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TrafficManagement Initiatives (TMI) such asGroundDelay Programs (GDP) are instituted
by traffic management personnel to address and reduce the impacts of constraints in the
NationalAirspace System. GroundDelayPrograms are initiatedwhenever demand is projected
to exceed an airport’s acceptance rate over a lengthy period of time. Such instances occur when
an airport is affected by conditions such as inclement weather, aircraft congestion, runway-
related incidents, equipment failures, and other causes that do not fall in these categories. Over
the years, efforts have been made to reduce the impact of Ground Delay Programs on airports
and flight operations by predicting their occurrence. However, these efforts have largely focused
onweather-relatedGroundDelay Programs, primarily due to a lack of access to comprehensive
Ground Delay Program data. There has also been limited benchmarking of Machine Learning
algorithms to predict the occurrence ofGroundDelay Programs. Consequently, this research 1)
fused data from the Traffic Flow Management System (TFMS), Aviation System Performance
Metrics (ASPM), andAutomated SurfaceObserving Systems (ASOS) datasets, and 2) leveraged
supervised Machine Learning algorithms to develop prediction models as a means to predict
the occurrence of weather and volume-related Ground Delay Programs. The Kappa Statistic
evaluation metric revealed that Boosting Ensemble was the best suited algorithm for predicting
the occurrence of weather and volume-related Ground Delay Programs.

I. Nomenclature

AAR = Airport Arrival Rates
ASPM = Aviation System Performance Metrics
ASOS = Automated Surface Observing Systems
CASSIE = Computing Analytics and Shared Services Integrated Environment
CSV = Comma-Separated Value
EDCT = Expected Departure Clearance Times
F AA = Federal Aviation Administration
FI X M = Flight Information Exchange Model
FN = False Negative
FP = False Positive
GDP = Ground Delay Program
N AS = National Airspace System
T AF = Terminal Aerodrome Forecast
TFMS = Traffic Flow Management System
T MI = Traffic Management Initiative
T N = True Negative
TP = True Positive
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II. Introduction and Motivation

The Federal Aviation Administration (FAA) is responsible for regulating, and maintaining the safety and efficiency
of the National Airspace System (NAS) [1]. The National Airspace System is comprised of a vast network of

radars, airports and landing areas, aeronautical charts, information, services, rules and regulations, procedures, technical
information, and manpower [1]. Whenever conditions at an airport or an area in the airspace require action(s) to be
taken to maintain safety or ease congestion in the airspace, traffic management personnel analyze demand on the NAS
and assess if Traffic Management Initiatives (TMI) such as Ground Delay Programs (GDP) should be initiated [2].

A. Ground Delay Program (GDP)
A Ground Delay Program is initiated at an affected airport whenever aircraft demand is projected to exceed the

airport’s acceptance rate for a lengthy period of time [3]. An airport’s acceptance rate may be lower than demand due to
conditions affecting the airport, such as inclement weather, aircraft congestion, runway-related incidents, equipment
failures etc. Figure 1 shows a breakdown of the different causes of Ground Delay Programs in 2017.

Fig. 1 Causes of Ground Delay Programs across the National Airspace System (NAS) in 2017 [4]

Whenever Ground Delay Programs are issued, traffic management personnel use the Enhanced Traffic Management
System (ETMS) to predict, on national and local scales, traffic surges, gaps, and volume based on current and anticipated
airborne aircraft [5]. This is done by evaluating the projected flow of traffic into airports and sectors, then implementing
the least restrictive action necessary to ensure that traffic demand does not exceed system capacity. During Ground
Delay Programs, ETMS issues Expected Departure Clearance Times (EDCT) to affected flights. EDCT is the runway
release time (“Wheels Off”) assigned to aircraft due to Traffic Management Initiatives (TMI) that require holding aircraft
on the ground at the departure airport [6]. EDCT are updated whenever conditions improve to reduce delay durations.

B. Review of prior research related to Ground Delay Programs (GDP)
Smith et al. [7] used Terminal Aerodrome Forecast (TAF) weather data, Airport Arrival Rate (AAR) data from

Aviation System Performance Metrics (ASPM), delay data from the Bureau of Transportation Statistics website and
Support Vector Machines to predict Airport Arrival Rates (AAR), which were then used to predict weather-related
Ground Delay Program program rates, duration and passenger delays. The authors pointed out that the limitations of
Support Vector Machines such as its inability to predict rare occurrences impacted the performance of the prediction
model. The performance of the prediction model can also be improved by benchmarking Machine Learning algorithms
to identify the best suited algorithm for the prediction models.

Hansen et al. [8] outlined the Dynamic Stochastic Ground Holding (DSGH) algorithm, which was used to plan
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and control a Ground Delay Program at the San Francisco International Airport under uncertainty in airport capacity.
The algorithm revised departure delays, if necessary, by dynamically adapting to weather forecasts. Results obtained
showed that the algorithm reduced expected delays by 7%. However, the scope of this research can be expanded by
including other causes of Ground Delay Programs such as aircraft congestion in planning and controlling a Ground
Delay Program as attempted by Hansen et al.

Mukherjee et al. [9] also predicted the occurrence of Ground Delay Programs based on weather conditions and
traffic demand using the Logistic Regression and Decision Tree Machine Learning algorithms. Results showed that the
Logistic Regression model performed better than the Decision Tree model in predicting the occurrence of Ground Delay
Programs at the Newark and San Francisco International Airports. It is important to note that the prediction models
were developed using actual weather conditions instead of weather forecasts. Forecasted weather conditions are used by
traffic management personnel to implement Ground Delay Programs. This limitation can be addressed by using weather
forecast data from a database such as the Automated Surface Observing Systems (ASOS).

Mangortey et al. [10] predicted the occurrence of weather-related Ground Delay Programs (GDP) at the Newark
(EWR), La Guardia (LGA), and Boston Logan (BOS) International Airports using Decision Tree Machine Learning
algorithm, which performed well. Expanding the scope of this research to include volume-related Ground Delay
Programs, and benchmarking different techniques will provide much more information to aviation stakeholders.

The review of prior research highlights a few limitations and/or gaps. First, prior work has largely focused on
weather-related Ground Delay Programs. Other important causes such as volume constraints have been largely ignored,
primarily due to a lack of access to data. This research addresses this limitation by predicting the occurrence of Ground
Delay Programs caused by inclement weather and volume constraints.

Second, a lack of benchmarking to evaluate and compare the performances of different Machine Learning algorithms
in predicting Ground Delay Programs has led to the development of poorly performing prediction models [11, 12].
Consequently, this research focuses on benchmarking Machine Learning algorithms to identify a suitable algorithm for
the prediction model.

