, Marraffini LA. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol Cell. 2014;54(2):234-44. Epub 2014/04/29. doi: 10.1016/j.molcel.2014.03.011. PubMed PMID: 24766887; PubMed Central PMCID: PMCPMC4025954.

54. Rath D, Amlinger L, Rath A, Lundgren M. The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie. 2015;117:119-28. Epub 2015/04/15. doi: 10.1016/j.biochi.2015.03.025. PubMed PMID: 25868999.

55. Barrangou R, van der Oost J. Bacteriophage exclusion, a new defense system. EMBO J. 2015;34(2):134-5. Epub 2014/12/17. doi: 10.15252/embj.201490620. PubMed PMID: 25502457; PubMed Central PMCID: PMCPMC4337066.

56. Goldfarb T, Sberro H, Weinstock E, Cohen O, Doron S, Charpak-Amikam Y, et al. BREX is a novel phage resistance system widespread in microbial genomes. EMBO J. 2015;34(2):169-83. Epub 2014/12/03. doi: 10.15252/embj.201489455. PubMed PMID: 25452498; PubMed Central PMCID: PMCPMC4337064.

57. Ofir G, Melamed S, Sberro H, Mukamel Z, Silverman S, Yaakov G, et al. DISARM is a widespread bacterial defence system with broad anti-phage activities. Nat Microbiol. 2018;3(1):90-8. Epub 2017/11/01. doi: 10.1038/s41564-017-0051-0. PubMed PMID: 29085076; PubMed Central PMCID: PMCPMC5739279.

58. Beckett SJ, Williams HT. Coevolutionary diversification creates nested-modular structure in phage-bacteria interaction networks. Interface Focus. 2013;3(6):20130033. Epub 2014/02/12. doi: 10.1098/rsfs.2013.0033. PubMed PMID: 24516719; PubMed Central PMCID: PMCPMC3915849.

59. Flores CO, Meyer JR, Valverde S, Farr L, Weitz JS. Statistical structure of hostphage interactions. Proc Natl Acad Sci U S A. 2011;108(28):E288-97. Epub 2011/06/29. doi: 10.1073/pnas.1101595108. PubMed PMID: 21709225; PubMed Central PMCID: PMCPMC3136311.

60. Hurwitz BL, Sullivan MB. The Pacific Ocean virome (POV): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology. PLoS One. 2013;8(2):e57355. Epub 2013/03/08. doi: 10.1371/journal.pone.0057355. PubMed PMID: 23468974; PubMed Central PMCID: PMCPMC3585363.

61. Edwards RA, Rohwer F. Viral metagenomics. Nat Rev Microbiol. 2005;3(6):504-10. Epub 2005/05/12. doi: 10.1038/nrmicro1163. PubMed PMID: 15886693.

62. Rappe MS, Giovannoni SJ. The uncultured microbial majority. Annu Rev
Microbiol. 2003;57:369-94. Epub 2003/10/07. doi:
10.1146/annurev.micro.57.030502.090759. PubMed PMID: 14527284.

63. Aylward FO, Boeuf D, Mende DR, Wood-Charlson EM, Vislova A, Eppley JM, et al. Diel cycling and long-term persistence of viruses in the ocean's euphotic zone. Proc Natl Acad Sci U S A. 2017;114(43):11446-51. Epub 2017/10/27. doi: 10.1073/pnas.1714821114. PubMed PMID: 29073070; PubMed Central PMCID: PMCPMC5663388.

64. Tsementzi D, Wu J, Deutsch S, Nath S, Rodriguez RL, Burns AS, et al. SAR11 bacteria linked to ocean anoxia and nitrogen loss. Nature. 2016;536(7615):179-83. Epub 2016/08/04. doi: 10.1038/nature19068. PubMed PMID: 27487207; PubMed Central PMCID: PMCPMC4990128.

65. Brum JR, Sullivan MB. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat Rev Microbiol. 2015;13(3):147-59. Epub 2015/02/03. doi: 10.1038/nrmicro3404. PubMed PMID: 25639680.

66. Meyer JR, Dobias DT, Weitz JS, Barrick JE, Quick RT, Lenski RE. Repeatability and contingency in the evolution of a key innovation in phage lambda. Science. 2012;335(6067):428-32. Epub 2012/01/28. doi: 10.1126/science.1214449. PubMed PMID: 22282803; PubMed Central PMCID: PMCPMC3306806.

67. Lobo FP, Mota BE, Pena SD, Azevedo V, Macedo AM, Tauch A, et al. Virus-host coevolution: common patterns of nucleotide motif usage in Flaviviridae and their hosts. PLoS One. 2009;4(7):e6282. Epub 2009/07/21. doi: 10.1371/journal.pone.0006282. PubMed PMID: 19617912; PubMed Central PMCID: PMCPMC2707012.

