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And as imagination bodies forth

The forms of things unknown, the poet’s pen

Turns them to shapes and gives to airy nothing

A local habitation and a name

-William Shakespeare



To my parents, Joan and David.
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SUMMARY

This thesis presents numerical methods for characterizing the wideband responses of

conducting objects to excitation by electromagnetic induction (EMI) sensors. These sen-

sors operate by exciting eddy currents in conducting media and detecting the scattered

fields that the eddy currents induce. EMI sensors can be used to measure the magnetic

polarizability tensor (MPT) of conducting targets, which encapsulates the entire scattering

interaction between target and sensor.

Wideband characterization of the magnetic polarizability tensor can be achieved by

expanding the frequency response in pole-expansion form. The pole-expansion coefficients

may be used as a signature, which can be used for subsurface detection. These coefficients

are valuable for target detection because they do not depend on the positioning of the target

relative to the sensor or on the specific measurement frequencies and can be trivially scaled

to represent larger families of targets.

Developing numerical methods for deriving the pole-expansion coefficients is impor-

tant, because closed-form expressions for the coefficients are rarely available, and inver-

sions of experimental data are often unreliable. Analytical expressions are only derivable

for geometries such as a sphere or a thin wire loop, that exhibit high degrees of symmetry.

Inversions of experimental data are often unreliable, because the inverse problem is ill-

conditioned; even noiseless data cannot be inverted reliably because of the finite arithmetic

precision.

In this work, both integral and differential methods are developed for modeling different

types of targets, including rotationally-symmetric targets and thin sheets. The interaction

between sensor and target is modeled as a linear system, which can then be set up as a

generalized eigenvalue problem. The eigenvalues of the system correspond to the pole

locations of the pole expansion. The remaining coefficients can be derived from the eigen-

vectors of the system, which correspond to the natural modes of the eddy-current problem.

xv



CHAPTER 1

INTRODUCTION

Despite limited use in recent years, landmines remain a major cause of death and maiming

in many countries across the world. According to the International Campaign to Ban Land-

mines, every day in 2016, an average of 23 people around the world lost their life or limb

to a landmine or another explosive remnant of war [1]. Because of this large humanitarian

cost, there has been a dedicated effort to detect and remove landmines in a safe and reliable

manner.

Detecting landmines reliably is a difficult task. Landmines are generally concealed in

unknown locations underground, which means that sensors must be able to detect them

through layers of soil. The task is further complicated by abundant metallic clutter, such

as ammunition shells, that are ubiquitously found in the surrounding scene. For this task,

landmine detectors generally utilize a combination of electromagnetic induction (EMI) and

ground-penetrating radar (GPR) sensors. These sensors are also used in a variety of other

applications where it is important to be able to discriminate between targets and clutter.

These applications include treasure hunting, archaeology, utility location, and geophysical

prospecting.

These two types of sensors provide complementary information about buried targets.

GPR sensors are capable of detecting both conducting and non-conducting targets but have

limited ability to discriminate between target types, and more importantly, to discriminate

between targets and clutter. EMI sensors, in contrast, cannot detect non-conducting targets

directly but can gather additional information about conducting targets that can be used to

infer their shape, size, spatial orientation, and material composition. The focus of this work

is to characterize the wideband EMI responses of different types of conducting targets,

including conducting sheets and shells and conducting bodies of revolution.
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Figure 1.1: Operating principle of an EMI sensor. By illuminating a conductor with a
time-varying magnetic field, ~H

inc
, eddy currents, ~J , are excited in the conducting media.

According to Lenz’s law, these eddy currents induce a scattered magnetic field, ~H
sca

, that
opposes the magnetic excitation; the currents decay exponentially in time.

1.1 Fundamentals of Electromagnetic Induction Sensing

EMI sensors are commonly chosen for applications that require detecting electrically-

conductive targets that are buried at shallow depths in non-conductive soil. Although

EMI sensors cannot detect non-conducting targets, many targets of interest have signif-

icant metallic content, including landmines and unexploded ordnance (UXO). Detection

using EMI sensors is based upon the physical phenomenon whereby an excitation in the

form of a time-varying magnetic field causes eddy currents to flow in conducting media.

These eddy currents, according to Lenz’s law [2], are known to induce a scattered magnetic

field that opposes the magnetic excitation. EMI sensors transmit a magnetic field that pen-

etrates the soil; by sensing the scattered fields, they are able to detect the presence of buried

metal. The basic operating principle of an EMI sensor system is illustrated in Fig. 1.1.

At its most basic level, an EMI sensor system is comprised of two sets of coils, transmit-

ting and receiving, which are not necessarily disjoint. The transmitting coils are driven by

a time-varying current source such that they produce the desired magnetic excitation. The

2



receiving coils measure the scattered magnetic response. Isolation between the transmitting

and receiving coils is often achieved either by time gating or by choosing coils with orthog-

onal fields (e.g. dipole coils for transmitting and quadrupole coils for receiving). Systems

with multiple receiving coils are common, as they can gather additional information about

the location and orientation of targets.

Frequent false alarms are a significant issue for narrowband EMI sensors, since the scat-

tered responses due to metallic clutter cannot be distinguished reliably from the responses

from targets of interest. Wideband sensors can provide an answer to this clutter problem

by collecting additional frequency data, which captures within it information about the tar-

get’s shape, size, conductivity, and permeability. EMI sensors can be designed to utilize

very high bandwidths, such as the sensor in [3], which operates over the frequency range

of 300 Hz to 90 kHz, a bandwidth of 300:1. When broadband data are measured at differ-

ent positions relative to the target, the measured data can be checked against a dictionary

so that only targets of specific types are flagged. The additional data can also be used to

estimate the target’s position and orientation underground.

Because of the promise of wideband EMI sensing, substantial attention has been given

to deriving numerical models for the EMI scattering problem [4, 5, 6, 7, 8]. Eddy current

problems, more generally, have been studied extensively in the past, using mostly varia-

tional methods [9, 10]. Later, symmetric boundary element methods emerged [11], based

on the work of Hiptmair [12], that have since gained in popularity.

1.2 The Magnetic Polarizability Tensor

In EMI detection, it is common to approximate a target by a magnetic dipole, so that the

EMI scattering mechanism can be represented by a magnetic polarizability tensor (MPT),

M , which is a symmetric, positive-semidefinite, rank 2 tensor (dyadic), with 6 independent

coefficients [13]. This approximation is valid whenever the target is electrically small rel-

ative to the wavelength of the sensor. When this dipole approximation is valid, the voltage
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measured across the receiving coil, Vind, can be approximated using reciprocity by

Vind ≈ jωµ0
~HRX(~r) ·

(
M ~HTX(~r)

)
, (1.1)

where ω is the angular frequency, ~HTX(~r) is the magnetic field due to the transmitting coil

at the location of the target, and ~HRX(~r) is the field of the receiving coil at the target had

it been driven by a unit-magnitude time-varying current. In other words, the reciprocity

relation states that the EMI response depends exclusively upon the magnetic polarizability

of the target and the magnetic fields supported by the transmitting and receiving coils at the

location of the target. A derivation of this reciprocity relation is given in Appendix A.

Targets can be identified based on the frequency dependence of their tensor coeffi-

cients. This is because M does not vary with a target’s positioning or orientation relative

to the sensor. Early work by Shubitidze et al. [14] computed the MPT of three-dimensional

and rotationally-symmetric UXO using the method of auxiliary sources. More recently,

Ledger [15] presented a method for computing the MPT of general targets, which include

both permeable and non-permeable targets as well as targets with sharp edges.

1.3 Pole-Expansion Form

Still unresolved is the question of how to optimally discriminate between targets and clut-

ter based upon their frequency-dependent MPT. An interesting approach to wideband EMI

characterization was introduced by Baum [16], where he proposed applying the singularity

expansion method in the EMI context. Under this framework, the frequency response of

a target is viewed as a pole expansion with real-valued poles. Much of the early efforts

at this characterization were concerned with computing the pole locations of different tar-

gets, which may be viewed as the reciprocal of the time constants of the exponential decay

of the different natural modes excited in the target. This is because these time constants

are independent of the positioning and orientation of the target relative to the sensor. The
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pole-expansion coefficients were derived analytically for a thin wire loop and a conduct-

ing sphere [6]. Carin et al. [4] computed these time constants for rotationally-symmetric

conductors, including permeable targets. This work, however, neglected the spatial depen-

dence embedded in the magnetic polarizability tensor, which can be very valuable for target

classification.

More recently, a modal approach was proposed by McFadden [17], for computing the

pole-expansion coefficients of targets numerically. This methodology was used to compute

wideband models for non-permeable, rotationally-symmetric targets. Under this viewpoint,

Baum’s frequency-dependent MPT is viewed through the lens of natural modes, each de-

caying exponentially in time at a corresponding real-valued relaxation frequency, the recip-

rocal of the time constant of its exponential decay. Under this framework, the frequency-

dependent MPT, M (ω), can be characterized by a discrete set of frequency-independent

coefficients,

M (ω) = M 0 −
K∑

k=1

jω/ζk
1 + jω/ζk

M k, (1.2)

where ζk are the relaxation frequencies, M k are frequency-independent MPTs, and M 0

is the DC term. This approach separates the frequency behavior from a set of frequency-

independent MPTs, that represent the scattering behavior of each of the natural modes.

This modal viewpoint of the EMI scattering problem has several notable advantages. It

allows the frequency-dependent MPT to be represented by a small number of frequency-

independent coefficients. This allows the frequency-dependent MPT to be easily computed

for any frequencies of interest. The frequency-independent coefficients can be scaled to

describe targets with the same shape but different characteristic dimension or electrical

conductivity. In this way, a large family of targets can be described using a single set of

parameters. The natural modes, which are computed as a byproduct of the modal approach,

provide insight into the current flow patterns. This may often be beneficial but is especially

helpful when attempting to design sensor components or shielding that does not interfere

with the EMI sensor.
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1.3.1 Simplifications for Targets with Symmetry

For any target, becauseM is symmetric, it is also diagonalizable, meaning that there must

be some orthogonal transformation for which the tensor is diagonal. The number of inde-

pendent tensor coefficients after the transformation reduces to 3, with 3 degrees of freedom

remaining to characterize the orthogonal transformation. All three tensor components must

be non-negative becauseM is positive semidefinite.

When a target is rotationally symmetric, two of the tensor coefficients along the diag-

onalized tensor must be identical, reducing the number of unique tensor coefficients to 2.

The orthogonal transformation has only 2 degrees of freedom, because of the rotational in-

variance. If the z-axis is the axis of rotation, thenM |zz is independent, butM |xx = M |yy
and all the off-diagonal coefficients are zero.

For a small subset of conductor geometries that have high degrees of symmetry, in-

cluding spheres and Platonic solids, the total number of degrees of freedom is reduced to

1. Their target responses are known to be isotropic, meaning that their MPT is a scalar

multiple of the identity tensor, and the tensor is invariant with respect to orthogonal trans-

formations. In these cases, the pole expansion can simplified,

(M (ω)|zz)I3 =
K∑

k=1

jω/ζk
1 + jω/ζk

(M k|zz)I3, (1.3)

whereM (ω)|zz is a scalar function of frequency representing the zz-component ofM(ω),

I3 is the identity tensor of dimension 3, and M k|zz are scalar coefficients representing

the zz-components of M k. In this expression the entire tensor was represented by its

zz-component, however, this choice is arbitrary, since the tensor’s diagonal terms are equal,

M |xx = M |yy = M |zz. All off-diagonal tensor coefficients for an isotropic target must

be identically zero. In other words, an isotropic target requires only two sets of scalar

values to characterize its pole expansion, the set of relaxation frequencies, ζk, and a set of

amplitudes,M k|zz.
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Figure 1.2: EMI response of a non-permeable copper sphere of radius 1 cm. In Fig. 1.2a,
an Argand diagram of the zz-component of the magnetic polarizability tensor is plotted. In
Fig. 1.2b, a characteristic stem plot of the pole-expansion coefficients is shown, where the
stem positions are the relaxation frequencies, ζk, and the zz-components of the magnetic
polarizability tensor are the amplitudes.

1.3.2 Graphing the Magnetic Polarizability

The MPT can be graphed either in the frequency domain or in the pole-expansion domain.

In the frequency domain, the MPT is sometimes plotted on an Argand diagram, where one

of the tensor coefficients of M(ω) is plotted parametrically in frequency, with the real

part on the x-axis and the imaginary part on the y-axis. An Argand diagram for the mag-

netic polarizability of a non-permeable copper sphere of radius 1 cm is plotted in Fig. 1.2a.

General targets require six plots to characterize the MPT, but because the sphere has an

isotropic response, a single plot can characterize the entire tensor. The MPT for the same

sphere is graphed in the pole-expansion domain in Fig. 1.2b. In this plot, the height of the

stems is determined by the amplitude, M k|zz, and the location is determined by the corre-

sponding relaxation frequency, ζk. Although the pole-expansion terms associated with the

higher relaxation frequencies appear inessential because of their small amplitude, they are

significant when trying to the reconstructM(ω) from the pole expansion.
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1.3.3 Scaling the Pole-Expansion Coefficients

The pole-expansion coefficients can be scaled to describe targets with the same shape but

different characteristic dimension or electrical conductivity. For this reason, it is beneficial

to normalize the coefficients so that that they can be reused. The pole expansion coefficients

can be scaled from their normalized values using the relations [5]

M k = M̃ kR
3 (1.4)

ζk =
ζ̃k

σµ0R2
, (1.5)

where M̃ k and ζ̃k are normalized coefficients, σ is the electric conductivity of the scatterer,

µ0 is the permeability of free space, and R is the characteristic dimension of the scatterer.

For thin scatterers, it is natural to normalize the relaxation frequencies using a sheet con-

ductivity, σs = σt, where t is the sheet thickness. If the sheet conductivity is to remain

constant when the characteristic dimension is scaled, then the normalization becomes

ζk =
ζ̃s
k

σsµ0R
, (1.6)

where ζ̃s
k denotes a normalized coefficient that follows this shell scaling instead of Eq. (1.5).

This parameter scaling derives directly from the electromagnetic equations and can be in-

ferred from the derivation of the pole-expansion coefficients for the spherical shell (See

Appendix B).

1.3.4 Inverting Pole-Expansion Coefficients from Experimental Data

The pole-expansion coefficients can be approximated from the measured spatial and fre-

quency responses of a target. In this work, the process by which the coefficients are fitted

from data will be referred to as inversion. In the field, measurements are inverted so that the

fitted pole-expansion coefficients can be compared to a dictionary of targets of interest [18,
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Figure 1.3: Cart-mounted wideband EMI sensor, that operates over a frequency range from
1 kHz to 90 kHz at 17 logarithmically-spaced frequencies. This sensor has one large trans-
mit coil and four smaller receive coils.

19, 20, 21]. Field measurements are generally recorded in noisy environments and consist

of relatively few looks at a target. An EMI system that was designed to collect field data is

shown in Fig. 1.3.

In this work, the primary aim of fitting experimental data is to validate numerical re-

sults. As such, the experimental system used in this thesis was designed to minimize the

effects of noise by taking long and controlled measurements. Generally, only a few of the

fitted coefficients are accurate, because the inverse problem is highly ill-conditioned [22].

The accurate coefficients are those associated with the most dominant poles in the ex-

pansion. The inaccuracies cannot be attributed entirely to the noise, since even noiseless,

synthetic data cannot be inverted perfectly, and poles with smaller relative tensor coeffi-

cients are often indiscernible [18]. Worse, these poles often combine to cause errors in the

dominant terms of the expansion.

Laboratory Measurement System

The laboratory measurements recorded in this thesis were gathered using the experimental

setup that was used in [5]. The system measures the frequency-dependent MPT,M (ω), of
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Figure 1.4: Measurement system used in this thesis. The system measures the frequency-
dependent MPT of a target by rotating it in a circular path that passes between two coaxial
and parallel coils, a transmitter and a receiver, which lie above and below the circular path.

a target by rotating it in a circular path that passes between two coaxial and parallel coils,

a transmitter and a receiver, which lie above and below the circular path. The experimental

setup is shown in Fig. 1.4. The transmitting coil is driven by a wideband multisine with 21

logarithmically-spaced tones, ranging between 330 Hz and 90.030 kHz. At each time step,

the scattered response at the receive coil is recorded at each of the 21 frequencies.

