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ABSTRACT

Language use in online interactions varies from community to community, from individual

to individual, and even for individuals in different contexts. While prior work has identified

these differences, far less is understood about why these differences have arisen in online

writing. My dissertation focuses on this why question. The reasons for linguistic diversity

in online writing could be multifold. As more and more interpersonal social interactions

are conducted through technology-mediated channels, there is an increasing need to express

multiple social meanings in varied social situations through linguistic means. In the absence

of non-verbal cues, the technology-mediated channels provide several affordances to conduct

interpersonal interactions. How do factors that are unique to online writing, such as the need

to convey varied social meanings and the affordances in technology-mediated channels, shape

online writing? My dissertation investigates this interplay through a series of large-scale

computational studies of linguistic style variation in online writing.

Using unsupervised methods and causal statistical analysis, I have investigated the

social meaning of varied non-standard language usage in social media and the effects of

new technological affordances in online social platforms on individuals’ writing style. To

quantitatively study community-level stylistic variation at scale, I have developed a multi-

dimensional style lexicon using unsupervised techniques and used it to study style-shifting in

online multi-communities. Further, I have investigated how writing style norm enforcement in

online platforms affects stylistic variation in online writing. My dissertation will advance our

understanding of how individuals utilize the affordances in online social platforms and shift

style to achieve varied social goals in online interpersonal interactions. Understanding the

social dimensions of linguistic style variation in online writing has important consequences

for the design of language technology and social computing systems, and beyond.
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CHAPTER 1

INTRODUCTION

“All words have the taste of a profession, a genre, a tendency, a party, a

particular work, a particular person, a generation, an age group, the day

and hour. Each word tastes of the context and contexts in which it has

lived its socially charged life.” [3]

Online writing1 is often stylistically distinct from other written genres, such as

academic papers, books, and print newspapers [4, 5], but it also displays an immense

internal stylistic diversity [6, 7]. Posts from social platforms such as Twitter, Facebook,

and Reddit, use a variety of stylistic constructs including capitalization (e.g., I’m VERY

happy), repetitions (e.g., cooolll!!!! ), abbreviations (e.g., ikr), transcripts of spoken

variants (e.g., jawns ), emoticons (e.g., :-D), and emojis (e.g., ) [7]. Differences

in the usage of these stylistic variables in social media have been shown to align

with macro-level social categories such as geographic location [8, 9], age [10, 11, 12],

gender [13, 14, 15, 16], and race [17]. While these differences in online writing are

incontrovertible, far less is understood about why or how this stylistic variation arises.

The purpose of this dissertation is to shed light on this question using computational

methods on large social media corpora, coupled with sociolinguistic theories.

In face-to-face interactions, we make adjustments in our speech when we are

talking to different people, about different topics, and in different places. Some of

this adjustment is influenced by context [18]. For example, the language we use in a

courtroom is very different from the language we use at a gathering of friends, and we

speak differently to our boss from the way we do to our peers, even when the topic is
1By online writing, I refer to the writing in online social platforms such as Twitter, Facebook,

and Reddit.
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the same. Similar to speech, online writing also happens in a social context that can

vary a lot: different addressees or audiences, topics of discussion, social goals of the

writing, social group or community norms, etc. So, it is reasonable to believe that the

social context plays an important role in linguistic style variation in online writing.

But how does the social context influence online writing style? Audience or addressee

is a social context, and sociolinguistic investigations found stylistic variation in speech

depending on the nature of the audience: whether the audience are direct addressees or

overhearers [19]. But, how can we characterize audience in social media? Community

or group norm is another social context, and ethnographic studies found stylistic

variation depending on group norms: high school students who identify themselves

as nerds (as opposed to cool) use formal register in casual speech and avoid popular

slang [20, 21]. How can we identify or characterize norms in online communities and

study the influence of community norms in online writing variation?

In addition to the social context, the technical affordances in the social platforms

in which online interactions take place could also affect the writing style. For example,

emojis are introduced to online platforms as a new form of writing [22]. How do these

affordances influence the writing style of individuals? An important aspect in which

online writing differs from other forms of writing is the possibility of the content being

moderated [23]. How does such moderation or norm enforcement impact the writing

style?

The questions about how context—such as social situation, technical affordances,

and norm enforcement—affects linguistic style variation in online writing are interre-

lated. This dissertation investigates how these different aspects shape online writing

through a series of large scale computational studies using techniques that are more

general than what has been used in the past. In the remainder of this chapter, I

first provide a brief background on linguistic style variation, and then describe four

dimensions along which I study the social meaning of linguistic style variation in
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online writing. Then I provide a brief overview of the work presented in the remaining

chapters of this dissertation. Following that, I provide a brief comparison to existing

approaches to studying stylistic variation and discuss implications of this thesis work.

Finally, I present my thesis statement and conclude with a list of contributions of this

dissertation.

1.1 Linguistic Style Variation

Stylistic variation refers to altering vocabulary, syntactic structure, or discourse

structure based on the context and situation. For example, an individual may speak

in a technical register in a professional situation, while they might use a more dialectal

feature in a casual social situation [24].

(1) The lunch served in the cafeteria today was not very appetizing.

(2) The lunch served in the cafeteria today was nasty.

While the examples (1) and (2) convey the same objective information, the

difference in the choice of vocabulary ‘not very appetizing’ and ‘nasty’ indicates a

difference in social situation: formal versus informal.

(3) We don’t expect any help from the government.

(4) We don’t expect no help from the government.

The two examples (3) and (4) above differ in that (4) includes a negative marker on

the object noun phrase (no help) as well as on the verb phrase (don’t expect), whereas

(3) avoids the double negative by replacing the noun negator with any. Despite this

difference, the two examples convey the same semantic meaning. However, these two

examples do convey different social meaning as a direct consequence of the grammatical

difference. With its standard forms, (3) is often considered as characteristic of middle-

class speech, while (4) is often considered as characteristic of working-class speech [25].
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These differences carry sociolinguistic significance and are recognized by the speakers

of the language [24].

In early investigations, the study of sociolinguistic variation is often characterized

along three principal components: linguistic or internal constraints, social or inter-

speaker constraints, and stylistic or intra-speaker constraints [26]. The study of

linguistic variation involves constraints on variable speech output, sound change,

vowel shifts, and structural relations among regional dialects [26]. The study of social

variation involves understanding the relation between variation and social categories

such as gender, age, socioeconomic class, ethnicity, and geographic origin. Eckert and

Rickford [26] define stylistic variation as any intra-speaker variation that is not directly

attributable to performance factors or to factors within the linguistic system, and

they propose that the next phase of stylistic studies will have to focus on the highly

permeable boundaries among linguistic, social, and stylistic constraints. Motivated

by this, I consider the following dimensions to study stylistic variation in online

writing: new forms of linguistic variables or linguistic innovations in online writing

(parallel to linguistic constraints in speech), inter-person variation, and intra-person

variation. Later work in sociolinguistic variation also considered the dimension of

speech community, which involves the notion of shared norms or practices [27, 28, 29].

Similar to speech communities, online social platforms have various virtual communities

such as Reddit and 4chan. Therefore, I also consider the dimension of community-

variation. To summarize, in this dissertation, I study the patterns and social meaning

of stylistic variation in online writing along the following four dimensions: (1) stylistic

innovations, (2) inter-person variation, (3) intra-person variation, and (4) community

(or communicative) norms. Next, I briefly explain each of these dimensions.

Linguistic Innovations: As more and more interpersonal interactions are con-

ducted through technology-mediated channels, social media language is becoming
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lexically diverse [4, 5] due to the needs to convey social cues and due to the chang-

ing affordances in the socio-technical channels [30, 31]. These factors lead to the

emergence of new linguistic variables in online writing [7]. Some of these variables

are transcriptions of existing spoken language variables (e.g., hella meaning ‘very’ or

‘a lot of’ ) [5], and others are linguistic innovations created as a result of the need

to convey social cues in the new medium (e.g., emoticons, abbreviations such as lol,

expressive lengthening such as coooolll!!! ) [30]. Another form that emerged due to

the technological affordances in online platforms is the pictographs called emojis [22].

These lexical innovations are used to convey varied social meanings [32], and my work

focuses on the patterns of variation in the usage of lexical variables by individuals in

various contexts.

Inter-Person Variation: Individuals have different characteristics in terms of their

age, gender, geographic origins, socio-economic status, and cultural preferences. As the

rich body of literature in sociolinguistics suggests, these characteristics of individuals

are reflected in their language [33]. Such individual traits could also lead to various

stylistic choices in online writing, and my work focuses on inter-person variation in

adapting linguistic styles.

Intra-Person Variation: Online written interactions take place in various social

contexts. For example, an individual may use Twitter to interact with close friends,

professional colleagues, and also with a virtual community of Twitter users following an

event using a common hashtag [34]. These various interactional contexts have different

social goals which require changes in self-representation using linguistic means [19].

My work focuses on intra-person variation to convey varied social meanings in online

writing.
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Community Norms: Online platforms provide virtual spaces for groups of individ-

uals to get together and discuss about a common topic or activity of interest [35, 36].

When groups of individuals with various traits come together and form communities,

as in many online communities, a set of practices or norms emerge in the course of

their interactions [37, 38, 39]. These norms are not fixed, but rather they evolve

simultaneously with the community’s membership and by the interactions in which the

members engage [37, 40]. When individuals participate in various communities, they

construct different forms of identities. Eckert argues that a key to this entire process of

individual identity construction is the stylistic practices in different communities [41].

My work focuses on linguistic style norms in online communities and investigates how

individuals adapt to those linguistic norms.

1.2 Computational Approaches to Understanding Social Mean-

ing of Stylistic Variation

The work presented in Chapters 4-8 focuses on multiple of the dimensions described

in the previous section (Figure 1.1). This section provides an outline of each of those

chapters. Before presenting my work in linguistic style variation in online writing, in

Chapter 3, I address some of the issues related to the appropriateness of using social

media data to study sociolinguistic phenomena. Specifically, I present findings from

our work [42] on identifying the biases and limitations of using social media data to

make generalized conclusions.

Linguistic Style Innovations and Intra-Person Variation (Chapter 4): In

this chapter, I investigate intra-person variation in using two types of innovations on

Twitter—geography specific variables, and variables that emerged in online writing

and are non-standard in other written genres—through the lens of the sociolinguistic

concept of audience design. Findings from this work show that Twitter users are
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attuned to both the nature of their audience and the social meaning of lexical variation,

and they customize their self-presentation accordingly.

Linguistic Innovations and the Competition for Paralinguistic Functions

(Chapter 5): In this chapter, I investigate the causal effects of the adoption of a new

socio-technical linguistic affordance, emojis, on individuals’ writing style on Twitter.

Findings from this work suggest that the new linguistic form of emojis competes with

prior orthographic means of non-standard writing in conveying varied social meaning.

Multi-Community Style Variation (Chapter 6): In this chapter, I quanti-

tatively operationalize the sociolinguistic concept of interpersonal stancetaking to

study intra-person, inter-person, and inter-community variation in the online multi-

community platform Reddit. I validate the multidimensional stancetaking lexicon that

I developed in this work using intrinsic and extrinsic evaluations, and I demonstrate

the utility of the stance lexicon in studying interpersonal social phenomena such as

politeness and formality.

Linguistic Style-shifting in Online Multi-Communities (Chapter 7): In

this chapter, I investigate the patterns of linguistic style variation in online multi-

community environments using the multidimensional stancetaking lexicon to measure

linguistic style of individual members and communities on Reddit. Preliminary findings

from this work suggest that the users who participate in multiple communities change

their writing style depending on in which community they participate.

Effects of Norm Enforcement on Writing Style (Chapter 8): In this

chapter, I study the causal effects of moderation on writing style using Wikipedia’s

neutral point of view (NPOV) tagging as a case study. Findings from this work suggest

that the NPOV writing style norm enforcement helps Wikipedia articles to converge

to a desired neutral language style. However, for individual editors, NPOV corrections

and talk page discussions yield no significant change in their usage non-neutral words,

including Wikipedia’s own list of “words to watch.”
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Figure 1.1: Axes of online writing variation considered in this dissertation.

1.3 Comparison to Existing Approaches to Linguistic Style

Variation

Data-driven methods to extract and construct linguistic measures. An

important aspect in which the work presented in this dissertation differs from prior

work in stylistic variation, both in sociolinguistics and computational linguistics, is

the selection of linguistic measures to study variation and social phenomena. Studies

in sociolinguistics and computer supported communication (CMC) primarily use a

small number of hand-chosen linguistic variables to investigate stylistic variation [e.g.,

43, 44, 45]. Linguistic variables used in computational studies mainly consist of lists

of function words [46] or part-of-speech (POS) tags [47, 48]. It is less intuitive how

much of linguistic style aspects are captured in such variables. In contrast, I use a

data-driven approach to automatically extract large number of linguistic variables:
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I first use corpus frequency based automated approaches that are specialized for

linguistic variable extraction [e.g., 17, 49], and then I use qualitative filtering on

the extracted list of variables to eliminate irrelevant terms (e.g., work presented

in Chapter 4). Further, prior work focused on predicting social phenomena based on

varied language (e.g., politeness [50], formality [51]) uses crowdsourcing to obtain gold

annotations and build large datasets for supervised predictions. These annotation

efforts draw on the annotators’ own intuitions about the meaning of the sociolinguistic

constructs. In contrast, I use unsupervised techniques to extract dimensions based on

the underlying linguistic functions performed through groups of variables (e.g., work

presented in Chapter 6).

Causal inference for the study of linguistic style variation. Prior work on

linguistic predictors of online social phenomena, such as power imbalances [52, 53, 54],

politeness [50], and formality [51], identifies and tests a wide range of sociolinguistic

correlations. However, correlations alone cannot present the complete picture of

the social meaning of associated linguistic variables [44, 55]. A major challenge in

studying the social meaning of online stylistic variation is isolating the causal role of

varied interactional context—an issue that has received relatively little consideration

in prior computational studies of sociolinguistic phenomena, but is crucial when using

observational data from online platforms. In my work, I use carefully constructed

datasets and causal inference techniques to eliminate possible confounds, and I study

the causal role of social context in conveying varied social meaning through multiple

linguistic styles (e.g., work presented in Chapter 4, Chapter 5, and Chapter 8).
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1.4 Implications for Natural Language Processing, Social Me-

dia Analysis, and Sociolinguistics

Understanding the social dimensions of linguistic style differences has implications for

the design of language technology and social computing systems, and beyond. While

the computational linguistics community has made great progress in understanding

the objective meaning in language [56], understanding language in social context

still remains as a challenge in automated processing of natural language. Traditional

natural language processing (NLP) tools consider language as static and these tools

fail to account for how language varies across social context and how language depends

on individuals’ attitudes [57, 58, 59]. Hence these tools are brittle to variation in

online writing, particularly to non-standard language and informal social context [5].

Understanding the social dimensions of language variation will give insights into how

we can adapt these systems and make them more robust to language variation (e.g.,

[60]).

Existing tools to automatically extract insights from social data to answer questions,

for example in social sciences and public health, primarily consider the topical aspect

of textual content (e.g., health, body, and work sub-categories in the psychological

processes category of LIWC (Linguistic Inquiry Word Count; [61])). While the topical

aspect conveys important information, the stylistic aspect of language also conveys

additional information. Popular tools, such as LIWC, count words in predefined

categories such as anxiety, family, and pronoun. These categories are identified first,

based on psychological constructs and syntactic groups, and the lexicons for each

category were created manually. Such predefined categories may not capture the

diversity of linguistic styles in online writing. Even if these lexicons can be expanded

to include non-standard variants, the pre-defined nature of the categories limits its

usage to capture varying linguistic styles that emerge in online writing.

10



As a first step towards building robust language processing and social systems,

the work presented in this dissertation uncovers patterns of linguistic style variation

in various social contexts. From a sociolinguistic perspective, linguistic variation is

fundamental to language change, and understanding the stylistic variation in online

writing is essential to track language change in progress.

1.5 Thesis Statement

In this dissertation, I investigate the interplay between evolving social media language,

the need to convey varied social meanings in online interpersonal interactions, and

the affordances in technology-mediated channels, through a series of large-scale com-

putational studies of linguistic style variation in online writing. My work shows

that by using data-driven computational algorithms and causal statistical

analysis of observational data we can extract insights about how social

context influences online writing. My work provides a holistic perspective on

the connections between online linguistic style innovations, intra-person variation,

inter-person variation, and community linguistic norms.

1.6 Contributions

This dissertation makes the following specific contributions in terms of our under-

standing of linguistic style variation in online writing:

• An understanding of the effects of audience on linguistic style vari-

ation in social media. By focusing on the relevance of audience size to

intra-person variation in using non-standard forms in Twitter, I show that

individuals use multiple stylistic innovations to convey varied social meaning.

Specifically, I show that the users of Twitter are attuned to both the nature

of their audience and the social meaning of lexical variation, and that they
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customize their self-presentation accordingly.

• An understanding of the effects of new technical affordances on online

writing style. Through a causal statistical analysis on the adoption of a new

form of stylistic innovation in online writing, emojis, I show that the new forms

of stylistic innovations compete with other orthographic resources in fulfilling

social media users’ need to convey varied social meanings.

• Construction of a data-driven multidimensional lexicon to quantita-

tively measure linguistic style. To systematically study the inter-person,

intra-person, and inter-community linguistic style variation in online multi-

community environments, I quantitatively operationalize the sociolinguistic

concept of interpersonal stancetaking by developing a multidimensional stance

lexicon. I validate the stance dimensions intrinsically by showing the linguistic co-

herence and interpretability of the extracted stance dimensions and extrinsically

by showing the utility of the stance dimensions in predicting social phenomena.

• An understanding of community linguistic norms and linguistic style-

shifting in online multi-communities. Using the multidimensional stance

lexicon to characterize the linguistic style of sub-communities and individual

members in Reddit and using statistical models, I provide preliminary evidence

that individuals change their writing style depending on the community they

participate in.

• An understanding of the effects of moderation on online writing style.

By analyzing the causal effect of writing style norm enforcement in Wikipedia, I

show that linguistic moderation in Wikipedia helps the convergence of writing

style norms at the platform-level (i.e., articles), but not at individual member-

level (i.e., editors).
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CHAPTER 2

BACKGROUND AND RELATED WORK

Style in language is related to how things are said as opposed to what is said. In

sociolinguistics, style is a set of linguistic variants with specific social meanings,

including indications of personal attributes, group membership, or social situations.

Variation is integral to the concept of stylistic practice—without variation there is

no notion of varied social meaning [26]. Stylistic variation can occur phonologically,

lexically, syntactically, and semantically. The concept of style in the context of

sociolinguistics was first introduced in the work of William Labov in 1960’s, in which

Labov studied New York City department store employees and found that variable

pronunciations of the /r/ sound reflect socio-economic status of the speakers [43].

Other approaches studying the social meaning of linguistic style variation include

indexicality [62, 63], language ideology [64, 65], and stancetaking [66]. Eckert and

Rickford [26] provide a detailed survey about style and sociolinguistic variation. My

thesis work is informed by this rich body of sociolinguistic literature.

Next, I survey prior related work under each of the four dimensions that I focus in

this dissertation: (1) stylistic innovations, (2) inter-person variation, (3) intra-person

variation, and (4) community norms. I end this chapter with a discussion of prior

work using causal inference techniques for social media analysis. Part of the content

of this chapter is based on published work related to this dissertation, presented in

Chapters 4-6.

13



2.1 Linguistic Style Innovations: Non-standard Orthography

As the result of the need to convey social meaning in interpersonal interactions con-

ducted through technology-mediated channels, online writing has become lexically

diverse compared to other written genres [4, 5]. The majority of these lexical in-

novations are non-standard in other written genres, yet frequent in online writing.

For example, a new set of orthographic variations such as abbreviations (e.g., lol),

expressive lengthening (e.g., coooolll!!! ), and emoticons (e.g., :-O) are introduced to

online writing [4] and these varieties do not follow the conventions of well-established

standard orthographies [67].

One of the roles of such non-standard orthography is to express paralinguistic

information, in the absence of nonverbal cues present in speech. Examples include

the usage of repeated exclamation marks at the end of an utterance (e.g., yes!!!!)

to emphasize the point of the author, asterisks surrounding words (e.g., the *real*

question) to indicate that those words contained within them are to be heard with

a different tone than the rest of the utterance, and a series of periods to indicate

pause [68, 30]. Along this line, in a recent computational study Kalman and Gergle

[69] investigate how non-standard character repetition is used to enrich communication

using a large dataset of e-mail messages.

Another variety of non-standard orthography in online writing is the transcriptions

of existing spoken language variables which have geographic (e.g., hella meaning ‘very’

or ‘a lot of’ originated from San Francisco [70]) or group relevance (e.g., hooyah, a

spirited cry meaning anything positive, used by U.S. Navy to build morale [71, 72]).

Such spoken language varieties index social and regional identities [73, 74]. Although

prior work has extracted large-scale patterns of variation in non-standard language

use in online writing in terms of macro-level properties of the authors, such as age [10],

gender [13], and geographic location [9], far less is understood why these differences
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have arisen in online writing. To fill this gap, in Chapter 4, I study the social meaning

of non-standard language variation through the lens of the sociolinguistic concept

of audience design. Emoticons and emojis are two special types of non-standard

orthography in online writing. The next two subsections provide more details of these

variants.

2.1.1 Emoticons

Emoticons are not transcriptions or alternations of existing words, but they are created

by creatively combining multiple ASCII characters in some meaningful ways. There is

a long history of research on the role of emoticons in textual communication. While

some researchers view emoticons as signals of emotional expression [75, 76, 4], later

research has shown that the usage of emoticons in CMC goes beyond the expression

of emotions, and that the emotional interpretation of emoticons depends on properties

of the communicative context, the author, and the reader [77, 78, 79]. Dresner and

Herring [30] identify three broad linguistic functions of emoticons: (1) as emotion

indicators, mapped directly onto facial expressions (e.g., happy or sad), (2) as non-

emotional meaning, mapped conventionally onto facial expressions (e.g., joking), and

(3) as an indication of the speaker’s communicative intention (e.g., ending an utterance

with a smiley to mitigate the commitment of the author’s claims or opinions).

2.1.2 Emojis

Emojis are “picture characters”, including not only faces, but also pictographs represent-

ing objects, actions, concepts, and ideas. Emojis are recent additions to non-standard

orthography and have similarities to emoticons. Similar to emoticons, emojis are

not replications of existing words and they are visually similar to emoticons. In

contrast to emoticons, which are created from ASCII character sequences, emojis are

represented by unicode characters, and are continuously increasing in number with
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the introduction of new characters in each new unicode version.1 In mid-2015, new

emoji characters were introduced to represent people with different skin tones and

hair colors;2 this diversity may help to show attributes of authors such as identity.

Emojis originated in Japanese mobile phones in the late 1990s. They have recently

become popular worldwide in text messaging and social media, thanks in part to the

adoption of smartphones supporting input and rendering of emoji characters. The

increasing popularity of emojis has led to the selection of one of the pictographs

widely known as the “face with tears of joy” emoji, as the Oxford Dictionaries Word of

the Year 2015.3 Twitter introduced emojis to its Web interface in early 2014, following

emoji support on Twitter’s apps for Android and iOS.4 Emojis are also becoming

widely popular in marketing, and recently Twitter started to support custom emojis

for brands.5

With the increased popularity of emojis in CMC, researchers have started to explore

the role of emojis in textual communication. Stark and Crawford [22] provide details of

the origin of emojis and examine emojis as historical, social, and cultural objects. Kelly

[80] interviewed a culturally diverse set of 20 participants about how they use emojis in

mediated textual communication with close personal ties. As with emoticons, emojis

are sometimes viewed as a vehicle for expressing sentiment and affect: for example,

Novak et al. [81] developed a sentiment lexicon for emojis. However, as with emoticons,

the communicative role of emojis is considerably broader and more nuanced than a

direct expression of emotion. For example, the interviews performed by Kelly [80]

revealed that emojis are used for a range of purposes beyond affect, such as maintaining

a conversational connection, permitting a playful interaction, and creating a shared

and secret uniqueness within a particular relationship. Emojis are also found to be
1http://www.unicode.org/reports/tr51/index.html#Selection_Factors
2http://www.unicode.org/reports/tr51/index.html#Diversity
3http://blog.oxforddictionaries.com/2015/11/word-of-the-year-2015-emoji/
4https://twitter.com/support/status/451399393850052610.
5http://www.nytimes.com/2016/03/07/business/media/picture-this-marketers-let-

emojis-do-the-talking.html
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performing complex conversational functions such as situational meaning, adjusting

tone, making a message more engaging to the recipient, conversation management,

and relationship management [82]. Furthermore, the interpretation of emojis may be

complicated by differences across viewing platforms [83].

