
HIERARCHICAL MULTISCALE MATERIALS MODELING: 

CALIBRATION, UNCERTAINTY QUANTIFICATION, 

AND DECISION SUPPORT 

 

 

 

 

 

 

 

 

 

A Dissertation 

Presented to 

The Academic Faculty 

 

 

 

 

by 

 

 

 

Aaron Ellis Tallman 

 

 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy in the 

School of Materials Science and Engineering 

 

 

 

 

 

 

 

Georgia Institute of Technology 

August 2018 

 

 

 

COPYRIGHT © 2018 BY AARON ELLIS TALLMAN 



 

 

HIERARCHICAL MULTISCALE MATERIALS MODELING: 

CALIBRATION, UNCERTAINTY QUANTIFICATION, 

AND DECISION SUPPORT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approved by:   

 

 

  

Dr. David L. McDowell, Advisor 

George W. Woodruff School of 

Mechanical Engineering 

Georgia Institute of Technology 

 Dr. Hamid Garmestani 

School of Materials Science and 

Engineering 

Georgia Institute of Technology 

 

 

  

Dr. Yan Wang, Co-Advisor 

George W. Woodruff School of 

Mechanical Engineering 

Georgia Institute of Technology 

 Dr. Surya Kalidindi 

George W. Woodruff School of 

Mechanical Engineering 

Georgia Institute of Technology 

 

 

  

Dr. Laura P. Swiler 

Center for Computing Research 

Sandia National Laboratories 

  

   

  Date Approved:  July 15, 2018 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The progress of science lies, essentially, in the evolution of its problems. 

-Karl R. Popper 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

ACKNOWLEDGEMENTS 

 I would like to begin by thanking my advisor, Dr. David L. McDowell. It is a very 

rare thing to find people capable of immense vison and exacting quality of work who also 

generously give their time and energy to lift others to their level. Dr. McDowell is such a 

person, and it has been my great joy and privilege to have him as my advisor. I am 

grateful for the patience, wisdom, and sensitivity with which he guided me through this 

program. I wish to thank him for the example of his leadership, which will remain as a 

beacon for me in years to come.   

 I would also like to thank my co-advisor, Dr. Yan Wang, for his plentiful support 

and mentorship throughout my time in this program. I especially value our numerous 

discussions which often filled entire whiteboards with diagrams. I also thank him for 

encouraging me to consider my future with an open mind.  

 I give thanks also to Dr. Laura Swiler, who has been instrumental in the 

development of the work of this dissertation. I am grateful for the numerous constructive 

phone conversations, the important ontological discussions, and for the sincerity of her 

encouragement in stressful times. I would like to thank Dr. Swiler. along with Dr. Surya 

R. Kalidindi and Dr. Hamid Garmestani, for joining my reading committee and engaging 

with the content of my dissertation. 

 During my time at Georgia Tech, other individuals contributed meaningfully in 

mentoring me. I would like to thank Dr. Laurent Capolungo for being on the reading 

committee for my thesis proposal and for the coffee-fueled conversations we had 



v 

thereafter. The insights from those talks led to my first journal article publication. I would 

also like to thank Dr. Juan Rubio for a separate coffee-fueled conversation on Bayesian 

Inference. I would like to thank Michael Swanson for countless discussions which, over 

time, instilled in me a respect for the importance of ethics to the application of science.  

 Very special thanks are due to Dr. Jeffrey Donnell, for fostering my technical 

communication and my confidence, Sukanya Sharma, for being generous beyond 

measure with her time and expertise to facilitate the experimental portions of this work, 

and to the Georgia Tech Invention Studio, whose managers are some of the most 

generous and helpful people to be found on this campus. 

 The inhabitants of MRDC 3338 past were, to me, mentors and colleagues who 

contributed to my sense of belonging in this program. I wish to thank Dr. Anirban Patra, 

Dr. Matthew Priddy, Dr. Ashley Goulding, and Dr. Kyle Brindley, who each offered me 

unique and irreplaceable advice and help at different points throughout this process. I 

would also like to thank Paul Kern, Joel Blumer, Dr. Shuozhi Xu, Ben Smith, Conor 

Hennessey, Dr. Brett Ellis, and Dr. Shreevant Tiwari for their friendship and 

camaraderie. 

 The inhabitants of MRDC 3338, future, include my collaborators and friends. I 

believe the future of the office is a bright and verdant one. To Krzysztof Stopka, 

Theodore Zirkle, and Gary Whelan, I give my humble thanks for being more reliable, 

more engaged, and more supportive as collaborators than students have any business 

being. To them and to my other friends, Adrienne Muth, Luke Costello, Alex Semilov, 



vi 

Kevin Chu, Dr. Tang Gu, and Dr. Dengke Chen, I give my thanks and my wish that this 

place continues to be as much a home to them as they have made it for me.  

 The Atlanta swing dance community has been a social scene, a creative outlet, 

and a source of some true friends. For the support, energy, and inspiration I have received 

from these remarkably earnest beings, I offer my thanks.  

 I dearly thank my sister Claire, for guiding me throughout my life (despite my 

willful nature) to respect the responsibility I have to myself and to the people near to me. 

In the same vein I thank Taylor, for being a shining example of what it is to honor those 

responsibilities.  

 Ali, who has entered my life in this most unusual of times, is deserving of 

uncountably many thanks. I wish to give her thanks for her crucial labor in keeping my 

living conditions from descending into utter disarray, for the practical help she provided 

on communicating clearly in my writing, and for the inspirational confidence she has in 

our trajectory together. As much as mere words can convey, I use them to give her my 

thanks.  

 My parents, to whom I owe everything, I wish to thank for their foundational 

support. As each new challenge tested my courage, it was their love, guidance, and 

support that let me re-shoulder my doubts and burdens and continue. They raised me well 

for this task. My mother Beth fostered in me courageous thinking--that every human 

structure can be rebuilt to be better. My father Ellis has given me a lifetime’s example of 

honest thinking and honest action. I also thank my father for sharing with me the 



vii 

perspective which comes with knowing that others have walked this path before, though 

it is a new one to me. For these gifts as well, I give them my gratitude. 

 This work was supported in part with funding granted under the DOE NEUP 

(NEAMS-3 CFP-12-3507: Uncertainty quantification and management for multiscale 

nuclear materials modeling). Continued work in this area was completed with funding 

granted under Sandia’s Laboratory Directed Research and Development Academic 

Alliance program. Sandia National Laboratories is a multimission laboratory managed 

and operated by National Technology and Engineering Solutions of Sandia LLC, a 

wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of 

Energy’s National Nuclear Security Administration under contract DE-NA0003525. 



viii 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS IV 

LIST OF TABLES XI 

LIST OF FIGURES XIII 

LIST OF SYMBOLS AND ABBREVIATIONS XVII 

SUMMARY  XXVII 

CHAPTER 1. INTRODUCTION 1 

1.1. Motivation 1 

1.2. Formal Objectives 5 

1.3. Organization of Dissertation 6 

CHAPTER 2. BACKGROUND - MULTISCALE METAL PLASTICITY 

 MODELING 7 

2.1. Plasticity Models 7 

2.2. Microstructure 12 

2.3. Multiscale Modeling 16 

2.4. Uncertainty Quantification 19 

CHAPTER 3. RECONCILED TOP-DOWN AND BOTTOM-UP HIERARCHICAL 

 MULTISCALE CALIBRATION OF BCC FE CRYSTAL 

 PLASTICITY 25 

3.1. Introduction 25 

3.2. Background 28 

3.2.1. Material Constitutive Models 32 

3.3. Methodology: 41 

3.3.1. Uncertainty Cost of Connections 51 

3.4. Results: 55 

3.5. Conclusions 60 

CHAPTER 4. MODEL FORM AND SVE SIZE IN THE HOMOGENIZATION OF 

 CRYSTAL PLASTICITY OF CARTRIDGE BRASS 64 

4.1. Introduction 64 

4.2. Background 68 

4.3. Methodology 76 

4.4. Results 87 

4.5. Conclusions 109 

4.5.1. Back Stress in Crystal Plasticity 110 

4.5.2. SVE Size Effects 111 

4.5.3. Spatial Correlation of Coarse-Grained Elements 112 



ix 

4.5.4. Microstructure Quantification Based Prediction of Coarse-Grained 

 Correlations 114 

4.5.5. The Scale-Separation of Interaction Lengths 117 

4.5.6. Summary 118 

CHAPTER 5. MULTISCALE MODEL DEVELOPMENT: 

 MICROINDENTATION AND MESOSCALE VARIABILITY IN 

 POLYCRYSTALLINE CARTRIDGE BRASS 119 

5.1. Introduction 119 

5.2. Methodology 121 

5.2.1. Bottom-Up Pathway: CP-SVE 121 

5.2.2. Top-Down Pathway: Spherical Microindentation 121 

5.3. Initial Results 127 

5.4. Discussion 131 

CHAPTER 6.  -TI TEXTURE EFFECT CALIBRATION IN THE MATERIALS 

 KNOWLEDGE SYSTEM 133 

6.1. Introduction 134 

6.2. Methodology 139 

6.2.1. Data Selection: Texture Binning Procedure 140 

6.2.2. Calibration Design 141 

6.2.3. Gaussian Process Regression Model 148 

6.2.4. Crystal Plasticity Model and Simulations 150 

6.2.5. Calibrations of MKS 153 

6.2.6. Validation Data 155 

6.3. Results 158 

6.4. Discussion 166 

6.4.1. Proof of Concept 167 

6.4.2. Edge Cases in Data-Driven Predictions 168 

6.4.3. Future Work 171 

CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS 173 

7.1. Overview of Contributions 173 

7.2. Perspectives on Difficulties in ICME 175 

7.2.1. Over-specification of Models at a Length-Scale 176 

7.2.2. Accountability in Linking Length-Scales 177 

7.2.3. Uncertainty Estimation is Needed in Engineering Modeling Tools 179 

7.2.4. Source Criticism is Needed for Data-Driven Multiscale Methods 184 

APPENDIX A. AUTOCAL MANUAL 187 

A.1.  What is Autocal? 187 

A.2.  Getting Started 190 

A.3.  Pitfalls and Precautions 191 

A.3.1.  Scenario Descriptor Inputs Must Match Target 192 

A.3.2.  Calibration Parameters Must Be Identifiable by Quantity of Interest (QoI)  

  192 

A.3.3.  Calibration Parameter Set Should be Made Smaller if Possible 193 



x 

A.4.  Developing a New Material for Use with Autocal 193 

A.4.1 Material/Material.py 194 

A.4.2 Autocal/__init__.py 194 

A.4.3 Autocal/autocal.py 194 

A.4.4 Testing a new material 195 

A.4.5 Putting the new material into production 195 

REFERENCES 198 

 



xi 

LIST OF TABLES 

Table 3-1. Crystal plasticity model parameters for bcc Fe held fixed during the 

calibration. ..................................................................................................... 37 

Table 3-2. Reference estimates of the key flow rule parameters in the calibration (θ ) 

from both TD and BU information pathways. ............................................... 42 

Table 3-3. Admissible parameter bounds for the calibration parameters θ . .................... 44 

Table 3-4. Maximum likelihood estimated values for the calibration parameters. TD 

corresponds to the unconstrained likelihood function, and TDBU corresponds 

to the likelihood function constrained by penalty terms. Values of 

  
2

2

exp, 0.1 E

i iY i  x  were used. .............................................................. 51 

Table 3-5. Contrived BU reference estimates shown alongside the estimates from the 

atomistic modeling of (Narayanan et al., 2014). ........................................... 54 

Table 3-6. The relative performance of TD and TDBU calibrations of the CP model for 

0.1p  , based on different BU reference estimates of θ . For each BU 

reference estimate, the better performing calibration is underlined. ............. 58 

Table 3-7. Parametric study of 2

p . The simulated ref

BUθ̂ is used for all cases. Penalty is 0 

for BU only calibration. The values of 2
θ

 for BU only calibrations are 

shown for the different values of 2

p . ............................................................. 60 

Table 4-1. Crystal plasticity calibration parameters given the same experimental data 

values, reflecting the model form choices often taken in the literature. ........ 79 

Table 4-2. The 2D grain size statistics used to calibrate the distribution used in 

microstructure instantiation. .......................................................................... 80 

Table 4-3. 3D statistics of the number and equivalent diameter of the grains in the 

microstructure instantiations of each SVE ensemble in the study. ................ 82 

Table 4-4. The calibrated values of the rate sensitivity parameters of the BCJ model. .... 84 

Table 4-5. The coefficient of determination of the different homogenizations as averaged 

over each ensemble and as minima of each ensemble. .................................. 95 

Table 4-6. Correlation coefficients between the BCJ parameters calibrated to individual 

SVEs. Mean values, standard deviations, and the standard deviation relative 

to the mean of each parameter is also shown. ............................................... 97 



xii 

Table 4-7. The estimates of the correlation which applies when embedding the properties 

of SVE results adjacently in a coarse-grained mesh. ................................... 117 

Table 5-1. The stepwise details of the polishing procedure followed in preparing the 

C260 samples. .............................................................................................. 123 

Table 5-2. A stepwise summary of the etching procedure used in this work. ................ 123 

Table 6-1. The design parameters for the calibrations which use the GP model and which 

use pre-selected textures*. ........................................................................... 144 

Table 6-2. The slip systems of  -Ti considered in the CP model. ................................ 151 

Table 6-3. The parameters of the CP model for  -Ti. ................................................... 153 

Table 6-4. MKS homogenization parameter values selected to compare calibration data 

selection approaches. LOOCV stands for leave one out cross validation. .. 154 

Table 6-5. The values of R , selected to minimize LOOCV errors for each calibration 

design. .......................................................................................................... 155 

Table 6-6. The validation simulation sets by name and description. .............................. 156 

Table 6-7. The mean relative percent error of MKS elastic modulus predictions based on 

each calibration design, measured on each validation set, where R  is 

determined by minimizing LOOCV. ........................................................... 162 

Table 6-8. The mean relative percent error of MKS yield strength predictions based on 

each calibration design, measured on each validation set, where R  is 

determined by minimizing LOOCV. ........................................................... 163 

Table 6-9. The mean relative percent error of MKS elastic modulus predictions based on 

each calibration design, measured on each validation set, where R  is chosen 

a posteriori based on mean validation error. The R  values are specific to 

each calibration-validation pair. .................................................................. 164 

Table 6-10. The mean relative percent error of MKS yield strength predictions based on 

each calibration design, measured on each validation set, where R  is chosen 

a posteriori based on mean validation error. ................................................ 165 

Table A-1. The prerequisite software, packages, and repositories which must be installed 

prior to testing Autocal. This list may change as features are added. Check 

the Autocal repository or contact Gary Whelan for help. ............................ 191 

Table A-2. User defined parameters for test_2. .............................................................. 195 



xiii 

LIST OF FIGURES 

Figure 2-1. A depiction of the categorical length scales of metal plasticity modeling and 

simulation. ..................................................................................................... 10 

Figure 3-1. A flowchart of the calibration method for combining TD and BU data. ....... 41 

Figure 3-2. Flowchart of the method for the selection of uncertain connections. ............ 42 

Figure 3-3. The proportional limit at three temperatures for loading on three 

crystallographic orientations. The BU used here is later referred to as 

Simulated BU................................................................................................. 56 

Figure 4-1. A schematic of the models and linking methods used in this chapter. .......... 77 

Figure 4-2. The design of experiments for the crystal plasticity simulations of 

polycrystalline volumes. ................................................................................ 77 

Figure 4-3. A schematic summarizing the generation of microstructures to be used in this 

chapter............................................................................................................ 78 

Figure 4-4. The two sizes of SVE used for calibration in the work are shown. The large 

SVE is 300 microns per side, the small SVE is 200 microns per side. ......... 81 

Figure 4-5. The comparison of the crystal plasticity results for both model forms with the 

experimental data previously obtained (Carroll et al., 2012). ....................... 83 

Figure 4-6. The SVE ensemble means for the CP simulations used to calibrate the BCJ 

parameters. ..................................................................................................... 83 

Figure 4-7. A schematic showing the BCJ parameter estimates, sourced from individual 

SVEs, informing the mesoscale model’s individual single-integration-point 

elements. ........................................................................................................ 86 

Figure 4-8. Pairwise scatter plots of the grain size statistics which belong to each SVE in 

the ensemble of 100 smaller polycrystalline volumes. Kernel density 

estimates (kde) of individual statistics are shown on the diagonal subplots. 

The y-axis of the kdes show probability density and have minima of zero. . 88 

Figure 4-9. Pairwise scatter plots of the grain size statistics which belong to each SVE in 

the ensemble of 30 larger polycrystalline volumes. Kernel Density estimates 

(kde) of individual statistics are shown on the diagonal subplots. The y-axis 

of the kdes show probability density and have minima of zero. ................... 89 

Figure 4-10 a, b, c, d. The results of the CP-SVE simulations for both SVE sizes and CP 

model forms. .................................................................................................. 91 



xiv 

Figure 4-11. The bias as a function of the applied axial strain history for each 

combination of SVE size and CP model form. .............................................. 93 

Figure 4-12. The standard deviation of the error between the BCJ model and the target 

CP-SVE results as a function of the applied axial strain path. ...................... 94 

Figure 4-13. All calibration parameters used to fit the BCJ model to individual SVE 

simulations in scatter-plots, in a matrix layout. Kernel density estimates of 

each parameter are shown along the diagonal of the matrix layout. This figure 

contains the data from the homogenization of the larger SVEs simulated with 

back stress. ..................................................................................................... 98 

Figure 4-14. All calibration parameters used to fit the BCJ model to individual SVE 

simulations in scatter-plots, in a matrix layout. Kernel density estimates of 

each parameter are shown along the diagonal of the matrix layout. This figure 

contains the data from the homogenization of the smaller SVEs simulated 

with back stress. ............................................................................................. 99 

Figure 4-15. All calibration parameters used to fit the BCJ model to individual SVE 

simulations in scatter-plots, in a matrix layout. Kernel density estimates of 

each parameter are shown along the diagonal of the matrix layout. This figure 

contains the data from the homogenization of the larger SVEs simulated 

without back stress. ...................................................................................... 100 

Figure 4-16. All calibration parameters used to fit the BCJ model to individual SVE 

simulations in scatter-plots, in a matrix layout. Kernel density estimates of 

each parameter are shown along the diagonal of the matrix layout. This figure 

contains the data from the homogenization of the smaller SVEs simulated 

without back stress. ...................................................................................... 101 

Figure 4-17. The standard deviation of axial stress (in MPa) as a function of mean axial 

strain, presented as a comparison of variability between modelling strategies.

 ..................................................................................................................... 103 

Figure 4-18. The standard deviation of the axial stress response of mesoscale volumes 

predicted with the various modeling approaches. For completeness, naïve 

volume averaging of the smaller simulations is included as a point of 

comparison. .................................................................................................. 104 

Figure 4-19. An example showing the ECDF of BCJ results at 0.04 axial strain, based on 

the two different CP model forms. .............................................................. 105 

Figure 4-20. The K-S test of each set of simulation in comparison to the reference of the 

full field CP simulations of the polycrystalline material. The significance 

level used in this test is 0.01. ....................................................................... 107 

Figure 4-21. The estimates of bias in axial stress (MPa) as a function of mean axial strain. 

Bias is measured in comparison with the full field CP simulations, using the 



xv 

difference between the ensemble mean of response of each simulation 

approach. ...................................................................................................... 108 

Figure 4-22. K-S 2-sample test results for each simulation approach in comparison to the 

full field CP simulations. The test is performed using the bias corrected 

distributions of axial stress response as functions of mean axial strain. A 

significance level of 0.01 was used for this test. ......................................... 109 

Figure 4-23. The variability predictions based on a reduced number of independent sub-

volumes which correspond to the full-field variability. The number of 

samples used is shown in parenthesis in the legend. ................................... 114 

Figure 4-24. The counting frame used to estimate the shared volume for an SVE of a 

specific size. Numbers represent 
im  for each grain shown. Periodic 

boundaries are imposed. .............................................................................. 116 

Figure 5-1. A 10X magnification micrograph taken of the etched and polished sample of 

the C260 H02 plate obtained from McMaster-Carr. A scale bar is included for 

reference. ..................................................................................................... 124 

Figure 5-2. The axisymmetric mesh used in initial simulations of microindentation. ... 126 

Figure 5-3. A histogram of the 60-kg load spherical microindentation measured radii. 128 

Figure 5-4. A histogram of the 100-kg load spherical microindentation measured radii.

