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A wide range of aircraft performance and safety analyses are greatly facilitated by the
development and availability of reliable and accurate aircraft performance models. In an
ideal scenario, the performance models would show inherently good agreement with the
true performance of the aircraft. However, in reality, this is almost never the case, either
owing to underlying simplifications or assumptions or due to the limited fidelity of available
or applicable analysis tools. In such cases, model calibration is required in order to fine-
tune the behavior of available performance models to obtain the desired agreement with
the truth model. In the case of point-mass steady-state performance models, challenges
arise due to the fact that there is no obvious, unique metric or flight condition at which to
assess the accuracy of the model predictions, and since a large number of model parame-
ters may potentially influence model accuracy. This work presents a systematic two-level
approach to aircraft performance model calibration that poses the calibration as an op-
timization problem using the information available. The first level consists of calibrating
the performance model using manufacturer-developed performance manuals in a multi-
objective optimization framework. If data is available from flight testing, these models are
further refined using the second level of the calibration framework. The performance mod-
els considered in this work consist of aerodynamic and propulsion models (performance
curves) that are capable of predicting the non-dimensional lift, drag, thrust, and torque
produced by an aircraft at any given point in time. The framework is demonstrated on two
popular and representative single-engine naturally-aspirated General Aviation aircraft. The
demonstrated approach results in an easily-repeatable process that can be used to calibrate
models for a variety of retrospective safety analyses. An example of the safety analyses
that can be conducted using such calibrated models is also presented.

I. Introduction and Motivation

The development of models is ubiquitous in a broad range of performance studies and safety analyses. The
ability to accurately model complex phenomena contributes greatly towards enhancing the understanding
of their performance of vehicles in real-world scenarios. One of the main advantages of using performance
models in safety analysis is the ability to use recorded data to predict unrecorded quantities of interest.
For example, using recorded flight data from a digital flight data recorder (DFDR) [1] in conjunction with
aircraft performance model can help predict non-dimensional lift, drag, thrust, etc. These quantities along
with flight data can be used for various for retrospective safety analyses such as evaluation of energy-based
safety metrics [2, 3], detecting anomalous flights in a large set of flight data records [4–6], estimating
the weight of the aircraft, creating performance envelopes, etc. The quality of results obtained from these
retrospective analyses depends on the availability of well-calibrated performance models for predicting the
vehicle’s performance.

General Aviation (GA), according to the Federal Aviation Administration (FAA) is “that portion of civil
aviation that does not include scheduled or unscheduled air carriers or commercial space operations”. Despite
the improving safety record of aviation operations, GA aircraft have traditionally had higher accident and
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incident rates [7]. The availability of additional data in the form of performance model predictions is a
valuable asset for incident and accident investigation, retrospective analyses, flight training etc.

The problem being addressed in this paper is the calibration and validation of point-performance steady
state models of small GA fixed-wing aircraft (such as the Cessna 172). These models are available in the form
of variations of important non-dimensional quantities relevant for aircraft performance, such as lift curve,
drag polar, propeller polar, etc. A preliminary implementation of such models using empirical relations and
assumptions can be found in Harrison et al. [8] and Min et al. [9]. In an ideal scenario, the performance
models would show inherently good agreement with the true performance of the aircraft. However, in reality,
this is almost never the case, either owing to underlying simplifications or assumptions or due to the limited
fidelity of available or applicable analysis tools. In the case of point-performance steady-state performance
models, challenges also arise due to the fact that there is no obvious, unique metric or flight condition at
which to assess the accuracy of the model predictions, and since a large number of model parameters may
potentially influence model accuracy. The availability of accurate calibration and validation data can limit
the applicability of developed models. All the limitations mentioned necessitate the calibration of developed
empirical models in a systematic fashion in order to deploy them for performance and safety analyses.

Computational 
Model

Benchmark Data

Adequate?

