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CHAPTER I

INTRODUCTION

To aid the readers as they traverse this thesis, Figure 1 shows the chapter dependencies

of this work.

The goal of physical therapeutic exercises is to increase proficiency of a motor

skill. Physical therapeutic exercises are commonly prescribed to individuals with mo-

tor disabilities. During the physical therapy process, individuals will usually practice

once a week with the assistance of a clinician and six days a week in isolation. When

practicing exercises in the presence of a skilled clinician, an individual receives several

benefits including: (1) real-time feedback on accuracy of motions; (2) real-time adap-

tations to an exercise plan that accommodates the client’s skill level and performance;

(3) social interactions that increase participant engagement; and (4) positive feedback

that increases morale. These benefits are not realized by the client when practicing

exercises in isolation, causing clients to struggle to comply with therapeutic regimens

at home [11, 26, 37, 41, 47].

The purpose of this research is to increase user outcomes through personalized

training sessions that have been created via artificial intelligence to best fit the needs

of the end user. The system that we have developed will assist clients with the at-

home portion of physical therapy by mimicking the four previously mentioned benefits

that a clinician provides during therapeutic exercise sessions. First, we designed a

passive exoskeleton with a rehabilitation gaming suite that encourages therapeutic

motions. Then, we verified its ability to increase engagement while completing ther-

apeutic exercises. Next, we verified the ability of our system to encourage accurate
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Figure 1: A visual representation of the chapter dependency.

2



therapeutic motions. Once the games were optimized, we created a virtual environ-

ment and validated that the system could be simulated virtually. Then, in a virtual

environment, we adjusted the difficulty of the motor task via adjusting the difficulty of

musical parameters, per music theory definitions. Finally, we used machine learning

techniques to classify the task difficulty of similar, commercially available games and

used these classifications to automatically adapt the difficulty of our game. The final

product was validated with our target audience (elderly adults and stroke survivors)

and we found that the adaptations were effective in promoting improved learning of

the motor task. Furthermore, the target audience reported enjoying the system, even

more than younger adults had in previous experiments.
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CHAPTER II

LITERATURE SURVEY

2.1 Motor Learning for Stroke Survivors

Physical therapy is a common treatment for the rehabilitation of hemiparesis, or

the weakness of one side of the body. Stroke is a common cause of hemiparesis

[21]. Patients with stroke-induced hemiparesis may have reduced muscular strength

to a vital body part, e.g. their dominant hand. However, through physical therapy

exercises, patients can regain strength and improve their ability to use their dominant

hand when performing daily activities. Unfortunately, physical therapy, in general,

is a painful process that patients do not enjoy participating in. Furthermore, the

attitude of the patient directly correlates to their compliance and success during

physical therapy sessions [41]. Rehabilitation studies have shown that motivating and

empowering patients by providing them with the perception of control can expedite

the achievement of the patient’s rehabilitation goals [26, 47]. Providing patients with

positive feedback promotes morale and empowerment [11].

Last year, roughly 795,000 Americans suffered from stroke. This statistic is fore-

casted to increase. In America, stroke is also the leading cause of long-term disability

[21]. Roughly half of these stroke survivors still suffer from hemiparesis six months

after their strokes, and roughly 30% of stroke survivors were treated with outpatient

rehabilitation [21]. A recent study found that about one third of stroke patients in

rehabilitation hospitals are poor participators as ranked on the Pittsburgh Rehabilita-

tion Participation Scale [37]. Thus, improvements to outpatient stroke rehabilitation

will benefit a large portion of our population. About one third of stroke victims

suffer from depression after their stroke [21]. Additionally, the limitations caused by

4



reduced wrist and hand movements are a key factor associated with reduced per-

ception of quality of life [8]. Thus, stroke survivors will greatly benefit from morale

boosting physical therapy.

In its current form, physical therapy is not enjoyable, causing patients to lack

diligence in their participation at home [41]. There is a knowledge gap when it comes

to making patients more accountable for their therapy. Not only do patients skip

at home therapy due to lack of motivation [26], but, using traditional rehabilitation

therapy, clinicians are unable to monitor patient progress automatically while the

patients are in their homes. Therefore, in these traditional scenarios, clinicians typ-

ically do not know whether or not a patient has been participating in therapy until

they come in for their next visit. Even when the patient comes into the office, the

clinician has few strategies for assessing patient diligence. The clinician will ask the

patient how often they participate in therapy, but patients may not answer honestly.

The clinician can also assess the progress of the patient and estimate frequency of

patient therapy sessions. However, a diligent patient’s morale can be decreased if the

clinician makes a low estimate of their frequency of participation due to slow progress

with therapy [11].

A solution to these problems is to develop an adaptive therapy gaming system

that will monitor the frequency, duration, and physical motions of the patients during

their at-home therapy sessions and appropriately challenge users during all points in

their therapy sessions. Rehabilitation gaming systems have been shown to increase

motivation [9] while maintaining similar treatment effectiveness [4, 7].

2.2 Music and Motor Learning

The challenge point framework asserts that learning may be increased for difficult

tasks by providing the learner with a model of the task (i.e. an auditory or timing

model) during practice. However, such a model reduces learning for easy tasks due to

5



learners being provided with unnecessary amounts of information [23]. This frame-

work has been validated in a variety of studies. A study by van Vugt and Tillmann

showed that a tap sequence could be learned more quickly and accurately by allowing

participants to practice with tapping beat cues corresponding to the times that a tap

occurred in the sequence being learned, as compared to practicing in silence or in the

presence of randomly timed auditory beats [43]. A study by Aluru et al. on stroke

survivors with chronic hemiparesis suggests that different types of auditory stimula-

tions can be effective during the different stages of recovery. During early stages of

recovery, when a stroke survivor is suffering from spastic paresis, a metronome beat

was shown to increase wrist extension and muscle co-activation. During mid stages of

recovery, when a stroke survivor is suffering from spastic co-contraction, silence was

shown to increase wrist extension but reduce co-activation. During the late stages

of recovery, when a stroke survivor is suffering from minimal paresis, minimal gains

were made regardless of the auditory stimulus [2]. To discover which auditory cues

were most effective for assisting motor skill learning, Vinken et al. used kinematic-

acoustical mapping to associate seven different auditory cue schemes to six everyday

upper limb actions. In this study, the different auditory schemes did not affect the

learning of the task, suggesting that any type of music can be used to teach any

type of motor skill [44]. In another study by Butler and James, participants were

asked to create sounds with novel musical objects. Then, they were asked to identify

each object by the sound it produced. For the duration of this study, fMRI data

was collected. This data showed that the functional connectivity between visual- and

motor-related processing regions was enhanced during the presentation of actively

learned audiovisual associations [5].

6



2.3 Adaptive Video Games

Rehabilitation video games have been used to assist the rehabilitation process. Sev-

eral studies have shown that adaptive game environments promote sustained improve-

ments and high user morale [6, 10, 32]. Ma et. al. used adaptations to allow for their

upper limb motor rehabilitation system to be used with a population of stroke sur-

vivors who had a diverse set of performance capabilities. User performance acted as

an input to adapt the game to the appropriate difficulty level for each user. Users

reported increased motivation while exercising with the system [32]. Cameirao et.

al. created an adaptive task-oriented training system for upper extremity rehabilita-

tion for acute stroke survivors. This system required users to operate virtual arms

in a virtual reality environment where participants would move the virtual arms to

complete tasks that translated to real world activities used in daily life. Once again,

user performance was inputted into the adaptation function to alter the difficulty of

the game to best fit the need of each user. The system was evaluated with 14 stroke

survivors and the results suggested that the system promoted motor skill improve-

ments and benefitted the users’ performance with daily life activities [6]. Duff et.

al. created an adaptive mixed reality rehabilitation training system which used audio

feedback to cue users to perform desired movements. The system was used for stroke

survivors and was tested with three chronic stroke patients. These patients improved

their reaching movements, suggesting that mixed reality environments allow for easier

translation of skills learned in the virtual world into the real world [10].

Several studies have been also conducted to validate a variety of methods for

adapting rehabilitation games in order to best meet the needs of the users. In a study

by Basteris et. al., a lead-lag based assessment was used to adapt a game played with

a robotic hand rehabilitation system. In this game, the user was required to hit targets

at specific times. If the user hit the target too soon, they were considered to lead

the target, but, if the user hit the target too late, they were lagging. When the user

7



lagged 40% of the time, the speed was reduced. When the user was leading 80% of the

time, the speed was increased. This adaptation showed a significantly larger amount

of movement repetitions performed by the subjects during each exercise session [3].

In another study by Panarese et. al., a statistical model was used during game play to

increase the exercise difficulty when the user had overcome a predefined target. This

algorithm was able to successfully track patient progress during the rehabilitation

process of 18 chronic stroke survivors, thus allowing the automation of maintaining

a consistent challenge level throughout a user’s rehabilitation [36]. Another study,

performed by Zimmerli et. al., used a Fitts’ Law algorithm to adjust the difficulty

of a game. Their game required 10 stroke survivors to move between two points on

a screen in a specific amount of time. Slower times were considered easier and faster

times were considered more difficult. This study showed that the Fitts’ Law model

can be used match a desired difficulty with the capabilities of the user, allowing for

more productive practice sessions [46].

2.4 Summary

In this section, we discussed several research efforts including the problems with motor

learning in stroke survivors, how music can be helpful in increasing motor learning,

and how adaptive video games can be useful for appropriately challenging stroke

survivors. We observed that the adaptive rehabilitation game studies used simple

algorithms to adapt their game cues and focused mainly on the current performance

of the user. In this research, we aim to create a more sophisticated adaptive algo-

rithm that includes both current performance and historical data in order to better

encourage users towards an expedited recovery.
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CHAPTER III

METHODS FOR CUEING PARTICIPANTS TO

COMPLETE MOTOR TASKS

3.1 Motivation

Existing robotic therapy systems for rehabilitation of motor function for stroke sur-

vivors are designed to engage patients through the use of interactive video games.

These systems can also monitor the time spent in therapy and patient success in real

time and provide feedback via game scores. This information can also be sent to

clinicians in order to allow the clinicians to accurately track patient diligence and

progress. Existing systems are only useful for a short period of recovery, as the task

types and difficulties are static. However, an adaptive stimulus could be useful for

a larger duration of the recovery process. It is hypothesized that adaptive gaming

systems can increase engagement and motivate patients to participate in longer ther-

apy sessions and that adaptive gaming systems can promote more productive exercise

practice.

3.2 Design of a Passive Therapy Device with Rehabilitation
Gaming Suite

We hypothesize that we can develop methodologies for rehabilitation using robotic

interventions that promote engagement and encourage expedited learning for indi-

viduals learning a new motor task [14, 18]. Based on past research that showed

the effectiveness of coupling assistive robotic devices with adaptive video game aug-

mentation, we determined that, for our research, we would focus on developing a

passive therapy device with a rehabilitation gaming suite that promotes engagement

and productivity in at-home therapeutic wrist exercises. Our first step in proving
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this hypothesis is to develop a platform that can be used in a series of validation

experiments. One component of our research was the development of a suite of fun

and engaging rehabilitation games that could facilitate therapeutic wrist exercises.

The game framework was designed such that various intervention protocols, corre-

lated with different wrist exercises, could easily be programmed by a clinician. This

framework is necessary because it allows each game to benefit users at all stages of

therapy. Immediately after a stroke, users are most severely impaired; they have a

limited Range of Motion (ROM), have reduced strength, move slowly, and may have

shaky movements [21]. As they participate in therapy, their ROM increases, their

strength improves, and they are able to move more quickly and steadily. Allowing

the clinician to adjust the games allows for the clinician to pick exercises that focus

on a single aspect for improvement (i.e. ROM by encouraging the user to move a

greater distance or strength by encouraging the user to hold an extended position) as

well as to adjust the games to practice at a desired difficulty level.

In order to enable these games to facilitate motor learning, a passive therapy

device acts as a game controller [14, 18]. Our first prototype of the system utilized an

existing robotic arm exoskeleton, called the HandMentor [42]. However, this existing

exoskeleton did not fit the needs of our system because it came in a single size and

was large and heavy due to its function for actuating the user’s wrist – a capability

that we do not intend to use in our designs. In order to circumvent these limitations

and fit the needs of our research, we designed an easily scalable, 3D printed passive

therapy device that can fit users of any size. Current robotic exoskeletons are one-

sized-fits all and designed for the average adult male. 3D printing our own passive

therapy device allows our technology to be utilized by end users of all shapes and

sizes, including people who are too small for commercially available systems such as

petite women and children as well as people who are too large for existing systems.

For placement, the user simply straps our device onto their arm via three strips of
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Figure 2: The scalable robotic passive therapy device.

velcro – one above the finger bed, one below the wrist, and one below the arm, as

seen in Figure 2. The passive therapy device is also padded with foam for comfort.

The full range of motion of the patient’s wrist is captured by a potentiometer that

is located at the wrist joint of the passive therapy device and transferred via Bluetooth

as a raw input to the interactive game system. The patient’s wrist movements are

then translated into game commands that enable user control. Currently, there is no

known passive therapy device for the arm with this capability available in the public

sector. Creating a scalable passive therapy device allows for this research to provide

a gaming rehabilitation systems to a larger population of individuals.

The software goal of this design included creating a variety of engaging games that

enhance compliance by embedding adjustable options into the game design to engage

participants at all levels of recovery. As shown in Figure 3, two games, RoboBlaster

and RoboRockNRoll, were created for this purpose. RoboBlaster requires the user to

control a spaceship and destroy asteroids by shooting them with lasers. RoboRock-

NRoll requires the user to control a pick and catch music notes that correspond to

popular songs that are being played during the gaming session. Both games couple

the wrist’s effective range of motion and speed in a unified manner which correlates

with specific therapy interventions [14, 18].
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Figure 3: RoboBlaster rehabilitation game (right) and RoboRockNRoll rehabilitation
game (left).

3.3 Increasing Engagement

Lack of participation in physical therapy is known to be a significant factor hindering

the recovery of stroke survivors [11, 26, 37, 41, 47]. Increasing engagement and

motivation for users to complete physical therapeutic exercise is of utmost importance

for improving quality of life of stroke survivors [8]. Therefore, through the coupling

of interactive games with a passive therapy device, we designed our rehabilitation

system to be fun and engaging. We hypothesized that interacting with the system

would be more enjoyable than doing exercises without the aid of the system and that

people would be willing to complete more exercises with the assistance of a game than

they would unaided. Thus, for our first system validation experiment, we designed

an experiment to verify the system’s ability to increase engagement in therapeutic

motions and discourage boredom while completing these exercises [13]. We define

engagement by the user’s desire to participate in the task, which is measured by the

amount of time that the user reports being willing to participate in the task. We

define boredom by the user’s desire to stop the task, which is measured by the time

that the user reports wanting to end the task.
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3.3.1 Experimental Setup

For this study, 14 able-bodied participants between the ages of 14 and 35 were selected.

Eight of the participants were male and six were female. The participants were asked

to complete two tasks, wrist exercise using the passive therapy device integrated with

a rehabilitation game and wrist exercise using the passive therapy device without the

game [13]. Half of the participants were randomly selected to complete the exercise

task with the games first and the other half completed the exercise task without

the games first. The participants were instructed to end the exercise period when

they became bored with the task. The time that each participant elected to spend

performing each task was recorded.