 ..................................................................................................................... 129 

Figure 5-5. Initial simulated indentation radii sensitivity to modification of material 

response in entire material homogenously, and in only a critically stressed 

volume of the material. ................................................................................ 130 

Figure 6-1. A flowchart of the calibration dataset design. .............................................. 139 

Figure 6-2. A flowchart of the initialization and adaptive sampling loop employed in this 

work. ............................................................................................................ 142 

Figure 6-3. ODFs which describe the textures included in the validation set External 1.

 ..................................................................................................................... 157 

Figure 6-4. ODFs which describe the textures included in the validation set External 2.

 ..................................................................................................................... 157 

Figure 6-5. All calibrations plotted in terms of the same principal components. ........... 159 

Figure 6-6. The different calibration sets shown in terms of the top two PCs which 

explain the variation in their microstructure instantiations. ........................ 160 



xvi 

Figure 6-7. The percent cumulative explained variance for the first five PCs for each 

calibration design used in this work. ........................................................... 161 

Figure 6-8. The mean relative percent error of MKS elastic modulus predictions based on 

each calibration design, measured on each validation set (see legend), where 

R  is determined by minimizing LOOCV. .................................................. 162 

Figure 6-9. The mean relative percent error of MKS yield strength predictions based on 

each calibration design, measured on each validation set (see legend), where 

R  is determined by minimizing LOOCV. .................................................. 163 

Figure 6-10. The mean relative percent error of MKS elastic modulus predictions based 

on each calibration design, measured on each validation set, where R  is 

chosen a posteriori based on mean validation error..................................... 165 

Figure 6-11. The mean relative percent error of MKS yield strength predictions based on 

each calibration design, measured on each validation set, where R  is chosen 

a posteriori based on mean validation error. ................................................ 166 

Figure 6-12. The %MRE scores for each QoI for a single calibration-validation pair, 

plotted above heatmap histograms of the calibration (blue) and validation 

(red) microstructure statistics with respect to each PC. ............................... 170 

Figure A-1. A flowchart which shows the steps of the Autocal procedure. ................... 187 

Figure A-2. The material_selector function, which allows quick, persistent changes to the 

options which can be material-specific. ....................................................... 196 

Figure A-3. The get_load function, which allows persistent definition of loading paths.

 ..................................................................................................................... 197 



xvii 

LIST OF SYMBOLS 

%MRE Percent mean relative error. 

2D Two-dimensional. 

3D Three-dimensional. 

ALO Alumina. 

AM Additively manufactured. 

ASTM American Society for Testing and Materials. 

BCC Body-centered cubic. 

BCJ Bammann Chiesa Johnson. 

BCJ-lv Bammann Chiesa Johnson with local variation. 

BU Bottom-up. 

C260 Cartridge brass. 

CALPHAD Calculation of phase diagrams. 

CCD Charge-coupled device. 

CG Coarse-grained 

CLF Constrained likelihood function. 

CP Crystal plasticity. 

DDD Discrete dislocation dynamics. 

DI De-ionized. 

DNS Direct numerical simulation. 

DoE Design of experiments 

EBSD Electron backscatter diffraction. 

ECDF Empirical cumulative distribution function. 

FCC Face-centered cubic. 



xviii 

FEM Finite element method. 

GP Gaussian process. 

GSH Generalized spherical harmonic. 

HCP Hexagonal close-packed. 

HMM Hierarchical multiscale model 

HPC High performance computing. 

ICME Integrated computational materials engineering. 

ISV Internal state variable. 

KDE Kernel density estimate. 

kMC Kinetic Monte Carlo. 

K-S Kolmogorov-Smirnov. 

LF Likelihood function. 

LOOCV Leave-one-out cross validation. 

MCMC Markov chain Monte Carlo. 

MD Molecular dynamics. 

MKS Materials knowledge system. 

ML Maximum likelihood. 

NEB Nudged elastic band. 

ODF Orientation distribution function. 

OFHC Oxygen-free high thermal conductivity. 

PC Principal component. 

PCA Principal component analysis. 

PCE Polynomial chaos expansion. 

PDF Probability density function. 

QoI Quantity of interest. 



xix 

RVE Representative volume element. 

SOR Second order regression. 

SSE Sum of squared errors. 

SVE Statistical volume element. 

SVENN Statistical volume element nearest neighbor. 

TD Top-down 

TDBU Top-down bottom-up 

Ti64 Ti-6Al-4V. 

UMAT User material subroutine. 

UQ Uncertainty quantification. 

α-Ti Hcp phase of Ti 

   For all. 

  Element of. 

   Tensor product. 

   Product. 

  Contents replaced by zero if less than zero. 

A  Matrix of regression data. 

a   Distance moved by dislocation in one activation step. 

0a   Lattice parameter. 

1 2 3, ,T T Ta a a  Non-Schmid coefficients. 

dirA   Direct back stress modulus. 

dynA   Dynamic recovery coefficient of back stress. 

A   Back stress of slip system α. 



xx 


A   Matrix of slip system dislocation interaction coefficients. 

b   Burgers vector magnitude. 

c   Vector of coefficients. 

C   GSH coefficients. 

ijC   Elastic constants of the elastic stiffness tensor. 

mn

lC   GSH coefficient. 

d   Equivalent sphere diameter of grains. 

d   Mean slip distance. 

in
D   Inelastic portion of the unrotated stretching tensor. 

,N MD   K-S statistic between first and second samples. 

D   Drag stress of slip system α. 

E   Young's modulus. 

 E   Expected value. 

1 2 3, ,e e e   Euclidean mapping space coordinates. 

11E   Uniaxial elastic stiffness modulus. 

f   BCJ rate sensitivity parameter. 

f   Predicted response of a regression. 

e
F   Elastic portion of the deformation gradient. 

if   Surrogate model of ith datum. 

in
F  Inelastic portion of the deformation gradient. 

G   Shear modulus. 

dirg   Direct drag stress modulus. 

dyng   Dynamic recovery coefficient of drag stress. 



xxi 

jg   The jth orientation included in the texture. 

g   Drag stress of slip system α. 

H   BCJ direct isotropic hardening coefficient. 

H   Stress dependent activation energy for unit dislocation 

slip. 

h   BCJ direct kinematic hardening coefficient. 

h   Scale hyperparameter. 

h   Direct hardening coefficient of back stress. 

0H  Activation energy for unit dislocation slip at zero 

effective stress. 

Dh   Dynamic recovery coefficient of back stress. 

J   Total number of orientations in texture. 

2J   The second invariant of the deviatoric stress tensor. 

k   Boltzmann constant. 

csk  Material constant of mobile dislocation cross-slip. 

dynk   Material constant of dynamic recovery of immobile 

dislocations. 

mulk   Material constant of mobile dislocation multiplication. 

l   Length hyperparameter. 

l  Lateral extent of kinks at the saddle point state. 

l  Degree of GSH function. 

L   GSH coefficient degree truncation. 

in
L   Inelastic portion of the velocity gradient. 

m   Strain rate sensitivity exponent. 

m   Mean of ensemble of responses. 



xxii 

m   Number of regression coefficients. 

M  Strain rate sensitivity exponent. 

im  Counting multiplier of ith grain. 

0


m  Unit slip direction vector. 

 2,N     Normal distribution of mean μ and variance σ2. 

0N   Number of ensembles in initial batch. 

1N   Number of ensembles in subsequent iterations. 

dataN   Number of data. 

iterN   Number of iterative data selection steps. 

ns


n   Unit vector normal to the 'non-slip' plane. 

runsN   Total number of CP model runs. 

sN   Number of slip systems. 

sn   Number of queries. 

SVEN   Number of SVEs in an ensemble. 

vn   Number of variables 

0


n   Unit slip plane normal direction vector. 

 Obj   Objective function. 

p   Shape factor, profiling parameter. 

p   Uniform density mapping parameters. 

q   Shape factor, profiling parameter. 

q   Dislocation barrier strength. 

R   BCJ isotropic hardening ISV. 



xxiii 

  The real numbers. 

R   Number of included PCs. 

2R   Coeffiecient of determination. 

cR   Annihilation capture radius of dislocations. 

dR   BCJ dynamic recovery coefficient for isotropic 

hardening. 

dr   BCJ dynamic recovery coefficient for kinematic 

hardening. 

sR   BCJ static recovery coefficient for isotropic hardening. 

sr   BCJ static recovery coefficient for kinematic hardening. 

as   Athermal slip resistance of slip system  . 

ts   Thermal slip resistance of slip system  . 

0ts   Thermal slip resistance at 0K (Peierls stress). 

T   Temperature. 

mn

lT   GSH function. 

u   Connection cost exponent. 

V   BCJ rate sensitivity parameter. 

aV   Activation volume. 

iV   Volume of ith grain. 

x   Alignment variables. 

Y   BCJ initial yield strength parameter. 

EY   Experimental response. 

MY   Model response. 

   Index for slip systems. 
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α   Kinematic hardening tensor. 
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   Dislocation trapping constant. 

0   Pre-exponential factor, reference shearing rate. 

   Shearing rate of crystallographic slip system α. 

   Discrepancy, bias. 

gF   Activation energy barrier to dislocation glide. 

ij   Kronecker delta. 

   Measurement error. 

   Strain. 

0,i   Decay constant. 

33   Axial strain. 

i

eff   Effective inelastic strain. 

sur,i   Surrogate model error term. 

θ   Calibration parameters. 

BU
ˆ ref
θ   Bottom-up reference estimates of calibration parameters 

θ. 

TDθ̂   ML estimate of calibration parameters based on TD data. 

TD
ˆ ref
θ  Top-down reference estimates of calibration parameters 

θ. 

θ   Vector of regression terms. 

maxθ  Upper bounds of admissible parameter ranges. 

minθ  Lower bounds of admissible parameter ranges. 
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   Softening term of threshold stress of slip system α. 
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   Threshold stress of slip system α. 

   Mean free path of dislocation glide. 

   Mean. 

   Softening rate coefficient. 

   Poisson's ratio. 

D   Debye frequency. 

   Dislocation density. 

I   Immobile dislocation density. 

M   Mobile dislocation density. 

σ   Cauchy stress. 

   Stress. 

   Standard deviation. 

2̂   Unbiased predictor of population variance. 

33   Axial stress. 

2

e   Variance of errors. 

2

exp,i   Expected variance of ith datum. 
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   Contribution of non-Schmid stresses on slip system α. 

2

p   Variance of the penalty. 

Y   Yield strength. 
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  Variance of parameter estimate, parameter uncertainty 

estimate. 

   Resolved shear stress. 

*   Activation stress for dislocation cross-slip. 

CRSS

   Critical resolved shear stress of slip system α. 

eff

   Effective shear stress of slip system α.f 

τf Driving stress for dislocation glide. 
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χ Misorientation angle. 
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SUMMARY 

 Computational material models help establish structure-property relationships by 

simulating properties, and are most effective when physically-based. The length and time 

scales of each simulation are constrained both by model type and computing power. 

Significant uncertainty can arise when models attempt to bridge across length and time 

scales, especially when using different model constructs. Hierarchical multiscale 

modeling (HMM) links models at different scales by informing parameters and form of 

higher scale models based on lower scale simulations, which can reduce uncertainty. The 

combination of diverse information sources in HMMs requires rigorous approaches to 

evaluate uncertainty propagation. In the pursuit of improved methods for empirical 

testing and development of model hierarchies, four approaches in which information is 

coordinated amongst multiple models are presented.  

 (1) In a reconciled top-down and bottom-up approach, a likelihood-based model 

calibration method is proposed, and bcc Fe crystal plasticity (CP) is used to demonstrate 

the compatibility of information pathways. (2) A statistical volume element (SVE) 

ensemble-based homogenization scheme of two models of cartridge brass polycrystal 

plasticity is used to inform a Bammann-Chiesa-Johnson macroplasticity model with a 

local variation in parameters. The effects of SVE size and model form on the 

performance of the homogenization in bridging microstructure variability to macroscale 

uncertainty are explored. (3) A multiscale model development framework is outlined for 

the reduced order modeling of mesoscale variability in cartridge brass. The variability in 

SVE simulations is included with the results of a series of spherical microindentation 
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experiments in a multiscale data collection. An initial study of the modeling involved in 

connecting the two length scales is performed. (4) In a CP-finite element method (FEM) 

based Materials Knowledge System model of  -Ti, the influence of texture is 

considered. Texture is parameterized using generalized spherical harmonics. The CP-

FEM model is used with polycrystalline SVE-ensembles to calibrate the MKS model 

across different textures, sampled according to an uncertainty reduction criterion.  

 Results of the work suggest that data collection is an especially critical step in the 

formulation and deployment of hierarchical multiscale models. The use of bottom-up 

information in calibrating a multiscale model is shown to be susceptible to bias. A 

multiscale approach to coarse-grained simulations of polycrystals at the mesoscale is 

proposed. An approach to automating the data collection for a reduced-order model of 

microstructure sensitive response is shown to be competitive with manual data selection, 

prior to full optimization of the automated approach. 
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CHAPTER 1. INTRODUCTION 

 Scientific models infer knowledge from measurements. This relationship often 

limits insight to domains in which data can be readily gathered. Gathering data is a two-

part problem. First, measurements must be obtained, often through demanding 

experimental procedures. Second, data must be selected which is relevant to the identified 

problem. In the multiscale modeling of material deformation, this second step becomes 

an increasingly complex consideration. With respect to the demands of this emerging 

challenge, the theme of this dissertation is data selection in multiscale materials science 

models of deformation. The following context is offered to motivate this theme. 

1.1.   Motivation 

 The frontier of human knowledge is continually changing. Scientists uncover 

knowledge by improving descriptions of reality. Technologists and engineers advance 

human knowledge by using knowledge to find improved solutions to the problems facing 

humanity. Materials scientists and engineers are tasked with both of these missions. For a 

materials scientist, a correct description is only half of the goal. In the work which 

follows, the fidelity and the usefulness of a solution are often considered jointly. 

 These attributes can be defined for this introduction. Fidelity refers to the extent 

to which a description of a given process reflects the most complete description of that 

process available. Usefulness indicates the extent to which the description can be used to 

inform decision-making. There are many types of decisions (e.g. materials design, 

research funding allocation, etc.) and each decision is accompanied by unique barriers to 
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the application of scientific knowledge. In materials science, a compromise between 

fidelity and usefulness is often made in the formulation of new descriptions of 

mechanisms. 

 Materials science has uncovered a diversity in the physical mechanisms which 

give rise to solid mechanics. These mechanisms often influence the properties of 

materials at length scales far removed from the length scale of their physical description. 

There exists ongoing research to refine the details of these individual mechanisms. The 

technology which is built on this knowledge must balance the influence of every relevant 

mechanism. The challenge of finding this balance grows more difficult as more materials 

knowledge is discovered.  

 Computational models of materials exemplify a tool built out of materials science 

knowledge. A simulation of a material can be beneficial when demanding industrial 

applications cause the material to fail. By using a simulation to investigate the failure, 

design variables can be explored systematically to find a solution, minimizing the 

expense of experimental trials. As computation has become increasingly capable, 

computational modeling research has produced increasingly nuanced descriptions of the 

deformation of materials. The growing category of microstructure sensitive models of 

material deformation demonstrate this trend. As model complexity increases, some 

approaches have emerged which connect multiple models across length scales in a 

multiscale treatment. 

 Multiscale modeling of materials is an approach to describing the multiscale 

interactions which are a hallmark of materials under deformation. In a multiscale 
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modeling approach, multiple material models are usually connected across length and 

time scales in either a concurrent or a hierarchical arrangement. In concurrent 

frameworks, the models’ separate spatial domains are joined by a forced boundary 

solution. In a hierarchical framework, the models are joined through the values given to a 

parameter set which is used as a connection between models. While both formulations 

have been used in the field, the work of this dissertation addresses the hierarchical 

multiscale approach. 

 In 2008, integrated computational materials engineering (ICME) was designated 

as a major research objective in materials science (National Research Council, 2008). 

Numerous benefits were listed to motivate the pursuit of the integration of computational 

materials science tools into a holistic framework and engineering design in general. The 

development of connections between models was mentioned as a scientific and 

technological challenge among many others forecast in the report. The exploration of 

new model-model connection strategies is taken up in this dissertation in support of the 

larger goals of ICME. 

 Tools and companies which exemplify the goals of ICME have and continue to 

emerge. CALPHAD (which stands for calculation of phase diagrams) is a methodology 

which has given rise to many software tools which are important to ICME efforts 

(Spencer, 2008). Thermo-Calc Software is a company whose CALPHAD-based tools are 

used in research and in applications (Andersson et al., 2002).The work of QuesTek® 

Innovations LLC in computational materials design is innovative, and formalized the 

process structure property map as a means of arriving at a holistic consideration of the 
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mechanisms affecting a material (Kuehmann and Olson, 2009). No well-known 

commercial solution yet exists for the multiscale modeling of material deformation.  

 The development and improvement process of a model is specific to that model’s 

intended application. Models are typically focused on either providing a scientific 

description of a phenomenon or extracting the relationships relevant to practical decision 

making. For the current discussion, these categories will be referred to as scientific 

models and design models. Models require calibration to make predictions. To improve 

those predictions a researcher may improve the calibration procedure, reduce the 

uncertainty of the model, or bring additional decision-relevant information to the decision 

maker, in the case of a design model. Each of these options is explored within this 

dissertation. 

 Multiscale modeling provides challenges to researchers in addition to the 

challenges of creating a model at a single scale. The most dramatic example of the issues 

facing multiscale modelers is taken from physics which govern the largest and smallest of 

scales. The cosmological constant problem is a reference to the 120 orders of magnitude 

difference between the quantum field predictions of vacuum energy density and the value 

which is consistent with astronomical observations (Adler et al., 1995). This stark 

disagreement has yet to be resolved, despite the fame of the problem. Additionally, the 

theories used in each approach have not been falsified by this predictive error. The length 

scales of concern to materials modelers are less dramatic in their range. Nevertheless, the 

multiscale modeling of solid mechanics presents the same epistemological problem: if 

two models from different scales are in disagreement, how can they be used appropriately 

in combination? 
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 The specific applications of multiscale modeling of materials deformation include 

problems of data selection. In order to calibrate a multiscale model, data from many 

different sources might be considered. Guidance regarding the data appropriate for a 

given application has not yet been established for multiscale models. Broadly, the 

following chapters present specific examples of problems in multiscale modeling of the 

deformation of materials and the innovations in data selection approaches which inform 

these multiscale models.  

1.2.   Formal Objectives 

 In the spirit of ICME and in the pursuit of improved multiscale-specific methods 

of directing model improvement, the following objectives in the multiscale modeling of 

material deformation are addressed by this dissertation: 

1. Develop a method for including information from multiple length scales in 

the calibration of a hierarchical multiscale model and demonstrate that 

method with a multiscale model of bcc Fe crystal plasticity  

2. Explore reduced order modeling of microstructure sensitive response of 

cartridge brass to stress for the effects of model form and SVE size on the 

fidelity of mesoscale variability predictions 

3. Investigate the feasibility of gathering data at multiple length scales for use in 

the development of a multiscale reduced order model of material deformation 

4. Formulate a parameterized data selection method and apply it to a data-driven 

tool for homogenization of material response 
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1.3.   Organization of Dissertation 

 The dissertation is organized into Chapters as follows. Chapter 2 provides a 

comprehensive literature review of the material related to the content of multiple chapters 

of work. Chapter 2 is further divided into sections which correspond to the fields from 

which the collected references were obtained. 

