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Abstract—This paper introduces a novel Coverage Path Plan-
ning (CCP) algorithm for a Unmanned Aerial Systems (UAS)
imagery mission. The proposed CPP algorithm is a vehicle-
routing-based approach using a column generation method. In
general, one of the main issues of the traditional arc-based
vehicle routing approaches is imposing a turn penalty in a
cost function because a turning motion of vehicle requires
the more amount of energy than a cruise motion. However,
the conventional vehicle-routing-based approaches for the CPP
cannot capture a turning motion of the vehicle. This limitation
of the arc-based mathematical model comes from the property
of turning motions, which should be evaluated from two arcs
because a turn motion occurs at a junction of the arcs. In this
paper, to mitigate the limitation, a route-based model using
column generation approach with a turn penalty is proposed. To
demonstrate the proposed CPP approach, numerical simulations
are conducted with a conventional CPP algorithm.

I. INTRODUCTION

Over the past decade, the market of UAS have been
drastically grown in various market areas: military, industry,
and hobbyist markets. Due to advanced technologies, the
usage of UAS has been broadened from military applica-
tions to commercial applications such as agriculture, facility
inspection, rescue, and package delivery missions. For those
missions, a task of operation planning is crucial to satisfy
endurance and range constraints of vehicles. Particularly, an
imagery mission needs an optimal coverage path in terms
of energy efficiency to maximize the area covered by each
vehicle, or in terms of flight time to minimized the mission
time. A task that finds an optimal coverage path is called
Coverage Path Planning (CPP). The CPP algorithms using
a UAS platform have actively researched in various UAS
applications such as image mosaicing [1], post-earthquake
assessment [2], and 3D terrain reconstruction [3].

In a point of view on the optimization area, the CPP is a
similar problem to Chinese postman problem [4]. The Chi-
nese postman problem finds the shortest path that visits every
neighborhood (or edge) at least once, whereas the CPP finds
an optimal route that passes over all waypoints in an entire
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Area of Interest (AOI). If a union of the edges in the Chinese
postman problem covers all the AOI in the CPP, the two
problems become almost identical conceptually. However,
the optimal path from Chinese postman problem does not
consider any vehicle characteristics such as vehicle speed,
and energy. Particularly, for the aerial imagery mission, those
vehicle characteristics must be considered to guarantee that
the optimal path is feasible in terms of vehicle performances.

In the context of the path optimization, the typical path-
planning algorithm can be grouped by five methods: geomet-
ric methods, stochastic methods, road map methods, potential
field methods, and optimization-based methods [5]. For the
imagery CPP problem, the common approach is a grid-
based path optimization since the grid can be defined by the
camera resolution and UAS operational altitude. The notable
grid-based path optimizations can be grouped by exact and
approximate methods.

The exact method generally applies back-and-forth mo-
tions to cover an entire AOI and finds an optimal line sweep
direction introduced by Huang [6] to reduce the number of
turns. If the AOI is not convex, the traditional exact solution
may not produce a feasible route. To solve this issue, Li et
al. [7] introduce an improved exact cellular decomposition
method that generates multiple convex sub-areas and applies
the exact method in each sub-area. However, this method has
a limitation that the mission ending point is automatically
determined by the algorithm. In other words, a user cannot
select the mission ending point. Torres et al. [3] develop
an improved exact method that optimizes the coverage path
with the mission starting and ending points selected by the
user. For multi-UAVs missions, however, the exact method
still needs to solve a high-level optimization problem that
determines an optimal sequence visiting all the sub-area.