Accuracy 
Requirement

Difference

No ? Acquire Additional Benchmark Data

No ? Update/Calibrate Model Parameters

Use Model for 
Prediction

Validation 
Metric

Figure 1. Calibration of computational models and use for prediction (from Oberkampf and Barone[10])

Model calibration is defined as “the process of adjusting numerical or physical modeling parameters in
the computational model for the purpose of improving agreement with experimental data”[11]. The overall
process of calibrating computational models has been outlined by Oberkampf et al. [10, 12] and has been
reproduced in Figure 1. The process consists of comparing the predictions from computational models with
some benchmark data (usually publicly available). The comparison is made in terms of certain critical
output parameters called validation metrics. If there is sufficient agreement between the computational
model and benchmark data, the model is used for prediction. If not, the parameters of the model are
updated or calibrated until the adequacy requirements are met. Wherever possible, additional benchmark
data is acquired. In the type of calibration undertaken here, the form of the model is assumed to be
fixed and the parameters are varied to achieve accuracy of model predictions. In such cases, the values of
context-specific inputs and variables are unknown or uncertain and the observations or benchmark data are
used to tune these parameters. There exist other types of model calibration frameworks such as system
identification [13] or Bayesian Calibration [14] in which the model form is not assumed to be fixed. These
frameworks are not considered here as they require more detailed input-output data which is typically not
available for GA performance and safety studies.

The errors or uncertainties in the performance models can stem from various sources. There are two
main types of uncertainty [15]: aleatory uncertainty due to inherent variation (irreducible) and epistemic
uncertainty due to lack of knowledge (reducible). Even when dealing with performance models for the same
GA aircraft, there can still be several reasons due to which the performance actually observed can differ from
predicted performance. These errors arise due to the cumulative effect of factors not included in the model
and random effects on the estimate. In the context of the present models, some of the important factors
that can cause a difference in actual versus predicted performance are:
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• Variations in aircraft gross weight between flights and the fact that gross weight is most often unknown
(epistemic)

• Degradation in performance of aircraft systems (such as engine etc.) with age (epistemic) or additional
drag due to unclean surfaces, insect accretions, etc.

• Changes or modifications made to aircraft that affect its aerodynamic behavior (epistemic)

• Variation in aircraft model (C172S versus C172R - epistemic)

• Model Inadequacy (epistemic)

• Unknown/Inaccurate model parameters (epistemic)

• Piloting skill (epistemic)

• Noise in recorded data (aleatory)

• Environmental conditions (aleatory)

Due to all these uncertainties, it is essential to calibrate the aircraft performance models prior to using
them for safety analysis. The rest of the paper is organized as follows: Section II describes the overall setup of
the model calibration framework, Section III contains the implementation of the two-level calibration process
utilized in this work, Section IV contains preliminary results from application of the calibration process to
a representative GA aircraft and validation of the models, and Section V contains conclusions drawn from
this work and potential avenues for future work.

II. Model Calibration Framework

In the work undertaken here, the term “performance model” is used in a specific context. An aircraft
performance model consists of two individual disciplinary models: aerodynamics and propulsion. The aero-
dynamics model contains variations of non-dimensional lift and drag with the airplane angle-of-attack. The
propulsion model consists of variations of non-dimensional thrust with vehicle speed and propeller revolutions
per minute (RPM) as well as engine power lapse with altitude and temperature.

Figure 2. Schematic of two-level calibration process

Figure 2 outlines the schematic of the two-level process followed in this work for model calibration. Many
of the decisions made in GA safety analysis depend upon the availability of data. The previous empirical
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models developed for GA operations ([8, 9]) utilized data from the public domain due to lack of flight
data. These models were independently calibrated against available benchmarks. However, rarely are such
performance models used in isolation. Sometimes, metrics that are not estimable using a single model alone
can be estimated using predictions from a combination of models [3, 16]. While this could add uncertainty to
the prediction, it opens up new avenues to test, calibrate, and fine-tune model parameters. Similarly, in the
event of availability of some amount of flight data, a method needs to be available to utilize that information
appropriately to improve model predictions. Therefore, two levels of calibration-data availability are defined,
(i) publicly available data and (ii) flight data), and make up the corresponding two levels of the developed
model calibration framework.

