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SUMMARY 

 

          Myoelectric signals have been widely investigated with the increasing demand for 

advanced prosthetic devices over the past decades. The myoelectric signals are composed 

of muscle activities induced by the superpositioned motor unit action potentials and often 

characterized by signal to noise ratio, amplitude, rate of change, and intensity of muscle 

activation. They contain information of the human motion intention, which can be directly 

mapped into the prosthetic device control. Compared to conventional body-powered 

prosthetic devices driven by mechanical maneuver of body movements through cables or 

harnesses, myoelectric prosthetic devices are relatively easily operated due to the aid of 

electric power generated by MES. 

 

          This thesis presents the hardware implementation for myoelectric signal processing 

and the experimental evaluation of myoelectric signals to characterize the controllability 

of the muscle groups in the upper body for controlling the myoelectric prosthetic device. 

Digital filters were implemented to improve the quality of raw myoelectric signals acquired 

from the targeted muscle groups. The 5th order median filter implementation provided the 

reliable noise reduction for the electrophysiological noise observed in the abdominal 

muscle groups. The real-time onset detection algorithm was implemented to determine the 

onset and the offset of myoelectric signals and to generate discrete control signals for the 

prosthetic device.  

  

          The experiment was designed to investigate the adequacy of utilizing myoelectric 

signals from the muscle groups in the upper body–deltoids, pectoralis majors, latissimus 



 x 

dorsi, and external obliques–as used in the control of myoelectric prosthetic devices. The 

voluntary muscle contraction capability of each targeted muscle group was evaluated 

during the experiment. It was demonstrated that the precise and accurate myoelectric 

control was achieved using the deltoids muscle group. However, the pectoralis majors and 

the external obliques were proven to be more appropriate to apply to fast switching on/off 

control. The combinations of the myoelectric signals acquired from the deltoids and the 

latissimus dorsi were investigated to generate multiple output stages, and 4 discrete states 

of myoelectric output were obtained using those muscle groups simultaneously 
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CHAPTER 1.  INTRODUCTION 

 

Surface Electromyography (sEMG) signals have been adopted as non-invasive 

control method for myoelectric prosthetic devices. Conventional myoelectric control 

systems have successfully characterized myoelectric activity observed with surface 

electrodes, but these systems are mostly limited to control one or two degrees of freedom 

(DOF) at a time [1, 2, 3, 4, 5]. For multifunction myoelectric control, numerous studies 

have been conducted to improve the accuracy and the reliability of the control scheme by 

using the pattern recognition (PR), logistic regression, and mathematical models describing 

intrinsic and extrinsic features of muscle activity [6, 7, 8, 9 10]. Despite the suggested 

multifunction control schemes, the control performance is not desirable yet due to the large 

number of electrodes, the amount of computational resources for robust the EMG feature 

classification, and the lack of direct EMG mapping into kinematic information. Therefore, 

it is the author’s belief that the development of direct anatomical mapping of sEMG signals 

improves the current myoelectric control scheme by establishing more intuitive and cost-

effective myoelectric control system. 

1.1 Myoelectric Control Potential  

Myoelectric signal processing techniques with the mathematical modeling approach 

have been suggested to sophisticatedly describe muscle activities. Many studies have 

successfully implemented mathematical models to analyze the physiological changes 

during the muscle contraction. [11, 12]. Since MES exist in the form of combined motor 

unit action potentials containing the information of the muscle contraction intensity and 

frequency, it is required to decompose and extract the information to achieve more 
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consistent and reliable myoelectric control system. Recently, PR techniques have been 

introduced to myoelectric signal processing as artificial intelligence based on machine 

learning is developed for improving the performance of myoelectric control. Several 

studies have demonstrated that the pattern recognition myoelectric control is capable of 

extracting sEMG features from the residual muscles of amputated limbs with the average 

classification accuracy over 90% for more than 5 different classes [13, 14, 15]. This 

advanced control system allows the wearers to perform dexterous control with multi-

functional myoelectric prosthesis.  