Barbieri et al. [84] studied emoji usage and meaning over different languages

using distributional semantics and found that the overall semantics of the subset of

emojis they studied is preserved across American English, British English, Spanish,

and Italian, but some emojis are interpreted differently across languages, which they

attribute to socio-geographical differences. In an analysis of the global distribution of

emojis, emoji usage is found to be correlated with living conditions of various parts

of the world [85]. Recent work has also explored the compositionality of multi-emoji

expressions [86], regularities of emojis usage across different topics of tweets [87], and

emoji as a marketing rhetoric by influencers [88].

A question that has not been explored before and has relevance to social meaning

of linguistic style in online writing is whether the new technological affordance of

emojis—which seem to have similarities to emoticons and other non-standard lexical

items in conveying paralinguistic cues in writing, but are more visually appealing and

orthographically different in the sense that they are pre-defined symbols created by

technologists6—are going to coexist or compete with earlier forms of non-standard

orthographies in conveying social meaning in online writing. In Chapter 5, I systemat-

ically study this question using a causal inference approach, considering the adoption

of emojis by individuals as the treatment and changes in emoji adopters’ writing styles

as the effect of the treatment.
6Emojis are created and adopted through a standardization process that is run by the Unicode

Consortium, a non-profit organization whose membership is made up mostly from large software and
technology companies.
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2.2 Inter-person Variation: Variation and Social Variables

In sociolinguist Penelope Eckert’s view, the chronological development of social mean-

ing in variation in sociolinguistic studies has taken place in three waves [89]. The

“first wave” of language variation studies in sociolinguistics focused on broad correla-

tions between linguistic variables and macro-scale social categories such age, gender,

ethnicity, socio-economic status, and geographic origin [89]. Specific features and

subtle linguistic variants are found to be communicating important information about

individuals. For example, in Labov’s 1966 study, the differences in the use of /th/-

stopping is found to be correlated with socio-economic class [90]. First wave studies

also found gender stratification in variation: women’s speech is found to be consistently

more standard than men’s speech across socioeconomic hierarchy [91, 92]. In the first

wave, variables were taken to mark socioeconomic status, and stylistic and gender

dynamics were considered to be the effects of these categories on speaker’s orientation

to their assigned strata in these categories. While the “second wave” of studies used

ethnographic methods to explore the local categories and configurations, in both the

first and second waves, variation was seen as marking social categories [89].

In parallel with the first wave of variation studies in sociolinguistics, a large body

of work in computational sociolinguistics [59] have focused on using computational

techniques to study the relationship between language variation and macro-scale social

variables. These studies primarily use large amounts of data gathered from online

social platforms such blogs, Twitter, and online forums. Formulated as a problem

of predicting author attributes from text [14], this computational work demonstrate

that it is possible to achieve high accuracy in predicting author age [10, 11, 12],

gender [10, 14, 15, 16], race [17], and geography [8, 9]. Post hoc analysis reveals

that the most informative predictors include proper names [93], spoken language

dialect words [94, 95], transcriptions of phonological variation [5], as well as “netspeak”
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phenomena, such as emoticons and abbreviations [96]

2.3 Intra-person Variation: Variation and Social Interactions

The previous section reviewed prior research about the connections between linguistic

variation and macro-scale social categories, which has been the focus of the first wave

of variation studies in sociolinguistics. The third wave of variation studies moved from

a view of variation as a reflection of macro-scale social categories to variation as a

reflection of the interactional context [89]. The social interactional context—such as

the addressee or audience, topic of discussion, and social goals of the individuals—

shape the linguistic style choices of individuals. This context-dependent, intra-person

variation is known as linguistic style-shifting [97]. In this section I first provide a

review of style-shifting in the sociolinguistic literature, and then I describe studies of

style-shifting in computer mediated communication. I conclude this section with a

review of research on linguistic style and interactional meaning.

2.3.1 Linguistic Style-Shifting

Linguistic style-shifting is the differential deployment of linguistic variables depending

on the interactional context [97]. The sociolinguistic interplay between macro-scale

social categories and interactional contexts has been the central concern of variation

studies since the 1960s. William Labov’s 1966 study on the pronunciation of the /r/

sound in the speech of New York City population [43] offered a classical example of

style-shifting. In this study, the differences in the pronunciation of the /r/ sound

are shown to be modulated by both the socioeconomic status and the interactional

situation. A key feature of this study is the interaction between fixed properties of the

speaker (in this case, New York origin and socioeconomic status) and fluid properties

of the interaction (in this case, attention to speech, which is experimentally modulated

by the interviewer). Investigations on the linguistic consequences of the interaction
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between fixed and fluid social properties could provide an explanation of the social

meaning of linguistic variation, which cannot be explained only by the “first-order”

associations between language and macro-level social categories [44, 55].

The degree of attention paid to speech is one possible explanation for style-

shifting as proposed by Labov. Subsequent work in sociolinguistics has introduced

other perspectives as the explanation for style-shifting [26], including communication

accommodation theory and audience design. In communication accommodation theory,

speakers adjust their linguistic style to converge or diverge, depending on their desire

to reduce or increase social differences [98]. The theory of audience design is related

to accommodation, but the target audience need not necessarily be the addressee [19].

2.3.2 Linguistic Style-shifting in Computer Mediated Communication

Studies on style-shifting. The literature on computer-mediated communication

(CMC) has addressed the issue of style-shifting, mostly through qualitative or small-

scale experiments. Through a manual analysis of a small number of dialogues in the

#mannheim Internet Relay Chat (IRC) channel, Androutsopoulos and Ziegler [99]

found evidence of regional language variation that matches the North-South gradation

of German dialects. Paolillo [45] examined linguistic variation on Internet Relay Chat

(IRC) channel (#india) to test the hypothesis that standard linguistic variants tend

to be associated with weak social ties, while vernacular variants are associated with

strong network ties [100]. He used factor analysis to identify social characteristics of

94 members of the #india community, and then examined the use of five linguistic

variables in conversations across members of different factor groups. The results were

mixed, with some variables being used more often among individuals with strong ties

and other being used more often among individuals with weak ties. This may be in part

because the variables included phonetic spellings like r (“are”) and u (“you”), which

Paolillo notes were already widely accepted in computer-mediated communication in
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the 1990s.

Studies on code-switching. A phenomena that is related to style-shifting, but

different from style-shifting is code-switching. While style-shifting may occur across

varieties of regional or social dialect or between different dialects, code-switching

implies two distinct languages coexisting throughout a linguistic community providing

speakers a much wider linguistic repertoire [59]. In his study of the #india IRC channel,

Paolillo [45] reports codeswitching between Hindi and English, and recent studies have

replicated this finding in Facebook and Twitter. For example, Androutsopoulos [101]

investigate how a group of multilingual youth on Facebook strategically construct their

audience using different language choices, finding that language choice is employed to

maximize or partition the audience when starting new posts, or to align or disalign when

responding to posts. Johnson [102] studied a convenience sample of 25 Welsh/English

bilingual users of Twitter, finding that they tend to use Welsh when writing to

individuals who are also bilinguals, but write tweets in English when the message

is not directed to any specific user. Nguyen et al. [103] report similar results on a

much larger scale, showing that Dutch Twitter users were more likely to employ the

minority languages of Frisian and Limburgish in conversations with other users of

these minority languages.

Audience-regulated style-shifting. To understand the relevance of social context

to variation in online writing, the study presented in Chapter 4 explores the relevance

of audience to stylistic variation in social media. Specifically, we focus on the context

of addressee or audience of the interaction and use the theory of audience design to

understand the differences in the usage of non-standard language on Twitter. Relevant

to this work, in an ethnographic investigation, Marwick and boyd [34] conducted a

series of interviews to understand how Twitter users navigate their “imagined audience”,

and found that people consciously present themselves differently for different audiences
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on Twitter, by modulating their language, cultural references, and style. However,

Bernstein et al. [104] found that users of Facebook often have little idea of the size

of the audience for their messages. Clearly, perceptions of audience vary across

social media platforms, so the unique properties of each platform must be taken into

account. When using the theory of audience design, the question of “which audience”

is particularly salient in the context of publicly-readable social media: in principle any

of the millions of users of Twitter could witness the conversation, though users may

be aware of the specific preferences and interests of their own follower networks [34]

and can indirectly manipulate the composition of the audience through affordances

offered by the platform (see § 4.2).

In a large scale study of Twitter, Danescu-Niculescu-Mizil et al. [46] find evidence

of linguistic accommodation in a large-scale corpus, but their linguistic variables

mainly consist of lists of closed-class words such as articles and pronouns. They do

not consider style-shifting in non-standard lexical varieties, as our work discussed in

Chapter 4. Shoemark et al. [105] studied the usage of distinctively Scottish words

in tweets related to the Scottish Independence Referendum, and found that while

distinctively Scottish terms are used at a higher rate by users of pro-independence

hashtags, in general people are less likely to use distinctively Scottish words in tweets

with referendum-related hashtags than in their general Twitter activity. This suggests

style-shifting relative to audience. Replicating Shoemark et al. [105]’s study of the

usage of local variants in Scottish Referendum related tweets, Stewart et al. [106]

studied the use of Catalan variants (as opposed to majority Spanish variants) in the

Twitter discourse on 2017 Catalonia Referendum, and found that Catalan variants

are used less in @-replies than in hashtag tweets. This contradicts the findings of

Shoemark et al. [105] and the authors suggest a possible explanation that in the

discourse related to the referendum, the @-replies could be targeted at well-known

individuals such as politicians and that indirectly targets at a larger audience. In
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another study Shoemark et al. [107] examined how Twitter users shift their use of

Scottish variants depending on the topic and audience by looking at tweets from two

groups of users with different overall rates of Scottish and found that both topic and

audience influence the choice of Scottish variants.

Style-shifting in multi-communities. Prior work on style-shifting in CMC has

primarily focused on a single social platform such a specific IRC channel and Twitter,

and different social contexts such as audience and tie strength. What happens when

users participate in multiple online communities in a single platform? In Chapter 7,

I focus on linguistic style-shifting in the multi-community environment of Reddit.

Specifically I explore whether members use the same linguistic style across multiple

communities or whether they shift style to adapt to the linguistic style norms of each

of the community in which they participate.

2.3.3 Linguistic Style and Interactional Meaning

Following recent sociolinguistic research on situational and stylistic variation, and the

interactional meaning that such variation can convey [26], computational linguists

have started to focus on computational efforts to quantify phenomena such as subjec-

tivity [108], sentiment [109], politeness [50], formality [51], and power dynamics [54].

While these interpersonal phenomena are expressed through various linguistic means,

often these phenomena do not occur in isolation. For example, a polite statement

in some specific contexts is expected to be formal and expressing positive sentiment.

Therefore it is essential to investigate how these range of interpersonal phenomena

are manifested through linguistic means. The sociolinguistic concept of interpersonal

stancetaking [110, 111, 112] provides a conceptual framework that accounts for a

range of interpersonal phenomena, subsuming formality, politeness, and subjectivity.

This framework has been applied almost exclusively through qualitative methods,
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using close readings of individual texts or dialogs to uncover how language is used

to position individuals with respect to their interlocutors and readers. Our work dis-

cussed in Chapter 6 provides the first quantitative operationalization of interpersonal

stancetaking.

Prior computational efforts to quantify interactional meaning, such as the work

on politeness by Danescu-Niculescu-Mizil et al. [50] and formality by Pavlick and

Tetreault [51], make use of crowdsourced annotations to build large datasets of, for

example, polite and impolite text. These annotation efforts draw on the annotators’

intuitions about the meaning of these sociolinguistic constructs. In Chapter 6, I present

a different approach, using unsupervised techniques, to quantitatively operationalize

multiple dimensions of linguistic variation using the concept of stancetaking.

2.4 Community Norms: Variation and Multi-Communities

While the previous sections considered variation within or between individuals, indi-

viduals’ style choices are also found to be influenced by the groups or communities

they are part of [89]. In this section, I summarize research in multi-community varia-

tion, online community norms, norm enforcement in communities, and the effects of

community norm enforcement.

2.4.1 Multi-community Variation

Social media platforms such as Reddit, Stack Exchange, and Wikia can be considered

multi-community environments, in that they host multiple subcommunities with

distinct social and linguistic properties. Such subcommunities can be contrasted in

terms of topics [113, 114] and social networks [115]. Our work discussed in Chapter 6,

considers community-wide differences in norms for interpersonal interaction. In the

same vein, Tan and Lee [48] characterize stylistic differences across subreddits by

focusing on very common words and parts-of-speech; Tran and Ostendorf [47] use
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language models and topic models to measure similarity across threads within a

subreddit. One distinction of our approach discussed in Chapter 6 is that the use of

multidimensional analysis gives us interpretable dimensions of variation. This makes

it possible to identify the specific interpersonal features that vary across communities.

The study presented in Chapter 7 focuses on what happens when members participate

in multiple online communities: whether they consistently use the same linguistic

style across different communities or whether they adapt to the writing style of the

specific community to which they post.

2.4.2 Online Community Norms

Norms are habitual behaviors that characterize a social group and differentiate it from

other social groups [116]. While norms are explicitly defined through detailed guide-

lines (e.g., Reddit) and FAQs (e.g., Usenet) in some communities, in other communities

norms are not formally codified, but emerge socially through the interactions of the

members [38]. Online communities exhibit norms [39] related to member behavior

such as content appropriateness [117], writing style [118], and adherence to community

policies [119]. Community norms evolve as its members negotiate norms [37] and as

newcomers arrive and old members become less active [40]. While community norms

are studied in terms of deviant behavior such as abusive language [120], trolling [121],

and vandalism [122], norms also encourage participation [123] and help communities

achieve their goals [124, 125]. As a collaborative content production community,

Wikipedia has several norms [126] related to neutral point of view [127], supportive

communication [128], vandalism [129], and member participation [124]. In this dis-

sertation, I focus on Wikipedia’s norms related to NPOV writing style and present a

study in Chapter 8 which investigates the effectives of NPOV norm enforcement.
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2.4.3 Writing Style Norms

Communicative competence is the ability to use language appropriately, in accord

with social situation and associated norms [130]. This notion of communicative

competence can be used to explain linguistic norms of communities—the language

used by community members should not only be correct, but should also be appropriate.

A related concept is legitimate language, which is defined in any community as the

language produced by a subset of speakers/writers with symbolic authority, and is often

codified into explicit standards [131]. In the context of collaborative online writing in

Wikipedia, legitimate language can be considered to be the language produced by the

high-status members of the community, and is governed by community policies.

Among online communities, Wikipedia is well known for its focus on the quality of

the content produced by volunteer contributors [124]. Wikipedia provides detailed

guidelines of the preferred writing styles through a manual of style [118]. A large

body of research focused on Wikipedia’s writing style norms including the prediction

of article quality [132], biased content [133], quality flaws [134, 135], and vandalism

detection [136]. Focusing specifically on bias in Wikipedia, Recasens et al. [137] built

a dataset of Wikipedia phrases that are corrected for NPOV, and then trained a

classifier using linguistic features from hand-crafted lexicons of factive verbs, hedges,

and subjective intensifiers. We build on this prior work by using these lexicons to

characterize biased language, but note that while Recasens et al. [137] aimed to identify

the linguistic aspects of norms, the focus of the study presented in Chapter 8 is to

understand the effects of NPOV tagging and correction. Specifically, we are interested

in the change in the rate of biased language use when an article has an active NPOV

tag, and when an editor is corrected for NPOV.
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2.4.4 Enforcing Norms

Deviant behavior is an ongoing challenge to online communities, requiring persistent

regulatory effort [138]. In addition to providing detailed guidelines, online communities

also take active moderation actions against the violations of community guidelines [139],

including both technical and social approaches [140]. Technical moderation includes

banning posts with any keywords from predefined word lists (e.g., Yik Yak [141]) and

banning posts based on the IP addresses from which posts originate (e.g., Hacker

News [142], Yelp [143]). Social moderation includes both distributed approaches [144]

where the community members vote on content (e.g., Yik Yak [141], Slashdot [119])

and centralized approaches where a small number of users called moderators maintain

community practices by removing posts they find inappropriate (e.g., Reddit [140]).

In Wikipedia, a rich set of policies and guidelines articulate strategies for seeking

consensus, principles of encyclopedic content, and appropriate user behavior. The

policy environment in Wikipedia encodes and explains norms, but the policies are

not imposed top down; rather policies are created and managed by the Wikipedia

community itself [145]. Norms are enforced by policy citations [145], where template

messages [146] are added to articles and discussion talk pages [147]. The policy pages

are subject to the same editing processes of Wikipedia articles and contributors are

given a participatory role when creating or editing policy pages. While several quality

control mechanisms to enforce objective language in Wikipedia articles have been in

place for a long time, the impact of these mechanisms has not been quantitatively

measured. This gap in the literature motivates our broad research question of the

study presented in Chapter 8: whether NPOV tagging and corrections help Wikipedia

articles and editors to converge to desired writing styles norms.
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2.4.5 Effects of Norm Enforcement

Most prior work on the effects of norm enforcement has focused on moderation

techniques related to the design of online communities. Users report significantly higher

intent to participate in a community that is moderated, compared to an unmoderated

community [148]. A study on Slashdot — a popular website with fair moderation [119]

— found that users come to a consensus about the community’s moderation policies and

such moderation practices enable large scale civil participation [144]. Reddit’s decision

to ban hate communities resulted in a reduction of abusive language [149]. An analysis

of different moderation styles in online health support communities found that positive

and rewarding moderation styles are more effective than negative and punishing

styles [150]. In online discussion forums related to education, peer moderation is found

to be more encouraging active participation than moderation by superiors [151].

The effects of moderation on the quality of collaboratively created content and long

term behavior of individual community members have not been investigated much. In

the context of Wikipedia, Halfaker et al. [152] found that the action of “reverting” edits

has the effect of reducing motivation and quantity of work, particularly for new editors.

However, they also found that reverts result in higher quality contributions. Halfaker

et al. [153] found that enforcing quality control mechanisms affects the retention of

high-quality newcomers. Personalized warning messages, as opposed to pre-defined

template messages, are found to be effective in retaining newcomers [154]. Motivated

by this prior literature, which studies the effectiveness of norm enforcement actions

both at the platform-level (i.e., articles) and individual member-level (i.e., editors),

the study presented in this dissertation in Chapter 8 seeks to answer the research

question about the effectiveness of NPOV norm enforcement both at the article level

and at the editor level.

28



2.5 Causal Inference for Social Media Analysis

The use of the statistical framework of causal inference is very common in fields such

as epidemiology and political science, but until recently it has been rare in social

media research [155, 156]. While social media is a rich resource to study naturally

occurring social phenomena, there exists some challenges when using observational data.

In general, observational studies of causal phenomena are susceptible to confounds

because subjects are not randomly assigned to treatment and control groups as in

randomized experiments [157]. For example, the Twitter client from which users post

tweets (e.g., Web browser, smart phone app) is a potential confound on writing style,

because different Twitter clients have varied text-input capabilities which could affect

Twitter users’ writing style [158] (§ 5.3.1). Similarly, the experience level of Wikipedia

editors is a potential confound on how they adhere to community norms [152] (§ 8.5.1).

Studies using large scale observational data have used techniques from the causal

inference literature, such as matching [159] and stratification [160], to reduce the

effects of potential confounds. For example, Dos Reis and Culotta [161] used matching

to create treatment and control groups of users to understand the effects of exercise

on mental health; De Choudhury et al. [162] used matched samples to examine

dietary choices and nutritional challenges in food deserts using Instagram posts;

Cheng et al. [121] used matching on users to study antisocial behavior in online

forums; Chandrasekharan et al. [149] used Mahalanobis Distance Matching [163] and

difference-in-differences strategy [164] to study the effects of subreddit banning on

hate speech usage on Reddit. Another causal inference technique that has been used in

longitudinal studies of social media data is interrupted time series analysis [165]. This

technique has been used to study hate speech [149] and conspiratorial discussions[166]

on Reddit.

As mentioned in § 1.3, one of the methodological aspects in which my dissertation
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work differs from prior studies on stylistic variation is the focus on causal analysis as

opposed to correlation effects. In the studies presented in Chapter 5 and Chapter 8,

we apply causal inference approaches to the analysis of linguistic style.
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CHAPTER 3

CONFOUNDS AND CONSEQUENCES OF USING SOCIAL MEDIA

DATA TO STUDY ONLINE WRITING1

What are the biases inherent to social media data and how can these biases affect the

research in stylistic variation using data from social media and other online platforms?

In this chapter, I will examine the geographic biases in Twitter and the impact of

these biases on the study of online writing. First, I will access the geographic biases

at population level, by comparing the observed population distributions in Twitter

data with expected distributions that are based on ground-truth demographic data.

Specifically, I will explain how we create three datasets of tweets using different

sampling methods and measure the geographic and demographic biases in each of

these samples. Then, I will discuss how these biases impact linguistic investigations,

such as our studies on online writing. Although datasets from most online social

platforms are prone to these biases, in this work we focus on geographic linguistic

biases in Twitter data, which has more relevance to this dissertation.

3.1 Background

Social media content has often been used to study several social phenomena, ranging

from finding political opinions [167] to public health surveillance [168]. Related to this

dissertation, data from social media platforms such as Twitter is frequently used to

study geographical linguistic phenomena such as linguistic style and regional dialectal

differences [9, 94, 169, 170], and text-based location inference [8, 171, 172]. Compared

to traditional interview and survey techniques used in sociolinguistics [173] and other
1Content of this chapter is based on Umashanthi Pavalanathan and Jacob Eisenstein. “Confounds

and Consequences in Geotagged Twitter Data.”, EMNLP 2015.
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social sciences [174], social media provides larger volumes of datasets that can be used

for both fine-grained as well as global-scale analyses. However, social media data is

not a representative sample of the true population and this leads to geographic and

demographic biases in population level analyses [175, 176, 177, 178].

This chapter examines the effects of the geographic and demographic biases on the

geo-linguistic inferences that can be drawn from Twitter. Using tweets from the top

ten largest metropolitan areas in the United States and three different data sampling

techniques, we measure the impact of geographical and demographic biases in both

language use and in the accuracy of text-based location inference.

3.2 Data

We used data gathered from Twitter’s streaming API from February 2014 to January

2015. We removed retweets, which are repetitions of previously posted messages and

performed the following filtering steps to eliminate spam and automated accounts [179]:

removed tweets with URLs, user accounts with more than 1,000 followers or followees,

user accounts with more than 5,000 messages posted during the time period of the

dataset, and top 10% of accounts based on the number of messages in our dataset. As

we focus on English language tweets, we removed users who have written more than

10% of their tweets in any language other than English.

To quantify the geographic biases, we consider the top ten largest Metropolitan

Statistical Areas (MSAs) in the United States (Table 3.1). The U.S. Census Bureau

defines the MSAs as geographical regions of high population with density organized

around a single urban core; MSAs are not legal administrative divisions. The urban

core of an MSA may be surrounded by substantially less urban areas. For example,

the Atlanta MSA is centered on Fulton County (1750 people per square mile), but

extends to Haralson County (100 people per square mile), on the border of Alabama.

A per-county analysis of this data therefore enables us to assess the degree to which
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Twitter’s skew towards urban areas biases geo-linguistic analysis.

3.3 Representativeness of Geotagged Twitter Data

Extracting Locations of Tweets We built a dataset of GPS-tagged (DG) tweets

by extracting the GPS latitude and longitude coordinates and then we did reverse

geocoding to identify the corresponding counties. Only 1.24% of the tweets had

GPS tags, and the users who geotag their tweets could have unique characteristics.