Three external inputs are required for the entire calibration framework and have been described in this
section. The levels of the framework are elaborated in the next section on implementation. It is noted that
recorded flight data might not always be available and therefore Level-II calibration is only possible when
such data is available. In cases where required flight data is unavailable the calibration process is terminated
after Level-I and the model(s) obtained after Level-I are used for safety analysis.

A. Aircraft Data

In order to begin the process, basic data about the geometry of the aircraft along with publicly available
performance data for calibration and validation is required. Ideally, flight data or flight test data should
be used, but this may not be readily available for the aircraft in question. An alternative source for this
information is documentation published by the manufacturer of the aircraft such as the Pilot Operating
Handbook (POH). The POH is a document developed by the airplane manufacturer and approved by the
FAA which lists important information regarding the design, operations, and limitations of the aircraft, as
well as its performance characteristics. Although the performance tables listed in the POH are idealized
capabilities that a brand new aircraft can theoretically attain under ideal conditions, it is nevertheless a very
valuable source of information for calibrating models. As a POH is also readily available for most aircraft,
it would enable a calibration process that is easily repeatable. The data from the performance tables in the
POH is collected in comma-separated values (CSV) format and compared against predicted performance of
aircraft using models. Details on the data used in each level of the calibration process are provided in the
subsequent section.

B. Empirical Performance Models

Figure 3 shows the flow of information in the individual discipline models used in this work. The initial
development of the models can be found in Harrison et al. [8] and Min et al [9]. Given a set of inputs and
environmental conditions, it is of interest to predict the aerodynamic and propulsive performance of a GA
aircraft in terms of certain non-dimensional coefficients. While these (or similar) models of aerodynamics
or propulsion may be validated against published data, it is advantageous to calibrate them together as an
aircraft performance model due to the inherent uncertainties associated with using such models on actual
flight data. One of the reasons for this is that model input data includes factors such as geometry, operational
parameters, and ambient conditions, and can come from a range of sources that may not always be measurable
or easily available. The current set of aerodynamic models consist of four lift-curves and drag polars (one
for each of four flap settings - 0, 10, 20, and 30 deg. - as is typical on a GA aircraft). On the other hand,
the propulsion model consists of a torque and thrust curve. A brief description of the models follows.

1. Propulsion

Among currently operated GA vehicles, the most common means of propulsion is a propeller driven by
an internal combustion engine [17]. Following this trend, the propulsion model is similarly divided into
individual models of internal combustion engine performance and propeller performance, which combined
yield a propulsive model that is appropriate for a large subset of the GA fleet. Many approaches for engine
modeling exist within the literature, and a short survey and implementation of some notable methods can be
found in previous work by the authors [8]. In that work, it was seen that a detailed modeling of the engine’s
cycle produces accurate results, though a high computational cost is incurred. This expense can, however,
be avoided while still maintaining a reasonable level of accuracy by using published relationships for engine
power lapse as functions of local atmospheric density ratio, such as that given by Gudmundsson [18]. As
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Figure 3. Information flow in aircraft performance models

computational time and cost were important considerations for the model calibration framework, this latter
approach for engine modeling was chosen.

Alongside the engine model, a model of propeller performance was implemented which predicts the
efficiency characteristics of a given propeller geometry. As an input, the model requires propeller geometry
in the form of blade chord lengths and pitch angles at several intervals along the span of the propeller
blade. This geometric data is combined with airfoil aerodynamic data computed using XFOIL [19], an
open-source 2-D aerodynamic prediction program. To generate the 3-D performance of the full propeller,
the geometric and 2-D aerodynamic properties are then used with a code based on blade-element momentum
theory [20–22]. When matched with the output of the engine model, this propeller model yields a prediction
of the propulsive performance of the desired GA aircraft over a wide range of operating conditions.