Prior to beginning either task, the participants put on the first prototype of our

system built from the Hand Mentor arm brace [42] and were told that they would be

exercising with the arm brace. Immediately following the completion of both tasks,

the participants were asked to complete a survey that posed questions about the

enjoyment and boredom during the two exercise tasks.

3.3.1.1 Exercise Task with Interactive Rehabilitation Games

For the exercise task involving the interactive rehabilitation games, participants used

the Hand Mentor controller to play the RoboBlaster game. A script was read to the

participants prior to the initiation of the task. This script informed the participants

that they would be playing RoboBlaster using the Hand Mentor as a controller. They

were informed of the game play instructions and the goal of the game. They were

also told to stop and inform the researcher when they became bored with the task.

The following script was used to provide these instructions:

”For your (first/second) task, you will be playing JetBoy using the Hand-

Mentor as a controller. Your goal is to destroy the asteroids. Your ship

continuously fires. To move your ship up and down, move your wrist the
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corresponding direction. You may stop when you become bored with this

task.”

3.3.1.2 Exercise Task without Interactive Rehabilitation Games

For the exercise task that did not involve the interactive rehabilitation games, partic-

ipants completed an exercise regimen that involved moving their wrist up and down

while wearing the Hand Mentor. A script was read to the participants prior to the

initiation of the task. This script informed the participants that they would be exer-

cising with the arm brace by moving their wrist up and down. They were instructed to

stop and inform the researcher when they became bored with the task. The following

script was used to provide these instructions:

”For your (first/second) task, you will be exercising with the HandMentor.

To complete this exercise regiment, move your wrist up and down inside

the arm brace. You may stop when you become bored with this task.”

3.3.2 Results

3.3.2.1 Duration

The average amount of time that the participants spent exercising is shown in the

right image in Figure 4. As depicted, participants spent 222 seconds exercising with

the rehabilitation game and 59 seconds exercising without, on average. This difference

equates to the participants spending roughly four times longer exercising with the re-

habilitation game than without the rehabilitation game. While the standard deviation

was high for both groups, 127.2 seconds and 41.1 seconds, respectively, an unpaired

t-test resulted in a P value less than 0.0001, which asserts a statistical significance in

the difference between these values. Therefore, participants spent significantly more

time exercising when the regimen was accompanied with a rehabilitation game than

they did without.
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Figure 4: Engagement experiment results: mean time spent exercising with and
without the rehabilitation game (right) and mean responses to survey questions (left).

3.3.2.2 Engagement

Immediately following the completion of both exercise tasks, the participants were

asked to fill out a survey, where they ranked a series of statements using a five-

point Likert scale with selections ranging from one to five. On the Likert scale, one

corresponds to strongly disagree, two to disagree, three to neutral, four to agree, and

five to strongly agree. The statements that the participants were asked to respond to

are listed in Table 1.

The averages and standard deviations of the participants’ responses are shown

in the left image in Figure 4. From the participants’ responses, the participants

experienced significantly more enjoyment and engagement when exercising with the

rehabilitation game. While participants gave high enjoyment and engagement scores

for sessions that were accompanied by the rehabilitation game, they unanimously

agreed that they did not enjoy the exercise experience without the rehabilitation

game. Participants also experienced significantly less boredom while exercising with

15



Table 1: Survey Questions Presented to Participants

Number Question
1 I enjoyed the exercise session WITH the tablet game.
2 I enjoyed the exercise session WITHOUT the tablet game.
3 Exercising was MORE enjoyable WITH the tablet game.
4 Exercise was MORE enjoyable WITHOUT the tablet game.
5 I felt that my exercise session WITH the tablet game was productive.
6 I felt that my exercise session WITHOUT the tablet game was productive.
7 I felt engaged while exercising WITH the tablet game.
8 I felt engaged while exercising WITHOUT the tablet game.
9 I felt bored while exercising WITH the tablet game.
10 I felt bored while exercising WITHOUT the tablet game.
11 If I had to exercise my wrist for one hour a day, every day, I would

rather complete all of these exercises WITH the tablet game.
12 If I had to exercise my wrist for one hour a day, every day, I would

rather complete all of these exercises WITHOUT the tablet game.

the rehabilitation game as compared to traditional rehabilitation exercises. The par-

ticipants unanimously agreed that if they were required to exercise their wrists for

an hour a day, as is a normal requirement for patients in stroke therapy [19], that

they would prefer to do so by playing the rehabilitation game. The participants also

felt that their exercise with the rehabilitation game was more productive than their

exercise without, which would encourage them to participate in therapy longer and

more frequently. All question pairs were significantly different with p-values < 0.05.

3.3.3 Conclusions

The results of this study show that participants prefer playing rehabilitation games

with the passive therapy device more than they do exercising with traditional reha-

bilitation methods. On average, participants spent approximately four times longer

playing the rehabilitation game before becoming bored than they did with tradi-

tional exercises. From their responses to the retrospective survey, the participants

experienced significantly more enjoyment and engagement when exercising with the
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rehabilitation game. They also experienced significantly less boredom. The par-

ticipants unanimously agreed that if they were required to exercise their wrists for

an hour a day, as is a normal requirement for patients in stroke therapy [19], that

they would prefer to do so by playing the rehabilitation game. Additionally, many

users complained of the HandMentor exoskeleton being heavy and/or not fitting well.

Based on the outcomes, we were motivated to use our customized 3D arm for future

studies.

3.4 Encouraging Specific Motions

When designing a system to facilitate therapeutic motions, it is important to verify

that the system actually encourages users to complete the motions precisely and

accurately, in order to ensure that time spent using the system directly translates

to time spent diligently completing therapeutic activities. Thus, an experiment was

designed to verify that the rehabilitation game cues encouraged users to accurately

complete commonly prescribed wrist therapeutic motions that are tested by the Fugl-

Meyer assessment [12], a movement examination that physicians routinely use to

assess the recovery of stroke patients [20]. As shown in Figure 5, three of the Fugl-

Meyer wrist motions that this experiment encourages participants to complete are (1)

alternating between maximum dorsiflexion and maximum volar flexion, (2) holding

their wrist in a strong and stable position of their maximum dorsiflexion, and (3)

holding their wrist in the a strong and stable position of their maximum volar flexion

[20].

3.4.1 Experimental Setup

Fifteen able-bodied participants between the ages of 14 and 35 completed this exper-

iment. The inclusion criteria for this study was healthy individuals. Eleven of the

participants were male and four were female. Each participant completed six levels

of the game, each with a different algorithm to encourage a specific motion pattern
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Figure 5: Wrist alternating between maximum dorsiflexion and maximum volar flex-
ion.

[12]. The participants also completed a control session, where they were instructed to

exercise without the rehabilitation game. The positions of their wrists were recorded

during all of the sessions, including the control session. The participants completed

the seven tasks (six levels and control) in a random order. The length of time that

the participants spent in each task was one minute and twelve seconds. Actual paths

and encouraged paths were compared using correlation coefficients calculated using

corrcoef, a normalized covariance MATLAB function.

3.4.1.1 Walking Algorithm

The walking algorithm launches asteroids in a triangle wave represented by Equation

1, where tlaunch is a list of natural numbers that represents the times when a target

is launched. In this equation, the function used to calculate the position of the

target is known as Target(time). This algorithm is designed to encourage a slower

frequency oscillation with a large amplitude. It encourages slow and controlled wrist

motions with equal time spent in maximum dorsiflexion and maximum volar flexion

positions. During the walking algorithm experimental sessions, each participant was

presented with encouragement for five downward and four upward motions. The

walking algorithm, shown in the right image in Figure 6, was designed to encourage

this smooth, alternating motion.
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Figure 6: Three RoboBlaster levels with lanes and lane numbers overlaid: (1) Walk-
ing algorithm (right), (2) Halfing algorithm (center), and (3) Hold Stretches (left).

Target(tlaunch) = 8/π ∗ sin−1(cos(π/8 ∗ tlaunch)) (1)

3.4.1.2 Halfing Algorithm

As seen in the center image in Figure 6, the halfing algorithm launches asteroids

in the pattern described by Equation 2, where tlaunch is a list of natural numbers

that represents the times when a target is launched. This algorithm is designed

to encourage oscillation that vary in difficulty. First, the patient must reach to the

maximum dorsiflexions and volar flexions. Then, the participant creates an oscillation

that has an amplitude of half of their maximum range. Next, the required oscillation

is 75% of their full range. Finally, the participant must complete an oscillation that

is 25% of the full range. The participant repeats this oscillation pattern for the

entirety of the gaming session. During the halfing algorithm experimental sessions,

each participant was presented with encouragement for nine oscillations from the

minimum to the maximum of their range, eight oscillations of 75% of their range, eight

oscillations of 50% of their range, and eight oscillations of 25% of their range. This

algorithm was designed to encourage the portion of the Fugl-Meyer test that requires

alternating motions between maximum dorsiflexion and maximum volar flexion [20].

However, the variation of the levels of difficulty is designed to encourage growth and

allow for partial success for participants who have not yet achieved high flexion in

either direction.
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Target(tlaunch) =



4, if tlaunch mod 9 = 0

−4, if tlaunch mod 9 = 1

0, if tlaunch mod 9 = 2

2, if tlaunch mod 9 = 3

−2, if tlaunch mod 9 = 4

3, if tlaunch mod 9 = 5

−3, if tlaunch mod 9 = 6

1, if tlaunch mod 9 = 7

−1, if tlaunch mod 9 = 8

(2)

3.4.1.3 Hold Stretches Algorithm

The hold stretches algorithm launches asteroids in a square wave pattern that is de-

scribed in Equation 3, where tlaunch is a list of natural numbers that represents the

times when a target is launched. This algorithm is designed to encourage participants

to reach their maximum dorsiflexion position and then hold the stretch. Then, the

participant must reach their maximum volar flexion and hold the stretch. This process

repeats. During the hold stretches algorithm experimental sessions, each participant

was presented with encouragement for holding three stretches in their maximum dor-

siflexion and three stretches in their maximum volar flexion. For this test, the wrist

is held at approximately 15 ◦ dorsiflexion while a slight amount of resistance is added

[20]. The hold stretches algorithm, shown in the left image in Figure 6, was designed

to allow for practice of the wrist stability portion of the Fugl-Meyer test. This algo-

rithm encourages a much higher maximum, of greater than 52.5 ◦. Since this system

currently does not allow for resistance to be applied, a larger angle is used, to utilize

naturally occurring resistance from tendons stretched to their maximum potential.
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Figure 7: Difference from intended path for the walking algorithm.

The increase of the encouraged angle could be changed to fit the maximum range of

each participant.

Target(tlaunch) = 4 ∗ (−1)floor(tlaunch/15) (3)

3.4.2 Path Approximations

The differences between participants’ actual paths and the intended paths were graphed

for the walking and hold stretches algorithms, shown in Figures 7 and 8, respectively.

A trend that is learned from these comparisons is that the participants aligned most

accurately with the encouraged path during the beginning of the game. The corre-

lation coefficients between the intended paths and the median actual paths for the

walking and hold stretches algorithms were found to be 0.44 and 0.75, respectively.

At the beginning of each session, the actual path aligns more closely with the encour-

aged path and the standard deviations between the participants’ movements tend to

be smaller. As time progresses, the average real path of the participants becomes

more erratic and the standard deviation becomes larger.
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Figure 8: Difference from intended path for the hold stretches algorithm.

3.4.3 Aliasing

Algorithms that involve frequent, rapid changes between asteroid locations did not

encourage frequent, rapid movements from the participants. Instead, an aliasing of

the intended path occurred, as it does in an under-sampled signal. The path that

the participants followed better fits a path of the algorithm with a lower frequency.

Each participant followed a signal with a different frequency. For example, one of the

participants followed a signal that was best fit by a 300% increase of the period of

the intended path. The right image in Figure 9 shows a participant’s path plotted

with the non-aliased version of the intended signal, while the left image in Figure 9

shows a participant’s path plotted with an aliased signal with a period of 300% of

the intended period. The correlation coefficients for the non-aliased and aliased paths

were found to be 0.14 and 0.41, respectively. From these figures, it can be seen that,

the aliased version is a better fit than the non-aliased version.

3.4.4 Discussion

The results of this healthy pilot study suggest that not only can the therapy system

change how a participant moves, but can also encourage specific motions designed to
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Figure 9: The halfing algorithm plotted with the intended path (right) and the
halfing algorithm plotted with a 300% frequency increase of the intended path (left).

mimic therapeutic interventions. This study also exposed two important considera-

tions, frequency of targets and game speed, that need to be taken into account in

order to encourage participants to follow the encouraged path precisely.

3.4.4.1 Path Approximations

During data analysis, it was discovered that participants followed the encouraged

paths closely at the beginning of each of their sessions. However, as time progressed,

their paths became less predictable and the standard deviations between these paths

became larger. This trend occurs because of an error in game design, as the lasers

that are fired by the ship move slowly and are fired at a faster rate than asteroids are

launched. As a result, residual lasers from a previous target will remain on the screen

after the target asteroid has been destroyed. As the game progresses, these residual

lasers begin to destroy asteroids as they appear, removing the encouragement for

the participants to move to the wrist position that corresponds to the asteroid’s lane

placement. The effects of this become prevalent at roughly 40 seconds into the session.

The correlation coefficients between the intended paths and the median actual paths

for the first 40 seconds of the walking and hold stretches algorithms were found to be

0.50 and 0.98, respectively.
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3.4.4.2 Aliasing

It was also discovered that an aliasing effect occurs between the actual path partici-

pants followed and the encouraged path when the encouraged path presented frequent,

rapid changes between targets. This suggests that participants prefer slow, smooth

paths to quick, harsh motions. In levels with rapid fluctuations of targets, each of the

participants exhibited this trend with a different frequency of the intended path. This

suggests that each individual has a maximum preferred speed at which they feel most

comfortable moving. This maximum preferred speed appears to be a different speed

for each individual. When the encouraged path’s speed exceeded the participants’

maximum preferred speed, the participants would alias the encouraged path to their

maximum preferred speed.

3.4.5 Conclusions

The motivation of this project is to use the system to facilitate therapy sessions for

stroke patients with a passive therapy device and gaming environment. Showing that

our system is capable of encouraging motions that mimic therapeutic interventions

was a preliminary task for producing a novel robotic wrist rehabilitation system that

integrates the strengths of three of the most favorable rehabilitation strategies for

post-stroke rehabilitation of hand function.

3.5 Musical Cues

Based on our current results with our rehabilitation system, we desire to find ways

to improve the learning process such that learning is optimized for each individual.