C. Research Objective
The objective of this research is to benchmark Machine Learning algorithms, to identify the best suited algorithm

for predicting the occurrence of weather and volume related Ground Delay Programs. In order to achieve this objective,
there was a need to analyze Ground Delay Programs and their incidence across the largest airports in the United States.
Figure 2 shows that the Newark (EWR), San Francisco (SFO), La Guardia (LGA), and Los Angeles (LAX) International
Airports had the highest incidence of Ground Delay Programs in 2017. It can also be seen that Los Angeles International
Airport had the best distribution of the different types of Ground Delay Programs compared to the other airports.
Thus, the prediction model was developed for Los Angeles International Airport. However, it is worth noting that the
methodology developed and used for this research can be re-implemented for other airports. The remainder of this paper
highlights the datasets and methodology used for this research, and discusses the results obtained from this research.
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Fig. 2 Breakdown of Ground Delay Programs by airport (2017) [4]

III. Datasets
In order to achieve the research objective highlighted in the previous section, there was a need to identify and

leverage datasets that contain information about Ground Delay Programs, airports, and forecasted weather conditions.
The datasets used are:

• Traffic Flow Management System (TFMS)
• Aviation System Performance Metrics (ASPM)
• Automated Surface Observing System (ASOS)

A. Traffic Flow Management System (TFMS)
The Traffic Flow Management System (TFMS) is used by air traffic management personnel to plan and execute

traffic flow management initiatives to ensure that constrained areas in the National Airspace System remain safe and
operate optimally [13]. TFMS is comprised of two message streams: TFMS Flight and TFMS Flow. The TFMS
Flight message stream provides initial flight plan messages, amended flight plan messages, departure and arrival time
notifications, flight cancellation messages, boundary crossing messages, and track position reports. The TFMS Flow
message stream on the other hand, provides data on traffic flow management initiatives such as Ground Stops, Reroutes,
Airspace Flow Programs etc [13].

The TFMS datasets were obtained from the FAA’s Computing Analytics and Shared Services Integrated Environment
(CASSIE). This collaborative environment brings FAA divisions, partners, and stakeholders together in a shared services
environment consisting of Big Data, computing power, and analytical tools. CASSIE utilizes the open-source software
framework, Hadoop Hortonworks, for data storage and handling. In particular, the Hadoop Distributed File System
(HDFS) allows for computer clusters to be linked robustly for high performance storage and computation [14]. Another
component of Hadoop is NiFi, which automates the movement of data between disparate data sources and systems,
making data ingestion fast, easy and secured [15].

B. Aviation System Performance Metrics (ASPM)
The Aviation System Performance Metrics database provides data from flights operating at 77 airports in the United

States referred to as "ASPM airports" [16], flight data from 27 air carriers referred to as "ASPM carriers" [17], airport
weather and runway data, and airport arrival and departure rates [18]. The ASPM data used for this research was
obtained from the online ASPM database in csv format [19]. This database provides a comprehensive overview of air
traffic for these airports and air carriers, and is composed of five modules [18]:

1) Metric module: This provides a comparison of actual flight departure and arrival times, and flight plan times, at
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"ASPM airports" and between city pairs, actual and unimpeded taxi times for "ASPM airports", a comparison of
actual flight departure and arrival times, and flight plan times for individual flights, and data regarding cancelled
flights and completion rates

2) Efficiency module: This provides Terminal and System Airport Efficiency data for airports, and actual airport
throughput (number of departures and arrivals) during a specified period of time

3) Enroute module: This provides average distance and time data for city pairs of 300 miles or more, and average
distance and time data from all flights 300 miles or more from their arrival airport

4) Dashboard module: This provides limited next day airport information
5) Other module: This provides information on flight diversions, a summary of Traffic Management Initiatives and

other aviation-related advisories, and the severity of weather factors with regards to their impact on flight delays
at airports

C. Automated Surface Observing Systems (ASOS)
The Automated Surface Observing Systems (ASOS) dataset provides forecasted weather conditions which are

widely used by meteorologists, climatologists, hydrologists, and aviation weather experts [20, 21]. This data provides a
summary of airport weather conditions such as the date and time that the conditions were recorded as well as weather
attributes such as ambient temperature, sea level pressure, visibility, wind speed, wind direction, wind gusts, dew point
temperature, precipitation accumulation, cloud height and amount, etc. ASOS data used for this research was obtained
online and in csv format [22].

IV. Methodology
In order to achieve the objective highlighted in Section II, the following served as a comprehensive methodology:

1) Step #1: Data processing
2) Step #2: Data fusion
3) Step #3: Model generation, validation, and testing
4) Step #4: Model evaluation

A. Step #1: Data Processing
In order to utilize the data required for this research, there was a need to not only understand the formats and contents

of the raw datasets but to also parse them into useful formats, when needed. This section will cover steps taken to parse
the Traffic Flow Management System (TFMS) datasets into a format suitable for analytical purposes.

1. Traffic Flow Management System (TFMS)
The Traffic Flow Mangement System (TFMS) datasets are stored in Flight Information Exchange Model (FIXM)

[23] format, which is widely used for storing and transmitting aviation data. Consequently, there was a need to parse the
TFMS datasets from FIXM format to csv format. These datasets are stored as hourly files comprised of all messages
generated during that hour in the FAA’s CASSIE environment, and have schema files which dictate the structure of the
files. The TFMS files were parsed using their respective schema to ensure that all required fields were extracted in their
correct format. This was done using a Python [24] parser developed by Mangortey et al. [10] which follows the process
highlighted in Figure 3 and is described below:

Fig. 3 XML/FIXM to JSON conversion process
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1) Since the datasets are comprised of messages generated within the hour, there is no way to distinguish between
the beginning of the file and the end of the file. Thus, it is important to enclose each file with a header and footer
such as <root > and <\root > respectively to ensure that each file has unique starting and end points.

2) Extract the schema location from the xsd file. The schema location is typically of the format "xlmns:......"
3) Parse the FIXM file using the ElementTree [25] Application Program Interface (API)
4) Extract "Active" weather and volume-related Ground Delay Program messages for LAX
5) Store each Ground Delay Program message as a row in a csv file

After parsing the TFMS datasets, duplicate rows were removed, and the data was analyzed to ensure that the datasets
were parsed correctly. Parameters extracted for "Active" Ground Delay Programs at the Los Angeles International
Airport from January to August 2017 were the start and end dates and times of Ground Delay Programs, and their causes.

2. Aviation Systems Performance Metrics (ASPM)
Airport data for Los Angeles International Airport from January to August 2017 was extracted online in csv format

from the Aviation System Performance Metrics database. The number of scheduled arrivals per hour and the actual
number of arrivals per hour at LAX were extracted and used for this research.

3. Automated Surface Observing Systems (ASOS)
Automated Surface Observing Systems data was extracted online in csv format. The following parameters were

extracted for Los Angeles International Airport from January to August 2017:

• Date and time
• Air Temperature (Fahrenheit)
• Dew Point Temperature (Fahrenheit)
• Relative Humidity (%)
• Wind Direction (Degrees)
• Wind Speed (Knots)
• Precipitation Accumulation (Inches)
• Pressure Altimeter (Inches)
• Sea level pressure (Millibars)
• Visibility (Miles)
• Wind Gusts (Knots)
• Cloud Coverage Type
• Cloud Altitude (Feet)

In order to ensure that the ASOS dataset was complete and appropriate for Machine Learning, the dataset was
analyzed for missing values. The cloud coverage and altitude parameters particularly had a lot of missing values which
meant that no clouds were present. These missing values were replaced with “M" representing missing values.

B. Step #2: Data Fusion
In order to develop a prediction model using Machine Learning algorithms, there was a need to fuse the datasets

together. Data Fusion is a method of data analysis that involves fusing data from different sources to produce more
consistent and useful information than that obtained from a single data source [26]. The datasets were fused by date
and time, and the cause of the Ground Delay Programs served as the target of this model."Normal" was indicated as
the cause whenever a Ground Delay Program did not occur. Predictors for this model were number of actual arrivals,
number of scheduled arrivals, weather conditions, month, and hour.