The representative approximate methods are wavefront-
based algorithms, heuristic algorithms, or vehicle-routing-
based approaches. Valente et al. [1] and Nam et al. [8]
implement the wavefront-based algorithm to obtain the im-
ages of an target site using a single UAV. Barrientos et
al. [9] adopt the wavefront-based algorithm for a multi-
UAV mission to address a large scanning area. In their
study, the algorithm decomposes multiple subareas and then
solves the wavefront algorithm for each sub-area to obtain
the optimal scanning route. Because the two-layer structure,
the area decomposition and the wavefront algorithm, has no



any interaction between the results of sub-areas, the result
of the method could not be better than that of a multi-
vehicle optimization problem method that finds a solution
without decomposing the whole AOI into multiple small
areas. The heuristic algorithms such as genetic algorithms,
ant colony optimizations, and particle swarm optimizations
have been used to solve the CPP problems [10] since the
heuristic algorithm can easily handle discrete and continuous
variables. However, these heuristic methods inherently have a
limitation that is unclear when the optimization process stops
because the heuristic methods cannot check its optimality.
Avellar et al. [11] and Nedjati et al. [2] introduce vehicle-
routing-based approaches that can solve the CPP problem
for multi-vehicle missions. The advantage of the approaches
can solve a multi-vehicle CPP problem without any area
decompositions, whereas their drawback is that they cannot
deal with the number of turns which is directly related to
energy consumption of vehicles [6], [10], [12]–[15].

In this paper, we propose a vehicle-routing-based method
that finds an optimal coverage path by directly handling
the turn motion in the optimization model. The proposed
model is based on the mathematical optimization model for
the Distance Constrained Vehicle Routing Problem (DVRP)
proposed by Kek et al [16] and Kara [17] and modifies it
to handle a multi-UAVs problem as well as the number of
turns of a vehicle. To solve the model, column generation is
utilized with a turn penalty function.

This paper is organized as follows: Section II introduces a
column generation method with relevant works. Section III
presents the an arc-based optimization model and the route-
based optimization model for the DVRP. Section IV proposes
the method to solve CPP problems based on the column
generation method with turn penalty functions. Section V
illustrates two numerical simulations to validate the proposed
method. This paper ends with conclusions in Section VI.

II. RELATED WORK: COLUMN GENERATION

The vehicle-routing-based method is a kind of Traveling
Salesman Problem (TSP) that is a decision problem to deter-
mine how to visit every city exactly once with the shortest
tour distance. The main concept of the vehicle-routing-based
method of the CPP is that a union of subareas represented
by a waypoint should cover the entire AOI. The difference
between the TSP for the CPP and the Chinese postman
problem for the CPP is what covers all the AOI, nodes or
edges. The network of the VRP is modeled by a graph defined
by nodes and edges (or vertices and arcs). The VRP model
uses integer variables associated with each arc as design
variables, hence, it is an Integer Programming (IP) problem.
Column generation is a framework to obtain a solution of an
IP problem. Column generation is a main approach to solve
huge IP problems in logistics and operational research areas,
but has rarely been applied to handle the CPP problem.

Dantzig and Wolfe [18] suggest the fundamental ideas
of the column generation. As the first application, Gilmore
and Gomory [19], [20] show how column generation can be

used to solve a cutting stock problem. Then, Desrochers and
Soumis [21] solve an urban transit crew scheduling problem
through applying the column generation method. Desrochers
et al. [22] suggest a column generation formulation for the
Vehicle Routing Problem with Time Windows (VRPTW).
Vanderbeck and Wolsey [23] present a column generation
approach for general IP problems with integer variables, not
binary variables that allow only 0 or 1, by combining branch
and bound and column generation. In UAS applications,
Mufalli et al. [24] and Zillies et al. [25] show how the
column generation can be utilized to solve the vehicle routing
problems, but solve only vehicle routing problems associated
with surveillance missions that are not a kind of the coverage
path problem.

A network of the VRP is described by vertices and arcs
(or nodes and edges) defined in the graph theory. A vertex
represents a location such as a city and a waypoint, and an arc
describes a movement of a vehicle from a vertex to another
vertex. In a myriad of the VRPs, an arc has been utilized as
a design variable. However, the VRP model used in column
generation needs to be formulated by design variables that
describe a route or path, a set of arcs. Column generation
splits the standard VRP problem into the master problem
and the sub-problem using Dantzig and Wolfe decomposition
[22].

The master problem directly handles a route as a design
variable. The route-based model has a weakness that the
number of routes exponentially increases as the number of
node increases. Hence, the computation resource that depends
on the problem size could be an obstacle to solving the master
problem. To mitigate this weakness, the master problem deals
with a subset of all routes during column generation process,
which is called the restricted master problem. The master
problem can be modeled by a set partitioning problem or a set
covering problem which is a relaxation of a set partitioning
problem [18], [26].