As such, we looked at the impact that musical cues have on motor learning. Studies

suggest that musical cues may help users learn more quickly and/or retain motor skills

[43, 2, 44, 5]. In this pilot study, we wished to examine whether prior knowledge of

musical cues can be used to expedite the learning of a motor skill.
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3.5.1 Experimental Setup

We conducted a pilot study to determine whether prior knowledge of musical cues

could be used to expedite the learning process [17]. In this experiment, 21 able-bodied

participants were asked to complete a 90 second exercise session. To complete this

experiment, a level of the RoboRockNRoll video game was created with music notes

that correspond to the popular nursery rhyme and song, “London Bridges.” During

the 90 second exercise period, participants completed three iterations of the “London

Bridges” pattern in the video game, with each iteration presented as a 30 second

section. Each participant completed three sections during this experiment. During

sections 1 and 3 of the exercise period, all participants completed their exercises

without any sound cues. During section 2, 11 participants were presented with music

cueing – notes of varying frequencies that were presented at times that corresponded

with visual cue appearances; three were presented with a tapping beat cue – a clapping

sound of a constant frequency that was presented at times that correspond with visual

cue appearances; and seven were exclusively presented with the visual cues and no

sounds. As shown in Table 2, the participants were divided into five subgroups for

analysis. (Note: the group that was presented with musical cues was further separated

into three subgroups.) The participants’ accuracy in hitting the notes and jerkiness

of motions were compared between these groups. Upon completion of the 90 second

exercise period, all participants were asked if they could identify the song, in order for

the researchers to discover if the participants were applying prior knowledge about

the song to this exercise period.

3.5.2 Results and Discussion

3.5.2.1 Song Recognition

Of the 11 participants who were presented with a music intervention, four correctly

identified the song, four identified the song incorrectly, and three did not know what
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Table 2: Description of Participant Groups

Group Identifier Description
1 Participants were presented with musical intervention and correctly

identified the song.
2 Participants were presented with musical intervention and

incorrectly identified the song.
3 Participants were presented with musical intervention and did

provide a guess as to which song was played.
4 Participants were presented with a tapping beat intervention.
5 Control - Participants were presented with a silent intervention.

the song could be. These participants were divided into the three subgroups, Group

1-3, as described above for analysis and shown in Table 2. None of the 10 participants

in the tapping beat or control(no sound) groups could identify a specific song, which

was a valid assessment since no song was provided for these two groups.

3.5.2.2 Lead and Lag

A lead/lag score was calculated each time a music note target was collected by the

user during game play. Lead is defined as the amount of time that a user intends

to hit a note prior to the time that the theoretical path anticipated that the user

would hit the note. Lag is defined as the amount of time after the theoretical hit

time that the user hit the note. The lead/lag score provides insight as to whether the

user is anticipating note appearances or simply reacting to game cues. A lead/lag

score that tends more towards leading suggests that the user has learned the path

and knows where a future target will appear, before the game prompts the user with

this information. A lead/lag score that tends more towards lagging suggests that the

user has not yet learned the movement pattern and is relying heavily on game cues

to successfully complete the exercise motions.

This lead/lag score was used to quantify the amount of lead/lag at each point of

interest, which we define as the point on the actual path that participants traveled in
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which they intended to hit the target. First, we developed an algorithm to automat-

ically extract these points of interest as shown in Equation 4. The position extrema

in between the time that the previous note appeared and the time that the next note

appears is used to determine these points, as seen in the blue circle in Figure 10. If

there was no extrema in this time period, the closest point on the actual path that

had the same y-value was selected, as seen in the red circle in Figure 10. Once these

points of interest were determined, they were compared to the points where the notes

appeared on the screen, which are shown as black and red dots, respectively, in Figure

10. As shown in Equation 5, the lead/lag score was calculated by calculating the dif-

ference in x-values. If the x-value of the point of interest continued past the intended

point, this resulted in a negative score and was associated to lagging. However, if the

x-value of point of interest occurred before the x-value of the intended point, this was

a positive score and was associated to leading.

if (extrema exists)

POI = extrema(Pa(Tp), Pa(Tn))

else

POI = Pa(T (y == Pt(Tc))) (4)

where POI = point of interest, Pa = actual path, Pt = theoretical path,

Tc = the time that the current target appears, Tp = the time that the previous

target appears, and Tn = the time that the next target appears

LeadLag = Tc.x− POI.x (5)

where Tc.x = the x value of the current target and POI.x = the x value of the point

of interest
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Figure 10: Graph of actual and theoretical paths with target points and points of
interest.

Table 3 shows the results for the mean lead/lag scores for participants in all five

groups across all three sections of game play. As shown, the lead/lag scores prior to

and during the interventions were not significantly different from one another for any

group. When you look at the trends across the sections of game play, the groups that

received musical intervention (groups 1-3), show a trend of decreasing lag. The largest

decrease across the 3 sections was in group 1. After the intervention, the lead/lag

scores for the group of participants who received musical intervention and correctly

identified the song, was significantly less negative than the music not identified, beat,

and no sound groups. This trend suggests that once participants were able to correctly

identify the song, they were able to rely on their prior knowledge of where they will

be expected to move next in order to anticipate the movement quicker.

3.5.2.3 Overshoot and Undershoot

An overshoot/undershoot score was also calculated each time a music note target was

collected by the user during game play. An overshoot is defined as the amount of

distance that a user continues past the target, while an undershoot is defined as the
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Table 3: Table of Mean Lead/Lag Scores for the Groups

Mean LeadLag Section 1 Section 2 Section 3 Average for all Sections
Group 1 -677.9 -590.3 -555.4 -608.6
Group 2 -682.5 -620.4 -602.6 -635.6
Group 3 -673.9 -671.1 -654.4 -666.6
Group 4 -711.1 -672.3 -704.2 -695.8
Group 5 -664.3 -580.9 -637.4 -627.4

amount of distance that a user stops prior to reaching the target. In Figure 10, the

points inside of the blue circle are an example of an undershot point and the points

inside of the green circle are an example of an overshot point. This score was calcu-

lated by comparing the points where the notes appeared on the screen to the points of

interest calculated in Equation 4. As shown in Equation 6, the overshoot/undershoot

score was calculated by the difference in y-values. A positive value is associated to

overshooting, while a negative value is associated to undershooting.

OverUnder = Pa(Tc).y − POI.y

if(Pa(Tp) > Pa(Tc))

overscore = overscore−OverUnder

else

underscore = underscore+OverUnder (6)

where Tc.y = the y value of the current target, POI.y = the y value of the point of interest,

Pa = actual path, Tc = the time that the current target appears, and Tp = the time that the

previous target appears

As shown in Table 4, the over/undershoot scores for the musical groups (1-3),

regardless of participant recognition of the song, were significantly smaller than those

of the silent group during the intervention, with p-values less than 0.01 for all musical
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Table 4: Table of Mean Overshoot/Undershoot Scores for the Groups

Mean OverUnder Section 1 Section 2 Section 3 Average for all Sections
Group 1 -0.0326 0.1789 0.2548 0.1320
Group 2 0.1457 0.2435 0.2716 0.2195
Group 3 0.2634 0.2652 0.3159 0.2810
Group 4 -0.00955 0.05208 0.07088 0.03734
Group 5 0.3887 0.7961 0.5459 0.5773

groups. However, no statistically significant trend exists before or after the interven-

tion. This trend suggests that musical cues may be used to focus a user’s motions

and encourage them to hit a target more precisely. However, these benefits do not

appear to carry over into practice sessions after the musical cues are removed. This

is contrary to the results derived from many studies that use auditory cues, so this

aspect of the research needs further investigation in future work [2, 5, 43, 44].

3.5.2.4 Jerkiness

The derivative of each participant’s actual path was calculated, as shown by the

green line in Figure 10. As shown in Equation 7, the maximum absolute value of

the derivative between each point of note initiation and each point of interest was

calculated. This value is considered the jerkiness factor for each point. Jerkiness is

defined as the peak speed that the participant moves towards each target.

jerkiness = max(abs(P ′a(Tapp), P
′
a(Tpoi))) (7)

where P ′a = the derivative of the actual path, Tapp = the time that the current target appears,

Tpoi = the time associated to the point of interest

As shown in Table 5, the average jerkiness varied drastically from participant to

participant. Therefore, no trend immerged prior to, during, or after the intervention

for any of the different groups. Since the participants were so different from one
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Table 5: Table of Mean Jerkiness Scores for the Groups

Mean Jerkiness Section 1 Section 2 Section 3 Average for all Sections
Group 1 0.52474 0.561361 0.51002 0.532351
Group 2 0.676433 0.887858 0.713825 0.760014
Group 3 0.640842 0.755425 0.564765 0.65493
Group 4 0.317708 0.389757 0.345788 0.351159
Group 5 0.975446 1.103237 1.082492 1.05332

another, this study will need to be repeated with more participants in order to discover

whether any trends exist for jerkiness.

3.5.3 Conclusions

This study shows that musical cues may be able to encourage more precise aiming at

targets when the music is present. Precision when it comes to timing appears to be

retained after the removal of musical cues. However, improvements in precision for the

y-positions of the targets do not appear to persist beyond the removal of musical cues

based on our current implementation. This study also shows that existing knowledge

of a song can be used to encourage users to anticipate motions and therefore learn a

motor task more quickly.
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CHAPTER IV

SIMULATING MOTOR TASK LEARNING IN A

VIRTUAL ENVIRONMENT

Now that we have created a rehabilitation gaming system with a passive arm rehabili-

tation device as a controller, we wish to create a virtual simulation for the same game.

In this virtual environment, we wish to teach similar tasks and to validate this envi-

ronment as being an effective simulation of the physical environment. Creating and

validating such a virtual environment would allow the researchers to have a simplified

testing process and thus, allow us to perfect our system in a virtual environment and

then port the final results back to the physical environment for a final validation.

Testing in a completely virtual environment can be a simplified process for re-

searchers. Virtual experiments allow for researchers to be required to set up less

equipment as well as to be freed from the worry of damage to physical systems. In

addition, virtual experiments offer the researchers an opportunity to conduct online

experiments, which can be much more time efficient than in person experiments. The

reduction of cost and ease of usability are two aspects of virtual simulations that

make such techniques popular among researchers [31]. However, in order to validate

that testing in a virtual environment is a valid way of simulating a physical interac-

tion, we must compare the results between a test in the physical environment and

one in a virtual environment. If the results are consistent between platforms, we can

assume that the virtual environment is a similar enough approximation of our physi-

cal environment to assume that conclusions from results of a virtual environment are

translatable to the physical environment.

In this chapter, we begin to analyze the learning results of our users as they
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learn the task via calculating and plotting their learning curves. We begin to explore

various methods for presenting task information and their effects of the learning of

the motor task.

4.1 Learning Curves

When teaching motor tasks to individuals, the individual’s performance can be plot-

ting along a graph. For normal tasks, these graphs follow a curve trend. When the

individual is a novice, their performance is very poor. As they learn, the performance

improves. At first, performance gains occur very quickly. However, as the perfor-

mance improves, the gains slow until a platue is reached. This traditional curve is

referred to as a learning curve. While the shape of the curve is consistent, the param-

eters (such as the starting performance, slope of the curve, and ending platue) differ

greatly between users and tasks [22].

When teaching motor tasks, practice is considered the single most important factor

for permanent ability improvement for a motor skill. The challenge-point framework

exstensively outlines how practice difficulty effects learning outcomes for various mo-

tor tasks. It states: (1) learning cannot occur in the absence of task information and

performance feedback, (2) learning will occur more slowly if the individual is pre-

sented with too much or too little task information and performance feedback, and

(3) for learning to occur optimally, the individual must be presented with the opti-

mal amount of task information and performance feedback – however, this optimal

amount differs as a function of the skill level of the individual [22].

4.2 Virtual Environment

A virtual environment was created to simulate playing the RoboRockNRoll game,

shown in Figure 3, with our physical system. This virtual game was used in all

of the experiments described in this chapter. To play the developed virtual game,

participants were asked to watch a tapping sequence and then recreate it on their
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Figure 11: Screenshots from the tapping game. The left screenshot shows the game
during the watching portion of the interaction when the pick is black. The center
screenshots shows the pick flashing white during the watching portion of the in-
teraction. The right screenshot shows the game during the recreation part of the
interaction.

own. During the watching portion of this interaction, a black guitar pick overlaid on

guitar strings would flash white when a tap event was supposed to occur. During the

recreation portion of this interaction, a progress bar would appear on the top of the

screen to show the participants the amount of time they had to tap the sequence.

However, the guitar pick would be black and would not flash. Figure 11 shows

screenshots of the game during the watching and recreation portions of the interaction.

They repeated this watch and recreate process four more times, for a total of five

sessions of watching the tapping sequence and five sessions of recreating the tapping

sequence. In this game, the tapping sequence that was presented to the users began

with for slow taps followed by eight faster taps. The faster taps had a frequency

that was double the slower taps. Figure 12 depicts sheet music corresponding to the

tapping sequence taught in this game.

Upon completing the five sessions of tapping, participants were asked to complete
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Figure 12: The sheet music of the tapping sequence taught in our app game.

a short survey. As part of this survey, they were asked their age, gender, whether or

not they heard sounds during the gaming experience, and to rate the easiness and

frustration of the game on a scale of 1 to 5, where 1 corresponded to easiest/least frus-

trating and 5 corresponded to hardest/most frustrating. Figure 13 shows a screenshot

of this post-game survey.

4.3 Validating that Learning Trends Observed in the Physi-
cal Environment Translate to the Virtual Environment

In the “Musical Cues” section of the “Preliminary Results” chapter of this thesis, we

observed that musical cues could be could be used to teach a motor task better than

practicing in silence. In this experiment, we aim to validate that this learning trend

will be observed in a virtual environment as well [16].

4.3.1 Experimental Setup

4.3.1.1 Virtual Therapy Game

We conducted a virtual study on Amazon’s Mechanical Turk. 106 participants com-

pleted this experiment. 38 participants were female, 55 were male, and 14 preferred

not to answer this question. The age of participants ranged from 19 to 54. The

average age of participants was 30.53 and the standard deviation was 7.94. The data

from 25 participants was thrown out due to the participants having technical diffi-

culties with the game or for not following instructions. At the end of the game, the

participants were shown a screen stating that their data was being uploaded. When

the upload was complete, a screen was shown saying that they could close out of

the game. Participants that closed the game prior to this screen had results that
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Figure 13: A screenshot of the post-game survey.
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were partially submitted or not submitted to us. These participants were considered

to have technical difficulties. Participants that did not attempt to create a tapping

sequence for one or more recreation sessions were considered to have not followed

directions. The data from the remaining 81 participants was analyzed.

Participants were randomly assigned to one of two test groups. In the experimental

group, tapping sounds were played during the watching phase of the interaction when

the guitar pick flashed white. In the control group, no sounds were played at any

point in time during the interaction [16].

4.3.1.2 Experiment Using a Robotic Wrist Rehabilitation System

In order to validate that our results would translate to trends that could also be

observed during robotic rehabilitation sessions, we recreated this experiment using a

robotic wrist rehabilitation system [16]. The therapy game used for this experiment

was identical to the game used in the virtual environment. However, the movement

methods used for interaction with the game were different. Instead of tapping the

screen, as the users did in the virtual environment, users were asked to interact with

the game by explicitly moving their wrist to control a robotic arm exoskeleton, as

shown in Figure 2. The exoskeleton functions by detecting the full range of motion

of the user’s wrist via a potentiometer, located at the wrist joint of the robotic

exoskeleton therapy device that measures the wrist angle. This information is then

transmitted from the exoskeleton as a raw input to the therapy game via Bluetooth.

The user’s wrist movements are then translated into game commands that enable

user control.