1.2 Myoelectric Control Drawbacks 

Myoelectric signals are subject to change with motion artifacts, electrode 

displacement, skin impedance changes, and electromagnetic interference [16]. In general, 

setting up high high-pass cutoff frequency can reject most high-frequency contents induced 

by motion artifacts, but excessive high-pass filtering might cause the substantial loss of 

muscle contraction intensity information within high frequency content [17]. Although the 

current pattern recognition myoelectric control has realized multiple DOFs in myoelectric 

prosthesis, appropriate signal conditioning steps for classification algorithm are still 

required. Furthermore, the suggested control method is limited to sequential operation 

since most conventional classification algorithms are designed to examine the input signal 

sequentially to identify its current active state.  

Many studies have attempted to improve the classification accuracy by increasing 

number of electrodes for robust EMG feature extraction. However, currently verified 

classification accuracy rates are mostly not achievable in the real context since they are 

based on offline validation from restricted laboratory environment and experiment 
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conditions with high computational power [18]. Also, the myoelectric control based on the 

PR algorithm commonly takes EMG control input from muscle groups adjacent to the 

attached device to obtain suitable EMG patterns for classification, which might limit the 

user’s motion while engaging with the device.  

In this study, we suggest an alternative approach of evaluating sEMG signals from 

different muscle groups in upper body to investigate the accessibility of each muscle 

contraction and the synergistic effect of the muscle combination with different muscle 

group pairs for developing more intuitive myoelectric control interface.   
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CHAPTER 2. PRELIMINARY RESEARCH 

 

2.1 Introduction 

One of the major issues of using myoelectric prosthetic devices was reported that it 

was challenging to recognize the current state of the device without the aid of sensory 

feedback [19, 20]. Preliminary research was conducted to investigate the usage of 

mechanotactile feedback for the upper-limb prosthetic device to improve the human 

subject’s performance of object discrimination based on the material stiffness, the 

thickness, and the surface roughness. This study demonstrated that the human subjects 

showed the enhanced discrimination performance when the mechanotactile-based virtual 

proprioception was provided [21]. Since this study focused on the experimental evaluation 

of manipulation with the control input driven by the potentiometer, a follow-up study was 

conducted to utilize myoelectric signals from biceps and triceps to control soft pneumatic 

actuators implemented on the adaptive grasp prosthetic device. The inflation of the air 

chamber in the actuator was triggered by the myoelectric signals acquired from the biceps 

and triceps when they exceeded the predetermined threshold levels [22]. This study 

demonstrated that the myoelectric signals were successfully applied to the pneumatically 

actuated prosthetic device for 1 DOF control scheme, and implied further implementation 

of multiple DOF in myoelectric-controlled prosthetic devices using different muscle 

groups. 
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2.2 EMG Signal Processing 

Recommended by several studies to precisely capture fundamental sEMG features, 

sEMG signals are collected at a 1 kHz sampling rate to. One study confirms that the 

conventional 1kHz sampling rate is enough to avoid the aliasing effect due to 

undersampling [23, 24]. The myoelectric activity measured from skeletal muscle groups 

can be quantified by sEMG potentials ranging from 50 uV to 20-30 mV [25]. To 

quantitatively analyze the collected sEMG signals, several processing steps are required 

including; 1) signal conditioning, 2) rectification, and 3) smoothing. During the signal 

conditioning stage, the collected raw sEMG signals are amplified and bandpass filtered 10-

400 Hz to remove DC offset and high frequency contents induced by power sources and 

motion artifacts, respectively. Full-wave rectification is recommended to conserve the 

portion of the sEMG signal powers below the baseline. Smoothing the pre-conditioned 

sEMG signals requires lowpass filter implementation with a cut-off frequency less than 10 

Hz to obtain a linear envelop of the sEMG profile [26]. 

2.3 ECG Artifacts in Abdominal muscle sEMG  

Conventional myoelectric prosthetic devices typically obtain sEMG signals from 

muscle groups directly involved in device control, which only allows limited range of 

motion while controlling the device. For example, upper-limb prosthetic devices utilize 

different upper extremity muscles depending on levels of amputation. Although intuitive 

control can be developed by using adjacent muscle groups, most existing control strategies 

are still limited to control the device with restricted range of motion due to hardware 

contraints such as the lack of intuitive and reliable sEMG interface and the potential 

interference with the user’s motion [27, 28]. To investigate the feasibility of using 



 6 

anatomically mismatched muscle groups, a preliminary study has been conducted with 

abdominal muscle groups such as rectus abdominis and external obliques to control a split-

hook device as shown in Figure 1. When the sufficient activation level in a targeted muscle 

group detected by single thresholding, which is the most commonly used for timing muscle 

activity, a servo motor implemented at each finger joint is actuated to change the joint angle. 