 The objectives of the dissertation are approached in the four chapters which 

follow. Chapter 3 addresses the reconciled top-down and bottom-up multiscale 

calibration of bcc Fe crystal plasticity. Chapter 4 contains work on the model form and 

SVE size effects of reduced order modeling of mesoscale variability in polycrystalline 

cartridge brass. Chapter 5 is directed towards the development of microindentation as a 

source of data for calibrating models of mesoscale variability. Chapter 6 documents the 

development of a systematic data collection procedure for the homogenization of texture 

effects in the deformation response of  -Ti. These chapters are internally structured with 

introductions, literature backgrounds, methodologies, and discussions. These case studies 

are organized in this manner to maintain consistency with journal articles that are or will 

be based on their content. 

 The conclusions and recommendations of the dissertation in general are collected 

in Chapter 7. As opposed to the discussions of the previous chapters, this discussion is 

targeted at the common themes which emerge from the dissertation.   
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CHAPTER 2. BACKGROUND - MULTISCALE METAL 

PLASTICITY MODELING 

 This reviews relevant background material. It is divided into sections to organize 

the content, as it spans many disciplines. These sections include plasticity models, 

microstructure, multiscale modeling, and uncertainty quantification. The topics are 

introduced and given context. Connections between sections are discussed.  

2.1.   Plasticity Models 

 The deformation of metals is complex and of widespread importance. Metal 

plasticity is a loading-path and history dependent phenomenon, and it occurs by 

mechanisms that exert themselves at a variety of length and time scales. A variety of 

constitutive models have been developed to make useful predictions at various levels of 

resolution and fidelity (Adams et al., 1989; Bammann, 1984; Barlat et al., 1991; Clayton 

et al., 2004; Clayton and McDowell, 2003; Edelman and Drucker, 1951; McDowell, 

2010, 2008). The wide usage of metals gives rise to diversity in plasticity modeling 

needs, and many types of models are in widespread use. A discussion of the development 

of plasticity modeling is useful to navigate the different types of models which are 

featured in this dissertation. In addition, clarifying examples will be included. 

 Modern simulations of metal plasticity depend on certain mathematical 

foundations. In general, in continuum models a metal is simulated as a continuous 

deformable solid (Khan and Huang, 1995; Malvern, 1969). Continuum mechanics is used 

to establish a phenomenological framework for describing the deformation of materials. 
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The finite element method (FEM) (Reddy, 1993) allows numerical methods to be used to 

approximate analytical solutions for material response. With continuum descriptions, 

material deformation models such as plasticity and elasticity can be expressed in 

reproducible and comparable terms. By using FEM analysis, the predictions of these 

models can be compared to experiments conducted on laboratory specimens. These 

mathematical frameworks are important to the advancement of plasticity models. 

 Internal state variable (ISV) models of plasticity depart from classical 

thermodynamics (Horstemeyer and Bammann, 2010; McDowell, 2005). In classical 

formulations, the stress response of a deformed body is calculated from observable state 

variables. By including “hidden” ISVs, history dependence along non-equilibrium 

trajectories can be included in plasticity models. Numerous models which account for the 

accumulation of damage during deformation have been developed (Clayton and 

McDowell, 2004, 2003; Ghosh et al., 2001; Horstemeyer et al., 2000) using ISVs and 

evolution equations to embed models of damage within a phenomenological framework 

of material deformation kinematics.  

 Distinct differences exist between two popular categories of plasticity models: 

crystal plasticity (CP), and J2. In these models, tensor forms of stress and strain are 

related. As a displacement or force is applied to a simulated specimen, a mathematically 

defined relationship is used to calculate the resulting force or displacement, respectively. 

These relationships which constitute the simulation of material behavior are referred to as 

constitutive equations (Chaboche and Rousselier, 1983; Kothari and Anand, 1998; 

McDowell, 1985; Roters et al., 2010; Weber and Anand, 1990). Crystal plasticity is used 

to relate crystalline structure to the deformation kinematics of a material (Alharbi and 
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Kalidindi, 2015; Asaro, 1983; Buchheit et al., 2005; Patra and McDowell, 2012; Shahba 

and Ghosh, 2016). Crystal plasticity typically attributes plastic deformation to the glide of 

dislocations through the crystal lattice via constitutive equations. Notably, dislocations 

are not resolved discretely and are only sometimes included with ISV representations of 

local dislocation density (Arsenlis et al., 2004; Patra and McDowell, 2012). Engineering 

in practice often relies on continuum J2 plasticity and other “macroscopic” plasticity 

models (Bammann, 1984, p. 2; Barlat et al., 1991; Bassani, 1977). These models are 

much simpler to calibrate and use than CP. They are unable to predict the properties of 

related microstructures, however. The two models give an example of the trade-off 

between accuracy (J2 models) and predictive quality (CP models) which is frequently 

encountered in simulation. 

 CP models have been extended to include constitutive laws that propose to 

address physical mechanisms (Narayanan et al., 2014). In some atomistic simulations, 

dislocation movement is examined (Gordon et al., 2011; Gröger et al., 2008a), and the 

results of these simulations can be used to inform crystal plasticity models (Gröger et al., 

2008b; Narayanan et al., 2014). These models build on the work of Kocks and others 

(Kocks, 1976) on constitutive relations which describe thermally activated migration of 

dislocations. Although constitutive laws allow for CP models to have increased fidelity at 

smaller length scales, there are limits to this refinement. 

 Material models involve distinct length and time scales. Models are selected 

according to application, based on the length scale of interest. Categorical length scales 

have emerged which reflect the most useful ranges of specific modeling approaches. 

These scales, as they will be referred to here on, are shown on a line in Figure 2.1. The 
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introduction of these length scales motivates multiscale methods, which are a central 

focus of this dissertation. 

  

Figure 2.1. A depiction of the categorical length scales of metal plasticity modeling and 

simulation. 

 CP and macroplasticity are continuum models. Crystal plasticity models (Patra et 

al., 2014; Qin and Bassani, 1992; V. Vitek et al., 2004) and dislocation dynamics models 

(Li et al., 2014) have been used to capture the behavior of individual grains of a metal, 

which can measure from hundreds of nm to cm in size, although typical simulations are 

inμm . The time-scale of single crystal plasticity simulations is typically measured in s. 

Polycrystalline volumes are modeled with CP (or approximations) as well (Benedetti and 

Barbe, 2013; Buchheit et al., 2005; Paulson et al., 2017), with simulation sizes in the 

hundreds of μm  to mm and time scales ranging to hundreds of s. Macroscopic elasto-

viscoplasticity models (Bammann, 1984; Barlat et al., 1991; Bishop et al., 2015) can be 

used to simulate large volumes of material, from mm to m in size and in times from s to 

days or years. 

 Atomistic models are used to resolve mechanisms at much higher fidelity and 

resolution than is feasible with continuum models. Molecular dynamics (MD) models 
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(Narayanan et al., 2014; V Vitek et al., 2004) are fully discrete particle models and are 

used to track the motion of individual atoms in a crystal lattice over times measured in ps 

(10−12 s) and for volumes measured in nm. These simulations use approximations of the 

interatomic potential between atoms. 

 Mesoscale models are neither fully discrete nor continuous, and fall in-between 

the atomistic scale and the continuum scale. Discrete dislocation dynamics is a prominent 

example of a mesoscale model. In DDD, the dislocation line is the basis of the 

simulation. Dislocations are considered as discrete entities embedded within a continuum 

lattice (Arsenlis et al., 2012, 2004; Sobie et al., 2015). DDD can be used to study how 

dislocations form junctions (Capolungo, 2011), bypass obstacles which contribute to 

hardening (Sobie et al., 2015), and to model dislocation patterns as large as persistent slip 

bands (Amodeo and Ghoniem, 1990). Kinetic Monte Carlo (kMC) models are also used 

in the mesoscale. KMC addresses the complexity of dynamic kinematics at the mesoscale 

by reducing atomistic interactions to discrete states and the mechanisms by which those 

states are traversed by the simulated material (Plimpton et al., 2009; Voter, 2007). KMC 

can model discrete particles over increased time periods (~s) and thus is often used to 

describe the effects of radiation on materials (Domain et al., 2004; Monasterio et al., 

2007). Mesoscale models address various problems which atomistic and continuum 

models cannot address efficiently.  

 The physical basis of each of these scale-specific models is important to consider 

when selecting a model. Atomistic models are defined using approximate interatomic 

potentials. These potentials are limited in their ability to replicate the range of defect 

structures and mechanisms at higher relevant scales which are predicted and observed in 
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a material. Often, these potentials are optimized for a specific application, such as the 

elastic moduli, vacancy formation, or surface energy. DDD models often do not resolve 

partial dislocations and atomic scale reactions at dislocation cores. CP models make 

predictions based on bulk material properties and largely neglect the details and influence 

of grain boundaries. In nanocrystalline materials, this limitation has an exaggerated effect 

on predictions. Macroplasticity models are unable to track the rotations of grains. This 

list of considerations is not exhaustive. As the length/time scales are traversed, the 

evolving structure of a material has various cumulative effects on predictions of material 

response, which must be considered in addition to the choice of a physical or 

phenomenological model. 

2.2.   Microstructure 

 Material microstructure has profound effects on the observed plasticity and other 

responses or properties of a material (McDowell et al., 2011; Paulson et al., 2017; van der 

Sluis et al., 2000). The characterization of microstructure has been of critical importance 

to the development of microstructure sensitive material models (Adams et al., 2001). 

Much work on the digital reconstruction of microstructures (Bostanabad et al., 2016; 

Chen et al., 2014; Fullwood et al., 2008) has employed high fidelity data for certain 

material systems. Direct numerical simulation (DNS) approaches have made use of this 

high fidelity information in predicting properties. In any modeling paradigm, there is a 

trade-off between fidelity and computational efficiency. As a result, much of the 

microstructure coupled data incorporated in materials models is of a statistical nature. In 

some cases, microstructures have been analyzed to extract the features most critical to the 

prediction of properties, to diminish the quantity of data needed as input (Acharjee and 
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Zabaras, 2003). This approach requires the user to specify criteria by which the data 

reduction is performed. In this section, research on microstructure representation is 

reviewed. Discussion is aimed at how uncertainty quantification and multiscale methods 

have been employed in using this information.  

 In crystal plasticity modeling, the quantifiable representation of microstructure is 

integral to reliable simulations across a material system. Some macroscopic plasticity 

models are informed by microstructure as well (Adams et al., 1989; Barlat et al., 2005; 

Yin et al., 2008). These models depend on the representation of microstructure to make 

predictions of properties. This work will include investigations of multiple approaches to 

microstructure-sensitive modeling. Some key aspects of microstructure representation are 

highlighted here. 

 Direct numerical simulation of microstructure is typically computationally 

intensive (Bishop et al., 2015; Kanit et al., 2003). It is an important approach, and is often 

used as a basis for comparison for new statistical approaches. Despite the common 

practice of using DNS as a ground truth during the development of more efficient 

methods, non-negligible discrepancy exists between CP models and the observed 

behavior of the materials they simulate. Chapter 3 investigates the limitations of accuracy 

in a single crystal application of a CP model. Chapter 4 employs DNS in comparison with 

statistical homogenization methods. 

 Microstructure can be represented statistically, and there exist numerous 

approaches to do so. Two-point and N-point correlation statistics can be used to recast 

observed arrangements of phases and misorientations of grain boundaries into a statistical 
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summary (Adams et al., 1989; Chen et al., 2014; Fullwood et al., 2008; Gokhale et al., 

2005; Paulson et al., 2017). These statistics can be used to instantiate microstructures 

which are indistinguishable from a sample of the original observations (Chen et al., 2014; 

Fullwood et al., 2008). Two-point correlation statistics can be used to verify the 

representation of a material in a simulated volume (McDowell et al., 2011; Niezgoda et 

al., 2010). Computer vision can be used to identify microstructure images which contain 

dendritic formations (Chowdhury et al., 2016). Machine learning (Sundararaghavan and 

Zabaras, 2005) can be used to predictively determine a 3D reconstruction from limited 

statistical microstructure information from 2D images. Software such as Dream3D 

(Groeber and Jackson, 2014) has been developed to accelerate the reconstruction and 

instantiation of microstructure, and is used in Chapters 4, 5, and 6.  

 Texture approximation methods are useful in microstructure-sensitive modeling. 

Texture refers to the distribution of crystallographic orientations of grains and phases 

within a microstructure. Texture can be approximated by using generalized spherical 

harmonic (GSH) functions (Bunge, 2013) to transform a collection of orientations into a 

list of GSH coefficients. The GSH functions are an infinite series of orthogonal functions 

defined across orientation space in terms of Euler angles. By using a finite truncation of 

the infinite series of GSH functions, an orientation distribution function can be 

approximated to a tunable level of precision. Other methods exist for describing textures 

parametrically, such as Rodrigues orientation space (Kumar and Dawson, 2000; 

Morawiec and Field, 1996). Work in Chapter 6 will use GSH functions to approximate 

texture with a finite set of coefficients. 
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 The impact of microstructure on material properties is scale-dependent. Different 

simulations focus on different length and time scales, and hence, different representations 

of microstructure. In some approaches, the description of local variations in material 

response to deformation is emphasized over high fidelity texture definition (Ostoja-

Starzewski, 2006; Qidwai et al., 2012; Yin et al., 2008). The microstructure of a material 

may have a homogeneous texture, but smaller subvolumes of that material will exhibit 

deviations from that texture due to the finite sampling of grain orientations within a finite 

volume. In some applications, the variation in material response that results at these 

length scales is of interest. In DNS approaches (Bishop et al., 2015), these deformation 

response variations amount to uncertainties affecting macroscopic design. In the 

structure-property relations modeling of the materials knowledge system (Wheeler et al., 

2014), relationships are extracted by correlating variations in localized response to 

deformation with the statistical descriptors of microstructure that accompany those 

responses. The work in Chapters 4 and 5 will focus on capturing localized variations in 

response to an applied deformation. 

 The use of models which are explicitly microstructure-sensitive in informing a 

higher length scale homogeneous model is referred to as homogenization. In classical 

homogenization approaches, a representative volume element (RVE) is used to determine 

the homogeneous properties of a material with a defined microstructure (van der Sluis et 

al., 2000). An RVE is large enough such that larger samples of the same material will 

predict the same response or properties. In some cases, the RVE approach is not 

appropriate because the statistical samples of volume are too large to simulate directly. 

These cases often require the material simulation volume to be smaller than the 
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characteristic length of the RVE. In some of these cases, an ensemble of statistical 

volume elements (SVE) is used (Yin et al., 2008) in place of an RVE. Smaller than an 

RVE, an SVE is only large enough to include lengths of all pertinent interactions. A 

single SVE is not representative of a microstructure, rather, it provides a statistical 

sample of that microstructure. In order to provide a statistical sample of the 

microstructure, an SVE must be at least large enough to contain the dominant correlation 

lengths of the microstructure. When this size requirement is met, as the number of SVEs 

increases in an ensemble, the statistics of the ensemble tend toward those of the 

microstructure.  

 A typical homogenization framework includes a crystal plasticity model, a 

homogenization scheme, and a macroplasticity model (Geers et al., 2010). These 

components fit the template of a hierarchical multiscale model (HMM): two distinct 

scales of models and a linking method. The work in this dissertation will include 

homogenization within investigations of HMMs in plasticity. 

2.3.   Multiscale Modeling 

 Multiscale modeling uses couplings of models, each of which describe problems 

at distinct length scales. Problems that necessitate multiscale modeling have mechanisms 

and processes occurring at distinct scales. These problems have dependence on both local 

and global conditions. Hydrological models have presented examples of advanced 

multiscale methodologies (Brunsell, 2010; Gupta et al., 1998; Khu et al., 2008). In 

hydrological modeling, local conditions and global conditions affect expected outcomes 

with complex interactions. Likewise, the inelastic deformation of metals depends on both 
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local structures and the collective behavior over a large volume of material. A successful 

multiscale model replicates observed phenomena at both local and global scales and 

captures the interactions between them. This section summarizes the research on 

multiscale modeling methods in metal plasticity. 

 Multiscale modeling of materials is increasingly commonplace, and diverse 

approaches have been explored (Chernatynskiy et al., 2013; McDowell, 2010). These 

approaches can be broadly classified as concurrent methods and hierarchical methods. 

Concurrent methods based on domain decomposition divide the modeling domain into 

regions, each region being resolved to a different scale (Curtin and Miller, 2003; Hao et 

al., 2004; Wagner and Liu, 2003). A boundary solution is forced, so that two adjacent 

regions do not suffer discontinuous solutions from one model to the other (Rudd and 

Broughton, 2000). This is often performed for continuum and atomistic simulations of 

solid state materials (Fish et al., 2007; Xiong et al., 2015). Concurrent methods may also 

be based on adaptive coarse-graining, an example of which is the Quasi-continuum 

method (Knap and Ortiz, 2001; Miller and Tadmor, 2002; Tadmor et al., 1996). 

  Hierarchical models typically connect information from one length scale to 

another via parameter sets, rather than solutions to critical boundary value problems. 

These parameters are often simply informed in a one-way fashion. This work includes 

new alternatives to those one-way approaches. To move beyond single-source informing 

of parameters, the uncertainty of each source must be quantified. 

In the context of hierarchical multiscale modeling (HMM), information typically 

travels from bottom-up (BU) or from top-down (TD) (McDowell, 2010). The BU 
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information pathways take higher resolution (and lower length scale) simulations of 

postulated mechanisms to estimate parameters or quantities which are challenging to 

physically measure. These estimates then inform a higher length scale model.  In a TD 

approach, experimental observations of material behavior across longer length and time 

scales are used to calibrate an intermediate length scale model that may also be built from 

ensembles of lower length scale simulations. The TD calibrated parameter values can 

then inform the selection of lower length scale models. For example, a crystal plasticity 

(CP) model for bcc Fe can be informed with TD and/or BU information (McDowell, 

2012; Tallman et al., 2017). Molecular dynamics simulations (using the nudged elastic 

band method) of kink-pair nucleation on screw dislocation segments have been used to 

inform a CP model for bcc Fe from the BU (Narayanan et al., 2014). TD calibration of a 

CP model for bcc Fe has been performed using single-crystal uniaxial tension test data 

across multiple temperatures and crystallographic loading directions (Patra et al., 2014).  

Both information pathways have limitations. TD pathways can suffer from non-

uniqueness in the estimated parameter values, i.e., multiple unique combinations of 

parameter values can yield equivalently well-performing models. Moreover, by 

themselves, TD pathways are less sensitive to the form of constitutive models, whether at 

larger scales or lower mesoscales. BU models are often based on idealized unit-process 

cases with significant uncertainty in their mapping to the many-body effects that are 

present in experimental observations. When the uncertainty in a multiscale model is 

considered, the limitations here manifest as two iconic problems that are associated with 

uncertainty quantification in multiscale models: dimensionality and identifiability. 
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2.4.   Uncertainty Quantification 

Uncertainty Quantification (UQ) is the study and practice of accounting for the 

various sources of uncertainty in a scientific model (whether pertaining to theory or 

experiment), and the modeling of the effects of those uncertainties (R. C. Smith, 2013). 

Many problems are approached in UQ, including parameter estimation (Gaganis, 2009; 

Lacaze and Missoum, 2014; Rizzi et al., 2012a), uncertainty propagation (Acharjee and 

Zabaras, 2007; Rizzi et al., 2012b), and model discrepancy estimation (Arendt et al., 

2012a; Brynjarsdóttir and OʼHagan, 2014; Ling et al., 2014; Pederson and Johnson, 

1990). In multiscale models, the common application is uncertainty propagation 

(Coleman and Steele, 2009; Koslowski and Strachan, 2011; Rizzi et al., 2012b), a study 

of multiple effects. Often, a sensitivity analysis is a necessary prerequisite to UQ for a 

new model (Trucano et al., 2006). This section describes some established techniques in 

UQ, focusing on those used for multiscale models. Some characteristic issues in 

multiscale UQ will be addressed.  