Therefore we built another dataset (DL) by combining the tweets which had a location

field in the user’s profile and mapping the locations to MSAs. An analysis of the

intersection of DG and DL found good agreement between both data sources which

implies that the location information in user profiles are accurate majority of the

times.

Data Subsampling We resampled DG and DL to create three balanced datasets:

GPS-MSA-balanced: We randomly sampled 25,000 tweets per MSA from DG

as the message-balanced sample, and all the tweets from 2,500 users per MSA from

the same set as the user-balanced sample. Balancing across MSAs ensures that the

largest MSAs do not dominate the linguistic analysis.

GPS-County-balanced: We resampled DG based on county-level population,

and again obtained message-balanced and user-balanced samples. These samples are

more geographically representative of the overall population distribution across each

MSA.

Loc-MSA-balanced: We randomly sampled 25,000 tweets per MSA from the DL

as the message-balanced sample, and all the tweets from 2,500 users per MSA from

the same set as the user-balanced sample. Exact geographical coordinates are not

available in the DL and therefore it is not possible to obtain county-level geolocations

for this set.
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Age and Gender Identification To estimate the distribution of age and gender

in each sample, we queried statistics from the Social Security Administration, which

records the number of individuals born each year with each given name. Using this

information, we obtained the probability distribution of age values for each given name.

We then matched the names against the first token in the name field of each user’s

profile, enabling us to induce approximate distributions over ages and genders. Unlike

Facebook and Google+, Twitter does not have a “real name” policy, so users are free

to give names that are fake, humorous, etc. We eliminate user accounts whose names

are not sufficiently common in the social security database. While some individuals

will choose names not typically associated with their gender, we assume that this will

happen with roughly equal probability in both directions. So, with these caveats in

mind, we induce the age distribution for the GPS-MSA-Balanced sample and the

Loc-MSA-Balanced sample as,

p(a | name = n) =
count(name = n, age = a)∑
a′ count(name = n, age = a′)

(3.1)

pD(a) ∝
∑
i∈D

p(a | name = ni). (3.2)

We induce distributions over author gender in much the same way [175]. This

method does not incorporate prior information about the ages of Twitter users, and

thus assigns too much probability to the extremely young and old, who are unlikely

to use the service. While it would be easy to design such a prior — for example,

assigning zero prior probability to users under the age of five or above the age of 95 —

we see no principled basis for determining these cutoffs. We therefore focus on the

differences between the estimated pD(a) for each sample D.
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Results: Geographical Biases in the GPS Sample We first assess the differ-

ences between the true population distributions over counties, and the per-tweet and

per-user distributions. Because counties vary widely in their degree of urbanization

and other demographic characteristics, this measure is a proxy for the representa-

tiveness of GPS-based Twitter samples (county information is not available for the

Loc-MSA-balanced sample). Population distributions for New York and Atlanta

are shown in Figure 3.1. In Atlanta, Fulton County is the most populous and most

urban, and is overrepresented in both geotagged tweets and user accounts; most of the

remaining counties are correspondingly underrepresented. This coheres with the urban

bias noted earlier by Hecht and Stephens [176]. In New York, Kings County (Brooklyn)

is the most populous, but is underrepresented in both the number of geotagged tweets

and user accounts, at the expense of New York County (Manhattan). Manhattan

is the commercial and entertainment center of the New York MSA, so residents of

outlying counties may be tweeting from their jobs or social activities.
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Figure 3.1: Proportion of census population, Twitter messages, and Twitter user
accounts, by county. New York is shown on the left, Atlanta on the right.

To quantify the representativeness of each data sample, we use the L1 distance

||x− y||1 =
∑

c |pc − tc|, where pc is the proportion of the MSA population residing

in county c and tc is the proportion of tweets (Table 3.1). County boundaries are

determined by states, and their density varies: for example, the Los Angeles MSA
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Table 3.1: L1 distance between county-level population and Twitter users and messages

Num. L1 Dist. L1 Dist.
MSA Counties Population Population

vs. Users vs. Tweets

New York 23 0.2891 0.2825
Los Angeles 2 0.0203 0.0223
Chicago 14 0.0482 0.0535
Dallas 12 0.1437 0.1176
Houston 10 0.0394 0.0472
Philadelphia 11 0.1426 0.1202
Washington DC 22 0.2089 0.2750
Miami 3 0.0428 0.0362
Atlanta 28 0.1448 0.1730
Boston 7 0.1878 0.2303

covers only two counties, while the smaller Atlanta MSA is spread over 28 counties.

Table 3.1 shows that while New York is the most extreme example, most MSAs feature

an asymmetry between county population and Twitter adoption.

Results: Usage Biases Next, we turn to differences between the GPS-based and

profile-based techniques for obtaining ground truth data. As shown in Figure 3.2, the

Loc-MSA-balanced sample contains more low-volume users than either the GPS-

MSA-balanced or GPS-County-balanced samples. We can therefore conclude

that the county-level geographical bias in the GPS-based data does not impact usage

rate, but that the difference between GPS-based and profile-based sampling does; the

linguistic consequences of this difference will be explored in the following sections.

Results: Demographics Biases Table 3.2 shows the expected age and gender for

each dataset, with bootstrap confidence intervals. Users in the Loc-MSA-balanced

dataset are on average two years older than in the GPS-MSA-balanced and GPS-

County-balanced datasets, which are statistically indistinguishable. Focusing on

the difference between GPS-MSA-balanced and Loc-MSA-balanced, we plot the

difference in age probabilities in Figure 3.3, showing that GPS-MSA-balanced in-
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Figure 3.2: User counts by number of Twitter messages

cludes many more teens and people in their early twenties, while Loc-MSA-balanced

includes more people at middle age and older. Young people are especially likely to

use social media on cellphones [180], where location tagging would be more relevant

than when Twitter is accessed via a personal computer. Social media users in the

age brackets 18-29 and 30-49 are also more likely to tag their locations in social

media posts than social media users in the age brackets 50-64 and 65+ [181], with

women and men tagging at roughly equal rates. Table 3.2 shows that the GPS-MSA-

balanced and GPS-County-balanced samples contain significantly more women

than Loc-MSA-balanced, though all three samples are close to 50%.

Table 3.2: Demographic statistics for each dataset

Sample Expected Age 95% CI % Female 95% CI

GPS-MSA-balanced 36.17 [36.07 – 36.27] 51.5 [51.3 – 51.8]
GPS-County-balanced 36.25 [36.16 – 36.30] 51.3 [51.1 – 51.6]
Loc-MSA-balanced 38.35 [38.25 – 38.44] 49.3 [49.1 – 49.6]

3.4 Impact on Linguistic Generalizations

Twitter data has been used to study geographical linguistic variation. Previous sections

of this chapter identified several demographic differences when using different data
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Figure 3.3: Difference in age probability distributions between GPS-MSA-balanced
and Loc-MSA-balanced.

samples. How do these differences impact the linguistic generalizations that we draw

from Twitter data? To answer this question, we measure the linguistic differences

between GPS-MSA-balanced and Loc-MSA-balanced.2 Because GPS-MSA-

balanced and Loc-MSA-balanced differ in the composition of age and gender,

we also directly measure the impact of these demographic factors on geographical

linguistic variables.

Discovering geographical linguistic variables Lexical variation in text corpora

can be identified using different statistics as surveyed by Monroe et al. [49]. A regular-

ized log-odds ratio strikes a good balance between distinctiveness and robustness [170].

We use such an approach implemented in SAGE [17]3 and identify the 25 most salient

lexical items for each metro area in both GPS-MSA-balanced and Loc-MSA-

balanced. Two main types of geographical lexical variables identified in previous

work are: (1) non-standard words and spellings (e.g., hella, yinz ) [170], which are

primarily stylistic; (2) entity names (e.g., places, local merchants, etc.) [182], which

are primarily topic-based. These two groups need to be differentiated since this

would decide whether geo-linguistic differences are primarily topic-based or stylistic.
2Since the GPS-MSA-balanced and GPS-County-balanced methods have nearly identical

patterns of usage and demographics, we focus on the linguistic difference between GPS-MSA-
balanced and Loc-MSA-balanced.

3https://github.com/jacobeisenstein/jos-gender-2014
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Therefore we annotate each group of 25 lexical variables as Nonstandard-Word,

Entity-Name, or Other. Annotation for ambiguous cases is based on the majority

sense in randomly-selected examples. Overall, we identify 24 Nonstandard-Words

and 185 Entity-Names.

Inferring author demographics We sharpen the demographic inference method

discussed in § 3.3 by considering the text of the tweets and build a simple latent variable

model in which both the name and the word counts are drawn from distributions

associated with the latent age and gender [183]. We use expectation-maximization to

perform inference in this model, binning the latent age variable into four groups: 0-17,

18-29, 30-39, above 40. A detailed description of this inference can be found in the

published version of this work, Pavalanathan and Eisenstein [42].

Results: Linguistic differences by dataset The keywords identified in GPS-

MSA-balanced dataset feature more geographically-specific non-standard words,

which occur at a rate of 3.9× 10−4 in GPS-MSA-balanced, versus 2.6× 10−4 in

Loc-MSA-balanced; this difference is statistically significant (p < .05, t = 3.2).4

For entity names, the difference between datasets was not significant, with a rate of

4.0×10−3 for GPS-MSA-balanced, and 3.7×10−3 for Loc-MSA-balanced. Note

that these rates include only the non-standard words and entity names detected by

SAGE as among the top 25 most distinctive for one of the ten largest cities in the US;

of course there are many other relevant terms that are below this threshold.

Results: Demographics Aggregate linguistic statistics for demographic groups are

shown in Figure 3.4. Men use significantly more geographically-specific entity names

than women (p � .01, t = 8.0), but gender differences for geographically-specific
4We employ a paired t-test, comparing the difference in frequency for each word across the two

datasets. Since we cannot test the complete set of entity names or non-standard words, this quantifies
whether the observed difference is robust across the subset of the vocabulary that we have selected.
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non-standard words are not significant (p ≈ .2).5 Younger people use significantly

more geographically-specific non-standard words than older people (ages 0–29 versus

30+, p � .01, t = 7.8), and older people mention significantly more geographically-

specific entity names (p � .01, t = 5.1). Of particular interest is the intersection

of age and gender: the use of geographically-specific non-standard words decreases

with age much more profoundly for men than for women; conversely, the frequency of

mentioning geographically-specific entity names increases dramatically with age for

men, but to a much lesser extent for women. The observation that high-level patterns

of geographically-oriented language are more age-dependent for men than for women

suggests an intriguing site for future research on the intersectional construction of

linguistic identity.
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Figure 3.4: Aggregate statistics for geographically-specific non-standard words and
entity names across imputed demographic groups, from the GPS-MSA-balanced
sample.

For a more detailed view, we apply SAGE to identify the most salient lexical items

for each MSA, subgrouped by age and gender. Table 3.3 shows word lists for New York

(the largest MSA) and Dallas (the 5th-largest MSA), using the GPS-MSA-balanced

sample. Non-standard words tend to be used by the youngest authors: ilysm (‘I

love you so much’), ight (‘alright’), oomf (‘one of my followers’). Older authors

write more about local entities (manhattan, nyc, houston), with men focusing on

sports-related entities (harden, watt, astros, mets, texans), and women above the age
5But see Bamman et al. [16] for a much more detailed discussion of gender and standardness.
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of 40 emphasizing religiously-oriented terms (proverb, islam, rejoice, psalm).

Table 3.3: Most characteristic words for demographic subsets of each city, as compared
with the overall average word distribution

Age Sex New York Dallas

0-17 F niall, ilysm, hemmings, stalk, ily fanuary, idol, lmbo, lowkey, jonas
M ight, technique, kisses, lesbian, dicks homies, daniels, oomf, teenager, brah

18-29 F roses, castle, hmmmm, chem, sinking socially, coma, hubby, bra, swimming
M drunken, manhattan, spoiler,

guardians, gonna
harden, watt, astros, rockets, mavs

30-39 F suite, nyc, colleagues, york, portugal astros, sophia, recommendations,
houston, prepping

M mets, effectively, cruz, founder, knicks texans, rockets, embarrassment, tcu,
mississippi

40+ F cultural, affected, encouraged, proverb,
unhappy

determine, islam, rejoice, psalm, re-
sponsibility

M reuters, investors, shares, lawsuit, the-
aters

mph, wazers, houston, tx, harris

3.5 Impact on Text-based Geolocation

Prediction of user geolocation is one of the major applications of geotagged social

media data [9, 8, 93, 171, 172]. Beyond commercial applications, geotagged social

media data is also useful to study geographical phenomena in social media. Previous

research has obtained impressive accuracies for text-based geolocation: for example,

Hong et al. [171] report a median error of 120 km, which is roughly the distance

from Los Angeles to San Diego, in a prediction space over the entire continental

United States. The training and test datasets used for computing these accuracies

are acquired through the same procedures and therefore the biases in the acquisition

procedures could bias the resulting accuracy estimations. This could lead to overly

optimistic or pessimistic estimations for some groups of users. In this section, we

explore where these text-based geolocation methods are most and least accurate.
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Methods We used user-balanced samples from the ten largest metropolitan areas in

the United States, and we formulate text-based geolocation as a ten-way classification

problem, similar to Han et al. [172].6 We apply ten-fold cross validation, and tune the

regularization parameter on a development fold, using the vocabulary of the sample

as features.

Results: Accuracy vs. Method of Data Acquisition Accuracies of author-

attribute prediction tasks depend on the amount of data available [184]. Since

GPS-MSA-balanced and Loc-MSA-balanced have very different usage rates

(Figure 3.2), perceived differences in accuracy may be purely attributable to the

amount of data available per user, rather than to users in one group being inherently

harder to classify than another. For this reason, we bin users by the number of

messages in our sample of their timeline, and report results separately for each bin.

All errorbars represent 95% confidence intervals. As seen in Figure 3.5a, there is

little difference in accuracy across sampling techniques: the location-based sample is

slightly easier to geolocate at each usage bin, but the difference is not statistically

significant. However, due to the higher average usage rate in GPS-MSA-balanced

(see Figure 3.2), the overall accuracy for a sample of users will appear to be higher on

this data.

Results: Demographics We also measure the classification accuracy by gender

and age, using the GPS-MSA-balanced sample. As shown in 3.5b, text-based

geolocation is consistently more accurate for male authors, across almost the entire

spectrum of usage rates. As shown in 3.5c, older users also tend to be easier to
6Many previous papers have attempted to identify the precise latitude and longitude coordinates

of individual authors, but obtaining high accuracy on this task involves much more complex methods,
such as latent variable models [9, 171], or multilevel grid structures [8, 182]. Tuning such models can
be challenging, and the resulting accuracies might be affected by initial conditions or hyperparameters.
We therefore focus on classification, employing the familiar and well-understood method of logistic
regression.
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Figure 3.5: Classification accuracies

geolocate: at each usage level, the highest accuracy goes to one of the two older groups,

and the difference is significant in almost every case. As discussed in § 3.4, older male

users tend to mention many entities, particularly sports-related terms; these terms

are apparently more predictive than the non-standard spellings and slang favored by

younger authors.

3.6 Conclusions

In this chapter, I presented our work which examines how the biases inherent in social

media data affect the research in online writing. To assess the biases, we first created

three datasets of tweets using different sampling methods and then measured the

population level biases in each of these datasets. Then we examined how these biases

impact the linguistic inferences we make from datasets from social media such as

Twitter. Through these investigations, we have identified demographic and linguistic

biases that emerge from Twitter corpora created using different data acquisition

techniques. Primary findings include:

• In comparison with tweets with self-reported locations, GPS-tagged tweets are

written more often by young people and by women.

• There are corresponding linguistic differences between datasets created using

different data acquisition techniques, with GPS-tagged tweets including more

geographically-specific non-standard words.
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• Young people use significantly more geographically-specific non-standard words.

Men tend to mention more geographically-specific entities than women, but

these differences are significant only for individuals at the age of 30 or older.

• Users who GPS-tag their tweets tend to write more, making them easier to

geolocate. Evaluating text-based geolocation on GPS-tagged tweets probably

overestimates its accuracy.

• Text-based geolocation is significantly more accurate for men and for older

people.

These findings suggest that social media data collected using different methods

may not be representative of the actual user population and these biases should

be considered when making generalizations of research findings using the skewed

datasets. Overall, findings from this work inform the data sampling methods used in

the sociolinguistic investigations described in the following chapters.
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CHAPTER 4

LINGUISTIC STYLE INNOVATIONS AND INTRA-PERSON

VARIATION IN SOCIAL MEDIA1

We observe an enormous amount of stylistic diversity in social media data. New non-

standard lexical forms such as emoticons (e.g., :P ), emojis (e.g., ), abbreviations

(e.g., ikr), and expressive lengthening (e.g., cooooollll!!! ) are introduced to online

writing. A rich body of previous work has identified differences in using such non-

standard language based on social attributes such as age and gender. But we also

observe variation at the individual level. Individuals use different amounts of these

lexical forms in different messages. What is the social meaning or social goal for

using varying amounts of non-standard language? In this chapter, I will explore this

question using the sociolinguistic construct called audience design, which suggests

relationships between audience size and stylistic variation. To study this, I will first

explain how we can characterize different audience sizes using the socio-technical

features or affordances present in the Twitter platform. Then I will detail how we use

a data-driven approach to automatically extract a large number of linguistic variables

for our study. Following this, I will describe how we construct our study data in order

to eliminate potential confounds, such as the ones identified in the previous chapter.

After describing the dataset construction, I will explain how we perform the analysis

using logistic regression models. I will conclude this chapter with the findings from

the analysis. Overall, this chapter focuses on the following two dimensions I described

in Chapter 1: stylistic innovations and intra-person variation.
1Content of this chapter is based on Umashanthi Pavalanathan and Jacob Eisenstein. “Audience-

modulated Variation in Online Social Media.”, American Speech, May 2015.
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4.1 Background

As discussed in Chapter 1 and Chapter 2, stylistic variation in online writing has been

attributed to macro-scale social variables such author age [10], geography [9], race [17],

and gender [13]. These macro-scale variables capture the inter-person variation.

However, individuals’ writing style is not uniform. Moreover, individuals’ stylistic

choices depend on the social context of the written utterances. This intra-person

variation is known as linguistic style-shifting in the sociolinguistic literature [43, 26].

The sociolinguistic literature provides a rich theoretical foundation about the social

meaning of style-shifting. Labov [43] presented one of the early studies in style-shifting

and focused on attention to speech as an explanation for style-shifting. Other explana-

tions of style-shifting include the desire to reduce or increase social differences [Com-

munication Accommodation Theory; 98], addressing a target audience [Audience

Design; 19], situational variation [185, 110], and identity construction [97]. The CMC

literature provides several studies of style-shifting, but these studies are based on

either small-scale empirical investigations [99] or qualitative interviews [34]. The CMC

literature also provides studies on code-switching [45, 103] but these studies focus on

code-switching between different languages, and not dialects in a single language as is

the focus in this work.

Motivated by the rich theorectical literature on the relevance of audience to

stylistic variation, such as the models of accommodation [98], audience design [19], and

stancetaking [110], in this work, we focus on the notion of audience modulated stylistic

variation in online writing. Specifically, the goal of this study is to understand the

linguistic style innovations on Twitter and the social meaning of intra-person variation

in using these stylistic innovations. Ethnographic research of Marwick and boyd [34]

suggests that users of Twitter have definite ideas about who their audience is, and that

they customize their self-presentation accordingly. Furthermore, contemporary social
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media platforms such as Twitter and Facebook offer increasingly nuanced capabilities

for its users to manipulate the composition of their audience, enabling them to reach

both within and beyond the social networks defined by explicitly-stated friendship

ties (§ 4.1).

We use a carefully constructed dataset of tweets from thousands of users and

more than 200 lexical variables. These variables are organized into two sets: the first

consists of terms that distinguish major American metropolitan areas from each other,

and is obtained using an automatic technique based on regularized log-odds ratio. The

second set of variables consists of the most frequently-used non-standard terms among

Twitter users in the United States. We test the following two hypotheses related to

audience size and non-standard linguistic innovations:

• Hypothesis I: Non-standard linguistic innovations are used more often in

messages to limited audience.

• Hypothesis II: Non-standard linguistic innovations are used more often in

messages targeted at local individuals.

4.2 The Social Environment of Twitter

Twitter provides a set of affordances that allow its users to control the likely composition

of the audience of their messages, as shown in Figure 4.1. Also, previous work has

found that social media users have specific understanding of their audience as they

make self-presentation decisions about language and cultural references [34]. Therefore

we rely on the following audience navigation affordances of Twitter to build our dataset

and analysis for this study:

• @-mention: Tweets can be directed to individual users by including their

username with an “@” symbol (e.g., @DeepakChopra in Figure 4.1). @-mention

can be either at the beginning of the tweet or in the body of the tweet. In both
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cases, the mentioned users are notified by default. If the tweet begins with an

@-mention, then it will be visible to only the users who follow both the user

who tweeted and the user who was mentioned.

• Hashtags: Keywords or phrases prefixed by a ‘#’ symbol serve as a tagging

convention on Twitter and it enables users to search for tweets of interest outside

their following network. Hashtags can be considered as a mechanism to create a

virtual community of users who are interested in a specific topic or event and

popular hashtags have a higher likelihood of reaching an audience outside a

user’s follower network [186].

• Broadcast: Following Kwak et al. [187], we consider messages that do

not contain an @-mention or a hashtag as broadcasts, since these tweets can

potentially be viewed by all followers of user who posted the tweet.

The comparison between these affordances, as shown in Figure 4.1, enables us to

quantify the different types of intended audience and measure the effect of linguistic

style. Specifically, we design predictors that capture these different types of audience-

navigation affordances and test their effect on the use of two types of linguistic

style innovations on Twitter. As one category of our linguistic style innovations has

geographical relevance, within @-mentions we differentiate pairs of users who are

geolocated in the same metropolitan area.

4.3 Linguistic Style Innovations

To study the audience-driven intra-person variation, we use two sets of non-standard

lexical innovations, which are easier to automatically quantify at scale than phonetic

or morphosyntactic variables: (1) non-standard variants that have association with

specific geographic locations in the United States, including regional dialects, and (2)

non-standard style innovations that emerged on Twitter.
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Figure 4.1: Affordances offered by Twitter for influencing the scope of the audience.

4.3.1 Geography-specific lexical innovations

As mentioned in Chapter 2, geography-specific lexical variation in Twitter is docu-

mented in several papers. Using approaches in prior work, we first geolocate each

tweet in our corpus to a Metropolitan Statistical Area (MSA), which is a geographi-

cal category defined by the U.S. Census Bureau as a high-density region organized

around a single urban core. Using these geolocation annotation, we extracted a list

of terms that are specific each of the top ten most populous MSAs in the United

States. Similar to our approach in Chapter 3, we applied a regularized log-odds based

non-parametric approach from Eisenstein et al. [17], which is shown to be well-suited

for similar tasks [170]. Using this approach, we obtained the top 30 words for each of

the ten MSA and then manually removed entity names, standard English words, and

non-English words. This resulted in a list of 120 lexical variables, shown in Table 4.1.

Example usage of these lexical variables in tweets (Table A.1) and MSA frequencies

(Figure A.1) are shown in Appendix A.
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Table 4.1: List of geographical linguistic variable from each ten most populous
metropolitan statistical areas (MSAs) in the United States.

MSA Linguistic Variables

New York lml, deadass, od, odee, werd, cud, nuttin, nicee, sed, lata, buggin,
wrd, noe, w|, layin, okk, lols, lolrt, crazyy, sour, wid

Los Angeles fasho, ahah, cuh, koo, cuhz, fkn, ahahah, ;o
Chicago mfs, goofy, nbs, lbvs, bogus, 2ma, lbs, mf, ikr, lmmfao,

hoop, crackin
Dallas ion, nun, oomf, tf, (;, finna, dang, fa, (:, <<, >>, <–, .!

trippin, y’all
Houston mayne, fwm, jammin, shid, jamming, tripping, azz, bck, ma’am

, bae, whoop, ole, sho, fck, lowkey, lawd, fa, trippin
Philadelphia ard, jawn, cdfu, bul, wya, 1omf, jawns, ctfu, ctfuu, hbu, rd,

foh, sike, hype, nut, bull
Washington DC lt, lrt, llss, bait, fakin, stamp, ji, brova, siced, hu, wholetime, guh
Miami bol, jit, bih, vibe
Atlanta preciate, fye, frfr, slick, shid, fr, ain, ikr, followback, flex, gotcha
Boston legit, deff, gunna

4.3.2 Tweetspeak variables

In addition to the geographically-specific lexical innovations, tweets also contain

other popular variants which are non-standard. We create a list of Twitter specific

non-standard lexical innovations, which we refer as “Tweetspeak”, based on the 1,000

most frequent terms in our tweet sample. From this list of most frequent terms

we removed words that are in standard dictionaries, words that refer to entities,

punctuations, special symbols, numbers, hashtags, and non-English words. Uncertain

cases were resolved by manual inspection of a set of random tweet examples. In total

the Tweetspeak list contains 94 non-standard lexical innovations as shown in Table 4.2.