Fitting the Pole-Expansion Coefficients

Using both the target’s known position relative to the coils, and the voltages measured

across the receive coil, a discrete number of poles and their corresponding positive-semidefinite

frequency-independent MPTs can be inverted from the measured data by solving a convex

optimization problem. Known target symmetries can be used to further constrain the op-

timization. For example, when inverting the MPT of a rotationally symmetric target, it

is beneficial to assume that the tensor coefficients in each of the transverse directions are

identical, to improve the fit. For an isotropic target like a sphere, making an isotropic

assumption on the tensor coefficients improves the fit even further, because it drastically

reduces the number of degrees of freedom.
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1.3.5 Numerically Computing Pole-Expansion Coefficients

For the majority of targets, the pole-expansion coefficients must be computed numerically.

Numerical approaches for computing the coefficients are important, because inversions of

experimental data are often unreliable. Although it is straightforward to solve a quasi-

magnetostatic problem and compute M (ω) for any given frequency, inverting this tensor

does not produce accurate coefficients. Directly solving for the pole-expansion coefficients

is much more accurate but also a far more complex task.

For a small subset of conductor shapes, the pole-expansion coefficients can be de-

rived analytically. This subset is comprised of conductor geometries that are character-

ized by high degrees of symmetry and includes shapes such as spheres, prolate and oblate

spheroids, and filament rings. In this work, these canonical targets will often be used for

validation.

Numerical computation of coefficients has been performed in the past for targets with

rotational symmetry [4, 17], but this analysis has not been extended to general target ge-

ometries. The objective of this work is to develop techniques for numerically computing

the pole-expansion coefficients of the frequency-dependent magnetic polarizability of con-

ducting targets with more general target geometries.

1.4 Outline

The methods described in this thesis can be used to derive the pole-expansion coefficients

of the magnetic polarizability of families of targets, with dedicated methods for targets that

are rotationally symmetric or targets that are thin in one dimension. In each of the methods,

Maxwell’s equations are first represented using a numerical method, either integral or dif-

ferential, which is then set up as a generalized eigenvalue problem. The eigenvalues of the

system correspond to the pole locations of the pole expansion. Because the eigenvectors of

the system are the associated mode patterns, deriving the remaining coefficients in the pole
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expansion involves very straightforward post-processing.

This document is organized in two parts, the first discussing integral methods and the

second discussing differential methods. Part one contains three chapters: a method for

modeling conducting sheets and shells, a method for modeling conducting solids, and a

very simple method for conducting bodies of revolution. The second part discusses a dif-

ferential method for modeling conducting solid targets. The document ends with a short

conclusion and suggestions for future research.
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Part I

Integral Methods
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CHAPTER 2

CONDUCTING SHEETS AND SHELLS

2.1 Introduction

In this chapter, a method will be presented for computing the pole-expansion coefficients

of the magnetic polarizability of thin conducting sheets and shells1. In the past, pole-

expansion coefficients have generally not been derived for these types of targets, aside

from the coefficients for the thin circular disk in [5]. That particular volume approach,

however, can only model rationally-symmetric targets and is computationally expensive for

thin targets. A generalized approach for modeling surfaces and shells is valuable because

many targets of interest can be assumed to be infinitesimally thin, which greatly reduces

the complexity of the numerical model. Many obvious targets can be modeled in this way,

such as metal containers, ammunition casings, and scrap metal, but also metal that might

be deployed along with the EMI sensor, such as ground-penetrating radar antennas [24].

In this chapter, a method will be presented for computing the pole-expansion coeffi-

cients of the MPT of thin conducting targets. The method utilizes a stream function to

enforce both a quasi-magnetostatic assumption and the appropriate boundary conditions

on the eddy currents. The method is verified by comparing the numerically-derived pole-

expansion coefficients for a spherical shell to a derived analytical solution (Appendix B).

Numerically-computed coefficients are also compared to measured data. This includes the

pole-expansion coefficients for cylindrical tubes, of various aspect ratios, which are com-

pared to experimental results, showing good agreement. Pole-expansion coefficients are

given for a disk and are compared to the results in [5]. Finally, pole-expansion coefficients

and mode graphs are given for the shells of the Platonic solids, which are isotropic targets.

1The work in this chapter has been published in [23].
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Because of their high degrees of symmetry this class of targets only has one dominant pole

in their respective pole expansions.

2.2 Electromagnetic Model

The primary aim of deriving a numerical model is to characterize the scattered magnetic

field that is induced by the eddy currents that are excited by the EMI sensor in a thin

conducting region, Ωc. Maxwell’s equations in their time-harmonic form, and under the

eddy-current approximation, which allows displacement currents to be neglected, state that

∇× ~H(~r) = ~J(~r) (2.1a)

∇× ~E(~r) = −jω ~B(~r) (2.1b)

∇ · ~B(~r) = 0 (2.1c)

∇ · ~J(~r) = 0. (2.1d)

In addition, the constitutional relationships state that

~B(~r) = µ ~H(~r) (2.2a)

~J(~r) = σ~E(~r), (2.2b)

where µ is the permeability, and the electrical conductivity, σ, satisfies

σ =





σc in Ωc

0 in Ω \ Ωc.
(2.3)
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If a vector potential, ~B(~r) = ∇× ~A(~r), is introduced, then Ampere’s law (2.1a) can be

satisfied by

∇2
(
~A(~r)− ~A

inc
(~r)
)

= −µ0
~J(~r), (2.4)

provided that the conducting and background media are assumed to be non-permeable. The

incident magnetic vector potential, ~A
inc

, represents the magnetic excitation in the absence

of the conductor. Implicit in this separation is the assumption that the excitation is not

significantly altered by the addition of the conductor.

The well-known fundamental solution to the three-dimensional Laplacian is

∇2G(~r) = −δ(~r), (2.5)

whereG(~r) is the free-space Green’s function,G(~r) = 1
4πr

. Utilizing the Green’s function,

the magnetic vector potential due to the eddy currents flowing over a surface, S, can be

written as

~A(~r)− ~A
inc

(~r) =
µ0

4π

∫

S

~J(~r′)∥∥~r − ~r′
∥∥ dS

′. (2.6)

When it is assumed that there is no charge built up in the computational domain, the

electric field can be directly related to the magnetic vector potential, while also satisfy-

ing Faraday’s law (2.1b), ~E(~r) = −jω~A(~r). Substituting for the electric field and then

subsequently substituting Ohm’s law, ~E(~r) = σ−1s
~J(~r), into Eq. (2.6), we have

σ−1s
~J s(~r) + jω

µ0

4π

∫

S

~J s(~r
′)∥∥~r − ~r′
∥∥ dS

′ = −jω~Ainc
(~r). (2.7)

Eq. (2.7) relates the surface eddy currents, ~J s(~r), that flow in the conductor due to the

magnetic excitation, ~A
inc

(~r).

16



2.3 Numerical Strategy

2.3.1 Discretization and Choice of Basis Functions

Following the approach in [17], we aim to utilize an eigenvalue solver to decompose

Eq. (2.7) into its natural modes. Consequently, Eq. (2.7) is discretized using a finite-

element basis. The conducting region is approximated by a polyhedral surface, comprised

of triangular cells, which must be sufficiently small so as to properly represent the current

density. Divergence-conforming constant normal/linear tangential (CN/LT) Nedelec basis

functions [25, 26] were chosen to represent the divergence-free surface current density,

~J s(~r) ≈
N (E)∑

i=1

ji ~f i(~r), (2.8)

where ji are the basis function coefficients,N (E) is the number of edges in the mesh, and

~f i(λj, λk) = n̂× (λj∇λk − λk∇λj), (2.9)

where ~f i is the basis function associated with the ith edge, that is oriented from node j to

node k, and λj , λk are barycentric coordinates (in the triangles adjacent to the edge) for the

two nodes that are common to the edge.

The choice of basis function is natural because the surface current density is solenoidal,

Eq. (2.1d). While divergence-conforming (CN/LT) basis functions have finite divergence

over their domain, the divergence of the constructed surface current density can be con-

strained to zero using a simple topological matrix. These divergence-conforming elements

maintain the normal continuity of the surface current density across the boundary of cells.

This prevents the accumulation of electric charge on the cell boundaries. Furthermore,

using the same topological matrix, it is simple to satisfy the boundary conditions on the

surface current density.
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Figure 2.1: Loop basis function associated with the central node c© 2019 IEEE

The discrete version of Eq. (2.7) can be written as

Rj + jωLj = −jωainc, (2.10)

where the following matrices must be computed for each basis function pair:

Lij =
µ0

4π

∫∫ ~f i(~r) · ~f j(~r′)∥∥~r − ~r′
∥∥ dS ′dS (2.11)

Rij =

∫
σ−1s

~f i(~r) · ~f j(~r) dS (2.12)

ainc
i =

∫
~f i(~r) · ~Ainc

dS. (2.13)

Since the (CN/LT) basis functions are divergence conforming, Eq. (2.7) does not, on its

own, constrain the solenoidality of the surface current density. The divergence of the sur-

face current density will be constrained to zero by using a stream function to expand the

basis-function coefficients.

2.3.2 Discrete Gradient Operator

The approach taken in this chapter is to represent the solenoidal surface current density

using a scalar stream function (or equivalently, using loop basis functions [27]). Adopt-

ing either viewpoint, the basis-function coefficients are determined by scalar coefficients,

interpolated over the nodes of the discrete mesh. A loop basis function is illustrated in

Fig. 2.1.
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A topological node-edges incidence matrix is used to algebraically constrain the basis-

function coefficients to ensure the solenoidality of the surface current density in the con-

ducting region. This can be achieved by using a node-edge incidence matrix, G, with

entries

Gij =





−1, if the ith edge is oriented negatively with

respect to the jth node,

+1, if the ith edge is oriented positively with

respect to the jth node

0, otherwise.

(2.14)

If the coefficients of the surface current density are constrained such that

j = Gψ, (2.15)

where ψ is a scalar potential, then by substituting the potential into Eq. (2.10) and multi-

plying the equation byGT , it becomes

GTRGψ + jωGTLGψ = −jωGTainc
i , (2.16)

which is a symmetric matrix equation, with a number of unknowns equal to the number

of nodes in the mesh. Finally, a generalized eigenvalue problem can be set up so as to

diagonalize both system matrices,

GTLGv = λGTRGv, (2.17)

or

LGV = RGV Λ, (2.18)

where each v is an eigenvector, λ is the corresponding eigenvalue, V = [v1,v2, ...,vK ] is
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the matrix of eigenvectors, Λ = diag[λ1, λ2, ..., λK ] is the diagonal matrix of eigenvalues,

RG = GTRG, and LG = GTLG. Both RG and LG are dense, symmetric, and positive

definite, and their generalized eigenvalues and eigenvectors can be found trivially.

2.3.3 Pole Expansion Derivation

The generalized eigenvalues and eigenvectors of Eq. (2.17) can be used to expand Eq. (2.16)

into pole-expansion form by first recognizing that

RG = RGV V
TRG (2.19)

LG = RGV ΛV TRG, (2.20)

which derives from the RG-orthogonality of the eigenvectors, V TRGV = I . The pencil

can then be written as

RG + jωLG = RGV (I + jωΛ)V TRG. (2.21)

If Eq. (2.21) is multiplied on the left by V T and on the right by V , then

V T (RG + jωLG)V = (I + jωΛ). (2.22)

Taking the inverse of the pencil, provided that ω does not coincide with a pole, results in

(V T (RG + jωLG)V )−1 = (I + jωΛ)−1

V −1(RG + jωLG)−1
(
V T
)−1

= (I + jωΛ)−1

(RG + jωLG)−1 = V (I + jωΛ)−1V T , (2.23)
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which can be written in summation form as

(RG + jωLG)−1 =
K∑

k=1

(1 + jωλk)
−1vkv

T
k . (2.24)

Using Eq. (2.24), it is possible to solve for the stream function unknowns in Eq. (2.16),

ψ = −
K∑

k=1

jω

1 + jωλk
vkv

T
kG

Tainc
i . (2.25)

Multiplying Eq. (2.25) on the left byG gives

j = Gψ = −
K∑

k=1

jωλk
1 + jωλk

λ−1k Gvkv
T
kG

Tainc
i , (2.26)

where the eigenvalues can be identified as the reciprocal of the relaxation frequencies as-

sociated with the eddy-current modes. The magnetic polarizability of each of the current

density modes can be computed from their magnetic dipole moments,

~m =
1

2

∫

S

~r × ~J s(~r) dS, (2.27)

which can be evaluated using quadrature. The magnetic dipole moments are computed

for eddy currents supported by excitations, ~A
inc

, that correspond to x̂-, ŷ-, and ẑ-directed

uniform magnetic fields2. Then, the components of the magnetic polarizabilities can be

inverted from the magnetic moments using the relation

~m = M · ~H inc
. (2.28)

The three magnetic excitations provide a full-rank basis, which is sufficient to invert the

tensor components.

2These ~A
inc

are not unique, and many compatible fields could have been chosen. In this work, for exam-

ple, ~A
inc

= − 1
2µ0(yx̂− xŷ) was chosen for the ẑ-directed excitation.
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2.4 Implementation Details

Triangular meshes for the conducting surfaces were generated with the MATLAB package

DistMesh [28], when the conductor shapes were simple, and gmsh [29], when the con-

ductor shapes were more complex. DistMesh produces better quality meshes, however,

is restricted to a small set of geometries.

The basis-function interactions required to fill the R and L matrices were computed

using a quadrature rule for triangles [30]. This rule has barycentric nodes at (1
6
, 1
6
), (2

3
, 1
6
),

(1
6
, 2
3
) and weights of 1

3
for each. The singular kernel in Eq. (2.11) poses a challenge

when computing the integrals for basis functions that have overlapping domains. These

include the obvious self terms but also basis functions on neighboring triangles that share a

vertex or edge with the source triangles. As in [31], the singularity was canceled using the

approach outlined in [32]. After the inner integral has been simplified, the outer integral

can be evaluated using the same quadrature rule for triangles.

The topological matrix,G, is used to enforce boundary conditions. For closed surfaces

with no boundary, such as a hollow sphere, it is sufficient to eliminate a single degree of

freedom fromG to gauge the scalar potential. For a disk, a surface with a single boundary,

all the degrees of freedom that correspond to boundary nodes can simply be eliminated

fromG to enforce the boundary condition on the current. For a tube, a simple surface with

two boundaries, one of the boundaries can be eliminated and the degrees of freedom from

the remaining boundary may be combined into a single unknown. Enforcing boundary

conditions for target geometries that are more complex requires special care and is beyond

the scope of this thesis [31].

The generalized eigenvalues and eigenvectors of the linear system were computed us-

ing MATLAB’s eig routine. The computations were run on a hex-core, 3.4 GHz Intel

i7 processor, with 64 GB of memory. On this computer, eig will find all of the general-

ized eigenvalues and eigenvectors for a pair of 7,445×7,445 matrices in less than 10 min.
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This corresponds to the mesh having 22,332 edges, which is equal to the number of basis

functions used to expand the current density.

2.5 Computational and Experimental Results

2.5.1 Hollow Spherical Conductor

This target provides a useful benchmark for the numerical method because it is possible to

derive an analytical expression for the pole-expansion coefficients (See Appendix B). The

hollow sphere is also noteworthy because its high degree of symmetry causes it to have

only a single eddy-current mode that has a non-zero dipole moment. This means that three

of the generalized eigenvectors of the linear system have a non-zero moment, but they all

share the same eigenvalue.

In Fig. 2.2, the relative error in pole-expansion coefficients is plotted versus the inverse

of the average mesh edge length. This plot was generated by deriving the coefficients for

meshes of varying coarseness and comparing them to their analytical values. The coeffi-

cients converge quadratically, with the frequency-dependent MPTs, M k, achieving higher

accuracy relative to the relaxation frequencies, ζs
k. It is possible that this occurs because of

the additional integration that is performed when deriving those coefficients. In Fig. 2.3, the

numerically-computed stream function for the spherical shell is compared to its analytical

expression.