Participants were asked to make downward drumming motions while wearing the

exoskeleton, as if they were tapping a beat on a table. The exoskeleton detected

the lowest peak in their downward wrist flexion and identified this as the moment in

which a tap occurred. Eleven participants completed the experiment in the physical
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environment (5 female, 6 male). The age of participants for this experiment ranged

from 17 to 36, with a mean of 25 and a standard deviation of 5.23.

4.3.2 Performance Measures

During the reconstruction phase of the interaction, the participants’ screen taps were

monitored. For data analysis, the tapping sequence was separated into two sections:

the slower section and the faster section. We define these sections as follows:

4.3.2.1 Slower Section

The slower section is defined as the portion of the experiment in which four slow taps

are presented to participants. This is shown as the first four notes in Figure 12.

4.3.2.2 Faster Section

The faster section is defined as the portion of the experiment in which eight taps,

played at twice the frequency of the slow taps, is presented to participants. This is

shown as the last eight notes in Figure 12.

To evaluate performance, screen taps were analyzed and separated into four per-

formance measures: (1) slower portion note count, (2) faster portion note count, (3)

slower portion average period, and (4) faster portion average period.

4.3.2.3 Note Count

For this performance measure, the number of taps during the slower and faster sections

were recorded. To achieve perfect performance, a user must tap four times during

the slower section and eight times during the faster section. For this performance

measure, the note counts at time t=0 were initialized to 0. As seen in Equation 13,

the note count (which is represented as Nnote) is the summation of the occurrences

that the user inputs a tap (which is represented as note(t)).

Nnote =
∑

note(t) (8)
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4.3.2.4 Average Period

The average period, or the inverse of the frequency, that each participant tapped

was calculated for the slower and faster sections. A perfect performer would have

a period of 1250ms in the slower section (to match the period that the visual cues

were presented to the users during the slower section) and a period of 625ms in the

faster section (to match the period that the visual cues were presented to the users

during the faster section) . For this performance measure, the average period at

time t=0 was initialized to 0 for both the slower and faster sections. As seen in

Equation 14, the average period (which is represented as Tnote) was calculated by

dividing the difference between the time that the last note in the section was tapped

(which is represented as tlastnote) and the time that the first note in the section was

tapped (which is represented as tfirstnote) by the note count for the section (which is

represented by Nnote).

Tnote =
tlastnote − tfirstnote

Nnote

(9)

4.3.2.5 Learning Curves

For each participant and each performance metric, we calculate a learning curve that

best fits the data. There exist a variety of shapes of learning curves. However, in

this context of learning, the performance measures can be described as showing large

amounts of improvements early in learning. Then, the performance measures begins

to level off and approach a horizontal asymptote. This type of learning curve is best

fit by the power law learning curve [30, 35]. Thus, we calculate a power law learning

curve that fits to each of the performance metrics for each of the participants. The

exact formula used to calculate the best−first learning curve can be seen in Equation

15, where P is the estimated performance, a is the estimated performance of the 0th

trial (i.e. time = 0), Ntrial is the number of trials, and b is the log−log slope of the
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curve.

P = a× (Ntrial)
−b (10)

4.3.3 Results and Discussions

4.3.3.1 Learning Curve Calculations

For each participant, the error for each performance metric was graphed for each

trial. Error was computed by calculating the difference between actual performance

and perfect performance, as defined in the Performance Measures section. For each

performance metric, an exponential curve was fit to the data points. The best−fit

exponential curve represents the learning curve for that participant associated with

each performance metric. To find the best fit exponential curve, we used the power law

learning curve formula, as seen in Equation 15. The correlation coefficient between

the learning curve and the set of data points for each metric was also calculated. If

the correlation coefficient was similar enough to the data that it had a p−value <

0.1, the curve was considered to be a fair representation of the data. Otherwise, we

determined that, in that instance, learning did not occur.

4.3.3.2 Calculating Expertise

An expertise value was calculated for each performance metric for each participant,

using Equation 16 and the calculated learning curves. For the initial trial at time=0,

all participants were considered to have equal knowledge, corresponding to an initial

baseline performance level of 0. When the error between actual and perfect perfor-

mance converged to zero, the participants were considered to have mastered 100%

of the performance metric. We considered the participants to be experts at the per-

formance metric when the learning curve estimated that they would perform at 90%

of mastery of the performance metric. 90% was chosen since this associates to the

highest letter grade that is possible to achieve on the education grading scale [38]. As
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Table 6: Statistical Analysis for Each Performance Metric for Participant who used
the Virtual Environment

Performance Sound Sound Silent Silent p-value
Metric Mean STD Mean STD

Slow Note
Count 0.6156 0.2932 0.4655 0.2627 0.0126

Slow Average
Period 0.2910 0.1864 0.2283 0.1687 0.0243

Fast Note
Count 0.4009 0.2578 0.2936 0.1438 0.0187

Fast Average
Period 0.2953 0.1890 0.2012 0.1457 0.0055

seen in Equation 16, the number of trials to achieve this expert level was calculated

by taking the inverse of 1 +Nt, where Nt is the number of trials until an expert level

is achieved. Using this equation, the expertise of each participant was calculated by

taking the inverse of the number of trials needed to perform at an expert level.

Expertise =
1

1 +Nt

(11)

4.3.3.3 Virtual Environment

As shown in Table 6, the means and standard deviations for the expertise of each

participant were calculated for each performance metric. As seen in the sound mean

and silent mean columns, the average expertise was higher for the sound group as

compared to the silent group for all performance metric. Based on this quantity, the

sound group learned all performance metrics more quickly than the silent group. The

p−values, shown in the right most column, show a statistically significant difference

with p−values < 0.05 for all performance metrics.
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Figure 14: A participant’s data and learning curves.
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Table 7: Statistical Analysis for Each Performance Metric for Participants who used
the Physical Environment

Sound Sound Silent Silent
Performance Metric Mean STD Mean STD

Slow Note Count 0.4227 0.3080 0.3611 0.2989
Slow Average Period 0.2450 0.0661 0.1799 0.1360

Fast Note Count 0.2023 0.1717 0.1308 0.0928
Fast Average Period 0.4142 0.1548 0.2705 0.1489

4.3.3.4 Physical Environment

As shown in Table 7, the trends of having an average expertise for the sound group

as compared to the silent group continued in the physical environment for all perfor-

mance metric. However, these trends were not shown to be statistically significant

due to a small sample size of participants.

4.3.3.5 Calculating the Correlation between the Physical and Virtual Environ-
ments for Musical Learning Trends

To show that the learning experience created in the physical environment is corre-

lated with the learning experience that we created in the virtual environment, the

concordance correlation coefficient for the expertise datasets for both environments

was calculated using Lin’s concordance. By definition, Lin’s concordance assesses

the degree of equivalence between data collection methods, allowing the researcher

to compare a new method to a validated method. The equation used to calculate

the concordance coefficient can be seen in Equation 12, where ρc represents the con-

cordance correlation coefficient, ρ represents the correlation coefficient between the

datasets, µexo and σexo respectively represent the mean and standard deviation for the

dataset of participants who used the rehabilitation robotic exoskeleton to learn the

pattern, and µtouch and σtouch respectively represent the mean and standard deviation

for the dataset of participants who used the touch screen game to learn the pattern
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[28, 29, 34].

ρc =
2ρσexoσtouch

σ2
exo + σ2

touch + (µexo − µtouch)2
(12)

In addition to calculating the concordance correlation coefficients between the

datasets, the concordance was also calculated between datasets that were normalized

for user interface difficulty. When playing a touch screen game on a user’s personal

android device, the user is already familiar with the user interface of the game. The

users have ample experience touching buttons on their android devices and, thus, can

immediately focus on learning the task without needing to learn a new user interface.

However, when playing the game using the rehabilitation robotic exoskeleton control

interface, users had to learn the interface while they were learning the task. Thus,

we shifted the estimated number of trials before each participant was considered

an expert at the performance metric, Nt, by −1 in order to remove user interface

differences by allowing the exoskeleton users 1 trial to focus on learning the interface.

For all shifted datasets, we set the minimum number of trials that a user could learn

the task to 0, so a participant could not be shifted to requiring negative trials to learn

the task.

The concordance coefficients for the normalized and actual datasets for each per-

formance metric are shown in Table 8. By definition, a value of ρc ≥ 0.90 shows

correlation between methods used for data collection [34]. Before normalizing the

data, 3 of the 4 parameters for the silent group and no parameters for the sound

group showed correlation between user interfaces. After normalization, 3 of the 4

learning parameters for the sound group and 1 parameter for the silent group showed

correlation. These correlations suggest that the virtual environment was an adequate

simulation for evaluating motor learning that occurred with able−bodied participants

who were interacting with our rehabilitation game. However, these trends also sug-

gest that the sound group was more effected by the new user interface than the silent
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Table 8: Concordance Coefficients between the Virtual Environment Dataset and a
Normalized for Difficulty Exoskeleton Dataset

Performance Sound Silent Scaled Sound Scaled Silent
Metric ρc ρc ρc ρc

Slow Note
Count 0.78 0.92 0.90 0.88

Slow Average
Period 0.73 0.96 0.94 0.90

Fast Note
Count 0.64 0.56 0.90 0.75

Fast Average
Period 0.72 0.93 0.35 0.62

group and that not all learning parameters were effected equally by the difficulty of

the user interface. We hypothesize that this occurred because the users appeared

to master the exoskeleton user interface about half way through the reconstruction

phase of the first trial. Therefore, the parameters in the slow section were effected.

However, in the faster section, the average period performance metric was unaffected

by the users learning the exoskeleton interface while learning the task while the note

count performance metric was effected. This occurred because learning the exoskele-

ton interface caused users to take longer for the slower section and run out of time

during the faster section, preventing them from inputting enough notes.

4.3.4 Conclusions

Since participants learned performance measures significantly faster in the sound

group than the no sound group, we conclude that audio-visual cues help participants

learn tasks more quickly than visual cues alone in our virtual environment. Thus, we

have been able to observe this trend in both physical systems and virtual environ-

ments.
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4.3.4.1 Virtual Simulations of Rehabilitation Robotic Systems

In this experiment, we compared user performance of a task using a virtual environ-

ment to that of a physical environment using concordance coefficients. Our results

showed high correlation after shifting the physical environment to normalize for inter-

face difficulty. We conclude that our results were an adequate simulation for evaluat-

ing motor learning that occurred with able−bodied participants who were interacting

with our rehabilitation game.

4.3.4.2 Multisensory Stimulus for Teaching Timing Synchronicity

Timing synchronicity is of direct relevance to the domain of motor function rehabili-

tation, where timing can a key attribute of many tasks that are learned. For example,

the timing of leg movements is crucial for maintaining balance when walking and the

timing and the sequence of forces applied to the object are important when picking

up objects in order to maintain control of the object. In this experiment, we explored

methods for teaching timing synchronicity effectively. Although the literature shows

mixed reviews concerning the effectiveness of auditory cues on motor learning, our ex-

periment indicates that using auditory cues, in addition to visual cues, may enhance

the quality of timing with respect to a motor task. Since participants learned per-

formance measures significantly faster in the sound group than the no sound group,

we conclude that audio−visual cues help participants learn timing tasks more quickly

than visual cues alone. This suggests that multisensory visuo−auditory cues are ef-

fective in the case of our timing synchronicity tasks. The limitations of this approach

is that audio−visual cues may not be appropriate in all settings, which may explain

why the literature review reported that multisensory stimulus was not always the

most effective method for teaching motor learning tasks. While our results showed

user benefits from multisensory stimulus, visuo−auditory may not always be most

effective for teaching rehabilitation tasks. Thus, when considering which type of cues
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to use, one must consider the relevance of these cues to the skills being taught as

well as the performance metrics for measuring said skills. For example, in the case

of our experiment, we used auditory cues expedite the learning process of learning

timing associated with wrist movements. Since timing is a skill that has auditory rel-

evance, our results showed that auditory cues had a positive effect on learning. Thus,

in the case of teaching timing synchronicity, our study suggests that multisensory

visuo−auditory cues may be more effective than visual cues alone.
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CHAPTER V

ADJUSTING THE DIFFICULTY OF A MOTOR TASK BY

ADJUSTING THE DIFFICULTY OF MUSICAL

PARAMETERS OF THE TASK

The intended application of our research is to develop a rehabilitation gaming ex-

perience in which the difficulty of the task is adjustable, allowing for the user to be

most optimally challenged and thus learn the motor task in an optimal time line.

To achieve this goal, we focused on developing a model that defines the correlation

between task type and motor difficulty.

5.1 Music Theory and Rehabilitation

Many studies have been conducted on the effects of musical cues and sequences as

a means of teaching motor tasks. However, when teaching, it is important to keep

participants at the appropriate level of challenge so they learn most quickly. The

challenge point framework asserts that learning may be increased for difficult tasks

by providing the learner with a model of the task (i.e. an auditory or timing model)

during practice [23]. This framework has been validated in a variety of studies. In a

study by van Vugt and Tillmann, it was shown that a tap sequence could be learned

more quickly and accurately by allowing participants to practice with tapping beat

cues that corresponded to the times that a tap occurred in the sequence being learned,

as compared to practicing in silence or in the presence of randomly timed auditory

beats [43]. A study by Aluru et al. on stroke survivors with chronic hemiparesis

suggests that different types of auditory stimulations can be effective during the

different stages of recovery. During early stages of recovery, when a stroke survivor is
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suffering from spastic paresis, a metronome beat was shown to increase wrist extension

and muscle co-activation. During mid stages of recovery, when a stroke survivor is

suffering from spastic co-contraction, silence was shown to increase wrist extension

but reduce co-activation. During the late stages of recovery, when a stroke survivor

is suffering from minimal paresis, minimal gains were made regardless of the auditory

stimulus [2]. To discover which auditory cues were most effective for assisting motor

skill learning, Vinken et al. used kinematic-acoustical mapping to associate seven

different auditory cue schemes to six everyday upper limb actions. In this study, the

different auditory schemes did not affect the learning of the task, suggesting that

any type of music can be used to teach any type of motor skill [44]. In another

study by Butler and James, participants were asked to create sounds with novel

musical objects. Then, they were asked to identify each object by the sound it

produced. This data showed that the functional connectivity between visual- and

motor-related processing regions was enhanced during the presentation of actively

learned audiovisual associations [5]. These studies suggest that musical cues may

help users learning more quickly and/or retain motor skills [43, 2, 44, 5].

5.2 Methodology

5.2.1 Musical Difficulty Definitions

In order to adjust task difficulty, first we must understand the parameters which

need to be adjusted. Sebastien et. al. studied music theory and musical difficulty

classifications to develop seven criteria that contribute to song classifications. Once

this framework was completed, Sebastien et. al. validated these criteria and used

machine learning techniques to automate the classification of instrumental sheet music

[40]. The seven criteria that they deemed crucial for determining the difficulty of sheet

music were: (1) playing speed, (2) fingering, (3) hand displacement, (4) polyphony,

(5) harmony, (6) irregular rhythm, and (7) length. The definitions of these musical
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difficulty criteria are described in the following subsections.