The threshold level is determined by one’s MVC (Maximum Voluntary Contraction), and 

different levels of MVC are examined for accurate onset detection. However, as previous 

studies have pointed out that abdominal sEMG signals are easily corrupted by motion and 

ECG (Electrocardiogarm) artifacts [29], additional signal conditioning steps are required 

for effective sEMG signal acquisition. One simple method of removing ECG artifacts from 

sEMG signals is applying highpass filters with the cutoff frequency at 100 Hz or higher 

(Figure 2). Although this simple highpass filter implementation can effectively minimize 

the ECG artifacts, it might cause inevitable loss of fundamental EMG components in high 

frequency range leading to poor EMG intensity estimation [31].  
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Figure 1 - On/Off control signal processing with sEMG signals from external 

obliques 

 

Figure 2 - ECG artifacts removal from sEMG signals by applying high-pass filters 
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2.4 EMG Onset Detection 

The performance of onset detection with thresholding algorithm is also affected by 

the dominant ECG effect on abdominal sEMG signals since it is unclear to determine the 

threshold level under the influence of ECG artifacts. To improve the onset detection 

performance for sEMG signals contaminated by the artifacts, a study team developed an 

energy-based onset detection technique called Integrated profile (IP) method [30]. The 

major advantage of using IP method is that it allows reliable onset detection even for sEMG 

signals with large involuntary background spikes. Figure 3 shows the demonstration of IP 

method implemented on MATLAB. However, it requires the continuous integrated profile 

of all the collected sEMG samples, which is only available with post processing. Teager–

Kaiser energy operator (TKEO) is another energy-based onset detection technique 

suggested in a recent study which enhances the onset detection performance by improving 

signal to noise of the contaminated EMG signals. Whereas the TKEO method – more 

suitable to generate control input for manipulating myoelectric prosthetic devices in real-

time--only takes the set of 3 consecutive sEMG samples for the discrete TKEO, the IP 

method requires the entire profile of sEMG signals for IP function computation [31]. 
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Figure 3 - Integrated Profile (IP) method and Teager-Kaiser energy operator 

(TKEO) implementation for real-time sEMG onset detection on MATLAB 

2.5 EMG Instrumentation for Real-time sEMG Signal Processing  

Myomo R&D EMG sensors were used to collect sEMG data from the targeted 

muscle group. The sensor consisted of two independent sensor heads and an amplifier unit 

with an internal preamplifier implemented. The adjustable gain of preamplifier ranges from 

447x to 114100x and the default gain of 447 was applied to amplify raw sEMG signals. 

One sensor head was placed on the targeted muscle group and the other was used to acquire 

reference signals from the adjacent muscle group. The collected raw sEMG data were 

captured on a MSP432 LaunchPad™ microcontroller with the sampling frequency of 1 

kHz and the raw sEMG data were bandpass filtered via a cascaded bandpass filter with the 

passband of 30-500 Hz. The sEMG data were transferred to MATLAB via UART serial 

communication with a baud rate of 115200. A 5TH order real-time median filter was 

implemented on MATLAB to remove the ECG artifacts in the baseline of the raw data, 

and the filtered signal was displayed on a signal monitor with an update rate of 500 Hz to 
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provide real-time visual feedback. Figure 4 shows implementation of real-time median 

filtering and demonstrates the effective removal of ECG artifacts during the muscle 

contractions with external obliques. The TKEO onset detection algorithm was also 

implemented on MATLAB to determine the onset and the offset of muscle contraction in 

real-time.  