2.5.2 Cylindrical Tubing

Thin brass cylindrical tubes were chosen to provide a comparison between experimental

and computational results. Brass tubing, which is commercially available in a wide variety

of diameters, can be easily cut to specific lengths. Furthermore, the tubes physically resem-

ble ammunition casings that often act as clutter in EMI detection. The aspect ratio of the

cut tubing can be represented by the ratio of the height of the cylinder, h, to its diameter, d.

The pole-expansion coefficients can then be plotted as a function of aspect ratio.
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In Fig. 2.4, normalized pole-expansion coefficients, experimental and simulated, are

plotted as a function of the tubing aspect ratio, h/d. The coefficients were first normalized

by scaling the tubing dimensions so that they were inscribed by the unit sphere. This allows

the coefficients to be easily scaled to any characteristic dimension. Numerical results are

represented by the solid graph lines, that were generated by sweeping the cylinder aspect

ratios over a large number of simulations. The scattered data points correspond to the

inverted coefficients from the experimental measurements. The modes are ordered such that

the first mode is the lowest in frequency and are the highest in tensor coefficient amplitude.

From examination of the plots, it is apparent that there is excellent agreement between

the pole-expansion coefficients for the first-order modes in both longitudinal and transverse

directions. The measured coefficients for the second-order modes are only moderately

accurate. This is a consequence of the relative weakness of the second-order modes when

compared to the first-order modes. In Fig. 2.5, the current patterns of the first three modes

in both longitudinal and transverse directions are plotted.

The graphs in Fig. 2.4 can also be used to compute the pole-expansion coefficients for

families of similar targets by using Eq. (1.4) and Eq. (1.6) to scale the normalized coeffi-

cients. In the experiment, the tube with h/d = 3, for example, was a non-permeable brass

tube with a height of 1.5”, a diameter of 0.5”, a thickness of 0.014”, and a conductivity

of 1.602× 107 S/m. Its first longitudinal mode was measured at a frequency of 8.451 kHz

with an amplitude of 4.886 cm3. This corresponds to a measured normalized frequency of

7.632 and a normalized amplitude of 0.603. The numerical model, in comparison, com-

puted a normalized frequency of 7.049 and a normalized amplitude of 0.618.

The inversion algorithm is inaccurate when inverting relaxations that are more than an

order of magnitude weaker than the principle relaxation. In relative terms, the transverse

coefficients are expected to be more accurate than the longitudinal coefficients, because

the inversion exploits the axial symmetry of the tubing. The accuracy of the second-order

modes is degraded, however, by inaccuracy in the third-order modes, which are extremely
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Table 2.1: Comparison between the thin-disk limit fitted using the finite element method
(FEM)[5] and the surface integral method (SIM) c© 2019 IEEE

n ζ̃s
n (SIM) ζ̃s

n (FEM) (M̃ zz)n SIM (M̃ zz)n FEM

1 0.439 0.44 1.933 1.93

2 0.939 0.94 0.333 0.33

3 1.442 1.43 0.129 0.13

4 1.948 1.92 0.067 0.07

5 2.459 2.41 0.041 0.04

difficult to invert due to their small amplitude. This inaccuracy in the higher-order modes

highlights the importance of computational modeling, since inverted coefficients may have

significant errors.

2.5.3 Thin Conducting Disk

An interesting target for comparison is a thin conducting disk, since pole-expansion coeffi-

cients of cylindrical targets of varying aspect ratios have been modeled in [5]. In Table 2.1,

the fitted thin-disk limit coefficients are compared to idealized numerical results that were

computed with the surface integral method. The table shows excellent agreement between

the two methods. To the extent that the coefficients differ, it is unclear which is more

accurate.

2.5.4 Shells of the Platonic Solids

Eddy-current modes in the shells of the Platonic solids behave much like currents in a

hollow sphere, in particular, all these targets have a MPT that is isotropic [6]. In Table 2.2,

the coefficients corresponding to the first-order mode were normalized, so that each of the

shells encompassed a volume of 4π/3. Their normalized coefficients were compared to the

coefficients of a unit-radius hollow sphere.

Of note, is the similarity in coefficients between the shells of the Platonic solids and the

hollow spherical shell. While all the Platonic solid shells have additional poles with small
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Table 2.2: Normalized magnetic polarizability expansion coefficients for the shells of the
five Platonic solids and a hollow sphere

Shape ζ̃s
1 M̃ 1

Tetrahedron 3.0035 6.7515

Cube 3.0492 6.6502

Octahedron 3.0762 6.4630

Dodecahedron 3.0287 6.3934

Icosahedron 3.0262 6.3287

Sphere 3.0000 6.2832
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non-zero dipole moments, the amplitude of the secondary poles, decreases with increasing

solid order (the tetrahedron has the largest secondary poles, and the icosahedron has the

smallest). The second mode of the tetrahedron has an amplitude that is 3 % of the ampli-

tude of the first mode, while the second mode of the icosahedron has a vanishingly-small

amplitude. In Fig. 2.6, the first mode of each of the hollow platonic solids is plotted with a

comparison to the single mode of the hollow sphere.

2.6 Conclusion

A surface integral method was presented for numerically deriving the pole-expansion co-

efficients of the magnetic polarizability of thin conducting shells. The method utilizes

a stream function to enforce both a quasi-magnetostatic assumption and the appropriate

boundary conditions on the currents. The coefficients are derived from the linear system

matrices by performing a simple generalized eigendecomposition.

To demonstrate the validity of the method, a hollow spherical conductor was modeled,

and the derived coefficients were compared to their analytical values. For additional verifi-

cation, the pole-expansion coefficients of a thin conducting disk were compared to the limit

computed by a finite element code. The pole-expansion coefficients were computed for the

shells of the Platonic solids, which are isotropic. These shells only have one dominant pole

because of their high degrees of symmetry.

Experimental verification was achieved by measuring the pole-expansion coefficients

of a number of thin brass tubes and comparing them to the numerical predictions. The

simulated coefficients corresponding to the first-order longitudinal and transverse modes

showed excellent agreement with the experiment. The agreement with the second-order

modes was only moderately good, however, these modes are weaker than the measurement

system can invert accurately. This demonstrates the value of a numerical approach, because

even with a controlled measurement system, the expansion coefficients cannot be inverted

with precision.

27



5 10 15 20

10−4

10−3

10−2

a/lavg

R
el

at
iv

e
er

ro
ri

n
co

ef
fic

ie
nt

Relaxation frequency, ζ1
Diagonal coefficients ofM 1

Figure 2.2: Convergence plot for the pole-expansion coefficients of a hollow spherical
conductor. The relative error in the coefficients is plotted against the inverse of the average
mesh edge dimension. c© 2019 IEEE.
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Figure 2.5: Current flow patterns for the first three longitudinal and transverse eddy-current
modes of a conducting tube. Only one side of the tube is shown with the currents on the
other side of the tube completing the contours. Two orthogonal modes can represent the
transverse modes, y-directed modes (shown) and the x-directed modes which are identical
after a 90◦ rotation. c© 2019 IEEE.
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CHAPTER 3

CONDUCTING SOLIDS

3.1 Introduction

In this chapter, a method will be presented for computing the pole-expansion coefficients

of the MPT of three-dimensional targets. To date, pole-expansion coefficients have not

been computed for targets with arbitrary geometries, as previous characterizations of the

pole-expansion coefficients of three-dimensional targets have been limited to targets with

axial symmetry [4, 5]. Closed-form expressions have only been derived for spheres [6],

and oblate and prolate spheroids [33]. Modeling general targets is important, because many

targets of interest do not have rotational symmetry or are too thick to be accurately modeled

by the approach in Chapter 2.

The method outlined in this chapter applies to sufficiently smooth, non-permeable tar-

gets without symmetry. It is an extension of the method in Chapter 2, with significant

changes because of difficulties that are unique to three-dimensional analysis. A volume

integral method is set up to satisfy Maxwell’s equations, but a vector potential is used to

represent the current density instead of a stream function. A tree-cotree projection is ap-

plied to the system matrices to remove their null spaces. The resultant linear system can

be decomposed using a standard eigenvalue solver for dense matrices. The pole-expansion

coefficients are then derived from the eigenvalues and eigenvectors. The method is veri-

fied by comparing the numerically-computed pole-expansion coefficients for a conducting

sphere to their analytical values. The expansion coefficients for a sphere, cube and regular

tetrahedron are compared to experimental data.
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3.2 Electromagnetic Model

The primary aim of deriving a numerical model is to characterize the scattered magnetic

field associated with the eddy currents that are induced in the conducting volume, Ωc, by a

time-varying magnetic excitation. Maxwell’s equations in their time-harmonic form, under

the eddy-current approximation, which allows displacement currents to be neglected, state

that

∇× ~H(~r) = ~J(~r) (3.1a)

∇× ~E(~r) = −jω ~B(~r) (3.1b)

∇ · ~B(~r) = 0 (3.1c)

∇ · ~J(~r) = 0. (3.1d)

In addition, the constitutional relationships state that

~B(~r) = µ ~H(~r) (3.2a)

~J(~r) = σ~E(~r), (3.2b)

where µ is the permeability, and the electrical conductivity, σ, satisfies

σ =





σc in Ωc

0 in Ω \ Ωc.
(3.3)

If a vector potential, ~B(~r) =∇× ~A(~r), is introduced, then Ampere’s law (3.1a), can be

satisfied by

∇2
(
~A(~r)− ~A

inc
(~r)
)

= −µ0
~J(~r), (3.4)
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provided that the conducting and background media are assumed to be non-permeable. The

incident magnetic vector potential, ~A
inc

, represents the magnetic excitation in the absence

of the conductor. Implicit in this separation is the assumption that the excitation is not

significantly altered by the addition of the conductor.

The well-known fundamental solution to the three-dimensional Laplacian is

∇2G(~r) = −δ(~r), (3.5)

where G(~r) is the free-space Green’s function, G(~r) = 1
4πr

. Utilizing the Green’s func-

tion, the magnetic vector potential due to the eddy currents flowing throughout a volume,

V , can be written as

~A(~r)− ~A
inc

(~r) =
µ0

4π

∫

V

~J(~r′)∥∥~r − ~r′
∥∥ dV

′. (3.6)

When it is assumed that there is no charge built up in the computational domain, the

electric field can be directly related to the magnetic vector potential while satisfying Fara-

day’s law (3.1b), ~E(~r) = −jω~A(~r). Substituting for the electric field and then subse-

quently substituting Ohm’s law, ~E(~r) = σ−1~J(~r), into Eq. (3.6), we have

σ−1~J(~r) + jω
µ0

4π

∫

V

~J(~r′)∥∥~r − ~r′
∥∥ dV

′ = −jω~Ainc
(~r). (3.7)

Eq. (3.7) relates the eddy currents, ~J(~r) that flow in the conductor due to the magnetic

excitation, ~A
inc

(~r).
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3.3 Numerical Strategy

3.3.1 Discretization and Choice of Basis Functions

Divergence-conforming constant normal/linear tangential (CN/LT) basis functions were

chosen to expand the current density,

~J(~r) ≈
N (f)∑

m=1

jfm ~w
f
m(~r), (3.8)

where jfm are the face-associated unknowns, and

~w f = 2(λi∇λj ×∇λk + λj∇λk ×∇λi + λk∇λi ×∇λj), (3.9)

where λ{i,j,k} are the barycentric coordinates of the associated faces of the tetrahedron.

Applying Galerkin’s method, the discrete version of Eq. (3.7) can be written as

Rj + jωLj = −jωainc, (3.10)

where the following matrices must be computed for each basis function pair

Lij =
µ0

4π

∫∫
~wi(~r) · ~wj(~r

′)∥∥~r − ~r′
∥∥ dV ′dV (3.11)

Rij =

∫
σ−1 ~wi(~r) · ~wj(~r) dV (3.12)

af, inc =

∫
~wi(~r) · ~Ainc

dV . (3.13)

Since divergence-conforming (CN/LT) basis functions were chosen, Eq. (3.7) does not, on

its own, constrain the solenoidality of the current density.

Despite the finite divergence of the basis functions over their respective domains, the

functions are a natural choice to represent the current density, which is solenoidal, because

they force normal continuity across cell boundaries while allowing for simple enforcement
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of boundary conditions. By eliminating unknowns associated with the faces on the bound-

ary of the conductor, eddy-current flow is confined to the conducting material. The total

divergence inside each tetrahedral cell can be forced to zero by utilizing a sparse topologi-

cal matrix to constrain the basis-function coefficients.

3.3.2 Discrete Curl Matrix

Enforcing the solenoidality of the current density using a topological matrix is akin to

defining a vector potential, ~T (~r), for the current density,

~J(~r) =∇× ~T (~r), (3.14)

which forces ~J(~r) to be solenoidal, since∇ · (∇× ~T (~r)) = 0. On a discrete mesh, this

corresponds to

jf = Cte, (3.15)

where jf are the face-associated current density unknowns, C is the topological edge-face

incidence matrix, and the potential unknowns, te, are associated with the mesh edges. For

a given mesh, in which each simplex has been assigned an orientation, the sparse edge-face

incidence matrix has entries

Cij =





−1, if the jth edge is oriented negatively

with respect to the ith face

+1, if the jth edge is oriented positively

with respect to the ith face

0, otherwise.

(3.16)
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Figure 3.1: Example graph with N = 4, E = 5, F = 2. All nodes are positively oriented
by convention, and the reference node is n4. The orientation of each of the edges and faces
is denoted by an arrowhead. For this graph, the node-edge incidence matrix, G, and the
edge-face incidence matrix, C, are given. It can be trivially seen that CG = 0.

Using Eq. (3.15) to constrain the current density unknowns in Eq. (3.10), and multiplying

on the left by CT to maintain symmetry, results in the following matrix equation:

CTRCte + jωCTLCte = CTaf, inc. (3.17)

3.3.3 Tree-Cotree Decomposition and Projection

While introducing a potential through a topological matrix helps by constraining the di-

vergence of the current density, it creates two distinct difficulties in the process. First,

the boundary conditions for the current density can no longer be enforced by eliminating

current density unknowns on the conductor boundary. Although potential unknowns are

linearly related to current density unknowns, it is not immediately obvious how to con-

strain the potential unknowns so that the current density unknowns through the conductor
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Figure 3.2: One of many tree-cotree decompositions relative to the boundary of a simple
graph. The boundary is the set of edges on the exterior. One of the many possible trees is
shown in bold, while the cotree edges are grayed out. Note that the tree does not close a
cycle with itself or with the boundary.

boundary are zero, so that current does not exit the conducting region. Second, the po-

tential is not unique, since many different fields can have the same curl. In other words,

the topological matrix, C, has a large null space, and only a fraction of its unknowns are

essential.

The large null space associated with the topological matrix, C, can be understood in

the context of another topological matrix, the node-edge incidence matrix,G, with entries

Gij =





−1, if the ith edge is oriented negatively

with respect to the jth node,

+1, if the ith edge is oriented positively

with respect to the jth node,

0, otherwise.

(3.18)

An illustration of a graph and the corresponding G and C matrices is given in Fig. 3.1.

The two topological matrices satisfy the relation CG = 0, which is the discrete analogue

of the vector calculus identity ∇ × (∇φ) = 0. Finding the generalized eigenvalues of
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CTLC and CTRC is non-trivial, because the eigenvalue problem is singular, since every

column of G is in the null space of both system matrices. Fortunately, both this difficulty,

and the enforcement of boundary conditions can be addressed by eliminating non-essential

unknowns from C.

A minimum spanning tree is a subset of edges of a graph that connects all the vertices

together, without closing any cycles. The remaining edges are called cotree edges. The

choice of tree and cotree edges is not unique; however, the number of edges in each partition

is always the same. A minimum spanning tree relative to the boundary (mod ∆) is a subset

of edges whose union with the subset of boundary edges does not close a cycle [9]. The tree

of a simple graph is shown in Fig. 3.2. Finding the tree-cotree decomposition for complex

topologies, such as an toroid, requires extra care as generators must be added to the tree to

account for topological currents [34].