C. Step #3: Model Generation, Validation and Testing
Lantz [27] defines Machine Learning as "the field of study interested in the development of computer algorithms to

transform data into intelligent actions". Machine Learning has been widely used over the years. Examples of Machine
Learning applications include forecasts of weather behavior and long-term climate changes [28], identification of
fraudulent credit card transactions [29], prediction of popular election outcomes, [30] etc.
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Machine Learning has been beneficial to many industries. However, it has its limitations as it has little flexibility to
extrapolate outside of the strict parameters it learned. Thus, it is important for the model to be trained accurately and
comprehensively to avoid over-fitting or under-fitting. Machine Learning algorithms and their applications also rely on
various assumptions. It is thus critical for analysts to have a clear understanding of the assumptions associated with each
Machine Learning algorithm.

Machine Learning algorithms are divided into three categories: supervised learning, unsupervised learning, and
meta-learners/ensembles. Understanding the categories of Machine Learning algorithms is an integral step towards
developing accurate prediction models. For the scope of this research, supervised learning algorithms were used to
develop prediction models. Supervised learning is the process of training a Machine Learning model to predict value(s)
using other values in the dataset. In particular, supervised learning algorithms attempt to discover and model the
relationship between the value(s) being predicted and other values (predictors). These models are known as predictive
models. Predictive models can be used to predict previous and real-time events, as well as future events [31]. Supervised
learning algorithms that were benchmarked to identify the best suited algorithm for predicting the occurrence of
Ground Delay Programs were Bagging Ensemble, Naive Bayes, Decision Trees, Boosting Ensemble, Classification Rule
Learners, Random Forests, and Support Vector Machines [27].

In order to develop the prediction models, the fused datasets were partitioned into three sets: training, validation
and testing. This process is known as the holdout method [32]. From Figure 4, it can be seen that half of the data was
assigned to the training set, which is used to generate the model, one-fourth of the data was assigned to the validation
set, which was used to iterate and refine the model, and one-fourth of the data was assigned to the test set, which was
used to generate predictions for evaluations. The fused data was randomly divided between the three sets to ensure that
the training, validation and test data do not have systematic differences. The performance of the test data alone should
never be allowed to influence the performance of the model. Thus, it was important to include the validation set to
ensure that a truly accurate estimate of future performances was obtained.

Fig. 4 Model Generation, Validation and Testing Process

D. Step #4: Evaluation
Evaluating the performance of prediction models is an important step as it informs as to how the model will perform

on future data. The models were evaluated using results obtained from a confusion matrix. A confusion matrix as
seen in Table 1 is a table that categorizes predictions according to whether they match the actual value. Performance
metrics such as Accuracy, Kappa Statistic, Sensitivity, Specificity, Precision, and Recall were computed to assess model
performance [27].

True Positive (TP) refers to the correct classification of the class of interest. True Negative (TN) refers to the correct
classification of the class that is not of interest. False Positive (FP) refers to the incorrect classification of the class of
interest. False Negative (FN) refers to the incorrect classification of the class that is not of interest [27].
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Table 1 Confusion Matrix

Actual: No Actual: Yes
Predicted: No True Negative (TN) False Positive (FP)
Predicted: Yes False Negative (FN) True Positive (TP)

1. Accuracy
This refers to the ratio of the number of true positives and negatives, to the total number of predictions and is

specified as:

Accuracy =
TP + T N

TP + T N + FP + FN

2. Sensitivity
This refers to the proportion of true positives that were correctly classified and is specified as:

Sensitivity =
TP

TP + FN

3. Specificity
This refers to the proportion of negative examples that were correctly classified and is specified as:

Speci f icity =
T N

FP + T N

4. Precision
This refers to the proportion of positive examples that were truly positive and is specified as:

Precision =
TP

FP + TP

5. Recall
This refers to the ratio of true positives to the total number of positives and is specified as:

Recall =
TP

TP + FN

6. Kappa Statistic
A model might have high accuracy because it correctly predicts the most frequent class, particularly when the

dataset is unbalanced. Kappa Statistic adjusts accuracy by accounting for the probability of a correct prediction by
chance alone, and is appropriate for unbalanced datasets. Kappa Statistic is specified below where P0 is the observed
value and PE is the expected value. Table 2 provides an interpretation of Kappa Statistic values [27].

K =
P0 − PE

1 − PE
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Table 2 Interpretation of Kappa Statistic values

Kappa Statistic Interpretation
< 0 Poor Agreement
0 - 0.2 Slight Agreement
0.2 - 0.4 Fair Agreement
0.4 - 0.6 Moderate Agreement
0.6 - 0.8 Substantial Agreement
0.8 - 1 Almost Perfect Agreement

V. Results
As mentioned previously, the objective of this research is to predict the occurrence of weather and volume-related

Ground Delay Programs. Seven Machine Learning algorithms were benchmarked to identify a suitable algorithm for
the prediction model: Decision Trees, Naive Bayes, Classification Rule Learners, Support Vector Machines, Bagging
Ensemble, Boosting Ensemble, and Random Forests. This section highlights the steps taken to develop and tune the
models using these algorithms, and provides an analysis of their performance with the validation and testing sets using
R. In order to ensure that the algorithms were assessed accurately, the data was randomly divided into three categories:
training, validation, and testing sets. The training, validation, and testing sets had 2940, 981, and 980 data points
respectively. It is worth noting that the data is heavily imbalanced since the number of no Ground Delay Program events
greatly outnumbers the number of weather and volume related Ground Delay Program events. Since the data is heavily
imbalanced, the kappa statistic metric was used to evaluate the performance of the algorithms as it accounts for the
unbalanced nature of datasets. The remainder of this section will focus on summarizing how the different algorithms
were used to train, validate, and test the models, and how they performed with the validation and testing tests.

A. Decision Trees
The model was trained using the "C50" function [27, 33] and the training dataset. The model’s performance was

improved using the validation dataset and adaptive boosting, "where multiple decision trees are built and the trees vote
for the best class for each example" [27]. This involved adding a "trials" parameter when using the "C50" function. The
optimal number of "trials" produced the lowest number of incorrect predictions. Finally, the model’s performance was
evaluated using the testing dataset and the "confusionMatrix" function [34]. Analysis of the Decision Tree algorithm
revealed that the model had an average tree size of 72.9. Figure 5 shows that the month, altimeter pressure, dew point,
sea level pressure, and visibility were the highest weighted predictors for this model, each contributing 6.254% as seen
in Figure 5.

Fig. 5 Predictor importance for Decision Tree algorithm
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1. Validation Dataset
Table 3 shows the confusion matrix for the validation dataset, where the last column and row represent the sum

of predicted and actual events, respectively. The model had an accuracy of 0.942, kappa statistic of 0.58, and a 95%
Confidence Interval between 0.925 and 0.956, which is the range that the probability of a correct prediction lies within.

Table 3 Confusion matrix from Decision Tree algorithm using the validation dataset

Actual
GDP

Actual No
GDP

Predicted Total

Predicted GDP 46 11 57
Predicted No GDP 41 883 924
Actual Total 87 894 981

Since the dataset is unbalanced, there was a need to further expand the evaluation of the model by analyzing how the
model predicted volume-related Ground Delay Program events, weather-related Ground Delay Program events, and no
Ground Delay Program events. Table 4 shows the detailed confusion matrix for the validation dataset, where the last
column and row represent the sum of predicted and actual events respectively.