68. MacPherson A, Otto SP, Nuismer SL. Keeping Pace with the Red Queen: Identifying the Genetic Basis of Susceptibility to Infectious Disease. Genetics. 2018;208(2):779-89. Epub 2017/12/11. doi: 10.1534/genetics.117.300481. PubMed PMID: 29223971; PubMed Central PMCID: PMCPMC5788537.

69. Jallow M, Teo YY, Small KS, Rockett KA, Deloukas P, Clark TG, et al. Genomewide and fine-resolution association analysis of malaria in West Africa. Nat Genet. 2009;41(6):657-65. Epub 2009/05/26. doi: 10.1038/ng.388. PubMed PMID: 19465909; PubMed Central PMCID: PMCPMC2889040.

70. Scanlan PD, Hall AR, Lopez-Pascua LD, Buckling A. Genetic basis of infectivity evolution in a bacteriophage. Mol Ecol. 2011;20(5):981-9. Epub 2010/11/16. doi: 10.1111/j.1365-294X.2010.04903.x. PubMed PMID: 21073584.

71. de Jonge PA, Nobrega FL, Brouns SJJ, Dutilh BE. Molecular and Evolutionary Determinants of Bacteriophage Host Range. Trends Microbiol. 2018. Epub 2018/09/06. doi: 10.1016/j.tim.2018.08.006. PubMed PMID: 30181062.

72. Agrawal A, Lively CM. Infection genetics: gene-for-gene versus matching-alleles models and all points in between. Evolutionary Ecology Research. 2002;4(1):91-107.

73. Woolhouse ME, Webster JP, Domingo E, Charlesworth B, Levin BR. Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nature genetics. 2002;32(4):569.

74. Gandon S, Buckling A, Decaestecker E, Day T. Host-parasite coevolution and patterns of adaptation across time and space. J Evol Biol. 2008;21(6):1861-6. Epub 2008/08/23. doi: 10.1111/j.1420-9101.2008.01598.x. PubMed PMID: 18717749.

75. Sasaki A. Host-parasite coevolution in a multilocus gene-for-gene system. Proc Biol Sci. 2000;267(1458):2183-8. Epub 2001/06/21. doi: 10.1098/rspb.2000.1267. PubMed PMID: 11413631; PubMed Central PMCID: PMCPMC1690804.

76. Frank SA. Coevolutionary Genetics of Plants and Pathogens. Evolutionary Ecology. 1993;7(1):45-75. doi: Doi 10.1007/Bf01237734. PubMed PMID: WOS:A1993KH13200004.

77. Munson-McGee JH, Peng S, Dewerff S, Stepanauskas R, Whitaker RJ, Weitz JS, et al. A virus or more in (nearly) every cell: ubiquitous networks of virus-host interactions in extreme environments. ISME J. 2018;12(7):1706-14. Epub 2018/02/23. doi: 10.1038/s41396-018-0071-7. PubMed PMID: 29467398; PubMed Central PMCID: PMCPMC6018696.

78. Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N, et al. Uncovering Earth's virome. Nature. 2016;536(7617):425-30. Epub 2016/08/18. doi: 10.1038/nature19094. PubMed PMID: 27533034.

79. Fuhrman JA, Schwalbach M. Viral influence on aquatic bacterial communities. Biol Bull. 2003;204(2):192-5. Epub 2003/04/18. doi: 10.2307/1543557. PubMed PMID: 12700152.

80. Rohwer F, Thurber RV. Viruses manipulate the marine environment. Nature. 2009;459(7244):207-12. Epub 2009/05/16. doi: 10.1038/nature08060. PubMed PMID: 19444207.

81. Breitbart M. Marine viruses: truth or dare. Ann Rev Mar Sci. 2012;4:425-48. Epub 2012/03/31. doi: 10.1146/annurev-marine-120709-142805. PubMed PMID: 22457982.

82. Needham DM, Chow CE, Cram JA, Sachdeva R, Parada A, Fuhrman JA. Shortterm observations of marine bacterial and viral communities: patterns, connections and resilience. ISME J. 2013;7(7):1274-85. Epub 2013/03/01. doi: 10.1038/ismej.2013.19. PubMed PMID: 23446831; PubMed Central PMCID: PMCPMC3695287.

83. Sullivan MB, Weitz JS, Wilhelm S. Viral ecology comes of age. Environ Microbiol Rep. 2017;9(1):33-5. Epub 2016/11/27. doi: 10.1111/1758-2229.12504. PubMed PMID: 27888577.