Decomposing the potential unknowns, te, into tree and cotree unknowns relative to the

conductor boundary, ensures that no eddy currents can flow out of the conducting region.

Once a spanning tree is chosen, the non-essential degrees of freedom can be eliminated by

permuting the columns and rows ofG, C and te,

G =



Gt

Gc


 C =

[
C t Cc

]
te =



te

t

te
c


 , (3.19)

where Gt, C t, and te
t contain only the tree-associated rows and columns of the original

matrices, and Gc, Cc, and te
c contain only the cotree-associated rows and columns. The

tree node-edge incidence matrix, Gt, is square. Choosing te ⊥ G so that the potential is

orthogonal to the null space gives

GT te = GT
t t

e
t +GT

c t
e
c = 0, (3.20)
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which can be simplified to

te
t = −(GT

t )−1Gct
e
c, (3.21)

becauseGt is invertible. Using this relation, the full potential vector can be written as

te =



−(GT

t )−1Gc

Ic


 te

c = Wte
c, (3.22)

where Ic is the identity matrix, with dimension equal to the number of cotree edges, and

W maps te
c to te such that te ⊥ G. Substituting Eq. (3.22) into Eq. (3.17) and multiplying

on the left byW T gives a full rank matrix equation,

W TCTRCW︸ ︷︷ ︸
RCW

te
c + jωW TCTLCW︸ ︷︷ ︸

LCW

te
c = W TCTaf, inc, (3.23)

which may be written concisely as

RCWt
e
c + jωLCWt

e
c = W TCTaf, inc. (3.24)

In contrast to the generalized eigenvalue problem of CTLC and CTRC, which is

singular, there is an equivalent generalized eigenvalue problem which is non-singular,

LCWv = λRCWv, (3.25)

or

LCWV = RCWΛV , (3.26)

where each v is an eigenvector, λ is the corresponding eigenvalue, V = [v1,v2, ...,vK ] is

the matrix of eigenvectors, and Λ = diag[λ1, λ2, ..., λK ] is the diagonal matrix of eigenval-

ues. The generalized eigenvalues and eigenvectors of this non-singular, dense, symmetric,

and positive definite matrix pencil can be found using a standard eigenvalue solver.

41



3.3.4 Pole Expansion Derivation

The generalized eigenvalues and eigenvectors of Eq. (5.47) can be used to expand Eq. (3.17)

into pole-expansion form by first recognizing that

RCW = RCWV V
TRCW (3.27)

LCW = RCWV ΛV TRCW, (3.28)

which derives from theRCW-orthogonality of the eigenvectors, V TRCWV = I . The pencil

can then be written as

RCW + jωLCW = RCWV (I + jωΛ)V TRCW. (3.29)

If Eq. (3.29) is multiplied on the left by V T and on the right by V , then

V T (RCW + jωLCW)V = (I + jωΛ). (3.30)

Taking the inverse of the pencil, provided that ω does not coincide with a pole, results in

(V T (RCW + jωLCW)V )−1 = (I + jωΛ)−1

V −1(RCW + jωLCW)−1
(
V T
)−1

= (I + jωΛ)−1

(RCW + jωLCW)−1 = V (I + jωΛ)−1V T , (3.31)

which can be written in summation form as

(RCW + jωLCW)−1 =
K∑

k=1

(1 + jωλk)
−1vkv

T
k . (3.32)
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Using Eq. (3.32), it is possible to solve for the cotree-associated vector potential unknowns

in Eq. (3.24),

te
c = −

K∑

k=1

jωλk
1 + jωλk

λ−1k vkv
T
kW

TCTaf, inc. (3.33)

Multiplying Eq. (3.34) on the left by CW , and noting from Eq. (3.15) and Eq. (3.22) that

jf = CWte
c, gives

jf = −
K∑

k=1

jωλk
1 + jωλk

λ−1k CWvkv
T
kW

TCTaf, inc, (3.34)

where the eigenvalues can be identified as the reciprocal of the relaxation frequencies as-

sociated with the eddy-current modes. The magnetic polarizability of each of the current

density modes can be computed from their magnetic dipole moments,

~m =
1

2

∫

V

~r × ~J(~r) dV , (3.35)

which, in turn, can be evaluated using quadrature. The magnetic dipole moments are com-

puted for eddy currents supported by excitations, ~A
inc

, that correspond to x̂-, ŷ-, and ẑ-

directed uniform magnetic fields1. Then, the components of the magnetic polarizabilities

are inverted from the magnetic moments using the relation

~m = M · ~H inc
. (3.36)

The three magnetic excitations provide a full-rank basis, which is sufficient to invert the

tensor components.

1These ~A
inc

are not unique, and many compatible fields could have been chosen. In this work, for exam-

ple, ~A
inc

= − 1
2µ0(yx̂− xŷ) was chosen for the ẑ-directed excitation.
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3.4 Numerical Implementation

The numerical code was implemented in MATLAB on a hex-core, 3.4 GHz Intel i7, with

64 GB of memory. Tetrahedral meshes for a sphere were generated in DistMesh [28],

using the function distmeshnd. Gmsh [29] was chosen to mesh the more irregular

conductor shapes, that couldn’t be meshed straightforwardly by DistMesh. The MAT-

LAB function graphminspantree, an implementation of Prim’s algorithm [35], was

used to find the minimum spanning tree of a graph from its adjacency matrix. The 500

smallest eigenvalues and their corresponding eigenvectors were computed using eigs,

MATLAB’s wrapper for ARPACK [36]. The weakly-singular integrals in Eq. (3.11) for the

overlapping tetrahedral domains were computed using a singularity cancellation strategy

outlined in [37]. The outer integral was performed using a Gauss-Legendre rule for tetra-

hedrons [38], while the inner transformed integral was performed using a one-dimensional

Gauss-Legendre rule in each of the three transformed dimensions. Terms where the integra-

tion domains did not overlap were computed by applying two successive Gauss-Legendre

rules for tetrahedrons.

3.5 Results

3.5.1 Spherical Conductor

The solid spherical conductor is one of the few target geometries for which it is possible to

derive the pole-expansion coefficients analytically [6]. The high degrees of target symmetry

cause the magnetic polarizability to be isotropic, meaning that one coefficient is sufficient

to characterize each of its frequency-dependent MPTs.

In Fig. 3.3, the spherical conductor’s pole-expansion coefficients are plotted as a stem

plot, with the normalized relaxation frequencies, ζ̃k, determining the stem locations, and

the zz-component of the normalized diagonal tensor coefficients, M̃ k

∣∣
zz

, determining the

amplitudes. These coefficients can be scaled according to Eq. (1.4) and Eq. (1.5). Both
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Figure 3.3: Normalized pole-expansion coefficients of a spherical conductor. Since a
sphere is an isotropic target, its polarizability tensors are diagonal, with equal entries along
the diagonal.

Figure 3.4: Cutout of the mesh of a sphere that was used to derive the pole-expansion co-
efficients and draw the mode graphs. This mesh has 45,319 tetrahedra, which corresponds
to 42,543 cotree unknowns.
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Figure 3.5: Slices of the first three modes of a spherical conductor, computed using a
volume integral method. The quiver plots illustrate the direction of current flow in the
x–y plane. The color plots graph the amplitude of the current density flowing through the
y–z plane.
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Figure 3.6: Normalized pole-expansion coefficients of a cubical conductor. Since a cube
is an isotropic target, its polarizability tensors are diagonal, with all of its non-zero entries
being equal.

the numerically-computed coefficients and their analytical values are shown. In Fig. 3.4, a

cutout of the mesh used to derive these coefficients is shown. Even for a relatively coarse

discretization, with only 45,319 tetrahedra, the numerically-computed coefficients show

good agreement with their analytical counterparts. In Fig. 3.5, the first three modes of the

sphere are shown (that have a non-zero dipole moment). For each mode, two slices of

the current density are shown: the first slice is a quiver plot of the current density in the

x–y plane, and the second slice is a color plot depicting the amplitude of the current in the

y–z plane.

47



Figure 3.7: Cutout of the cubical mesh used to draw the mode graphs. This mesh has
49,728 tetrahedra, which corresponds to 46,259 cotree unknowns.

3.5.2 Cubical Conductor

While a cube also has an isotropic response, its pole-expansion coefficients are not known

to have a closed-form solution. The pole-expansion coefficients can, however, be inverted

from experimental data. For this purpose, two aluminum cubes with edge lengths of 0.5”

and 0.75” were measured, normalized, and plotted alongside the coefficients that were

computed numerically. The comparison between measured and numerical results is shown

in Fig. 3.6. In Fig. 3.7, a cutout of the mesh used to derive the coefficients is shown. In

Fig. 3.8, the first three modes of the cube are shown (that have a non-zero dipole moment).

For each mode, two slices of the current density are shown: the first slice is a quiver plot of

the current density in the x–y plane, and the second slice is a color plot of the amplitude of

the current in the y–z plane.

In Fig. 3.6, the first pole of the numerically-derived coefficients and the measurement

agree very well, but the other poles are only in rough agreement. Other than the dominant

pole, the remaining coefficients that were inverted from the measurement are likely to be

inaccurate for this example. Inversions of measured data are prone to inaccuracies when the
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Figure 3.8: Slices of the first three modes of a cubical conductor, computed using a volume
integral method. The quiver plots illustrate the direction of current flow in the x–y plane.
The color plots graph the amplitude of the current density flowing through the y–z plane.
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Figure 3.9: Normalized pole-expansion coefficients of a tetrahedral conductor. Since a
tetrahedron is an isotropic target, its polarizability tensors are diagonal, with all of its non-
zero entries being equal.

two poles are not sufficiently distant. such is the case with the second and third poles of the

conducting cube. Because the two poles have similar relaxation frequencies, they are not

sufficiently differentiated from one another, and the inversion combines the two relaxations,

placing a larger amplitude coefficient between the two relaxation frequencies. Coefficients

that are over an order of magnitude smaller than the dominant tensor coefficient also cannot

be inverted reliably. This explains the comparatively poor agreement between numerical

and experimental results, and also highlights the importance of numerically modeling the

coefficients, rather than simply relying on inversions of measured data.
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Figure 3.10: Cutouts of the tetrahedral mesh used to draw the mode graphs. This mesh has
47,001 tetrahedra, which corresponds to 29,796 cotree unknowns.

3.5.3 Regular Tetrahedron

Like both spheres and cubes, the regular tetrahedron has an isotropic MPT. Like the cube,

the pole-expansion coefficients cannot be derived analytically; therefore, the numerical

results could only be compared to inverted measured data. For this purpose, aluminum

tetrahedrons with edge lengths of 0.75” and 1.1” were measured, normalized, and plotted

alongside the numerically-computed coefficients. Because of practical manufacturing lim-

itations, the dihedral angles between the base of the tetrahedron and each of the remaining

faces were 71.00◦, rather than 70.53◦, which is the dihedral angle between the faces of a

regular tetrahedron. The inversion still assumed the target was isotropic.

In Fig. 3.9, the numerically-computed coefficients are compared to measured data. The

first two poles of the numerical computation and the measurement agree very well, but

the third and fourth poles are only in rough agreement. This improved accuracy over the

cube is because the poles of the regular tetrahedron are sufficiently distant so as not to

mix. The errors in the measured third and fourth pole-expansion coefficients are expected

because of their small relative amplitude. In Fig. 3.10, cutouts of the mesh used to derive

the coefficients are shown. In Fig. 3.11, the first three modes of the tetrahedron are shown

(that have a non-zero dipole moment). For each mode, three slices of the current density
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Figure 3.11: Slices of the first three modes of a conducting regular tetrahedron, computed
using a volume integral method. The quiver plots illustrate the direction of current flow in
the x–y plane. The color plots graph the amplitude of the current density flowing through
the x–z and y–z planes.
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are shown: the first slice is a quiver plot of the current in the x–y plane, the second is a

color plot of the amplitude of the current in the y–z plane, and the third slice is a color plot

of the amplitude of the current in the x–z plane.

3.6 Conclusion

In this chapter, a volume integral method was presented for numerically computing the

pole-expansion coefficients of arbitrary three-dimensional targets. The method relies on a

vector potential to enforce a quasi-magnetostatic assumption on the current density as well

as to enforce the appropriate boundary conditions. The coefficients can then be derived

using a simple eigendecomposition of system matrices. It was, however, first necessary to

project the linear system away from its null space, to avoid setting up an ill-posed general-

ized eigenvalue problem.

To demonstrate the validity of the method, numerical results were compared to the

analytically-derived coefficients for a conducting sphere. Both sets of coefficients showed

good agreement. For experimental validation, two sets of shapes were chosen, cubes and

regular tetrahedrons. The higher-order coefficients of the cubes showed poor agreement

with the numerically-computed coefficients. This is most likely due to the close proximity

of the second and third poles of the expansion. Poles that are in close proximity cannot

be reliably distinguished by the inversion algorithm. This highlights the importance of the

numerical modeling, because inversions of measured coefficients may not always be accu-

rate. Finally, the numerically-derived coefficients for a regular tetrahedron were compared

to experimentally-measured coefficients. In this case, the numerically-derived coefficients

showed better agreement with the experimental data because the poles were sufficiently

distant.
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CHAPTER 4

BODIES OF REVOLUTION

4.1 Introduction

In this chapter, a simple method will be described for computing pole-expansion coeffi-

cients of conductors with axial symmetry. The technique presented in this chapter is based

on a simple circuit model [39]. Baum originally suggested using an eigendecomposition in

conjunction with this method for a theoretical argument, but no computational work was

done [6]. Only coefficients that correspond to axially-directed currents can be modeled in

such a way. Nonetheless, because of symmetry, all of the pole-expansion coefficients of

a spherical conductor can be modeled with this method. This method may be also used

for targets where only axially-directed eddy currents are of interest. All of the significant

pole-expansion coefficients of thick wire loop can be modeled in this way and also some

of the pole-expansion coefficients of a cylindrical conductor.

4.2 Numerical Strategy

4.2.1 Circuit Impedance Model

The approach taken in this chapter is to first discretize the cross section of the body of

revolution into a network of coupled loops. This is done by first obtaining a triangulation

of the conducting region’s cross section, where each triangular element is then rotated about

the axis of revolution to create a cell. A cutout of a torus that has been discretized in such

a manner is shown in Fig. 4.1. Each loop is assumed to support only an axially-directed

current. Each current loop is also assumed to see an impedance, which is a function of

both the loop resistance, the loop inductance, as well as the frequency. Finally, the flowing

current and impedance give rise to a voltage drop over the loop.
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Figure 4.1: Cutout of a torus discretized into rotationally-symmetric elements with trian-
gular cross section.

These assumptions lead to a simple impedance relation between the voltage drops over

the loops, V , and the respective currents, I ,

V = (R+ jωL)I , (4.1)

where ω is the angular frequency, R is a diagonal matrix of loop resistances, and L is a

symmetric matrix of loop inductances. The diagonal entries of the positive-definite induc-

tance matrix, L, are the self inductances of each of the loops, and the off-diagonal entries

contain the mutual inductances to other loops in the network.

Modeling the currents is simply a matter of finding sensible approximations for the

voltages, loop resistances, and loop inductances. Simplest are the loop resistances, which

are the diagonal entries ofR, and are equal to

Rjj =
lj
σAj

, (4.2)

where lj is the length of the loop, and Aj is the area of its triangular cross section. The

self inductance of each current loop can be approximated from the formula for the self
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inductance of a current loop with circular cross section,

Ljj = bkµ0

[(
1 +

1

8

(
aj
bj

)2
)

log

(
bj

8aj

)
+

1

24

(
aj
bj

)2

+
1

4

]
, (4.3)

where bk is the radius of the loop, and ak is the radius of the circular cross-section. This

formula can be used to crudely approximate the self inductance of a current loop with

triangular cross section by choosing an ak that parametrizes a circular cross section of

equal area to each cell’s triangular cross section. The off-diagonal mutual inductance terms

in the inductance matrix, L, can be computed using the formula

Lij =
2µ0

√
bibj

k

[(
1− k2

2

)
K(k2)− E(k2)

]
, (4.4)

where K and E are complete elliptic integrals of the first and second kind, respectively,

and

k2 =
4bibj

(bi + bj)2 + s2
, (4.5)

where s is the vertical separation between current loops.