Table 4 Detailed confusion matrix from Decision Tree algorithm using the validation dataset

Actual
Volume
GDP

Actual
Weather
GDP

Actual No
GDP

Predicted Total

Predicted Volume GDP 11 1 1 13
Predicted Weather GDP 4 30 10 44
Predicted No GDP 11 30 883 924
Actual Total 26 61 894 981

From Table 4, it can be seen that the model accurately predicted 11 volume-related Ground Delay Program events,
and incorrectly predicted 1 weather-related Ground Delay Program event and no Ground Delay Program event as
volume-related Ground Delay Program events. The model also accurately predicted 30 weather-related Ground Delay
Program events, and incorrectly predicted 4 volume-related Ground Delay Program events and 10 no Ground Delay
Program events as weather-related Ground Delayed Program events. Finally, the model accurately predicted 883 no
Ground Delay Program events, and incorrectly predicted 11 volume-related Ground Delay Program events and 30
weather-related Ground Delay Program events as no Ground Delay Program events.

Table 5 summarizes the detailed evaluation of the Decision Tree algorithm’s performance with the validation dataset.
Moderate sensitivity and high specificity for volume and weather-related Ground Delay Program predictions show that
the model’s performance is limited when predicting volume and weather-related Ground Delay Programs. However, the
high sensitivity and moderate specificity of no Ground Delay Program predictions show that the model predicted the
majority of no Ground Delay Program events accurately.

Table 5 Detailed evaluation of the Decision Tree algorithm with the validation dataset

Metric Volume-
related
GDP

Weather-
related
GDP

No GDP

Sensitivity 0.423 0.492 0.988
Specificity 0.997 0.985 0.529
Precision 0.846 0.681 0.956
Recall 0.985 0.967 0.807
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2. Testing Dataset
Table 6 shows the confusion matrix for the testing dataset, where the last column and row represent the sum of

predicted and actual events respectively. The model had an accuracy of 0.922, kappa statistic of 0.531, and a 95%
Confidence Interval between 0.903 and 0.938, which is the range that the probability of a correct prediction lies within.

Table 6 Confusion matrix from Decision Tree algorithm using the testing dataset

Actual
GDP

Actual No
GDP

Predicted Total

Predicted GDP 51 18 69
Predicted No GDP 54 857 911
Actual Total 105 875 980

Table 7 shows the detailed confusion matrix for the testing dataset.

Table 7 Detailed confusion matrix from Decision Tree algorithm using the testing dataset

Actual
Volume
GDP

Actual
Weather
GDP

Actual No
GDP

Predicted Total

Predicted Volume GDP 9 2 2 13
Predicted Weather GDP 2 38 16 56
Predicted No GDP 22 32 857 911
Actual Total 33 72 875 980

From Table 7, it can be seen that the model accurately predicted 9 volume-related Ground Delay Program events, and
incorrectly predicted 2 weather-related Ground Delay Program and 2 no Ground Delay Program events as volume-related
Ground Delay Program events. The model also accurately predicted 38 weather-related Ground Delay Program
events, and incorrectly predicted 2 volume-related Ground Delay Program and 16 no Ground Delay Program events
as weather-related Ground Delayed Program events. Finally, the model accurately predicted 857 no Ground Delay
Program events, and incorrectly predicted 22 volume-related Ground Delay Program and 32 weather-related Ground
Delay Program events as no Ground Delay Program events.

Table 8 summarizes the detailed evaluation of the Decision Tree algorithm’s performance with the testing dataset.
Low/moderate sensitivity and high specificity for volume and weather-related Ground Delay Program predictions show
that the model’s performance is limited in predicting volume and weather-related Ground Delay Programs. However,
the high sensitivity and moderate specificity of no Ground Delay Program predictions show that the model predicted the
majority of no Ground Delay Program events accurately.

Table 8 Detailed evaluation of the Decision Tree algorithm with the testing dataset

Metric Volume-
related
GDP

Weather-
related
GDP

No GDP

Sensitivity 0.272 0.530 0.979
Specificity 0.996 0.980 0.486
Precision 0.692 0.678 0.941
Recall 0.975 0.963 0.739
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3. Summary
Overall, with kappa statistic values of 0.580 and 0.531 from the validation and testing datasets respectively, the

Decision Tree algorithm had a moderate performance which can be attributed to the unbalanced nature of the dataset.

B. Naive Bayes
The model was trained using the "naiveBayes" function [27, 35] and the training dataset. The model’s performance

was tuned and evaluated using the validation and testing datasets, respectively, and the "confusionMatrix" function [34].

1. Validation Dataset
Table 21 in the appendix shows the confusion matrix for the validation dataset, where the last column and row

represent the sum of predicted and actual events respectively. The model had an accuracy of 0.448, kappa statistic of
0.0709, and a 95% Confidence Interval between 0.416 and 0.479, which is the range that the probability of a correct
prediction lies within. Table 22 in the appendix also shows the detailed confusion matrix for the validation dataset,
where the last column and row represent the sum of predicted and actual events respectively.

Table 9 summarizes the detailed evaluation of the Naive Bayes algorithm’s performance with the validation dataset.
Low/moderate sensitivity and high specificity for volume-related Ground Delay Programs and no Ground Delay Program
events show that the model’s performance is limited in predicting volume-related Ground Delay Program and no Ground
Delay Program events. However, the high sensitivity and moderate specificity show that the model predicted the majority
of weather-related Ground Delay Program events.

Table 9 Detailed evaluation of the Naive Bayes algorithm with the validation dataset

Metric Volume-
related
GDP

Weather-
related
GDP

No GDP

Sensitivity 0.038 0.902 0.428
Specificity 0.963 0.465 0.828
Precision 0.028 0.101 0.962
Recall 0.974 0.986 0.124

2. Testing Dataset
Table 23 in the appendix shows the confusion matrix for the testing dataset, where the last column and row represent

the sum of predicted and actual events respectively. The model had an accuracy of 0.449, kappa statistic of 0.0708, and
a 95% Confidence Interval between 0.418 and 0.481, which is the range that the probability of a correct prediction lies
within. Table 24 in the appendix also shows the detailed confusion matrix for the testing dataset.

Table 10 summarizes the detailed evaluation of the Naive Bayes algorithm’s performance with the testing dataset.
Low.moderate sensitivity and high specificity for volume-related Ground Delay Program and no Ground Delay Program
events show that the model’s performance is limited in predicting volume-related Ground Delay Program and no Ground
Delay Program events. However, high sensitivity and low specificity show that the model predicted the majority of
weather-related Ground Delay Program events.

Table 10 Detailed evaluation of the Naive Bayes algorithm with testing dataset

Metric Volume-
related
GDP

Weather-
related
GDP

No GDP

Sensitivity 0.121 0.833 0.429
Specificity 0.959 0.476 0.762
Precision 0.093 0.112 0.938
Recall 0.969 0.973 0.138
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3. Summary
Overall, with kappa statistic values of 0.0709 and 0.0708 from the validation and testing datasets respectively, the

Naive Bayes algorithm performed poorly.

C. Classification Rule Learners
The model was trained using the "JRip" function [27, 36] and the training dataset. The model’s performance was

tuned and evaluated using the validation and testing datasets, respectively, and the "confusionMatrix" function [34].

1. Validation Dataset
Table 25 in the appendix shows the confusion matrix for the validation dataset, where the last column and row

represent the sum of predicted and actual events respectively. The model had an accuracy of 0.918, kappa statistic of 0.5,
and a 95% Confidence Interval between 0.899 and 0.934, which is the range that the probability of a correct prediction
lies within. Table 26 in the appendix shows the detailed confusion matrix for the validation dataset, where the last
column and row represent the sum of predicted and actual events respectively.