2. Aerodynamics

A variety of aerodynamic modeling methods for a fixed-wing aircraft exists ranging from first order approx-
imations to high-fidelity computational fluid dynamics (CFD) tools. Among the existing aerodynamic per-
formance prediction methods, a theoretical physics-based modeling method is the most appropriate method
for developing an aerodynamic model for a fixed-wing GA aircraft because it only requires a minimal set of
information that is publicly available and provided by authoritative and reliable sources. Min et al. reviewed,
implemented, and comparatively evaluated some of the most well-known physics-based modeling methods
for aerodynamic performance prediction as applied to a representative GA aircraft [9]. The inputs for the
aerodynamic model developed by Min et al. are aircraft geometric information from the POH [23], publicly
available empirical data [24], and typical operating conditions [23].

The outputs provided by the developed model are lift curves and drag polars for clean and flap-deployed
configurations. Although this aerodynamic model is validated against some reference data published in
literature, the main limitation of this modeling method is that it is not always possible to acquire reliable
reference data for model validation. Thus, it is necessary to develop a standard model calibration process that
can be undertaken with publicly available data in order to add more reliability, flexibility, and repeatability
to the suggested aerodynamic modeling method.

3. Parameterization

The empirical models available are in the form of curves that can be queried at the flight conditions of interest.
In order to calibrate these models, it is necessary to parameterize the curves using appropriate factors to
provide flexibility to the calibration process. In the calibration process, these factors are varied to modify
the nature of the curves as desired. These calibration factors correspond to certain physical characteristics
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of the aircraft such as lift-curve slope for airfoil, wing, and aircraft, the lift and drag coefficient increments
for different flap settings, scaling of intercepts for different curves, sectional airfoil characteristics of the
propeller, slope shift of the propeller pitch, scaling of propeller chord, etc. The advantage of parameterizing
in this manner is that it allows for an easier setup for optimization and allows modifying individual curves
without affecting others.

A total of thirty calibration factors are included in the calibration process and a detailed list of each
factor, its description, and range of possible values is included in Table 2 provided in the appendix. For
each calibration factor, judgment is used in determining whether its effect on performance curves should be
modeled as being of an additive or multiplicative nature. Similarly, the upper and lower limits are chosen
so as to always satisfy physical constraints of the problem.

C. Recorded Flight Data

When available, recorded flight data from actual flights can be used to undertake Level-II of the calibration
framework. The flight data obtained from the DFDR are a multivariate time series, whose lengths typically
vary between records due to varying duration of flight. The number of parameters varies around 20 (in GA
operations) and these parameters are recorded at a specific frequency (e.g., once per 1 second interval). The
data consist of parameters related to the state, attitude, basic engine information, environmental conditions,
Global Positioning System information, and others. While typical GA aircraft flight data record may not
contain a rich set of parameters, the flight record used for calibration is expected to contain a rich set including
parameters such as the altitude, true airspeed, vertical speed, engine RPM, outside air temperature, weight
of the aircraft (or initial weight and fuel flow rate), position of the flaps, and others. In the current work,
data recorded on a Cessna 172 and Piper Archer aircraft equipped with a Garmin G1000 [25] system are
used. At least one flight data record is required for performing calibration with the requirement of additional
flight data records for validating the calibrated model.

III. Implementation and Results

Each of the two levels of the calibration framework outlined in Figure 2 follows the same stencil with different
algorithms, benchmark data, etc. used for each. Figure 4 illustrates the common stencil used in both levels
of the calibration process. The model(s) obtained from the process may be used directly for prediction or
analysis or passed on to the next level in the framework. In order to modify the performance models in
a systematic manner during calibration, they are parameterized using certain variables called calibration
factors. A full list of calibration factors along with the performance model they modify and the level during
which they are modified is provided in Table 2 in the appendix. The values of the calibration factors are
collected in a single vector henceforth called the “calibration vector”. Each calibration vector results in the
generation of a unique set of performance model curves which can then be validated or tested. In each level,
there are four important choices that need to be made during calibration: (i) the benchmark data, (ii) metrics
used to measure discrepancy, (iii) calibration factors used in the vector, and (iv) the optimization strategy.
The subsequent sections describe the choices made and the rationale for Level-I and Level-II calibration.