4.2.2 Generalized Eigenvalue Problem

Like the strategy in previous chapters, the pole-expansion coefficients can be obtained by

solving a generalized eigenvalue problem,

Lv = λRv, (4.6)

where v is the eigenvector, and λ is the corresponding eigenvalue. The eigenvalues and

eigenvectors can be joined together in matrix form to also satisfy

LV = RV Λ, (4.7)
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where V = [v1,v2, ...,vK ] is the matrix of eigenvectors, and Λ = diag[λ1, λ2, ..., λK ] is

the diagonal matrix of eigenvalues.

4.2.3 Pole Expansion Derivation

The generalized eigenvalues and eigenvectors of Eq. (4.6) can be used to expand Eq. (4.7)

into pole-expansion form by first recognizing that

R = RV V TR (4.8)

L = RV ΛV TR, (4.9)

which derives from theR-orthogonality of the eigenvectors, V TRV = I . The impedance

can then be written as

R+ jωL = RV (I + jωΛ)V TR. (4.10)

If Eq. (4.10) is multiplied on the left by V T and on the right by V , then

V T (R+ jωL)V = (I + jωΛ). (4.11)

Taking the inverse of the pencil, provided that ω does not coincide with a pole, results in

(V T (R+ jωL)V )−1 = (I + jωΛ)−1

V −1(R+ jωL)−1V −T = (I + jωΛ)−1

(R+ jωL)−1 = V (I + jωΛ)−1V T , (4.12)

which can be written in summation form as

(R+ jωL)−1 =
K∑

k=1

(1 + jωλk)
−1vkv

T
k . (4.13)
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Eq. (4.13) implies the following relation between loop voltages and loop currents:

I =
K∑

k=1

(1 + jωλk)
−1vkv

T
k V . (4.14)

If an assumption is made, that the voltage drop across each current loop is entirely due to a

uniform time-varying magnetic field with magnitude ‖Ho‖, then the voltage excitation is

given by

V = −jω
∥∥∥ ~Ho

∥∥∥A, (4.15)

where A is the area of the circle circumscribed by each current loop. Substituting this

expression into Eq. (4.13) gives an expression for the z-directed magnetic moment,

mz = A · I = −
K∑

k=1

jω/ζk
1 + jω/ζk

µ0A
Tvkv

T
kAζk

∥∥∥ ~Ho

∥∥∥ = −
K∑

k=1

jω/ζk
1 + jω/ζk

ck

∥∥∥ ~Ho

∥∥∥,

(4.16)

where ζk = 1/λk, and M k|zz = µ0A
Tvkv

T
kA/λk. Finally, the zz-component of the mag-

netic polarizability tensor is given by

M(ω)|zz = −
K∑

k=1

jω/ζk
1 + jω/ζk

M k|zz, (4.17)

because of the relationship between the magnetic moment and the magnetic polarizability,

~m = M · ~H . (4.18)

4.3 Results

4.3.1 Spherical Conductor

The pole-expansion coefficients for a spherical conductor have been computed analytically

in the past [6]. Numerical results could, therefore, be compared to their known analytic

values. The numerical analysis also provides the current modes that give rise to these
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coefficients. Plots of the first six current modes that have a non-vanishing dipole moment

are shown in Fig. 4.2. The first mode has a current that circulates around the sphere,

and higher-order modes show a more complex current distribution. The plots demonstrate

the intuition that the number of sign reversals in the current throughout the cross section

increases with increasing mode number. The convergence behavior of the method is shown

in Fig. 4.3, where the error in each of the expansion coefficients is plotted as a function of

the mesh grain.

4.3.2 Thick Wire Loops

This method can also be applied to thick wire loops, where the radius of the wire, a, is sig-

nificant relative to the radius of the loop, b. The first set of pole-expansion coefficients for

a thick wire loop can be predicted by ignoring the thickness of the loop and then following

the analysis for filament loops that is given in [6]. As the wire loop increases in thickness,

additional poles are needed to characterize the response. A depiction of these modes is

shown in Fig. 4.4 for a relatively thick wire loop with a/b = 0.5. The relative amplitude

of the tensor coefficients is a function of the wire thickness; therefore, the ordering of the

modes is different for loops of varying aspect ratios.

The significance of the secondary modes can be understood from Fig 4.5, where the

pole-expansion coefficients are graphed as a function of aspect ratio, a/b. The pole-

expansion coefficients in this graph are normalized by their analytical values for a filament

loop, ζS andM S. Experimental data is also plotted for wire loops with thicknesses ranging

from 32 AWG to 10 AWG and circumferences ranging from 50 mm to 200 mm. The ana-

lytical formula agrees with both the numerically-computed coefficients and the inversions

of measured data. As the thickness of the wire grows, so does the significance of the sec-

ondary poles. Because of their small relative amplitude, however, the secondary poles are

difficult to invert from measured data. In Fig. 4.6, the same coefficients are graphed, but

this time they are normalized so that they can be scaled using Eq. (1.4) and Eq. (1.5).
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Figure 4.2: Slices of the eddy-current modes in the y–z plane of a non-permeable con-
ducting sphere. The cross section of the current-density flow is plotted, with blue and red
marking currents that flow into the page and out of the page respectively.
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Figure 4.3: Convergence plot for the pole-expansion coefficients of the MPT of a spherical
conductor. The relative error in the pole-expansion coefficients is plotted against the mesh’s
average relative edge length.
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Figure 4.4: Slices of the eddy-current modes of a thick wire loop with a/b = 0.5. The cross
section of the current-density flow in the y–z plane is plotted, with blue and red marking
currents that flow into the page and out of the page respectively.
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Figure 4.5: Pole-expansion coefficients of a thick wire loop that are divided by their ana-
lytical values for a thin wire loop, and then graphed against their aspect ratio a/b. Experi-
mental data validates the thin-wire approximation but also demonstrates the significance of
higher-order modes.
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Figure 4.6: Normalized pole-expansion coefficients of a thick wire loop are graphed against
their aspect ratio a/b. The radii of the wire loops have been normalized to 1 so that the
coefficients can be easily scaled.
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4.4 Conclusion

A simple method was presented for computing a subset of the pole-expansion coefficients

of rotationally symmetric targets. The method can only compute coefficients that corre-

spond to axially-directed currents, which makes it less general than the work in [17, 5].

The method is only approximate but still exhibits fast convergence. This was illustrated

by comparing numerical results to the analytically-derived coefficients for a sphere. Mode

graphs were given for a sphere and a thick wire loop, illustrating the current flow that

is associated with each of their respective first six poles. Finally, numerically-computed,

analytical, and measured pole-expansion coefficients were compared for loops of varying

aspect ratios.
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Part II

Differential Methods

66



CHAPTER 5

CONDUCTING SOLIDS

5.1 Introduction

In this chapter, a number of approaches will be presented for computing the pole-expansion

coefficients of the MPT of three-dimensional targets using a differential method. To date,

pole-expansion coefficients have not been computed for targets with arbitrary geometries,

as previous characterizations of the pole-expansion coefficients of three-dimensional tar-

gets has been limited to targets with axial symmetry [4, 5]. Closed-form expressions have

only been derived for spheres [6], and oblate and prolate spheroids [33]. Modeling general

targets is important, because many targets of interest do not have rotational symmetry or

are too thick to be accurately modeled by the approach in Chapter 2.

The methods outlined in this chapter, which are all based on the finite integration tech-

nique, apply to targets with arbitrary geometries. The analysis is complicated by the fact

that the linear systems computed using differential methods have a large null space, the

presence of which makes it difficult to compute the linear system’s smallest eigenvalues.

In contrast to the integral approach in Chapter 3, removing the null space is not possible,

because it destroys the sparsity of the linear system. In this chapter, a number of techniques

are explored for computing the eigenvalues of such linear systems. Computational results

are given for a sphere, and a cube, and are compared to experimental data.

5.2 The Finite Integration Technique

The finite integration technique (FIT) [40] is a spatial discretization scheme, based on Yee’s

Grid [41], which utilizes staggered grids, a primary grid and a dual grid, to solve Maxwell’s

equations. In the notation of the finite integration technique, the time-harmonic form of
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Figure 5.1: Illustration of a Yee grid for the magneto-quasistatic grid equations
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charges. Back facade: Magnetic fields and impressed currents. Note the time derivatives
that acts between front and back facades.
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Maxwell’s equation under a quasi-magnetostatic assumption state that

∇× ~H(~r) = ~J(~r)

∇× ~E(~r) = −jω ~B(~r)

∇ · ~B(~r) = 0

∇ · ~J(~r) = 0

=⇒

C̃

)

h =

))

j

C

)

e = −jω

))

b

S

))

b = 0

S̃

))

j = 0,

(5.1)

where

)

e is the electric field,
)

h is the magnetic field intensity,

))

b is the magnetic flux density,

))

j is the current density, C is the curl operator on the primary grid, C̃ is the curl operator

on the dual grid, S is the divergence operator on the primary grid, and S̃ is the divergence

operator on the dual grid.

)

e and

))

b are unknowns on the primary grid, while

)

h and

))

j

are unknowns on the dual grid.

)

e is associated with traces on the primary grid, while

)

h

is associated with traces on the dual grid. Similarly,
))

b is associated with fluxes through

the faces of the primary grid, while

))

j is associated with fluxes through the faces of the

dual grid. A depiction of the Yee grid and the unknowns corresponding to each grid are

illustrated in Fig. 5.1. The constitutive relations,

~H(~r) = ν ~B(~r)

~J(~r) = σ~E(~r),
=⇒

)

h = M ν

))

b

))

j = Mσ

)

e,
(5.2)

map unknowns between primary and dual grids through the mass matrices for reluctivity,

M ν , and conductivity,Mσ. This association of unknowns with each of the grids can be un-

derstood from Alain Bossavit’s “Maxwell’s House” [9, 42] in Fig. 5.2, which illustrates the

relation between Maxwell’s equations, the electromagnetic unknowns, and the constitutive

relations.

In FIT, the discrete gradient, curl, and divergence matrices, which are G, C, and S

respectively, contain topological information on the incidence relations of simplexes on the

primary grid. Their analogues, G̃, C̃, and S̃, contain the topological information on the
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incidence relations of dual simplexes.

The differential operators on the primary and dual grid have several important proper-

ties. First, the curl primary curl matrix, C, is equal to the transpose of the curl on the dual

matrix, C̃, meaning that

C = C̃
T

. (5.3)

Second, the two vector calculus identities

div curl = 0 (5.4)

curl grad = 0 (5.5)

have discrete analogues

SC = 0

CG = 0

and
S̃C̃ = 0

C̃G̃ = 0,
(5.6)

where G and G̃ are the discrete gradient on the primary grid and dual grid respectively.

Substituting Eq. (5.3) into the Eq. (5.6) implies that

G = S̃
T

(5.7)

S = G̃
T

. (5.8)

5.3 A Curl-Curl Equation

The electric field’s curl-curl equation is a consolidated form that can be derived from a

quasi-magnetostatic approximation of Maxwell’s equations. Beginning with Faraday’s law,

and multiplying on the left byM ν gives

M νC

)

e = −jωM ν

))

b = −jω

)

h, (5.9)
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Figure 5.3: Illustration of a discretized highly-conductive sphere embedded in a low con-
ductivity region. Only the primary cells in the conducting region are shown, illustrating
FIT’s characteristic cubical grid.

which utilized the constitutive relation

)

h = M ν

))

b. Next, multiplying on the left by C̃ gives

C̃M νC

)

e = −jωC̃

)

h, (5.10)

which by Ampere’s law also equals

C̃M νC

)

e = −jω

))

j . (5.11)

Substituting the final constitutive relation,

))

j = Mσ

)

e, gives the curl-curl equation in the

electric field,

C̃M νC

)

e = −jωMσ

)

e. (5.12)

The curl-curl equation can be broken into incident and scattered components,

C̃M νC

)

e inc + C̃M νC

)

e sca = −jωMσ

)

e inc − jωMσ

)

e sca, (5.13)
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which simplifies to

C̃M νC

)

e sca + jωMσ

)

e sca = −jωMσ

)

e inc, (5.14)

when it is assumed that the excitation field satisfies C̃M νC

)

e inc = 0. This equation can

be inverted for
)

e sca by solving a symmetric eigenvalue problem,

CTM νCv = λMσv, (5.15)

where C̃ = CT was substituted, v is an eigenvector, and λ is its corresponding eigenvalue.

This eigenvalue problem has a number of properties of note. Because of the identity

CG = 0, the curl-curl matrix has a large null space, which makes up approximately one-

third of its eigenvalue spectrum. The curl-curl matrix is a product of sparse matrices; it

is, therefore, also sparse, with approximately 13 nonzero entries per row. The mass ma-

trix Mσ is diagonal but highly ill-conditioned, since it expresses the conductivity contrast

between a highly-conductive target and the soil, which has low conductivity. This type of

computational domain is illustrated in Fig. 5.3, where a highly-conducting sphere is em-

bedded in a region with low conductivity. Only the highly-conductive cells are drawn, but

a large computational domain outside of the conductor is necessary so that fields are not

abruptly truncated. The curl-curl equation is, therefore, a sparse and symmetric matrix

equation with a large null space in the matrix CTM νC.

5.4 The Sparse Generalized Eigenvalue Problem

In the following section we will discuss methods for solving generalized eigenvalue prob-

lems of the form

Av = λBv, (5.16)
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where we will adopt the convention of naming A = CTM νC, the stiffness matrix, and

B = Mσ, the mass matrix. The solution to this eigenvalue problem is non-trivial because

of the properties of the system matrices and the eigenpairs that are of interest. The large

null space of the curl-curl matrix, A, makes it such that the eigenpairs of interest, which

are the smallest non-zero eigenvalues, and are deep in the interior of the eigenvalue spec-

trum. Moreover, B is ill-conditioned, and the curl-curl matrix is sparse, meaning that any

factorization would require large amounts of storage, since the sparsity would be lost. The

interior spectrum is comprised of a small subset of eigenvectors with a non-zero dipole

moment, which are of interest, and many more eigenvectors that do not have a dipole mo-

ment and are not needed. These undesired modes must be computed anyhow. As a result,

it is necessary to compute roughly 500 total eigenpairs in order to find 5 eigenvalues with

a non-zero dipole moment. In the following subsections, we will discuss strategies for

approaching this eigenvalue problem.

5.4.1 The Lanczos Algorithm

The Implicitly Restarted Lanczos algorithm, which is implemented in ARPACK [36], is a

common algorithm choice for solving a sparse, symmetric generalized eigenvalue prob-

lem, when only a few of the system’s eigenpairs are desired. Through the reverse com-

munication interface, the user is queried by ARPACK for specific vector interactions with

the system matrices, avoiding the need to communicate the system matrices themselves

to the eigenvalue routine. This allows ARPACK to solve eigenvalue problems where it is

impractical to compute the system matrices explicitly.

Shift-and-Invert Strategy

A shift-and-invert strategy is often the preferred approach for computing interior eigenval-

ues of a symmetric generalized eigenvalue problem. In ARPACK, a shift-and-invert strategy
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requires solutions to a linear system of the form (A − σB)w = z, where σ is the shift1,

as well as matrix-vector products of the form z = Bw. The shift, σ, is chosen near the

eigenvalues of interest, and ARPACK will find a set number of eigenpairs with eigenvalues

that are nearest to the shift. When the matrix B is highly ill-conditioned, or singular, as is

the case in this section, the solver can take steps to purify the basis vectors and rid them of

contributions from infinite or near-infinite eigenvectors.