 

Figure 4 - Implementation of real-time median filtering on MATLAB; The ECG 

artifacts were effectively removed in the baseline as highlighted in blue circle  
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2.6 Discussion  

The experimental evaluation of processing sEMG signals in real-time demonstrated 

that the baseline ECG artifacts were effectively removed by implementing the digital filters 

to acquire the desired sEMG control input for myoelectric prosthetic devices. Also, the 

robust sEMG onset detection was accomplished with IP method and TKEO algorithm for 

the corrupted sEMG signals obtained from the abdominal muscle groups. Throughout the 

preliminary research, it was proven that the abdominal muscle groups also can be used as 

the control input for the myoelectric prosthetic devices if the appropriate signal processing 

steps were applied to the raw sEMG signals. To extend the possibility of the sEMG signal 

implementation using multiple muscle groups, the sEMG signals acquired from different 

muscle groups in the upper-body were evaluated to achieve multiple DOF prosthetic 

control in the following section. 
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CHAPTER 3. EXPERIMENT 

 

3.1 Subject 

A total of 7 subjects participated in this study including 4 males and 3 females. All 

subjects had no compromised muscle capabilities such as weakened muscle contraction or 

limited range of motion.  

3.2 Data Collection  

sEMG data were collected from deltoids (DT), pectoralis majors (PM), latissimus 

dorsi (LT), and external obliques (EO) that represent four major muscle groups in the upper 

body. The subject’s skin was cleaned with medical swipes to minimize the effect of 

bioelectrical impedance in sEMG measurement, and a pair of wet-type surface electrodes 

were attached to each target muscle location identified by anatomical references [32, 33]. 

This study focused on examining the muscles on the right side of upper body due to the 

inevitable interference of heart known as ECG artifacts. Then, each pair of electrodes were 

connected to Y03 EMG preamplifier (Y03 EMG preamplifier, Motion Lab Systems 

Preamplifier Incorporate), and the collected sEMG data from each targeted muscle were 

amplified by a factor of 300. The data acquisition interface, CED Power1401-3A 

(Power1401-3A, Cambridge Electronic Design), processed the incoming data from the 

preamplifier by using filtering tool box supported by CED Spike2 software to generate the 

linear envelope of sEMG signals. The lowpass cutoff frequency for smoothing raw EMG 

signals was set to be 5 Hz, and the processed sEMG signals were observed with the real-

time signal monitor on Spike2. The MVC level of each muscle group is determined while 

the subject maximally contracted the targeted muscle for 10 seconds. Then, the sEMG 
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output targets were computed by 6%, 13%, 25%, and 50% MVC and displayed on the 

signal monitor to provide visual feedback for target levels of muscle contraction.  

The experiment was conducted with three sessions: 1) Individual muscle 

contraction for the target levels using the listed muscle groups with and without visual 

feedback 2) Simultaneous muscle contraction for the combinations of 6% and 25% target 

levels using LT and DT with visual feedback, and 3) Simultaneous muscle contraction for 

the worst-case combination using the same muscle groups from session 2 after training. 

Auditory cues are provided to indicate the initiation and the termination of 10 seconds 

muscle contraction for each target level. During the individual muscle contraction session, 

the subject was first asked to achieve each target level and maintain the contraction for 10 

seconds with sitting upright posture when the visual feedback is provided. Then, the subject 

followed the same procedure to reproduce the same target level without visual feedback, 

and the performance from each case was compared. The combinations used in the sessions 

were as follows: 1) LT 6% + DT 6% 2) LT 25% + DT 6% 3) LT 6% + DT 25% 4) LT 25% 

+ DT 25%. During the simultaneous muscle contraction session, the subject was asked to 

achieve and to maintain the target levels of each combination for 10 seconds 

simultaneously, and the worst-case combination was determined based on the subject’s 

response to NASA Task Load Index survey.  

3.3 Maximum Voluntary Contraction of the Targeted Muscle Groups in Upper Body   

The maximum voluntary contraction level of each muscle group was determined 

by the peak value of the recorded sEMG signals during the MVC task which requires the 

subject to maximally contract the targeted muscle for 10 seconds. To minimize motion 

artifacts during muscle contraction, each subject was asked to maintain upright sitting 
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posture throughout the experiment. Figure 5 shows the sEMG output targets of each muscle 

group computed from the MVC level. However, it is observed that the influence of ECG 

artifacts was predominant in the baseline of muscle contraction when the target level was 

set below 6% MVC. Therefore, 3% MVC target was excluded for statistical analysis on 

the collected sEMG data. 