The structure of the sub-problem depends on that of the
master problem. First, the master problem modeled as the
set partitioning problem works with the Elementary Shortest
Path Problem with Resource Constraints (ESPPRC) as a sub-
problem. The ESPPRC only deal with elementary routes,
which allow a route to visit each node exactly once. Second,
the mater problem designed as the set covering problem runs
with the Shortest Path Problem with Resource Constraints
(SPPRC) as a sub-problem. This SPPRC allows a route to
visit a node more than once, which is a relaxation of the
ESPPRC. The result of the sub-problem is utilized to create
candidate routes added to the master problem. To circumvent
the overlapped coverage routes, this paper adopts the set
partitioning problem as a master problem, and the ESPPRC
as a sub-problem.

III. MATHEMATICAL OPTIMIZATION MODEL

For the CPP optimization formulation, we extend the
Kara’s DVRP model [17]. To be more specific, the Kara’s
DVRP model optimizes flight range with the fixed number



of vehicles, but our extended DVRP model can minimize the
number of vehicles, and the total flight range of the vehicles
as well. The extended DVRP model is converted to a route-
based optimization model that allows us to include a turning
penalty, which cannot be solve by the arc-based Kara’s DVRP
model. To solve the route-based DVRP model, we applies a
column generation technique. The subsections introduce the
extended arc-based DVRP formulation, and the route-based
DVRP formulation to use the column generation technique.

A. Arc-based Optimization Model

The DVRP is modeled based on a graph, G, and a fleet
of UAVs, V . The graph consists of a set of nodes, N , a
set of arcs, A. The set of nodes N = {0, 1, 2, · · · , n + 1}
includes the starting depot, 0, the returning depot, n + 1,
and waypoints, W = {1, 2, · · · , n}. In the UAS imagery
mission, the waypoints can be defined by sensor scanning
locations. The set of arcs, A = {(i, j) : i, j ∈ N, i 6= j},
represents the connection between two nodes. The cost cijk
of each arc corresponds flight distance from the node i to
the node j by the vehicle k, dijk. The extended model uses
a set of design variables, xijk. If the vehicle k travels along
the arc (i, j), xijk is defined as 1, otherwise 0. To capture
the number of vehicles, three-index formulations are adopted
for the extended DVRP model. The arc-based optimization
model can be written by

Minimize
∑
k∈V

∑
i∈N

∑
j∈N

cijkxijk (1)

Subject to∑
k∈V

∑
j∈N

xijk = 1 (∀i ∈W ) (2)∑
j∈N

x0jk = 1 (∀k ∈ V ) (3)∑
i∈N

xihk −
∑
j∈N

xhjk = 0 (∀h ∈W, ∀k ∈ V ) (4)∑
i∈N

xi(n+1)k = 1 (∀k ∈ V ) (5)∑
j∈N

sijk −
∑
j∈N

sjik

−
∑
j∈N

dijkxijk = 0 (∀i ∈ N, ∀k ∈ V ) (6)

y0jk = d0jkx0jk (∀j ∈ N, ∀k ∈ V ) (7)
yijk ≤ (D − dj0k)xijk (∀j ∈ N, ∀k ∈ V ) (8)
yi(n+1)k ≤ Dxi(n+1)k (∀i ∈ N, ∀k ∈ V ) (9)

yijk ≥ (d0ik + dijk)xijk (∀i, j ∈ N, ∀k ∈ V ),(10)

where sijk is a flow variable that measures the total distance
traveled by the vehicle k from the starting depot to the
node j when it goes from i to j. The objective function
of the model, Eq. (1), is defined as minimizing the total cost
that is proportional to the flight distance or time traveled

by vehicles. The following operating conditions are defined
as constraints: All the waypoint should be visited exactly
once, Eq. (2). Each vehicle should start at the starting depot,
Eq. (3), and after visiting a waypoint, it has to leave the
waypoint, Eq. (4), and it should return to the returning depot,
Eq. (5). All sub-tours should be removed by constraint Eq.
(6). Each vehicle is allowed to travel up to the maximum
distance described by D, which is guaranteed by constraints
Eq. (7) - (10).