5.2.1.1 Playing Speed

The playing speed is determined by how fast the music notes must be played. It

correlates to the required velocity that the fingers must move to correctly play the

piece of music. Musical parameters such as the tempo and the shortest significant

note value determine the quickness of the playing speed. The tempo is a numerical

value that is presented on a piece of sheet music that tells the musician the number

of beats per minute a piece of music is intended to be played at. (For a more detailed

description of the tempo, refer to Chapter 6 of this thesis.) The shortest significant

note value refers to the occurrence of large groups of certain types of notes. For

example, there are note types such as whole notes (which occupy the duration of

4 beats), half notes (which occupy the duration of 2 beats), quarter notes (which

occupy the duration of 1 beat), eighth notes (which occupy the duration of 1/2 of

a beat), assuming music in a 4/4 signature. So, higher tempos correlate to higher

playing speed as well as large occurrences of shorter notes (i.e. eighth notes).

The musical difficulty parameter is relevant to sheet music for all instruments and

is also relevant in context of our rehabilitation game.

5.2.1.2 Fingering

Fingering refers to the sequence of finger and hand positions required to correctly

execute the sheet music. Some notes are played with the thumb, index finger, middle

finger, etc. in isolation and some require multiple fingers to be used simultaneously.

The difficulty of fingerings is largely dependent on the type of instrument that is being

played. Thus, Sebastien et. al., C. Lin, and A. Kasimi et. al. used cost functions to

determine fingering difficulties [40, 27, 25].

Fingering is a parameter that is relevant to classifying the difficulty of sheet mu-

sic for all instruments. However, the classifications of difficulty are unique to each
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instrument. This parameter is not relevant to our rehabilitation game, since we use

wrist position instead of fingers to activate notes.

5.2.1.3 Hand Displacement

The hand displacement criteria is the amount of distance that you need to move

your hands or fingers between notes in order to correctly hit all of the notes. The

difficulty associated to hand displacement is dependent on the amount of time that

the musician has to move between the notes. The larger the distance a musician must

move, the greater the difficulty. Also, the less time the musician has to complete such

a movement, the greater the difficulty.

Hand displacement is a criteria that is relevant for all instruments. However,

the criteria used for assessing this parameter is unique for each instrument. Hand

displacement is also relevant for our rehabilitation game.

5.2.1.4 Polyphony

Polyphony, by definition, occurs when multiple notes are played at the same time.

The polyphonic difficulty is determined by the number of notes that are being playing

during a single instance. More notes being played simultaneously associates to a

higher polyphonic difficulty and fewer notes associates to a lower polyphonic difficulty.

Polyphony is only a relevant criteria for musical instruments that allow for multiple

notes to be played at the same time, such as the piano and string instruments like

the violin and guitar. It is not relevant for our rehabilitation game, since a user’s arm

can only be in a single position at a time.

5.2.1.5 Harmony

Harmony is defined as the ratio notes that have a tone that differs from the piece’s

main tonality. Notes with a different tone are defined to be notes that are altered

by an indication of a sharp symbol (]) or a flat symbol ([). Sheet music that has a

51



higher ratio of notes with different tones is defined to be more difficulty than sheet

music that has a lower ratio of notes with different tones.

The criteria harmony is relevant to all musical instruments. However, it is not

relevant to our rehabilitation game, because we have a simplified selection of musical

notes that are available to the user to play. Thus, our game does not include options

for sharp notes and flat notes. Our game contains a total of 9 note options, which is

a much smaller range and therefore simpler than musical instruments. For example,

a piano is capable of playing 88 different musical notes - 52 in the most common

tonality and 36 sharps/flats.

5.2.1.6 Irregular Rhythm

Irregular rhythm is defined as rhythms that differ from the rhythm that is denoted by

the time signature. Time signatures are numerical values in sheet music that define

what type of note is considered a beat. A beat is defined to be the basic unit of time

within the measure (more details about these concepts can be found in chapter 6 of

this thesis). Notes which are the same type as the note that is defined to be a beat

by the time signature are considered to be regular. All others are considered to be

irregular. The more different these notes are from the beat, the more difficult they

are considered to be. Also, notes that have odd number relations to the beat unit of

time are considered to be more difficult than those that have an even number relation

to the beat unit of time. For example, a note that is 1/2 of a beat is considered easier

to a note that is 1/3 of a beat.

Irregular rhythms are relevant criteria in determining the difficulty of sheet music

for all musical instruments, as well as for our rehabilitation game.

5.2.1.7 Length

The difficulty criteria of length is the duration of time that it takes to completely

execute a piece of sheet music. Longer sheet music is considered to be more difficult
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than shorter sheet music. This parameter is relevant for sheet music for all musical

instruments and is also relevant for our rehabilitation game.

5.2.2 Calculating Musical Difficulty for Rehabilitation Game

We created a version of the RoboRockNRoll game that allowed for us to adjust the

difficulty of tapping sequences using the difficulty definitions set forth by musical

theory. We adjusted the difficulties of speed, length, and irregular rhythm in order

to adjust the song difficulties. While the trends of the effects of adjusting these

difficulty parameters on musical difficulty are defined, a formula that expresses such

effects is not defined within music theory. Also, many of these parameters have

unique properties that are dependent upon what instrument is being played. The

relationships between these variables and difficulty has been discovered for many

popular musical instruments by Sebastien et. al. using machine learning techniques.

However, since our rehabilitation game, RoboRockNRoll, acts as a unique, simplified

instrument, a model for the trade-offs between criteria for this situation is not yet

defined. In this section, we aimed to conduct user studies of our rehabilitation game

to determine the mathematical relationship between three musical parameters (speed,

length, and rhythm irregularity) and the difficulty of our game. In these experiments,

our focus was on developing a model that defines the correlation between task type

and motor difficulty [15].

5.3 Experimental Setup

We conducted a virtual experiment on Amazon’s Mechanical Turk [15]. In this study,

participants downloaded the virtual game shown in Figure 11, played a short gaming

app, and completed a post−game survey. 208 participants completed this experi-

ment. 47 participants were female, 144 were male, and 17 preferred not to answer

this question. The age of participants ranged from 18 to 74. The average age of

participants was 29.93 and the standard deviation was 8.35.
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Table 9: Difficulty Definitions

Musical
Parameter Difficulty

Easy Medium Hard
Speed Quarter Eighth Sixteenth

Notes Notes Notes
Length 2 stanzas 3 stanzas 4 stanzas
Rhythm 1 1/2 2/3

Participants were randomly assigned to one of seven test groups, each of which

represents a different task difficulty. In order to validate the effects of adjusting musi-

cal parameters on the overall task difficulty, three musical parameters were adjusted

in this experiment. The three parameters selected were speed, length, and rhythm.

Speed is defined as how quickly the music notes appear. Length is defined as the

number of measures required to complete the tapping pattern. Rhythm is defined as

the ratio of the speed of the music notes in the first half of the song as compared

to the second half of the song. Table 9 shows the definitions of each difficulty level

tests for each of the difficulty parameters. In the control group, speed, length, and

rhythm were all easy difficulty and was represented by Group #1, as seen in Table

10. For each of the six experimental groups, one of the musical parameters was ad-

justed while keeping the other two at an easy difficulty. As seen in Table 10, the

test groups were as follows: (2) easy speed, medium length, and easy rhythm, (3)

easy speed, hard length, and easy rhythm, (4) medium speed, easy length, and easy

rhythm, (5) hard speed, easy length, and easy rhythm, (6) easy speed, easy length,

and medium rhythm, and (7) easy speed, easy length, and hard rhythm. The sheet

music corresponding to each test group can be seen in Figure 15.
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(a) Group #1 (Control)

(b) Group #2

(c) Group #3

(d) Group #4

(e) Group #5

(f) Group #6

(g) Group #7

Figure 15: The sheet music that represents the tapping sequence played by partici-
pants in groups #1-#7.
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Table 10: Group Definitions

Group# Speed Length Rhythm
1 Easy Easy Easy
2 Easy Medium Easy
3 Easy Hard Easy
4 Medium Easy Easy
5 Hard Easy Easy
6 Easy Easy Medium
7 Easy Easy Hard

5.4 Performance Measures

During the reconstruction phase of the interaction, the participants’ screen taps were

monitored. Since groups 6 and 7 had a switch in the types of notes presented, the

tapping sequence for these groups was separated into two sections: the slower section

and the faster section. We define these sections as follows:

5.4.0.1 Slower Section

The slower section is defined as the first portion of the experiment in which four slow

taps were presented to participants. This is shown as the first four notes in Figures

15.f and 15.g.

5.4.0.2 Faster Section

The faster section is defined as the second portion of the experiment in which six

or eight taps, played at a faster frequency that the first portion, was presented to

participants. This is shown as the last six or eight notes in Figures 15.g and 15.f,

respectively.

To evaluate performance, screen taps were analyzed and separated into two per-

formance measures: (1) note count and (2) average period.
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5.4.1 Note Count

For this performance measure, the number of taps was recorded. To achieve perfect

performance, a user must tap the patterns depicted in the sheet music shown in Figure

15. For this performance measure, the note counts at time t=0 were initialized to

0. As seen in Equation 13, the note count (which is represented as Nnote) is the

summation of the occurrences that the user inputs a tap (which is represented as

note(t)). In the case of groups 6 and 7, the note count was calculated separately for

the first and second halves of the tapping sequence.

Nnote =
∑

note(t) (13)

5.4.2 Average Period

The average period, or the inverse of the frequency, that each participant tapped was

calculated for each participant. A perfect performer would have a period of 1250ms

for quarter notes, 625ms for eighth notes, 312.5ms for sixteenth notes, and 833.33ms

for quarter triplets. For this performance measure, the average period at time t=0

was initialized to 0. As seen in Equation 14, the average period (which is represented

as Tnote) was calculated by dividing the difference between the time that the last note

in the section was tapped (which is represented as tlastnote) and the time that the first

note in the section was tapped (which is represented as tfirstnote) by the note count

for the section (which is represented by Nnote). In the case of groups 6 and 7, the

average period was calculated separately for the first and second halves of the tapping

sequence.

Tnote =
tlastnote − tfirstnote

Nnote

(14)
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5.4.3 Learning Curves

For each participant and each performance metric, we calculate a learning curve that

best fits the data. There exist a variety of shapes of learning curves. However, in

this context of learning, the performance measures can be described as showing large

amounts of improvements early in learning. Then, the performance measures begin

to level off and approach a horizontal asymptote. This type of learning curve is best

fit by the power law learning curve [30, 35]. Thus, we calculate a power law learning

curve that fits to each of the performance metrics for each of the participants. The

exact formula used to calculate the best−first learning curve can be seen in Equation

15, where P is the estimated performance, a is the estimated performance of the 0th

trial (i.e. time = 0), Ntrial is the number of trials, and b is the log−log slope of the

curve.

P = a× (Ntrial)
−b (15)

5.5 Data Analysis

5.5.1 Learning Curve Calculations

For each participant, the error for each performance metric was graphed for each

trial. Error was computed by calculating the difference between actual performance

and perfect performance, as defined in the Performance Measures section. For each

performance metric, an exponential curve was fit to the data points. The best−fit

exponential curve represents the learning curve for that participant associated with

each performance metric. To find the best fit exponential curve, we used the power law

learning curve formula, as seen in Equation 15. The correlation coefficient between

the learning curve and the set of data points for each metric was also calculated. If

the correlation coefficient was similar enough to the data that it had a p−value <

0.1, the curve was considered to be a fair representation of the data. Otherwise, we

determined that, in that instance, learning did not occur.
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5.5.2 Calculating Expertise

An expertise value was calculated for each performance metric for each participant,

using Equation 16 and the calculated learning curves. For the initial trial at time=0,

all participants were considered to have equal knowledge, corresponding to an initial

baseline performance level of 0. When the error between actual and perfect perfor-

mance converged to zero, the participants were considered to have mastered 100%

of the performance metric. We considered the participants to be experts at the per-

formance metric when the learning curve estimated that they would perform at 90%

of mastery of the performance metric. 90% was chosen since this associates to the

highest letter grade that is possible to achieve on the education grading scale [38]. As

seen in Equation 16, the number of trials to achieve this expert level was calculated

by taking the inverse of 1 +Nt, where Nt is the number of trials until an expert level

is achieved. Using this equation, the expertise of each participant was calculated by

taking the inverse of the number of trials needed to perform at an expert level.

Expertise =
1

1 +Nt

(16)

5.6 Results

As shown in Table 11, the means and standard deviations for the expertise of each

participant were calculated for each performance metric. Although the groups are not

large enough to have statistically significant groups, trends emerge. In groups 1-3, we

adjusted the length of the tapping pattern in an attempt to make the tapping task

more difficult. Group 1 represents the easiest length, group 2 the medium length,

and group 3 the hard length. However, in the context of our simple experiment, the

length changes did not appear to have an effect on the users’ ability to learn the task.

In groups 1, 4, and 5, we adjusted the speed of the notes in an attempt to change

the difficulty of the tapping sequence. Groups 1, 4, and 5 represent easy, medium,
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Figure 16: A participant’s data and learning curves.

and hard speeds respectively. When looking at the learning trends of participants

in these groups, as shown in Table 11, it is noticed that participants learn the note

count performance measure more quickly when the task is easier and more slowly

when the task is harder. However, it is noticed that the opposite trend is true of

the average period performance measure. The easier the task is, the more slowly

participants learn the average period, and the more difficult the task is, the more

quickly participants learn the average period.

In groups 1, 6, and 7, we kept the first half of the tapping sequence the same

but shifted the rhythm of the second half of the song. Groups 1, 6, and 7 represent

easy, medium, and hard rhythm shifts, respectively. When looking at the learning

trends shown in Table 11, we notice that the same trends are seen when adjusting

the difficulty of the rhythm as were seen when adjusting the difficulty of the speed.

In order to show statistical significance to these trends, super-classes of tapping

sequences that presented the users with easy, medium, and hard difficulty were cre-

ated. The easy super-class contains groups 1, 2, and 3, and the slower portion of
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Table 11: Means, Standard Deviations, and Number of Included Participants for
Each Performance Metric for Each Test Group

Group # Slow Note Count Slow Average Period
Mean Std Dev # Participants Mean Std Dev # Participants

1 0.3945 0.2882 15 0.2847 0.2056 13
2 0.3331 0.2055 23 0.2810 0.1589 21
3 0.4477 0.2461 22 0.2968 0.1890 20
4 0.2397 0.2363 29 0.3174 0.1698 24
5 0.1386 0.1386 20 0.3754 0.1726 18
6 0.4576 0.4576 24 0.3222 0.1994 25
7 0.3259 0.3259 25 0.2265 0.1683 24

Group # Fast Note Count Fast Average Period
Mean Std Dev # Participants Mean Std Dev # Participants

6 0.1779 0.1344 24 0.3869 0.2053 24
7 0.1011 0.0675 22 0.4197 0.1527 23

groups 6 and 7. Although we attempted to adjust the difficulty in groups 2 and 3,

they were considered easy since the users did not appear to be effected by the adjust-

ments made to the length of the tapping sequence. The medium super-class contains

groups 4 and 6 and the hard super-class contains the faster portion of groups 5 and

7. Table 12 shows the means, standard deviations, and number of data points for

each of these super-classes. A t-test was performed to compare the medium and hard

super-classes to the easy super-class and the resulting p-values can also be found in

table 12. The trends seen in the data from the individual groups are consistent with

the trends seen in the data in this super-classes. In addition, these super-class trends

are all statistically significant with p-values < 0.05.