4.4 Data

We used a dataset of 114M geo-tagged tweets from 2.77M different user accounts

obtained from the public Gardenhose/Decahose [96] from June 2009 to May 2012.
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Table 4.2: List of Tweetspeak lexical variables.

lol :) dat lmaoo ohh dm luv
im jus dnt lmfao wats <3 pics
lmao ppl idk hmm ahh didnt ii
ya lil aww w/ nah naw comin
haha wat wtf fuckin umm fam tryin
nigga yall thats talkin outta congrats b4
da yu imma tv bday yess wassup
dont omg bro :( def noo ;)
aint goin tryna yay lookin oo nothin
cuz knw hahaha til tha watchin abt
soo ima af gon shyt a lot
mm lmfaoo txt sayin s/o finna
feelin dats gettin dang chillin app
smh niggas doin pic tht bc

This dataset included only the tweets geo-located within the United States. We

did several preprocessing steps to remove retweets (repetitions of previously posted

messages), tweets with URL (automated or marketing oriented). Before the analysis,

we performed two textual preprocessing steps: tokenizing all the tweets using the

Twokenize program2 and downcasing.

4.4.1 Building a balanced corpus

As we have seen in Chapter 3, the volume of tweets varies for each metropolitan

area; further, the language of Twitter users differs based on extralinguistic variables.

Different Twitter users can also have different habitual use of Twitter: more interaction

or more broadcast messages. Therefore, we need to consider such potential confounds

when constructing the corpus for our analyses. We used resampling to create a

balanced corpus ensuring that each metropolitan area and each author contributes the

same number of “positive” and “negative” messages, where positive messages contain

any of the non-standard lexical innovations, and the negative messages contain none.
2The software is available at https://code.google.com/p/ark-tweet-nlp/
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We first identified the list of all tweets that contain each non-standard variable and

randomly sampled a single message to our set of positive messages. We then sampled

a message from the same author, which does not contain any of the non-standard

variables in our lexicon. We repeated this process until there are a total of 1,000

tweets for each of the linguistic variable. In this way, our balanced corpus contains

224,000 tweets for the geographical variables, and 188,000 tweets for the Tweetspeak

variables.

4.4.2 Geolocating tweet recipients

GPS location of the tweet sender is available from the metadata of each tweet in

our dataset and we geo locate each sender to a Metropolitan Statistical Area (MSA).

However, to investigate if the use of non-standard lexical variables is influenced by

the location of the users mentioned in the tweet, we need to obtain the geo location

of the users mentioned in the tweets. Because this information is not available from

the tweet metadata and it is not feasible to query the Twitter API to obtain this

information, we opted for an alternative approach. We linked the username to the

location of the tweets that mention them [188]. If a username is mentioned by at least

three different individuals within a given metropolitan area, and is never mentioned

by anyone from outside that MSA, then we can guess with reasonable confidence that

this MSA is the correct location for that username. We treated usernames which do

not meet this criterion as unknown. Although this threshold could be overly strict,

we opted for a high-precision heuristic.

4.5 Analysis and Results

We treat testing the two hypotheses mentioned in § 4.1 as binary prediction problems—

whether a non-standard linguistic innovation is used in a tweet or not. Following the

standard practices in variationist sociolinguistics [189], we use two logistic regression
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Table 4.3: Predictors used in each model.

Predictor Model-I Model-II Description

Local audience features
@-init-same-metro x message begins with the username

of an individual from the same MSA
@-internal-same-metro x message contains a username

of an individual from the same MSA,
but not at the beginning

Limited audience features
@-init x x message begins with a username
@-internal x x message contains a username,

but not at the beginning
Wider audience features
#-init x x message begins with a hashtag
#-internal x x message contains a hashtag,

but not at the beginning
Controls
num-words-i x x message contains exactly i tokens

models. In the next two subsections, I present the details of the models and the

results. Details of the predictors for each model are shown in Table 4.3. Both of

these models test the frequency of non-standard linguistic innovations comparing to

the baseline of broadcast messages (no use of @-mentions or hashtags). Therefore a

positive coefficient for a message type predictor indicates greater tendency towards

using a non-standard variant in that type of message compared broadcast messages,

and a negative coefficient for a predictor indicates an inhibition towards using a

non-standard variant compared to broadcast messages.

4.5.1 Model-I

Dependent variable: Whether a tweet has any of the non-standard linguistic

innovations?

Predictors: @-init, @-internal, #-init, #-internal

Controls: Length of the message in number of words

Results: Table 4.4 and Table 4.5 show the results of the logistic regression analysis
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Table 4.4: Results for Model-I predictors and geographical lexical variables. Statistical
significance is indicated with asterisks, ∗∗∗ : p < 0.01, ∗∗ : p < 0.05, ∗ : p > 0.05.
‘Weight’ is the logistic transformation of the logistic regression coefficient, yielding a
value between 0 and 1, with 0.5 indicating indifference. ‘Empirical %’ indicates the
percentage of messages with each predictor which include a non-standard variable,
and ‘N’ is the total number of messages with each predictor.

Feature Weight Coefficient 95% C.I. Empirical % N

Limited audience
@-init 0.5701 0.2821 ∗∗∗ [ 0.264, 0.300] 51.85 96,954
@-internal 0.5827 0.3340 ∗∗∗ [ 0.299, 0.369] 56.41 15,494
Wider audience
#-init 0.4004 -0.4037 ∗∗∗ [-0.453, -0.355] 35.86 7,980
#-internal 0.4891 -0.0437 ∗∗∗ [-0.076, -0.011] 50.40 16,937
Range 18
Total 50.00 224,000

for Model-I predictors for the geographically-specific lexical variables and Tweetspeak

variables respectively. Both models show broadly similar trends for the predictors:

(1) both @-init and @-internal predictors show strong positive association with

the use of non-standard variables, which indicates that the non-standard linguistic

innovations are used more often in messages directed to smaller audience; (2) both

#-init and #-internal predictors show strong negative association with the use of

non-standard variables, which indicates larger audience size inhibits the use of the

non-standard linguistic innovations.

4.5.2 Model-II

Dependent variable: Whether a tweet has any of the non-standard linguistic

innovations?

Predictors: @-init-same-metro, @-internal-same-metro, @-init, @-internal,

#-init, #-internal

Controls: Length of the message in number of words

Results: Table 4.6 and Table 4.7 show the results of the logistic regression analysis
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Table 4.5: Results for Model-I predictors and Tweetspeak lexical variables.

Feature Weight Coefficient 95% C.I. Empirical % N

Limited audience
@-init 0.5997 0.4042∗∗∗ [ 0.384, 0.425] 53.12 78,047
@-internal 0.5826 0.3333∗∗∗ [ 0.294, 0.373] 54.12 12,076
Wider audience
#-init 0.4079 -0.3728∗∗∗ [-0.423, -0.323] 34.72 8,062
#-internal 0.4814 -0.0743∗∗∗ [-0.108, -0.041] 49.10 16,472
Range 19
Total 50.00 188,000

for Model-II predictors for the geographically-specific lexical variables and Tweetspeak

variables respectively. Both models show broadly similar trends for the predictors.

The small, but statistically significant positive coefficients for the new predictors

@-init-same-metro and @-internal-same-metro indicate that the non-standard

linguistic innovations are especially likely to be used in messages that are directed to

individuals from the same metropolitan area as the individual who sent the message.

While the coefficient for @-internal-same-metro is slightly higher than the coeffi-

cient for @-init-same-metro, the overlapping confidence intervals indicate that the

difference is not statistically significant—although both are significantly greater than

zero.

4.6 Conclusions

In this chapter I examined the social meaning of varied usage of non-standard language

in tweets using the sociolinguistic construct of audience design. First I explained

how we characterized the size of different audience on Twitter using the features of

the platforms. Then I described the extraction of two sets of linguistic variables:

geography specific non-standard forms and Twitter-specific terms using an automated

data-driven approach. After describing the dataset construction, I detailed two
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Table 4.6: Model-II predictors and geographical lexical variables.

Feature Weight Coefficient 95% C.I. Empirical % N

Local audience
@-init-same-metro 0.5225 0.0900∗∗∗ [ 0.055, 0.126] 53.23 14,976
@-internal-same-metro 0.5272 0.1089∗∗ [ 0.016, 0.202] 58.59 2,248
Limited audience
@-init 0.5667 0.2685∗∗∗ [ 0.249, 0.288] 51.85 96,954
@-internal 0.5789 0.3182∗∗∗ [ 0.281, 0.355] 56.41 15,494
Wider audience
#-init 0.4006 -0.4031∗∗∗ [-0.452, -0.354] 35.86 7,980
#-internal 0.4894 -0.0424∗∗∗ [-0.075, -0.010] 50.40 16,937
Range 18
Total 50.00 224,000

Table 4.7: Model-II predictors and geographical lexical variables.

Feature Weight Coefficient 95% C.I. Empirical % N

Local audience
@-init-same-metro 0.5247 0.0990∗∗∗ [0.050, 0.148] 53.64 7,349
@-internal-same-metro 0.5523 0.2100∗∗∗ [0.075, 0.345] 58.09 995
Limited audience
@-init 0.5976 0.3954∗∗∗ [0.375, 0.416] 53.12 78,047
@-internal 0.5783 0.3160∗∗∗ [0.275, 0.357] 54.12 12,076
Wider audience
#-init 0.4080 -0.3721∗∗∗ [-0.422,-0.322] 34.72 8,062
#-internal 0.4816 -0.0735∗∗∗ [-0.107,-0.040] 49.10 164,72
Range 19
Total 50.00 188,000
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analyses we performed to test two hypotheses related to the audience size and stylistic

variation.

Results from both analyses indicate a clear and consistent relationship between

the different audience-selection affordances of Twitter and the frequency of the non-

standard variants used in messages targeted at different intended audience. Non-

standard variants are more likely to be used in messages targeted at smaller and more

geographically local messages; but when the intended audience size becomes larger

and less geographically local, then non-standard variants are less likely to be used.

These findings suggest that Twitter users utilize the socio-technical affordances of the

platform to control their intended audience and self-present them differently using

different linguistic innovations that are geographically-differentiated or emerged on

Twitter to convey varied social meaning.

In this chapter we have looked at the social meaning of intra-person variation

in the usage non-standard forms that are unique to online social platforms. In the

next chapter, I focus on a special form of non-standard orthography that was recently

introduced to social media, and investigate how it affects individual linguistic style.
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CHAPTER 5

LINGUISTIC INNOVATIONS AND THE COMPETITION FOR

PARALINGUISTIC FUNCTIONS1

In the previous chapter I explained how we examined the social meaning of varying

usage of non-standard language in online writing. We considered only the ASCII-

based linguistic innovations such as emoticons and non-standard spellings. The socio-

technical platforms in which we conduct interpersonal interactions also provide new

technological and linguistic affordances. Recently, a new form writing or orthography,

called emojis, was introduced to online writing. Emojis are a pre-defined set of picture

characters based on the Unicode character encoding systems. Emojis look similar

to emoticons, but they are more colorful and increasing in number as new icons are

introduced frequently. This raises the question of whether emojis are performing the

same linguistic role of emoticons, that is to express non-verbal cues in online writing.

An even bigger question is whether the pre-defined symbols of emojis are going to

replace ASCII-based linguistic creativity such as emoticons and make online writing

more standard, but less creative?

In this chapter, I describe our examination of the impact of this new technological

affordance of emojis on online writing style using a causal inference approach. The

correlations between emoticon and emoji usage over time will not adequately answer

the question of whether the introduction of emojis causes a decline in other forms of

ASCII-based non-standard orthography. Therefore we use causal statistical analysis

to measure the effect of emoji adoption on individuals’ writing style. In this chapter,

I will first explain the procedure for extracting emojis, emoticons, and a lexicon of
1Content of this chapter is based on Umashanthi Pavalanathan and Jacob Eisenstein. “More

Emojis, Less :) The Competition for Paralinguistic Functions in Microblog Writing.”, First Monday,
November 2016.
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standard words. Then I will explain our study design of an approximated randomized

experiment using observational data from Twitter, the procedure for selecting the

treatment and control users, and the procedure for matching each of the treatment user

with a control user in order to eliminate the potential confounds of observational data.

Following that, I will detail the difference-in-difference method of causal statistical

inference which we used to measure the treatment effect of emoji adoption on writing

style. Finally, I will describe the causal experiments and summarize findings. Similar

to the previous chapter, the study presented in this chapter also focuses on the

dimensions of stylistic innovations and intra-person variation.

5.1 Background

Social media and other online platforms provide a new set of affordances for interper-

sonal communication. Affordances of online platforms, including technological, social,

and linguistic means, shape online interactions and online writing in several aspects.

For example, the work discussed in Chapter 4 looked at how technological and social

affordances of Twitter help users to navigate their audience and self-present them

accordingly using different stylistic innovations in writing. Recently, a new type of

linguistic affordance was introduced to many online platforms, including Twitter. It is

the pictograph characters known as “emojis”. Figure 5.1 shows a list of emojis. As

emojis looks visually similar to the previously well-known non-standard variant of

emoticons, the introduction of emojis raises several questions about the changes in

orthographic writing styles in online platforms: Do emojis play the same linguistic

role as emoticons and other non-standard terms? If so, will emojis replace previous

forms of non-standard terms?

Although emojis look visually similar to emoticons, they differ from emoticons and

other non-standard forms in one important aspect: emoticons and other non-standard

variants like abbreviations, expressive lengthenings, and phonetic spellings are creative
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Figure 5.1: Examples of emoji characters used in Twitter (created using
http://www.iemoji.com).

combination of multiple ASCII characters; but emojis are a predefined set of symbols

created by the unicode consortium. These bottom-up and top-down orthographic

differences make the competition between emojis and previous non-standard forms

linguistically important.

We formulate the question about the effects of emoji adoption on online writing

styles as a causal statistical inference question, considering the introduction of emojis

as the treatment and changes in individuals’ writing style as the effect of the treatment.

Specifically, we evaluate the following two hypotheses:

Hypothesis I: Adopting emojis causes writers to use fewer emoticons.

Hypothesis I: Adopting emojis causes writers to use fewer ASCII-based non-standard

orthographies overall.

The first hypothesis would suggest that emojis and emoticons are competing for a

shared linguistic function and the second hypothesis would suggest that emojis are

displacing all forms of non-standard orthography. We can consider the first hypothesis

as a special case of the second hypothesis. As simple correlation analyses would not

capture the causal claims, we use a matching approach to causal inference to evaluate

both hypotheses.

5.2 Dataset

For our analyses we used a corpus of tweets from February 2014 to August 2015,

collected continuously querying the Twitter streaming API.
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Selecting the study population: As our analyses focus on individuals’ writing

style, we used several criteria to select the study population: we removed users who

have more than 5,000 followers or followees and more than 200 tweets on average each

month. We further removed retweets, messages that were not originally posted by a

user.

To quantify the writing style of the study population, in addition to emojis, we

use two other sets of lexicons: emoticon tokens and standard tokens. We define the

lexicon usage rate as the ratio of the number of tokens that appear in a lexicon to the

total number of tokens.

Extracting emoji tokens: We extracted the emoji tokens by converting the

tweets into unicode representation and then using regular expressions to extract the

unicode characters in the ranges of the “Emoji & Pictographs” category of unicode

symbols. Through this process, we extracted 1,235 unique emoji characters from a

random sample of tweets.

Extracting emoticon tokens: We followed a data-driven approach to extract

emoticons, as there is no comprehensive list of Twitter emoticons and new emoticons

get introduced over time. We used a set of heuristics to write regular expressions (e.g.,

two or more non-alpha numeric characters) and extracted an initial list of candidate

tokens and then through manual inspection of a random examples of usage for each

token, we created a final list of 44 and 52 unique emoticons from tweets of March 2014

and March 2015.2 Extracted emoticon tokens are shown in Appendix B (Table B.1).

Extracting standard tokens: Because our second hypothesis tests the changes

in non-standard language usage and language becoming more standard, we create a

list of words that are widely used in online writing and considered to be standard. As

standard dictionaries such as the Unix dictionary do not contain enough coverage for

entity names and new words, we used a dump of the English Wikipedia articles and
2Reasons for the selection of this time period is discussed later in the Study Design section.
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Table 5.1: Standard word list statistics

Source No. of unique terms

Redhat Unix Dictionary 479,829
Ubuntu Unix Dictionary 99,171
English Wikipedia Corpus 266,6953

Combined List 621,968

augmented the dictionary words with the words that appear in more than 50 different

Wikipedia articles. In total, the standard token list contains 621,968 unique tokens.

Details about the sources of tokens are shown in Table 5.1.

5.3 Study Design

We evaluate both of our hypotheses using causal statistical inference. Specifically we

test the hypotheses using the following causal inference questions: (1) whether the

rise in emojis causes a decline in emoticon usage rate, and (2) whether the rise in

emojis causes an increase in standard token usage rate.

In a completely randomized experiment, we would select a group of individuals

who have never heard of emojis and randomly assign them to treatment and control

conditions, and then do some intervention to the treatment group to use emojis. The

effect of the treatment would be the difference in the lexicon usage rates between the

treatment and control groups after the treatment. As it is not feasible to conduct such

idealized experiment, we approximate this randomized experiment using observational

data from Twitter.

Treatment and Control groups: As Twitter introduced emojis to its web

interface in April 2014, following emoji support on Twitter’s apps for Android and iOS,

we considered the month of March 2014 as the pre-treatment period and the month of

March 2015 as the post-treatment period. As shown in Figure 5.2, we selected users
3Terms which appeared in more than 50 different articles.
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Figure 5.2: Selection of authors into treatment and control groups.

who had not used any emojis in March 2014, but used at least five emojis in March

2015 into the treatment group, and we selected users who had not used emojis in both

March 2014 and March 2015 into the control group.

5.3.1 Confounds

As we approximate a randomized experiment using observational data, users are not

randomly assigned to the treatment and control groups. Therefore, if there are any

confounds that affect both the treatment and outcome, then the treatment effect

estimation will be flawed. Although it is not feasible to control for all the confounds

that affect individual writing styles, we identified two confounds that could impact

the treatment effect estimation: lexicon usage and source of the tweet.

Lexicon usage: Writing style of Twitter users might differ based on their use of

standard and non-standard words. As these writing style preferences could influence

the adoption of emojis, we control for this confound by matching on the pre-treatment

lexicon usage rates of the treatment and control users.

Source of the tweet: Different Twitter clients (e.g., Twitter client for iPhone

vs. Twitter extension for desktop Firefox browser) have varied text input affordances

and auto-correction capabilities which impact the creation of tweet messages. These
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Figure 5.3: Matching procedure.

different characteristics of the clients might impact the treatment, which is the adoption

of emojis, and the outcome, which is the change in writing style. Therefore, we also

match on the source of the tweet.

5.3.2 Matching

We use the technique of matching [159, 190], to ensure that both the treatment and

control groups have similar pre-treatment characteristics. To test Hypothesis-I, we

matched the users in the treatment and control group based on the pre-treatment

emoticon usage rate and their majority source of tweets (yielded 3,112 treatment-

control pairs). To test Hypothesis-II, we matched the users in the treatment and

control groups based on their pre-treatment standard token usage rate and their

majority source of tweets (yielded 3,115 treatment-control pairs). Figure 5.3 shows a

schematic diagram of the matching process.

5.3.3 Estimation of Treatment Effects

We used the difference-in-difference method [191] for treatment effect estimation and

evaluated our hypotheses. As the overall lexicon usage rates change over time, we

need to account for the control group’s outcome as well. The difference-in-difference

64



approach accounts for this by calculating the effect of a treatment by comparing the

average change in the outcome variable after the treatment for both the treatment

and control groups. The following quantities describe the treatment effect estimation

process:

Lexicon usage rates

Xt
i,pre pre-treatment lexicon usage rates for author i, who is in the treatment group t

Xc
j,pre pre-treatment lexicon usage rates for author j, who is in the control group c

Xt
i,post post-treatment lexicon usage rates for author i, who is in the treatment group t

Xc
j,post post-treatment lexicon usage rates for author j, who is in the control group c

Differences

Y t
i the difference between the post-treatment and pre-treatment lexicon usage

rates for author i, who is in the treatment group t

Y t
i = Xt

i,post −Xt
i,pre

Y c
j the difference between the post-treatment and pre-treatment lexicon usage

rates for author j, who is in the control group c

Y c
j = Xc

j,post −Xc
j,pre

Ȳ t the average difference between post-treatment and pre-treatment lexicon

usage rates for the treatment group which has nt authors

Ȳ t = 1
nt

∑
i∈T Y

t
i

Ȳ c the average difference between post-treatment and pre-treatment lexicon

usage rates for the control group which has nc authors

Ȳ c = 1
nc

∑
j∈C Y

c
j

We can then define the average treatment effect as,

ATE = Ȳ t − Ȳ c.
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Figure 5.4: Analysis-I: Emoji usage of treatment and control groups.

Our null hypothesis in both the analyses is that there is no treatment effect and

any observed differences are due to chance variation in a finite sample.

5.4 Causal Inference Analysis

5.4.1 Analysis-I: Effects of Emoji Adoption on Emoticon Usage

We test the hypothesis that using emojis causes a decline in individuals’ emoticon

usage in the first analysis. Figure 5.4 and Figure 5.5 show the distribution of the emoji

and emoticon usage rates for both the treatment and control groups before and after

the treatment. Based on our study design, both the treatment and control groups

have zero emoji usage during pre-treatment period and the treatment group has a

non-zero emoji usage rate during the post-treatment period while the control group

remains the same. Based on our matching procedure, both the treatment and control

groups have similar emoticon usage rate (0.40%) before the treatment ( Figure 5.5

left).

There is a decrease in emoticon usage for the treatment group after the treatment.

Specifically, after the treatment, the treatment group has an average emoticon token
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Figure 5.5: Analysis-I results: Emoticon usage of treatment and control groups.

usage rate of 0.12%, while the control group has an average rate of 0.31%. The average

treatment effect is a 0.19% decrease in emoticon usage per token, which indicates

that after the adoption of emojis, the treatment group is 2.5 times less likely to use

emoticons than the control group. These differences are statistically significant for

a paired t-test (t = −9.612 at p < 10−21). Summary of the results are shown in

Table 5.2.

5.4.2 Analysis-II: Effects of Emoji Adoption in Standard Word Usage

We test the hypothesis that emoji adoption leads to language becoming more standard

in the second analysis. Figure 5.6 and Figure 5.7 show the distribution of the emoji

and standard token usage rates for both the treatment and control groups before

and after the treatment. Based on our study design, both the treatment and control

groups have zero emoji usage during pre-treatment period and the treatment group

has a non-zero emoji usage rate during the post-treatment period while the control

group remains the same. Based on our matching procedure, both the treatment and

control groups have similar standard token usage rate (85.2%) before the treatment

(Figure 5.7 left).
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Figure 5.6: Analysis-II: Emoji usage of treatment and control groups.

Figure 5.7: Analysis-II results: Standard token usage of treatment and control groups.
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There is an increase in standard token usage for the treatment group after the

treatment. Specifically, after the treatment, the treatment group has an average

standard token usage rate of 86.2%, while the control group has an average rate of

85.7%. The average treatment affect is a 0.45% increase in standard terms usage

per token, which indicates that after the adoption of emojis, the treatment group’s

language become more standard compared to the control group. These differences are

statistically significant for a paired t-test (t = −2.755 at p < 10−3). Summary of the

results are shown in Table 5.2.