84. Malki K, Kula A, Bruder K, Sible E, Hatzopoulos T, Steidel S, et al. Bacteriophages isolated from Lake Michigan demonstrate broad host-range across several bacterial phyla. Virol J. 2015;12:164. Epub 2015/10/11. doi: 10.1186/s12985-015-0395-0. PubMed PMID: 26453042; PubMed Central PMCID: PMCPMC4600314.

85. Comeau AM, Buenaventura E, Suttle CA. A persistent, productive, and seasonally dynamic vibriophage population within Pacific oysters (Crassostrea gigas). Appl Environ Microbiol. 2005;71(9):5324-31. Epub 2005/09/10. doi: 10.1128/AEM.71.9.5324-5331.2005. PubMed PMID: 16151121; PubMed Central PMCID: PMCPMC1214601.

86. Winstanley C, Langille MG, Fothergill JL, Kukavica-Ibrulj I, Paradis-Bleau C, Sanschagrin F, et al. Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain of Pseudomonas aeruginosa. Genome Res. 2009;19(1):12-23. Epub 2008/12/03. doi: 10.1101/gr.086082.108. PubMed PMID: 19047519; PubMed Central PMCID: PMCPMC2612960.

87. Reno ML, Held NL, Fields CJ, Burke PV, Whitaker RJ. Biogeography of the Sulfolobus islandicus pan-genome. Proc Natl Acad Sci U S A. 2009;106(21):8605-10.

Epub 2009/05/14. doi: 10.1073/pnas.0808945106. PubMed PMID: 19435847; PubMed Central PMCID: PMCPMC2689034.

88. Edwards RA, McNair K, Faust K, Raes J, Dutilh BE. Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol Rev. 2016;40(2):258-72. Epub 2015/12/15. doi: 10.1093/femsre/fuv048. PubMed PMID: 26657537; PubMed Central PMCID: PMCPMC5831537.

89. Brum JR, Ignacio-Espinoza JC, Roux S, Doulcier G, Acinas SG, Alberti A, et al. Ocean plankton. Patterns and ecological drivers of ocean viral communities. Science. 2015;348(6237):1261498. Epub 2015/05/23. doi: 10.1126/science.1261498. PubMed PMID: 25999515.

90. Snyder JC, Bateson MM, Lavin M, Young MJ. Use of cellular CRISPR (clusters of regularly interspaced short palindromic repeats) spacer-based microarrays for detection of viruses in environmental samples. Appl Environ Microbiol. 2010;76(21):7251-8. Epub 2010/09/21. doi: 10.1128/AEM.01109-10. PubMed PMID: 20851987; PubMed Central PMCID: PMCPMC2976250.

91. Anderson RE, Brazelton WJ, Baross JA. Using CRISPRs as a metagenomic tool to identify microbial hosts of a diffuse flow hydrothermal vent viral assemblage. FEMS Microbiol Ecol. 2011;77(1):120-33. Epub 2011/03/18. doi: 10.1111/j.1574-6941.2011.01090.x. PubMed PMID: 21410492.

92. Berg Miller ME, Yeoman CJ, Chia N, Tringe SG, Angly FE, Edwards RA, et al. Phage-bacteria relationships and CRISPR elements revealed by a metagenomic survey of the rumen microbiome. Environ Microbiol. 2012;14(1):207-27. Epub 2011/10/19. doi: 10.1111/j.1462-2920.2011.02593.x. PubMed PMID: 22004549.

93. Allers E, Moraru C, Duhaime MB, Beneze E, Solonenko N, Barrero-Canosa J, et al. Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses. Environ Microbiol. 2013;15(8):2306-18. Epub 2013/03/16. doi: 10.1111/1462-2920.12100. PubMed PMID: 23489642; PubMed Central PMCID: PMCPMC3884771.

94. Deng L, Gregory A, Yilmaz S, Poulos BT, Hugenholtz P, Sullivan MB. Contrasting life strategies of viruses that infect photo- and heterotrophic bacteria, as revealed by viral tagging. MBio. 2012;3(6). Epub 2012/11/01. doi: 10.1128/mBio.00373-12. PubMed PMID: 23111870; PubMed Central PMCID: PMCPMC3487772.

95. Deng L, Ignacio-Espinoza JC, Gregory AC, Poulos BT, Weitz JS, Hugenholtz P, et al. Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature. 2014;513(7517):242-5. Epub 2014/07/22. doi: 10.1038/nature13459. PubMed PMID: 25043051.

96. Tadmor AD, Ottesen EA, Leadbetter JR, Phillips R. Probing individual environmental bacteria for viruses by using microfluidic digital PCR. Science.

2011;333(6038):58-62. Epub 2011/07/02. doi: 10.1126/science.1200758. PubMed PMID: 21719670; PubMed Central PMCID: PMCPMC3261838.