5.7 Discussion

In our experiment, expertise values were calculated that correspond to the speed at

which the participants were able to learn the task. This expertise value was calculated

for two performance metrics: (1) note count - how quickly the participant learned how

many notes were in the sequence and (2) average period - how quickly the participant
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Table 12: Statistical Analysis for Each Performance Metric With Participants Com-
bined into Easy, Medium, and Hard Super-Classes

Note Count
Group Mean Std Dev # Points p-value

Easy Super-Class 0.3904 0.2706 109 —–
Medium Super-Class 0.2117 0.1968 53 0.0001

Hard Super-Class 0.1189 0.1292 42 0.0001

Average Period
Group Mean Std Dev # Points p-value

Easy Super-Class 0.2818 0.2181 103 —–
Medium Super-Class 0.3521 0.1292 48 0.0403

Hard Super-Class 0.4002 0.1618 41 0.002

learned the correct period to tap the sequence. When the difficulty of the tapping

sequence was adjusted, participants learned the note count performance metric more

quickly for easier sequences and more slowly for harder sequences. However, the

opposite was true of the average period performance metric. Participants learned the

average period performance metric more quickly for harder tasks and more slowly for

easier tasks.

The difference in the learning trends could be explained by these performance

metrics measuring different aspects of learning. The average period metric measures

motor learning, since tapping at a specific frequency is a motor function, while the

note count performance metric measures cognitive learning, since counting the number

of taps is a cognitive function. Our experiment suggests that in context of teaching

a simple tapping sequence, participants are multitasking cognitive and motor aspects

of the task. The simpler the task, the quicker participants learn cognitive aspects of

the task and the more difficult the task, the quicker participants learn motor aspects

of the task. When multitasking different types of learning, a performance trade-off is

seen. However, the increased neural activation and cortical networking in the motor-

planning region of the brain when participants are performing more difficult tasks as
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compared to easier tasks and the increased cognitive demands in regionally specific

activation [39] may have caused this increased performance in the average period

performance metric for the more difficult tasks. Since the main focus of this is the

motor task, participants may be prioritizing the motor task over the cognitive task,

allowing them to reap the benefits of this increased brain activity for the aspect of

the task that the participant is focusing on.

5.8 Conclusions

This experiment discusses an approach for teaching multitasking aspects of a tapping

task. The results from this study suggest that in the context of teaching a simple tap-

ping sequence to healthy subjects, participants are multitasking cognitive and motor

aspects of the task. The simpler the task, the quicker participants learn cognitive

aspects of the task and the more difficult the task, the quicker participants learn

motor aspects of the task. While this experiment was performed using able-bodied

participants, the benefits of multitasking on learning specific aspects of a task may

be able to be transferred to a stroke survivor population in context of a therapeutic

setting. Therefore, our study suggests that if a therapist were wanting to emphasize

cognitive aspects of a task and have their client show greater improvements with the

cognitive portions of the task, they should encourage their client to practice simpler

tasks. However, if they would like to see greater benefits with the motor portions of

the task, they should encourage their clients to practice more difficult tasks. If these

benefits could be transferred to therapy, an expedited recovery could be realized by

stroke survivors, allowing them to regain motor functions, and therefore daily living

activities, more quickly.
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CHAPTER VI

TRANSLATING SPATIAL DATA TO TEMPORAL DATA

A goal of this research is to classify the difficulty of a task. Adjusting task difficulty

via adjusting musical theory difficulty criteria did not produce consistent user perfor-

mance, as seen in chapter 5 of this thesis. Thus, in this chapter, we are exploring a

different approach for classifying task difficulty. Having a knowledge of which move-

ment patterns associate to what difficulty level will allow us to adjust our game to be

more and less difficult as needed. However, we cannot make such adjustments with-

out correctly classifying the difficulty levels of a variety of patterns. In our context,

we would like to classify the difficulty of movement tasks within the RoboRockNRoll

rehabilitation game, shown in Figure 3.

Classification can be easily achieved by machine learning algorithms. However,

such algorithms require large datasets, which are difficult and time consuming for

researchers to collect themselves with user data of our system. Thus, we have pulled

user data from a similar, popular, commercially available game called Guitar Hero.

Guitar Hero can be played on PlayStation 2, PlayStation 3, Xbox 360, Wii, Microsoft

Windows, and Mac OS X platforms [1]. An example of guitar hero can be seen in

Figure 17 and the controller used to play the game can be seen in Figure 18. When

comparing the Guitar Hero game with our RoboRockNRoll rehabilitation game, many

similarities exist. Both games involve notes traversing the screen and approaching

specific area. In both games, the notes must be selected at the correct time in order

to succeed at gaining the points associated with the music notes. However, there

are a few differences. For example, in the Guitar Hero game, music notes move

vertically towards a horizontal bar, and in the RoboRockNRoll game, music notes
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Figure 17: Guitar Hero 3 [33].

move horizontally towards a vertical bar. The note shapes are also slightly different.

However, the most notable differences are in the controller. In Guitar Hero, the user

presses fret board buttons (shown in Figure 18) to select the correct note color and

press the strum button (shown in Figure 18) at the correct time. In RoboRockNRoll,

the passive wrist rehabilitation device shown in Figure 2 is used to control the game.

The users move their wrists up and down, reaching the desired location at the correct

time to collide a guitar pick with the musical note. Also, in our rehabilitation game,

there are 9 horizontal positions that notes can occur at, but only one can be presented

at a time. In the Guitar Hero game, there are only 5 vertical positions that note can

occur at, but multiples can be presented to the users at the same time.

In order to classify the difficulty of patterns from Guitar Hero and translate these

difficulty classifications to our rehabilitation game, we first need to obtain the game

patterns within the Guitar Hero game. A representation of these patterns is available

online in the form of fan created sheet music posted to a wiki fan page. Fans of

the Guitar Hero video game can create sheet music for each level of Guitar Hero,
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Figure 18: Guitar Hero guitar game controller [45].

share them on this website, and validate existing sheet music to promote accuracy.

We downloaded these sheet music files from the website and used computer vision

techniques to translate the sheet music into a temporal representation of each button

press. This chapter describes the process that we used to translate the images to a

temporal representation of the pattern. Once we have created these patterns, we will

be able to use machine learning techniques to classify pattern difficulty from features

within the patterns and, thus, adapt our pattern difficulty within our rehabilitation

game. Figure 19 shows an example of the Guitar hHro sheet music. Music signatures,

tempo, measure bars, and notes must be detected and analyzed in order to translate

an image of sheet music, like the one shown in Figure 19.

6.1 Encoding Sheet Music

In order to analyze the properties of the musical patterns presented to users in Guitar

Hero, we must first process the data and convert it to a useable format. We are

interested in reading the sheet music images of each song, as a musician would do

as they play their instrument. The key pieces of information that we need to read

in order to understand the meaning of each pattern are (1) measure bars, (2) music
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Figure 19: Sheet music representation of the expert difficulty level of the “Ace of
Spades” song [24].
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Table 13: Musical Term Definitions

Number Musical Term Definition
1 Measure Bar A segment of time corresponding to a specific number of

beats.

2 Note A pitch and duration of sound.

3 Signature A notation to specify how many beats are contained
within a single measure and which note value is
equivalent to a single beat.

4 Tempo The speed at which a section of music is played.

5 Beat The basic unit of time within a measure.

notes, (3) signatures, and (4) tempo. These key terms are defined in Table 13. In this

section, we will describe how we detect and process each of these pieces of information.

6.1.1 Detecting Measure Bars

When music is written, it is partitioned into smaller groups so that it is more man-

ageable for the music reader to follow and interpret, in a similar fashion to the way

words are partitioned into sentences in writing to help the reader interpret the mean-

ing of the ideas. These measures are indicated by the darkest vertical lines as well

as the small red numbers above the line of music near the darkest vertical lines. In

the Guitar Hero sheet music, there are also many grey lines that indicate the sections

of different beats. These sub-measure lines are somewhat common in expressions of

guitar chords, as they emulate markings of a guitar’s fret board. However, they are

uncommon in normal sheet music. So, for this computer vision image processing, we

ignore them to allow our code to be more useful across the majority of sheet music.

The measure bars indicate a separation between two measures. This means that

the area between two measure bars constitutes one measure and that the number of

68



beats indicated by the signature should exist between them with an equal spacing

between each of these beats. In the case of notes that are faster than the beat, a

combination of notes that is equivalent to a single beat should be spaced accordingly

such that the group of faster notes takes up the same amount of space as a single

beat. Measures can be different sizes, depending on how complex the pattern of notes

are in that measure. Those that have no notes or only notes that make up a single

beat will be smaller, since there are fewer notes to print in that measure. Measures

that have many fast notes that are faster than a beat will be larger, as there is more

space needed to fit all of the notes. However, within the measure, the spacing will

be consistent, meaning that the distance between notes indicates how fast the notes

should be played. Many examples of different measure sizes can be seen in Figure

19. For example, on the first line, measures 2-5 contain no notes and have a smaller

distance between them than measures 7 and 8, which contain a complex pattern

of notes. Despite the differences in physical lengths, we know that each measure

indicates the same amount of time as every other measure, given the same tempo and

signature.

Another case that we have to note for signature bars is the case when a signature

is included in the measure. This can be seen in measure 1 in the top left hand

corner of Figure 19. In this case, the measure area starts at the light grey vertical

line directly following the signature value (which has a corresponding red measure

number) instead of at the darkest black line at the beginning of the line. This allows

for room to write the signature without interfering with the placement of musical

notes that follow. However, as we process these images, this case must be accounted

for.

A pseudocode representation of the code that was written to detect measure bars

can be seen in Figure 20. This process involves 2 steps: (1) detecting the lines of the

measure and (2) detecting the numbers of the measure.
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Figure 20: Flow chart showing the processed used to detection of measure bars in
the Guitar Hero sheet music.
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First the lines of the measure bars are detected. In this process, we create a binary

black image by isolating the black pixels from the rest of the image. However, this

image contains more than just measure bars. It also contains the other black objects,

which include tempos, signature numbers, the outlines of the notes, and the small

numbers beneath each measure bar. Next, we erode the image, using Equation 17, in

order to thicken all of these components, making the measure bar lines easier to detect

and read. The output of Equation 17 gives us the set of pixel locations z, where the

structuring element translated to location z overlaps only with the foreground pixels

of A, thus resulting in a set of pixels that outlines each of our blobs. Next, we smooth

the image using a Gaussian smoothing filter, shown in Equation 18, in order to fill

in any holes in the blobs that were caused by the existence of colored music notes

overlapping the measure bar line whose existence creates a gap in the black vertical

line. Next, we detect the blobs by looking for contiguous regions in the image. These

blobs are then filtered to isolate blobs with sizes and proportions similar to those of

measure bars.

A	B = {z|Bz ⊆ A} (17)

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (18)

Second, we detect the measure numbers. In this process, as shown in the pseu-

docode in Figure 20, we first create an image of all of the red pixels by simply isolating

all of the red pixels and creating a new image from them. Next, we detect all of the

blobs in the red image. These blobs are then merged to allow for nearby blobs (for

example, the 2 numbers contained within a 2-digit number) to become a single blob.

Next, optical character recognition is utilized to identify whether or not a blob is a

number. All blobs that contain a number are considered to be measure numbers and

all others are thrown out.
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Figure 21: Detection of measures in the Guitar Hero sheet music. The top shows the
input image and bottom images show the output images, with the left bottom image
showing the output for detecting measure lines and the right bottom image showing
the output for detecting measure numbers. Within the output images, the magenta
squares surrounding the measure bars (on the right) and the measure numbers (on
the left) show the measure bar and measure number blobs that have been correctly
detected. These items are then paired to identify the existence of a measure bar.

Finally, we pair the detected measure lines with measure numbers. An example

of the input and output images from this process can be seen in Figure 21. The top

image in Figure 21 shows an input section of sheet music. The 2 lower images show the

outputs of our 2 branches of psuedocode. In the right branch, the measure bars are

detected. In the left branch, measure numbers are found. When a measure number

occurs at the top of a detected measure bar, they are paired and determined to be

a correctly identified measure bar. Any instance where a measure bar and number

do not occur near each other are not considered to be measures. Such an instance

could occur when a measure bar is falsely detected when 3 or 4 musical note outlines

occurred at the same instance. This blob of circle outlines can be falsely identified as

a measure bar. However, there is never a measure number above such an occurrence

and, thus, it is correctly identified as being something that is not a measure bar.

6.1.2 Detecting Notes

Another piece of information that we need to extract from the sheet music in order to

allow us to understand the musical pattern is the music notes themselves. In normal

sheet music, music notes are placed on the horizontal lines. The lengths of time that
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the notes are played are indicated by their shape and the tone that they represent

is indicated by their vertical position. However, Guitar Hero sheet music is slightly

different from the traditional representation from music. In the Guitar Hero sheet

music, like the sheet music shown in Figure 19, these notes are either a circle or star

shape. However, the shape does not represent the duration of time that the note is

played, but represents a game state that provides extra points instead. Thus, shape is

an irrelevant piece of information for translating the image into temporal information.

Each button pressed is the same duration of time, which is a single instance of pressing

the button. In the case that a button must be held for longer than an instance, there

is a line tailing the initial button press indicator. An example of this can be seen

in the final line of sheet music in Figure 19. In this line, a green line that spans 2

measures can be observed. This indicates that the user would press the button at the

beginning of the first measure of that line and hold that button down for the duration

of time that corresponds to 2 measures. Also unlike traditional music, Guitar Hero

sheet music has colored music note indicators that match the color that coordinates

with the color of the corresponding button on the game controller (as shown in Figure

18).

The musical note features are the simplest features to extract, because of their

vibrant colors that are only seen within the note features in these images. The

pseudocode for detecting musical notes can be seen in Figure 22. First, we create a

series of images that isolate the colors of the notes. One image is created for green,

one for red, one for yellow, one for blue, and one for orange. These images are then

merged into a binary image that contains only these colors. Next, a blob detection

algorithm is run to detect all of the blobs in the image. These blobs are then filtered to

only include blobs that are similar shape and proportion to a musical note. Figure 23

shows an example of an input section of the sheet music (the top image in the figure)

and an output image where all of the music notes are highlighted with a magenta
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Figure 22: Flow chart showing the processed used to detection of notes in the Guitar
Hero sheet music.

square (the bottom image in the figure).

6.1.3 Detecting Signatures

Time signatures are a set of two numbers, one on top of the other, that are placed

at the beginning of a measure. The bottom number indicates the type of note that

constitutes a single beat in the following measures. Examples of types of notes that

could represent a beat are quarter notes (which is represented by a 4) or eighth notes

(which is represented by an 8). In Guitar Hero notation, a quarter note would appear

on the four darker grey lines within a measure with no notes in between. The two red

notes in measure 68 of Figure 19 are examples of quarter notes. All of the notes in

measure 104 in Figure 19 are examples of eighth notes, which occur when a musical

note appears on every grey line in the measure.