Table 11 summarizes the detailed evaluation of the Classification Rule Learners algorithm’s performance with the
validation dataset. Moderate sensitivity and high specificity for volume and weather-related Ground Delay Program
predictions show that the model’s performance is limited in predicting volume and weather-related Ground Delay
Program events. However, the high sensitivity and moderate specificity of no Ground Delay Program predictions show
that the model predicted the majority of no Ground Delay Program events accurately.

Table 11 Detailed evaluation of the Classification Rule Learners algorithm with the validation dataset

Metric Volume-
related
GDP

Weather-
related
GDP

No GDP

Sensitivity 0.615 0.459 0.959
Specificity 0.991 0.965 0.552
Precision 0.640 0.467 0.956
Recall 0.989 0.964 0.565

2. Testing Dataset
Table 27 in the appendix shows the confusion matrix for the validation dataset, where the last column and row

represent the sum of predicted and actual events respectively. The model had an accuracy of 0.895, kappa statistic of
0.444, and a 95% Confidence Interval between 0.874 and 0.913, which is the range that the probability of a correct
prediction lies within. Table 28 in the appendix shows the detailed confusion matrix for the testing dataset.

Table 12 summarizes the detailed evaluation of the Classification Rule Learners algorithm’s performance with
the testing dataset. Moderate sensitivity and high specificity for volume and weather-related Ground Delay Program
predictions show that the model’s performance is limited in predicting volume and weather-related Ground Delay
Program events. However, high sensitivity and moderate specificity of no Ground Delay Program predictions show that
the model predicted the majority of no Ground Delay Program events accurately.

Table 12 Detailed evaluation of the Classification Rule Learners algorithm with the testing dataset

Metric Volume-
related
GDP

Weather-
related
GDP

No GDP

Sensitivity 0.578 0.542 0.936
Specificity 0.989 0.947 0.571
Precision 0.655 0.448 0.948
Recall 0.985 0.963 0.517

13



3. Summary
Overall, with kappa statistic values of 0.5 and 0.444 with the validation and testing datasets respectively, the

Classification Rule Learners algorithm had a moderate performance which can also be attributed to the unbalanced
nature of the dataset.

D. Support Vector Machines
The model was trained using the "ksvm" function [27, 37], the "rbfdot" kernel (radial-based kernel), and the training

dataset. The model’s performance was tuned and evaluated using the validation and testing datasets, respectively, and
the "confusionMatrix" function [34].

1. Validation Dataset
Table 29 in the appendix shows the confusion matrix for the validation dataset, where the last column and row

represent the sum of predicted and actual events respectively. The model had an accuracy of 0.910, kappa statistic of
0.0173, and a 95% Confidence Interval between 0.891 and 0.927, which is the range that the probability of a correct
prediction lies within. Table 30 in the appendix shows the detailed confusion matrix for the validation dataset, where
the last column and row represent the sum of predicted and actual events respectively.

Table 13 summarizes the detailed evaluation of the Support Vector Machine algorithm’s performance with the
validation dataset. Extremely low sensitivity and high specificity for volume and weather-related Ground Delay Program
predictions show that the model’s performance is limited in predicting volume and weather-related Ground Delay
Program events. However, high sensitivity and extremely low specificity of no Ground Delay Program predictions
shows that the model predicted the majority of no Ground Delay Program events accurately.

Table 13 Detailed evaluation of the Support Vector Machines algorithm with the validation dataset

Metric Volume-
related
GDP

Weather-
related
GDP

No GDP

Sensitivity 0 0.016 0.998
Specificity 1 0.998 0.011
Precision N/A 0.330 0.912
Recall 0.974 0.939 0.333

2. Testing Dataset
Table 31 in the appendix shows the confusion matrix for the testing dataset, where the last column and row represent

the sum of predicted and actual events respectively. The model had an accuracy of 0.897, kappa statistic of 0.081, and a
95% Confidence Interval between 0.876 and 0.915, which is the range that the probability of a correct prediction lies
within. Table 32 in the appendix shows the detailed confusion matrix for the testing dataset.

Table 14 summarizes the detailed evaluation of the Support Vector Machines algorithm’s performance with the
testing dataset. Low sensitivity and high specificity for volume and weather-related Ground Delay Program predictions
show that the model’s performance is limited in predicting volume and weather-related Ground Delay Program events.
However, high sensitivity and low specificity of no Ground Delay Program predictions show that the model predicted
the majority of no Ground Delay Program events accurately.
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Table 14 Detailed evaluation of the Support Vector Machines algorithm with the testing dataset

Metric Volume-
related
GDP

Weather-
related
GDP

No GDP

Sensitivity 0 0.069 0.999
Specificity 1 0.999 0.048
Precision N/A 0.833 0.897
Recall 0.966 0.931 0.833

3. Summary
Overall, with kappa statistic values of 0.0173 and 0.0811 from the validation and testing datasets respectively, the

Support Vector Machine algorithm performed poorly.

E. Bagging Ensemble
The model was trained using the "bagging" function [27, 38] and the training dataset. The model’s performance was

tuned and evaluated using the validation and testing datasets, respectively, and the "confusionMatrix" function [34].
Analysis of the Bagging Ensemble algorithm revealed that altimeter pressure, dew point, and sea level pressure were the
highest weighted predictors for this model as seen in Figure 6.

Fig. 6 Predictor importance for Bagging Ensemble algorithm

1. Validation Dataset
Table 33 in the appendix shows the confusion matrix for the validation dataset, where the last column and row

represent the sum of predicted and actual events respectively. The model had an accuracy of 0.937, kappa statistic of
0.474, and a 95% Confidence Interval between 0.919 and 0.951, which is the range that the probability of a correct
prediction lies within. Table 34 in the appendix shows the detailed confusion matrix for the validation dataset, where
the last column and row represent the sum of predicted and actual events respectively.

Table 15 summarizes the detailed evaluation of the Bagging Ensemble algorithm’s performance with the validation
dataset. Moderate/low sensitivity and high specificity for volume and weather-related Ground Delay Program predictions
show that the model’s performance is limited in predicting volume and weather-related Ground Delay Program events.
However, the high sensitivity and low specificity of no Ground Delay Program predictions show that the model predicted
the majority of no Ground Delay Program events accurately.
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Table 15 Detailed evaluation of the Bagging Ensemble algorithm with the validation dataset

Metric Volume-
related
GDP

Weather-
related
GDP

No GDP

Sensitivity 0.423 0.295 0.996
Specificity 1 0.992 0.368
Precision 1 0.720 0.942
Recall 0.985 0.955 0.889

2. Testing Dataset
Table 35 in the appendix shows the confusion matrix for the testing dataset, where the last column and row represent

the sum of predicted and actual events respectively. The model had an accuracy of 0.901, kappa statistic of 0.268, and a
95% Confidence Interval between 0.881 and 0.919, which is the range that the probability of a correct prediction lies
within. Table 36 in the appendix shows the detailed confusion matrix for the testing dataset.

Table 16 summarizes the detailed evaluation of the Bagging Ensemble algorithm’s performance with the testing
dataset. Low sensitivity and high specificity for volume and weather-related Ground Delay Program predictions show
that the model’s performance is limited in predicting volume and weather-related Ground Delay Program events.
However, the high sensitivity and low specificity of no Ground Delay Program predictions show that the model predicted
majority of no Ground Delay Program events accurately.

Table 16 Detailed evaluation of the Bagging Ensemble algorithm with the testing dataset

Metric Volume-
related
GDP

Weather-
related
GDP

No GDP

Sensitivity 0.303 0.139 0.986
Specificity 0.998 0.988 0.200
Precision 0.833 0.476 0.911
Recall 0.976 0.935 0.634

3. Summary
Overall, with kappa statistic values of 0.474 and 0.268 from the validation and testing datasets respectively, the

Bagging Ensemble had a fair performance.