B. Route-based Optimization Model

The constraint matrix of the proposed arc-based optimiza-
tion model has a block angular structure of which some
constraints are related only specific design variables. By
the Dantzig-Wolfe decomposition [18], the block-angular-
structure optimization model can be decomposed into two
problems: the first one includes just coupled constraints and
the second one has non-coupled constraints only. Note that
while the constraint of the arc-based optimization model, Eq.
(2), is coupled with the vehicles, the others are independent
from the vehicles. This implies the model has block angular
structure. Using this property, the model can be decomposed
into the master problem and the sub-problem. Moreover, the
master problem can be reformulated to a route-based opti-
mization model for the column generation method according
to Minkowski-Weyl theorem [27].

1) Master Problem: To obtain the route-based optimiza-
tion model, a new design variable need to be defined for each
route, not arc. Let P k be a set of feasible routes of vehicle
k, k ∈ V . A variable ckp is defined as a cost of the route p
traveled by the vehicle k, p ∈ P k, k ∈ V . A variable akip
is a visiting status of the route, p, of the vehicle, k. Let akip
be 1 if the vehicle k visits the waypoint i when traveling
along route p, and akip be 0, otherwise. A route-based design
variable, ykp , is defined as 1 if the route p is chosen by vehicle
k, p ∈ P k, k ∈ V , or 0, otherwise. Because ykp is a 0-1
integer variable, the master problem is an IP problem that
can be written by

Minimize
∑
k∈V

∑
p∈Pk

ckpy
k
p (11)

Subject to∑
k∈V

∑
p∈Pk

akipy
k
p = 1 (∀i ∈W ) (12)

∑
p∈Pk

ykp = 1 (∀k ∈ V ) (13)

ykp ∈ {0, 1} (∀k ∈ V, ∀p ∈ P k). (14)

To solve an IP problem, a linear relaxation needs to be
applied. By converting an IP problem to a Linear Program-
ming (LP) problem, a myriad of methods based on a simplex
algorithm can be utilized to solve it. Column generation,
also, has the benefit because it needs to use a LP model
instead of an IP model as the master problem. By a linear



relaxation, ykp is converted from a 0-1 integer variable to
a continuous design variable. The LP model of the master
problem is defined as follows

Minimize
∑
k∈V

∑
p∈Pk

ckpy
k
p (15)

Subject to

∑
k∈V

∑
p∈Pk

akipy
k
p = 1 (∀i ∈W ) (16)

∑
p∈Pk

ykp = 1 (∀k ∈ V ) (17)

ykp ≥ 0 (∀k ∈ V, ∀p ∈ P k). (18)

This master problem is a generalized formulation that
can solve multi-depot or heterogeneous fleet problems. For
simplicity, let us consider a single depot and homogeneous
fleet problem. Then, the master problem can be simplified as
follows

Minimize
∑
p∈P ′

cpyp (19)

Subject to

∑
p∈P ′

aipyp = 1 (∀i ∈W ) (20)

yp ≥ 0 (∀p ∈ P
′
), (21)

where, P
′ ⊂ P , is a subset of feasible solutions, which

is candidate solutions in the column generation. Thus, This
model for the master problem is the restricted master problem
that handles a subset of routes, not all possible routes. For
convenience, this paper just calls it the master problem.

2) Sub-problem: The sub-problem consists the objective
function and the constraints that are dependent on vehicles.
For a heterogeneous fleet problem, the sub-problems need to
be as many as the number of vehicle types. Moreover, each
sub-problem should be solved for every iteration of column
generation process. For a homogeneous fleet problem, how-
ever, a single sub-problem needs to be solved in an iteration
of column generation process. Note that when solving the
sub-problem, the modified cost, ĉij is used for each arc,
(i, j), where ĉij = cij − πi, πi is a dual variable of the
master problem with i ∈ W . The ESPPRC with distance
constraints, the sub-problem, is modeled as follows