Unfortunately, a shift-and-invert strategy is not viable for computing the desired eigen-

pairs of these matrices because of two main drawbacks. First, the strategy computes eigen-

vectors that have an eigenvalue that is nearest to σ; as such, it requires a reasonable initial

guess, which is not always available. Choosing a shift that is too low will return many

eigenvectors that have an eigenvalue of zero, and choosing a shift that is too high will

cause ARPACK to miss some of the eigenpairs of interest. Second, precise solutions to the

ill-conditioned linear system are required so that the algorithm remains numerically stable;

for that reason, the inverse problem, (A − σB)w = z, practically demands a potentially

indefinite factorization ofA− σB. Because of the size of the system matrices and the fact

that the factorization of these matrices destroys their sparsity, the storage requirements are

vastly increased, making large problems unfeasible.

5.4.2 The FEAST Algorithm

The FEAST algorithm is a Rayleigh-Ritz-based algorithm for computing all of the eigenval-

ues and eigenvectors of Hermitian or non-Hermitian eigenvalue problems within a region

of the complex plane [43]. The algorithm utilizes contour integration and a density matrix

to accurately solve only for the eigenpairs of interest. Like in ARPACK, FEAST utilizes a

reverse communication interface that allows for custom handling of the solutions to linear

systems, that are required at each iteration step. While not competitive in performance

compared to other eigenvalue solvers, at least for this application, the unique spectral fil-

1Here σ denotes the shift, not the electrical conductivity.
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tering strategy provides a reliable method for finding all the eigenvalues within a region of

the complex plane. This is difficult to guarantee using other solvers.

5.4.3 The Jacobi-Davidson Iteration

The Jacobi-Davidson iteration is an attractive alternative to the Lanczos and FEAST al-

gorithm for computing interior eigenvalues when a factorization is not feasible [44, 45].

Where other solvers require precise solutions to a linear inverse problem, the Jacobi-

Davidson iteration only requires an approximate solution to its correction equation. So-

lutions to the correction equation can be computed using a less precise iterative method

instead of the direct method, which is practically demanded by ARPACK. In order to un-

derstand the Jacobi-Davidson iteration, its best to understand it in the context of the its

two spiritual predecessors: the Jacobi Orthogonal components correction (JOCC) and the

Davidson iteration. In this section, we will consider only the standard eigenvalue problem

of a matrixA,

Av = λv, (5.17)

although the ideas are trivially extendable to the generalized eigenvalue problem.

Jacobi’s Orthogonal Component Correction

The Jacobi orthogonal component correction is a method for computing the approximate

eigenvalues of symmetric matrices. If A is a symmetric and diagonally dominant matrix,

with α being its diagonal element with the largest magnitude, then the symmetric eigen-

value problem can be written in matrix notation as

A




1

z


 =



α bT

b F







1

z


 = λ




1

z


 , (5.18)
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where F is a square matrix, and b and z are vectors. The eigenvalue problem is equivalent,

then, to two dependent equations,

λ = α + bTz (5.19)

(F − λI) z = −b. (5.20)

Jacobi suggested solving the linear system iteratively,

θk = α + bTzk (5.21)

(DF − θkI)zk+1 = (DF − F )zk − b, (5.22)

where DF is the diagonal of the matrix F , and where the initial guesses are θ1 = α and

z1 = 0. Interpreting this iterative strategy, it is apparent that α is the initial approximation

of the system’s largest eigenvalue and e1 =

[
1 0 ... 0

]T
is the corresponding approxi-

mate eigenvector. At each iteration step, corrections to the eigenvector are searched for in

the space orthogonal to the initial approximate eigenvector, e1. To maintain its simplicity,

the algorithm completely ignores the availability of better approximations to the eigenvec-

tor, uk = [1 zT ]
T . Jacobi understood this limitation and pre-processedA to make it even

more diagonally dominant, making e1 an even better approximation for the largest eigen-

vector. This viewpoint is useful, because it helps to understand the Davidson iteration as

an accelerated version of JOCC.

Davidson Iteration

The Davidson iteration is an algorithm that is effective at calculating the eigenpairs of di-

agonally dominant matrices. The algorithm works by the principle of subspace expansion.

If a subspace is given, V = span{v1,v2, ...,vk}, in which the matrix has a Ritz vector,

uk, with a corresponding Ritz value, θk, then at each iteration step Davidson suggested
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expanding the search space using a vector, tk, with

(DA − θkI)tk = −rk, (5.23)

and where rk = Auk − λuk is the residual. The vector, tk, that satisfies the linear system

is orthogonalized with respect to the previous search subspace, V , and then is subsequently

added to the search subspace (only the component of tk orthogonal to uk remains). The

iteration is repeated until convergence, as the norm of the residual reaches some tolerance,

ε. Examining Eq. (5.23), and substituting the expression for the residual, it becomes appar-

ent that for this method not to stagnate, the matrixAmust not be exactly diagonal, because

then z = uk, and the search space is not expanded.

In order to understand the Davidson iteration’s relation to JOCC, it is helpful to giveA

the structure in Eq. (5.18) and to scale uk such that uk =

[
1 zT

]T
. Then, the residual

vector takes the form

rk = Auk − θkuk =



α + bTzk − θk

(F − θkI)zk + b


 . (5.24)

If yk is chosen to be the component of tk orthogonal to e1, then

(DF − θkI)yk = −(F − θkI)zk − b = (DF − F )zk − (DF − θkI)zk − b, (5.25)

and therefore,

(DF − θkI)(zk + yk) = (DF − F )zk − b. (5.26)

From Eq. (5.26), it can be recognized that for a given zk and θk, Eq. (5.26) is equal to

Eq. (5.22) when zk+1 = zk + yk. The methods are different, because JOCC computes

its next approximate eigenpair using only the previous approximation and the original ap-

proximation, e1, whereas the Davidson iteration computes a new Ritz vector using the
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entire expanded search subspace. In that sense, the Davidson iteration can be viewed as an

accelerated version of JOCC [44].

From JOCC and Davidson to Jacobi-Davidson

The Jacobi-Davidson iteration borrows ideas both from Jacobi orthogonal component cor-

rection and from the Davidson iteration. It borrows from JOCC the idea of searching for

corrections in the space orthogonal to the eigenvector approximation. This is different from

the Davidson iteration, where the component in the direction of the Ritz vector is removed

only during the orthogonalization step. It borrows from the Davidson iteration the idea of

exploiting the entire subspace that was constructed up to that point in the search for the

next Ritz pair. Both methods, in their own way, attempt to find a correction vector that is

orthogonal to the current eigenvector approximation.

The Jacobi-Davidson iteration is inspired by this idea of searching for a correction in

the subspace orthogonal to the current Ritz vector. Let Ã be the orthogonal projection of

the matrix,A, onto the subspace orthogonal to uk,

Ã = (I − ukuTk )A(I − ukuTk ), (5.27)

where it was assumed that ‖uk‖2 = 1. Then from Eq. (5.27) it follows that

A = Ã+Auku
T
k + uku

T
kA− θkukuTk , (5.28)

where the property uTkAuk = θk was substituted into the expansion’s last term.

We would like to find a correction, v, orthogonal to the current Ritz vector, uk, which

together satisfy Eq. (5.17),

A(uk + v) = λ(uk + v) v ⊥ uk. (5.29)
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Substituting Eq. (5.28) into Eq. (5.29) gives

(Ã+Auku
T
k + uku

T
kA− θkukuTk )(uk + v) = λ(uk + v)

Ãuk + Ãv +Auk + θkuk + (uTkAv)uk − θkuk = λ(uk + v),

and refactoring gives

(Ã− λI)v = −Auk + θkuk + λuk − θkuk − (uTkAv)uk

(Ã− λI)v = −rk + (λ− θk − uTkAv)uk. (5.30)

The rightmost term of Eq. (5.30) must be zero because the remaining terms in the equation

are all orthogonal to uk. Therefore,

(Ã− λI)v = −rk. (5.31)

Since the actual eigenvalue is unknown, Jacobi-Davidson uses the current Ritz value in-

stead, giving

(Ã− θkI)v = −rk. (5.32)

Eq. (5.32) leads to the final form of the Jacobi-Davidson correction equation,

(I − ukuTk )(A− θkI)(I − ukuTk )t = −rk t ⊥ uk, (5.33)

which exploits the orthogonality between t, uk, and rk. The Jacobi-Davidson iteration for

the generalized eigenvalue problem is given in Alg. 1, where the iteration for a standard

eigenvalue problem is given by substitutingB = I .
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Algorithm 1 The Jacobi-Davidson iteration for the generalized eigenvalue problem.
1: function JACOBI-DAVIDSON(A,B, ε, imax)
2: E0 ← [ ], Λ0 ← ∅
3: for i← 1, 2, ..., imax do
4: Initialize v1 ← v1/‖v1‖ such that v1 ⊥ Ei−1
5: V 1 ← [Ei−1,v1]
6: ComputeW 1 = V T

1AV 1

7: for k ← 1, 2, ... do
8: Compute the eigenpairs (θ, s) ofW k (W ks = θIs)
9: Select (θk, sk) with θk nearest to the target (θk 6∈ Λi−1) and with ‖sk‖ = 1.

10: Compute uk = V ksk and rk = (A− θkB)uk.
11: if ‖rk‖ < ε then
12: Set λi = θk and ei = uk
13: Update Ei = [Ei−1, ei] and Λi = Λi−1 ∪ {λi}
14: exit k
15: else
16: Solve (approximately)
17: (I −BukuTk )(A− θkB)(I − ukuTkB)t = −rk t ⊥B uk

18: B-orthonomalize t against V k, vk+1 ← t−∑k
l=1(v

T
l Bt)vl

‖t−∑k
l=1(v

T
l Bt)vl‖

B

19: Expand the search space, V k+1 = [V k,vk+1]

20: LetW k+1 =

[
W k V T

kAvk+1

vTk+1AV k vTk+1Avk+1

]

21: end if
22: end for
23: end for
24: Return Ei, Λi

25: end function
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5.5 Null Space Avoidance Techniques

As mentioned previously, finding the smallest eigenvalues of the curl-curl equation is diffi-

cult because of the large size of its null space. Approximately one-third of the eigenvalues

of the linear system are zero eigenvalues. As such, it is not practical to compute and store

them, and they must be avoided in some way in order to reach the interior of the eigen-

value spectrum, where the eigenpairs of interest lie. In the following section, a number of

strategies will be discussed for null space avoidance. The first two strategies can be im-

plemented generally, in any eigenvalue solver, while the remaining two are specific to the

Jacobi-Davidson iteration.

5.5.1 Ritz Value Filtering

Ritz value filtering is the idea of choosing to refine only those Ritz vectors with Ritz values

that lie within some region of the complex plane. This simple idea can be implemented

in many different ways. ARPACK implements a type of filtering to eliminate infinite or

near-infinite eigenvalues [36]. In SLEPc, a general package which implements many in-

terchangeable eigenvalue solvers, including Jacobi-Davidson and Lanczos, it is possible

to specify a region in the complex plane, so that the solver only refines Ritz pairs in that

region [46]. Geus implemented an aggressive adaptive filter in JDSYM, a Jacobi-Davidson

implementation, which cuts off the search region, so that Ritz pairs are refined only if they

have a Ritz value greater than a certain threshold, τ , or that have a Ritz value that is greater

than the last converged eigenvalue [47].

In the Jacobi-Davidson iteration, Ritz value filtering has mixed performance when used

as a means to avoid the curl-curl equation’s null space. Its main advantage is the sim-

plicity of its implementation, requiring only a rough guess of the system’s first non-zero

eigenvalue, so that Ritz pairs below that guess can be safely filtered out. Regardless of

the implementation, filtering has a disadvantage that the correction vector used to expand
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the search space has no guarantee of being orthogonal to the system’s null space. This

means that the search space may not be significantly expanded in each iteration, result-

ing in slow convergence. For the eigenvalue problems in this chapter, we found that the

aggressive filtering in JDSYM often misses clustered eigenvalues, because eigenpairs are

not found necessarily in monotonic order, and the filter’s cutoff moves too aggressively.

Clustered eigenpairs are not uncommon in electromagnetics problems, and eigenvalues of-

ten have multiplicity due to target symmetries. An argument could be made that if the

target has symmetry, it should be exploited when formulating the electromagnetic model,

which would eliminate these redundant eigenpairs. While this argument has merit, exploit-

ing symmetry does not entirely solve the problem. It is conceivable, however, that a less

aggressive filter would be less likely to miss eigenpairs.

5.5.2 Tree-Cotree Filtering

As was mentioned previously, the null space of the curl-curl matrix is a consequence of the

presence of inessential degrees of freedom in the curl operator. A straightforward approach

for removing this null space is to simply eliminate these redundant degrees of freedom from

the equation. This conveniently reduces the number of degrees of freedom in the curl-curl

matrix, and hence, the size of the generalized eigenvalue problem.

The curl matrix is a rectangular matrix with a number of columns equal to the number

of edges in the grid, N (E), and a number of rows equal to the number of faces, N (F).

The number of inessential degrees of freedom is equal to the number of nodes in the mesh

N (N ), leaving N (E) − N (N ) essential degrees of freedom. The inessential degrees of

freedom correspond to gradients, which are node-associated, with N (N ) degrees of free-

dom. Any gradient function is mapped to zero by the curl operator, and therefore has a

vanishing norm with respect to the matrix A. Two-thirds of the eigenvalue spectrum is

comprised of theN (E)−N (N ) essential degrees of freedom, while theN (N ) remaining

are inessential.
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These essential and inessential degrees of freedom in the curl matrix are closely related

to the tree-cotree decomposition of edges in the grid. A maximally-spanning tree, which

is defined as a non-unique subset of edges, that travel through all the nodes in the grid

without closing a cycle will always have N (N ) members; a cotree, which is the subset of

all remaining graph edges, will always have N (E) − N (N ) members. For a regular grid,

such as the Yee grid in this section, a tree-cotree decomposition of grid edges can be found

trivially.

Given a tree-cotree decomposition, define the following partitions of matrices and un-

knowns:

C ′ =

[
Ct Cc

]
(5.34)

G′ =



Gt

Gc


 (5.35)

M ′
σ =



Mσt 0

0 Mσc


 (5.36)

)

e
′
=




)

et

)

ec


 . (5.37)

Utilizing these partitions, and exploiting the assumption that the current density is solenoidal,

gives

GTMσ

)

e = GT
t Mσt

)

et +GT
cMσc

)

ec = 0, (5.38)

and therefore,

)

et = F

)

ec, where F = −(GT
t Mσt)

−1GcMσc. (5.39)
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The partitioned electric field trace,

)

e
′
, can therefore be written as

)

e
′
=




)

et

)

ec


 =



F

I


 )

et = Le

)

et. (5.40)

Substituting the partitioned matrices and Eq. (5.40) into the curl-curl equation, Eq. (5.14),

gives

LTeC
′TM νC

′Le

)

ec
sca + jωLTeM

′
σLe

)

ec
sca = −jωLTeM ′

σLe

)

ec
inc, (5.41)

which can be inverted by setting up a generalized eigenvalue problem.

The form in Eq. (5.41), however, has several disadvantages. First, the conditioning of

this matrix equation is worse than Eq. (5.14) due to the extra multiplications by the ill-

conditioned conductivity matrix, Mσ, and its inverses. Eq. (5.39) uses the solenoidality

of the current density to infer the electric field traces along tree edges using the traces

along cotree edges. Given the conductivity contrast in Mσ between the highly conducting

target and the low-conductivity background, it is clear why these additional multiplications

raise the condition number. Furthermore, different choices of tree and cotree will result in

different matrix conditioning. The simplest tree-cotree decomposition to find, built off of

the regularity of the grid, might worsen the conditioning of the system to a greater degree

than an arbitrary tree-cotree decomposition. Second, the block matrix F in Eq. (5.40)

destroys the sparsity of the equation, greatly increasing the storage requirements and the

cost of matrix multiplications. Still, for small problems, where the loss of sparsity is not an

issue, this method can eliminate the null space effectively.