Different categories are defined to organize uncertainty into specific types. Where 

parameters are determined prior to model calibration (a priori) or as a part of calibration, 

the uncertainty in those estimates is known as parametric uncertainty. When multiple 

options of model form are reasonable for representing a material, perhaps either including 

or neglecting a secondary mechanism, the attribution of weight to either model’s results 

is a problem known as model form uncertainty. In any case where an approximation is 

made in the method of calculations, the effect of those approximations is called numerical 

uncertainty. While many other forms of uncertainty exist and have been studied, the types 

named here are approached in the content of the dissertation. 



20 

A breakdown of uncertainty into aleatory and epistemic components is sometimes 

performed (Johnson et al., 2008). Aleatory uncertainty is also called irreducible 

uncertainty or variability. Epistemic uncertainty is also called reducible uncertainty or 

incertitude. The distinction made by this terminology is acknowledged, though it is not 

employed in this dissertation. A discussion of perspectives on the topic is included in 

Chapter 7. 

Markov chain Monte Carlo (MCMC) methods are commonly used to explore the 

uncertainty characterization and propagation of multiscale models. MCMC uses a 

sampling of the stochastic parameters of a model to estimate the posterior probability 

distribution of the outcome, response, or quantity of interest (QoI) (Geyer, 1992). In 

applications to multiscale models (Beck and Au, 2002), these methods often become 

computationally expensive. Each sample in a MCMC study is accompanied by a run of 

the full-field model. The cost of this method can be avoided through the use of 

approximations and surrogate models.   

Surrogate models are frequently used in multiscale UQ. A surrogate model is an 

approximation of the response of a model and is computationally cheaper than the model 

it approximates. A surrogate model is built on some designed sampling, or a quadrature 

of input space and resulting model response (Wilkinson, 2010). Polynomial chaos 

expansions (PCE) are a non-sampling method used to represent the effects of parameters 

using polynomials (Blatman and Sudret, 2010; Choi et al., 2003). PCE performs best with 

few input parameters and without sharp nonlinearities. Gaussian process (GP) models and 

their derivative forms are commonly used as surrogate models (Backlund et al., 2012; 

Brynjarsdóttir and OʼHagan, 2014; Gano et al., 2006; Dave Higdon et al., 2008; Jin et al., 
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2001; Marc C. Kennedy and O’Hagan, 2001; Storlie et al., 2015; Wilkinson, 2010).  GP 

models can be used in uncertainty propagation studies, and are more efficient than 

MCMC when fewer than twenty dimensions are considered at once (Chen et al., 2015). 

Regression models can be used as surrogate models and are simple and reliable to 

implement (Gano et al., 2006). Link functions can be used in regression to specify error 

distributions of non-Gaussian type (McCullagh, 1984). In Chapter 3, the regression 

surrogate modeling approach is used to approximate the likelihood function of the model 

in terms of the input parameters. In Chapter 4, a Gaussian process regression model is 

used as a surrogate for optimization between modeling scales. In Chapter 6, a surrogate 

model is built as a Gaussian process to systematically explore a parameter space through 

the reduction of uncertainty across a finite domain. GP modeling is introduced further in 

section 6.1. 

Model form uncertainty is on the cutting edge of multiscale UQ. In multi-physics 

modelling, model form UQ has been performed (Riley and Grandhi, 2011). Multiscale 

and multi-physics modeling both require coordination of multiple models. Bayesian 

model averaging has been used to quantify model form uncertainty (Park et al., 2010). 

Few examples exist of multiscale modeling that consider model form uncertainty. 

Model discrepancy methods are a suite of powerful UQ techniques. In a model 

discrepancy treatment, the original model is accompanied with a surrogate model-like 

layer which describes the discrepancy between the model response, 
MY , and the target 

data, 
EY , as a function of some alignment variables, x , i.e., 
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      E MY Y  x x x  (1) 

where alignment variables are known a priori (R. C. Smith, 2013). The use of 

discrepancy methods prior to calibration has been done (Brynjarsdóttir and OʼHagan, 

2014). This work leaves the discrepancy methods for after calibration, to preserve the 

clarity of the physical interpretation of calibration parameters. For more discussion of this 

topic, see Chapter 3. 

 Some difficulties are shared by UQ and multiscale modeling. A scientific 

simulation can be expensive, and can involve many parameters to calibrate (Kennedy and 

O’Hagan, 2001). The introduction of UQ requirements on that simulation can 

exponentially increase the total computational cost of a problem. Similarly, multiscale 

methods lead to increasing numbers of parameters, the calibration of which can become 

increasingly costly. Additionally, in both UQ and multiscale modeling, the large number 

of parameters can cause difficulty when trying to assign effects to individual parameters.  

These two problems are known in each field as dimensionality and identifiability, and 

they deserve introduction. 

The dimensionality problem refers to the cost explosion of quantifying 

uncertainty in problems with increasing numbers of dimensions to explore. 

Dimensionality problems also arise in microstructure representation problems (Paulson et 

al., 2017). Uncertainty propagation studies are clear examples of dimensionality costs in 

UQ. The established procedure for these studies is the MCMC method (Angelikopoulos 

et al., 2012; Beck and Au, 2002; Geyer, 1992), where the model is run many times to 
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explore the possible values of input parameters. MCMC methods are computationally 

intensive, sometimes requiring millions of runs of a model to converge to a posterior 

probability distribution. To manage the problem of dimensionality in scientific modeling, 

many techniques have been used. 

Dimensionality reduction techniques are noteworthy in discussions of 

dimensionality. Principal component analysis (PCA) is a prominent technique (Jolliffe, 

1986; Ma and Zabaras, 2011; Paulson et al., 2017). PCA describes the variation in 

response across a parameter space with new basis vectors, written in terms of the original 

parameters. By recombining the parameters into orthogonal vectors, PCA can reduce the 

number of independent dimensions of exploration. Parameter clustering (Song, 2010; 

Tong et al., 2004; Zhan and Tong, 2007) has been used to identify a model’s parameters 

in stages, approaching the identification of parameters as multiple smaller problems. The 

problems within this dissertation are approached with necessary consideration for the 

dimensionality of any formulated design of experiments.  

Materials simulations can be prohibitively expensive even after dimension 

reduction is performed. Surrogate modeling is one of the main strategies pursued to 

reduce this cost. Surrogate models have numerous formulations, as previously mentioned. 

Approximations are made to the calculations in this work where appropriate to better 

explore highly dimensional properties and responses. 

The identifiability problem refers to when a model’s output fails to indicate 

unique values for model input parameters. This non-uniqueness is often encountered in 

models with many calibration parameters. Many existing solutions make use of either 
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more detailed experimental data (Avril et al., 2008), or more types of experimental data 

(Arendt et al., 2012b). Work in this dissertation coordinates inputs from multiple length 

scales, and in doing so addresses this prevalent issue.  

To reduce the impact of these limitations in multiscale approaches, combined TD, 

BU (TDBU) approaches have been proposed (McDowell, 2012).  While concurrent 

methods exist which allow for two-way coupling (Ghosh, 2011; Ghosh et al., 2001), and 

both BU and TD data have been used in informing separate parameters of a HMM 

(Ghosh et al., 2016; Shahba and Ghosh, 2016), the reconciliation of, or resolution of 

disagreement between, TD and BU estimates of a single parameter set has not yet been 

established for a hierarchical approach. To address this lack, a TDBU calibration method 

is presented in Chapter 3. Information is used from TD and BU to optimize parameters of 

the homogenization of microstructure in Chapter 5.  
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CHAPTER 3. RECONCILED TOP-DOWN AND BOTTOM-UP 

HIERARCHICAL MULTISCALE CALIBRATION OF BCC FE 

CRYSTAL PLASTICITY 

 In this chapter, a test for connections between models via parameter sets is 

developed in the context of a HMM. A set of parameters from the slip system flow rule of 

a crystal plasticity model for bcc Fe is identified for connecting TD and BU information. 

The TD calibration is performed using experimental measurements of single crystal yield 

strength at multiple temperatures and crystallographic orientations, where a likelihood 

function in parameter space is informed using second order regression surrogate 

modelling. A BU calibration of the same model uses the parameter estimates from 

atomistic simulations to inform penalty functions. A constrained likelihood function 

incorporates the TD and BU information in one calibration of parameters. Decision 

making within HMM is approached. The benefit to calibration precision brought by 

incorporating additional data from BU is considered against the uncertainty in the 

requisite multiscale connection. This trade-off is formulated into an empirical test of the 

connection. Hypothetical decision making is demonstrated between multiple alternative 

BU estimates. 

3.1.   Introduction 

Scientific model calibration is a rich field. Popular techniques for informing 

model parameters can accommodate the expense and complexity of materials models 

(Forrester et al., 2008; Gano et al., 2006; Salloum et al., 2015; Wilkinson, 2010). 
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Importantly, the uncertainty associated with a model can be incorporated in calibration 

approaches (Arendt et al., 2012a; Li et al., 2016; McFarland et al., 2008; McFarland and 

Mahadevan, 2008). These approaches are often used one at a time. To couple two sparse 

data sets (TD and BU), a calibration approach is used for each, and the two uncertain 

estimates are reconciled using a connection between models. The approach considers the 

connection between models to be an additional source of uncertainty. This consideration 

is new, and it supports decision making in the construction of hierarchical multiscale 

models. Addressing the implementation of this new consideration is the focus of this 

work.  

The need for reconciliation of competing interests or estimates is encountered in 

many fields of study. Instances of reconciliation can be considered multiple-attribute 

decision making problems (Rao, 2008; Tzeng and Huang, 2011). Depending on the 

quantity of data available, different approaches to overcoming initial disagreement can be 

used. Multi-objective optimization requires data sufficient to inform functions for each 

goal and an expert decision maker to ascribe appropriate weights to each objective (Deb, 

2014; Marler and Arora, 2004; Yapo et al., 1998). Robust optimization compromises an 

optimal solution to minimize the effect of expected inaccuracy (Allen et al., 2006; 

Bertsimas et al., 2011; Beyer and Sendhoff, 2007; Mulvey et al., 1995). The expected 

uncertainty of the model solution determines the extent to which the robust solution 

varies from the optimum. Work contained here treats the reconciliation of two sparse data 

sets as a constrained optimization, where the constraints are tied to expected uncertainty. 

This reconciliation has much in common with both categories of optimization mentioned 

above. 
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Data-scarce decision making is frequently encountered in real-world applications 

of simulation models. The scarcity of data in these scenarios renders big-data decision 

support techniques inviable. Rather, successful approaches are resourceful and 

incorporate information from multiple sources. Hydrological modeling of data scarce 

locations has been approached using predictions of local runoff from climate and or soil 

data--a multi model approach (Bangash et al., 2012; Dile and Srinivasan, 2014). In 

predictions of repair rates for marketed products (Fang and Huang, 2008) and service 

lives of water supply systems (Scholten et al., 2013), Bayesian methods have been used 

to incorporate expert opinion as informative priors to data scarce predictions. In an 

ecological study of brown bear habitats, a multiscale approach maximized the utility of 

scarce data (Martin et al., 2012). Imprecise information on seismic risk was incorporated 

with a traditional probability modeling approach to risk assessment using fuzzy intervals 

(Dong et al., 1987). In a landslide risk assessment, multiscale methods and fuzzy 

information were used in combination (Dragićević et al., 2015). Generally, these 

approaches adopt methods of combining information of different forms by appropriately 

translating between those forms (Hall, 2003). The work of this Chapter demonstrates this 

process by translating information from different sources and length scales into forms 

which may be combined.  

The Chapter is outlined as follows. First, the goodness of fit between TD data and 

model response is measured. For each data point, a surrogate model is used to inform a 

likelihood function in input parameter space. Reference parameter estimates from BU 

simulations are used to formulate penalty functions, also in terms of input parameters. 

Likelihood functions and penalty functions are used in combination to find an integrated 
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TDBU estimate of parameters. A practical, empirical test of uncertain model-model 

connections is formulated. The utility of possible connections for reducing parametric 

uncertainty is evaluated. For this work, calibration is limited to the onset of slip. 

3.2.   Background 

A strategy for reconciling TD and BU data to inform parameters of a CP model of 

bcc Fe is presented. Reconciliation is used here as a label for the process by which 

conflict between the parameter estimates determined by best fit to different data sets (or 

objectives) is resolved. A previously studied (Patra et al., 2014) physically-based model 

of the crystal plasticity of bcc Fe was selected, with a Kocks-type activation enthalpy 

driven flow rule (Kocks et al., 1975) governing the activity of slip systems. This model 

was informed along two previously defined pathways, one from BU and one from TD. 

The BU pathway is defined as established in work by Narayanan et al. (2014), by first 

identifying the thermal activation of a kink-pair on a screw dislocation segment to be the 

rate limiting step for dislocation motion (Seeger, 1956). Accordingly, the nudged elastic 

band (NEB) method (Jónsson et al., 1998) and molecular dynamics (MD) simulations of 

kink-pair nucleation are used to inform the CP model via transition state theory, resulting 

in estimates for five parameters of a flow rule with the same Kocks form. The TD 

pathway follows the work of Patra et al. (2014), and uses experimental data from the 

uniaxial tension tests of single crystal bcc Fe performed by Spitzig and Keh (1970a) and 

Keh (1965). The same five parameters in the flow rule were adjusted to bring the 

predicted yield strength in line with experimental data.  
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Much work has been done to understand the multiscale interrelations of non-

Schmid stress effects, Peierls stress, and kink-pair activation enthalpy in bcc metals (Hale 

et al., 2015; Lim et al., 2015). The work of Lim et al. (2015) explores multiscale 

approaches to the same quantities of interest as this work. The parameters of the flow rule 

are informed from atomistics or from experiments, and the disparity of the two estimates 

is discussed. Notably, reconciliation of BU and TD estimates has not been attempted. 

Such a reconciliation is the focus of the current work. 

A combined TDBU strategy to inform the CP model must overcome initial 

disagreement between data and dissimilarity in the form of data sources. These pathways 

have been shown to lead to CP model parameter values that are clearly different 

(Narayanan et al., 2014; Patra et al., 2014). For example, the thermal resistance to slip at 

0K, also called the Peierls stress, is predicted by atomistic simulations to be around 1040 

MPa for bcc Fe (Gordon et al., 2011, 2010). In contrast, empirically determined values 

cluster near 390 MPa (Kuramoto et al., 1979b, 1979a; Suzuki et al., 1995). The approach 

taken here seeks reconciliation of these contrasting estimates (Table 3-2). 

Empirical TD calibration of computational materials models is widespread. The 

methods employed are typically optimizations of goodness of fit (Oskay and Fish, 2007; 

Yalcinkaya et al., 2008). Uncertainty Quantification methods often contribute estimates 

for the uncertainty associated with the results of these calibration methods (McFarland et 

al., 2008; McFarland and Mahadevan, 2008). Commonly, the uncertainty is expressed in 

terms of model output. In contrast, Bayesian methods apply Markov chain Monte Carlo 

sampling methods to establish uncertainty measurements in terms of model input 

parameters (Chkrebtii, 2013; Glimm et al., 2003; Higdon et al., 2004; Honarmandi and 
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Arroyave, 2017; Kennedy and O’Hagan, 2001; Rizzi et al., 2012a). While Bayesian 

methods can be too computationally expensive to carry out on already expensive 

computational materials models, surrogate modeling is often used to offset the additional 

costs. 

The calibration approach described here does not use a model discrepancy term. 

The dominant approach to model calibration is to separately treat the measurement error 

and the model discrepancy (Brynjarsdóttir and OʼHagan, 2014; Marc C. Kennedy and 

O’Hagan, 2001; Wilkinson, 2010), i.e., 

 E MY Y      (2) 

where 
EY is the experimental measurement, 

MY is the model prediction,  is the model 

discrepancy, which is often defined functionally, and  is the measurement error, which 

is defined as a random variable. This distinction requires defining the form of  based on 

assumed prior information. The approach described here does not perform this 

decomposition. The connection between two models is to be evaluated, and model 

discrepancy methods may affect or confound that evaluation. After the degree of 

uncertainty of a connection has been established and a connection has been accepted, 

model discrepancy methods would be appropriate. 

BU information is often expressed in terms of a resulting reference set of 

parameter estimates. These parameter estimates can be carried forward directly 

(Narayanan et al., 2014), or included in a study of uncertainty propagation (Koslowski 

and Strachan, 2011; Rizzi et al., 2012b; Tran and Wang, 2017), where parameter values 
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are taken as samples from a distribution or interval which reflects the uncertainty of each 

parameter. When constraints on parameters exist in an optimization setting, penalty 

methods are used (White and Anandalingam, 1993). The use of penalty methods in 

Chapter 3 allows the BU information to be included alongside the TD information in a 

calibration of an intermediate parameter set. 

The methods here are distinct from model selection approaches (Beck and Yuen, 

2004), such as Bayesian model averaging (Hoeting et al., 1999). Bayesian model 

averaging takes a class of models targeting the same subject (observations) and assigns 

them weights per their relative performance. To enable such comparisons, the target data 

are held fixed. In the TDBU context, the target data cannot be held fixed. Each 

information pathway reflects a unique data source. The connection cost method evaluates 

the connection between the different data sources. Subsequently, comparison of different 

possible connections is based on parametric uncertainty, rather than model fidelity. 

 In multi-fidelity modeling, discrepancy terms are used to relate a less-costly 

approximate model to the expensive full model to increase efficiency and improve 

predictions (Kennedy and O’Hagan, 2000). Like model selection techniques, the focus of 

multi-fidelity approaches is the response of the model. The TDBU work included is quite 

different from multi-fidelity modeling. In this approach, the TD and BU calibrations are 

not approximations of each other. Both pathways are considered valid and informative. 

Because of this, a different and entirely new approach is taken to incorporate both TD 

and BU in a reconciled calibration. 
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3.2.1. Material Constitutive Models 

The crystal plasticity model used in this work is taken from the work of Patra et 

al. (2014) on constitutive equations to incorporate non-Schmid effects on yield strength 

in single crystal bcc Fe. The model is implemented using fully implicit integration in the 

finite element software Abaqus (Simulia, 2007). However, in this work it is executed via 

single material point simulations. This treatment, where a single integration point is 

simulated, assumes homogeneous deformation. The present work is only concerned with 

initial onset of slip, so this assumption is reasonable. A brief description of the crystal 

plasticity model is outlined next.  

The crystal plasticity model uses a finite deformation assumption and 

multiplicatively decomposes the deformation gradient F into elastic and inelastic parts, 

e
F  and 

in
F , respectively (Asaro and Rice, 1977). The inelastic velocity gradient is given 

by 
1in in in L F F . The sum of crystallographic shearing rates for all sN  slip systems 

comprises 
in

L , i.e., 

 
0 0

1

sN
in   






 L m n  . (3) 

Taken in the reference (or isoclinic intermediate) configuration, 
0


m  and 

0


n  are the unit 

vectors in the slip and slip plane normal directions for slip system . Constitutive 

equations are used to define the slip system shearing rates   as a function of the 

resolved shear stress, 
 , and the evolution of internal state variables (ISVs) on each slip 
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system. The material is assumed to have 24sN    110 111  slip systems (Gröger et al., 

2008b), considering both positive and negative shear directions. Dislocation density,  , 

is defined on a slip system basis and used as an ISV in the model. Dislocation density is 

considered as an additive sum of mobile,
M

 , and immobile dislocation densities,
I

 , i.e., 

M I

      .   

In bcc metals at low to moderate homologous temperatures, inelastic deformation 

is rate limited by thermally activated glide of 1
2

111  screw dislocations, which occurs by 

kink-pair formation (Argon, 2008). As is generally done in continuum constitutive 

formulations of thermally activated dislocation glide, the crystallographic shearing rates 

are defined using a phenomenological Kocks-type activation enthalpy driven flow rule 

(Kocks et al., 1975), i.e., 

 

0 exp 1 ; for 

0; for 

q
p

g f a

f a

t

f a

F s
s

kT s

s

 

 



 


 





                    
 

 (4) 

Here, 0  is the pre-exponential factor, 
gF  is the activation energy barrier to dislocation 

glide (the rate limiting step of which being kink pair formation) in the absence of external 

stress, k  is the Boltzmann constant, T is absolute temperature, f

  is the driving stress 

for dislocation glide, 
as  is the athermal slip resistance to dislocation glide, 

ts  is the 

thermal slip resistance, typically controlled by the characteristically high Peierls stress of 

bcc metals, and p  and q  are parameters that model the shape of the activation enthalpy 
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function. This flow rule is the primary subject of the TD and BU calibration in the 

present work. 