97. Stepanauskas R. Single cell genomics: an individual look at microbes. Curr Opin Microbiol. 2012;15(5):613-20. Epub 2012/10/03. doi: 10.1016/j.mib.2012.09.001. PubMed PMID: 23026140.

98. Roux S, Hawley AK, Torres Beltran M, Scofield M, Schwientek P, Stepanauskas R, et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. Elife. 2014;3:e03125. Epub 2014/08/31. doi: 10.7554/eLife.03125. PubMed PMID: 25171894; PubMed Central PMCID: PMCPMC4164917.

99. Labonte JM, Field EK, Lau M, Chivian D, Van Heerden E, Wommack KE, et al. Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population. Front Microbiol. 2015;6:349. Epub 2015/05/09. doi: 10.3389/fmicb.2015.00349. PubMed PMID: 25954269; PubMed Central PMCID: PMCPMC4406082.

100. Wilson WH, Gilg IC, Moniruzzaman M, Field EK, Koren S, LeCleir GR, et al. Genomic exploration of individual giant ocean viruses. ISME J. 2017;11(8):1736-45. Epub 2017/05/13. doi: 10.1038/ismej.2017.61. PubMed PMID: 28498373; PubMed Central PMCID: PMCPMC5520044.

101. Labonte JM, Swan BK, Poulos B, Luo H, Koren S, Hallam SJ, et al. Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. ISME J. 2015;9(11):2386-99. Epub 2015/04/08. doi: 10.1038/ismej.2015.48. PubMed PMID: 25848873; PubMed Central PMCID: PMCPMC4611503.

102. Stepanauskas R, Sieracki ME. Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proc Natl Acad Sci U S A. 2007;104(21):9052-7. Epub 2007/05/16. doi: 10.1073/pnas.0700496104. PubMed PMID: 17502618; PubMed Central PMCID: PMCPMC1885626.

103. Swan BK, Martinez-Garcia M, Preston CM, Sczyrba A, Woyke T, Lamy D, et al. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science. 2011;333(6047):1296-300. Epub 2011/09/03. doi: 10.1126/science.1203690. PubMed PMID: 21885783.

104. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114-20. Epub 2014/04/04. doi: 10.1093/bioinformatics/btu170. PubMed PMID: 24695404; PubMed Central PMCID: PMCPMC4103590.

105. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455-77. Epub 2012/04/18. doi: 10.1089/cmb.2012.0021. PubMed PMID: 22506599; PubMed Central PMCID: PMCPMC3342519.

106. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25(7):1043-55. Epub 2015/05/16. doi: 10.1101/gr.186072.114. PubMed PMID: 25977477; PubMed Central PMCID: PMCPMC4484387.

107. Ahlgren NA, Ren J, Lu YY, Fuhrman JA, Sun F. Alignment-free \$d_2^*\$ oligonucleotide frequency dissimilarity measure improves prediction of hosts from metagenomically-derived viral sequences. Nucleic Acids Res. 2017;45(1):39-53. Epub 2016/12/03. doi: 10.1093/nar/gkw1002. PubMed PMID: 27899557; PubMed Central PMCID: PMCPMC5224470.

108. Manrique P, Bolduc B, Walk ST, van der Oost J, de Vos WM, Young MJ. Healthy human gut phageome. Proc Natl Acad Sci U S A. 2016;113(37):10400-5. Epub 2016/08/31. doi: 10.1073/pnas.1601060113. PubMed PMID: 27573828; PubMed Central PMCID: PMCPMC5027468.

109. Richter M, Rossello-Mora R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A. 2009;106(45):19126-31. Epub 2009/10/27. doi: 10.1073/pnas.0906412106. PubMed PMID: 19855009; PubMed Central PMCID: PMCPMC2776425.

110. von Neubeck M, Huptas C, Gluck C, Krewinkel M, Stoeckel M, Stressler T, et al. Pseudomonas helleri sp. nov. and Pseudomonas weihenstephanensis sp. nov., isolated from raw cow's milk. Int J Syst Evol Microbiol. 2016;66(3):1163-73. Epub 2015/12/18. doi: 10.1099/ijsem.0.000852. PubMed PMID: 26675012.

111. Flores CO, Poisot T, Valverde S, Weitz JS. BiMat: a MATLAB package to facilitate the analysis of bipartite networks. Methods Ecol Evol. 2016;7(1):127-32.

112. Edgar RC. PILER-CR: fast and accurate identification of CRISPR repeats. BMC Bioinformatics. 2007;8:18. Epub 2007/01/24. doi: 10.1186/1471-2105-8-18. PubMed PMID: 17239253; PubMed Central PMCID: PMCPMC1790904.