Minimize
∑
i∈N

∑
j∈N

ĉijxij (22)

Subject to

∑
j∈N

x0j = 1 (23)∑
i∈N

xih −
∑
j∈N

xhj = 0 (∀h ∈W ) (24)∑
i∈N

xi(n+1) = 1 (25)∑
j∈N

sij −
∑
j∈N

sji

−
∑
j∈N

dijxij = 0 (∀i ∈ N) (26)

y0j = d0jx0j (∀j ∈ N) (27)
yij ≤ (D − dj0)xij (∀j ∈ N) (28)
yi(n+1) ≤ Dxi(n+1) (∀i ∈ N) (29)
yij ≥ (d0i + dij)xij (∀i, j ∈ N). (30)

Constraints Eq. (23) - (25) are flow constraints for a route
from the starting depot to the returning depot. Constraint Eq.
(26) removes sub-tours. The others guarantee to satisfy travel
distance conditions.

IV. COLUMN GENERATION WITH A TURN PENALTY FOR
VEHICLE ROUTING PROBLEMS

The column generation solves integer problems such as
the cutting stock and a vehicle routing problem. In general,
the column generation for VRP consists of three parts: an
initial value problem, a master problem, and a sub-problem.
The initial value problem obtains feasible routes that is used
to create the initial candidate routes for the master problem.
The master problem determines an optimal route for each
vehicle from candidate routes. The subproblem generates a
set of new candidate routes. These candidate routes are added
in the master problem. The master problem with the updated
candidate routes is solved in the next iteration. Note that
unlike the arc-based vehicle routing problem, the column
generation can count the number of turns of all the candidate
routes. This is because a route of the arc-based model is
determined after optimization process, whereas a route of the
route-based model is determined during optimization process.
Therefore, the column generation approach can optimize the
number of turns and distance as well.

A. Initial Value Problem

The initial value problem identifies a set of feasible
routes in the first iteration. The identified feasible routes
become design variables in the master problem. In general,
the initial value problem can be solved by two methods:
trivial solution method and savings algorithm [28]. The trivial
solution method simply creates routes through connecting
three nodes:the starting depot, a waypoint, and the returning
depot. Consequently, the number of the routes are same as
the number of the waypoints. On the other hand, the savings
algorithm, a simple heuristic approach, generates a set of
greedy routes. This algorithm produces less number of routes



than the trivial solution. Note that the number of initial feasi-
ble routes can be used as the number of initial vehicles. Thus,
the savings algorithm can improve computational efficiency
of column generation through reducing the number of initial
feasible routes. Because of this benefit, this paper selects the
savings algorithm to solve the initial value problem.

B. Master Problem with A Turn Penalty

After solving the initial value problem, the master problem
solves the LP problem in the column generation process,
which is the linear relaxation of the IP problem, Eq. (19)
- Eq. (21). The LP problem computes dual variables that
guides the sub-problem to specify better routes compared to
the existing candidate routes. The new routes could reduce
the value of the objective function in the master problem. In
the objective function, we revise the cost function to capture
a turn penalty as follows

c
′

p =
∑

(i,j)∈A

cijxij + fpenalty(p) (∀p ∈ P
′
), (31)

where c
′

p is a new cost function, and fpenalty(p) is a penalty
term that has a non-linear function with respect to the route
p. To consider the number of turns, the penalty function
fpenalty(p) is defined by

fpenalty(p) = Tp ∗ cpenalty (∀p ∈ P ′
), (32)

where Tp represents the number of turns on route p, and
cpenalty is a turning cost.

C. Sub-problem with Turn Penalty

The goal of solving the sub-problem is to identify candi-
date routes that potentially reduce the value of the objective
function in the master problem. The traditional method
solving the sub-problem is a label correcting algorithm
suggested by Desrochers et al. [22], which a kind of dynamic
programming techniques. To solve the ESPPRC, Feillet et
al. [29] proposed the modified label correcting algorithm
through introducing the concept of a unreachable node. The
unreachable node is a node that is already visited on a route
or the vehicle cannot reach the node because of the limited
resource of the vehicle.