Post-hoc placebo analysis: To examine whether the selection of our pre-

treatment and post-treatment periods are sensitive to our findings, we performed a

placebo-type analysis and computed the average differences in lexicon usage consider-

ing the periods adjacent to the pre-treatment and post-treatment periods. Results

of the analysis showed no statistically significant of the average differences, which

suggests that the treatment effects we measure are indeed due to the adoption of

emojis.

5.5 Conclusions

In this chapter, I have described our investigation of how new linguistic and techno-

logical affordances shape intra-person stylistic variation. Specifically, I explained how

we systematically studied the impact of the adoption of emojis, a new form of writing

introduced to social media recently. I explained how we extracted emojis, emoticons,

and a lexicon of standard words to quantify the writing style on Twitter. Then, I

explained our study design of an approximated randomized experiment including the

selection of treatment and control users using the technique of matching. Following

that, I described the procedure we used to measure treatment effect of emoji adoption

and tested two hypotheses related to the writing style in online language.

The finding that Twitter users who adopt emojis tend to reduce their usage of
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emoticons, in comparison to the matched users who do not use emojis, supports our

first hypothesis: the increasing frequency in emojis leads to a corresponding decline in

emoticons. Of course, since Twitter has a restriction on the number of characters, in

some sense all features compete for space, but not necessarily for the same linguistic

functions. Nonetheless, the overwhelming majority of Twitter messages are not near

the character limit [5], indicating that this is unlikely to be the main reason for the

decrease in emoticon characters. Given evidence that emoticons and emojis both

perform a paralinguistic function [30, 80], it seems more likely that the replacement

of emoticons by emojis reflects the ongoing success of emojis in a competition for this

role.

Results from our second analysis show that the users who adopt emojis tend

to use standard tokens at an increased rate after emoji adoption. This suggests

that emojis are in competition with the entire range of non-standard orthographies,

including expressive lengthening (e.g., cooooolll!!! ), non-standard words (e.g., gud),

and abbreviations (e.g., lol). If these trends continue, emojis may be a sociotechnical

solution to the “problem” of non-standard orthography, representing a rare case in

which a institutionally-driven change from above succeeds in displacing bottom up

linguistic variation.

This chapter and the previous chapter focused on the dimensions of stylistic

innovations and intra-person variation. In the next chapter I move beyond this and

focus on community-level linguistic style variation.
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CHAPTER 6

MULTI-COMMUNITY STYLE VARIATION: A

MULTIDIMENSIONAL LEXICON FOR INTERPERSONAL

STANCETAKING1

In the last two chapters I presented two studies looking at stylistic innovations and

intra-person variation. In the next three chapters, I move beyond this and look at

community level linguistic norms and how community linguistic styles affect intra-

person variation. In this chapter I focus on studying the interactional style aspects in

the multi-community environment of Reddit. Reddit is a large online community which

is a collection of several sub forums called subreddits. Each subreddit is dedicated to

discuss various topics through discussions. The conversational nature of Reddit makes

it ideal for studying interactional style.

Prior computational work on interactional styles primarily focused on single social

impressions such as politeness and formality. However, interactional styles span a

range of interpersonal phenomena. In order to study how different linguistic resources

are arrayed to create such social impressions, in this chapter I will explain how we

quantitatively operationalize the sociolinguistic concept of interpersonal stancetaking.

Stancetaking reflect the relationship of speakers or writers to the audience, topic

and the talk itself. Although previous work has used crowd sourced annotations to

characterize phenomena such as politeness and formality, such an approach is not

appropriate for stancetaking because there is no pre-defined set of stances. In this

chapter, I will explain how we use a data-driven unsupervised method to extract

the latent dimensions of stancetaking by grouping markers of stance based on their
1Content of this chapter is based on Umashanthi Pavalanathan, Jim Fitzpatrick, Scott F. Kiesling,

and Jacob Eisenstein. “A multidimensional Lexicon for Interpersonal Stancetaking.”, ACL 2017.
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underlying linguistic functions. After presenting the output of the model, I will

describe how we evaluate the model using intrinsic and extrinsic evaluations. The work

presented in this chapter focuses on the dimensions of community norms, intra-person,

and inter-community variation.

6.1 Background

Online communities are a space for groups of individuals to come together around

mutual engagement in some activities of shared interest. These communities can be

considered as communities of practice where shared norms are formed and evolve as the

community members interact with each other. Individuals construct different forms of

identities through participating in a variety of such communities of practice and a key

to this entire process of individual identity construction is the stylistic practices in

different communities [41]. How can we study these varied linguistic style practices in

large-scale by mining large corpora of online interactions? In this chapter, I provide

a framework to study inter-person, intra-person, and inter-community variation, by

quantitatively operationalizing the sociolinguistic concept of interpersonal stancetaking.

Interpersonal stancetaking represents an attempt to unify concepts such as sen-

timent, politeness, formality, and subjectivity under a single theoretical frame-

work [110, 111].2 The key idea, as articulated by Kiesling [112], is that stancetaking

captures the speaker’s relationship to (a) the topic of discussion, (b) the interlocutor or

audience, and (c) the talk (or writing) itself. Various configurations of these three legs

of the “stance triangle” can account for a range of phenomena. For example, epistemic

stance relates to the speaker’s certainty about what is being expressed, while affective

stance indicates the speaker’s emotional position with respect to the content [194].

The stancetaking framework has been applied almost exclusively through qualitative
2Stancetaking is distinct from the notion of stance which corresponds to a position in a debate [192].

Similarly, Freeman et al. [193] correlate phonetic features with the strength of such argumentative
stances.
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methods, using close readings of individual texts or dialogs to uncover how language

is used to position individuals with respect to their interlocutors and readers [195,

196, 197, 198]. But despite its strong theoretical foundation, we are aware of no prior

efforts to operationalize stancetaking at scale. Since annotators may not have strong

intuitions about stance — for example, in the way that they do about formality [51]

and politeness [50] — we cannot rely on the annotation methodologies employed in

prior work. We take a different approach, performing a multidimensional analysis of

the distribution of likely stance markers.

We attempt the first large-scale operationalization of stancetaking through com-

putational methods. Our approach is based on a theoretically-guided application of

unsupervised learning, in the form of factor analysis. Stancetaking is characterized in

large part by an array of linguistic features ranging from discourse markers such as

actually to backchannels such as yep [112]. We first compile a lexicon of stance markers,

combining prior lexicons from Biber and Finegan [1] and the Switchboard Dialogue

Act Corpus [199]. We then extend this lexicon to the social media domain using word

embeddings. Finally, we apply a multi-dimensional analysis of co-occurrence patterns

to identify a small set of stance dimensions.

Our operationalization of stancetaking is based on the induction of lexicons of

stance markers. The lexicon-based methodology is related to earlier work from social

psychology, such as the General Inquirer [200] and LIWC [61]. In LIWC, the basic

categories were identified first, based on psychological constructs (e.g., positive emotion,

cognitive processes, drive to power) and syntactic groupings of words and phrases (e.g.,

pronouns, prepositions, quantifiers). The lexicon designers then manually constructed

lexicons for each category, augmenting their intuitions by using distributional statistics

to suggest words that may have been missed [201]. In contrast, we follow the approach

of Biber [202], using a multidimensional analysis to identify latent groupings of markers

based on co-occurrence statistics.
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To measure the internal coherence (construct validity) of the extracted stance

dimensions, we use a word intrusion task [203] and a set of pre-registered hypothe-

ses [204]. To measure the utility of the stance dimensions, we perform a series of

extrinsic evaluations. A predictive evaluation shows that the membership of online

communities is determined in part by the interactional stances that predominate in

those communities. Furthermore, the induced stance dimensions are shown to align

with annotations of politeness and formality.

6.2 Data

Reddit, one of the internet’s largest social media platforms, is a collection of subreddits

organized around various topics of interest. As of January 2017, there were more than

one million subreddits and nearly 250 million users, discussing topics ranging from

politics (r/politics) to horror stories (r/nosleep).3 Although Reddit was originally

designed for sharing hyperlinks, it also provides the ability to post original textual

content, submit comments, and to vote on content quality [205]. Reddit’s conversation-

like threads are therefore well suited for the study of interpersonal social and linguistic

phenomena.

We used an archive of 530 million comments posted on Reddit in 2014, retrieved

from the public archive of Reddit comments.4 This dataset consists of each post’s

textual content, along with metadata that identifies the subreddit, thread, author,

and post creation time. More statistics about the full dataset are shown in Table 6.1.

Table 6.1: Dataset size

Subreddits 126,789
Authors 6,401,699
Threads 52,888,024
Comments 531,804,658

3http://redditmetrics.com/
4https://archive.org/details/2015_reddit_comments_corpus
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6.3 Stance Lexicon

Stancetaking can be characterized in part by an array of linguistic features such

as hedges (e.g., might, kind of ), discourse markers (e.g., actually, I mean), and

backchannels (e.g., yep, um). To quantitatively operationalize stancetaking, we first

build a lexicon of these markers.

6.3.1 Seed lexicon

We began with the list of 448 stance markers from Biber and Finegan [1], which

includes several lexical categories such as certainty adverbs (e.g., actually, of course,

in fact), affect markers (e.g., amazing, thankful, sadly), and hedges (e.g., kind of,

maybe, something like) among other adverbial, adjectival, verbal, and modal markers

of stance. As our domain of focus is online interactions, and as online language differ

significantly from the printed text [5] considered when building the lexicon in Biber

and Finegan [1], we augment the initial list of stance markers with 74 dialog act

markers from the Switchboard Dialog Act Corpus (SWDA) [199]. The SWDA corpus

is based on two-sided telephone conversations, which involve dialogic discourse as in

online discussions. The final seed lexicon consists of 517 unique markers, from these

two sources.

6.3.2 Lexicon expansion

Our seed lexicon is based on genres that are different from online discussions. Different

language style varieties are prevalent in different genres to perform the same linguistic

functions [206]. To account for the genre differences in stance markers, we expanded

the seed lexicon using automated techniques based on distributional statistics. This is

similar to prior work on the expansion of sentiment lexicons [207, 208].

We used word embeddings [209] to find words that are distributionally similar
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Table 6.2: Stance lexicon: seed and expanded terms.

Example stance markers from Biber and Finegan [1]
Seed term Expanded terms
significantly considerably, substantially, dramatically
certainly surely, frankly, definitely
incredibly extremely, unbelievably, exceptionally

Example dialog act markers from Jurafsky et al. [199]
Seed term Expanded terms
nope nah, yup, nevermind
great fantastic, terrific, excellent

to the markers in the initial seed lexicon. We trained word embeddings on a corpus

of 25 million Reddit comments and a vocabulary of 100K most frequent words on

Reddit using the structured skip-gram models of wang2vec [210], which augments

word2vec [209] by accounting for word order information. We used these embeddings

to find terms that are similar to each of the seed stance marker and expanded our

lexicon by including terms that have cosine similarity of at least 0.75 with respect to

the seed marker. Examples of seed markers and related terms expanded using the

word embeddings are shown in Table 6.2. The final stance lexicon with the expanded

terms contains 812 unique markers.

6.4 Linguistic Dimensions of Stancetaking

Motivated by prior work of Biber [202] on the linguistic analyses of genre variation, we

operationalize stancetaking through a multi-dimensional analysis on the distributional

statistics of stance markers across subreddits. In a multi-dimensional framework,

each dimension of variation can be viewed as a spectrum, which is a better choice

than dichotomous differentiations to explain linguistic expressions of stancetaking.

We perform the multi-dimensional analysis using singular value decomposition, an

approach which has been applied successfully to a wide range of problems in natural
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language processing and information retrieval [211]. While Bayesian topic models are

an appealing alternative, singular value decomposition is fast and deterministic, with

a minimal number of tuning parameters. The resulting latent dimensions from our

multi-dimensional analysis can be considered as the grouping of stance markers based

on the underlying communicative functions associated with their usage patterns in

multiple subreddits.

6.4.1 Extracting Stance Dimensions

Motivated by our interest in inter-community stylistic variation on Reddit and the

premise that the distributional differences of linguistic markers reflect socially mean-

ingful communicative norms of the communities, we perform our analysis using the

co-occurrences patterns of stance markers and subreddits.5

Singular value decomposition is often used in combination with a transformation of

the co-occurrence counts by pointwise mutual information [212]. This transformation

ensures that each cell in the matrix indicates how much more likely a stance marker is to

co-occur with a given subreddit than would happen by chance under an independence

assumption. Because negative PMI values tend to be unreliable, we use the positive

PMI (PPMI) values, by replacing all negative PMI values with zeros [213]. Therefore,

we obtain stance dimensions by applying singular value decomposition to the matrix

constructed as follows:

Xm,s =

(
log

Pr(marker = m, subreddit = s)

Pr(marker = m) Pr(subreddit = s)

)
+

.

Truncated singular value decomposition performs the approximate factorization

X ≈ UΣV >, where each row of the matrix U is a k-dimensional description of each

stance marker, and each row of V is a k-dimensional description of each subreddit.
5We performed a pilot study using the co-occurrences of stance markers and individual users and

the resulting dimensions appeared to be less stylistically coherent.

78



0.04 0.03 0.02 0.01 0.00 0.01 0.02 0.03

0.02

0.01

0.00

0.01

0.02

gadgets

nsfw

politics

funny

space
malefashionadvice

food

worldnews

explainlikeimfive
tattoos

facepalm

photoshopbattles

aww

asksc ience

trees

gonewild

sc ience

programming

personalfinance

atheism
4chan

his tory

(+)Dim-2(-)
D

im
-3

(+
)

(-
)

Figure 6.1: Mapping of subreddits in the second and third stance dimensions, high-
lighting especially popular subreddits.

We included the 7,589 subreddits that received at least 1,000 comments in 2014.

6.4.2 Results: Stance Dimensions

From the SVD analysis, we extracted the six principal latent dimensions that ex-

plain the most variation in our dataset.6 The decision to include only the first six

dimensions was based on the strength of the singular values corresponding to the

dimensions. Table 6.3 shows the top five stance markers for each extreme of the six

dimensions. The stance dimensions convey a range of concepts, such as involved versus

informational language, narrative versus dialogue-oriented writing, standard versus

non-standard variation, and positive versus negative affect. Figure 6.1 shows how some

of the popular subreddits vary across two of these interactional dimensions. ‘Not Safe

For Work (NSFW)’ subreddits r/gonewild and r/aww map high on dimension-2 and

low on dimension-3, indicating involved and informal style of discourse; r/askscience

and r/space map low on dimension-2 and high on dimension-3 indicating informational

and formal style.
6The choice of six latent dimensions was based on analysis of the associated scree plot [214].
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Table 6.3: For each of the six dimensions extracted by our method, we show the five
words with the highest loadings.

Dim-1 – beautifully, pleased, thanks, spectacular, delightful
+ just, even, all, no, so

Dim-2 – suggests that, demonstrates, conclude, demonstrated, demonstrate
+ lovely, awww, hehe, aww, haha

Dim-3 – funnier, hilarious, disturbing, creepy, funny
+ thanks, ideally, calculate, estimate, calculation

Dim-4 – phenomenal, bummed, enjoyed, fantastic, disappointing
+ hello, thx, hehe, aww, hi

Dim-5 – lovely, stunning, wonderful, delightful, beautifully
+ nvm, cmon, smh, lmao, disappointing

Dim-6 – stunning, fantastic, incredible, amazing, spectacular
+ anxious, stressed, exhausted, overwhelmed, relieved

6.5 Intrinsic Validation

Evaluating model output against gold-standard annotations is appropriate when there

is some notion of a correct answer. As stancetaking is a multidimensional concept,

we have taken an unsupervised approach. Therefore, we use evaluation techniques

based on the notion of validity, which is the extent to which the operationalization of

a construct truly captures the intended quantity or concept. Validation techniques for

unsupervised content analysis are widely found in the social science literature [215, 216]

and have also been recently used in the NLP and machine learning communities [e.g.,

203, 217, 204].

We used several methods to validate the stance dimensions extracted from the

corpus of Reddit comments. This section describes intrinsic evaluations, which test

whether the extracted stance dimensions are linguistically coherent and meaningful,

thereby testing the construct or content validity of the proposed stance dimensions [216].

Extrinsic evaluations are presented in § 6.6.
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6.5.1 Word Intrusion Task

A word intrusion task is used to measure the coherence and interpretability of a

group of words. Human raters are presented with a list of terms, all but one of

which are selected from a target concept; their task is to identify the intruder. If the

target concept is internally coherent, human raters should be able to perform this

task accurately; if not, their selections should be random. Word intrusion tasks have

previously been used to validate the interpretability of topic models [203] and vector

space models [217].

We deployed a word intrusion task on Amazon Mechanical Turk (AMT), in which

we presented the top four stance markers from one end of a dimension, along with

an intruder marker selected from the top four markers of the opposite end of that

dimension. In this way, we created four word intrusion tasks for each end of the six

dimensions.

Worker selection: We required that the AMT workers (“turkers”) have completed

a minimum of 1,000 HITs and have at least 95% approval rate. Furthermore, because

our task is based on English language texts, we required the turkers to be native

speakers of English living in one of the majority English speaking countries. As a

further requirement, we required the turkers to obtain a qualification which involves an

English comprehension test similar to the questions in standardized English language

tests. These requirements are based on best practices identified in Callison-Burch and

Dredze [218].

Task specification: Each AMT human intelligent task (HIT) consists of twelve

word intrusion tasks, one for each end of the six dimensions. We provided minimal

instructions regarding the task, and did not provide any examples, to avoid introducing
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bias.7 As a further quality control mechanism, each HIT included three questions

which ask the turkers to pick the best synonym for a given word from a list of five

answers, where one answer was clearly correct. Turkers who gave incorrect answers for

these were to be excluded, but this situation did not arise in practice. Altogether each

HIT consists of 15 questions, and was paid US$1.50. Five different turkers performed

each HIT.

Results: We measured the interrater reliability using Krippendorf’s α [219] and the

model precision metric defined by Chang et al. [203]. Results on both metrics were

encouraging. We obtained a value of α = 0.73, on a scale where α = 0 indicates chance

agreement and α = 1 indicates perfect agreement. The model precision was 0.82;

chance precision is 0.20. To offer a sense of typical values for this metric, Chang et al.

[203] report model precisions in the range 0.7–0.83 in their analysis of topic models.

Overall, these results indicate that the multi-dimensional analysis has succeeded at

identifying dimensions that reflect natural groupings of stance markers.

6.5.2 Pre-registered Hypotheses

Construct validity was also assessed using a set of pre-registered hypotheses. The

practice of pre-registering hypotheses before an analysis and testing the correctness

is widely used in the social sciences; it was adopted by Sim et al. [204] to evaluate

the induction of political ideological models from text. Before performing the multi-

dimensional analysis, we identified two groups of hypotheses that are expected to

hold with respect to the latent stancetaking dimensions using our prior linguistic

knowledge:

• Hypothesis I: Stance markers that are synonyms should not appear on the
7The prompt for the word intrusions task was: “Select the intruder word/phrase: you will be

given a list of five English words/phrases and asked to pick the word/phrase that is least similar to
the other four words/phrases when used in online discussion forums”.
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Table 6.4: Results for pre-registered hypothesis that stance dimensions will not split
synonym pairs.

Number of synonym pairs
Stance Dimension On same end On opposite ends

Dimension 1 6 3
Dimension 2 12 2
Dimension 3 2 1
Dimension 4 11 0
Dimension 5 10 2
Dimension 6 10 0

Total 51/59 8/59

opposite ends of a stance dimension.

• Hypothesis II: If at least one stance marker from a predefined stance feature

group appears on one end of a stance dimension, then other markers from the

same feature group will tend not to appear at the opposite end of the same

dimension.

Synonym Pairs: For each marker in our stance lexicon, we extracted synonyms

from Wordnet, focusing on markers that appear in only one Wordnet synset, and

not including pairs in which one term was an inflection of the other.8 Our final list

contains 73 synonym pairs (e.g., eventually/finally, grateful/thankful, yea/yeah). Of

these pairs, there were 59 cases in which both terms appeared in either the top or

bottom 200 positions of a stance dimension. In 51 of these cases, the two terms

appeared on the same side (the chance rate would be 50%), supporting the hypothesis

and further validating the stance dimensions. More details are shown in Table 6.4.

Stance Feature Groups: Biber and Finegan [1] group stance markers into twelve

“feature groups”, such as certainty adverbs, doubt adverbs, affect expressions, and
8It is possible that inflections are semantically similar, because by definition they are changes

in the form of a word to mark distinctions such as tense, person, or number. However, different
inflections of a single word form might be used to mark different stances (e.g., some stances might be
associated with the past while others might be associated with the present or future).
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Table 6.5: Results for preregistered hypothesis that stance dimensions will align with
stance feature groups of Biber and Finegan [1].

Feature #Stance χ2 p-value Reject
group marker null?

Certainty adv. 38 16.94 4.6e−03 X
Doubt adv. 23 13.21 2.2e−02 ×
Certainty verbs 36 48.99 2.2e−09 X
Doubt verbs 55 30.45 1.2e−05 X
Certainty adj. 28 29.73 1.7e−05 X
Doubt adj. 12 14.80 1.1e−02 ×
Affect exp. 227 97.17 2.1e−19 X

hedges. Ideally, the stance dimensions should preserve these groupings. To test this,

for each of the seven feature groups with at least ten stance markers in the lexicon,

we counted the number of terms appearing among the top 200 positions in both ends

(high/low) of each dimension. Under the null hypothesis, the stance dimensions are

random with respect to the feature groups, so we would expect roughly an equal

number of markers on both ends. As shown in Table 6.5, for five of the seven feature

groups, it is possible to reject the null hypothesis at p < .007, which is the significance

threshold after correcting for multiple comparisons. This indicates that the stance

dimensions are aligned with predefined stance feature groups.

6.6 Extrinsic Evaluation

The evaluations in the previous section test internal validity; we now describe eval-

uations testing whether the stance dimensions are relevant to external social and

interactional phenomena.

6.6.1 Predicting Cross-posting in Subreddits

Online communities can be considered as communities of practice [220], where mem-

bers come together to engage in shared linguistic practices. These practices evolve

simultaneously with membership, coalescing into shared norms. We hypothesize that
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Table 6.6: Examples of subreddit pairs that have large and small amount of overlap
of contributing members.

Cross-Community Participation

High-Scoring Pairs Low-Scoring Pairs

r/blog, r/announcements r/gonewild, r/leagueoflegends
r/pokemon, r/wheredidthesodago r/soccer, r/nosleep
r/politics, r/technology r/programming, r/gonewild
r/LifeProTips, r/dataisbeautiful r/nfl, r/leagueoflegends
r/Unexpected, r/JusticePorn r/Minecraft, r/personalfinance

users of Reddit have preferred interactional styles, and that participation in subreddit

communities is governed not only by topic interest, but also by these interactional

preferences. The proposed stancetaking dimensions provide a simple measure of inter-

actional style, allowing us to test whether it is predictive of community membership

decisions.

Classification task: The basic task is to classify pairs of subreddits as high-crossover

or low-crossover, depending on whether individuals are especially likely or unlikely to

participate in both subreddits. Individuals are considered to participate in a subreddit

if they contribute posts or comments. We compute the pointwise mutual information

(PMI) with respect to cross-participation among the 100 most popular subreddits.

For each subreddit s, we identify the five highest and lowest PMI pairs 〈s, t〉, and

add these to the high-crossover and low-crossover sets, respectively. Example pairs

are shown in Table 6.6. After eliminating redundant pairs, we identify 437 unique

high-crossover pairs, and 465 unique low-crossover pairs. All evaluations are based on

multiple random training/test splits over this dataset.

Classification approaches: A simple classification approach is to predict that

subreddits with similar text will have high crossover. We measure similarity using

TF-IDF weighted cosine similarity, using the 8,000 most frequent words on reddit
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Table 6.7: Accuracy for prediction of subreddit cross-participation.