113. Munson-McGee JH, Field EK, Bateson M, Rooney C, Stepanauskas R, Young MJ. Nanoarchaeota, Their Sulfolobales Host, and Nanoarchaeota Virus Distribution across Yellowstone National Park Hot Springs. Appl Environ Microbiol. 2015;81(22):7860-8. Epub 2015/09/06. doi: 10.1128/AEM.01539-15. PubMed PMID: 26341207; PubMed Central PMCID: PMCPMC4616950.

114. Podar M, Makarova KS, Graham DE, Wolf YI, Koonin EV, Reysenbach AL. Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park. Biol Direct. 2013;8:9. Epub 2013/04/24. doi: 10.1186/1745-6150-8-9. PubMed PMID: 23607440; PubMed Central PMCID: PMCPMC3655853.

115. Rice G, Tang L, Stedman K, Roberto F, Spuhler J, Gillitzer E, et al. The structure of a thermophilic archaeal virus shows a double-stranded DNA viral capsid type that spans

all domains of life. Proc Natl Acad Sci U S A. 2004;101(20):7716-20. Epub 2004/05/05. doi: 10.1073/pnas.0401773101. PubMed PMID: 15123802; PubMed Central PMCID: PMCPMC419672.

116. Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10(8):538-50. Epub 2012/07/17. doi: 10.1038/nrmicro2832. PubMed PMID: 22796884.

117. Flannick J, Novak A, Srinivasan BS, McAdams HH, Batzoglou S. Graemlin: general and robust alignment of multiple large interaction networks. Genome Res. 2006;16(9):1169-81. Epub 2006/08/11. doi: 10.1101/gr.5235706. PubMed PMID: 16899655; PubMed Central PMCID: PMCPMC1557769.

118. Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. 2014;5:219. Epub 2014/06/07. doi: 10.3389/fmicb.2014.00219. PubMed PMID: 24904535; PubMed Central PMCID: PMCPMC4033041.

119. Neurath AR, Kent SB, Strick N, Parker K. Identification and chemical synthesis of a host cell receptor binding site on hepatitis B virus. Cell. 1986;46(3):429-36. Epub 1986/08/01. PubMed PMID: 3015414.

120. Wang J, Hofnung M, Charbit A. The C-terminal portion of the tail fiber protein of bacteriophage lambda is responsible for binding to LamB, its receptor at the surface of Escherichia coli K-12. J Bacteriol. 2000;182(2):508-12. Epub 2000/01/12. PubMed PMID: 10629200; PubMed Central PMCID: PMCPMC94303.

121. Chatterjee S, Rothenberg E. Interaction of bacteriophage l with its E. coli receptor, LamB. Viruses. 2012;4(11):3162-78. Epub 2012/12/04. doi: 10.3390/v4113162. PubMed PMID: 23202520; PubMed Central PMCID: PMCPMC3509688.

122. Bajić D, Vila JC, Blount ZD, Sanchez A. On the deformability of an empirical fitness landscape by microbial evolution. bioRxiv. 2018:293407.

123. Buckling A, Rainey PB. Antagonistic coevolution between a bacterium and a bacteriophage. Proc Biol Sci. 2002;269(1494):931-6. Epub 2002/05/25. doi: 10.1098/rspb.2001.1945. PubMed PMID: 12028776; PubMed Central PMCID: PMCPMC1690980.

124. Elena SF, Lenski RE. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet. 2003;4(6):457-69. Epub 2003/05/31. doi: 10.1038/nrg1088. PubMed PMID: 12776215.

125. Poullain V, Gandon S, Brockhurst MA, Buckling A, Hochberg ME. The evolution of specificity in evolving and coevolving antagonistic interactions between a bacteria and its phage. Evolution. 2008;62(1):1-11. Epub 2007/11/17. doi: 10.1111/j.1558-5646.2007.00260.x. PubMed PMID: 18005153.

126. Kaltz O, Shykoff J. Within-and among-population variation in infectivity, latency and spore production in a host-pathogen system. Journal of Evolutionary Biology. 2002;15(5):850-60.

127. Gurney J, Aldakak L, Betts A, Gougat-Barbera C, Poisot T, Kaltz O, et al. Network structure and local adaptation in co-evolving bacteria-phage interactions. Mol Ecol. 2017;26(7):1764-77. Epub 2017/01/17. doi: 10.1111/mec.14008. PubMed PMID: 28092408.

128. Horton MW, Bodenhausen N, Beilsmith K, Meng D, Muegge BD, Subramanian S, et al. Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat Commun. 2014;5:5320. Epub 2014/11/11. doi: 10.1038/ncomms6320. PubMed PMID: 25382143; PubMed Central PMCID: PMCPMC4232226.

129. Falush D. Bacterial genomics: Microbial GWAS coming of age. Nat Microbiol. 2016;1:16059. Epub 2016/08/31. doi: 10.1038/nmicrobiol.2016.59. PubMed PMID: 27572652.