The long range athermal slip resistance
as is defined via a Taylor hardening model 

as a function of dislocation density, i.e., 

 

1

sN

as Gb q A  








   (5) 

where G is the shear modulus, b is the Burgers vector magnitude, q  is the dislocation 

barrier strength, and A
 is the matrix of slip system dislocation interaction coefficients. 

The athermal slip resistance models the slip resistance from dislocation-dislocation 

interactions. 

The model considers non-Schmid effects to contribute to the driving force for 

dislocation glide,
f

 , via a term that adds to the resolved shear stress, 
 , and decays as 

an exponential function of the effective inelastic strain i

eff ,  i.e., 

 

0

exp

i

eff

f ns i

  


  


 
   

 
 (6) 

Here, 
0

i  , the decay constant, is the value of effective inelastic strain which corresponds 

to a reduction to 37% of the contribution to the driving force at 0i

eff  . Also, 
ns

  is the 
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contribution of non-Schmid forces to the driving force for slip system  , (Gröger et al., 

2008a; Patra et al., 2014) i.e., 

    1 2 3

T T T

ns ns ns nsa a a                   m σ n n m σ n n m σ n  (7) 

where
1 2 3, , andT T Ta a a are atomistically or empirically determined coefficients, σ  is the 

current stress state, and 
ns


n  is the unit vector normal to the ‘non-slip’ plane. 

While the work in this study is focused on modeling the onset of slip, the crystal 

plasticity model contains constitutive equations regarding the evolution of defect 

densities. These evolution equations originate in earlier work (Patra and McDowell, 

2012), and are briefly described here. 

The evolution rates of mobile and immobile dislocation densities are defined as 

functions of the crystallographic shearing rate,  , i.e., 

  * 2 1
exp

a
mul c

M cs M M

Vk R
k

b kT b b



       




 
       



 
     
 
 

  (8) 

 1
I dyn Ik

b

   


   


   . (9) 

Each term on the RHS of Eq. (8) represents a different mechanism of dislocation 

interaction. The first term addresses the formation of new mobile dislocations by 

multiplication at existing segments, the second term is for cross-slip of dislocations 
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between slip systems (from slip plane   to slip plane  ), the third term regards the 

mutual annihilation of dislocations of opposite Burgers vector within a critical capture 

radius 
cR , and the fourth term denotes the trapping of dislocations at barriers as a 

function of the mean free path for dislocation glide, 1/ 

   . In Eq. (9), the 

trapping of mobile dislocations reappears as the additive first term, and the annihilation 

of immobile dislocations via dynamic recovery is shown in the second term. Material 

constants mulk , csk , and
dynk correspond to the mobile dislocation multiplication, mobile 

dislocation cross-slip, and dynamic recovery of immobile dislocations. Also, *  is the 

activation stress for cross-slip corresponding to activation volume, aV , and   is a 

constant related to dislocation trapping.  

Model parameters other than those involved in the TDBU calibration are defined 

as follows in Table 3-1. The parameters in Table 3-1 are not included in the calibration 

parameters, θ , and are instead held fixed, because they are not addressed in both TD and 

BU information pathways. Additionally, they possess less uncertainty (e.g., elastic 

properties) or they have minimal relevance to the yield strength predictions of the model 

(e.g., dislocation evolution parameters that govern work hardening). These considerations 

are used to assert that a calibration of the five chosen parameters (taken from Eq. (4)), 

0, , , ,g tF p q s   θ , is appropriate to the TDBU method pursued here. 
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Table 3-1. Crystal plasticity model parameters for bcc Fe held fixed during the 

calibration. 

Parameter Value(s) Meaning and source 

11 12 44, , ,C C C 
    

   

   

392.03
K

469.65
K

162.9
K

239260 24520 / exp 1 MPa,

135780 6550 / exp 1 MPa,

120720 3500 / exp 1 MPa,

0.29

T

T

T

 

 

 

 

Elastic constants (Adams 

et al., 2006) 

1 2 3, ,T T Ta a a
   

  

  

0.0106 2.3311exp 0.0162

0.1727 108.9126exp 0.0496

0.2699 3.5454exp 0.0160

T K

T K

T K

 

 

 
 

Non-Schmid parameters 

(Patra et al., 2014) 

G   87600 17 K MPaT
 

Shear Modulus 

(Naamane et al., 2010) 

0a
 

0.2866nm  Lattice parameter 

(Johnson and Oh, 1989) 

 , ,q A A    
 

0.3,1.0,0.2  Hardening parameters 

(Patra et al., 2014) 
0 0,for allM I  

 
4 24.0 10 mm  

Initial dislocation 

densities (Li et al., 2014; 

Patra et al., 2014) 

, , , ,mul cs dyn ck k k R   
2 2 23.45 10 ,0,2.75 10 ,6 ,7.40 10b     

Dislocation evolution 

parameters (Patra et al., 

2014) 

 

The flow rule of this crystal plasticity formulation can receive information from 

TD experiments (Patra et al., 2014) or from BU simulations (Narayanan et al., 2014). In 

order to connect the information from both pathways, some modifications to the 

previously used methods are necessary. The connections used previously will be outlined 

and the modifications explained. 

The TD pathway uses experiments (Keh, 1965) on single crystals of pure bcc Fe 

to inform the values of four of the five parameters of interest: 
0, , ,andgF p q  , as 

introduced with Eq. (4). The fitting procedure used the three uniaxial stress-strain curves 
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measured at 298 K for crystallographic loading directions[001] ,[011] , and [111] . The 

initial hardening response of the material shown in the curves (up to ~5% strain) was 

used in a goodness of fit based calibration of the four parameters. The thermal lattice 

resistance, for allt ts s  , was taken from the work of Suzuki et al. (1995). The value 

given is 390MPats  . Other bcc Fe experiments on a wider range of orientations and 

temperatures were used as validation data (Spitzig and Keh, 1970a, 1970b, 1970c). The 

procedure resulted in the TD point estimates for the parameters, as shown in Table 3-2. 

The BU route to inform the flow rule parameters takes a different approach. 3D 

nudged elastic band (NEB) method atomistic simulations (Narayanan et al., 2014) were 

performed to calculate the minimum energy pathway of a unit process of dislocation slip, 

via kink nucleation in single crystal bcc Fe. After using this method to determine the 

activation parameters of the rate limiting mechanism, transition state theory is applied in 

informing dislocation kinetics at the continuum scale. Their work employed the Proville 

embedded atom method interatomic potential for Fe (Proville et al., 2012). The stress-

dependent function of kink nucleation is informed by these atomistic simulations and 

written in Kocks form (Kocks et al., 1975) as 

 

 eff

00 1
t

q
p

s
H H

 
  

 
 (10) 

where H  is the stress-dependent activation energy for unit dislocation slip, 0H  is the 

activation energy for dislocation motion when the effective shear stress (
eff

 ) on slip 

system   is zero. p  and q  are profiling parameters (called shape parameters in the TD 
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method) and 
0ts  is the thermal slip resistance at 0 K, (Peierls stress), for which the same 

value is assumed to apply for all slip systems. The parameter 
0ts  is treated as a constant. 

This formulation is placed into a flow rule (Eq. (12)) to describe the activity of 

dislocation slip systems in terms of the results of the atomistic simulations. The values 

for the parameters, 0 0, , , and tH p q s  are determined as point estimates from a least-

squares-based regression on the results of a series of atomistic simulations of kink 

nucleation. The parameter 0  was estimated from BU calculations by assuming an 

approximation of the Debye frequency, D , of Fe as the attempt frequency of the 

nucleation of thermal kinks. This was used with the approximate relation from work of 

(Gröger and Vitek, 2008), i.e., 

 2

0,BU
M Db a

l

 
   (11) 

where b  is the Burgers vector, l  is the lateral extent of kinks at the saddle-point state,   

is the dislocation density (estimated to be 15 210 /m  in this calculation), and a  is the 

distance moved by the dislocation in one activation step. The values of 

0,BU 0 0, , , , and tH p q s  are included as the BU reference set of estimates in Table 3-2. 

The crystal plasticity model used in the work by Narayanan et al (2014) follows 

the same deformation kinematics as the model in this work. It has different hardening 

parameters, notably, a latent hardening coefficient of 1.4 (vs. 0.2 for the TD model). 

Where there are differences, the model used in this work more closely follows that 

pursued in the work of Patra et al. (2014).  
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The flow rule used in the BU model uses the stress dependent function of the 

energy of coordinated kink pair nucleation on screw dislocations to define the rate 

limiting step of dislocation glide as a thermally activated process. This formulation is 

shown (Eq. (13)) with similar formatting to the previously introduced TD 

phenomenological flow rule (Eq. (12)). The similarity of these formulations is used to 

explore the possibility of calibrating the same parameters on two sources of information. 

 

0

TD

exp 1 ; for 

0; for 

q
p

g f a

f a

t

f a

F s
s

kT s

s

 

 



 


 





                    
 

 (12) 

 

0
0,BU

BU

exp 1 ; for 

0; for 

q
p

a
f a

t

f a

H s
s

kT s

s

 
 



 


 





                  
 

 (13) 

These formulae have the same structure. They differ because the corresponding 

parameters within them are informed by different means. The TD version informs the 

parameters empirically whereas the BU flow rule informs them via simulations. The 

interpretations of the flow rule are necessarily different to reflect the interpretations made 

in their informing process. Specifically, the BU flow rule reflects characteristics of the 

unit process, whereas the TD flow rule reflects the effective multi-body interactions of 

the dislocation network. The TDBU treatment of these parameters is a reconciliation of 

these two different interpretations (and their parameter estimates).  
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3.3.  Methodology: 

An overview of the TDBU calibration method is presented. The details of the 

calibration method are described, such as how TD data is formulated in a likelihood 

function and how BU estimates are used to specify a penalty function. The use of 

parametric uncertainty to select between multiple uncertain multiscale connections is 

shown. The approximation of a cost to ascribe to the use of inexact model-model 

connections which is used in this process is also shown. The informing of the material 

models used in the HMM approach is also described in this section. The flowchart in 

Figure 3.1 outlines the process for reconciling the information from TD and BU for the 

purpose of informing the calibration parameters, θ , where 0, , , ,g tF p q s   θ . The 

flowchart in Figure 3.2 is an overview of the process for deciding between uncertain 

multiscale connections. The terms which appear in these flowcharts shall be introduced 

within this section. 

 

Figure 3.1. A flowchart of the calibration method for combining TD and BU data. 
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Figure 3.2. Flowchart of the method for the selection of uncertain connections. 

Table 3-2. Reference estimates of the key flow rule parameters in the calibration (θ ) 

from both TD and BU information pathways. 

Parameter 0  0gF or H
 

p  q  ts
 

Top-down reference 

estimates ref

TDθ̂  
7 11.00 10 s  

0.825eV  0.47  1.0  390MPa  

Bottom-up reference 

estimates ref

BUθ̂  
7 13.19 10 s  

0.57eV  0.67  1.18  1040MPa  

 

The information sources of TD (Patra et al., 2014) and BU (Narayanan et al., 

2014) do not have common ground--when they are different, there is no clear 

compromise. This is common in constitutive modeling responses of materials with 

hierarchical structure. Accordingly, we next outline a strategy to reconcile information 

from the TD and BU pathways. 

An admissible parameter space is defined for the key calibration parameters, 

0, , , ,g tF p q s   θ . The space is defined by simple bounds on each parameter. These 

bounds are chosen to reflect expert knowledge on the parameters. For the parameters 
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, , , andg tF p q s , the estimates from TD and BU reflect the general range of estimates 

given by atomistic simulations and empirical measurements, respectively.  

The parameter 
0  has been treated differently. In the case of 

0 , values have been 

used as low as 5 14.0 10 s for bcc Fe (Patra and McDowell, 2012). With the other 

estimates, they present a range of two orders of magnitude. Accordingly, the parameter is 

examined. The model is only sensitive to proportionally large changes of 
0  (that is, 

changes in the value of 0  which are near to the magnitude of 0 ). This, combined with 

the large range of the estimated values, suggest that a transformation of 0 could be a 

more informative predictor of model response. To weight values of 0 in terms of 

proportional change in 0 , the parameter is transformed to  0ln   for the definition of 

the prior probability distribution function (PDF) for θ . This approach is reasonable in 

terms of the flow rule as well, as the flow rule can be equivalently restated as  

 

 0

TD

exp ln 1 ; for 

0; for 

q
p

g f a

f a

t

f a

F s
s

kT s

s

 

 



 


 





                    
 

 (14) 

Here, the term  0ln   is inside the exponential function alongside the other parameters in 

θ . It is noted that this form obfuscates the units associated with 0 . 

The chosen admissible parameter space contains both reference estimates (from 

TD and from BU). These bounding values are shown in Table 3-3. The admissible 
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parameter space is used for creating a uniform prior PDF for θ .  In making the uniform 

prior, the values of calibration parameters within the bounds,  min max,θ θ , are linearly 

mapped to intervals of  0,1  , thus removing the influence of units. This holds even in the 

case of  0ln  , for which changes in units do not affect the result of mapping to  0,1 . 

Calculations are performed in these normalized ranges; however, results will be presented 

here in original units. 

Table 3-3. Admissible parameter bounds for the calibration parameters θ . 

Parameter 0  0gF or H
 

p  q  ts
 

minθ
 

5 15.00 10 s  
0.55eV  0.4  1.0  300MPa  

maxθ
 

7 15.00 10 s  
0.95eV  0.8  1.5  1100MPa  

 

The TD experimental data set (Spitzig and Keh, 1970a) pertaining to the onset of 

slip in single crystals of bcc Fe is designated as the training data for the TD pathway. The 

TD data are expressed in model response space, i.e., stress and strain. Bringing that 

information into input (also parameter) space is a process that approximates an inverse 

relationship between model output and model input (Csiszar, 1991). The method adopted 

for this purpose in this work is referred to as second order regression (SOR) surrogate 

modeling (Gano et al., 2006). Whereas Bayesian MCMC methods derive parameter-value 

likelihood functions from a response-space comparison with training data (Honarmandi 

and Arroyave, 2017), the method used here merely approximates the likelihood functions 

from the training data. The relationship between model response and target datum i  is 

defined as 



45 

    ,E M

i i iY Y  x x θ  , (15) 

where  E

iY x  is the value of the experimental response (or datum, in this case yield 

strength) at the ith value of the physical parameter vector x (which here refers to 

temperature and crystallographic orientation).  ,M

iY x θ is the model response at the ith 

set of values of the physical parameters and the calibration parameter vector θ . The 

strong assumption of this treatment is that the errors are independent and identically 

distributed (i.i.d.). This is only plausible for good estimates of θ . In this work, the error 

term, i , is assumed to follow a Gaussian distribution with mean of zero and variance of 

2

e  , i.e.,  2~ 0, eN  . This variance is distinguished from others that appear later in 

this approach. 

The statistical formulation above leads to a likelihood function of the form 

 

 
    

2

2
1 exp,

,1
Likelihood exp

2

data
M EN

i i

i i

Y Y



 
  
 
 


x θ x

θ , (16) 

where the number of data is dataN  (here data 9N  ), and 2

exp,i  is the expected variance of 

the ith datum, which may vary to reflect the different levels of precision associated with 

different data as well as to allow the likelihood to be based on relative error as opposed to 

absolute error. The values for these 2

exp,i  are given by   
2

2

exp,

E

i i eY  x  .  
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The values of 
EY  and 2

exp,i are known a priori. To generate  ,M

iY x θ , the crystal 

plasticity model must be run (once for every value of x  and θ  of interest). This approach 

uses SOR surrogate models to approximate  ,M

iY x θ  from a reduced number of crystal 

plasticity model runs. The SOR surrogate model is well documented (Gano et al., 2006); 

however, it is detailed here using different notation for clarity. The general form of a 

second order polynomial regression model is shown as 

 
0 1

1 1

v v v

v

n n n

j j n j k j k

j j k j

f c c c    

  

     (17) 

where f  is the predicted response, the crystal plasticity model calibration parameters 

1[ ]
vn θ  appear as variables (number of variables vn ), and coefficients 0[ ]mc cc  

must be determined. The number of coefficients, m , is given by the triangular number 

  1 2 / 2v vm n n   . Using matrix notation, Eq. (17) becomes 

 Tf  c θ  , (18) 

where θ  is the vector of terms 

 2 2

1 1 1 2 1 3[1, ... , , , ]
v vn n       θ

. (19) 

To determine the coefficients, the surrogate must be trained on a sample of 

queries of the CP model response, across the values of calibration parameters within the 
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admissible parameter space, defined by  min max,θ θ . The sample set is comprised of 
sn  

queries and is organized in matrix form, i.e., 

     

    

2
1 1

1

2

1

1

1

v

s

s s

v

n

n m

n n

n

 

 



 
 
 

  
 
 
 

A  (20) 

and 

    1
[ , , ]s sn n

f f f  (21) 

where A  contains the values of the dependent variable terms corresponding to the crystal 

plasticity model responses (yield strength) contained in f . The coefficients c  can be 

solved using the set of linear equations formed from the queries, i.e., 

 Ac f  (22) 

The system has a unique least squares solution, i.e., 

  
1

T T


c A A A f  (23) 
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only if the inverse,  
1

T


A A , exists. For this solution to exist, it is required that 
sn m . 

When 
sn m , the model becomes regressive, given that the coefficients become 

overdefined. 

The response (predicted yield strength) of the crystal plasticity model  ,M

iY x θ  is 

recorded for each of 
dataN , at multiple values across the previously defined admissible 

parameter space  min max,θ θ .  The admissible parameter space also establishes a uniform 

prior probability density forθ , in a Bayesian sense, i.e.,    min maxPrior ,Uniformθ θ θ  . 

The values of 
MY  as functions of θ  are interpolated using second order regression 

(SOR) surrogate models, per the relationship 

     sur,,M

i i if Y  θ x θ  (24) 

where each SOR surrogate  if θ  depends only on θ , and mismatch between the crystal 

plasticity model and the surrogate is explained with the surrogate error term 
sur,i . 

Although 
sur,i can be measured using a test set of crystal plasticity model runs, this 

approach approximates 
sur, 0i  . This approximation is supported by the 

2R  values of 

the surrogate models ( 0.98 ). The linking function, which determines the distribution 

assumed for errors on the response, was chosen to be logarithmic. The lognormal error 

distribution matched the possible values for yield strength, given that the range of 

physical estimates yield strength, like the defined domain of the lognormal distribution, is 

non-negative. 
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Thus, the likelihood definition is rewritten in terms of the surrogate models, per 

 

 
    

2

2
1 exp,

1
Likelihood exp

2

data
EN

i i

i i

f Y



 
  
 
 


θ x

θ . (25) 

Finding the maximum of Eq. (25) will return a maximum likelihood estimate of the 

calibration parameters on the TD data, 
TDθ̂ . This estimate is presented in Table 3-4. Note 

that the values of 
TDθ̂ and 

TD
ˆ ref
θ (from Table 3-2) do not match. The two estimates are 

produced by distinct calibration procedures carried out using different data. The values 

from 
TD

ˆ ref
θ  are used here only for establishing the bounds for the prior,  min max,θ θ .  

It is noted that this approach uses a separate surrogate model to describe the 

model response that corresponds to each data point i  of dataN . This is favored over the 

formulation of a single surrogate that interpolates across both calibration parameters and 

physical parameters, i.e.,  ,f θ x . While the preferred approach requires more CP model 

runs in total, it does not require the SOR model to emulate the relationships between 

temperature, orientation, and response. 