Model Accuracy

BOW-Cosine 66.13%
Stance-Cosine 64.31%

BOW-SVD 77.48%
Stance-SVD 84.93%

(Stance-Cosine), and using the stance lexicon (BOW-Cosine). The similarity

threshold between high-crossover and low-crossover pairs was estimated on the training

data. We also tested the relevance of multi-dimensional analysis: in the Stance-SVD

model, we used the latent stance dimensions; in the BOW-SVD model, we applied

the same multi-dimensional analysis to the 8,000 word vocabulary. For each pair of

subreddits, we computed a feature set of the absolute difference across the top six

latent dimensions, and applied a logistic regression classifier. Regularization was tuned

by internal cross-validation.

Results: Table 6.7 shows average accuracies for these models. The stance-based

SVD features are considerably more accurate than the BOW-based SVD features,

indicating that interactional style does indeed predict cross-posting behavior. Both

are considerably more accurate than the models based on cosine similarity.

6.6.2 Stancetaking Dimensions and Social Phenomena

The utility of the induced stance dimensions depends on their correlation with social

phenomena of interest. Prior work has used crowdsourcing to annotate texts for

politeness and formality. We evaluate the stancetaking properties of these annotated

texts.

Data: We used the politeness corpus of Wikipedia edit requests from Danescu-

Niculescu-Mizil et al. [50], which includes the textual content of the edit requests,
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along with scalar annotations of politeness. Following the original authors, we compare

the text for the messages ranked in the first and fourth quartiles of politeness scores.

For formality, we used the corpus from Pavlick and Tetreault [51], focusing on the

blogs domain, which is most similar to our domain of Reddit. Each sentence in this

corpus was annotated for formality levels from −3 to +3. We considered only the

sentences with mean formality score greater than +1 (more formal) and less than −1

(less formal).

Stance dimensions: For each document in the above datasets, we compute the

stance properties, as follows: for each dimension, we compute the total frequency of

the hundred most positive terms and the hundred most negative terms, and then take

the difference. Instances containing no terms from either list are excluded. We focus

on stance dimensions two and five, which are summarized in Table 6.3. Dimension

two contrasts informational and argumentative language against emotional and non-

standard language. Dimension five contrasts positive and formal language against

non-standard and somewhat negative language.

Results: A kernel density plot of the resulting differences is shown in Figure 6.2.

The effect sizes of the resulting differences are quantified using Cohen’s d statistic [221].

Effect sizes for all differences are between 0.3 and 0.4, indicating small-to-medium

effects — except for the evaluation of formality on dimension five, where the effect

size is close to zero. The relatively modest effect sizes are unsurprising, given the

short length of the texts. However, these differences lend insight to the relationship

between formality and politeness, which may seem to be closely related concepts. On

dimension two, it is possible to be polite while using non-standard language such

as hehe and awww, so long as the sentiment expressed is positive; however, these

markers are not consistent with formality. On dimension five, we see that positive

sentiment terms such as lovely and stunning are consistent with politeness, but not
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Figure 6.2: Kernel density distributions for stance dimensions 2 and 5, plotted with
respect to annotations of politeness and formality.

with formality. Indeed, the distribution of dimension five indicates that both ends of

dimension five are consistent only with informal texts.

Overall, these results indicate that interactional phenomena such as politeness and

formality are reflected in our stance dimensions, which are induced in an unsupervised

manner. Future work may consider the utility of these stance dimensions to predict

these social phenomena, particularly in cross-domain settings where lexical classifiers

may overfit.

6.7 Conclusions

Stancetaking provides a general perspective on the various linguistic phenomena that

structure social interactions. In this chapter I described a quantitative operationaliza-

tion of the construct of stancetaking to measure linguistic style at scale. Specifically,

I described how we extracted a set of several hundred stance markers, building on

previously-identified lexicons and using word embeddings to perform lexicon expansion.

Then I explained how we used a multidimensional analysis to group these markers into

stance dimensions and validated the linguistic coherence and interpretability of the

extracted stance dimensions. Then I described how we further validated the model

through extrinsic evaluations and demonstrated the utility of the extracted stance
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dimensions. This multidimensional stancetaking lexicon captures intra-community

linguistic variation along six interactional styles. This lexicon can be used to charac-

terize interactional styles of subreddits and users, and this enables the investigation of

several online community writing style related research questions. In the next chapter

(Chapter 7), I present a study of linguistic style-shifting in online multi-community

environments in which I use the multidimensional stance lexicon to characterize the

linguistic styles of communities and individual members. Further, our hope is that

this lexicon can also be adapted to capture the interactional styles in other online

communities and social media in general.
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CHAPTER 7

MULTI-COMMUNITY STYLE VARIATION: LINGUISTIC

STYLE-SHIFTING

Continuing the focus on community-level linguistic style variation from the last chapter,

in this chapter I explore how community norms and individual writing styles interact

in a multi-community setting. Online communities such as Reddit and Stack Exchange

house multiple sub-communities on various topics, and also sometimes multiple sub-

communities on the same topic [222]. While these sub-communities are housed within

the parent sites, most of the time the sub-communities are governed independently

by the members of each community through the creation of their own community

practices and guidelines [39]. However, the members of these multi-communities create

a single account in the parent site and participate in multiple communities using

the same account.1 Similar to community writing styles, individual members also

have their own writing style, which of course is shaped by several social contexts

as we see in this dissertation. Now, what happens when individuals participate in

multiple communities, such as different subreddits on Reddit? Do they use a uniform

writing style or do they change their writing style depending on which community they

participate in? Another related question is, when individuals participate in multiple

communities, do they bring writing style norms from one community to another?

This is the focus of this chapter and the work presented in this chapter considers

linguistic variation along the broad dimensions of community norms, intra-person, and

inter-community variation.

In this chapter, first I will provide some background on multi-communities and
1While it is possible that some members create multiple accounts for different subreddits, the

common practice is to use a single account to participate in multiple subreddits [117, 223].
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community norms to motivate the research questions we study. Then I will describe

the dataset used for the analysis and the details of four style-shifting models which

we formulate to study the research questions. Following that, I report and discuss the

results. I conclude the chapter with a discussion of future work.

7.1 Background

Although large scale multi-community analysis is difficult in offline settings, the

availability of data capturing interactions in online multi-community environments

enables us to study individual member behavior, community linguistic styles, and

social dynamics [59]. In online multi-community environments people participate in

more than one community [48], and within each of these communities norms emerge

over time as members engage in social interactions [40, 224]. As new members join a

community and old members gain more authority, the community norms go through

continuous change over time. This is in accordance with the notion of “community of

practice”, a well-known concept in both sociology [225] and sociolinguistics [41, 220].

The interaction between community linguistic norms, such as community jargons

and domain-specific terms, and social dynamics has been investigated in prior work, in

the context of individual communities [40, 224]. What happens when people are part of

more than one community? Are their interaction styles same in multiple communities

or do they adapt to the linguistic style of each community they participate in? How

does members’ linguistic style affect the feedback they receive from the community?

Large-scale multi-community style accommodation has not been investigated in prior

work, and this gap motivates our research questions in this study.

RQ1: Do users participating in multiple subreddits shift style to match the

writing style of the subreddit they participate in?

If there is style-shifting, then what are the factors that influence the stylistic
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choices of users when they participate in multiple communities? Do community

policies or practices influence users’ choice of writing style? To shed light on these

related questions, we study the following research question:

RQ2: How does the amount of subreddit norm enforcement relate to the amount

of style shifting in subreddits?

Multi-community environments, such as Reddit, also enable the study of persistence

of linguistic style over consecutive utterances. Persistence is the tendency to repeat

a recently used variant in speech or writing. Prior studies of language variation

in the linguistics literature have found evidence for persistence in conversational

speech [226, 227], for example, persistence in the usage of pronouns [226, 228]. However,

we are not aware of any quantitative studies on the persistence of linguistic style.

Recent literature argues that a model of language variation should consider both

the surface linguistic variation as well as the influence of cognitive forces shaping

the variation [227]. Motivated by this literature, in RQ3, we look at persistence of

linguistic style when users post to multiple subreddits within a short period of time.

RQ3: Does recency of posting to a subreddit influence the style choices of

subsequent posts?

7.2 Dataset

For this study, we use the set of comments posted in Reddit in 2014 obtained from the

public archive of Reddit data.2 From this dataset we retrieved all comments posted

in the top 100 subreddits by subscribers3 and extracted all usernames (i.e., authors

of comments). We filtered this list of usernames as follows: removed the ‘deleted’

username which indicates all accounts that were deleted, removed bots by checking
2http://files.pushshift.io/reddit/
3http://redditlist.com/
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for the presence of the term ‘bot’ in the username, and removed throwaway accounts

(anonymous accounts, mostly used for one time posts [229]) by removing usernames

containing any of the following variants as done in prior work: ‘thrw’, ‘throwaway’,

‘throw’, and ‘thraway’ [230]. To extract active users, we selected users who have posted

at least 100 comments in 2014. As our focus in this work is style-shifting when users

post to multiple subreddits, we selected only the users who have participated in at

least four different subreddits. After these filters, the resulting set contained 9,921

users. We subsampled a set of 769 users for our analysis and collected their timeline

of posts.4

7.3 Methods

In this section, I describe how we quantify linguistic style, formulate style-shifting

models to study our research questions, implement the models, and evaluate the

models.

7.3.1 Measuring Linguistic Style

We use two linguistic measures: (1) the multidimensional stance lexicon developed

in the previous chapter (Chapter 6) and (2) lexicons from the linguistic inquiry

word count (LIWC) [61]. The stance lexicon is developed to measure the stylistic

aspect of language. LIWC is a psycholinguistic measure and has been widely used to

characterize the language of online communities (e.g., [46, 224, 230]). In addition to

the style lexicon of stance makers, we also use LIWC as a measure in order to compare

and contrast the patterns of style-shifting in terms of the use of stance markers and

psycholinguistic markers. For the stance measure, we computed the log transformed

proportion of the coverage of 100 stance markers from the high and low ends of

each of the six stance dimensions (§ 6.4). For the LIWC measure, we counted the
4We used subsampling to reduce the data size so that the model running time is reasonable.
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number of markers from the following LIWC categories used in prior work on linguistic

accommodation [46, 231]: Article, Certainty, Conjunction, Discrepancy, Exclusive,

Inclusive, Indefinite, Negation, Preposition, Quantifier, Tentative, 1st person singular,

1st person plural, and 2nd person pronoun.

7.3.2 Style-shifting Models

To study the patterns of linguistic style-shifting in multi-community environments,

we formulate a set of statistical models. We model the writing style of user u’s post

in subreddit r as a function of several covariates. To answer RQ1, we compare the

following three models:

No style-shifting:

M0 : yu,r ∼ f(µu) (7.1)

where yu,r is the style of user u’s posts in subreddit r and µu is an indicator for user

u. Bold face notations denote vectors.

Same shifting for all subreddits:

M1 : yu,r ∼ f(µu + νr) (7.2)

where νr is an indicator for subreddit r.

Varying shifting per subreddit:

M2 : yu,r ∼ f(αrµu + νr);αr ∈ R+ (7.3)

where αr is the amount of adaptation of user u in subreddit r. A large value for αr

indicates low style-shifting and vice versa.
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To study RQ2, we use the αr parameter obtained from M2, and analyze its cor-

relation with the following measures of subreddit norm enforcement: (1) number of

moderators per active posters in the subreddit,5 (2) number of moderators per sub-

scribers, (3) number of moderators per comment, (4) proportion of deleted comments,

and (5) average number of deleted comments per moderator.

In RQ3, we are interested in understanding the cognitive aspect of linguistic style-

shifting in a multi-community environment by looking at the linguistic style of a user’s

consecutive posts in multiple subreddits. We look at the recency or style persistence

effect by modeling a user’s linguistic style in the current post to a subreddit as follows:

augmenting M2 to include the previous subreddits the user has posted to within a

period of time prior to the current post. Specifically, we include the subreddit where

user u posted immediately before posting to subreddit r in time t (we indicate this

as r(t) and the previous subreddit as r(t − 1) where r(t − 1) 6= r(t)). To measure

persistence over time, we consider the following time bins as time elapsed between the

last post in r(t− 1) and the current post in r(t): 1 hour, 6 hours, 12 hours, 1 day, >1

day (up to 10 days).

Persistence of style across subsequent subreddits:

M3 : yu,t ∼ f(αr(t)µu + νr(t)+

1(δt < t1)β1νr(t−1)+

1(t1 < δt < t2)β2νr(t−1)+

1(t2 < δt < t3)β3νr(t−1)) + ...

(7.4)

where δt = T (t)− T (t− 1), the time difference between the current and immediately

previous post. If there is a persistence effect, we would expect the β coefficients to

decrease (i.e., β1 > β2 > β3...). That means, the shorter the time difference between
5users who have at least 10 posts in 2014.
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the current post and the immediately previous post, the higher the influence from the

writing style of the immediately previous subreddit.

7.3.3 Model Implementation

We implement the models formulated in the previous section using the RStan pack-

age [232] for Bayesian statistical inference. Below we provide implementation details

for M2. Other models are implemented similarly.

yu,r ∼ N (αrµu + νr, σ
2
y)

µu ∼ N (0, σ2
u)

νr ∼ N (0, σ2
r)

αr ∼ Beta(a, b)

σu ∼ Gamma(c, d)

σr ∼ Gamma(c, d)

(7.5)

We used a, b = 2, and c, d = 0.001 for initialization. We fit each model using 10

chains each with 4,000 iterations (2,000 warmup iterations).6 Other RStan parameters

include: “NUTS” (No-U-Turn sampler) [233] for sampling algorithm, 10 CPU cores for

parallelization, and default values for other parameters. We verified model convergence

using the Markov chain traceplots and the “Rhat” statistics. For the LIWC models,

we model yu,r as a vector binomial distribution.

7.3.4 Model Evaluation

We compare the performance of models M0-M3 using the expected predictive ac-

curacy [234] using the “loo”7 R package. The “loo” package estimates the pointwise
6Choice of these parameters are based on preliminary modeling, convergence diagnostics, and

reasonable running time.
7http://mc-stan.org/users/interfaces/loo
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out-of-sample prediction accuracy from a fitted Bayesian model using the log-likelihod

evaluated at the posterior simulations of the parameter values.8

We verify the following hypotheses with regard to each of our research questions:

H1: If M1 performs better than M0, that would indicate that users deviate from

their own writing style and shift style in same amount when posting to different

subreddits.

H2: If M2 performs better than M1, that would indicate that users change their

writing style in varying amounts when posting to different subreddits.

H3: If M3 performs better than M2 and if there is a decrease in the β coefficients,

that would indicate persistence of users’ linguistic style over time (i.e., recency

effect)

7.4 Results

Results for the performance of models M0-M3 are shown in Table 7.1.

Table 7.1: Model evaluation results. We used the multidimnesional stance lexicon and
LIWC to characterize linguistic style. Diff(acc.): difference in expected predictive
accuracy of the two models, Std. Error : standard error of the difference. When
comparing two models, A vs. B, a negative value for Diff(acc.) indicates that model
A performs better than model B.

Stance LIWC
Models Diff(acc.) Std. Error Diff(acc.) Std. Error

M1 vs. M0 -1718.5 83.1 -6409.8 126.0
M2 vs. M1 -436.3 84.9 -146.2 21.9
M3 vs. M2 43.5 14.6 89.9 15.2

8The specific implementation uses Pareto-smoothed importance sampling for efficient computa-
tion [234].
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Table 7.2: List of subreddits that enable both high and low style-shifting, ranked
based on the αr parameters of M2. Low αr indicates more subreddit influence (i.e.,
more style-shifting) while high αr indicates less style-shifting.

Stance High αr

r/outoftheloop, r/realgirls, r/lifehacks, r/writingprompts,
r/relationships

Low αr
r/internetisbeautiful, r/android, r/listentothis,
r/mildlyinteresting, r/gameofthrones

LIWC High αr

r/lifehacks, r/listentothis, r/internetisbeautiful,
r/relationships, r/upliftingnews

Low αr
r/earthporn, r/gadgets, r/imgoingtohellforthis, r/nsfw,
r/fitness

7.4.1 RQ1: Style-shifting

Comparing the performance of M1 vs. M0, we find a significant improvement in the

predictive accuracy of M1 compared to M0, which supports our hypothesis H1. This

suggests that the users deviate from their own writing style and shift style in same

amount when posting to multiple subreddits.

7.4.2 RQ2: Style-shifting and Subreddit Attributes

Comparing the performance of M2 vs. M1, we find a significant improvement in the

predictive accuracy of M2 compared to M1 which supports our hypothesis H2. This

suggests that the users change their writing style in varying amounts when posting to

different subreddits. Table 7.2 shows a list of subreddits based on their αr parameter

from M2. A low value for αr indicates high subreddit influence (i.e., high amount

of style-shifting when posting to that subreddit), while a high value for αr indicates

low style-shifting. We measured the similarity between the ordering of subreddits

based on the αr parameters for both the Stance and LIWC models using Spearman

rank-order correlation coefficient. While we would expect similar patterns for both

the Stance and LIWC models, we do not observe any significant correlation between
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the ranks of the αr parameters (ρ = 0.12, p-value = 0.24).

To further investigate the level of style-shifting (i.e., rank of αr parameters) and

how it relates to the amount of norm enforcement in the subreddit, we look at the

ranked correlation between the αr parameters and a set of measures to characterize the

amount of norm enforcement. Results are shown in Table 7.3 and we find no significant

correlations between the measures of subreddit moderation (or norm enforcement)

and style-shifting parameters αr.

Table 7.3: Spearman ranked correlation between subreddit style shifitng parameter αr

and measures of subreddit moderation.

Spearman ranked correlation
Measure Stance LIWC

r p-value r p-value
Moderators per active posters 0.1661 0.1265 0.1406 0.1965
Moderators per subscribers 0.1886 0.0718 0.0460 0.6630
Moderators per comment 0.2008 0.0550 0.0289 0.7845
Proportion of deleted comments -0.0197 0.8489 0.0168 0.8711
Deleted comments per moderator -0.2020 0.0534 0.0037 0.9717

7.4.3 RQ3: Style-shifting and Style Persistence

When comparing the performance of M3 vs. M2, we did not find significant im-

provement over modeling the style persistence between consecutive posts in multiple

subreddits. This finding does not provide evidence in support of our hypothesis H3,

which we formulated as: linguistic style of a user persists over time when posting to

multiple subreddits.

7.5 Discussion and Future Work

In this work we study the patterns of linguistic style-shifting in the online multi-

community environment of Reddit. Using data from the top 100 subreddits by

subscribers, we build four models of linguistic style-shifting to study our research
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questions. Comparing the performance of models M0 - M2 we find that the users do

change their writing style to adapt to the writing style of the subreddit they post to.

We hypothesized that the amount of style-shifting in subreddits could be related to

amount of moderation (or norm enforcement) of the subreddit, however, we did not

find enough evidence to support this hypothesis. Focusing on the cognitive aspects of

linguistic style-shifting, we hypothesized that when users post to multiple subreddits

in a short interval of time, there would be some amount of style persistence between

consecutive posts in different subreddits. We did not find evidence for this hypothesis

from the model outcomes. To summarize, we find that users of Reddit shift style

depending on the subreddit they post to; however we did not find evidence of style

persistence over time when users post to multiple subreddits.

Future Work. For our analyses presented here, we selected top 100 subreddits

by subscribers. Because Reddit users are subscribed to some of these subreddits by

default, and most of these subreddits are very popular, the interactional styles of these

subreddits might not be unique or could be less characteristic of community norms.

One possible alternative to this data sampling method is to focus on subreddits that

are less popular (e.g., subreddits in the range of top 100 - 200 in terms of subscribers)

and building a member overlap graph to select subreddits which are not central nodes

in the member overlap graph. Repeating our model analyses using such alternative

data sampling could either validate the current results or provide more insights into the

differences regarding the unique vs. less characteristic linguistic styles of subreddits.

Other data sampling or selection methods could also be evaluated.

Another direction for future work is to look at how style-shifting is related to the

feedback users receive from the subreddits in terms of replies and upvotes. For example,

whether adapting to the writing style of the subreddit leads to better feedback from

the community. Future work could study this as a causal question.
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CHAPTER 8

EFFECTS OF NORM ENFORCEMENT ON ONLINE WRITING

STYLE1

The focus of the previous two chapters are broadly about online community norms

and community related stylistic variation. In this chapter I continue the broad focus

on community norms and look at one of the key aspects in which online writing

differs from other forms of writing: moderation or norm enforcement. Online content

contributed by individuals in different platforms can be moderated for several reasons,

including inappropriateness [117], abusive language [235], and violations of community

policies [119]. Moderation can vary from minor revisions and removal of content to

suspension and banning of contributors [140]. Prior work has investigated the effects

of norm enforcement related to the design of online communities (§ 2.4.2); however,

the effect of norm enforcement on individual user behavior has not been explored

much in large scale settings. What happens when the content contributed to an online

community is moderated or corrected for not adhering to community writing style

norms? Does moderation help to converge community content do desired stylistic

norms? Does moderation change the writing style of individual members to make

them better converge to community norms? Or does it make them contribute less and

leave the community?

In this chapter, I present a study in which we study these questions in the context of

Wikipedia’s writing style norms of neutral point of view (NPOV).2 First, I will provide

brief background about Wikipedia, motivation to participate, editor roles, and norm
1Content of this chapter is based on Umashanthi Pavalanathan, Han Xiaochuang, and Jacob

Eisenstein. “Mind Your POV: Convergence of Articles and Editors Towards Wikipedia’s Neutrality
Norm.”, Proceedings of ACM Human Computer Interaction. 2, CSCW 2018.

2https://en.wikipedia.org/wiki/Wikipedia:Neutral_point_of_view
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enforcement. Next I formulate two research questions in which we focus on the effects

of NPOV norm enforcement both at Wikipedia article-level and at individual editor-

level. Then I provide a list of terms related to Wikipedia and our study. Following

that, I explain the dataset including the details of how we identified NPOV tagging

and treatment editors, and how we constructed the datasets for both the article-level

and editor-level analysis. Then I explain our method for identifying biased language,

the causal inference method for measuring the effects of treatment on biased language

usage, and the analyses to measure the treatment effects. After presenting the results,

I discuss the results along with the implications of the work and conclude the chapter

with a discussion on challenges and limitations. The study presented in this chapter

focuses on the dimensions of community norms and intra-person variation.

8.1 Background

Wikipedia is the largest online collaborative content creation community. The English

Wikipedia contains nearly 5.6 million articles and nearly 140 thousand actively con-

tributing accounts [236]. Similar to the norms or rules of other online communities [38],

Wikipedia also has set of norms regarding content and member participation [126].

The three core content policies of Wikipedia are: “neutral point of view (NPOV)”,

“verifiability”, and “no original research” [127]. Wikipedia provides strict guidelines

about NPOV, and non-complying articles are marked with an NPOV tag by editors.

Such NPOV-tagged articles are listed under the “NPOV disputed” Wikipedia category.

While the NPOV tagging system has been in place for over a decade, its impact on

Wikipedia has not been quantitatively measured. We study the effectiveness of NPOV

tagging as a language norm enforcement strategy in Wikipedia, measuring its impact

on articles as well as individual editors. Specifically, we ask whether tagging helps

articles and editors to converge towards the community’s prescribed writing style, as

a step toward the larger goal of understanding the effects of norm enforcement on

102



online writing.

8.1.1 Norm Enforcement in Wikipedia

Wikipedia provides detailed guidelines of the preferred writing styles through a manual

of style [118]. The manual of style contains guidelines not only for formatting such as

capitalization, punctuations, and abbreviations, but also for grammar and vocabulary.

The Neutral Point of View (NPOV) guideline states that “All encyclopedic content

on Wikipedia must be written from a neutral point of view (NPOV), which means

representing fairly, proportionately, and, as far as possible, without editorial bias,

all of the significant views that have been published by reliable sources on a topic.”

The guideline further states that “This policy is non-negotiable, and the principles

upon which it is based cannot be superseded by other policies or guidelines, nor by

editor consensus.” These editorial policies are enforced by the community of editors

to maintain high quality of the articles.

Figure 8.1: An NPOV tag displayed at the top of an article.