 

Figure 5 - sEMG output target determination based on MVC level; MVC level was 

determined during the MVC task and the targets were computed as 3%, 6%, 13%, 

25%, and 50% MVC 

3.4 Offset error of Muscle Contraction from sEMG Output Targets 

To evaluate the accuracy of muscle contraction, the offset error from each target 

level was computed for each muscle group. Since raw sEMG data were recorded in mV, 

they were normalized to the MVC levels by Equation 1. 

Normalized sEMG Data =  
𝑠𝐸𝑀𝐺 𝐷𝑎𝑡𝑎 (mV)

𝑀𝑉𝐶 (mV)
                 (1) 
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The IP onset detection algorithm was used to detect the onset and the offset of muscle 

activation and the sEMG data within the range of the onset and the offset were averaged to 

determine the actual mean level of the muscle activation (Equation 2). Then, the percent 

error between the target and the mean activation was computed to represent the offset error 

in %MVC (Figure 6).   

       Mean Activation of Normalized sEMG =  
∑ Normalized sEMG Data 

Number of sEMG Data
                 (2) 

 

Figure 6 - Offset error in DT at each target; the target level and the actual mean 

level of muscle contraction are represented in black and red dashed line, 

respectively. a) 6% MVC target, b) 13% MVC target, c) 25% MVC target, d) 50% 

MVC target 

3.5 Variance of Muscle Contraction at sEMG Output Target  

The variance of muscle activation was analyzed to evaluate the stability of muscle 

contraction. The onset and offset detected by the IP detection algorithm were used to 

a b 

c d 
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determine the active state of muscle contraction, and the raw sEMG data were also 

normalized to the MVC to compute the variance during muscle activation at each target 

level. To compare the relative variability in sEMG signals across the subjects, the 

coefficient of variation was also determined by the following Equation. 

   Coefficient of Variation (%MVC2) =  
Variance during the muscle activation (%MVC2)

Mean activation of Normalized sEMG
         (3) 

3.6 Contraction Bandwidth of Muscle Contraction  

The rise and fall time were considered to evaluate the contraction bandwidth of 

each muscle group. To determine the onset and offset time, three standard deviations from 

the baseline were used instead of the IP detection algorithm which is more appropriate to 

define the active state of muscle contraction at the target level. Figure 7 shows the rise and 

fall time were computed as the time difference between the onset and 90% of target muscle 

activation and between 90% of target muscle activation and the offset, respectively. 
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Figure 7 - Determination of the muscle contraction bandwidth; The shaded sections 

represent the rise and the fall time respectively 

 

 

 

 

 

 

 

 

 

 

 

 

Rise time Fall time 
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CHAPTER 4. EXPERIMENT RESULT 

 

4.1 Offset Error Evaluation for Individual Muscle Contraction Accuracy 

The offset errors were expected to increase when the visual feedback was not 

allowed regardless of the different muscle groups and the target levels. Figure 8 showed 

the effect of visual feedback on the offset error for the sEMG data averaged across the 

subjects, the muscle groups, and the target levels. The overall offset error was increased 

without the visual feedback as expected. The offset errors were conditioned on the physical 

properties of the muscle groups and the different levels of targets. And The increase of 

offset errors was likely to be found either in more intense target levels or in the muscle 

groups with less muscular strength. As shown in Figure 9-11, the offset errors increased 

exponentially as the target levels increased. The result shows the subjects were able to 

reduce the offset errors with the visual feedback, and they reached the targets within 10% 

offset deviation in all targeted muscle groups. Considering some muscle groups were more 

developed due to their frequent involvement in tasks of daily living, the offset errors in the 

muscle groups of the upper body such as DT and PM were relatively low as shown in 

Figure 12-13. Despite the presence of the visual feedback, the subjects still had relatively 

high offset errors in LT compared to the other muscle groups. Although the offset errors in 

EO were similar to DT and PM with the visual feedback, they were drastically increased 

when visual feedback was not permitted. 
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Figure 8 - Effect of Visual Feedback (VF) on offset error; The subject sEMG data 

were averaged across the targeted muscle groups and the target levels 

 

Figure 9 - Mean activation of muscle contraction for the target levels, the subject 

sEMG data were averaged across the muscle groups. Target levels were represented 

as dashed lines 

 

0

1

2

3

4

5

6

7

with VF without VF

O
ff

se
t 

Er
ro

r 
(%

M
V

C
)