In the proposed label correcting algorithm, the vehicle
resource is defined as Rz = (Dz, sz, U

0
z , · · · , Un+1

z ), where
Dz is flight distance traveled by the path from the starting
depot to the node z, sz is the number of unreachable nodes,
and U0

z , · · · , Un+1
z is the vector of unreachable nodes. Then,

the label is defined as Lz = (Rz, Qz, Cz), where Qz

indicates the path from the starting depot to the node z, and
the term Cz is the cumulative cost from the starting depot to
the node z along the Qz , which is defined by

Cz =
∑

(i,j)∈Qz

cij + fpenalty(Qz). (33)

The path information Qz is just used to count the number of
turns in the penalty function.

The proposed label correcting algorithm uses labels that
include the information about resources, path and cost. Each
label records the accumulated information from the starting
depot to the returning depot depending on only its previous
label using a dynamic programming approach. Using the
accumulated label information, the algorithm identifies a
set of the feasible routes resulting from the labels on the
returning depot.

One of the main concepts of the proposed label correcting
algorithm is dealing with only elementary paths, which visit
a node exactly once. In order to implement this concept, the
vector of unreachable nodes, U0

z , · · · , Un+1
z , is defined on a

new label. The new label is not pinned at a node when the
node considered to visit is already visited, or the resource
of vehicle is insufficient to reach the node due to maximum
endurance or range. This concept guarantees that each label
has only an elementary path.

Another main concept is a process to reduce the num-
ber of labels through finding non-dominated labels sug-
gested by Feillet et al. [29]. The non-dominated labels
are specified by the concept of Pareto frontier is uti-
lized, which is a common method in multi-objective op-
timization. To be more specific, let us consider two la-
bels, Lx = (Dx, sx, U

0
x , · · · , Un+1

x , Qx, Cx) and Ly =
(Dy, sy, U

0
y , · · · , Un+1

y , Qy, Cy). If Dx ≤ Dy , sx ≤ sy ,
U0
x ≤ U0

y , · · · , Un+1
x ≤ Un+1

y , and Cx ≤ Cy , then Lx

dominates Ly . As a result, the label Lx is a non-dominated
label. In contrast, if one of the conditions is not satisfied, Lx

and Ly do not dominate each other. Hence, Lx and Ly are
considered as non-dominated labels. The process fining non-
dominant labels is applied at each node. The results of all the
non-dominated labels are continuously stored until the labels
on the returning depot is completed, which lead to generates
feasible routes.

The label correcting algorithm starts with an initial label.
The nodes that need to be visited are stored in a set queue
E, which is a data structure with the concept of First In First
Out (FIFO) ensuring the uniqueness of its elements. The set
queue E determines a starting node during the iteration. The
algorithm checks potential new labels using the labels on the
starting node and the list of its neighbors. The new labels are
created when the node can move from the starting node to
its neighbor nodes. In other words, the neighbor node is not
an unreachable node and the constraint, which is a vehicle
resource, is not violated. Then, the algorithm only collects
non-dominant labels from the new labels. The algorithm
is finished when there is no additional route discovered.
Algorithm 1 is the pseudo code of the label correction
algorithm, where labeli is a label at node i, list of labes
is all labels at node i, enqueue() is a function to insert a
node into the set queue E, dequeue() is a function to obtain
a node from the set queue E, extend() is a function to find
a new label based on labeli at vj , and EFF () is a function
to search a set of non-dominated labels.

Let us consider a simple example of the label correcting



(a) Initialization (b) After treatment of node 0

(c) After treatment of node 1 (d) After treatment of node 2

Fig. 1. Illustration of the first iteration of label correcting algorithm.