An example of a time signature can be seen in the first measure in the upper left

hand corner of Figure 19. In this example, the signature is 4 over 4. The bottom

number is a 4, indicating that a quarter note constitutes a beat, while the top number

indicates how many beats will be in each of the following measures. Since the top

number in this example is a 4, there will be 4 beats (or quarter notes) in each measure.

Pseudocode summarizing the process used to detect time signatures can be found
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Figure 23: Detection of notes in the Guitar Hero sheet music. The top shows the
input image and bottom shows the output image. Within the output image, the
magenta squares surrounding each note show the note blobs that have been correctly
detected as for our software.

in Figure 24. Since the signatures values are drawn in black lettering in all of our

images, we first implement a simple color filter on the image to extract all black

pixels from the image. The resulting image contains all objects drawn in black, which

includes the measure bars, signature numbers, the outlines of the notes, and the

small numbers beneath each measure bar. So, we continue to process the image to

isolate the signature values from all of these other types of musical objects. Next,

we erode the image, using Equation 17, in order to thicken all of these components,

making the signature numbers that are of interest easier to detect and read. The

output of Equation 17 gives us the set of pixel locations z, where the structuring

element translated to location z overlaps only with the foreground pixels of A, thus

resulting in a set of pixels that outlines each of our blobs. Next, we smooth the

image using a Gaussian smoothing filter, shown in Equation 18, in order to fill in any

holes in the blobs that were created by the blob containing pixels whose values were

slightly outside of the range of our color filter. Next, we detect the blobs by looking

for contiguous regions in the image. These blobs are then filtered to isolate blobs

with sizes and proportions similar to those of signature values. Finally, the blobs are
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Figure 24: Flow chart showing the processed used to detection of signatures in the
Guitar Hero sheet music.

divided into half and optical character recognition is used on the top and bottom

halves of the image to detect the numerical value of the blob. Examples of the input

and output images for signature detection can be seen in Figure 27.

6.1.4 Detecting Tempo

The final piece of information that we need to gather in order to understand the

temporal pattern of the music is the tempo. Tempo corresponds to the number of

beats that are heard per minute. The tempo is indicated by the image of a note

which is followed by an equals sign which is followed by a number. The meaning

of the word “beat” is determined from the signature, as discussed in the “Detecting

Signatures” section in this chapter. The tempo indicator is placed above the measure

that it pertains to and its value continues to dictate the speed of the music until a

new tempo is displayed. In Figure 19, there are several examples of tempo changes.

Two examples can be seen above the first line of music. The first example shows a

value of 147, meaning that the music should be played at a speed of 147 quarter note

beats per minute, or that a quarter note would last approximately 0.408 seconds. The

music is played at this speed for 6 measures. At the 7th measure, a new signature
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Figure 25: Detection of signatures in the Guitar Hero sheet music. The images in
the first column are labeled such that ’a’ shows the input image and ’b’ shows the
output image. Within ’b,’ the magenta squares labeled ’c’ show the blobs detected
as possible signature values with their detected numerical value labels shown in ’d.’

value of 141 is displayed. This means that starting at the 7th measure, the music is

played at 141 beats per minute, meaning that the music is slowed slightly such that

each quarter note now lasts approximately 0.426 seconds. This new speed continues

until another tempo is displayed.

Figure 26 depicts a flowchart of the pseudocode that summarizes the software

that was created to detect these musical tempos. In this process, we first created an

image that contained only the black and dark grey pixels from the original image,

since the tempo values are always black, but some of the pixels in the letters can also

be captured in this image due to their shade of grey. The resulting image contains

several black and dark grey objects including measure bars, some bars that divide

the measures, signature numbers, the outlines of the notes, and the small numbers

beneath each measure bar. Thus, more processing must be done on this image to

isolate the tempo values. First, a blob detection found all regions with contiguous

regions in the image. These blobs were then merged with nearby neighbor blobs in
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Figure 26: Flow chart showing the processed used to detection of tempos in the
Guitar Hero sheet music.

order to allow numbers and symbols that were next to one another to be grouped.

Next, optical character recognition was used on the blob groups. Groups that began

with a music note symbol and an equals sign were determined to be tempos and all

other blob groups were discarded. Finally, optical character recognition was used to

detect the numerical values that followed the musical note and equals sign, and the

resulting number is determined to be the tempo value. Figure 26 shows examples of

detected tempos.

6.2 Translating Spatial Information to Temporal Informa-
tion

Once all of the timing signatures, tempos, and musical notes are detected, using the

process described in section 6.1 of this thesis, their positions and values are recorded.

From this information, we can calculate the time value that each pixel in the image

represents. This section of the thesis will describe the process of calculating these

time values.

The timing signatures are used to detect how many notes should be occurring

within each measure. The tempo values are used to detect the speed of each note.
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Figure 27: Detection of tempos in the Guitar Hero sheet music. The images in the
first column are labeled such that ’a’ shows the input image and ’b’ shows the output
image. Within ’b,’ the magenta squares labeled ’c’ show the blobs detected as possible
tempo values with their detected numerical tempo value labels shown in ’d.’

From these two values, we can determine how to divide the space within a single

measure. Two formulas are used to calculate the time at which each music note is

played. First, we calculate the timing value of each measure, as seen in Equation 19.

In this formula, t represents time (in seconds), and m, c, S, and T represent measure,

current, Signature, and Tempo, respectively. From this formula, we can see that the

time (in seconds) of the current measure is calculated by adding the time (in seconds)

of the previous measure to the 60 times the Signature value divided by the Tempo

value. The Signature value has the units of beats per measure and the Tempo has a

units of beats per minute. In this formula, we divide the Tempo by 60 to change the

units from beats per minute to beats per second. The unit of beats in the Signature

variable cancels with the units of beats in the Tempo variable, leaving us with units

of seconds per measure. Since we are calculating the timing of a single measure, we

multiply this value by 1 measure to leave us with only units of seconds.

t(mc) = t(mc−1) +
60× S
T

(19)
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To calculate the time (in seconds) of each note that occurs in the musical pattern,

we use the formula shown in Equation 20. In this equation, t represents time (in

seconds) and n, m, c, x, T, and S represent note, measure, current, x-distance, Tempo,

and Signature, respectively. From this formula, we calculate the time difference from

the start of our current measure and the position of the note of interest and then

add that value to the start time of our current measure to give us the timing value

of the musical note. This time difference is calculated by dividing the x-position

difference of the music note and the start of the measure by the total amount of time

(in seconds) in the current measure. The total amount of time in the current measure

is calculated by multiplying the number of beats per second (represented by T/60)

by the x-distance in the measure dividing by the timing Signature.

t(n) = t(mc) +
x(n)− x(mc)

T
60
× x(mc)−x(mc+1)

S

(20)

For example, when we process the top line in Figure 19, we detect 8 measures,

1 signature, 2 tempos, and several musical notes in measures 6-8. First, we begin

within measure 1 and look at the features in there. Spatially, the first feature that

is detected is the signature, which is determined to be 4 over 4. We initialize our

algorithm with this value. As we move to the right in the image, we detect our first

tempo value, which is determined to be 147 beats per minute. From this information,

we know that there are 4 beats per measure and that each beat is equates to
60 seconds

minute

147 beats
minute

or 0.4082 seconds. Thus, each measure represents 4× 0.4082 = 1.6327 seconds. Since

no musical notes occur in the first measure, we know that the song starts with 1.6327

seconds of silence. Since there are no notes, tempo changes, or signature changes

in measures 2-5, we add 4 more measures of silence. Thus, the song starts with

5 × 4 × 0.4082 = 8.1633 seconds of silence. In measure 6, we detect a yellow note

that is held for the duration of the song. That musical note is begins at the time

associated to tbe beginning on measure 5, 8.1633 seconds. The musical note ends at
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8.1633 + 4 × 0.4082 = 9.7960 seconds. At the beginning of measure 6, we detect a

new tempo change. Now, the music is operating at 141 beats per second, meaning

that each beat in the measure is
60 seconds

minute

141 beats
minute

or 0.4255 seconds and that each measure

is 4 × 0.4255 = 1.7021 seconds. We detect a series of green notes. The first one

occurs at the beginning of measure 6, which corresponds to 9.7960 seconds. The

second note occurs at 1
8

of the measure, the next at 3
16

, 1
4
, 5

16
, and 3

8
. Thus, we add

the green notes to the pattern at times 9.7960 + 1
8
× 1.7021, 9.7960 + 3

16
× 1.7021,

9.7960 + 1
4
× 1.7021, 9.7960 + 5

16
× 1.7021, and 9.7960 + 3

8
× 1.7021, or times of

10.0088, 10.1151, 10.2215, 10.3279, and 10.4343 seconds, respectively. We continue

this process of calculating the time value of each note by detecting where it occurs in

the measure and calculating what time value is associated to that position. Through

this process, we detect and add the following notes to our pattern: an orange note at

9.7960 + 1
2
× 1.7021 = 10.6471, a red note at 9.7960 + 5

8
× 1.7021 = 10.8598, a blue

note at 9.7960 + 11
16
× 1.7021 = 10.9661, a red note at 9.7960 + 13

16
× 1.7021 = 11.1790,

a yellow note at 9.7960 + 7
8
× 1.7021 = 11.2853. Next, we detect the beginning on

measure 8, which occurs at 9.7960 + 1.7021 = 11.4981 Measure 8 is a repeat of the

pattern in measure 7 and we are able to detect 6 green notes at time values 11.4981,

11.7109, 11.8172, 11.9236, 12.0300, and 12.1364, an orange note at 12.3492, a red

note at 12.5619, a blue note at 12.6683, a red note at 12.8810, and a yellow note at

12.9874. This process can be continued for all of the lines of music within a song

and our output is a text file that contains the type of feature at the time at which

that feature occurs. Figure 28 shows an example of an input sheet music image and

a portion of the output text file.

From these calculations, we are able to create a timing representation of all of the

notes that occur in each song that will allow us to mathematically process each of these

patterns. Features from these songs were extracted and fed into a machine learning

algorithm to classify the difficulty of each pattern. The results of the classifications
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Figure 28: An input sheet music image and a portion of the output text file showing
the detected features and the time value associated to their occurrence.
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of these patterns will be discussed in the next chapter.
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CHAPTER VII

DIFFICULTY CLASSIFICATIONS OF MOVEMENT

PATTERNS

One of the greatest benefits of practicing therapeutic exercises with a clinician is that

the clinician is able to give their clients real-time feedback. The clinician is able to

access the client’s engagement as well as performance and adjust the task in order

to increase engagement during the session as well as overall performance. However,

when clients practice their therapeutic motions at home, they do not have any means

of receiving feedback. Thus, clients regularly struggle with maintaining high levels of

engagement and performance when practicing in isolation during at home therapeutic

exercise sessions. Technologies exist to aid clients with the at home portion of their

therapy; however, the technologies that are currently on the market do not possess

the capability to automatically give real-time feedback to the users.

Thus, a goal of this research is to develop a scheme for classifying the difficulty

of game patterns that relies on mathematical principals to replace the commonly

used, tradition, and subjective scheme that relies on the“gut feelings” of individuals.

To implement such a method, we extract features of each of the Guitar Hero game

patterns. Next, a Linear Discriminant Analysis (LDA) classification method was used

to define cluster regions for each difficulty label.

From the difficulty classifications, we will be able to quantitatively adjust the

difficulty of our game based on the user’s performance in order to promote the higher

levels of user engagement, and thus, expedite the learning process in a similar way to

how a clinician promotes faster task learning in their clients.
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7.1 Features Extracted from Game Patterns

7.1.1 Time Difference Between Notes

The time difference between notes, in seconds, was calculated between each musical

note in the pattern. The values were sorted from smallest distance to largest distance,

the distribution of these values was plotted, and the area under the curve calculated,

as shown in Equation 21. Next the values of the time difference were calculated in

0.1 second bins, as shown in Equation 22. The percentage of instances in each bin is

calculated by dividing the value by the total amount, as seen in Equation 23. The

percentage values for each of the 11 bin values and the area under the curve are 12

features that were used to train the LDA classification algorithm.

Area =

∫ N

0

sorted

(
dx

(
x

N

))
dx (21)

dtimetotals(n) =



dtime0 + + if d < 0.1sec

dtime1 + + if d ≥ 0.1sec & d < 0.2sec

dtime2 + + if d ≥ 0.2sec & d < 0.3sec

dtime3 + + if d ≥ 0.3sec & d < 0.4sec

dtime4 + + if d ≥ 0.4sec & d < 0.5sec

dtime5 + + if d ≥ 0.5sec & d < 0.6sec

dtime6 + + if d ≥ 0.6sec & d < 0.7sec

dtime7 + + if d ≥ 0.7sec & d < 0.8sec

dtime8 + + if d ≥ 0.8sec & d < 0.9sec

dtime9 + + if d ≥ 0.9sec & d < 1sec

dtime10 + + if d ≥ 1sec

(22)
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dperc(n) =
dtime(n)∑10
i=0 dtime(i)

(23)

7.1.2 Note Position Difference

The position difference, in number of lines, was calculated between each musical note

in the pattern. For example, if a green note appears on the top row of the measure

followed by a red note on the second row, the position difference between these notes

is 1. If there were multiple notes in a single instance, the position difference between

all notes in these 2 instances was calculated and the sum was reported as the position

difference. For example, if a green (top row) and yellow (third row) notes occurred

simultaneously followed by a red (second row) and blue (fourth row), the position

difference between the green and red would be calculated to be 1. Then, the position

difference between the yellow and blue would be calculated to be 1. These values

would be added together and the sum position difference for this instance would

be 2. The percentage of instances with position change values of 0, 1, 2, 3, 4, 5,

and >5 were calculated, as shown in formulas Equations 24 and 25. The mean and

standard deviation of the distribution of position differences between note instances

was also calculated, as shown in Equations 26 and 27, respectively. Also, the values

of the position differences were sorted from smallest to largest, their distribution was

plotted, and the area under the curve was calculated, as shown in Equation 21. The

area under the curve, mean, standard deviation, and 6 values of the percentage of

instances in each bin were used as additional features in the LDA classifier.
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dpositiontotals(n) =



dposition0 + + if change == 0

dposition1 + + if change == 1

dposition2 + + if change == 2

dposition3 + + if change == 3

dposition4 + + if change == 4

dposition5 + + if change == 5

dposition6 + + if change < 5

(24)

dperc(n) =
dposition(n)∑6
i=0 dposition(i)

(25)

x =

∑N
n=0 xn
N

(26)

s =

√∑N
n=0 (xn − x)2

N − 1
(27)

7.1.3 Number of Buttons Pressed for Each Instance

The number of notes that occurred in each time instance was calculated. For example,

an instance that has a single blue note would have a value of 1 while an instance

that has a green and blue note occurring simultaneously would have a value of 2.

The percentage of instances with a single note and the percentage of instances with

greater than one note were calculated. The area under the curve of the distribution

of button presses per instance was also calculated, using Equation 21. When multiple

button presses occurred at the same instance, the distance between these musical

notes was calculated. For example, if a green (first line) note and a blue (fourth line)

note occurred in the same instance, the distance reported would be 3. The mean and

standard deviation for these distances were calculated, using Equations 26 and 27,
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respectively. The percentage button presses involving a single button, percentage of

button presses involving multiple buttons, mean of the distance between buttons in

a single instance, and standard deviation of the distance between buttons in a single

instance were used as features in the LDA classifier.