5.5.3 Simplified Augmented System

In his thesis [47], Geus also proposed using an augmented system, when solving the cor-

rection equation, to avoid the null space. In the notation of this thesis, the simplified aug-
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mented linear system (SAUG) can be written as



A− σB MσG

GTMσ 0






w

w′


 =



z

0


 . (5.42)

The augmented system maintains the symmetry of the original matrices while simultane-

ously constraining the divergence of w to zero. This also corresponds to constraining the

divergence of the current density to zero. In JDSYM, the SAUG method is not applied

explicitly, but rather using a preconditioned Krylov method, where the preconditioner ac-

celerates the convergence of the iterative solver while also being responsible for projecting

vectors away from the nullspace. This preconditioned approach is also significantly more

computationally efficient than augmenting the linear system. Because the linear system is

not positive definite, however, stability is not gauranteed. Still, in practice, like Geus had

found previously, we found that the method performed extremely well and exhibited fast

convergence.

5.5.4 Null-Space-Free Jacobi-Davidson

Another approach to solving this curl-curl eigenvalue problem is through radical modifi-

cations to the Jacobi-Davidson iteration itself [48]. The idea is to represent the electric

field unknowns in terms of magnetic field unknowns and to apply successive corrections,

within the Jacobi-Davidson iteration, to the magnetic field rather than to the electric field.

Through this process, the effect of the null space is muted. In the following subsection we

will adopt the notation that

Â = M νCM
−1
σ C

TM ν and B̂ = M ν . (5.43)

Null-space-free Jacobi Davidson relies on a few properties of the system matrices. First,
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it can be shown that if ûk is a Ritz vector of (ÂB̂
−1
Â, Â), then

uk = M−1
σ C

TM νûk (5.44)

is a Ritz vector of (A,B), which shares the same Ritz value. Choosing such a uk is

advantageous, since it has no null space components. They share identical matrix norms,

because

ûTk ÂB̂
−1
Âûk = ûTkM νCM

−1
σ C

TM νCM
−1
σ C

TM νûk

= (ûTkM νCM
−1
σ )CTM νC(M−1

σ C
TM νûk)

= uTkC
TM νCuk

= uTkAuk,

and, similarly, because

ûTk Âûk = ûTkM νCM
−1
σ C

TM νûk

= ûTkM νCM
−1
σ MσM

−1
σ C

TM νûk

= (ûTkM νCM
−1
σ )Mσ(M−1

σ C
TM νûk)

= uTkMσuk

= uTkBuk.
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Now, consider the residual of a uk, which also satisfies Eq. (5.44),

rk = (A− θkB)uk

= (CTM νC − θkMσ)M−1
σ C

TM νûk

= CT (M νCM
−1
σ C

TM ν − θkM ν)ûk

= CT (Â− θkB̂)ûk

= CT r̂k.

Here r̂k is the residual for the pencil (Â, B̂), which is isospectral to the pencil (ÂB̂
−1
Â, Â).

Next, consider what happens when we evaluate the Jacobi-Davidson correction equation,

(I −BukuTk )(A− θkB)(I − ukuTkB)t = −rk t ⊥B uk, (5.45)

for a correction vector, t = M−1
σ C

TM ν t̂, and a Ritz vector that similarly satisfies Eq. (5.44).

The left-hand side of the correction equation simplifies to

(I −BukuTk )(A− θkB)(I − ukuTkB)t

= (I −BukuTk )(A− θkB)(I −M−1
σ C

TM νûkû
T
kM νCM

−1
σ Mσ)M−1

σ C
TM ν t̂

= (I −BukuTk )(A− θkB)(M−1
σ C

TM ν −M−1
σ C

TM νûkû
T
kM νCM

−1
σ C

TM ν )̂t

= (I −BukuTk )(A− θkB)(M−1
σ C

TM ν −M−1
σ C

TM νûkû
T
k Â)̂t

= (I −BukuTk )(A− θkB)M−1
σ C

TM ν(I − ûkûTk Â)̂t

= (I −BukuTk )(CTM νC − θkMσ)M−1
σ C

TM ν(I − ûkûTk Â)̂t

= (I −BukuTk )(CTM νCM
−1
σ C

TM ν − θkCTM ν)(I − ûkûTk Â)̂t

= (I −BukuTk )(CT Â− θkCT B̂)(I − ûkûTk Â)̂t

= (I −BukuTk )CT (Â− θkB̂)(I − ûkûTk Â)̂t

= (I −MσM
−1
σ C

TM νûkû
T
kM νCM

−1
σ )CT (Â− θkB̂)(I − ûkûTk Â)̂t
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= (CT −CTM νûkû
T
kM νCM

−1
σ C

T )(Â− θkB̂)(I − ûkûTk Â)̂t

= CT (I − B̂ûkûTk ÂB̂
−1

)(Â− θkB̂)(I − ûkûTk Â)̂t,

where both sides of the correction equation are multiplied by CT , since −rk = CT r̂k.

Next, the orthogonality constraint in the correction equation simplifies to

uk ⊥B t =⇒ uTkBt = 0

ûTkM νCM
−1
σ MσM

−1
σ C

TM ν t̂ = 0

ûTkM νCM
−1
σ C

TM ν t̂ = 0

ûk ⊥Â t̂ ⇐= ûTk Ât̂ = 0.

Since both sides of the correction are multiplied on the left by CT , the correction equation

can be reduced to

(I − B̂ûkûTk ÂB̂
−1

)(Â− θkB̂)(I − ûkûTk Â)̂t = −r̂k ûk ⊥Â t̂. (5.46)

Using all of these derivations it is possible to construct the null-space-free Jacobi-

Davidson iteration (NFJD), which is given in Alg. 2. In NFJD, the subspace approxi-

mations are computed using the pencil (Â, B̂) instead of (A,B), and the search space is

spanned by what are, in this case, magnetic field vectors, which are converted to electric

field vectors by multiplying on the left by M−1
σ C

TM ν . Through this multiplication, the

Ritz vectors are constrained to be orthogonal to the curl-curl matrix’s null space. Since

corrections are applied to the magnetic field, instead of the electric field, the search space

expansion at each iteration step is also orthogonal to the null space of the curl-curl matrix.

Additionally, because of the duality in Maxwell’s equations, NFJD has a dual version, that

utilizes electric-field unknowns instead of magnetic-field unknowns [48]. The Dual version

of the algorithm is given in Alg. 3.
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Even though the pencils (A,B) and (Â, B̂) are isospectral, their subspace approxima-

tions are generally different, corresponding to the matrix pencils (V̂
T
ÂB̂

−1
ÂV̂ , V̂

T
ÂV̂ )

and (V̂
T
ÂV̂ , V̂

T
B̂V̂ ) respectively. Similar to the matrix A, the matrix Â also has a

large null space. Therefore, when a Ritz pair of the subspace approximation of (Â, B̂) ap-

proaches the null space of Â, it can no longer be used to provide an approximate eigenpair

for (A,B). For this reason, like in the case when conventional Jacobi-Davidson is applied

to eddy-current problems, the Ritz pairs must be filtered, so that Ritz pairs that are near the

null space are not refined.

While this idea appears to theoretically solve the null-space problem, In practice, it per-

formed poorly when applied to the FIT model in this chapter. Both primal and dual version

of NFJD were implemented and applied to the eddy-current problem. Unfortunately, nei-

ther implementation converged quickly to the eigenpairs of interest. The cause of this slow

convergence appeared to be the high conductivity contrast in Mσ, since eigenvalue prob-

lems with smaller conductivity contrast (κ(Mσ) ≈ 103) converged quickly. It is not known

whether the slow convergence was caused by an issue in our specific implementation of the

algorithm, or by the sensitivity of NFJD to ill-conditioning in the system matrices.

5.6 Pole Expansion Derivation

Once the relevant eigenvalues and eigenvectors have been found, it is straightforward to

derive the pole-expansion form. Let A = CTM νC and B = Mσ, and consider the

generalized eigenvalue problem ofA andB,

Av = λBv, (5.47)

or

AV = BΛV , (5.48)
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Algorithm 2 Null-space-free Jacobi-Davidson.

1: function NULL-SPACE-FREE JACOBI-DAVIDSON(Â, B̂,B−1CT B̂, ε, imax)
2: Ê0 ← [ ], Λ0 ← ∅
3: for i← 1, 2, ..., imax do
4: Initialize v̂1 ← v̂1/‖v̂1‖Â such that v̂1 ⊥Â Êi−1
5: V̂ 1 ← [Êi−1, v̂1]

6: Compute Ẑ1 = V̂
T

1 B̂V̂ 1

7: for k ← 1, 2, ... do
8: Compute the eigenpairs (θ, s) of (I − θẐk)s = 0
9: Select (θk, sk) with θk nearest to the target (θk 6∈ Λi−1) and with ‖sk‖ = 1.

10: Compute ûk = V̂ ksk and r̂k = (Â− θkB̂)ûk.
11: if ‖r̂k‖ < ε then
12: Set λi = θk and ei = B−1CT B̂ûk
13: Update Êi = [Êi−1, ûk] and Λi = Λi−1 ∪ {λi}
14: exit k
15: else
16: Solve (approximately)
17: (I−B̂ukuTk ÂB̂

−1
)(Â−θkB̂)(I−ukuTk Â)̂t = −r̂k t̂ ⊥Â ûk

18: Â-orthonomalize t̂ against V̂ k, v̂k+1 ← t̂−∑k
l=1(v̂

T
l Ât̂)v̂l

‖t̂−∑k
l=1(v̂

T
l Ât̂)v̂l‖

Â

19: Expand the search space, V̂ k+1 = [V̂ k, v̂k+1]

20: Let Ẑk+1 =

[
Ẑk V̂

T

k B̂v̂k+1

v̂Tk+1B̂V̂ k v̂Tk+1B̂v̂k+1

]

21: end if
22: end for
23: end for
24: Return Ei = B−1CT B̂Êi, Λi

25: end function

where each v is an eigenvector, λ is the corresponding eigenvalue, V = [v1,v2, ...,vK ] is

the matrix of eigenvectors, and Λ = diag[λ1, λ2, ..., λK ] is the diagonal matrix of eigen-

values. The generalized eigenvalues and eigenvectors of Eq. (5.15) can be used to expand

Eq. (5.14) into pole-expansion form by first recognizing that

B = BV V TB (5.49)

A = BV ΛV TB, (5.50)
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Algorithm 3 Null-space-free Jacobi-Davidson - Dual Version.
1: function NULL-SPACE-FREE JACOBI-DAVIDSON - DUAL VERSION(A,B, ε, imax)
2: E0 ← [ ], Λ0 ← ∅
3: for i← 1, 2, ..., imax do
4: Initialize v1 ← v1/‖v1‖A such that v1 ⊥A Ei−1
5: V 1 ← [Ei−1,v1]
6: Compute Z1 = V T

1BV 1

7: for k ← 1, 2, ... do
8: Compute the eigenpairs (θ, s) of (I − θZk)s = 0
9: Select (θk, sk) with θk nearest to the target (θk 6∈ Λi−1) and with ‖sk‖ = 1.

10: Compute uk = V ksk/‖V ksk‖B and rk = (A− θkB)uk.
11: if ‖rk‖ < ε then
12: Set λi = θk and ei = uk
13: Update Ei = [Ei−1, ei] and Λi = Λi−1 ∪ {λi}
14: exit k
15: else
16: Solve (approximately)
17: (I−BukuTkAB−1)(A−θkB)(I−ukuTkA)t = −rk t ⊥A uk

18: A-orthonomalize t against V k, vk+1 ← t−∑k
l=1(v

T
l At)vl

‖t−∑k
l=1(v

T
l At)vl‖

A

19: Expand the search space, V k+1 = [V k,vk+1]

20: Let Zk+1 =

[
Zk V T

kBvk+1

vTk+1BV k vTk+1Bvk+1

]

21: end if
22: end for
23: end for
24: Return Ei, Λi

25: end function

which derives from the B-orthogonality of the eigenvectors, V TBV = I . The pencil can

then be written as

A+ jωB = BV (I + jωΛ)V TB. (5.51)

If Eq. (5.51) is multiplied on the left by V T and on the right by V , then

V T (A+ jωB)V = (Λ + jωI). (5.52)
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Taking the inverse of the pencil, provided that ω does not coincide with a pole, results in

(V T (A+ jωB)V )−1 = (Λ + jωI)−1

V −1(A+ jωB)−1
(
V T
)−1

= (Λ + jωI)−1

(A+ jωB)−1 = V (Λ + jωI)−1V T , (5.53)

which can be written in summation form as

(A+ jωB)−1 =
K∑

k=1

(λk + jω)−1vkv
T
k . (5.54)

Using Eq. (5.54), it is possible to solve for the scattered electric field traces in Eq. (5.14),

)

e sca = −
K∑

k=1

jω

λk + jω
vkv

T
kMσ

)

e inc. (5.55)

Multiplying Eq. (5.55) on the left byMσ and substituting
))

j sca = Mσ

)

e sca, gives

))

j sca = −
K∑

k=1

jω/λk
1 + jω/λk

Mσvkv
T
kMσ

)

e inc, (5.56)

where the eigenvalues can be identified as the relaxation frequencies associated with the

eddy-current modes. The magnetic polarizability of each of the current density modes can

be computed from their magnetic dipole moments,

~m =
1

2

∫

V

~r × ~J(~r) dV , (5.57)

which, in turn, can be evaluated using quadrature. The magnetic dipole moments are com-

puted for eddy currents supported by excitations, ~E
inc

, that correspond to x̂-, ŷ-, and ẑ-

92



directed uniform magnetic fields2. Then, the components of the magnetic polarizabilities

are inverted from the magnetic moments using the relation

~m = M · ~H inc
. (5.58)

The three magnetic excitations provide a full-rank basis, which is sufficient to invert the

tensor components.

5.7 Numerical Implementation

The results presented in this chapter are exclusively for a FIT-based electromagnetic model

that was decomposed using a Jacobi-Davidson eigenvalue solver that utilizes the SAUG

method to avoid the null space [47]. Of all of the methods that were described in this

chapter, this was found to be the most reliable method for computing the eigenvalues of

the eddy-current problem. Further details on the analysis using standard Jacobi-Davidson

with Ritz-value filtering can be found in [49], and analysis using null-space-free Jacobi

Davidson can be found in [50].

The numerical code was implemented in Python on a hex-core, 3.40 GHz Intel i7 with

64 GB of memory. It utilized the PySparse library in Python for its implementation of

the Jacobi-Davidson eigenvalue solver, which supports the SAUG method. Following [47],

a projected preconditioner was implemented that required a factorization of the matrix

GTMσG, which was computed using SUPERLU [51]. This factorization requires dramat-

ically less storage than a factorization of the curl-curl matrix. Still, the method was memory

bound by the size of this factorization. Because of this, the maximum problem size that

could be modeled was a cubical grid with 90 cells along each dimension, corresponding to

a total of 729,000 cells. A system of this size has 2,235,870 unknowns, and computing 500

of the system’s eigenvalues takes approximately 72 h.

2These ~E
inc

are not unique, and many compatible fields could have been chosen. Following McFad-

den [17], ~E
inc

= 1
2 (yx̂− xŷ) was chosen for the ẑ-directed excitation.
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The vast majority of the total cells were used to discretize the non-conducting region

surrounding the conductor. Although the eddy-currents flow only in the conducting region,

the accuracy of the computed current modes and the pole-expansion coefficients is highly

dependent on the fidelity of the electric and magnetic fields in the non-conducting region.

Truncating these fields too close to the conductor leads to substantial errors. Fewer cells can

be used to discretize the non-conducting region if the cells are made to gradually increase

in dimension as they become more distant from the conductor. This relative grid coarseness

does not significantly impact the accuracy of the coefficients, because in those regions the

fields vary more slowly as a function of position.