TABLE I
LABEL LIST OF A SIMPLE EXAMPLE

Data
Label Dz sz U0

z U1
z U2

z U3
z Qz Cz

L0 0 1 1 0 0 0 [0] 0
L1 1 2 1 1 0 0 [0,1] 1
L2 1 2 1 0 1 0 [0,2] 1
L3 2.414 3 1 1 1 0 [0,1,2] 3.414
L4 2 3 1 1 0 1 [0,1,3] 3
L5 2 3 1 0 1 1 [0,2,3] 3
L6 3.414 4 1 1 1 1 [0,1,2,3] 5.414

algorithm for DVRP depicted in Fig. 1. The example case
has an undirected graph with 4 nodes, N = {0, 1, 2, 3}.
The location of each node is {(0, 0), (0, 1), (1, 0), (1, 1)}. The
node 0 is assumed to be the starting depot, and the node 3
is assumed to be the returning depot. We also assume that
the graph has 5 arcs, A = {(0, 1), (0, 2), (1, 2), (1, 3), (2, 3)}.
In the cost function, the penalty formulation is assumed by
in Eq. (32), and the penalty cost cpenalty, be 1. The initial
label, L0 = (0, 1, 1, 0, 0, 0, [0], 0), is pinned at the starting
depot, and the set queue E has 0. As a result, the first sub-
iteration starts at node 0. Because of two neighbors (node
1 and node 2) of the node 0. the two labels are created at
each node since L0, L1, and L2 are non-dominated labels.
Therefore, the set queue E has two elements, 1 and 2. The
second sub-iteration starts at node 1, and check its neighbors
(node 0, node 2 and node 3). The node 2 and node 3 are
identified as new labels (L3 and L4) because the node 0 is
a unreachable node. In the first sub-iteration, the set queue
E includes two elements (node 2 and node 3). The third
sub-iteration starts node 2 with L2 and L3. Because of three
neighbors (node 0, node 1, and node 3), the algorithm checks
feasibility of the all the routes based on an unreachable node
and non-dominant route condition. A potential label based

on L2 (La = (2.414, 3, 1, 1, 1, 0, [0, 2, 1], 3.414)) is rejected
because this label is dominated by L1. Other neighbors
are easily checked based on the label checking algorithm
illustrated in Algorithm 1. The results of the label correction
in the example is summarized on Table I.

Algorithm 1 Pseudo code of label correcting algorithm
adopted from [29]
Input: G(N,A)
Output: list of labelsn+1

Initialization
E.enqueue(0)
while E is not empty do
vi = E.dequeue()
for vj in neighbors of vi do
Fij = empty
for labeli in list of labelsi do

if U j
i is reachable then
Fij .extend(labeli, vj)

end if
end for
list of labelsj = EFF (Fij ∪ list of labelsj)
if list of labelsj has changed then
E.enqueue(vj)

end if
end for

end while
return list of labelsn+1

To combine the label correcting algorithm into the column
generation, the cumulative cost, Cz , needs to be updated by
dual variables from the master problem, π. The updating rule
of the cumulative cost is defined as follows

Ĉz =
∑

(i,j)∈Qz

(cij − πi) + fpenalty(Qz). (34)

The updated cumulative cost, Ĉz , varies every sub-problem
iteration. Thus, the sub-problem finds a different set of route
even though any information of the graph is unchanged. If
Ĉz < 0 at z = n + 1, the route in the label is added in the
master problem. This concept of the reduced cost commonly
applies to find a new basis in simplex algorithms.

D. Column Generation Framework with a Turn Penalty

The column generation consists of the initial value prob-
lem, the master problem, and the sub-problem. The details
of the column generation is illustrated in Fig. 2. During each
iteration of column generation, the linear relaxation of the
master problem and the sub-problem are solved.

Let us consider what happens to the mathematical structure
of the master problem during column generation process. The
constraints of the master problem can be arranged by design
variables which is each route. At the i-th iteration of column
generation, suppose that the master problem has p design
variables. After updating the master problem for (i + 1)-th



Fig. 2. Process of the proposed method based on column generation.

(a) i-th iteration (b) (i+1)-th iteration

Fig. 3. Shapes of constraint matrix at i-th and (i+1)-th iterations of column
generation.

iteration, it has p′, p′ > p, design variables which are added
by the sub-problem of i-th iteration as described in Fig. 3.
Each design variable, a feasible route, is added from the sub-
problem that creates a new column in terms of the constraint
matrix, and the information of the route is reflected by the
coefficients of the column, a. If there is no design variable
added from the sub-problem, p = p′, the column generation
process is stopped. Then, the proposed framework solves the
IP problem to obtain the optimal route.