7.1.4 Percentage of Notes

In the game pattern, there are 5 possible y-positions for the musical notes that cor-

respond to 5 possible buttons that can be pressed on the game controller. These

buttons can be pressed individually or multiple at a time. Thus, there are large

numbers of possible combinations of time dependent button press sequences. These 5

possible y-positions correspond to specific colors and rows in the measure. The green

buttons occur on the first row, red on the second, yellow on the third, blue on the

fourth, and orange on the fifth. The number of musical notes in each position was

calculated and divided by the total number of notes, resulting in percentage values

for each note position, as shown in Equations 28 and 29. Also, the area under the

curve for the distribution of notes of each color was calculated, as shown in Equation

21. The value of the area under the curve and the 5 percentage values were added as

features in the LDA classification algorithm.

colortotals(n) =



c0 + + if color == green

c1 + + if color == red

c2 + + if color == yellow

c3 + + if color == blue

c4 + + if color == orange

(28)

cperc(n) =
cn∑5
i=0 ci

(29)
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7.1.5 Number of Notes in a Second

Each pattern was divided into 5 second intervals. For each 5 second interval, the

number of notes occurring in that time interval was calculated. These values were

sorted and the area under the curve, mean, and standard deviation were calculated,

using Equations 21, 26, and 27, respectively. The fastest speed in a 5 second interval

was also calculated. The values were divided into bins and the percentage of values

within each bin was calculated, as shown in Equations 30 and 31. The area under the

curve, mean, standard deviation, fastest speed, and percentage of instances in each

bin were added as additional features in the LDA classification algorithm.

speedtotals(n) =



s0 + + if speed < 3bps

s1 + + if speed ≥ 3bps & speed < 6bps

s2 + + if speed ≥ 6bps & speed < 9bps

s3 + + if speed ≥ 9bps & speed < 12bps

s4 + + if speed ≥ 12bps & speed < 15bps

s5 + + if speed ≥ 15bps & speed < 18bps

s6 + + if speed ≥ 18bps & speed < 21bps

s7 + + if speed ≥ 21bps & speed < 24bps

s8 + + if speed ≥ 24bps & speed < 27bps

s9 + + if speed ≥ 27bps

(30)

speedperc(n) =
sn∑9
i=0 si

(31)

7.1.6 Lengths of Held Notes

Each held note in the pattern was detected and the amount of time the note was held

was calculated. These time values were sorted and the area under the curve, mean,
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and standard deviation were calculated, using Equations 21, 26, and 27, respectively.

The longest hold was also calculated. The hold values were divided into bins and the

percentage of values within each bin was calculated, as shown in Equations 32 and 33.

The area under the curve, mean, standard deviation, longest hold, and percentage of

instances in each bin were also added as additional features in the LDA classification

algorithm.

holdtimetotals(n) =


h0 + + if hold < 1sec

h1 + + if hold ≥ 1sec & hold < 3sec

h2 + + if hold ≥ 3sec

(32)

holdperc(n) =
hn∑2
i=0 hi

(33)

7.2 Classification Accuracies

The features for each pattern were input into the LDA classification algorithm in 2 dif-

ferent passes with 2 different sets of labels. First, the inputs were labeled with ”easy,”

”medium,” and ”hard.” The ground truth for these labels was given by the Guitar

Hero video game. All patterns from the game defined ”easy” difficulty were given a

label of ”easy,” all game defined ”medium” were given a difficulty of ”medium,” and

all game defined ”hard” and ”expert” difficulties were combined into a super-class and

given the ”hard” label. Patterns from the Guitar Hero games, Guitar Hero 1, Guitar

Hero 2, Guitar Hero 3, and Guitar Hero 80’s were used only. This subset of games

were chosen because they had user voted sub-labels for each pattern in addition to

game defined ”easy,” ”medium,” and ”hard,” labels. In order to increase the number

of patterns in our training set, the pattern from each song was split in half and it was

assumed that both halves of the songs would have the same difficulty that matched

the given labels. The LDA was used to classify this data with 10-fold cross validation
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Table 14: Confusion Matrix for Easy, Medium, and Hard Labels

True Easy True Medium True Hard
Classified Easy 96.98% 1.53% 1.49%

Classified Medium 4.41% 94.35% 1.24%
Classified Hard 0.00% 4.55% 95.45%

and the results are displayed in the confusion matrix shown in Table 14. The results

of this algorithm show that we can successfully classify all labels with 94% accuracy

or better.

Next, the data was passed through the LDA separately to classify 3 subcategories

of difficulty for each group. These subcategories were defined by user-ranked song

difficulties created from user voting on Guitar Hero fan forums. In the forums, fans

voted to rank songs in order from easiest to hardest. Since this was a continuous shift

in difficulty with no defining lines between adjacent patterns and uncertain difficulty,

the ranked patterns were divided into 5 sections. We classified the 1st, 3rd, and 5th

sections, throwing out the 2nd and 4th sections. The easiest, middle, and hardest

songs were correctly classified with 62.79%, 40.30%, and 64.07% accuracy, respec-

tively. However, the LDA was capable of classifying the 1st and 5th sections without

the 3rd section much more successfully. In the ”easy” category, the easiest and hard-

est songs were correctly classified with 80.25% and 73.18% accuracy, respectively. In

the ”medium” category and the ”hard” category, the easiest and hardest songs were

correctly classified with 81.78%, 82.83%, 80.48%, and 82.25% accuracy, respectively.

When the data was combined and the LDA classified the easiest and hardest songs

for all pattern difficulties simultaneously, it correctly classified the easiest and hardest

songs with 77.65% and 81.50% accuracy, respectively.
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7.3 Labeling 30 Second Patterns

Finally, the song patterns were divided into 30-second time intervals. The features

were extracted from each of these patterns and they were run through both passes of

the LDA to classify their difficulty and a sub-category. The resulting output allows for

us to have 9 different difficulty values associated to 30-second patterns. We selected

5 30-second patterns at each label to use in our final system. In order to reduce error,

we only selected 30-second patterns from full patterns that were correctly labeled by

the LDA. These patterns were placed in a look-up table in our game. As the game

adapts and adjusts difficulty, it determines the desired difficulty for the participant

to play. Then, it looks up a 30-second pattern that has been defined to be the correct

difficulty and displays it to the user.
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CHAPTER VIII

ADAPTIVE GAMING EXPERIENCE

One goal of this project is to create an adaptive video game experience that promotes

accelerated task learning. To meet this goal, we used an LDA machine learning

algorithm to classify 30-second long game patterns into nine unique difficulty levels.

The video game assesses user performance every 30 seconds. If users perform with

90% accuracy or better, they are considered to have mastered that difficulty and the

game will increase the difficulty level. If users perform with a 70% accuracy or worse,

users are considered to be too greatly challenged and the game decreases difficulty.

8.1 Experimental Setup

We are conducted a final experiment with elderly adults to verify our hypothesis. We

recruited 19 elderly adults to participate in this experiment. The age range of our

participants was 52 to 86 with a mean of 77.4 and a standard deviation of 9.97. Two

of our test participants were stroke survivors and three had previously participated

in physical therapy for non-stroke related impairments. In this experiment, users

were asked to complete three sessions of game play on three different days. Due to

scheduling conflicts, not all participants were able to complete all three test sessions.

We had six participants complete all three sessions, four complete two sessions, and

nine complete one session. At the beginning and end of each session, participants

completed a pre- and post-test respectively. The pre- and post-tests were the same

patterns and were comprised of a 30-second middle easy difficulty, 30-second mid-

dle medium difficulty, and a 30-second middle hard difficulty. Between the pre- and

post-tests, participants were asked to play the game for six 30-second intervals. Par-

ticipants were divided into three test groups. In the control group, participants were
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Table 15: Accuracy Score Improvements Between Pre- and Post-Tests

Group A Group B Group C
Easy 5.85% 8.72% 13.58%

Medium 0.18% 4.78% 8.27%
Hard -1.40% 6.23% 2.93%

asked to complete all six of their 30-second intervals with the middle medium dif-

ficulty. In experimental group A, participants were asked to complete the first two

30-second intervals at the middle medium difficulty and then the game will adapt for

the following four sessions. In experimental group B, participants were asked to com-

plete the first two 30-second intervals at the difficulty corresponding to the highest

difficulty that they performed 70% - 90% accuracy during the pre-test. The following

four 30-second intervals were adaptive for experimental group B.

8.2 Results

8.2.1 Accuracy

The accuracy score improvements for the easy, medium, and hard sections of the pre-

and post-tests for each test group for each session were compared. Table 15 shows the

results of the learning improvements for this experiment. In the easy, medium, and

hard categories, a trend is seen that participants in the adaptive groups (B and C) had

greater amounts of learning during each session when compared to the non-adaptive

group (A).

8.2.2 Lead/Lag

The path that the game targets encouraged was compared to the path that was actu-

ally followed by each participant. From this plot, a lead/lag score can be calculated

by subtracting the difference in the x-value of the actual path and the intended path,

as seen in Equations 4 and 5. As defined in Section 3.5.2.2 of this thesis, lead refers

94



Table 16: Improvements Between Pre- and Post-Tests

Parameter Control Group Adaptive Groups
Lead/Lag -26.79s +15.48s
Jerkiness -3.37% -6.72%

Over/Undershoot -0.39pixel +0.22pixel

to the amount of time that a user intends to hit a note prior to the time that the the-

oretical path anticipated that user would hit the note. Lag is defined as the amount

of time after the theoretical hit time that the user hit the note.

As seen in Table 16, when we compared the lead/lag score improvements gained

between the pretest and posttest, we found that participants in the adaptive groups

(groups B and C) had an average gain of 15.48 more seconds spent leading, while the

control group (group A) had an average loss of 26.79 more seconds lagging. These re-

sults suggest that participants in the adaptive groups were anticipating the notes and

responding more quickly during the posttest than they had done during the pretest,

while the participants in the control group were being more reactive. Thus, the par-

ticipants in the adaptive games reduced their reaction times and learned to anticipate

movements, while the control group experienced some losses in these categories.

8.2.3 Jerkiness

The movement paths completed by the users were also analyzed for jerkiness. Jerki-

ness is calculated taking the derivative of the participants’ movement paths and then

finding the peak values between target notes , as shown in Equation 7. As described in

section 3.5.2.4 of this thesis, jerkiness is defined as the peak speed that a participant

moves towards each target. Having a higher jerkiness suggests that a participant is

reacting and having to move more quickly in order to reach the target in time, while

a lower jerkiness value suggests that the participant in anticipating the next target

and moving at a consistent, controlled, and appropriate speed to meet said target.
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As shown in Table 16, the average jerkiness decreased between the pretest and

posttest for all groups. This suggests that the users were moving more consistently

and in more controlled manners during the posttest when compared to the pretest.

However, participants in the adaptive groups experienced higher gains than those in

the control with jerkiness reductions of 6.72% and 3.37%, respectively.

8.2.4 Overshoot/Undershoot

The overshoot/undershoot score was calculated for each musical note target that each

user was presented with. This score is calculated by determining the difference in y-

values in the actual path and the intended path, as seen in Equation 6. In section

3.5.2.3, we defined overshoot to be the distance a user continues past the target, while

undershoot is defined as the distance that a user stops prior to reaching the target.

A participant who is completing the task better would have smaller absolute values

of overshoot and undershoot, while the direction (overshoot vs undershoot) is not a

relevant performance metric. Thus, we took the absolute value of these overshoot

and undershoot scores to assess our users’ performances.

Table 16 shows that, in the control group, users had larger overshoot/undershoot

absolute value scores in the posttest, when compared to the pretest. They were

less accurate to the y-position by an average of 0.39 pixels. Meanwhile, the adaptive

group participants made an average gain of 0.22 pixels more accurate in the y-position

during their posttest, when compared to the pretest. This suggests that users in the

adaptive groups learned to hit the y-positions more accurately than those in the

control group.

8.3 Participant Survey

Upon completing the experiment, participants were asked to answer survey questions

about their opinions of the gaming experience. The specific questions asked to the

participants are shown in Table 17 and the responses are shown in Figure 29. While
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Table 17: Survey Questions Presented to Participants

Number Question
1 I enjoyed the exercise session WITH the tablet game.
3 I felt that my exercise session WITH the tablet game was productive.
4 I felt engaged while exercising WITH the tablet game.
5 I felt bored while exercising WITH the tablet game.
6 I motivated while exercising WITH the tablet game.
7 I frustrated while exercising WITH the tablet game.
8 I MORE motivated while exercising WITH the tablet game that I

would if I had to exercise WITHOUT the tablet game.
9 If I had to exercise my wrist for one hour a day, every day, I would

rather complete all of these exercises WITH the tablet game.

the responses were not different between the adaptive and non-adaptive test groups in

this experiment, the results are higher than responses from a previous, non-adaptive

gaming experience that was tested with participants aged 14-35. The results of their

surveys can be seen in Figure 4. This suggests that elderly participants may enjoy

this rehabilitation experience greater than younger participants. During the testing

sessions, many of the participants were laughing, expressing how much better they

felt this was than other, traditional treatments that they may have received in the

past, and reminiscing about how it reminded them of arcade games like Pacman and

Donkey Kong that they used to play in their younger years. The younger group may

have been biased against enjoying the experience as much because they have more

experience with higher complex games and therefore may not enjoy simple games

as much. The younger population may also not fully understand the tediousness of

doing traditional exercise sessions as alternative to playing a rehabilitation game.
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Figure 29: Survey results from our final experiment.
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CHAPTER IX

CONCLUSIONS AND FUTURE WORK

In this research project, we were able to develop a passive physical therapy system

for assisting stroke survivors with at-home therapy sessions. We were able to show

that this system could encourage users to follow specific motions. A goal of the

project was to allow for the game to provide feedback in the form of adjusting the

difficulty to best fit the needs of the user, and thus promote an optimal rate of

learning. We were able to develop a methodology for classifying task difficulty, using

machine learning techniques and a database collected from video game data from

a similar, commercially available, popular video game whose sole purpose was for

entertainment. Once we were able to classify the task difficulty, we were able to use

this information to add adaptations to our rehabilitation game. We conducted a final

validation experiment of the system with elderly adults and stroke survivors, and

the results showed that the algorithm effectively promoted increased learning during

game sessions. In addition, the elderly adults reported that they highly enjoyed using

the system even more than younger adults had in previous experiments.

This results of this thesis have all been obtained from short term studies. Thus,

future works for this project that would greatly increase the impact of the results

should involve conducting a long term study with more participants. Such a study

would allow us to validate that the learning trends that were seen in this thesis

would continue over several months, which is the length of time that stroke survivors

traditionally participate in physical therapy.

In addition, the process laid out in this thesis for classifying task difficulty could

be translated to other spaces. For the future work of this project, we could collect
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large video game datasets and analyze them to determine difficulty of other types of

tasks including movement or cognitive tasks. It would be interesting to see if these

methods could be used on puzzle games, for example, to determine what types of

puzzles are more difficult than others. Such a task difficulty classification scheme

could be useful for creating better physical therapy games, as well as to generate

appropriately challenging educational games for children, given their skill level.
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