5.8 Results

5.8.1 Spherical Conductor

The pole-expansion coefficients for a spherical conductor have been computed analytically

in the past [6]. Numerical results can, therefore, be compared to their known analytic

values. A sphere was placed in the center of a cubical grid with 90 cubical cells in each

direction. The sphere had 50 cells across its radius, and the remaining cells were used to

model the surrounding air region. The air cells were stretched to be larger as they became

more distant from the sphere. This allowed a larger air region to be included, taking ad-

vantage of the fact that fields far away from the conductor were found to be less important

to the derived coefficients. The normalized numerically-derived coefficients are compared

to their analytical values in Fig. 5.4. The two sets of coefficients agree, despite the rela-

tive coarseness of the grid. The numerical analysis also provides the current modes that

give rise to these coefficients. In Fig. 5.5, plots of the first five current modes that have

a non-vanishing dipole moment are shown. These mode graphs are lower resolution than

the plots in Fig. 4.2, which is inevitable because the results in this section do not exploit

symmetry. The accuracy of the pole-expansion coefficients in Fig. 5.4 is higher than the

results in Fig. 3.3, even though the cubical grid does not conform to the shape of the sphere.
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Figure 5.4: Normalized pole-expansion coefficients of a spherical conductor. Since a
sphere is an isotropic target, its polarizability tensors are diagonal, with equal entries along
the diagonal.
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Figure 5.5: Slices of the first five modes of a spherical conductor in the y–z plane, with
a dipole moment pointing in the ẑ-direction. A color plot of the amplitude of the current
density is graphed with blue and red currents flowing in and out of the page respectively.
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This is because 3 times as many cells are used to discretize the conducting region. The in-

creased resolution (compared to Chapter 3) greatly improves the accuracy of higher-order

coefficients.

5.8.2 Cubical Conductor

The pole-expansion coefficients for a cubical conductor do not have a known analytical

expression. Numerical results, therefore, can only be compared to inversions of experi-

mental data. A conducting cube was placed in the center of a grid with 90 cells in each

direction. The conducting cube had 50 cells across each of its edges, and the remaining

cells were used to model the surrounding air region. Like the grid for the sphere, the air

cells were stretched in dimension as they became more distant from the cube. This allowed

a larger air region to be included, taking advantage of the fact that fields far away from the

conductor were found to be less important to the derived coefficients. A comparison of the

normalized numerically-derived and the experimentally-measured coefficients is shown in

Fig. 5.6. The two numerical methods agree, with the FIT model most likely achieving better

accuracy because of the number of cells as well as the fact that the structured grid matches

the shape of the conductor. The numerical analysis also provides the current modes that

give rise to these coefficients. In Fig. 5.7, plots of the first five current modes that have

a non-vanishing dipole moment are shown. The modes are plotted in the same order that

they appear in Fig. 5.6, from left to right. It is important to note, that unlike the sphere,

the cross section of the mode does not completely characterize the eddy currents, because

the cube is not rotationally symmetric. The increased resolution (compared to Chapter 3)

greatly improves the accuracy of the higher-order coefficients as well as the quality of the

mode graphs.
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Figure 5.6: Normalized pole-expansion coefficients of a cubical conductor. Since a cube
is an isotropic target, its polarizability tensors are diagonal, with equal entries along the
diagonal.
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Figure 5.7: Slices of the first five modes of a cubical conductor in the y–z plane, with a
dipole moment pointing in the ẑ-direction. A color plot of the amplitude of the current
density is graphed with blue and red currents flowing in and out of the page respectively.
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5.9 Conclusion

A number of approaches were presented for computing the pole-expansion coefficients of

the magnetic polarizability of conducting solids. The methods all utilize the finite integra-

tion technique, because the regularity of its grids allows for simpler implementation. These

methods can be straightforwardly extended for use with the finite element method instead.

Numerical results are given for the best-performing of these approaches, which utilizes a

Jacobi-Davidson eigenvalue solver that avoids the linear system’s null space using a simpli-

fied augmented system. To validate the method, the numerically-computed coefficients for

a conducting sphere were compared to their analytical values. The numerically-computed

coefficients for a conducting cube were compared to inversions of experimental data and

to numerically-computed coefficients from the volume integral method. Mode graphs were

given for both the sphere and the cube.
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CHAPTER 6

CONCLUSIONS AND DISCUSSION

The methods described in this thesis can be used to derive the pole-expansion coefficients

of the magnetic polarizability of families of targets, with dedicated methods for targets that

are rotationally symmetric or targets that are thin in one dimension. In each of the methods,

Maxwell’s equations are first represented using a numerical method, either integral or dif-

ferential, which is then set up as a generalized eigenvalue problem. The eigenvalues of the

system correspond to the pole locations of the pole expansion. Because the eigenvectors of

the system are the simply the associated mode patterns, deriving the remaining coefficients

in the pole expansion involves very straightforward post-processing.

Depending on the method, the task of finding the smallest eigenvalues of the linear

systems ranges from being trivial to extremely difficult. In the case of two of the integral

methods, for rotationally symmetric targets and for thin targets, it is sufficient to apply a

standard eigenvalue solver for dense symmetric matrices. In the case of the volume integral

method, both system matrices must be projected away from their null space before applying

a standard eigenvalue solver. For differential methods, the matrices are large, sparse, and

have a large null space, which cannot be removed without destroying the sparsity. For

these methods, two alternative approaches were explored for finding the eigenvalues, both

utilizing the Jacobi-Davidson iteration.

Of the integral and differential methods that were presented for deriving the pole-

expansion coefficients of arbitrary volumes, each has advantages and disadvantages. The

volume integral method scales poorly, because the volume of the conductor is discretized

and the system matrices are dense. Utilizing a standard eigenvalue solver guarantees sta-

bility. Differential methods scale much better since the system matrices are sparse. Un-

fortunately, a large volume around the conductor must also be discretized. Additionally,
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neither versions of the Jacobi-Davidson iteration have guaranteed stability. In either case,

any method for volumes that does not exploit symmetry requires large amounts of storage

and computation time.

Permeable materials, which appear quite frequently in targets of interest, were not con-

sidered in this thesis. It is not apparent that any of the integral methods that were presented

could be extended to model permeable targets. The differential methods should correctly

predict the relaxation frequencies associated with permeable targets without requiring any

changes, provided that the correct cell permeabilities are assigned. We hypothesize that it

would be possible to derive the tensor coefficients as well, if the correct magnetic excitation

was applied, however, this was not explored due to time constraints.

All the methods exhibited high accuracy when comparing the numerically-derived co-

efficients to their analytical values. When results were compared to inversions of experi-

mental data, the two sets of coefficients were often in good agreement, except for situations

where the inversions are known to be inaccurate. This includes situations where poles in

the expansion are not sufficiently separated in frequency and situations where the tensor

coefficients are very weak relative to the primary tensor amplitude. These situations, how-

ever, are known to be problematic, and highlight the importance of numerical modeling,

which does not suffer from the same limitations.

There are several areas that could be productive areas for future research. Locally opti-

mal block preconditioned conjugate gradients (LOBPCG) has recently been proposed as an

alternative to Jacobi-Davidson, for computing the eigenvalues of linear systems associated

with differential formulations of Maxwell’s equations [52]. It would be interesting to see

if an improved implementation of NFJD and LOBPCG could be competitive at finding the

smallest eigenvalues of the eddy-current problem. It would also be straightforward to try to

extend the work in Chapter 5 to model permeable targets. Finally, the differential formula-

tion can be implemented using the finite element method instead of FIT. A tetrahedral mesh

would conform better to most targets, and would allow for smoother cell scaling in the non-
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conducting region. Another interesting approach would be to combine a boundary element

method for the non-conducting region with a differential method for the conducting region.
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APPENDIX A

DERIVATION OF THE RECIPROCITY RELATION

The reciprocity relation for EMI sensors states that the electromotive force induced on a

receive coil is approximately proportional to a tensor product of the magnetic polarizability

tensor, the magnetic excitation due to the transmit coil, and the magnetic excitation due

to the receive coil had it been driven by a unit-magnitude steady current. The magnetic

excitations are the only terms in the relation that depend on position. Different justifications

can give rise to this reciprocity relation, giving different views on its error bounds and

physical meaning [13]. In the following derivation, the common engineering viewpoint

will be adopted.

Under magnetostatic assumptions, the magnetic field, ~B(~r), due to a steady current, I ,

flowing in a coil can be expressed using the Biot-Savart law,

~B(~r) =
µ0

4π

∮

C

Id~̀ × ~r′∥∥~r′
∥∥3 , (A.1)

where ~r is the position in space, C is the closed current path of the coil, comprised of

infinitesimal wire segments, d~̀, that point in the local direction of current flow, and ~r′ =

~r − ~̀, which represents the full displacement vector to the wire segments, d~̀.

Now, assume that the scattering from a buried target can be accurately approximated

using a magnetic dipole moment, ~m. The vector potential due to a magnetic dipole moment

is then approximately

~A(~r) ≈ µ0

4π

~m× ~r
‖~r‖3

, (A.2)

which corresponds to the first non-zero term in the multipole expansion. This assumption

becomes more valid as the distance away from the dipole increases. The electromotive
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force induced on the circuit, Vind, by Faraday’s law, can be written as

Vind =

∮

C

~E(~r) · d` = −jω
∮

C

~A(~r) · d~̀. (A.3)

Substituting Eq. (A.2) into Eq. (A.3), the EMF induced in the receive coil due to a magnetic

dipole, can be expressed as

Vind ≈ −jω
∮

C

µ0

4π

~m× ~r · d~̀
‖~r‖3

. (A.4)

Rearranging the triple product, ~m× ~r · d` = − ~m · d~̀ × ~r, Eq. (A.4) may be written as

Vind ≈ jω ~m ·
(
µ0

4π

∮

C

d~̀ × ~r
‖~r‖3

)
, (A.5)

where we recognize that the right term in the dot product is, by the Biot-Savart law, simply

the magnetic field due to the receive coil, had it been driven by a unit-magnitude steady

current. This means that Eq. (A.5) may also be written as

Vind ≈ jωµ0 ~m · ~HRX(~r). (A.6)

Next, we introduce the magnetic polarizability tensor, M , which relates the magnetic

dipole moment to the magnetic excitation from the transmitter, ~HTX(~r), by the relation

~m = M · ~HTX(~r). (A.7)

Substituting Eq. (A.7) into Eq. (A.6) we arrive at the final form of the reciprocity relation,

Vind ≈ jωµ0
~HRX(~r) ·

(
M · ~HTX(~r)

)
. (A.8)
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APPENDIX B

POLE EXPANSION OF A SPHERICAL SHELL

Let Ωc be a thin conducting spherical shell centered about the origin. Assume that the spher-

ical shell has a radius of a, and a surface conductivity σs. Because of the axial symmetry,

the eddy currents must flow entirely in the azimuthal direction. Following the procedure

in §7.12 [53], the stream function of the current density can be written as

ψ =
∞∑

n=1

CnPn(cos θ), (B.1)

where the Cn are scalar functions that are frequency dependent, Pn are Legendre polyno-

mials, and θ is the polar angle. Given that the gradient operator in spherical coordinates is

∇f =
∂f

∂r
r̂ +

1

r

∂f

∂θ
θ̂ +

1

r sin θ

∂f

∂φ
φ̂, (B.2)

the current density associated with this stream function is

Jφ =
1

a

∂ψ

∂θ
=
∞∑

n=1

Cn
a

∂

∂θ
(Pn(cos θ)) = −

∞∑

n=1

Cn sin θ

a

∂

∂u
(Pn(u)) = −

∞∑

n=1

Cn
a
P 1
n(cos θ),

(B.3)

where the substitution u = cos θ was made, and Pn are the associated Legendre polynomi-

als of the first order. The magnetic vector potential associated with this current, which, in

this case, is the field scattered by the spherical shell, is

~A
sca

=





µ0φ̂

∞∑

n=1

−Cn
2n+ 1

(
r

a
)nP 1

n(cos θ), when r ≤ a,

µ0φ̂
∞∑

n=1

−Cn
2n+ 1

(
a

r
)n+1P 1

n(cos θ), when r > a.

(B.4)
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For this potential, the radial component of the magnetic field is

Bsca
r =





−µ
a

∞∑

n=1

n(n+ 1)Cn
2n+ 1

(r
a

)n−1
Pn(cos θ), when r ≤ a,

−µ
a

∞∑

n=1

n(n+ 1)Cn
2n+ 1

(a
r

)n+2

Pn(cos θ), when r > a,

(B.5)

and the polar component of the scattered magnetic field is

Bsca
θ =





+
µ

a

∞∑

n=1

(n+ 1)Cn
2n+ 1

(r
a

)n−1
P 1
n(cos θ), when r ≤ a,

+
µ

a

∞∑

n=1

(n+ 1)Cn
2n+ 1

(a
r

)n+2

P 1
n(cos θ), when r > a.

(B.6)

The incident excitation corresponding to a ẑ-directed uniform time-varying magnetic field

with magnitude ‖H0‖ is

~A
inc

=
1

2
µ0

∥∥∥ ~H0

∥∥∥rP 1
n(cos θ). (B.7)

Eddy currents are excited by the total magnetic vector potential, which can be decomposed

into scattered and incident components,

− 1

σ
~J = jω~A

sca
+ jω~A

inc
. (B.8)

Evaluating Eq. (B.8) using the expansions in Eq. (B.3, B.4, B.7), with r = a, gives

σ−1s

∞∑

n=1

Cn
a
P 1
n(cos θ) + jωµ0

∞∑

n=1

Cn
2n+ 1

P 1
n(cos θ) =

1

2
jωµ0

∥∥∥ ~H0

∥∥∥rP 1
n(cos θ). (B.9)
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Because of the orthogonality of the associated Legendre polynomials, only the n = 1 terms

of the summations can have non-zero coefficients. It is sufficient to solve for C1,

1

σs

C1

a
P 1
1 (cos θ) = −jωµ0

C1

3
P 1
1 (cos θ) +

1

2
jωµ0

∥∥∥ ~H0

∥∥∥aP 1
1 (cos θ)

1

σs

C1

a
= −jωµ0

C1

3
+

1

2
jωµ0

∥∥∥ ~H0

∥∥∥a
1

σs

C1

a
+ jωµ0

C1

3
=

1

2
jωµ0

∥∥∥ ~H0

∥∥∥a

C1 + jω
µ0σsa

3
C1 =

1

2
jωµ0σs

∥∥∥ ~H0

∥∥∥a2

C1(1 + jω
µ0σsa

3
) =

1

2
jωµ0σs

∥∥∥ ~H0

∥∥∥a2

C1 =
jω/

(
3

µ0σsta

)

1 + jω/
(

3
µ0σsta

) 3

2
a
∥∥∥ ~H0

∥∥∥.

Substituting C1 into Eq. (B.3) gives an expression for the current density,

Jφ = −
3
∥∥∥ ~H0

∥∥∥P 1
n(cos θ)

2

(
jω/( 3

µ0σsa
)

1 + jω/( 3
µ0σsa

)

)
, (B.10)
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where by examination it is apparent that ζ1 = 3
µ0σsa

. In order to compute M 1 it is first

necessary to find the dipole moment of the current density

~m =
1

2

∫

S

ar̂× Jφ dS =− 3

4

∫

S

a
∥∥∥ ~H0

∥∥∥P 1
1 (cos θ)θ̂ dS

=− 3

4
a
∥∥∥ ~H0

∥∥∥
∫

S

θ̂ sin θ dS

=− 3

4
a
∥∥∥ ~H0

∥∥∥
2π∫

0

π∫

0

θ̂a2 sin2(θ) dθ dφ

=− 3

4
a3
∥∥∥ ~H0

∥∥∥
2π∫

0

π∫

0

θ̂ sin2(θ) dθ dφ

= −3

4
a3
∥∥∥ ~H0

∥∥∥
2π∫

0

π∫

0

[cos θ cosφx̂+ cos θ sinφŷ − sin θẑ] sin2(θ) dθ dφ

=− 3

4
a3
∥∥∥ ~H0

∥∥∥
[
0x̂+ 0ŷ − 4

3
2πẑ

]
= 2πa3

∥∥∥ ~H0

∥∥∥ẑ.

Since the incident magnetic field, in this derivation, is defined as ~H
inc

= −
∥∥∥ ~H0

∥∥∥ẑ, the

zz-component of the magnetic polarizability is

M zz = −
(

jω/( 3
µ0σsa

)

1 + jω/( 3
µ0σsa

)

)
2πa3, (B.11)

with M zx = M zy = 0. By symmetry, this can be repeated with x̂- and ŷ-directed excita-

tions, resulting in

M (ω) = −
(

jω/( 3
µ0σsa

)

1 + jω/( 3
µ0σsa

)

)
2πa3I3, (B.12)

where we can identify thatM 1 = 2πa3I3.
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