0

10

20

30

40

50

60

6% 13% 25% 50%

M
ea

n
 A

ct
iv

at
io

n
 (

%
M

V
C

) 

Target level (%MVC)

with VF

without VF

6%

13%

25%

50%



 20 

 

 

Figure 10 - Overall effect of %MVC (Target Intensity) on offset error; the subject 

sEMG data were averaged across the muscle groups and the presence or the 

absence of VF 

 

Figure 11 - Effect of %MVC (Target Intensity) on offset error depending on VF; 

left) with VF, right) without VF 
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Figure 12 - Overall effect of Muscle group on offset error; the subject sEMG data 

were averaged across the target levels and the presence or the absence of VF 

 

Figure 13 - Effect of Muscle group on offset error depending on VF; left) with VF, 

right) without VF 
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4.2 Variance Evaluation for Individual Muscle Contraction Stability  

It is assumed that the variance at each target level would increase regardless of 

different muscle groups and target levels when the visual feedback was not allowed. Figure 

14 showed a similar effect of visual feedback; the overall variance was increased without 

visual feedback as seen in the offset error analysis. Since high levels of variability in sEMG 

signals were normally observed with relatively weak muscle groups and with more intense 

muscle contractions, the variances were expected to increase in some muscle groups and 

in high target levels. To normalize the variances of sEMG data from different muscle 

groups and different target levels, the coefficient of variation was determined to represent 

the relative variability of each muscle contraction. As shown in Figure 15-16, relatively 

high variances occurred with higher intensities of target in both the presence or the absence 

of visual feedback. However, the coefficient of variation showed the similar trend across 

the target levels (Figure 17-18). The prominent effect of muscle groups on the variance 

was observed in PM and DT with the greatest and the least variance respectively; the 

similar variance trends were acquired with and without visual feedback. This means the 

variance and the relative variance were more affected by physiologically induced variations 

in each muscle group (Figure 19-22). 
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Figure 14 - Effect of Visual Feedback (VF) on variance; The subject sEMG data 

were averaged across the targeted muscle groups and the target levels 

 

Figure 15 - Overall effect of %MVC (Target Intensity) on variance; the subject 

sEMG data were averaged across the muscle groups and the presence or the 

absence of VF 
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Figure 16 - Effect of % MVC (Target Intensity) on variance depending on VF; left) 

with VF, right) without VF 

 

 

Figure 17 - Overall effect of %MVC (Target Intensity) on coefficient of variation; 

the subject sEMG data were averaged across the muscle groups and the presence or 

the absence of VF 
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Figure 18 - Effect of %MVC (Target Intensity) on coefficient of variation depending 

on VF; left) with VF, right) without VF 

 

Figure 19 - Overall effect of Muscle group on variance; the subject sEMG data were 

averaged across the target levels and the presence or the absence of VF 
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Figure 20 - Effect of Muscle group on variance depending on VF; left) with VF, 

right) without VF 

 

 

Figure 21 - Overall effect of Muscle group on coefficient of variation; the subject 

sEMG data were averaged across the target levels and the presence or the absence 

of VF 
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Figure 22 - Effect of Muscle group on coefficient of variation depending on VF; left) 

with VF, right) without VF 
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different muscle groups also demonstrated that the effect of visual feedback on the 

contraction time was negligible. However, it was noted that the subject required more 

activation and relaxation time for DT compared to the other muscle groups and relatively 

less time for PM and EO. This implies that relatively fast muscle response can be achieved 

with the sEMG signals from PM and EO, and those muscles are more appropriate to apply 

to fast switching on/off control. Although DT showed relatively slow response, it is more 

suitable for precise and accurate control due to its low offset errors and variances at all 

different target levels (Figure 26-27).   

 

Figure 23 - Effect of Visual Feedback (VF) on rise time and fall time; The subject 

sEMG data were averaged across the targeted muscle groups and the target levels. 