V. NUMERICAL SIMULATION

To validate the proposed method, we conduct an exper-
iment with two numerical simulations. For simplicity, it is
assumed that the number of UAVs is one. To solve the arc-
based model and both the linear relaxation of the mater
problem and the IP master problem in the route-baed model,
the simulation uses the Gurobi solver that is a commercial
optimization solver.

The AOI of the first scenario is a rectangular area that
is modeled by 36 nodes: 34 waypoints and 2 depots. One
depot is for the starting node and the other depot is for
the returning node, which implies one phisical depot. The

Fig. 4. Solution of the arc-based model for a rectangle problem.

Fig. 5. Solution of the route-based model with a turn penalty for a rectangle
problem.

size of each grid cell is one-by-one. The location of the
starting depot and the returning depot are (1, 1). Fig. 4 and
Fig. 5 present the results of the arc-based optimization and
the route-based optimization. In the figures, the area with
light blue color is the AOI, and the line with orange color is
the optimized route. Results show that the route of the arc-
based optimization model has 35.41 distance and 19 turns. In
contrast, the route of the proposed route-based optimization
model has 38.47 travel distance and 9 turns. The results
are reasonably expected as the cost function of the arc-
based optimization model only minimizes distance, but the
cost function of the proposed route-based optimization model
minimizes distance, and the number of turns. Therefore, the
proposed method has less turns, but slightly longer travel
distance.

The AOI of the second scenario is applied to the irregular
shape that Li et al. [7] uesd for the demonstration of their
CPP algorithm. This model has 34 nodes:32 waypoints and 2
depots. The location of the starting/returning depot is (4, 0).
Fig. 6 and 7 illustrates the results of both optimization mod-
els. The route of the arc-based optimization has 34.24 travel



Fig. 6. Solution of the arc-based model for Li’s problem.

Fig. 7. Solution of the route-based model with a turn penalty for Li’s
problem.

distance with 20 turns. On the other hand, the proposed route-
based optimization has 37.37 travel distance and 18 turns. As
expected, the propsoed route-based optimization requires less
turns, but longer travel distance because of the penalty term
in the cost function. We can also observe that unlike the
result of the previous retangular AOI, the difference of the
turns between both methods are small because of the irregular
shape. It implies that this proposed route-based optimization
method can generate more energy effective route when AOI is
not irregular shape. Both numerical studies clearly show that
the proposed route-based optimization method is effective to
reduce the number of turns. All the results of two example
studies are summarized in Table II.

VI. CONCLUSION

The standard arc-based vehicle routing problem for the
CPP problem may not generate an energy efficient route
because it cannot handle directly turn motions that is one
of the main factors associated with energy consumption. To
address this standard arc-based vehicle routing problem, this
paper proposes a vehicle-routing-based optimization model

TABLE II
RESULTS OF THE NUMERICAL SIMULATIONS

Geometry Model Penalty Distance Turns Route

Rectangle Arc-based - 35.41 19 Fig. 4
Rectangle Route-based Eq. (32) 38.47 9 Fig. 5
Li’s shape Arc-based - 34.24 20 Fig. 6
Li’s shape Route-based Eq. (32) 37.37 18 Fig. 7

that enables us to include a turn penalty in a cost func-
tion. The proposed routing-based optimization is solved by
the framework of the column generation that consists of
the master and sub problems. In the iteration process, the
linear relaxation of the master problem is solved, which
allows the sub-problem to identify better candidate routes.
After finishing the iteration process, the column generation
framework solves IP problem to compute the optimal route.
Numerical simulations with the arc-based and the proposed
route-based optimization models were conducted to compare
their performance in terms of travel distance and the number
of turns. Results indicate that the proposed route-based
optimization method can reduce the number of turns using the
penalty term in the cost function. Particularly, when the AOI
is not irregular shape, the proposed route-based optimization
method is more effective to generate the optimal route with
less turns. The other advantage of the proposed method is
that it has a flexible penalty function that allows us to easily
impose other penalties such as turning angle, turning time,
and actual energy consumption.
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