The BU method used in previous work informed the crystal plasticity model 

parameters directly (Narayanan et al., 2014). In this work, the BU reference estimates are 

used to formulate penalty functions (Yeniay, 2005). The penalty functions used here treat 

the BU reference estimates from Table 3-2 as the constraint on θ , i.e., 
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 ref

BU
ˆθ θ  (26) 

The penalty is defined as a Gaussian error term, i.e., 

 

 
 

2
ref

BU,

2

ˆ
1

Penalty exp
2

j j

j
p

 



 
  
  
 

θ   (27) 

where 2

p  is the variance of the penalty, which controls the degree of influence of the BU 

information on the constrained likelihood. The penalty functions are imposed 

multiplicatively on the likelihood function, i.e., 

 
     

1

Constrained Likelihood Function Likelihood Penalty
vn

j
j

 θ θ θ  (28) 

 

 
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2 2
1 1exp,
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1 1

CLF exp exp
2 2

data v
EN n
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 
θ x

θ  (29) 

or equivalently, 

 

 
      

22 ref
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2 2
1 1exp,
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CLF exp
2
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 
θ x

θ  (30) 



51 

Finding the maximum of the constrained likelihood function (CLF) returns the combined 

TDBU maximum likelihood (ML) estimate, 
TDBUθ̂ . 

Table 3-4. Maximum likelihood estimated values for the calibration parameters. TD 

corresponds to the unconstrained likelihood function, and TDBU corresponds to the 

likelihood function constrained by penalty terms. Values of   
2

2

exp, 0.1 E

i iY i  x  were 

used. 

Parameter 0  0gF or H
 

p  q  ts
 

TDθ̂
 

7 15.00 10 s  
0.79eV  0.4  1.5  860MPa  

TDBU
ˆ | 0.5p θ

 
7 15.00 10 s  

0.78eV  0.4  1.38  796MPa  

TDBU
ˆ | 0.2p θ

 
7 13.93 10 s  

0.75eV  0.43  1.29  686MPa  

TDBU
ˆ | 0.1p θ

 
7 13.07 10 s  

0.68eV  0.52  1.28  652MPa  

TDBU
ˆ | 0.05p θ

 
7 13.12 10 s  

0.60eV  0.58  1.25  800MPa  

TDBU
ˆ | 0.02p θ

 
7 13.56 10 s  

0.55eV  0.63  1.21  972MPa  

 BU BU
ˆ ˆ refθ θ  7 13.19 10 s  

0.57eV  0.67  1.18  1040MPa  

 

3.3.1. Uncertainty Cost of Connections 

To make an empirical comparison of multiple reasonable connection options, the 

quality of connections between models must be testable. If the TD-only approach is taken 

as the baseline, a TDBU connection can be qualified by its performance relative to the 

baseline case. If the CLF of Eq. (28) is used as the basis of a test, that test would suggest 

that the BU data should be included in all cases, due to the benefit of additional data in a 

data-scarce scenario. Indeed, such a test would be insensitive to the relationship between 

TDθ  and BUθ . Assume that data scarcity has led modelers to apply data of diminishing 

relevance. It is then reasonable to argue that using connections of this nature would incur 

some penalty or cost. That cost can be tied to the quality of the TDBU connection. The 
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trade-off between this connection cost and the benefit of additional data can become the 

basis of the TDBU connection test. 

The meaning of connection quality must be defined. Let the connection between 

TDθ and 
BUθ  be stronger when the two are similar, and let difference between 

TDθ  and 

BUθ  imply the connection between them is weaker. Let the connection quality be 

estimated by measurements on the CLF and the LF. The greater the difference between 

TDθ̂  and 
BUθ̂ , the greater the difference will be between the sum of squared errors at 

TDBUθ̂ ,  TDBU
ˆSSE | TD, BUθ , and at 

TDθ̂ ,  TD
ˆSSE | TDθ  . The comparison of these 

measurements becomes the basis of the cost imposed on the calibration on both TD and 

BU data. 

The definition of the connection cost must satisfy some logical requirements. To 

construct a joint probability density function (PDF) of θ  using both TD and BU data, it 

must be assumed that a connection exists between data and models via the parameters, θ , 

i.e., TD BUθ θ . In other words, the parameters informed from TD and the parameters 

informed from BU are assumed to be equivalent (with equivalent interpretations), even if 

this may not be accurate. Equation (28) is a combination of TD and BU data that assumes 

the connection between TD and BU is valid. To impose a cost associated with the TDBU 

connection, that assumption of validity is relaxed. In constructing this new formulation, 

the following statements are upheld:  

• Let the CLF as shown in equation (28) be the exact case, i.e., the case when 

the connection is certain and there is no cost.  
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• Let the cost be imposed consistently across the admissible parameter space for 

a given connection.  

• Let increased cost of connection result in widened confidence intervals. 

To abide by the above statements, cost of the connection is imposed on the CLF 

by including an exponent, i.e., 

      | Uncertainty , 0,1
u

CLF CLF u θ θ   (31) 

where u  is an exponent reflecting the cost of the uncertainty in the connection between 

the TD and BU data/models. A value of 1u   reflects no connection cost and that no 

disagreement exists between TD and BU data, and a value of 0u   reflects an infinite 

connection cost, where complete disagreement exists between the TD and BU data. 

The quality of the connection must be estimated to inform u . As discussed with 

the definition of connection quality, take the sum of squared errors at 
TDBUθ̂ to inform u , 

per 

 

      TDBU

1 1

ˆ ˆmax SSE Penalty , 1 max 2ln | , 1TDBU

u
CLF

 
  θ θ θ θ

 
(32) 

for the TDBU case. The test of the connection requires a comparison with a baseline 

case. This case is given by TDθ̂  and the TD-only likelihood function. The TD-only 

likelihood function is taken as the null hypothesis, where the BU information is ignorance 

across the admissible space and u  is informed per 
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   TD

1

ˆmax 2ln Likelihood | , 1
u 

 θ θ θ
  

(33) 

It is noted that the value of u  for the BU penalty function alone can be estimated in this 

way, returning 1u  .  

When multiscale modeling hierarchies are developed, multiple options may exist 

for connecting models. Not all multiscale connections are useful. To approach this, 

multiple connection options must be present and be evaluated. The application of this 

method to the CP modeling problem presented constitutes a single possible connection. 

Two alternate BU reference estimates are proposed. They represent two potential 

scenarios. The “cooperative” estimate agrees with the TD likelihood function. The 

“spurious” estimate strongly disagrees with the TD and leads to a poorly performing CP 

model when used directly. They are presented in Table 3-5 alongside the BU estimate 

from atomistic simulations. It is noted that these estimates are not used in any 

combination with each other. They are used as distinct alternative candidates. The TD 

data is used to connect with each case, forming the common basis for comparison. 

Table 3-5. Contrived BU reference estimates shown alongside the estimates from the 

atomistic modeling of (Narayanan et al., 2014).  

ref

BUθ̂
 0  0gF or H

 
p  q  ts

 

Simulated 
7 13.19 10 s  

0.57eV  0.67  1.18  1040MPa  

“cooperative” 
7 11.58 10 s  

0.75eV  0.48  1.3  540MPa  

“spurious” 
5 15.00 10 s  

0.95eV  0.8  1.5  1100MPa  
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The connections with each BU estimate are compared by examining their effects 

on the calibration of θ . Using the formulation in Eq. (31) for each estimate, posterior 

PDFs are informed using Bayes’ rule, i.e., 

 
 

   Prior

NormalizingConst.

u
CLF

PDF 
θ θ

θ   (34) 

Here, the normalizing constant is found using the law of total probability. 

The parametric uncertainty of θ  is estimated from the posterior PDF.  The 

estimate used here is the variance of the joint posterior probability density function 

 PDF θ , per 

 
   

2
2

1space

vn

j j

j

PDF E d  


    θ

θ

θ θ   (35) 

where jE     is the expected value, or mean, of parameter j, and  PDF θ is the 

posterior probability density function of θ . 

3.4.   Results:  

The benefit of using BU data in addition to the default TD data is evaluated. 

Connection uncertainty is estimated and factored into the evaluation of parametric 

uncertainty. The CP model was run using the calibrated values of θ  returned by the 

calibrations on the TD data only and the TDBU combination. The model was also run 

using the BU reference values. The results of each calibration are compared to the 
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experimental TD data.  The parametric uncertainty associated with the TD and TDBU 

calibrations are shown. The sum of the squared relative error of the response of the CP 

model is also shown, as well as the relative error plus the BU penalty. The performance 

and uncertainty measures are also shown for the hypothetical BU reference estimates. A 

parametric study of the variance of the penalty, 2

p , is performed. 

 The proportional limit from the experimental TD data (Spitzig and Keh, 1970a) 

and from the various calibrations of the CP model are shown for three temperatures and 

orientations in Figure 3.3. The angle   is the misorientation between the maximum 

resolved shear stress plane of the loading and the reference  110  slip plane. The BU 

calibrated model returned yield strengths that greatly exceeded those from experimental 

data at lower temperatures. At 250 K, the BU had much more agreement with 

experimental data. The TDBU based calibration performed nearly as well as the purely 

TD based calibration. 

 

Figure 3.3. The proportional limit at three temperatures for loading on three 

crystallographic orientations. The BU used here is later referred to as Simulated BU. 

 The performance of each calibration was calculated by the sum of the squared 

errors (SSE) divided by the expected variances, 2

exp,i , i.e., 
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    data

2

1 exp,

ˆ,
SSE

M EN
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i i
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

 
 
 
 


x θ x

 (36) 

Also, the BU penalty was calculated for each estimate, θ̂  , i.e., 

 2

,BU

1

ˆ ˆ
Penalty

v
refn

j j

j p

 



 
  

 
 

  (37) 

These performance measures are shown alongside the parametric uncertainty estimate 

2
θ

 for each calibration in Table 3-6. Across all shown BU reference estimates, the SSE 

is best for the TD-only calibrations. The SSE+Penalty is always minimized by the TDBU 

calibration.  If the trend demonstrated by the examples holds for all BU reference 

estimates (and connections), the SSE and SSE+Penalty measures are insufficient as 

measures of empirical support for the TDBU connection.  The parametric uncertainty 

estimate can increase or decrease with the addition of BU data, depending on the 

relationship between the TD likelihood function and the BU penalty function. This is 

shown in the change in the variance of the calibrated parameter values, 2
θ

 , also in Table 

3-6. 
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Table 3-6. The relative performance of TD and TDBU calibrations of the CP model for 

0.1p  , based on different BU reference estimates of θ . For each BU reference 

estimate, the better performing calibration is underlined. 

BU estimate ref

BUθ̂  Calib. SSE SSE + Penalty u  
2
θ  

Simulated 
TD 37.7 161.7 25.98 10  0.296 

TDBU 83.1 102.3 21.17 10  0.317 

“cooperative” 
TD 37.7 81.0 25.98 10  0.296 

TDBU 56.1 57.5 24.34 10  0.249 

 “spurious” 
TD 37.7 262.6 25.98 10  0.296 

TDBU 78.0 224.4 35.69 10  0.340 

 

 The results shown in Table 3-6 indicate that the “cooperative” ref

BUθ̂  values are the 

only case for which the TDBU connection is supported as implemented. The 

“cooperative” TDBU calibration exhibits a parametric uncertainty less than that of the 

TD-only calibration. Thus, this particular combination of TD and BU informed functions 

leads to a calibration where the benefit of additional data is more pronounced than the 

cost of using an additional, less relevant data set. Notably, the “cooperative” ref

BUθ̂  is not 

equal to 
TDθ̂ , implying that an effective connection between two uncertain sources need 

not be exact. u  is shown to decrease from TD to each TDBU case, as is expected. 

 The parameter 2

p  controls the severity of the penalty function. In theory, it 

reflects the intrinsic uncertainty of the BU estimate in spaceθ . In practice, it affects the 

degree of influence the BU reference has on the TDBU calibration result. If the value of 

2

p is too small, the TDBU calibration becomes insensitive to the TD data. Likewise, if 

the value of 2

p  is too large, the BU data have no effect on the TDBU estimate. To 

demonstrate this, the value of 2

p is varied, and the results of the TDBU calibration are 
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shown, in Table 3-7. The values of 
TDBUθ̂  are shown in Table 3-4 for all the values of 

2

p explored in this parametric study. The value of 2
θ

 returned for BU-only calibrations 

is largely a function of the value chosen for 2

p .  This is also shown in Table 3-7. Given 

that the value of 2

p  was not empirically derived, the BU only calibrations cannot be 

easily compared with TD or TDBU in terms of 2
θ

. 

 The results in Table 3-7 suggest that the TD calibration is the option with the least 

uncertainty. The value of 2
θ

 is lower for the TDBU option where 2

p  is 0.02, however 

this case is considered inappropriate. As the value of 2

p  is decreased, the penalty 

functions contribute to increasingly narrow PDFs, as shown in the bottom row of Table 

3-7. When two distributions are combined multiplicatively, a drastically narrower 

distribution will dominate the result. When the value of 2

p  is reduced to 0.02, the 

reduction of 2
θ

 that occurs is an artifact of the TD likelihood function having a 

negligible effect on the CLF. This approach assumes that the empirically gathered TD 

information is the default information source for the CP model, so the 2 0.02p   

calibration, which doesn’t effectively include the default information, is not an eligible 

option. Thus, the eligible option with the least uncertainty is identified to be the TD 

calibration. 
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Table 3-7. Parametric study of 2

p . The simulated ref

BUθ̂ is used for all cases. Penalty is 0 

for BU only calibration. The values of 2
θ

 for BU only calibrations are shown for the 

different values of 2

p .  

p
 Calib. SSE 

SSE + Penalty 

 2 2 2 2 2 20.5 , 0.2 , 0.1 , 0.05 , 0.02pfor 
 

u  
2
θ  

-- TD 37.7 42.6 68.4 160.5 529.2 3110 25.98 10  0.296 

0.5 TDBU 39.2 43.3 64.8 141.6 448.7 2598 24.70 10  0.301 

0.2 TDBU 52.7 55.9 72.5 131.9 369.5 2033 22.48 10  0.311 

0.1 TDBU 83.1 85.0 95.2 131.6 276.8 1294 21.17 10  0.317 

0.05 TDBU 130.6 131.3 134.9 147.9 199.6 561.7 35.79 10  0.312 

0.02 TDBU 213.2 213.3 213.8 215.7 223.1 274.9 33.53 10  0.222 

  SSE  2 2 2 2 2 2 20.5 , 0.2 , 0.1 , 0.05 , 0.02pfor  θ  
  

-- BU 671.9 0.647 0.161 0.042 0.011 0.006 -- -- 

 

3.5.   Conclusions  

TD and BU calibrations of a scientific model and a novel treatment of 

connections between models were used to make decisions in the construction of a 

hierarchical multiscale model of single crystal bcc Fe with scarce input data (a typical 

condition for simulations of this type). A likelihood function was informed via SOR 

surrogate models for the TD calibration pathway. A penalty function was informed by the 

reference estimate of the BU simulation and an estimate of the associated uncertainty. 

The TDBU estimate was informed as a constrained optimization. The effectiveness of 

any pairing of TD and BU information was approached by estimating an uncertainty cost 

associated with each connection. This cost was an offset to the clear advantage of 

additional data in a sparse data setting. An empirical TDBU connection test was 

formulated using this tradeoff. This test was used to demonstrate the different possible 

effects of including BU data alongside TD data. This test showed that an increase in 
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uncertainty accompanied the inclusion of the BU simulation data in the calibration of the 

CP model used. 

The TDBU estimates showed an increased level of parametric uncertainty, 

compared to the TD only estimate. The lowest value for 2

p  used, 0.02, showed a 

reduction in 2
θ

versus the TD. This is assumed to be due to the exaggerated precision of 

the penalty function. For the remaining TDBU formulations, the value of 2
θ

 was greater 

than that of the TD calibration. From Table 3-6 we can gather that the reduction of 2
θ

 in 

a TDBU calibration is possible.  Thus, the failure of the BU data inclusion in reducing 

uncertainty in θ  is likely due to the difference in TD and BU being too large to easily 

reconcile. In this case, the connection may be improved by reexamining the choice of 

model form. Additionally, it may be necessary to use a mesoscale model as a translator, 

i.e., to adapt the BU estimates to include multi-process interactive effects. As an 

interesting note, there can be uncertainty that arises due to imposing a single value on a 

parameter that in truth varies. It has been suggested (Mori, 2017) that the Peierls stress is 

a function of temperature. Considerations of model-model connections may need to 

include such considerations of the underlying parameters. 

This approach allows decision-makers to recognize the tradeoffs of imposing 

connections between models. In hierarchical multiscale models, parameters are often 

used to connect models between length-scales. The additional demands incurred by 

reconciliation between models might outweigh benefits in some cases, as is explored in 

Section 3.1. The connection between models may or may not be useful in approaching 

more detailed descriptions of a material, when uncertainty is considered. These 
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connections can be investigated with the method presented here, without the expense of 

gathering additional data. This provides needed decision support for the selection of 

connections in hierarchical multiscale models. 

TDBU calibration can potentially alleviate issues of parameter non-uniqueness 

which often arise in TD-only calibrations. By applying data from multiple sources, 

TDBU calibration of parameters is less susceptible to non-uniqueness of parameters. The 

obstacle to broad applicability of such techniques is that in some cases, the combination 

of multiple sources of information will not be empirically sound, even if the connections 

are theoretically plausible. Once it is possible to empirically qualify connection 

strategies, such TDBU methods can be rigorously applied. Successful development of 

rigorous TDBU methodologies would thus benefit the calibration of a wide array of 

material models. 

The method this work presents is not a search method. It assumes that new 

connections are between verified and validated models. The method examines the 

suitability of connecting these models, given that the validity of a connection does not 

necessarily follow from the validity of the comprising models. The models are each 

considered valid at individual length-scales; combined, they are operating beyond the 

scope of their initial validation. This method is a multiscale calibration process and 

preliminary to validation. Care must be taken to distinguish the failure of the connection 

from the failure of any component model. 

The estimate of the connection cost, u , used in this work is straightforward to 

apply. It is based on a deterministic comparison of performance of ML estimates. This 
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approach may not be suitable for all calibration cases, and it is not rigorously derived 

here. The development of more comprehensive approaches to this step of the procedure 

will be the focus of future work. 

The connection test is sensitive to the value of 2

p . An overly small value of 2

p  

can coerce a reduction in 2
θ

 by overwhelming the contribution of the TD data. Caution 

must be taken in selecting a value of 2

p  which allows both TD and BU data to influence 

the CLF. The relative influence of BU and TD can be monitored by comparing the 

variance of the TD-only Likelihood function and the variance of the product of the BU 

penalty functions. 
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CHAPTER 4. MODEL FORM AND SVE SIZE IN THE 

HOMOGENIZATION OF CRYSTAL PLASTICITY OF 

CARTRIDGE BRASS 

 In this chapter, an uncertainty propagation study of a statistical volume element 

(SVE) based homogenization is performed, focusing on model form and numerical 

uncertainties. A rate-dependent crystal plasticity (CP) model of cartridge brass is 

calibrated to room temperature uniaxial tension testing data of an annealed sample. 

Model forms are considered with and without the inclusion of back stress in the CP 

model. Three sizes of SVE are explored for numerical uncertainty effects. Effects are 

shown in a Bammann-Chiesa-Johnson (BCJ) macroscopic viscoplasticity model, 

calibrated element-wise to SVEs from an ensemble, in simulations of quasi-static uniaxial 

tension. The selection of model form is discussed. The numerical uncertainty of the 

homogenization process is quantified. 

4.1.   Introduction 

 Simulations of materials are limited in resolution and scope (Curtin and Miller, 

2003). These limitations give rise to length and time scales pertaining to the basic 

physical regimes used for modelling materials and their behavior (Geers and Yvonnet, 

2016). Despite advances in algorithmic efficiency and computational throughput, 

multiscale models often must be employed to resolve both the mechanism and the use-

case of interest (Ellis and McDowell, 2017; McDowell, 2010). The homogenization of 

direct numerical simulation (DNS) is one such multiscale method, and it is used to 

connect microstructure-sensitive descriptions of deformation to continuum material 
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models (Geers et al., 2010). For a given response or property of interest (i.e., quantity of 

interest (QoI)), the Representative Volume Element (RVE) is sufficiently large to 

establish a homogeneous response or property for a given material and microstructure 

(Benedetti and Barbe, 2013), based on a crystal plasticity model, for example. A finite 

element model informed by RVE response can efficiently simulate a complex part 

geometry under loading. However, the homogeneous properties and responses based on 

the RVE only hold at sufficiently large volumes with limited or weak field gradients, 

limiting their applicability to cases involving geometric discontinuities (holes, fillets, 

etc.) that induce high local fields that spatially concentrate within volumes smaller than 

the RVE size, or strong stress-or strain field gradients over such scales.   