F. Boosting Ensemble
The model was trained using the "boosting" function [27, 39] and the training dataset. The model’s performance

was tuned and evaluated using the validation and testing datasets, respectively, and the "confusionMatrix" function [34].
Analysis of the Boosting Ensemble algorithm revealed that month, dew point, altimeter pressure, and sea level pressure
were the highest weighted predictors for this model, as seen in Figure 7.
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Fig. 7 Predictor importance for Boosting Ensemble algorithm

1. Validation Dataset
Table 37 in the appendix shows the confusion matrix for the validation dataset, where the last column and row

represent the sum of predicted and actual events respectively. The model had an accuracy of 0.948, kappa statistic of
0.629, and a 95% Confidence Interval between 0.932 and 0.961, which is the range that the probability of a correct
prediction lies within. Table 38 in the appendix shows the detailed confusion matrix for the validation dataset, where
the last column and row represent the sum of predicted and actual events respectively.

Table 17 summarizes the detailed evaluation of the Boosting Ensemble algorithm’s performance with the validation
dataset. Moderate sensitivity and high specificity for volume and weather-related Ground Delay Program predictions
show that the model’s performance is limited in predicting volume and weather-related Ground Delay Program events.
However, the high sensitivity and moderate specificity of no Ground Delay Program predictions show that the model
predicted the majority of no Ground Delay Program events accurately.

Table 17 Detailed evaluation of the Boosting Ensemble algorithm with the validation dataset

Metric Volume-
related
GDP

Weather-
related
GDP

No GDP

Sensitivity 0.538 0.508 0.989
Specificity 0.999 0.986 0.576
Precision 0.933 0.705 0.959
Recall 0.988 0.968 0.847

2. Testing Dataset
Table 39 in the appendix shows the confusion matrix for the testing dataset, where the last column and row represent

the sum of predicted and actual events respectively. The model had an accuracy of 0.943, kappa statistic of 0.657, and a
95% Confidence Interval between 0.926 and 0.957, which is the range that the probability of a correct prediction lies
within. Table 40 shows the detailed confusion matrix for the testing dataset.

Table 18 summarizes the detailed evaluation of the Boosting Ensemble algorithm’s performance with the testing
dataset. Moderate sensitivity and high specificity for volume and weather-related Ground Delay Program predictions
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show that the model’s performance is limited in predicting volume and weather-related Ground Delay Program events.
However, the high sensitivity and moderate specificity of no Ground Delay Program predictions show that the model
predicted the majority of no Ground Delay Program events accurately.

Table 18 Detailed evaluation of the Boosting Ensemble algorithm with the testing dataset

Metric Volume-
related
GDP

Weather-
related
GDP

No GDP

Sensitivity 0.485 0.583 0.989
Specificity 0.996 0.991 0.581
Precision 0.800 0.840 0.952
Recall 0.982 0.968 0.871

3. Summary
Overall, with kappa statistics values of 0.629 and 0.657 from the validation and testing datasets respectively, the

Boosting Ensemble performed well.

G. Random Forests
The model was trained using the "randomForest" function [27, 40] and the training dataset. The model’s performance

was tuned and evaluated using the validation and testing datasets, respectively, and the "confusionMatrix" function [34].
The analysis of the Random Forests algorithm revealed that altimeter pressure, sea level pressure, the month, and dew
point were the highest weighted predictors for this model, as seen in Figure 8.

Fig. 8 Predictor importance for Random Forests algorithm

1. Validation Dataset
Table 41 in the appendix shows the confusion matrix for the validation dataset, where the last column and row

represent the sum of predicted and actual events respectively. The model had an accuracy of 0.944, kappa statistic of
0.559, and a 95% Confidence Interval between 0.928 and 0.957, which is the range that the probability of a correct
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prediction lies within. Table 42 in the appendix also shows the detailed confusion matrix for the validation dataset,
where the last column and row represent the sum of predicted and actual events respectively.

Table 19 summarizes the detailed evaluation of the Random Forest Ensemble algorithm’s performance with the
validation dataset. Low/moderate sensitivity and high specificity for volume and weather-related Ground Delay Program
predictions show that the model’s performance is limited in predicting volume and weather-related Ground Delay
Program events. However, the high sensitivity and low specificity of no Ground Delay Program predictions show that
the model predicted the majority of no Ground Delay Program events accurately.

Table 19 Detailed evaluation of the Random Forest algorithm with the validation dataset for predicting the
occurrence of Ground Delay Programs

Metric Volume-
related
GDP

Weather-
related
GDP

No GDP

Sensitivity 0.385 0.424 0.996
Specificity 0.999 0.992 0.459
Precision 0.909 0.778 0.949
Recall 0.984 0.963 0.909

2. Testing Dataset
Table 43 in the appendix shows the confusion matrix for the testing dataset, where the last column and row represent

the sum of predicted and actual events respectively. The model had an accuracy of 0.927, kappa statistic of 0.508, and a
95% Confidence Interval between 0.908 and 0.942, which is the range that the probability of a correct prediction lies
within. Table 44 in the appendix also shows the detailed confusion matrix for the testing dataset.

Table 20 summarizes the detailed evaluation of the Random Forests algorithm’s performance with the testing dataset.
Low/moderate sensitivity and high specificity for volume and weather-related Ground Delay Program predictions
show that the model’s performance is limited in predicting volume and weather-related Ground Delay Program events.
However, the high sensitivity and moderate specificity of no Ground Delay Program predictions show that the model
predicted the majority of no Ground Delay Program events accurately.

Table 20 Detailed evaluation of the Random Forest algorithm with the testing dataset

Metric Volume-
related
GDP

Weather-
related
GDP

No GDP

Sensitivity 0.212 0.458 0.992
Specificity 0.996 0.993 0.409
Precision 0.636 0.846 0.933
Recall 0.973 0.958 0.860

3. Summary
Overall, with kappa statistic values of 0.559 and 0.508 from the validation and testing datasets respectively, the

Random Forests algorithm had a moderate performance.

H. Comparison of algorithms
Since the dataset is heavily imbalanced, accuracy is an inaccurate measure of the performance for these techniques.

Kappa statistic, on the other hand, is appropriate for evaluating imbalanced datasets as it adjusts accuracy by accounting
for the possibility of a correct prediction by chance alone [27]. The performance of the seven Machine Learning
Techniques was thus compared using the Kappa statistic evaluation metric. Figure 9 shows that the Boosting Ensemble
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had the highest kappa statistic value for both validation and testing datasets. Thus, it was identified as the best suited
algorithm for predicting the occurrence of Ground Delay Programs.