Left) rise time, Right) fall time 
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Figure 24 - Overall effect of % MVC (Target Intensity) on rise time and fall time; 

the subject sEMG data were averaged across the muscle groups and the presence or 

the absence of VF. Left) Rise time, Right) Fall time 

 

 

Figure 25 - Effect of % MVC (Target Intensity) on rise time and fall time depending 

on VF; Top left) Rise time with VF, Top right) Rise time without VF, Bottom left) 

Fall time with VF, Bottom right) Fall time without VF 
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Figure 26 - Overall Effect of Muscle group on rise time and fall time; the subject 

sEMG data were averaged across the target levels and the presence or the absence 

of VF. Left) Rise time, Right) Fall time 

 

Figure 27 - Effect of Muscle group on rise time and fall time depending on VF; Top 

left) Rise time with VF, Top right) Rise time without VF, Bottom left) Fall time with 

VF, Bottom right) Fall time without VF 
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controllable muscle group in the upper body. Before evaluating the sEMG data, target 

combinations including LT 6% MVC + DT 6% MVC; LT 6% MVC + DT 25% MVC; LT 

25% MVC + DT 6% MVC; and LT 25% MVC + DT 25% MVC were validated by the 

actual mean muscle activation as shown in Figure 28. Figure 29 showed the offset errors 

that occurred during the simultaneous muscle contraction and during the individual muscle 

contraction with LT and DT. Those values were also compared within the target level 

combinations. The offset errors in both LT and DT increased during simultaneous 

contraction. When the target levels for DT and LT were different, relatively high offset 

errors occurred in the muscle group with 25% MVC activation as seen in the individual 

contraction. And the offset errors in each muscle group drastically increased with the target 

level of 25% MVC for both LT and DT. Although the offset errors during the simultaneous 

contraction increased, it was noted that the offset error difference between LT and DT was 

maintained. For example, in the target combination of LT 25% + DT 25%, the offset error 

difference in the individual contraction was determined to be 2% and the same difference 

was observed in the simultaneous contraction. (Figure 30). 
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Figure 28 - Actual mean muscle activation for achieving each target combination; 

6% MVC and 25% MVC were represented in blue and red dashed line respectively 

 

Figure 29 - The overall offset errors during simultaneous muscle contraction with 

LT and DT; The result was compared with the offset errors of individual muscle 

contractions 
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Figure 30 - The offset error comparison between the simultaneous and the 

individual muscle contraction for each target combination during simultaneous 

muscle contraction with LT and DT; Top left) LT 6% + DT 6%, Top right) LT 6% 

+ DT 25%, Bottom left) LT 25% + DT 
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muscles were activated simultaneously, the minimum intensity of muscle activation was 

required to stabilize the muscle at the target level. 

 

Figure 31 - The overall variances during simultaneous muscle contraction with LT 

and DT; The result was compared with the variances of individual muscle 

contractions 
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Figure 32 - The variances comparison between the simultaneous and the individual 

muscle contraction for each target combination during simultaneous muscle 

contraction with LT and DT; Top left) LT 6% + DT 6%, Top right) LT 6% + DT 

25%, Bottom left) LT 25% + DT 6%, 
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time and fall time during the simultaneous contraction, it was demonstrated that the 

minimum response time was required to activate LT and relax DT regardless of the 

activation level of the other. 

 

Figure 33 - Overall rise and fall time during simultaneous muscle contraction with 

LT and DT; The result was compared with the rise and fall time required for 

individual muscle contractions. Top) Rise time, Bottom) Fall time 
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Figure 34 - The rise time comparison between the simultaneous and the individual 

muscle contraction for each target combination during simultaneous muscle 

contraction with LT and DT; Top left) LT 6% + DT 6%, Top right) LT 6% + DT 

25%, Bottom left) LT 25% + DT 6%, 
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Figure 35 - The fall time comparison between the simultaneous and the individual 

muscle contraction for each target combination during simultaneous muscle 

contraction with LT and DT; Top left) LT 6% + DT 6%, Top right) LT 6% + DT 

25%, Bottom left) LT 25% + DT 6%, 
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4.5 Post-training effect on the performance of simultaneous contraction 

According to the subject’s response to NASA Task Load Index, LT 25% + DT 25% 

was determined to be the worst-case combination. To investigate the effect of training on 

the performance of simultaneous contraction, the target combination of LT 25% + DT 25% 

was evaluated again after the training period for 10 minutes. The offset errors and the 

variances in LT were considerably reduced after training whereas those in DT did not. 

However, the subjects required more rise and fall time in both LT and DT compared to the 

simultaneous contraction before training (Figure 36-38). 