 Optimization Strategy

Calibration 
Vector

Generate new 
models

Discrepancy 
with benchmark

Converged

Use for prediction 
or analysis

Not converged:
update

Figure 4. Information flow in calibration of aircraft performance models using Pilot Operating Handbook
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A. Level-I Calibration

1. Benchmark Data

As described previously, empirical models for aerodynamics and propulsion can be obtained independently
and used in making predictions. However, due to the uncertainties noted, there might be context-specific
information that precludes their efficient use in safety analysis. Therefore, it is preferable to simultaneously
calibrate both aerodynamics and propulsion models. The benchmark data typically used for this level is pub-
licly available information from manuals such as the POH. The POH lists important information regarding
the design, operations, and limitations of the aircraft, as well as its performance characteristics. Although the
POH performance tables are for a brand new aircraft under ideal conditions, they are nevertheless valuable
for calibrating performance models. The POH contains tables that list the aircraft performance at various
operating conditions and phases of flight. While some variation in the format of data presented is expected
between different handbooks, most have some common performance tables, such as those related to rate of
climb, cruise performance, stall speeds, etc. In addition, the POH typically also identifies best glide speeds,
speed for best rate of climb, etc. All of these conditions can be used to calibrate the performance models.
For the purpose of this work, the conditions specified in Table 2 have been utilized. The aircraft under
consideration are the Cessna 172 and the Piper Archer.

2. Discrepancy Metric

The performance tables/condition in some cases have multiple data points for comparison (such as cruise,
rates of climb) and in other cases have a single scalar value to compare (glide angle, best glide speed).
Therefore, the root mean square error (RMSE) metric is computed for conditions having multiple calibration
points so that a single value of error metric is obtained for each performance condition. Each phase of flight
outlined in Table 1 will result in a single scalar error which will be combined to yield a vector.

Table 1. Various conditions from POH used in model calibration

Calibration Factors Utilized
From:

Phase of Flight/
Condition Error Metric

Engine, Propeller Cruise RPM Imbalance (RP Mpred−RP MP OH)
RP MP OH

Aerodynamics, Propeller Cruise Thrust-Drag
Imbalance

(T−D)
T

Aerodynamics Glide Angle (F P Apred−F P AP OH)
F P AP OH

Aerodynamics Best Glide Speed (V bgpred−V bgP OH)
V bgP OH

3. Calibration Factors

A full list of calibration factors is provided in the appendix (Table 2). The POH for the Cessna 172 (and many
other similar aircraft) typically have very limited performance data for flapped configurations. Therefore,
the calibration factors which modify the curves in these conditions cannot be tuned in Level-I calibration due
to lack of suitable benchmark data for these conditions. The third column in Table 2 (appendix) indicates
the calibration factors used in Level-I calibration with a check mark.

4. Optimization Strategy

While the perfect model would ideally simultaneously minimize the error for all POH conditions, due to the
epistemic uncertainty in the models it is expected that different phases of flight will have different errors.
One of the most likely reasons for this is the fact that the models themselves have different fidelity in different
operating conditions. For example, a drag polar from empirical build-up methods for clean configuration is
expected to be more accurate than that for a configuration with flaps deployed, due to the inherent additional
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flow complexity (such as non-linearity, flow separation, sensitivity to flap geometry, etc.). Another possible
reason is that there might be more calibration data for some conditions than others, leading to better
predictions for certain phases of flight.

Since each phase of flight or POH condition will yield a different error metric, the calibration will be
a multi-objective problem. A multi-objective optimization algorithm is therefore used for calibrating the
performance models to the POH performance tables which can then enable choosing models as suitable
points on a Pareto front. The well known algorithm NSGA-II is utilized for multi-objective optimization [26].
The implementation of NSGA-II within MATLAB is utilized to find the Pareto front of calibration vectors.
Any model from this front is Pareto-optimal and may be chosen for the purposes of the application here. It is
noted that the calibration up to the end of Level-I and generation of Pareto-optimal models is implemented
without the use of a single flight data record. This is inherently valuable as detailed recording capability may
not be readily available for all GA aircraft, even though performance predictions and safety assessments are
nonetheless desired. In such cases, models calibrated using Level-I of the framework will prove to be useful.