Fig. 9 Comparison of Machine Learning techniques for predicting the occurrence of Ground Delay Programs
using Kappa Statistic

VI. Conclusion
Delays associated with the National Airspace System represent one of the two most common delays seen between

June 2003 and July 2018. Whenever National Airspace System-related delays occur, Traffic Management Initiatives
(TMI) such as Ground Delay Programs (GDP) may be issued at affected airports. Ground Delay Programs are
implemented to control air traffic volume to specific airports where the projected traffic demand is expected to exceed the
airport’s acceptance rate over lengthy periods of time. Ground Delay Programs are caused by inclement weather, volume
constraints, runway-related incidents, equipment failures etc. Over the years, efforts have been made to reduce the
impact of Ground Delay Programs on airport and flight operations by predicting their occurrence. However, these efforts
have largely focused on weather-related Ground Delay Programs, primarily due to a lack of access to comprehensive
Ground Delay Program data. There has also been limited benchmarking of Machine Learning algorithms to predict the
occurrence of Ground Delay Programs. Consequently, this research 1) fused data from the Traffic Flow Management
System (TFMS), Aviation System Performance Metrics (ASPM), and Automated Surface Observing Systems (ASOS)
datasets, and 2) leveraged supervised Machine Learning algorithms to develop prediction models as a means to predict
the occurrence of weather and volume-related Ground Delay Programs at Los Angeles International Airport. The kappa
statistic evaluation metric revealed that Boosting Ensemble was the best suited algorithm for predicting the occurrence
of weather and volume-related Ground Delay Programs. Even though this methodology was applied to Los Angeles
International Airport, it can be re-implemented at predict the occurrence of weather and volume related Ground Delay
Program events at other airports.
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VII. Appendix

A. Naive Bayes

Table 21 Confusion matrix from Naive Bayes algorithm using the validation dataset

Actual
GDP

Actual No
GDP

Predicted Total

Predicted GDP 72 511 583
Predicted No GDP 15 383 398
Actual Total 87 894 981

Table 22 Detailed confusion matrix from Naive Bayes algorithm using the validation dataset

Actual
Volume
GDP

Actual
Weather
GDP

Actual No
GDP

Predicted Total

Predicted Volume GDP 1 0 35 36
Predicted Weather GDP 16 55 476 547
Predicted No GDP 9 6 383 398
Actual Total 26 61 894 981

From Table 22, it can be seen that the model accurately predicted 1 volume-related Ground Delay Program event, and
incorrectly predicted 35 no Ground Delay Program events as volume-related Ground Delay Program events. The model
also accurately predicted 55 weather-related Ground Delay Program events, and incorrectly predicted 16 volume-related
Ground Delay Program events and 476 no Ground Delay Program events as weather-related Ground Delayed Program
events. Finally, the model accurately predicted 383 no Ground Delay Program events, and inaccurately predicted
9 volume-related Ground Delay Program and 6 weather-related Ground Delay Program events as no Ground Delay
Program events.

Table 23 Confusion matrix from Naive Bayes algorithm using the testing dataset

Actual
GDP

Actual No
GDP

Predicted Total

Predicted GDP 80 499 579
Predicted No GDP 25 376 401
Actual Total 105 875 980

Table 24 Detailed confusion matrix from Naive Bayes algorithm using the testing dataset

Actual
Volume
GDP

Actual
Weather
GDP

Actual No
GDP

Predicted Total

Predicted Volume GDP 4 0 39 43
Predicted Weather GDP 16 60 460 536
Predicted No GDP 13 12 376 401
Actual Total 33 72 875 980
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From Table 24, it can be seen that the model accurately predicted 4 volume-related Ground Delay Program events,
and incorrectly predicted 39 no Ground Delay Program events as volume-related Ground Delay Program events.
The model also accurately predicted 60 weather-related Ground Delay Program events, and incorrectly predicted 16
volume-related Ground Delay Program and 460 no Ground Delay Program events as weather-related Ground Delayed
Program events. Finally, the model accurately predicted 376 no Ground Delay Program events, and incorrectly predicted
13 volume-related Ground Delay Program and 12 weather-related Ground Delay Program events as no Ground Delay
Program events.

B. Classification Rule Learners

Table 25 Confusion matrix from Classification Rule Learners algorithm using the validation dataset

Actual
GDP

Actual No
GDP

Predicted Total

Predicted GDP 48 37 85
Predicted No GDP 39 857 896
Actual Total 87 894 981

Table 26 Detailed confusion matrix from Classification Rule Learners algorithm using the validation dataset

Actual
Volume
GDP

Actual
Weather
GDP

Actual No
GDP

Predicted Total

Predicted Volume GDP 16 0 9 25
Predicted Weather GDP 4 28 28 60
Predicted No GDP 6 33 857 896
Actual Total 26 61 894 981

From Table 26, it can be seen that the model accurately predicted 16 volume-related Ground Delay Program
events, and incorrectly predicted 9 no Ground Delay Program events as volume-related Ground Delay Program events.
The model also accurately predicted 28 weather-related Ground Delay Program events, and incorrectly predicted 4
volume-related Ground Delay Program and 28 no Ground Delay Program events as weather-related Ground Delayed
Program events. Finally, the model accurately predicted 857 no Ground Delay Program events, and incorrectly predicted
6 volume-related Ground Delay Program and 33 weather-related Ground Delay Program eventss as no Ground Delay
Program events.

Table 27 Confusion matrix from Classification Rule Learners algorithm using the testing dataset

Actual
GDP

Actual No
GDP

Predicted Total

Predicted GDP 60 56 116
Predicted No GDP 45 819 864
Actual Total 105 875 980
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Table 28 Detailed confusion matrix from Classification Rule Learners algorithm using the testing dataset

Actual
Volume
GDP

Actual
Weather
GDP

Actual No
GDP

Predicted Total

Predicted Volume GDP 19 0 10 29
Predicted Weather GDP 2 39 46 87
Predicted No GDP 12 33 819 864
Actual Total 33 72 875 980

From Table 28, it can be seen that the model accurately predicted 19 volume-related Ground Delay Program
events, and incorrectly predicted 10 no Ground Delay Program events as volume-related Ground Delay Programs.
The model also accurately predicted 39 weather-related Ground Delay Program events, and incorrectly predicted 2
volume-related Ground Delay Program and 46 no Ground Delay Program events as weather-related Ground Delayed
Program events. Finally, the model accurately predicted 819 no Ground Delay Program events, and incorrectly predicted
12 volume-related Ground Delay Program and 33 weather-related Ground Delay Program events as no Ground Delay
Program events.

C. Support Vector Machines

Table 29 Confusion matrix from Support Vector Machines algorithm using the validation dataset

Actual
GDP

Actual No
GDP

Predicted Total

Predicted GDP 1 2 3
Predicted No GDP 86 892 978
Actual Total 87 894 981

Table 30 Detailed confusion matrix from Support Vector Machines algorithm using the validation dataset

Actual
Volume
GDP

Actual
Weather
GDP

Actual No
GDP

Predicted Total

Predicted Volume GDP 0 0 0 0
Predicted Weather GDP 0 1 2 3
Predicted No GDP 26 60 892 978
Actual Total 26 61 894 981

From Table 30, it can be seen that the model accurately predicted 1 weather-related Ground Delay Program event,
and incorrectly predicted 2 no Ground Delay Program events as weather-related Ground Delay Programs events. The
model also accurately predicted 892 no Ground Delay Program events, and incorrectly predicted 26 volume-related
Ground Delay Program and 60 weather-related Ground Delay Program events as no Ground Delay Program events.
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Table 31 Confusion matrix from Support Vector Machines algorithm using the testing dataset

Actual
GDP

Actual No
GDP

Predicted Total

Predicted GDP 5 1 6
Predicted No GDP 100 874 974
Actual Total 105 875 980

Table 32 Detailed confusion matrix from Support Vector Machines algorithm using the testing dataset

Actual
Volume
GDP

Actual
Weather
GDP

Actual No
GDP

Predicted Total

Predicted Volume GDP 0 0 0 0
Predicted Weather GDP 0 5 1 6
Predicted No GDP 33 67 874 974
Actual Total 33 72 875 980

From Table 32, it can be seen that the model accurately predicted 5 weather-related Ground Delay Program events,
and incorrectly predicted 1 no Ground Delay Program event as a weather-related Ground Delay Program. The model
also accurately predicted 874 no Ground Delay Program events, and incorrectly predicted 33 volume-related Ground
Delay Program and 67 weather-related Ground Delay Program events as no Ground Delay Program events.