 

Figure 36 - Comparison on offset errors in LT and DT before and after training 
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Figure 37 - Comparison on variances in LT and DT before and after training 
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Figure 38 - Comparison on rise and fall time in LT and DT before and after training 
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CHAPTER 5. DISCUSSION AND CONCLUSION 

 

5.1 Discussion 

The experimental evaluation on the individual muscle contraction demonstrated that 

the human subject showed the enhanced muscle contraction performance with the visual 

feedback. While allowing the visual feedback, the designated targets were achieved within 

10% offset deviation in all targeted muscle groups. This result demonstrated that the human 

subject’s capability of generating 4 discrete sEMG output levels. Considering the offset 

deviation less than 10%, the subject had the possibility of generating more sEMG output 

levels. When comparing averages of offset errors from all targets in different muscle 

groups — DT, PM, LT, and EO — the relatively low offset errors occurred in DT and PM 

while the highest offset error occurred in LT regardless of the visual feedback. Therefore, 

it was recommended to use DT and PM to accurately control the desired sEMG output 

levels for the myoelectric prosthetic device control. Considering more muscular activities 

are triggered by intense muscle contraction, the variability of sEMG signals drastically 

increased when the target level was set to be 50% MVC. PM and LT were not 

recommended for applications that require precise operations, because, because they have 

shown higher variance levels than the other muscle groups. Although relatively low 

variances were observed in DT, it was still recommended using sEMG signals below 50% 

MVC to reduce the physiologically induced variation during muscle contractions. As the 

target levels increased, activation and relaxation times increased in the muscle groups. PM 

and EO had faster muscle responses, which indicated having faster switching on/off control, 

compared to LT and DT. Although DT showed slower response, it was more suitable for 
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the precise and accurate control due to its lower offset errors and variances at all target 

levels. Simultaneously activating multiple muscles required higher physical and mental 

demands compare to controlling muscles individually. Therefore, each muscle group had 

an increase in offset errors, variances, and time to activate and to relax. The higher offset 

errors were observed in the high activation muscle groups across all target combinations. 

However, the difference in the offset errors from individual contraction was maintained 

meaning that the human subject was able to activate LT and DT independently during 

simultaneous contractions. For the high activation muscle groups (for example, DT 

variance from LT 6% + DT 25%), the variances were lower in simultaneous contractions 

than in individual contractions. This indicated that the low activation muscle groups helped 

to lower the variances of the high activation muscle groups during the simultaneous 

contraction. Considering all target combinations in the rise and fall time, LT required less 

time than DT. The rise time of LT was independent of the intensity of DT while the rise 

time of DT was shortened in the higher target. The fall time of LT was diminished at DT 

target level 25% MVC, but the fall time of DT was consistent throughout different target 

levels. This result implied that the minimum of 25% MVC activation was necessary to 

achieve a quick manipulation in the prosthetic devices using LT and DT. The effects of the 

training were prominent in the offset error and the variance of LT than of DT. After the 

subject completed training, the increase in the rise time of LT and the fall time of DT helped 

to improve the offset error and the variance of LT. 
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5.2 Conclusion 

 

This study investigated the sEMG signals of muscle groups in the upper body to 

evaluate the quality of voluntary muscle contraction in terms of the offset error, the 

variance level, and the contraction bandwidth. Based on the analysis of offset errors and 

variances from each muscle group, the presence of DT assisted more precise and stabilized 

manipulation. Fast responses of PM and EO suggested that these muscle groups were more 

suitable for a simple manipulation such as the on/off control than other muscle groups. This 

study focused on the sEMG output of 4 different combinations—LT and DT with 6% and 

25% MVC respectively, and it demonstrated 4 discrete states of sEMG output can be 

achieved using LT and DT simultaneously. However, this study focused on the 

experimental evaluation of the voluntary muscle contraction performance of each 

individual muscle group. Therefore, the co-contraction occurred in non-targeted muscle 

groups during multiple DOF prosthetic control should be considered in the future study to 

investigate the synergistic effect of different muscle groups on multifunction myoelectric 

control. Furthermore, the possible combinations of various muscle groups and target levels 

needed to be tested to gather more sEMG outcomes with a bigger sample size for a reliable 

statistical analysis. 
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