 Intrinsic variability will arise for samples of material volumes less than that 

corresponding to the RVE size, since such Statistical Volume Elements (SVE) do not 

capture all the necessary correlation lengths of microstructure (and corresponding 

statistical moments) under applied loading that give rise to homogeneous properties or 

responses. Therefore, ensembles of SVE simulations are necessary to characterize the 

statistical range of expected responses for a given sample (SVE) size. In other words, 

SVEs are employed as ensembles to represent statistical information about the 

microstructure-sensitive properties of a material (Qidwai et al., 2012). If the goal of 

simulating an ensemble of SVEs is to replicate (or at least approximate) RVE response, 

then the SVE size must be large enough to capture the dominant correlation lengths of the 

target microstructure for the given QoI, accepting some degree of approximation in 

neglecting higher order moments that are necessary to capture all statistical moments of 

QoI response as expressed by the RVE. In some cases, dominant correlation lengths can 
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be quite large (e.g., hundreds of microns in the case of microtextures of alloys), rendering 

the concept of RVE as difficult to access computationally for certain QoIs related to peak 

concentrated stresses or strains, for example. However, if the goal of SVE ensemble 

simulations is to capture variability associated with sampling size effects for sub-RVE 

volumes, then SVE-based ensemble simulations are necessary to characterize variability 

in material response as a function of size (e.g., at notches or stress-raisers). In this case, 

the number of SVEs necessary within the ensemble (ensemble size) must be large enough 

to capture the majority of the variability associated with random sampling with regard to 

the QoI. This ensemble size will depend on how large the SVE is relative to the dominant 

correlation lengths that affect QoIs; if the correlation lengths are large, then a very large 

number of SVEs must be employed in ensemble simulations to capture overall 

variability. If the correlation lengths are relatively limited in spatial extent, then far fewer 

SVEs are required. 

 Most engineering simulations are performed with homogeneous material models. 

QoIs such as “elastic stiffness” are not very stringent in their requirements on RVE size 

and many heterogeneous fine scale material models are feasible to estimate these.  

However, for many other QoIs, care is often not taken in addressing the “size effects” in 

variability of QoIs associated with sampling integration point volumes smaller than the 

RVE for a given microstructure.  In other words, homogeneous material models are often 

applied to model material responses at length scales beneath the characteristic scale of the 

RVE for a given QoI. Despite this limitation, homogeneous models are widely preferred 

to CP for polycrystalline metals in engineering applications, due to their ease of use and 

simpler calibration requirements, which most often do not carefully consider RVE size. 
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The deployment of additively manufactured (AM) components in real-world applications 

challenges this longstanding approach (Bikas et al., 2016), given the increased 

uncertainty surrounding the process and the design of parts with finer and finer feature 

sizes (e.g., holes, fillets, etc.) that interplay with some of the larger characteristic 

microstructure length scales and gradients of structure. AM feature sizes will most often 

be much finer than the associated RVE scale for a given QoI.  

 Multiscale methods have been used to approach the design of AM components in 

the presence of a statistical approximation of uncertainty (Gorguluarslan et al., 2015). 

While the uncertainty in AM is in large part due to mismatch between the dimensions of 

the designed part and the manufactured result, improvements in process may reduce this 

component of uncertainty in overall performance. Moreover, the dependence of 

manufacturing process and scales of structure on properties or response QoIs will receive 

increasing attention.  The accurate prediction of microstructure and the use of 

microstructure-sensitive models will become increasingly important to AM reliability 

predictions as the technology matures. 

 Multiscale methods add complication and calibration expense, even when they 

allow for more efficient computation (Fan, 2011; Tallman et al., 2017). This complication 

can arise as model form compatibility concerns or increases in the data requirements of 

cross-scale predictions. For example, the size and number of SVEs needed in an 

ensemble to be representative of the material globally (a higher length scale) far exceed 

the extent of local variability studies. The determination of these parameters is 

interdependent with the determination of model form (at all included length scales) and 
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the selection of calibration data, i.e., an adjustment in one of these may engender changes 

in the others.  

 In this work, SVE-based ensembles are pursued to characterize statistical 

variability as a function of sampling size of characteristic microstructure for cartridge 

brass. A hyperelastic crystal plasticity (CP) model of cartridge brass is used with 

Dream3D instantiations of microstructure and is calibrated to experimental measurements 

of the uniaxial monotonic stress-strain behavior of the material undergoing quasistatic 

deformation. The calibrated CP model is used to inform a Bammann-Chiesa-Johnson 

(BCJ) macro viscoplasticity model. The BCJ model is calibrated to each SVE response 

within an ensemble of SVEs generated from grain size statistics extracted from 

characterization of cartridge brass microstructure. The BCJ parameter values which 

represent the SVE responses are used to inform a larger-scale implementation of a BCJ 

model with local variations in material response. A design of experiments methodology 

explores two sizes of SVE and two forms of the CP model. The length scales for which 

an SVE-based sampling approach is supported by the results of this work are discussed. 

4.2.   Background 

 Cartridge Brass (C260) plasticity has been widely studied through simulations and 

experiments (Battaile et al., 2015; Buchheit et al., 2005; Carroll et al., 2012; Chiarodo et 

al., 1974; Schwartzbart et al., 1951). Room temperature uniaxial tensile tests of C260 can 

be found in the literature (Battaile et al., 2015; Buchheit et al., 2005; Carroll et al., 2012). 

Work on the hardening properties of C260 has demonstrated a distinction between 

kinematic and isotropic hardening (Krieg, 1975; Wagoner, 1982). This distinction can be 
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summarized as the exhibition of transient kinematic hardening, with large strains 

dominated by isotropic hardening (Wagoner, 1982). Accurate descriptions of hardening 

in C260 are relevant to the question of model form. 

 The crystal plasticity of cartridge brass has been modeled previously (Jia et al., 

2012; Kuhlmann-Wilsdorf, 1999). In these models, the inelastic part of the deformation 

velocity gradient, 
in

L , is given by the sum of the contributions of the crystallographic slip 

system shear rates, i.e., 
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1

sN
in   






 L m n  (38) 

where, in the intermediate configuration, 
0


m  and 

0


n  are the unit vectors in the slip and 

slip plane normal directions for slip system  , with shearing rate  . The 12 slip 

systems considered in the modeling of the fcc lattice of cartridge brass have slip planes in 

the  111  family and slip directions in 110 . The determination of the shear strain rates 

follows from the flow-rule of the CP model. The model of Jia et al. (2012) includes a 

dislocation density based activation enthalpy driven flow-rule. A much less detailed flow-

rule is employed in this work.  

 The FEM software Abaqus (Simulia, 2007) is used to implement the material 

deformation models in this work. UMAT formulations of the CP model for C260, as well 

as the BCJ model introduced later on, are called by Abaqus as subroutines.  
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 A CP model originally developed to describe OFHC Cu is adapted for cartridge 

brass. The model is based on the model documented in the work of Tanner et al. (1999). 

It uses a phenomenological slip system flow rule definition, i.e., 

 

 0 sgn

m

A

g

 
 




  




 

(39) 

where the reference shear rate is 0  , the strain rate-sensitivity exponent is m , and for 

slip system   the resolved shear stress is   , the back stress is A
 , and the drag stress 

is g . The model form uncertainty study highlights the role of the back stress in 

simulating polycrystalline deformation response.  

 The CP formulation decomposes kinematic and isotropic hardening. The dynamic 

recovery of both hardening types is included in evolution equations, i.e., 
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  
  

 
   
    (40) 

where g
 is the drag stress value for slip system  , dirg  is the direct drag stress 

modulus, and dyng  is the dynamic recovery coefficient for drag stress.   and   are used 

as summation indices for all sN  slip systems. A coefficient of latent hardening of slip 

systems is assumed to be 1.4. Similarly, the back stress evolves in self-hardening format, 

i.e., 
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dir dynA A A A       (41) 

where A  is the back stress for slip system  , 
dirA  is the direct hardening modulus for 

back stress, and dynA  is the dynamic recovery coefficient of back stress. 

  Back stress is not always included in CP models. For example, the discrete 

Fourier transform approach to accelerated CP calculations (Alharbi and Kalidindi, 2015; 

Knezevic et al., 2009) is often used with formulations of the flow rule that omit back 

stress, to allow hardening to be resolved as a tensor quantity and not in terms of slip 

systems. Various forms of kinematic hardening laws exist, with non-trivial differences 

(Hennessey et al., 2017). The selection of specific kinematic hardening model can be 

addressed if the necessity of back stress in the modeling of a material is established. The 

model in this work will exercise CP without back stress by setting hardening parameters 

dirA  and dynA  to zero, with 0A  . 

 The toolkit Dream3D has provided powerful microstructure instantiation methods 

to materials science research (Groeber and Jackson, 2014). The software package 

includes modular data-manipulation routines called pipelines which allow for 

microstructure data to be collected from images, or to be generated from statistics and 

distributions. In modeling polycrystalline plasticity, the instantiation of microstructure is 

a key step. The work in this Chapter uses Dream3D to generate SVE ensembles from 

generating statistics for grain size and texture.  



72 

 SVE homogenization has been used to propagate variability in microstructure to 

the macroscale (Yin et al., 2008). Yin et al. studied the effective properties of porous 

steel. By using a variance based global sensitivity analysis, the most influential 

parameters of microstructure were identified. In a Markov chain Monte Carlo (MCMC) 

method, fluctuations of these most influential parameters (representing the variability of 

the microstructure) were propagated to inform statistically defined parameters of a 1-D 

BCJ macroplasticity model. In this chapter, a similar workflow will be assembled, with 

the main addition of an implementation of a 3-D BCJ model with local response 

variability.  

 Periodic boundary conditions are used in this work. The boundary conditions used 

in SVE simulations influence their solutions and size requirements (Ostoja-Starzewski, 

2006). Periodic boundary conditions allow convergence to unbiased predictions of 

material response at smaller SVE sizes than do Dirichlet or Neumann boundary 

conditions (Kanit et al., 2003). More advanced boundary conditions have been 

developed. By incorporating a statistical microstructure description and Green’s function 

in an interaction kernel, boundaries can be informed to reflect exterior statistics (Ghosh 

and Kubair, 2016). To some extent, the shape of the SVE, when combined with periodic 

boundaries, can impose bias in an anisotropic manner (Glüge et al., 2012). This work 

uses the more traditional periodic boundary conditions, taking up the limitations of the 

approach with multiscale methods. 

 Commonly in industry, a macroscopic plasticity model is used in lieu of more 

intensive alternatives. A model of this type is used in this work. Belonging to the 

category of J2 plasticity models, the Bammann-Chiesa-Johnson (BCJ) model is a widely 
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used internal state variable model for macroscopic viscoplasticity (Bammann, 1984). It 

specifies temperature effects, rate sensitivity, and includes parameters which control the 

contributions of isotropic and kinematic hardening. Hardening is formulated with both 

static and dynamic recovery. In this work, the BCJ model is used with the temperature 

dependence and static recovery removed, and focuses on matching properties at room 

temperature. The inelastic portion of the unrotated stretching tensor, 
in

D , is written as 

  
sinhin R Y

f
V

     
   

   

σ α σ α
D

σ α
 

(42) 

 

where f  and V are parameters which modify rate sensitivity, Y  is a parameter for initial 

yield strength, R  is the isotropic hardening internal state variable, and α  is the kinematic 

hardening tensor. R  evolves accordingly, i.e., 

   22
3

in in

dR H R R  
 

D D  (43) 

where H  is the direct isotropic hardening coefficient and dR  is the dynamic recovery 

coefficient of isotropic hardening. Static recovery of isotropic hardening is omitted for 

this room-temperature application. The kinematic hardening tensor evolves as a co-

rotational rate, i.e., 
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 

o
2
3

in in

dh r  
 

α D D α α  (44) 

where h  is the direct kinematic hardening coefficient and 
dr  is the dynamic recovery 

coefficient of kinematic hardening. Static recovery is also omitted for kinematic 

hardening at room temperature. Here, this macroscopic plasticity model is made 

responsive to microstructurally dependent property variations through the statistical 

homogenization of CP-SVE simulations of    response. A regression model is used to 

make efficient the repetitive fitting of the BCJ model to CP-SVE results. 

 A Gaussian process (GP) regression model is used to accelerate the fitting 

between plasticity models. This procedure uses a kernel function to predict a mean 

function across the parameter space from the values of prior observations, i.e., 

 

 
 

2

2

2

dist ,
, exp

2

i j

i j ijk h
l


 
   
 
 

x x
x x  (45) 

where h and l  are hyperparameters controlling the scale and length of the squared 

exponential kernel function, and   is the hyperparameter controlling the noise in the GP, 

and ij  is the Kronecker delta. The Euclidian distance in parameter space between 

observations ix and jx  is shown as  dist ,i jx x  . The GP was used to select the next 

parameter combination to execute to match to the CP-SVE results.  
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 Numerical uncertainty is a prevalent issue in multiscale modeling (Kanit et al., 

2003; McFarland and Mahadevan, 2008). The effects of numerical truncation, the 

simplification of problems to their first order terms, and the substitution of a finite sample 

for a large population are common instances where numerical uncertainty arises in 

materials models. In this work, the numerical uncertainty of the SVE based coarse 

graining of mesoscale polycrystalline plasticity will be quantified using an empirical test 

of two samples known as the Kolmogorov-Smirnov test. 

 Empirical cumulative distribution functions (ECDF) will be constructed from the 

simulation results. This method for describing statistical samples does not assume any 

form for the underlying distribution (Birnbaum, 1952). It is a step-function defined as a 

function of the variable x , i.e., 

 
  , #of samples N i

n
F x n X x

N
     (46) 

where N  is the total number of samples, iX . It approximates the cumulative distribution 

function    ProbF x X x  .  

 The Kolmogorov-Smirnov (K-S) 2-sample test is based on the ECDF, and is used 

to test if two samples are taken from the same underlying distribution. The K-S statistic is 

determined from the maximal value of the absolute difference in the respective ECDFs, 

i.e., 
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    , , for all N M N MD Max F x F x x      (47) 

where 
,N MD  is the K-S statistic between the first sample and second sample, whose 

ECDFs are  NF x  and  MF x , respectively. The K-S test assumes that the samples of 

each distribution are taken from a continuously defined variable, and that the samples are 

independent. The K-S test will be used in this work to quantify differences in the 

microstructure based response variability predictions made with each modeling approach. 

4.3.   Methodology 

 The methodology consists of a calibration of the CP parameters in two model 

forms, a design of experiments to generate SVE ensembles, a calibration of the BCJ 

model to individual SVEs, accelerated by the use of a Gaussian process regression model, 

and the simulation of larger volumes of the material with statistically informed elements. 

The steps of this method are elaborated here and are summarized in Figure 4.1. 
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Figure 4.1. A schematic of the models and linking methods used in this chapter. 
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Figure 4.2. The design of experiments for the crystal plasticity simulations of 

polycrystalline volumes. 
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Figure 4.3. A schematic summarizing the generation of microstructures to be used in this 

chapter.   

 The same experimental data were used to calibrate the parameters of the CP for 

each model form. The experimental data were taken from Carroll et al. (2012) for the 

room temperature uniaxial tension testing of an annealed sample of C260. The sample, 

annealed at 600°C for 8 hours, included a laser etched hole of 100 μm diameter, 

positioned centrally through the thickness of 1.02mm. The calibration parameter sets are 

shown in Table 4-1. The calibrations were performed using ensembles of 10 

polycrystalline simulations, each of 20 elements per side. Notably, these ensembles were 

smaller in number than those used in the coarse-graining work which follows. 

 The ensemble mean response was compared to the experimental    curve for 

the material at room temperature under uniaxial tension. The material specimen was 

tested at an applied strain rate of 10.0012 s . The sum of squared errors (SSE) of stress 

as a function of axial strain was minimized. The model form excluding back stress was 
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calibrated in the same manner as the previous form; however, the parameters 
dirA  and 

dynA  were both held fixed at 0.  

 Model form variations influence the calibration of the model. In the back stress 

inclusive case, large values were predicted for the back stress parameters, indicating a 

significant contribution to the simulated material response. In the case where these back 

stress parameters were set to zero a priori, other parameters in the calibration set were 

emphasized, i.e., 0, ,and dir dyng g g .   

Table 4-1. Crystal plasticity calibration parameters given the same experimental data 

values, reflecting the model form choices often taken in the literature. 

Parameter Parameter name Value A (With 

back stress) 

Value B (No 

back stress) 

0g
 

Initial drag stress 11.31 MPa  34.51 MPa  

dirg
 

Direct hardening modulus for 

drag stress 

193.51 MPa  379.95 MPa  

dyng
 

Dynamic recovery coefficient 

for drag stress 

3.685  5.751  

 0A t    Initial value of back stress 0 0 

dirA
 

Direct hardening modulus for 

back stress 

42.67 GPa  0 MPa 

dynA
 

Dynamic recovery coefficient 

for back stress 

1540  0 

 

 

 Microstructure used in the CP calibration was calibrated to electron back-

scattering diffractometry (EBSD) data. The EBSD data was originally gathered alongside 

the tensile testing data (Carroll et al., 2012). 2D grain size statistics were gathered from 

the EBSD image provided by the authors of that work. The data was filtered to reject 

grains smaller than 10 microns in diameter as noise. An RVE-sized microstructure was 
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generated using Dream 3D (Groeber and Jackson, 2014). The microstructure was 

assigned initially random texture and equiaxed grain shapes. A lognormal distribution 

was used to model grain sizes. A 2D section was taken from that instantiated volume. By 

comparing the mean and standard deviation of effective grain diameter, the parameters of 

the log-normal distribution were calibrated. The 2D calibration results are shown in Table 

4-2. The lognormal distribution was defined as,  

  ~ 2.2, 1.6d Lognormal     (48) 

 

 
 

 
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

 

 
    

 
 

  (49) 

where d  is the equivalent sphere diameter of grains,   is the mean of the  log d  and   

is the standard deviation of the  log d . The tails of the distribution were cut off, limiting 

the grain size to lie in the range 4 to 304μm .  

Table 4-2. The 2D grain size statistics used to calibrate the distribution used in 

microstructure instantiation. 

 2D Stats
  

   |Section , μmE d
 

   |Section , μmd
 

EBSD Section 65.1 55.7 

RVE Section 66.7 54.1 

 

 Once the CP parameters were calibrated, the CP simulations of SVE ensembles 

were performed. Ensembles of SVEs were generated using Dream 3D (Groeber and 

Jackson, 2014). The generating statistics for grain size were gathered from an EBSD 

image published in the work by Carroll et al. (2012). The material selected was annealed 
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at 600°C for 8 hours. SVE ensemble members were constructed using 20 or 30 

hexahedral elements in each dimension for a total of 203 or 303 elements, as seen in 

Figure 4.4.  

 

Figure 4.4. The two sizes of SVE used for calibration in the work are shown. The large 

SVE is 300 microns per side, the small SVE is 200 microns per side. 

 Due to the grain size distribution, the smaller SVEs each contained an average of 

38 grains. A large variation existed in grain count between SVEs. The microstructures 

used in model form A correspond one-to-one with those used with model form B. SVE 

ensembles contained either 100 smaller SVEs or 30 larger SVEs.  In all SVEs, elements 

measured 10μm in each direction. The microstructure statistics are shown in Table 4-3. 

Here,  | ens.E d  is the expected value of the effective diameter of a grain in either 

ensemble, and  | ens.d  is the standard deviation of the grain diameters within either 

ensemble. 
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 Larger polycrystalline volumes were simulated with CP to investigate the effects 

of SVE size. Simulations were carried out for ten separate 60 elements per direction 

instantiations of the same microstructure statistics. A set of ten simulations was 

performed using each form of the CP model. 