D. Bagging Ensemble

Table 33 Confusion matrix from the Bagging Ensemble algorithm using the validation dataset

Actual
GDP

Actual No
GDP

Predicted Total

Predicted GDP 32 4 36
Predicted No GDP 55 890 945
Actual Total 87 894 981

Table 34 Detailed confusion matrix from the Bagging Ensemble algorithm using the validation dataset

Actual
Volume
GDP

Actual
Weather
GDP

Actual No
GDP

Predicted Total

Predicted Volume GDP 11 0 0 11
Predicted Weather GDP 3 18 4 25
Predicted No GDP 12 43 890 945
Actual Total 26 61 894 981

From Table 34, it can be seen that the model accurately predicted 11 volume-related Ground Delay Program events.
The model also accurately predicted 18 weather-related Ground Delay Program events, and inaccurately predicted
3 volume-related Ground Delay Program and 4 no Ground Delay Program events as weather-related Ground Delay
Program events. Finally, the model accurately predicted 890 no Ground Delay Program events, and incorrectly predicted
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26 volume-related Ground Delay Program and 61 weather-related Ground Delay Program events as no Ground Delay
Program events.

Table 35 Confusion matrix from the Bagging Ensemble algorithm using the testing dataset

Actual
GDP

Actual No
GDP

Predicted Total

Predicted GDP 21 84 105
Predicted No GDP 12 863 875
Actual Total 33 947 980

Table 36 Detailed confusion matrix from the Bagging Ensemble algorithm using the testing dataset

Actual
Volume
GDP

Actual
Weather
GDP

Actual No
GDP

Predicted Total

Predicted Volume GDP 10 0 2 12
Predicted Weather GDP 1 10 10 21
Predicted No GDP 22 62 863 947
Actual Total 33 72 875 980

From Table 36, it can be seen that the model accurately predicted 10 volume-related Ground Delay Program
events, and incorrectly predicted 2 no Ground Delay Program events as volume-related Ground Delay Program events.
The model also accurately predicted 10 weather-related Ground Delay Program events, and inaccurately predicted 1
volume-related Ground Delay Program and 10 no Ground Delay Program events as weather-related Ground Delayed
Program events. Finally, the model accurately predicted 863 no Ground Delay Program events, and incorrectly predicted
22 volume-related Ground Delay Program and 62 weather-related Ground Delay Program events as no Ground Delay
Program events.

E. Boosting Ensemble

Table 37 Confusion matrix from the Boosting Ensemble algorithm using the validation dataset

Actual
GDP

Actual No
GDP

Predicted Total

Predicted GDP 50 9 59
Predicted No GDP 37 885 922
Actual Total 87 894 981

Table 38 Detailed confusion matrix from the Boosting Ensemble algorithm using the validation dataset

Actual
Volume
GDP

Actual
Weather
GDP

Actual No
GDP

Predicted Total

Predicted Volume GDP 14 1 0 15
Predicted Weather GDP 4 31 9 44
Predicted No GDP 8 29 885 924
Actual Total 26 61 894 981
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From Table 38, it can be seen that the model accurately predicted 14 volume-related Ground Delay Program events,
and incorrectly predicted 1 weather-related Ground Delay Program as a volume-related Ground Delay Program event.
The model also accurately predicted 31 weather-related Ground Delay Program events, and inaccurately predicted 4
volume-related Ground Delay Program and 9 no Ground Delay Program events as weather-related Ground Delayed
Program events. Finally, the model accurately predicted 885 no Ground Delay Program events, and incorrectly predicted
8 volume-related Ground Delay Program and 29 weather-related Ground Delay Program events as no Ground Delay
Program events.

Table 39 Confusion matrix from the Boosting Ensemble algorithm using the testing dataset

Actual
GDP

Actual No
GDP

Predicted Total

Predicted GDP 61 9 70
Predicted No GDP 44 866 910
Actual Total 105 875 980

Table 40 Detailed confusion matrix from the Boosting Ensemble algorithm using the testing dataset

Actual
Volume
GDP

Actual
Weather
GDP

Actual No
GDP

Predicted Total

Predicted Volume GDP 16 2 2 20
Predicted Weather GDP 1 42 7 50
Predicted no GDP 16 28 866 910
Actual Total 33 72 875 980

From Table 40, it can be seen that the model accurately predicted 16 volume-related Ground Delay Program
events, and incorrectly predicted 2 weather-related Ground Delay Program and 2 no Ground Delay Program events as
volume-related Ground Delay Program events. The model also accurately predicted 42 weather-related Ground Delay
Program events, and inaccurately predicted 1 volume-related Ground Delay Program and 7 no Ground Delay Program
events as weather-related Ground Delayed Program events. Finally, the model accurately predicted 866 no Ground
Delay Program events, and incorrectly predicted 16 volume-related Ground Delay Program and 28 weather-related
Ground Delay Program events as no Ground Delay Program events.

F. Random Forests

Table 41 Confusion matrix from the Random Forest algorithm using the validation dataset

Actual
GDP

Actual No
GDP

Predicted Total

Predicted GDP 40 4 44
Predicted No GDP 47 890 937
Actual Total 87 894 981
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Table 42 Detailed confusion matrix from the Random Forest algorithm using the validation dataset

Actual
Volume
GDP

Actual
Weather
GDP

Actual No
GDP

Predicted Total

Predicted Volume GDP 10 1 0 11
Predicted Weather GDP 3 26 4 33
Predicted No GDP 13 34 890 937
Actual Total 26 61 894 981

From Table 42, it can be seen that the model accurately predicted 10 volume-related Ground Delay Program events,
and incorrectly predicted 1 weather-related Ground Delay Program event as a volume-related Ground Delay Program
event. The model also accurately predicted 26 weather-related Ground Delay Program events, and inaccurately predicted
3 volume-related Ground Delay Program and 4 no Ground Delay Program events as weather-related Ground Delayed
Program events. Finally, the model accurately predicted 890 no Ground Delay Program events, and incorrectly predicted
13 volume-related Ground Delay Program and 34 weather-related Ground Delay Program events as no Ground Delay
Program events.

Table 43 Confusion matrix from the Random Forest algorithm using the testing dataset

Actual
GDP

Actual No
GDP

Predicted Total

Predicted GDP 43 7 50
Predicted No GDP 62 868 930
Actual Total 105 875 980

Table 44 Detailed confusion matrix from the Random Forest algorithm using the testing dataset

Actual
Volume
GDP

Actual
Weather
GDP

Actual No
GDP

Predicted Total

Predicted Volume GDP 7 2 2 11
Predicted Weather GDP 1 33 5 39
Predicted No GDP 25 37 868 930
Actual Total 33 72 875 980

From Table 44, it can be seen that the model accurately predicted 7 volume-related Ground Delay Program
events, and incorrectly predicted 2 weather-related Ground Delay Program and 2 no Ground Delay Program events as
volume-related Ground Delay Program events. The model also accurately predicted 33 weather-related Ground Delay
Program events, and inaccurately predicted 1 volume-related Ground Delay Program and 5 no Ground Delay Program
events as weather-related Ground Delayed Program events. Finally, the model accurately predicted 868 no Ground
Delay Program events, and incorrectly predicted 25 volume-related Ground Delay Program and 37 weather-related
Ground Delay Program events as no Ground Delay Program events.
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