5. Results

Figure 5 shows the distribution of error metrics outlined earlier for points on the obtained Pareto front using
optimization for each of the two aircraft. As is evident from the figure, due to the limitations of model
structure, there is no single point that minimizes all errors. The points depicted in the figure represent a
Pareto-optimal set of models from which a specific model can be selected. In such situations, it is difficult
to make a choice for the appropriate model and in the absence of further information, multiple models may
be used to make predictions.

(a) Cessna 172 (b) Piper Archer

Figure 5. Scatter of error metrics for Pareto-optimal set of models obtained after Level-I calibration

For a chosen model, such as the ones highlighted in red in the figure, some amount of additional informa-
tion is required for basic validation. This is usually in the form of flight data records with some parameters
recorded. Since the quantities being estimated using the performance models are not recorded, even in the
higher end of GA flight data recorders such as Garmin G1000 [25], a suitable metric needs to be chosen
for validation. The specific total energy rate of the aircraft, an energy-based metric used frequently in
performance studies [3], can be evaluated from recorded flight data and also independently evaluated using
performance models. Therefore, the value of this metric is evaluated at each point in a validation flight using
the data and the models. The error obtained at each point is then visualized and can be aggregated over
the entire flight data record in the form of the root mean square error. Figures 6 and 7 show the variation
of this metric for two flight data records (one each from the Cessna 172 and Piper Archer). As is evident
from the figures, there is a good overall agreement between the actual value of the metric as measured in the
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Figure 6. Variation of specific total energy rate metric – actual and predicted (Cessna 172)

Figure 7. Data traces of STER metric for sample flight record 1 (Piper Archer)

flight data and the predicted value obtained using the calibrated performance models. The main advantage
of using Level-I calibrated models is that when additional flight data is available that is not as rich in the
set of recorded parameters, the calibrated models can be used to provide predictions for energy metrics of
interest to be used in retrospective safety analysis. Similarly, in the event that flight data records cannot be
shared between entities for various reasons, calibrated models that are validated on such flight records can
be transferred between different users for retrospective analysis.

B. Level-II Calibration

In the Level-I calibration, only a limited number of flight conditions are available. This does not allow the
calibration of all factors, but only those for which the POH provides directly relevant performance data.
Most notably, POH performance data pertaining to aerodynamically dirty configurations is sparse, and thus
calibration factors associated with the aerodynamic characteristics for such configurations cannot be tuned
in the calibration process. Despite calibration to POH, models are expected to suffer from uncertainties.
For example, Longmuir et al. [27] have demonstrated that something as simple as unwashed exteriors on
commercial aircraft can increase drag up to 1%. GA aircraft are known to have many more deformities,
non-flush sitting doors, protuberances, etc. that can cause significant increases in drag. Similarly, higher
surface roughness can lead to degraded aerodynamic performance. Therefore, the second level of the model
calibration framework seeks to improve model predictions using a limited amount of actual flight data.
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1. Benchmark Data

The benchmark data for Level-II calibration come from a limited number of flights (from project partners)
with certain key additional parameters recorded. This data may be obtained from a G1000-type system. An
important piece of information assumed to be available is the position of the flaps at each point during the
flight. This type of flight data is not required for all flights on which the models will be deployed, but only
for a handful of flights whose data records will be used for model calibration. If the system cannot directly
record flap position, then flap activity for such flights may also be manually logged. It should be specifically
noted that flight data for flapped configurations allows the development of the Level-II calibration method.

2. Discrepancy Metric

In the case of Level-II calibration, a metric to measure the discrepancy is sought which can be indepen-
dently evaluated from the calibration flight data and aircraft performance models. From previous work on
energy-based metrics [2, 3], various metrics which are useful for retrospective safety analysis were identified.
Additionally, the data required to compute each metric was also outlined. It is noted here that the specific
total energy rate of the aircraft is a metric that can be evaluated using flight data as well as basic aircraft
performance models. This metric is widely used in performance analysis [28–30], flight training [31], cockpit
displays [32], etc. Because of these characteristics and the fact that this metric can be evaluated using
available data, it is utilized for calibration of the performance models. For reference, it defined as:

STER = (T −D) V

W︸ ︷︷ ︸
From performance models

= ḣ + V × V̇

g︸ ︷︷ ︸
From flight data

(1)

The discrepancy of this metric at each point in the calibration flight can be evaluated and aggregated over
the duration of the entire flight using the RMS error. Therefore, for Level-II calibration, a single scalar
metric is obtained for use in optimization.