130. Power RA, Parkhill J, de Oliveira T. Microbial genome-wide association studies: lessons from human GWAS. Nat Rev Genet. 2017;18(1):41-50. Epub 2016/11/15. doi: 10.1038/nrg.2016.132. PubMed PMID: 27840430.

131. Wei WH, Hemani G, Haley CS. Detecting epistasis in human complex traits. Nat Rev Genet. 2014;15(11):722-33. Epub 2014/09/10. doi: 10.1038/nrg3747. PubMed PMID: 25200660.

132. An P, Mukherjee O, Chanda P, Yao L, Engelman CD, Huang CH, et al. The challenge of detecting epistasis (G x G interactions): Genetic Analysis Workshop 16. Genet Epidemiol. 2009;33 Suppl 1:S58-67. Epub 2009/11/20. doi: 10.1002/gepi.20474. PubMed PMID: 19924703; PubMed Central PMCID: PMCPMC3692280.

133. Gibson G. A primer of human genetics: Sinauer Associates, Incorporated, Publishers; 2015.

134. Dutilh BE, Reyes A, Hall RJ, Whiteson KL. Editorial: Virus Discovery by Metagenomics: The (Im)possibilities. Front Microbiol. 2017;8:1710. Epub 2017/09/26. doi: 10.3389/fmicb.2017.01710. PubMed PMID: 28943867; PubMed Central PMCID: PMCPMC5596103.

135. Sullivan NJ, Geisbert TW, Geisbert JB, Xu L, Yang ZY, Roederer M, et al. Accelerated vaccination for Ebola virus haemorrhagic fever in non-human primates. Nature. 2003;424(6949):681-4. Epub 2003/08/09. doi: 10.1038/nature01876. PubMed PMID: 12904795.

136. Modi SR, Lee HH, Spina CS, Collins JJ. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature. 2013;499(7457):219-22. Epub 2013/06/12. doi: 10.1038/nature12212. PubMed PMID: 23748443; PubMed Central PMCID: PMCPMC3710538.

137. Werts C, Michel V, Hofnung M, Charbit A. Adsorption of bacteriophage lambda on the LamB protein of Escherichia coli K-12: point mutations in gene J of lambda responsible for extended host range. J Bacteriol. 1994;176(4):941-7. Epub 1994/02/01. PubMed PMID: 8106335; PubMed Central PMCID: PMCPMC205142.

138. Wang J, Michel V, Hofnung M, Charbit A. Cloning of the J gene of bacteriophage lambda, expression and solubilization of the J protein: first in vitro studies on the interactions between J and LamB, its cell surface receptor. Res Microbiol. 1998;149(9):611-24. Epub 1998/11/25. PubMed PMID: 9826917.

139. Chang CY, Nam K, Young R. S gene expression and the timing of lysis by bacteriophage lambda. J Bacteriol. 1995;177(11):3283-94. Epub 1995/06/01. PubMed PMID: 7768829; PubMed Central PMCID: PMCPMC177022.

140. Anderson B, Rashid MH, Carter C, Pasternack G, Rajanna C, Revazishvili T, et al. Enumeration of bacteriophage particles: Comparative analysis of the traditional plaque assay and real-time QPCR- and nanosight-based assays. Bacteriophage. 2011;1(2):86-93. Epub 2012/02/16. doi: 10.4161/bact.1.2.15456. PubMed PMID: 22334864; PubMed Central PMCID: PMCPMC3278645.

141. Sambrook J, Russell DW, Sambrook J. The condensed protocols from Molecular cloning : a laboratory manual. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press; 2006. v, 800 p. p.

142. Vica Pacheco S, Garcia Gonzalez O, Paniagua Contreras GL. The lom gene of bacteriophage lambda is involved in Escherichia coli K12 adhesion to human buccal epithelial cells. FEMS Microbiol Lett. 1997;156(1):129-32. Epub 1997/11/22. PubMed PMID: 9368371.

143. Suttle CA. Marine viruses--major players in the global ecosystem. Nat Rev Microbiol. 2007;5(10):801-12. Epub 2007/09/15. doi: 10.1038/nrmicro1750. PubMed PMID: 17853907.

144. Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth's biogeochemical cycles. Science. 2008;320(5879):1034-9. Epub 2008/05/24. doi: 10.1126/science.1153213. PubMed PMID: 18497287.

145. Fuhrman JA, Noble RT. Viruses and protists cause similar bacterial mortality in coastal seawater. Limnology and Oceanography. 1995;40(7):1236-42.

146. Gobler CJ, Hutchins DA, Fisher NS, Cosper EM, Saňudo-Wilhelmy SA. Release and bioavailability of C, N, P Se, and Fe following viral lysis of a marine chrysophyte. Limnology and Oceanography. 1997;42(7):1492-504.

147. Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol. 2010;8(5):317-27. Epub 2010/03/30. doi: 10.1038/nrmicro2315. PubMed PMID: 20348932.

148. Buckling A, Rainey PB. The role of parasites in sympatric and allopatric host diversification. Nature. 2002;420(6915):496-9. Epub 2002/12/06. doi: 10.1038/nature01164. PubMed PMID: 12466840.

149. Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A, Keren M, et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science. 2018;359(6379). Epub 2018/01/27. doi: 10.1126/science.aar4120. PubMed PMID: 29371424.

150. Stern A, Sorek R. The phage-host arms race: shaping the evolution of microbes. Bioessays. 2011;33(1):43-51. Epub 2010/10/28. doi: 10.1002/bies.201000071. PubMed PMID: 20979102; PubMed Central PMCID: PMCPMC3274958.

151. Dy RL, Richter C, Salmond GP, Fineran PC. Remarkable Mechanisms in Microbes to Resist Phage Infections. Annu Rev Virol. 2014;1(1):307-31. Epub 2014/11/03. doi: 10.1146/annurev-virology-031413-085500. PubMed PMID: 26958724.

152. Agrawal A, Lively CM. Infection genetics: gene-for-gene versus matching-alleles models and all points in between. Evolutionary Ecology Research. 2002;4(1):79-90. PubMed PMID: WOS:000174068800005.

153. Woolhouse MEJ, Webster JP, Domingo E, Charlesworth B, Levin BR. Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nature Genetics. 2002;32(4):569-77. doi: 10.1038/ng1202-569. PubMed PMID: WOS:000179593000007.

154. Pelosi L, Kuhn L, Guetta D, Garin J, Geiselmann J, Lenski RE, et al. Parallel changes in global protein profiles during long-term experimental evolution in Escherichia coli. Genetics. 2006;173(4):1851-69. Epub 2006/05/17. doi: 10.1534/genetics.105.049619. PubMed PMID: 16702438; PubMed Central PMCID: PMCPMC1569701.

155. Baym M, Kryazhimskiy S, Lieberman TD, Chung H, Desai MM, Kishony R. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS One. 2015;10(5):e0128036. Epub 2015/05/23. doi: 10.1371/journal.pone.0128036. PubMed PMID: 26000737; PubMed Central PMCID: PMCPMC4441430.

156. Winter C, Bouvier T, Weinbauer MG, Thingstad TF. Trade-offs between competition and defense specialists among unicellular planktonic organisms: the "killing the winner" hypothesis revisited. Microbiol Mol Biol Rev. 2010;74(1):42-57. Epub 2010/03/04. doi: 10.1128/MMBR.00034-09. PubMed PMID: 20197498; PubMed Central PMCID: PMCPMC2832346.

157. Flores CO, Valverde S, Weitz JS. Multi-scale structure and geographic drivers of cross-infection within marine bacteria and phages. ISME J. 2013;7(3):520-32. Epub 2012/11/28. doi: 10.1038/ismej.2012.135. PubMed PMID: 23178671; PubMed Central PMCID: PMCPMC3578562.

158. Betts A, Kaltz O, Hochberg ME. Contrasted coevolutionary dynamics between a bacterial pathogen and its bacteriophages. Proc Natl Acad Sci U S A. 2014;111(30):11109-14. Epub 2014/07/16. doi: 10.1073/pnas.1406763111. PubMed PMID: 25024215; PubMed Central PMCID: PMCPMC4121802.

159. Hall AR, Scanlan PD, Morgan AD, Buckling A. Host-parasite coevolutionary arms races give way to fluctuating selection. Ecol Lett. 2011;14(7):635-42. Epub 2011/04/28. doi: 10.1111/j.1461-0248.2011.01624.x. PubMed PMID: 21521436.

160. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet journal. 2011;17(1):pp. 10-2.

161. Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010.

162. Deatherage DE, Barrick JE. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol Biol. 2014;1151:165-88. Epub 2014/05/20. doi: 10.1007/978-1-4939-0554-6_12. PubMed PMID: 24838886; PubMed Central PMCID: PMCPMC4239701.

163. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357-9. Epub 2012/03/06. doi: 10.1038/nmeth.1923. PubMed PMID: 22388286; PubMed Central PMCID: PMCPMC3322381.

164. Kimura M. Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature. 1977;267(5608):275-6. Epub 1977/05/19. PubMed PMID: 865622.

165. Yang Z, Bielawski JP. Statistical methods for detecting molecular adaptation. Trends Ecol Evol. 2000;15(12):496-503. Epub 2000/12/15. PubMed PMID: 11114436.

166. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059-66. Epub 2002/07/24. PubMed PMID: 12136088; PubMed Central PMCID: PMCPMC135756.

167. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312-3. Epub 2014/01/24. doi: 10.1093/bioinformatics/btu033. PubMed PMID: 24451623; PubMed Central PMCID: PMCPMC3998144.

168. Sagulenko P, Puller V, Neher RA. TreeTime: Maximum-likelihood phylodynamic analysis. Virus Evol. 2018;4(1):vex042. Epub 2018/01/18. doi: 10.1093/ve/vex042. PubMed PMID: 29340210; PubMed Central PMCID: PMCPMC5758920.

169. Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27(4):5923. Epub 2010/12/21. doi: 10.1093/bioinformatics/btq706. PubMed PMID: 21169378;
PubMed Central PMCID: PMCPMC3035803.

170. Makarenkov V. T-REX: reconstructing and visualizing phylogenetic trees and reticulation networks. Bioinformatics. 2001;17(7):664-8. Epub 2001/07/13. PubMed PMID: 11448889.

171. Cooper VS, Schneider D, Blot M, Lenski RE. Mechanisms causing rapid and parallel losses of ribose catabolism in evolving populations of Escherichia coli B. J Bacteriol. 2001;183(9):2834-41. Epub 2001/04/09. doi: 10.1128/JB.183.9.2834-2841.2001. PubMed PMID: 11292803; PubMed Central PMCID: PMCPMC99500.

172. Maynard ND, Birch EW, Sanghvi JC, Chen L, Gutschow MV, Covert MW. A forward-genetic screen and dynamic analysis of lambda phage host-dependencies reveals an extensive interaction network and a new anti-viral strategy. PLoS Genet. 2010;6(7):e1001017. Epub 2010/07/16. doi: 10.1371/journal.pgen.1001017. PubMed PMID: 20628568; PubMed Central PMCID: PMCPMC2900299.

173. Burmeister AR, Lenski RE, Meyer JR. Host coevolution alters the adaptive landscape of a virus. Proc Biol Sci. 2016;283(1839). Epub 2016/09/30. doi: 10.1098/rspb.2016.1528. PubMed PMID: 27683370; PubMed Central PMCID: PMCPMC5046904.

174. Maddamsetti R, Johnson DT, Spielman SJ, Petrie KL, Marks DS, Meyer JR. Gainof-function experiments with bacteriophage lambda uncover residues under diversifying selection in nature. Evolution. 2018. Epub 2018/08/29. doi: 10.1111/evo.13586. PubMed PMID: 30152871.

175. Berkane E, Orlik F, Stegmeier JF, Charbit A, Winterhalter M, Benz R. Interaction of bacteriophage lambda with its cell surface receptor: an in vitro study of binding of the viral tail protein gpJ to LamB (Maltoporin). Biochemistry. 2006;45(8):2708-20. Epub 2006/02/24. doi: 10.1021/bi051800v. PubMed PMID: 16489764.

176. Grayson P, Han L, Winther T, Phillips R. Real-time observations of single bacteriophage lambda DNA ejections in vitro. Proc Natl Acad Sci U S A. 2007;104(37):14652-7. Epub 2007/09/07. doi: 10.1073/pnas.0703274104. PubMed PMID: 17804798; PubMed Central PMCID: PMCPMC1976217.

177. Erni B, Zanolari B, Kocher HP. The mannose permease of Escherichia coli consists of three different proteins. Amino acid sequence and function in sugar transport, sugar phosphorylation, and penetration of phage lambda DNA. J Biol Chem. 1987;262(11):5238-47. Epub 1987/04/15. PubMed PMID: 2951378.

178. Esquinas-Rychen M, Erni B. Facilitation of bacteriophage lambda DNA injection by inner membrane proteins of the bacterial phosphoenol-pyruvate: carbohydrate phosphotransferase system (PTS). J Mol Microbiol Biotechnol. 2001;3(3):361-70. Epub 2001/05/22. PubMed PMID: 11361066.

179. Levy SF, Blundell JR, Venkataram S, Petrov DA, Fisher DS, Sherlock G. Quantitative evolutionary dynamics using high-resolution lineage tracking. Nature.

2015;519(7542):181-6. Epub 2015/03/04. doi: 10.1038/nature14279. PubMed PMID: 25731169; PubMed Central PMCID: PMCPMC4426284.

180. Neher RA, Bedford T, Daniels RS, Russell CA, Shraiman BI. Prediction, dynamics, and visualization of antigenic phenotypes of seasonal influenza viruses. Proc Natl Acad Sci U S A. 2016;113(12):E1701-9. Epub 2016/03/10. doi: 10.1073/pnas.1525578113. PubMed PMID: 26951657; PubMed Central PMCID: PMCPMC4812706.