Wikipedia articles which do not follow the NPOV guidelines are marked by editors

with tags such as {{POV}}, {{NPOV}}, and {{POV-section}} so that they can

be included in the editing workflow (Figure 8.1). From the explicit tagging of the

non-NPOV content in Wikipedia articles and the availability of the content before

and after NPOV revisions, we can develop a better understanding of the acceptable

writing style in Wikipedia. The example below from our dataset shows a portion

of a sentence before and after it was corrected for NPOV. Usage of dictated in (a)

suggests a point of view and it is replaced with overseen in (b) to make the language

more neutral.
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(a) “BL Republic is dictated by UberConsul Lars and High Marshall Bill ...”

(b) “BL Republic is overseen by UberConsul Lars and High Marshall Bill ...”

8.1.2 Motivation for Participation and Editor Roles in Wikipedia

The scale and success of Wikipedia as a volunteer-run collaborative content producing

community have attracted a large body of research about various aspects of Wikipedia

including motivations to contribute [237, 238, 239], formation of community [240,

241, 242], content quality [243, 244], editorial and authorship attributes [245], sharing

and collaborative knowledge building [243], learning [237], coordinations of complex

tasks [246], and editor functional roles [247, 248]. Prior studies on the motivations for

voluntary contribution to Wikipedia provide several explanations including the ideology

for contributing to Wikipedia as a variant of open-source application [238], internal self-

concept motivation [249], cognitive (e.g., learning new things or intellectual challenge)

and affective reasons (e.g., pleasure) [250], and the sense of individual efficacy [124].

Another line of work focused on different editor roles that emerge in Wikipedia [124,

251, 252, 253, 247]. Bryant et al. [124] find that while novice editors contribute edits

to articles related to their domain of expertise, expert editors contribute towards

improving the quality of Wikipedia itself. Arazy et al. [247] identified functional

roles in Wikipedia such as technical administrator, border patrol, quality assurance

technicians, administrators, and directors, and find that editor roles determine activity

patterns across variety of editing tasks. Yang et al. [254] automatically identify various

editor roles based on low-level edit types and find that different editor roles contribute

differently in terms of edit categories and articles in different quality stages require

different types of editors. In this work, we focus on editor roles that make contributions

to improve the quality of Wikipedia articles, particularly articles in the NPOV dispute

category.
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8.1.3 Research Questions

We study the effects of NPOV tagging and revision as norm enforcement strategies to

make Wikipedia an objective source of knowledge at the article level and at the editor

level.

RQ1: What are the article-level effects of NPOV tagging?

RQ2: What are the editor-level effects of NPOV correction?

RQ2a: What effect does NPOV correction have on the writing style of the

editors?

RQ2b: What effect does NPOV correction have on the engagement of editors?

We address these questions using a corpus of nearly 7,500 articles in the NPOV

dispute category, and we identify revisions in which a NPOV tag was added or removed,

or in which content was corrected for NPOV. We then identify the first revision in

which an article received a NPOV tag as the treatment point for the article. Similarly

we identify editors whose content contributions were corrected for NPOV as treatment

editors and identify the treatment revisions. As a measure of language, we use a

set of lexicons associated with non-objective or biased language.3 Considering editor

contribution and article revisions before and after the treatment points, we analyze

the effect of treatment using an interrupted time series analysis [165].

8.1.4 Terminology

Below, I provide a brief summary of different terminology used in this study:

• Edit refers to any changes made to a Wikipedia article.
3Lexical analysis is chosen because of the existence of well-validated lexicons, as described below.

We leave for future work the analysis of bias in dimensions such as syntax, semantics, and pragmatics.
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• Revision is a version of a Wikipedia article resulted from editing the previous

revision.

• Article contains chronologically ordered revisions.

• Reverts in Wikipedia refers to edits that restored the current revision to a

previous revision.

• NPOV tagging refers to the addition of any NPOV templates to the articles.

• NPOV correction refers to a set of edits that are made to correct for NPOV

errors. These are detected from the comment metadata in a revision.

• Treatment refers to an intervention made to the subject of interest (i.e., article,

editor).

• Pre-treatment refers to the period prior to the treatment.

• Post-treatment refers to the period after the treatment.

• Treatment to the articles refers to the addition of an NPOV tag.

• Treatment to the editors refers to editors’ contribution being corrected for

NPOV.

• Biased language refers to words/phrases which are not neutral and may

introduce a point of view or attitude.

8.2 Datasets

In this section I describe the datasets and the extraction of treatment articles and

editors. Figure 8.2 summarizes the data pipeline and methods used in this study.
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7,464 articles 

Treatment Article Lexicon
Coverage Data 

3,912 articles 

Treatment Editors Lexicon
Coverage Data 

4,378 editors 

Treatment Editors
Engagement Data 

4,753 editors RQ2: Editor Level Analysis

RQ1: Article Level Analysis 

Figure 8.2: Flowchart showing the data and method set up for each research question.

8.2.1 Wikipedia NPOV Corpus

We begin with the NPOV corpus from Recasens et al. [137], which they used to

build a classifier to detect bias inducing terms in phrases. The NPOV corpus contains

7,464 articles from the English Wikipedia with a total of 2.7 million revisions. It was

constructed by retrieving all the articles that were in the NPOV dispute category4 in

early 2013, together with their full revision history. Wikipedia editors are encouraged

to identify and revise biased content to achieve neutral tone, and several NPOV tags

are used to mark biased content.5 Articles that are marked with any of the NPOV

tags will be listed in Wikipedia’s category of NPOV disputes. Each version of the

article is considered as a revision, and an article is a set of chronologically ordered

revisions. Each revision of the article contains the version of the article content along

with metadata such revision ID, timestamp, contributor, revision comment, and an

SHA-1 hash key.
4https://en.wikipedia.org/wiki/Category:All_NPOV_disputes
5e.g., {{POV}}, {{POV-check}}, {{POV-section}}, etc. When such tag is added, a template such

as the following is displayed in the article page: “The neutrality of this article is disputed. Relevant
discussion may be found on the talk page. Please do not remove this message until the dispute is
resolved.”
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8.2.2 Identifying NPOV Tagging and Removal

Several NPOV tags are used to mark biased content and there is no standardized

template or metadata available to directly detect tag addition and removal. Therefore,

to identify in which revision an article was tagged as violating NPOV and when

that tag was removed, we used a set of NPOV-tag patterns based on a preliminary

inspection of a small subset of NPOV tagged articles.6 In order to detect the addition

or removal of an NPOV tag in the absence of any readily available metadata, we need

to compare each consecutive revisions and then inspect the difference in the textual

content for an addition or removal of an NPOV tag. To automatically extract the

changes between two consecutive revisions in terms of added and removed content,

we used the Diff Match and Patch library,7 which was also used by Recasens et al.

[137]. If any of the NPOV tags was present in the added content, then we mark that

revisions as an NPOV tag addition point for that article. Similarly, if any of the

NPOV tags was present in the removed content, we mark that revision as an NPOV

tag removal point for that article.

Accurate identification of valid tag additions and removals is challenging due to

the presence of vandalism and reverts.8 From our initial inspections of a small set

of NPOV tagged articles, we identified several cases of vandalism (e.g., NPOV tags

were removed intentionally or accidentally, and then added back within the next few

revisions; revisions containing NPOV tags were reverted to a prior revision without

a tag). To minimize the effect of vandalism in the accurate identification of NPOV

tag addition and removal, we used two heuristics. First, we used the SHA-1 hash key

present in the revision metadata to track reverts and disregarded reverted revisions.
6{{.*(POV|Pov|PoV|Point Of View|pov|NPOV|Npov|npov|NEUTRALITY|Neutrality|neutrality

|NEUTRAL|Neutral|neutral).*}}.
7http://code.google.com/p/google-diff-match-patch
8Vandalism and edit wars are primary challenges for Wikipedia editors. There is a large body of

work regarding this. For example, see Geiger and Ribes [122], Shachaf and Hara [255], Potthast et al.
[256].
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Second, if an NPOV tag was added immediately after a prior tag removal, we consider

the last tag removal as unreliable. If such changes appear within five revisions after a

tag removal, we merge the consecutive tag addition-removal pairs and consider only

the latest revision as a valid tag removal revision. In this way, we identified 6,512

articles that had at least one NPOV tag addition and 1,095 articles with multiple

NPOV tag additions.

8.2.3 Identifying Treatment Editors

For our editor-level analysis, we define treatment as editing part(s) of an article’s

content to correct for NPOV. Treatment editors are editors who originally contributed

the portion of the text that was corrected for NPOV. To identify whether a revision

was corrected for NPOV, we first check if the comment metadata for that revision

contains “NPOV” or “POV” or any case variations. If one of these strings appear

in the comment and if that revision was not identified as an NPOV tag addition

or removal revision, then we consider it to be a NPOV correcting revision. While

Recasens et al. [137] checked for only the presence of NPOV strings in the comment to

detect NPOV corrections, in our initial inspection we found that sometimes comments

of NPOV tagging and removal revisions also contain these NPOV strings. Therefore,

we additionally checked if the revision had a tag addition or removal as we do not

consider those as NPOV correcting revisions.9

Once we have identified NPOV correcting revisions, we trace back previous revisions

to identify the treatment editors—editors who originally contributed the portion of

text that was corrected for NPOV. As a preprocessing step we removed revisions

which are reverts of previous revisions in order to identify the editor who originally

contributed a span of text. Otherwise, the editor who made the revert could have
9Note that an NPOV removal revision could include corrections for NPOV and removal of NPOV

tag. However, in our initial inspections, we found that NPOV issues are often solved in revisions
prior to the NPOV tag removal revision. In this way, few NPOV correcting instances could have
been missed, but we aimed for precision rather than recall.
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been attributed to a portion of text. To trace the treatment editors, we first built a

detailed record of which part of the article was contributed by which editor at the

character granularity level from the beginning of the article revision history. We then

checked all of the NPOV correcting revisions, extracted their first diff compared to

the previous revision, and looked into the record to identify which editor originally

contributed to that diff-ed language.10

Automated scripts or bots are used in Wikipedia to perform repetitive and mundane

tasks such as minor fix for syntax and adding dates to NPOV tags. Because our

interest is in studying the writing style of human editors, we removed bots by checking

for the presence of “bot” in the username and presence for the “bot” editor group

attributes.11 In total, we identified 5,645 treatment editors after removing 20 bot

accounts. Note that each treatment editor could be NPOV corrected more than once.

On average, a treatment editor is corrected for NPOV 1.9 times, and 32.4% of the

treatment editors are corrected for NPOV more than once.

8.2.4 Dataset for Article-Level Analysis

In RQ1 we study the effect of NPOV tagging on the linguistic style of the articles.

For this analysis we use the revisions of articles in the NPOV corpus (§ 8.2.1) and

characterize the linguistic style of each of the revisions. To observe the biased language

trend over time, we limited this dataset to include NPOV articles which have at least

40 revisions and considered up to 40 revisions before and after the treatment for the

regression analysis12 after the treatment (i.e., addition of an NPOV tag).
10Note that recent work such as Flöck and Acosta [257] proposed other sophisticated algorithms to

attribute authorship of revisioned content. Future work could consider employing such algorithms.
11Editor attributes are obtained from the Media Wiki API https://www.mediawiki.org/wiki/

API:Query. Examples of editor group attributes include “reviewer”, “administrator”, and “bot”
12We also considered the number of revision threshold window W of [10 ≤W < 20] and [20 ≤W <

40] and the results are similar qualitatively. The number of articles included in the analysis for each
of these thresholds are 1054, 1095, and 1763 for the revision windows [10 ≤W < 20], [20 ≤W < 40],
and [W > 40] respectively.
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8.2.5 Dataset for Editor-Level Analysis

To study the editor-level effects of NPOV correction, we collected each treatment

editor’s textual contribution to the Wikipedia article namespace13 by querying the

Media Wiki API.14 In RQ2a we study the effect of NPOV correction on the writing

style of the treatment editors. To characterize treatment user writing style before and

after treatment, we first obtained up to 150 revisions to which the editors contribute

(in all Wikipedia articles, not restricting to the initial NPOV corpus) before and after

their first treatment point. To control for any platform level changes such as revisions

to NPOV policies, we restricted the pre and post treatment revisions to be within an

year from the treatment. When then queried for the parent revision of each of the

editors’ revisions and extracted the text added by the treatment editors using the diff

library. Since our interest is in the language use, we considered only the revisions with

any content addition.15 In RQ2b we study the changes in treatment editor engagement

before and after NPOV correction. To characterize treatment editor engagement we

obtained all the revisions (in all Wikipedia articles, not restricting to the initial NPOV

corpus) they have contributed to during two months before and after the treatment

point.

8.3 Methods

In this section I describe the methods we used for preprocessing of Wikipedia data for

our analyses, identifying biased language, and measuring effect of treatment.
13Wikipedia includes multiple namespaces such as article page, article talk page, user page, user

talk page, etc. Since our interest in to characterize editor writing style in Wikipedia articles, we
restricted our dataset to the article namespace. Prior work, such as Elia [258], has found significant
differences between the linguistic style of article text and talk page text due to the conversational
nature of talk pages.

14https://www.mediawiki.org/wiki/API:Query
15Examples of other revision contributions include addition of links, templates, and citations.
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8.3.1 Identifying Biased Language

Bias in Wikipedia can emerge from several factors including language style, editors’

point of view, cited sources, coverage of topics, etc. Prior work focused on political

bias [259], cultural bias [260], gender bias [261], topic bias [262], and authoritative

bias [263]. Our goal in RQ1 and RQ2a is to study the effects of NPOV tagging in

article-level and editor-level language. Particularly, we are interested in characterizing

the bias in articles and editor contribution in terms of the linguistic style that may

introduce bias. The Wikipedia Manual of Style [118] states that “There are no

forbidden words or expressions on Wikipedia, but certain expressions should be used

with caution, because they may introduce bias. Strive to eliminate expressions that are

flattering, disparaging, vague, or endorsing of a particular view point.” Prior work

[e.g., 264, 137] has addressed the task of identifying biased language in Wikipedia at

different levels. However, we are not aware of a reliable system that can detect bias

in terms of linguistic style in Wikipedia articles. Therefore, we use a set of linguistic

style lexicons as a proxy to characterize biased language in Wikipedia.16

The Wikipedia Manual of Style provides a list of words to watch in a prescriptive

manner [265], indicating style words that may introduce bias. We compiled these

style words into a lexicon called Words to Watch. Prior work of Recasens et al. [137]

introduced the task of detecting bias inducing terms in phrases from Wikipedia articles

and used a set of pre-compiled style lexicons that are indicative of expressions of

attitude or point of view. These lexicons include hedges, factive verbs, assertive verbs,

positive words, and negative words. We use these nine lexicons in addition to the

words from Wikipedia manual.17 A list of all the lexicons we used is shown in Table 8.1

with a description, sources, and example terms. To characterize the amount of biased
16We limit our analysis only to lexicon, while syntax, semantics, and pragmatic measures could

also be studied.
17Note that Recasens et al. [137] used a bias lexicon created from the NPOV articles. We do not

include it for our analysis as this lexicon is not entirely indicative of linguistic style and included
content words such as communist, historian, and migration.
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language in a text, we compute the coverage of each lexicon word per token in the

text.

8.3.2 Measuring the Effect of Treatment on Biased Language Usage

Our goal in RQ1 is to investigate whether NPOV tag addition has an effect on

the level of biased language in the NPOV tagged articles. Similarly, our goal in

RQ2a is to investigate whether NPOV correction has an effect on the level of biased

language usage of treatment users. Both of these are causal questions. To answer

them, we apply the Interrupted Time Series technique (ITS) for causal inference [165].

This method has been used in recent studies on hate speech [149] and conspiratorial

discussions[166]. Interrupted Time Series analysis is a quasi-experimental design that

can be used to evaluate the longitudinal effects of an intervention (i.e., treatment),

through segmented regression modeling. The term “quasi-experimental” refers to

an absence of randomization. ITS is a tool for analyzing observational data where

complete randomization, or case-control design, is not affordable or possible. In

its basic form, an ITS is modeled using a regression model (e.g., linear, logistic or

Poisson) that includes only three time-based covariates as shown in Equation 8.1.

The regression coefficients of these covariates estimate the pre-treatment trend, the

level change at the treatment point, and the trend change from pre-treatment to

post-treatment.

yt = β0 + β1t + β2xt + β3txt + ε (8.1)

Here t is the time elapsed since the start of the study; xt is a dummy variable

indicating the pre-treatment period (coded 0) or the post-treatment period (coded 1);

yt is the outcome at time t. The pre-treatment slope, β1, quantifies the trend for the

outcome before the treatment; the level change, β2, estimates the change in level that

can be attributed to the treatment; the change in slope, β3, quantifies the difference
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between the pre-treatment and post-treatment slopes. This model of ITS assumes

that without the treatment, the pre-treatment trend would continue unchanged into

the post-treatment period, and there are no external factors systematically affecting

the trends. One important step before modeling an ITS analysis is to hypothesize how

the treatment would impact the outcome if it were effective, particularly whether the

change will be in the slope of the trend, a change in the level, or both.

Why no control? Our goal in this study is to measure the longitudinal effects of

NPOV norm enforcement on writing style in Wikipedia. We use interrupted time series

analysis, which is a widely used approach to model such longitudinal effects through

a within-subject analysis. Another causal inference approach used in many other

observational studies compare matched pairs of treatment and control subjects [e.g.,

159, 160]. The impact of the treatment can be assessed through comparisons of

these groups [164]. This technique requires that the treatment and control groups

are identical in all attributes that could possibly affect the outcome. In the case

of Wikipedia articles and editors, it is difficult to even enumerate these attributes,

let alone measure and match them. Furthermore, text documents (articles and

edits) are inherently high-dimensional objects, which poses statistical challenges for

matching [271]. We therefore focus on within-subject analysis through the interrupted

time series paradigm.

8.4 RQ1: Article-Level Effects of NPOV Tagging

Quantifying Article Writing Style. We use the dataset we created for the article

level analysis (§ 8.2.4) to study RQ1. Before measuring the writing style of each article

revision, we performed a set of preprocessing steps to extract textual contribution

of the article revision. We removed Wikipedia markup templates, URLs, and other

non-textual content. We then tokenized the text and extracted tokens with two or
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more characters. To quantify article writing style, we extracted the coverage of tokens

from each of the ten bias-related lexicons (§ 8.3.1) and computed lexicon coverage rate

as the number of lexicon tokens per total tokens in the text of each article revision.

We considered the latest 40 pre-treatment revisions and the earliest 40 post-treatment

revisions of the NPOV articles for the ITS analysis.

ITS Modeling for Article Writing Style. When an article has an active NPOV

tag, it stays on top of the article for all revisions until its removal. As this can be

considered a continuous treatment, we would expect the editors to be cautious for

biased language and the articles to have a continuous drop in biased language coverage.

Therefore, to measure the effect of an article having an NPOV tag on the biased

language coverage, we hypothesize a slope change in the article-level biased language

usage after treatment. To model this, we use the ITS regression model in Equation 8.1

and use a linear model to fit in the R software.

Results: RQ1. Results of the ITS analysis for RQ1 is shown in Table 8.2 and the

trends are shown in Figure 8.3. Through the ITS analysis, we observe that when an

active NPOV tag is on the article, there is a statistically significant change in the

slope of the trend of nine out of ten lexicons used to characterize biased language.

Robustness Check: The dataset used in this analysis was collected from the

snapshot of articles in Wikipedia’s NPOV dispute category in early 2013. Some of

the articles contain include NPOV issues that are inherently difficult to resolve and

could be tagged for a long period of time. As this could be a potential confound in

the editing behavior of such articles, as a robustness check, we re-ran the analysis

on a subset of the data after removing articles that are NPOV tagged for more than

three years. The distribution of time-intervals between the addition of the NPOV tag

and the data collection time, and the result of the regression analysis for the subset of

116



Table 8.2: Results of RQ1 Analysis. Article lexicon coverage is computed for the
textual content of the article results from each revision. Coefficient β3 indicates the
change in slope after treatment. Statistical significance after correcting for multiple
comparisons using Benjamini and Hochberg [2] adjustment for false discovery rate are
shown; *: p < 0.05, **: p < 0.01, ***: p < 0.001. Percentage change is computed as
the change in post-treatment lexicon coverage after 40 revisions.

Lexicon β3 p-value % change

Words to Watch -1.47e-05 1.08e-13 *** -5.24
Hedges -4.83e-06 1.30e-06 *** -3.54
Assertives -3.12e-06 4.40e-09 *** -5.29
Positive Words -4.47e-05 < 2e-16 *** -7.63
Negative Words -2.35e-05 < 2e-16 *** -4.52
Factives 8.91e-07 2.84e-01 +0.49
Implicatives -3.41e-06 3.50e-08 *** -4.80
Report Verbs -3.42e-06 2.99e-04 ** -1.79
Strong Subjectives -5.86e-05 < 2e-16 *** -8.56
Weak Subjectives -4.53e-05 < 2e-16 *** -3.11

articles after removing potential outliers are shown Appendix C. The treatment effect

remains significant after excluding these long-running disputes.

8.5 RQ2: Editor-Level Effects of NPOV Correction

Next, we explore the editor-level effects of NPOV correction through the following

research questions:

RQ2: What are the editor-level effects of NPOV correction?

RQ2a: What effect does NPOV correction have on the writing style of the

treatment editors?

RQ2b: What effect does NPOV correction have on the engagement of treatment

editors?
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8.5.1 Editor Writing Style: RQ2a

Quantifying Editor Writing Style. We use the dataset we created for the editor

level analysis (§ 8.2.5) to study RQ2a. Before measuring editor writing style, we

performed a set of preprocessing steps to extract textual contributions of the treatment

editors. We removed Wikipedia markup templates, URLs, and other non-textual

content. We then tokenized the text and extracted tokens with two or more characters.

To quantify editor writing style, we extracted the coverage of tokens from each of the

ten bias-related lexicons (§ 8.3.1) and computed lexicon coverage rate as the number

of lexicon tokens per total tokens in the text contributed by an editor in a revision.

We considered the latest 40 pre-treatment edits and the earliest 40 post-treatment

edits of the treatment editors for the ITS analysis.

Controlling for Editor Experience and Talk Page Discussion. Other factors

may confound measurement of the effect of NPOV correction on editor-level writing.

One such factor is the experience of the editor: previous work shows that inexperienced

editors respond differently to norm-enforcement activities such as edit reverts (e.g.,

[152]). To control for editor experience, we include it as a binary predictor in the

regression model. Based on the criteria used in prior work [252], we consider editors

who have contributed at least 250 edits prior to the treatment as experienced editors

and others as inexperienced editors. In our dataset, 2,847 out of 4,378 editors had at

least 250 edits prior to the treatment.

In addition to correcting content for NPOV, sometimes editors also post to the

talkpage of the articles or the talkpage of the editor whose contribution was revised

to discuss about the correction. These posts trigger an email prompt to the original

editor. Thus, the talk page discussion acts as an additional “correction” method that

could potentially amplify the treatment of correcting content with NPOV tags in

the comment metadata. The discussion between the correcting and corrected editors
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during the treatment period could influence the future behavior of the corrected editor

in terms of language usage and engagement. Therefore, we also include the presence

of talk page discussion as an additional binary predictor, which indicates whether any

of the following criteria is satisfied during a week prior or after the treatment: (1)

correcting editor posts on corrected editor’s talk page; or (2) corrected editor posts on

correcting editor’s talk page; or (3) both corrected editor and correcting editor post

on the article talk page. In our dataset, 1,216 of the 4,378 NPOV corrections were

accompanied by a talk page discussion.

ITS Modeling for Editor Writing Style. Unlike an active NPOV tag on the

article, which stays as a continuous treatment for all later revisions until its removal,

the editor who gets an NPOV correction only receives treatment once.18 Therefore,

we hypothesize a change in the level of the trend of average editor writing style after

treatment. We use the ITS regression model in Equation 8.1, excluding the term

β3txt (since we are only hypothesizing a level change) and using a linear model fit in

the R software (Model-I ). In addition to the terms in the ITS equation, as discussed

in the previous subsection, we also used a second model (Model-II ) including two

binary control predictors for editor experience (experienced) and talk page discussion

during treatment (discussion). We also add an interaction term between each of

these additional predictors and the post-treatment indicator (i.e., interaction with the

dummy term xt).