3. Calibration Factors

Unlike Level-1 calibration using POH data, where the calibration factors are restricted to those for which
test conditions exist in the manual, Level-II calibration can use the entire set of calibration factors (assuming
that the flaps have been used at least once in the calibration flights). Therefore, all thirty calibration factors
can be varied within their range in the Level-II calibration. While this increases the dimensionality of the
space being explored, it enables sweeping a larger possible spread of performance curves.

4. Optimization Strategy

Unlike Level-I calibration, the Level-II calibration setup uses only a single discrepancy metric. This metric is
calculated at each point in the flight data record(s) available for calibration. Therefore the root mean square
(RMS) of this discrepancy over the entire flight is calculated and used. In case multiple flights are available
for calibration, the RMS over all the flights can be used. Since this is an indirect calibration process, an
evolutionary optimization algorithm is chosen. Additionally, as the calibration flight will only have limited
flight conditions at which to test the discrepancy, there may be multiple local minima. Therefore, a genetic
algorithm is used to ensure that the best possible calibration model is obtained.

Regarding implementation, the initial starting point of the algorithm can be chosen randomly within the
ranges of calibration factors or using information from prior efforts. In particular, the pareto-optimal set of
calibration vectors obtained from Level-I calibration can be used to “warm start” optimization in Level-II
calibration. This may yield faster algorithm convergence and provide better results. The implementation of
GA in MATLAB is utilized for this purpose.

5. Results

One of the advantages of Level-I (POH) calibration is that it does not require any flight data records. The
resulting calibrated aircraft performance models obtained from this level are shown to have good predictive
capability. Therefore, for Level-II calibration, it is useful to start the optimization from the POH-calibrated
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Figure 8. Variation of STER metric – actual and predicted (Cessna 172)

Figure 9. Data traces of STER metric for sample flight record 1 (Piper Archer)

models obtained from Level-I calibration. This can accelerate the convergence of the calibration and produce
models that have improved performance over the models from Level-I calibration. Starting from a Level-I
calibrated model that performs well on the validation flight data record is advantageous, as it ensures that
the predictive capability of the model is already good. An important difference noted previously is that the
quantities being predicted by each model are not individually recorded in the flight data. Rather an energy
metric that uses the difference between predictions from the two models is used. Therefore, simultaneously
varying both models that are already providing good predictions might cause the optimization to move away
from the minimum. Therefore, in Level-II calibration approach, the aerodynamics and propulsion models
are varied one at a time and the optimization is performed in an iterative manner until convergence. The
calibration factors are appropriately separated into aerodynamics and propulsion specific factors and inactive
factors are held to their Level-I optima or optima from the previous iteration.

The results obtained from Level-II calibration consist of a single performance model rather than a Pareto-
optimal set as was the case with Level-I calibration. Therefore, the single model obtained for each aircraft
can be used to predict the previously identified energy metric for the validation flight data records. Figures 8
and 9 show the data traces of the STER metric for the same two validation flights shown earlier in Level-I
calibration results. As is evident from the figures, Level-II calibration improves the agreement between actual
and predicted values of the metrics for both the aircraft.
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IV. Application to Flap Position Prediction

Obtaining a calibrated model is useful for a variety of retrospective safety analysis applications in GA. For
instance, one of the applications presented in earlier work was evaluation of various energy-based safety
metrics for use in an anomaly detection framework [2–6]. In GA, even for aircraft equipped with state-of-
the-art systems with data-logging capability (e.g., Garmin G1000-type systems), the flap position is often
not one of the logged parameters. Yet, flap activity is often a factor of interest for retrospective safety
analyses. Therefore, the ability to infer the flap position from flight data records (if not directly logged) with
reasonable accuracy is desirable.

Using the calibrated performance models in conjunction with energy metrics, it is possible to infer the
position of the flaps. In Figures 10 and 11, the flap position is inferred using performance models obtained
from Level-I and Level-II calibration. Figure 10 shows the actual and predicted flap position using Level-I
and Level-II calibrated models for the Piper Archer aircraft. Figure 11 shows the actual and predicted flap

Figure 10. Comparison of actual and predicted flap position using calibrated models for Piper Archer aircraft

Figure 11. Comparison of actual and predicted flap position using calibrated models for Cessna 172 aircraft
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position using Level-I and Level-II calibrated models for the Cessna 172 aircraft. The actual flap activity
comprised three complete flap cycles performed at three different airspeeds. In each flap cycle, the aircraft
starts in clean configuration, following which flaps are progressively deployed (detent by detent) and then
progressively retracted, finishing in clean configuration once again.

As is evident from both the figures, there is a good overall agreement between the actual and predicted
flap position using both levels of calibrated models. However, predictions made using Level-II calibrated
models have a much closer match of flap activity than those made with Level-I calibrated models. Making
continuous improvements in the model predictions thus provides improved estimates for the flap position in
retrospective safety analysis. This application represents one of several ways in which calibrated performance
models may be utilized for retrospective safety analysis of GA operations.

V. Conclusion

In this paper, a two-level framework for calibrating performance models of GA aircraft is demonstrated. The
main motivation behind the development of the framework is the desired ability to calibrate performance
models using different types of available data. The first level of the framework provides the ability to
obtain reasonably accurate models without the need for any actual flight data. The second level of the
framework improves the accuracy of Level-I models further using some amount of available recorded flight
data. The framework is demonstrated on two common and representative single-engine naturally-aspirated
General Aviation aircraft. The demonstrated approach results in an easily-repeatable process that can be
used to calibrate models for a variety of aircraft and retrospective safety analyses. An example application
of calibrated models is presented, while additional uses may be identified from related work and literature.
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Appendix: Description of Calibration Factors

Table 2. Description of calibration factors for models

Model Factor Description Level-I
Calibration

Level-II
Calibration

Engine Engine de-rate factor X X

Propeller Vertical shift of airfoil sectional lift curve X X
Propeller Scaling of airfoil sectional lift curve slope X X
Propeller Scaling of airfoil sectional minimum drag X X
Propeller Scaling of airfoil sectional quadratic parameters X X
Propeller Scaling of airfoil sectional lift at min. drag X X
Propeller Slope shift of propeller pitch X X
Propeller Translational shift of propeller pitch X X
Propeller Scaling of propeller chord X X

Aero. Scaling of maximum lift coefficient for flap 0 X X
Aero. Scaling of maximum lift coefficient for flap 10 X X
Aero. Scaling of maximum lift coefficient for flap 20 X X
Aero. Scaling of maximum lift coefficient for flap 30 X X
Aero. Scaling of parasite drag factor for clean configuration X X
Aero. Scaling of induced drag factor for clean configuration X X
Aero. Drag polar shifting factor (CD,minL) for clean configuration X X
Aero. Scaling of parasite drag increment factor for flap 10 setting – – X
Aero. Scaling of induced drag increment factor for flap 10 setting – – X
Aero. Scaling of parasite drag increment factor for flap 20 setting – – X
Aero. Scaling of induced drag increment factor for flap 20 setting – – X
Aero. Scaling of parasite drag increment factor for flap 30 setting – – X
Aero. Scaling of induced drag increment factor for flap 30 setting – – X
Aero. Scaling of lift-curve slope for flap 0 setting X X
Aero. Scaling of lift-curve slope for flap 10 setting X X
Aero. Scaling of lift-curve slope for flap 20 setting X X
Aero. Scaling of lift-curve slope for flap 30 setting X X
Aero. Scaling of lift-curve intercept for flap 0 setting X X
Aero. Scaling of lift-curve intercept for flap 10 setting X X
Aero. Scaling of lift-curve intercept for flap 20 setting X X
Aero. Scaling of lift-curve intercept for flap 30 setting X X
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