Results: RQ2a. To understand the trend of the change due to treatment, we first

visualize the level change in average editor writing style from Model-I in Figure 8.4.

NPOV correction is associated with a small level decrease in the usage of four out

of ten lexicons used to characterize biased language: positive words, negative words,
18While 32.4% of the treatment editors are corrected more than once, repeated corrections are

rare in the short window of 40 edits adjacent to the treatment.
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strong subjectives, and weak subjective. No significant treatment effect is observed

for the remaining six lexicons. Model-II includes the control predictors for editor

experience and talk page discussion. Relevant output from Model-II is shown in

Table 8.3. The trend of level change (β2) remains the same after including the control

predictors. The coefficients for the experienced predictor are negative and significant

for eight of the ten lexicons, which suggests that experienced editors use a lower

amount of non-neutral language.19 The coefficients for the effect of discussion after

treatment (d : xt) are not significant except for the negative words lexicon. None of

the coefficients for the effect of editor experience after treatment (e : xt) are significant,

suggesting that editor experience does not influence the effect of NPOV correction on

writing style.

8.5.2 Editor Engagement: RQ2b

Quantifying Editor Engagement. To study RQ2b, we define engagement of a

Wikipedia editor as any non-minor revisions they made to the article pages. We

use the editor-level engagement dataset we created (§ 8.2.5) for this purpose and

considered all treatment editors who have contributed at least ten revisions during

the two months prior to the treatment.

ITS Modeling for Editor Engagement. Similar to the hypothesis for editor level

lexicon coverage, we hypothesize a change in the level of editor engagement after

treatment. We model this using the ITS regression model in Equation 8.1 excluding

the slope term β3txt, but with editor fixed effects. Because the dependent variable

in this model is a count variable (i.e., number of revisions per day), we would use

a Poisson regression model. However, summary statistics of the dependent variable

show an excessive amounts of zeros (> 40%) and over-dispersion (variance � mean).
19This finding also validates our choice of lexicons to characterize non-neutral language as we

would expect experienced editors to better adhere to community writing style norms compared to
newbies.
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Table 8.4: Results of RQ2b Analysis: predictor coefficients of the count model of the
zero-inflated negative binomial regression. The dependent variable, editor engagement
is computed as number of edits during each of the three-day period. We considered 60
days prior to the treatment and 60 days after the treatment. Post-treatment is the
indicator for whether the observation is post (=1) or pre (=0) treatment. Timebin is
the three-day window; we consider 20 timebin windows pre- and post-treatment, which
includes 120 days in total. Discussion is the indicator whether there was talk page
discussion between correcting and corrected editors during treatment (Dicussion = 1)
or not. Experienced is the indicator for whether the editor is experienced (>250 edits,
Experienced = 1) or not. Interaction terms include: Post-treatment : Discussion(=1)
and Post-treatment : Experienced(=1). Statistical significance after correcting for
multiple comparisons using Benjamini and Hochberg [2] adjustment for false discovery
rate are shown;*: p < 0.05, **: p < 0.01, ***: p < 0.001.

Predictor Coefficient p-value

Post-treatment 0.4675 <2e-16 ***
Timebin 0.0080 <2e-16 ***
Discussion(=1) 0.2018 <2e-16 ***
Experienced(=1) 1.8937 <2e-16 ***
Post-treatment : Discussion(=1) 0.0491 0.0404 *
Post-treatment : Experienced(=1) -0.6618 <2e-16 ***

Therefore we used zero-inflated negative binomial regression model, as implemented

in the pscl package20 in the R software. Similar to RQ2a, we include binary controls

for experienced and discussion.

Results: RQ2b. Results of the ITS analysis for RQ2b are shown in Table 8.4.

The interaction between the level change and control predictors experienced and

discussion are shown in Figure 8.5. These results show a significant increase in

engagement for inexperienced editors (editors with less than 250 edits at treatment

time). The decrease in engagement for experienced editors is small after including the

overall temporal trend. Talk page discussion during treatment is associated with a

small increase in engagement for both experienced and inexperienced editors.
20https://cran.r-project.org/web/packages/pscl/pscl.pdf
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Figure 8.5: Visualization of RQ2b regression coefficients showing the pre- and post-
treatment engagement levels for the control factors experienced and discussion.

8.6 Discussion

Next, we reflect on the article-level and editor-level effects of NPOV tagging, discuss

the differences in success for articles and editors, discuss implications of our findings

to Wikipedia and other online communities with writing style norms and conclude

with challenges and limitations.

8.6.1 RQ1: Article-level Effects of NPOV Tagging

When an article has an active NPOV tag, we observe a statistically significant, gradual

reduction in biased language coverage for all lexicons except factives.21 The reduction

is larger for Wikipedia words to watch (5.2%), strong subjectives (8.6%), positive words

(7.6%), and assertives (5.3%), compared to other lexicons. Using these lexicons as a

proxy for biased or non-NPOV language, it is evident that non-objective language used

in Wikipedia articles decreases as editors make more revisions. This demonstrates the

effectiveness of marking Wikipedia articles with NPOV tag in reducing the prevalence

of non-neutral language.

The dataset we used for this analysis is collected from a single snapshot of the
21Note that compared to other lexicons, the set of factives is small in size — containing only 27

terms — and hence the coverage of this lexicon is small.
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articles in the NPOV dispute category. Some of the articles which are controversial

and hard to resolve could be NPOV tagged for a long period of time could affect the

editing behavior. As a robustness check we repeated the analysis on the subset of the

data after removing articles which has an active NPOV tag for more than three years.

As we report in Appendix C, the main results hold after removing these potential

outliers.

8.6.2 RQ2: Editor-level Effects of NPOV Correction

When an editor is corrected for NPOV, there is a significant reduction in their negative

words usage (13.5%); however, we do not observe any statistically significant change

for six of the ten lexicons relating to biased language, including Wikipedia’s own

list of “words to watch” (RQ2a). These trends remain even after controlling for

editor experience and talk page discussion during treatment. For RQ2b, we observe

an increase in engagement for inexperienced editors after NPOV correction. One

possible explanation is that NPOV correction helps inexperienced users become aware

that their contributions are monitored by others, and this awareness could motivate

them to contribute more. These results for RQ2 suggest that when corrected for

NPOV, the quality of the writing style of editors does not improve significantly (at

least, as measured by all but one of our lexicons), while it leads to a increase in

editing activities for inexperienced editors. These findings partially conflict with the

observations of Halfaker et al. [152], who found that revert actions demotivate new

editors and reduce the quantity of work, even as they increase the overall quality of

contributions. Halfaker et al. [152] also found that reverts affect editors differently

based on the experience of the editor who makes the revert. Future work could perform

similar analysis to further understand the effects of NPOV correction on engagement

based on the experience of correcting editors.
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8.6.3 Possible Reasons for the Differences in the Effectiveness of Norm

Enforcement

While NPOV tagging helps articles to converge to the desired writing style, we do

not find statistically significant evidence that these corrections encourage editors to

adopt the desired writing style. One possible reason for the significant improvement

in writing style of the NPOV tagged articles is the active contribution of a group

of editors who are dedicated to improve the overall quality of Wikipedia articles.

According to prior work on the classification of different types of work (§ 8.1.2), editing

tasks, and roles in Wikipedia, editors perform distinct roles, corresponding to distinct

types of contributions. For example, Bryant et al. [124] found that while novice editors

contribute only to articles related to their expertise, expert editors contribute to

improve the overall quality of Wikipedia articles. Arazy et al. [247] identified several

roles of Wikipedia editors, including quality assurance technicians, who are editors

contributing towards patrolling Wikipedia and ensuring content quality. Further,

Yang et al. [254] found that articles in different quality stages require different types of

editors. Tools such as SuggestBot [272] recommend specific editing tasks (e.g., cleanup

and rewrite) to editors based on their previous editing patterns and interests. These

prior findings support our hypothesis that the NPOV tagged articles are of interest to

specific editor roles, who are dedicated to make revisions to improve NPOV tagged

articles.

NPOV tags are highly visible to Wikipedia editors via the banner template displayed

in the article, often on the top, and the NPOV tagged articles are listed in a specific

Wikipedia category (i.e., NPOV disputes category). These visible actions could attract

more editors to contribute towards improving the tagged articles. However, the

treatment of NPOV correction of editor contribution is not visible to the same extent

because editors are not directly notified about their contribution being corrected for

NPOV. Editors keep track of the revisions to their previously contributed articles via
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the “watchlist” tool [124], but this requires active actions from the editors.

8.6.4 Implications for Wikipedia and Online Language Moderation

Our findings in RQ2a show that the current regime of tag-and-correct does not help

editors to significantly improve their adherence to the NPOV norm. This suggests

the need for additional interventions targeted at editors. Possible strategies include

explicit notification of their textual contribution being corrected for NPOV language,

reminders about writing style norms, and incentives when they progress. Findings from

RQ2b shows an increase in engagement after treatment for inexperienced editors; talk

page discussion during treatment is also associated with a small increase in engagement

for all editors. The increase in engagement for inexperienced editors could be due to

the signal that the community is aware of their contributions. Interventions such as

explicit notification of NPOV correction could include personalized messages [154]

that could further increase the engagement of inexperienced editors.

Other online collaborative content creation communities who wish to enforce

linguistic style norms may consider implementing interventions similar to Wikipedia’s

treatment of NPOV. Further community-level and individual-level interventions could

help to converge to expected writing style norms.

In this work, we focused on NPOV, which is one of the three core content policies

of Wikipedia. The other policies are “Verifiability” and “No original research”. These

three policies jointly determine the quality of content acceptable in Wikipedia articles.

Similar to NPOV tagging, these policies are enforced using tags such as {{citation

needed}}, {{verification needed}}, {{original research}}, and {{synthesis}}. Our

findings suggest that the NPOV tagging helps articles to converge to neutral language,

but we did not find significant changes at individual editor language. As we discuss

in § 8.6.3, various editor roles and the types of work performed by different editor

roles could be one of the mechanisms by which NPOV tagging helps to improve article
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quality. A similar study could be performed to test the effectiveness of tagging for the

other quality control policies of Wikipedia.

8.6.5 Limitations and Future Work

Limitations with characterizing biased language. We use a set of style lexicons

including Wikipedia’s “words to watch” to characterize non-neutral linguistic style.

While similar approaches are used in prior work, these lexicons may not accurately

and entirely capture non-neutral language. Machine learning could be applied to

this problem by training on the edits that led to the application of an NPOV-related

tag and correction [137]. We limit our analysis of language style to lexical methods;

however, other aspects of language such as syntax, semantics, or pragmatics could

also be studied (e.g., active vs. passive form).

Potential issues in accurately identifying the treatment groups. The pres-

ence of reverts and vandalism imposed challenges in correctly identifying treatment

articles and editors. We used a set of heuristics to reduce these issues (§ 8.2.2). How-

ever, our approach might not be perfect and could attribute an NPOV correction for

an editor who is not the original contributor of the corrected text. This will result in an

underestimation of treatment effects. Sophisticated algorithms to detect vandalism and

reverts [129, 122], and algorithms to attribute authorship of revisioned content [257]

could be used in future work to improve accurate identification of treatment editors.

Furthermore, the non-standard nature of NPOV tags and variations in the tags

limit the recall of detecting tag addition and tag removal revisions. To detect NPOV

corrections, following the approach of Recasens et al. [137], we searched for occurrences

of “NPOV”, “POV”, or any case variations (§ 8.2.3) in the revision comments. However,

other idiomatic terms such as “point of view”, “bias”, and “weasel words” could also be

used to indicate NPOV corrections. Failing to detect these variants could result in an
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underestimation of the treatment effects.

Controlling for platform-level changes over time. While we limit the time

range of our analyses to control for significant platform-level changes, there is a

possibility for internal and external factors, such as influx of new editors, site upgrades,

or policy changes, to influence the findings. The article dataset used in this work was

collected in 2013, and the policies and normative behavior in Wikipedia may have

changed since then. Future work could consider replicating this work using datasets

collected in different time periods to analyze any longitudinal changes in normative

behavior in the platform.

Restricting article level analysis to unresolved articles. Our article dataset

was collected from the snapshot of articles in the NPOV dispute in 2013. We use this

single snapshot data and the articles in this dataset have an active NPOV tag (i.e., an

unresolved NPOV issue). As a robustness check, we re-ran the regression for RQ1 using

a subset of data after removing articles with long standing disputes and the effect of

NPOV tagging treatment remains significant. Using additional article data collection,

the article level analysis could be expanded to cases where an NPOV tag was added

and removed or where articles went through multiple NPOV tag additions/removals.

This could provide insights about the effects after tag removal and repeated offenders,

and future work could focus on this direction. From RQ1 we find that when an article

has an active NPOV tag, subsequent revisions result in a decrease in bias language.

Note that this finding does not imply that a tag is required to reduce biased language

in articles.
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8.7 Conclusions

In this chapter, I have descried our study on the effects of norm enforcement on writing

style on Wikipedia. Specifically, we investigated the effectiveness of neutral point of

view (NPOV) norm enforcement both at the platform level (i.e, articles) and at the

individual member level (i.e., editors). Our work is the first quantitative investigation

of the effectiveness of the Wikipedia NPOV tagging system which has been in place

for more than a decade. In this chapter, I first provided a brief background about

Wikipedia and the norm enforcement practices of Wikipedia to motivate our broad

research question, which is about the effects of NPOV norm enforcement on Wikipedia

writing style. Then I described our dataset, the challenges in identifying NPOV

tagging and correction, and our approach to extracting treatment articles and editors.

Following that I explained how we characterized non-neutral or biased language style

using a set of lexicons from prior work and Wikipedia’s manual of style. Then I

explained the causal inference methodology we used in this work, interrupted time

series analysis (ITS), and its appropriateness for our study. After providing the details

of the specific analyses to study both of our research questions, I presented the results

along with a discussion of implications and limitations.

An important aspect in which online writing differs from other forms of writing

is the possibility of content being moderated or corrected for not adhering to the

community norms. Looking at the NPOV tagging system in Wikipedia as a case

study, we investigated the effectiveness of writing style norm enforcement in online

writing. Using a causal inference analysis we find that after an article is tagged for

NPOV, there is a significant decrease in biased language in the article, as measured

by several lexicons. However, for individual editors, NPOV corrections and talk page

discussions yield no significant change in the usage of words in most of these lexicons,

including Wikipedia’s own list of “words to watch.” This suggests that NPOV tagging
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and discussion does improve content, but has less success enculturating editors to the

site’s linguistic norms. Wikipedia is a collaboratively contributed content creation

community. A similar study could be done to compare these findings from Wikipedia

to the effectiveness of linguistic style moderation in other online communities such as

discussion forums (e.g., Reddit, Stack Overflow).

This chapter concludes the series of case studies through which I investigated how

social context influence the stylistic variation in online writing. In the next chapter, I

summarize these case studies and provide directions for future work.
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CHAPTER 9

CONCLUSION AND FUTURE WORK

The central thesis of this dissertation is that “using data-driven computational algo-

rithms and causal statistical analysis on observational data we can extract insights

about how social context influences online writing.” I provide evidence for this claim

through the following findings:

• Using a data-driven method to automatically extract a large number of non-

standard linguistic variables from a large collection of tweets, and focusing on the

audience navigation features of Twitter, I show evidence for audience-modulated

stylistic variation in Twitter.

• Through a causal statistical analysis on the adoption of a new form of stylistic

innovation in online writing, emojis, I show that the new technological affordances

in online social platforms influence the stylistic choices in online writing.

• By quantitatively operationalizing the sociolinguistic construct of stancetaking,

I show that unsupervised methods can be used to characterize the interactional

meaning in language at scale in order to study intra-person and inter-community

stylistic variation in online writing.

• Through a causal statistical analysis to study the effects of norm enforcement in

Wikipedia, I show that the norm enforcement actions influence online commu-

nity’s convergence of linguistic style towards the desired writing style norms.

There are several future directions which could further provide evidence for this

thesis and provide more insights into linguistic style variation in online writing:
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Longitudinal Patterns of Variation and Language Change. This thesis work

has primarily focused on stylistic variation at a specific time point or over a short

period of time. I studied the social meaning of stylistic variation considering the

interplay between the need to convey varied social meanings in online interpersonal

interactions and the affordances in technology-mediated platforms. The affordances of

social platforms and the goals of social media users are changing rapidly and hence

the stylistic patterns in online writing. Therefore, for a deeper understanding of

stylistic variation in online platforms and its social dynamics, we need to investigate

the longitudinal patterns of stylistic variation in online writing. Language change is

a fundamentally social phenomenon [273]. By combining longitudinal analysis with

evolving social network information, future work could track the language change in

progress in social media. Although large-scale studies of change over time will involve

several challenges, as the amount of longitudinal social media data is keeps increasing,

it is a potential avenue for future research.

Beyond and Inside Lexicon. My thesis work has primarily focused on lexical

variation (i.e., variation at the word level). However, stylistic variation exists at

other layers as well: semantic, syntactic, and phonological. Sociolinguistic inquiry of

variation has focused on variation at these other layers, but such studies have primarily

focused on a single or a handful of variants. A limited number of computational work

focused on other layers of variation (e.g., [94, 274]). An important extension of my

thesis work is to investigate stylistic variation in terms of syntactic and orthographic

markers of linguistic style and the social dynamics of this variation.

Linguistic and Social Dynamics of Online Communities. The availability of

large amounts of longitudinal data from various online communities enables the study

of linguistic and social dynamics of communities, which are hard to study in the offline

settings. In the previous three chapters of this thesis, I considered community linguistic
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norms and how people adapt to those norms. There are several other questions about

the linguistic and social dynamics of online communities that are unexplored. Some

examples include: (1) how can we track community-level and user-level linguistic norm

changes over time? (2) how does the amount and speed of linguistic norm adaptation

affect the success of a community? (3) how do exogenous shocks, such as the influx of

new users, changes in community policies, and external events related to the topic

of the community, affect community linguistic norms? (4) how does community’s

tie-strength influence changes in community linguistic norms? Future work could

investigate these questions to further understand the linguistic style variation in online

communities.

Variation Across Multiple Social Platforms. Current studies of linguistic style

variation are limited to individuals’ language usage in a single social platform. However,

different social platforms provide various communicative and linguistic affordances that

could influence the language use. Therefore, using a single data source to study any

online writing phenomenon has the risk of introducing various biases and potentially

limit the generalizability of findings [157]. For example, as discussed in § 2.3.2, prior

work found different notions of audience in the social platforms such as Twitter [34]

and Facebook [104]. These varied perceptions of audience could lead to varied patterns

of linguistic style-shifting. Therefore, future work should consider comparison of

individuals’ language usage across multiple social platforms and the generalizability

of findings across platforms or data sources. A major challenge in studying this is

the limited data availability; networked comment platforms such as Disqus1 could be

potential data sources.

Effects of Topic on Style Variation. While various social attributes and social

context influence stylistic variation in online writing, the topic of discourse is a potential
1https://help.disqus.com/what-is-disqus/what-is-disqus
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confound that could influence stylistic variation in online discourse. For example, in

their study of style-shifting using Scottish variants, Shoemark et al. [107] found that

both topic and audience influence the choice of Scottish variants. While we found

(Chapter 4) that larger audience size (i.e., when using hashtags) inhibits the usage

of local non-standard variants in general discourse on Twitter, Stewart et al. [106]

found the reverse when analyzing tweets on the specific topic of Catalonia Referendum.

Isolating the effects of topic on stylistic variation is challenging and it is an interesting

direction for future work.
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APPENDIX A

LINGUISTIC VARIABLES

A.1 Example tweets with linguistic variables

Table A.1: Examples of each of the linguistic variables in bold, with glosses in
parentheses.

(1) lml (love my life) thank u
(2) that was od (very) crazy
(3) dat (that) was odee (very) loud
(4) this line deadass (really) raps (wraps) around the whole store
(5) my sis sed (said) i wouldd lol
(6) o werd (really) ? lol i really like your style
(7) ima (I am a) la girl but these other ones be reaal fkn (fuking) ratchet man
(8) i’m so complicated smh (somehow) ion (I don’t) understand myself so yu (you) definitely

can’t understand me !!
(9) finna (fixing to) get ah (a) nap in and party lata (later)
(10) imm (I am) 2 hours late fa (for) skool (school).
(11) ohh lawd (Lord) i can’t stand to be lied to !
(12) say wats (what’s) wrong wit (with) oomf (one of my follower) she got life messed up ..

#shitno
(13) lil (little) man wya (where you at) i’m bouta (about) come scoop u
(14) this mf (motherfucker) behind me is breathing so hard. i wanna ctfu (crack the fuck

up) .
(15) im ready fa (for) college
(16) fa (for) sho (sure), hoe (derogatory term for woman, or promiscuous person of any

gender)
(17) lol jawns (people) be lying
(18) bored as shyt (shit) ... lls (laughing like shit)
(19) yeah , yu (you) act like yu (you) don’t noe (know) me !
(20) right lol . like tf (the fuck) is this bahaha
(21) dang (damn) didn’t even mention ques .. hmm
(22) its copyrighted lol, sike (just kidding) u can use it
(23) #whatsthepoint of going to school tomorrow .? lbvs (laughing but very serious) .
(24) i slick (sort of, might) wanna move to memphis one day
(25) i’m slick (really) serious af (as fuck)
(26) these hoes (women) b (be) hatin hard fr fr (for real)
(27) oh ard (alright) just checkin lol
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A.2 Lexical variable frequencies for each MSA

Figure A.1: Frequencies of each linguistic variable from each metropolitan statistical
area (MSA), with the local frequency in gray and the national frequency in black.
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APPENDIX B

EMOTICON TOKENS

Table B.1: Top-twenty extracted emoticon tokens and their cumulative frequencies.

March 2014 March 2015
Emoticon Cumulative % Emoticon Cumulative %

:) 40.60 :) 40.31
:( 53.15 :( 51.85
;) 61.23 :D 59.36
:-) 68.20 ;) 66.37
:D 74.97 :-) 72.50
:/ 78.55 :/ 77.64
:P 80.60 :’( 79.75
;-) 82.30 :P 81.77
:p 83.57 ;-) 83.54
-_- 84.81 :-( 84.57
:-( 85.92 :p 85.56
:o 86.51 _̂ˆ 86.32
:O 87.03 =) 86.96
=) 87.50 -_- 87.53
_̂ˆ 87.91 *ˆ* 88.09
:-D 88.32 :-D 88.63
:-/ 88.66 :O 89.17
;D 88.99 :o 89.71

-__- 89.29 (-: 90.03
(-: 89.51 :-/ 90.34
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APPENDIX C

ROBUSTNESS CHECK FOR ARTICLE-LEVEL EFFECTS OF NPOV

TAGGING

The distribution of time-intervals between the addition of the NPOV tag and the data

collection time is shown in Figure C.1.
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Figure C.1: The distribution of time-intervals between the addition of the NPOV tag
and the data collection time.

Table C.1 shows results of the ITS analysis for RQ1 on the subset of data after

removing articles which are NPOV tagged for more than three years. The treatment

effect remains significant after excluding these long-running disputes.
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Table C.1: Results of RQ1 Analysis robustness check on the subset of data after
removing articles which are tagged for more than three years. Article lexicon coverage is
computed for the textual content of the article results from each revision. Coefficient β3
indicates the change in slope after treatment. Statistical significance after correcting for
multiple comparisons using Benjamini and Hochberg [2] adjustment for false discovery
rate are shown; *: p < 0.05, **: p < 0.01, ***: p < 0.001. Percentage change is
computed as the change in post-treatment lexicon coverage after 40 revisions.

Lexicon β3 p-value % change

Words to Watch -1.33e-05 3.43e-15 *** -5.14
Hedges -3.50e-06 3.39e-06 *** -2.60
Assertives -3.41e-06 4.54e-11 *** -5.43
Positive Words -2.69e-05 < 2e-16 *** -4.32
Negative Words -1.20e-05 < 7.23e-12 *** -2.29
Factives 5.37e-07 6.57e-01 +1.86
Implicatives -1.96e-06 5.00e-05 *** -3.46
Report Verbs -6.61e-06 1.20e-05 ** -3.83
Strong Subjectives -3.68e-05 < 2e-16 *** -5.13
Weak Subjectives -2.97e-05 < 2e-16 *** -1.70
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