Table 4-3. 3D statistics of the number and equivalent diameter of the grains in the 

microstructure instantiations of each SVE ensemble in the study.  

SVE size SVEs in 

ensemble 

Total Grains Grains 

per SVE 
 | ens.E d

   | ens.d
  

 
3

200 m
  

100 3777 38 35.25 40.75 

 
3

300 m
  

30 2983 99 37.18 44.99 

 
3

600 m
 

10 9018 902 37.5 41.29 

 

 Abaqus Standard (implicit) was used to simulate the polycrystals (Simulia, 2007). 

Periodic boundary conditions were used in each direction. In one direction, displacement 

was imposed on the boundary, simulating uniaxial strain at a constant rate of 
10.0012 s  

at room temperature. To simulate the crystal plasticity of C260, a UMAT subroutine was 

called to define the stress-strain response. This UMAT was adapted for use on C260 from 

the model used by Tanner et al. on OHFC Cu (1999).  The ensemble-averaged results of 

these simulations were compared to the experimental    data for Cartridge Brass, 

shown in Figure 4.5. To compare with the data, a tensile monotonic load was simulated. 

An additional loading path which applied compression, followed by tensile loading, was 

used to distinctly inform the kinematic and isotropic hardening parameters of the BCJ 

model. The ensemble average results of these simulations are shown below, in Figure 4.6. 
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Figure 4.5. The comparison of the crystal plasticity results for both model forms with the 

experimental data previously obtained (Carroll et al., 2012).  

 

Figure 4.6. The SVE ensemble means for the CP simulations used to calibrate the BCJ 

parameters. 



84 

 The BCJ model parameters were informed by calibrating the model to the results 

of each individual CP-SVE simulation. The rate sensitivity parameters,  and V f , were 

determined by calibrating the BCJ model to CPSVE results taken at a series of simulated 

strain rates. The values of the rate sensitivity BCJ parameters are shown in Table 4-4. 

The remaining calibration parameters,  , , , , ,BCJ d dE Y H R h rθ , are estimated to fit to 

every SVE in an ensemble individually. This calibration procedure was accelerated by 

the use of a partially automated calibration routine. This routine is referred to as Autocal, 

and was developed alongside the work of this chapter. A detailed description of the 

package is left to Appendix A. The calibration was used to minimize the difference in the 

axial stress between CP-SVE and BCJ models, as a function of axial strain. This 

procedure is detailed below.  

Table 4-4. The calibrated values of the rate sensitivity parameters of the BCJ model. 

Parameter Value 

V  2.2 

f  65 10  

 

 An initial, one-at-a-time sensitivity study of parameters was first performed. 

Linear extrapolation, based on the sensitivity analysis, was used to make inductive 

guesses for the parameter values which fit to each SVE result. The BCJ model was run at 

each of these guesses. A GP regression model was constructed to interpolate between 

simulations to link BCJ parameter values to the prediction of    behavior, using these 

inductive estimates as an initial dataset. Using the predictions of the GP model to adjust 

the parameter value estimates, the sum of squared errors (SSE) between the target 

(referring to the stress-strain response of a SVE plasticity simulation) and the prediction 
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of the GP model on the BCJ parameters was minimized. The GP model is formulated as 

follows:  

 
 

   

800
2

, ,

1

,
ˆ ~ , for in 1,800

BCJ timestep CP timestep

timestep

BCJ i BCJ

Obj

GP i

 





 

θ

  (50) 

where the objective (Obj ) is the sum of squared errors between the axial stress of BCJ 

and CP, measured at 800 linearly spaced time-intervals. A linear interpolation of the 

simulations is used as needed to inform the GP on this basis. Iteratively, the GP was 

trained on an accumulation of new BCJ results three times. Further optimization of BCJ 

parameters (until the predicted optimal BCJ parameter values ceased to change) was also 

attempted, but resulted in BCJ parameter values that led to unstable error accumulation in 

the plasticity simulation. The values of the BCJ parameters which corresponded to the 

smallest SSE, as predicted by the GP after three learning iterations, were then used in a 

subsequent batch of BCJ model runs. These estimated values were entered into a database 

for future use. 

 Autocal is a python package which builds on many other packages. The 

optimization was performed using scipy (Millman and Aivazis, 2011), the initial linear 

effects model was built using statsmodels (statsmodels, 2018), and the GP regression 

model was built using scikit-learn (Pedregosa et al., 2011), all of which are python 

packages. The Matern kernel function was used for the GP approach, and the 

hyperparameters were tuned to maximize the log likelihood of the model. The 
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hyperparameter optimization was repeated with randomly chosen starting conditions for 

every iteration, to avoid local maxima in the likelihood function. 

 The BCJ parameter estimates from the calibration were stored as libraries of local 

representations. Each CP-SVE simulation corresponded to an estimate for each BCJ 

parameter. As a result, these estimated parameters were not considered independent. The 

covariance and correlation of the parameters was set to reflect the variability of the 

material response to which those parameters were fitted. The analysis of the parameter 

estimates is included in the results section. 

 

Figure 4.7. A schematic showing the BCJ parameter estimates, sourced from individual 

SVEs, informing the mesoscale model’s individual single-integration-point elements. 

 Mesoscale models were constructed from the BCJ models by populating elements 

of a hexahedral mesh. Linear brick elements with reduced integration were used 

consisting of eight nodes and one integration point. The values of the six BCJ parameters 

passed into the UMAT subroutine were passed with unique values for each element. The 

values were drawn from a library of parameter estimates containing one estimation for 

each SVE in the ensemble. Thus, the BCJ parameters varied in value from element to 

element within the mesoscale mesh, as shown in Figure 4.7. The element size 
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corresponded to the size of the SVE which informed the parameter estimates used in that 

mesoscale model, e.g., when the 300 microns per side SVEs informed the parameters, the 

mesoscale mesh resolved elements of 300 microns per side. The mesoscale models were 

used to simulate two hexahedral volumes, of either 0.6mm or 1.2mm in size per direction.  

4.4.   Results 

 The variability and mean predictions of the    behavior of polycrystalline 

cartridge brass are explored with two CP model forms and two characteristic SVE sizes. 

Uncertainty is attributed to numerical imprecision in homogenization and variability in 

microstructure. 

 The SVE instantiations from Dream3D contain variability. Grain shape and 

texture were not varied. The size of grains and the number of grains per SVE were highly 

variable. The statistics of the grain size distributions of each SVE are shown in Figure 4.8 

and Figure 4.9. A cluster of SVEs with much lower than average grain number are 

present in the smaller sized SVE ensemble.  
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Figure 4.8. Pairwise scatter plots of the grain size statistics which belong to each SVE in 

the ensemble of 100 smaller polycrystalline volumes. Kernel density estimates (kde) of 

individual statistics are shown on the diagonal subplots. The y-axis of the kdes show 

probability density and have minima of zero. 
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Figure 4.9. Pairwise scatter plots of the grain size statistics which belong to each SVE in 

the ensemble of 30 larger polycrystalline volumes. Kernel density estimates (kde) of 

individual statistics are shown on the diagonal subplots. The y-axis of the kdes show 

probability density and have minima of zero. 

 The CP simulations present variability in stress response to deformation. This 

variability is apparent in the results shown in Figure 4.10.  
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a)  

b)  
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c)  

d)  

Figure 4.10 a, b, c, d. The results of the CP-SVE simulations for both SVE sizes and CP 

model forms. 

This variability reflects the microstructure variations present in the SVE ensembles. The 

approximation of the SVE results using the BCJ model largely captures this variability. 
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The discrepancy between the CP-SVE results and the BCJ approximations is formulated 

as 

      ˆ,strain ,strain strainM M

CP i BCJ iY SVE Y Error  θ  (51) 

where  ,strainM

CP iY SVE  is the CP model response (axial stress) of the i -th SVE and as a 

function of axial strain,  ˆ ,strainM

BCJ iY θ  is the BCJ model response given the i -th 

calibration parameter estimate ˆ
iθ  as a function of axial strain, and  strain  is the bias of 

the BCJ approximations as a function of axial strain. This formulation is applied to each 

combination of CP model form and SVE size included in the study. The bias of the BCJ 

approximation is shown in Figure 4.11. The bias is larger for the homogenizations based 

on the smaller SVEs. 
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Figure 4.11. The bias as a function of the applied axial strain history for each 

combination of SVE size and CP model form.  
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 The error term is treated as a random variable. The variation of the residual 

between the target (CP) and the approximation (BCJ) is affected by numerous factors. 

The calibration algorithm, the limitations of the reduced order model, and the variations 

contained in the SVE ensemble all influence this mismatch. There is a complicated 

covariance between different parts of the residuals as functions of axial strain. The details 

of this covariance left to later discussion. Without involving the covariance of the error, 

the error can be described as a normally distributed random variable whose variance is a 

function of the deformation history. This variance is shown in Figure 4.12.  

 

Figure 4.12. The standard deviation of the error between the BCJ model and the target 

CP-SVE results as a function of the applied axial strain path. 
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 The error of the approximation was small relative to the variation captured by the 

approximation. This is measured by the coefficient of determination, 2R . For each 

ensemble, the 2R  was taken for each SVE. The compiled values are shown in Table 4-5. 

The minimum value of 2R  for each ensemble is the worst case of the approximation 

procedure.  

Table 4-5. The coefficient of determination of the different homogenizations as averaged 

over each ensemble and as minima of each ensemble. 

2R  
320 el with dirA   

320 el 0dirA    330 el with dirA   
330 el 0dirA   

Average 0.999417 0.999587 0.999656 0.999734 

Minimum 0.998129 0.997812 0.999515 0.99954 

 

 The BCJ approximations reflect all the microstructure dependent variability in the 

values given to the six calibration parameters. To show the relationships between the 

many parameters, which are implied by the fitting procedure, a correlation scatter-plot is 

included for each pair of calibration parameters. Each point in each of these plots 

represents the BCJ parameter values corresponding to a single SVE simulation. These 

scatter-plots are organized into a matrix layout, with each calibration parameter in turn 

appearing on the y and x axes. Along the diagonal of this matrix layout, KDEs are used to 

show the distribution of the values for each parameter individually. A matrix layout of 

scatter-plots is shown for each homogenization (Figure 4.13, Figure 4.14, Figure 4.15, 

and Figure 4.16). The correlation of the elastic stiffness via Young’s modulus, E , and the 

initial yield strength, Y , is strongly positive in all four cases. This is quantified in each 

correlation matrix shown in Table 4-6. Parameter value means and standard deviations 

are also shown in Table 4-6. Model form and microstructure influence the BCJ estimates. 
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In the case of the kinematic hardening modulus, 
dr , the kinematic hardening from the CP 

model back stress is captured along with the inter-granular kinematic hardening which 

occurs in polycrystalline metals. The difference in 
dr between the two CP model forms is 

large and is present in all SVEs nearly equally. The effect of the microstructure 

instantiation variability on inter-granular kinematic hardening is inherently variable. By 

inspecting the ratio of 
St.D.

Mean
 of 

dr , evidence supporting this breakdown of the inter- and 

intra-granular kinematic hardening can be found. In the small SVE case without back 

stress, the ratio is 0.6. When back stress is excluded from CP, inter-granular kinematic 

hardening mechanisms dominate kinematic hardening behavior at higher length scales. 
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Table 4-6. Correlation coefficients between the BCJ parameters calibrated to individual 

SVEs. Mean values, standard deviations, and the standard deviation relative to the mean 

of each parameter is also shown. 

30, w E  H  dR  Y  h  dr  Mean St.D. 
St.D.

Mean
 

E  1.00 0.90 -0.51 0.95 0.45 0.56 112883 10950 0.097 

H  0.90 1.00 -0.22 0.85 0.52 0.44 1032 97 0.094 

dR  -0.51 -0.22 1.00 -0.53 -0.28 -0.44 0.0708 0.0087 0.123 

Y  0.95 0.85 -0.53 1.00 0.24 0.47 71.13 5.03 0.071 

h  0.45 0.52 -0.28 0.24 1.00 0.62 14264 1506 0.106 

dr  0.56 0.44 -0.44 0.47 0.62 1.00 120.1 5.72 0.048 

20, w E  H  dR  Y  h  dr  Mean St.D. 
St.D.

Mean
 

E  1.00 0.87 -0.59 0.98 -0.19 0.10 113021 21241 0.188 

H  0.87 1.00 -0.33 0.88 0.09 0.08 1039 190 0.183 

dR  -0.59 -0.33 1.00 -0.57 0.04 0.04 0.0670 0.0151 0.225 

Y  0.98 0.88 -0.57 1.00 -0.21 0.07 81.02 12.36 0.153 

h  -0.19 0.09 0.04 -0.21 1.00 0.41 6838 1544 0.226 

dr  0.10 0.08 0.04 0.07 0.41 1.00 84.1 11.06 0.131 

30, no E  H  dR  Y  h  dr  Mean St.D. 
St.D.

Mean
 

E  1.00 0.80 -0.49 0.88 -0.02 0.11 121041 11841 0.098 

H  0.80 1.00 -0.02 0.63 0.23 0.27 1248 124 0.099 

dR  -0.49 -0.02 1.00 -0.72 0.55 0.51 0.1112 0.0136 0.122 

Y  0.88 0.63 -0.72 1.00 -0.40 -0.28 85.67 6.14 0.072 

h  -0.02 0.23 0.55 -0.40 1.00 0.90 1689 737 0.436 

dr  0.11 0.27 0.51 -0.28 0.90 1.00 57.7 14.75 0.255 

20, no E  H  dR  Y  h  dr  Mean St.D. 
St.D.

Mean
 

E  1.00 0.77 -0.56 0.93 -0.71 -0.43 122974 24033 0.195 

H  0.77 1.00 -0.18 0.78 -0.34 -0.26 1247 221 0.178 

dR  -0.56 -0.18 1.00 -0.62 0.43 0.14 0.1047 0.0229 0.219 

Y  0.93 0.78 -0.62 1.00 -0.58 -0.34 87.63 14.74 0.168 

h  -0.71 -0.34 0.43 -0.58 1.00 0.64 1684 1010 0.600 

dr  -0.43 -0.26 0.14 -0.34 0.64 1.00 58.6 15.58 0.266 
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Figure 4.13. All calibration parameters used to fit the BCJ model to individual SVE 

simulations in scatter-plots, in a matrix layout. Kernel density estimates of each 

parameter are shown along the diagonal of the matrix layout. This figure contains the 

data from the homogenization of the larger SVEs simulated with back stress. 
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Figure 4.14. All calibration parameters used to fit the BCJ model to individual SVE 

simulations in scatter-plots, in a matrix layout. Kernel density estimates of each 

parameter are shown along the diagonal of the matrix layout. This figure contains the 

data from the homogenization of the smaller SVEs simulated with back stress. 
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Figure 4.15. All calibration parameters used to fit the BCJ model to individual SVE 

simulations in scatter-plots, in a matrix layout. Kernel density estimates of each 

parameter are shown along the diagonal of the matrix layout. This figure contains the 

data from the homogenization of the larger SVEs simulated without back stress. 
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Figure 4.16. All calibration parameters used to fit the BCJ model to individual SVE 

simulations in scatter-plots, in a matrix layout. Kernel density estimates of each 

parameter are shown along the diagonal of the matrix layout. This figure contains the 

data from the homogenization of the smaller SVEs simulated without back stress. 

 The libraries of ˆ
BCJθ  were used to inform the modeling of local variations in a 

larger-scale simulation. The finite elements of the larger-scale mesh were informed with 

individual estimates of  , , , , ,d dE Y H R h rθ , using random selection with replacement. 
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 The variability in the response of the elements of the larger-scale BCJ model is 

compared with the variability of the SVEs, the BCJ estimates of the SVEs, and the 

variability of SVE-sized sections of some larger CP simulations. This comparison is 

shown in Figure 4.17. The variability of results is lower for the simulations using SVEs 

with larger volumes. The difference in variability between the SVE ensemble results and 

the dissected larger CP simulation results could indicate the influence of longer range 

interactions on the local observed variability. This difference in variability also appears 

between the results of the BCJ approximations and the results of including those 

approximations in a larger scale FE mesh, suggesting that non-negligible longer-range 

interactions have effects on the local variability observed, despite the reduction in model 

fidelity. The CP results for the model without back stress exhibit increased variability at 

the onset of plastic deformation relative to the results of the model form which includes 

back stress. 

 Assuming that interactions are simulated between sub-volumes of the full field 

simulations, the sub-volume responses would be subject to spatial covariances. As a 

result, they would not represent independent samples of a random variable. In the 

following material, these sub-volume responses are treated as if they are independent. 

This is a useful simplification, given that the dominant effect in the variation between the 

sub-volumes is that of the randomly sampled differences in microstructure, which are 

ostensibly independent. 
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Figure 4.17. The standard deviation of axial stress (in MPa) as a function of mean axial 

strain, presented as a comparison of variability between modelling strategies.  

 The variability of the behavior of a 0.6 mm hexahedral volume of polycrystalline 

material is predicted by the mesoscale implementation of the BCJ model, and those 

predictions are compared to the variability of full-field CP simulations. Additionally, the 

SVE results and BCJ approximations are used to approach a prediction of the response of 

the same material and volume by using a naïve volume average of the appropriate 

number of simulations to equal the mesoscale volume. The standard deviation of these 

calculations is shown as a function of mean axial strain in Figure 4.18. The full field DNS 

present a large variation in relation to the other results. The remaining simulations present 

very similar levels of variability to one another. This marked underprediction of 
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variability is likely a result of long range interactions within the full field CP model that 

are omitted in the other simulations. Material response is correlated between adjacent 

volumes of material. In a statistical sense, this mimics a reduction in the number of 

independent samples of material response which are present in the overall response 

measurement. Notably, the BCJ model with local variations did not reproduce the larger 

variability observed in the full field CP results. The agreement between the full field 

models and the simulations based on the 320  element SVEs arises due to a canceling out 

of the local variation overprediction of the simulations of that SVE size (see Figure 4.17) 

with the mesoscale variation underprediction. This agreement is likely coincidental.  

 

Figure 4.18. The standard deviation of the axial stress response of mesoscale volumes 

predicted with the various modeling approaches. For completeness, naïve volume 

averaging of the smaller simulations is included as a point of comparison.  
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 An ECDF is generated for the axial stress at each value of mean axial strain. As 

an example, the distribution of BCJ approximations at 
33 0.04   is shown for two 

different CP model forms in Figure 4.19. To calculate the K-S statistic, the absolute 

difference between the two ECDFs is taken at all values of x , or 33 , in this case. The 

maximum of this difference becomes the K-S statistic. For the ECDFs shown in Figure 

4.19, the K-S statistic is 0.09.  

 

Figure 4.19. An example showing the ECDF of BCJ results at 0.04 axial strain, based on 

the two different CP model forms.   

 The K-S test is used to determine the probability that the two samples are taken 

from the same distribution. For a sample size and a K-S statistic, a probability is 

determined using the two-sided asymptotic Kolmogorov-Smirnov distribution. This 
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application uses this probability to indicate the information loss between the target 

sample and the approximation sample. 

 The information loss of the coarse-graining is quantified using the K-S test. The 

DNS of ten 0.6 mm sized-hexahedral polycrystalline volumes are used a target sample of 

the material response of C260 at 0.2 and 0.3 mm-sized hexahedral sub-volumes. 

Empirical cumulative distribution functions are calculated from the sets of results. The 

SVE ensembles, the BCJ approximations, and the elements of the mesoscale BCJ 

simulations are compared to the reference distribution of stress response to mean axial 

strain. The comparisons are made using the samples of stress responses in each at a 

specified applied strain, as seen in Figure 4.20. The two samples of results are considered 

to be from different distributions if the probability value drops below the significance 

level of 0.01. The approximations are successful if the probability value is high. This 

indicates the probability of the null hypothesis of the two sample K-S test: the two 

samples are drawn from the same distribution. 
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Figure 4.20. The K-S test of each set of simulation in comparison to the reference of the 

full field CP simulations of the polycrystalline material. The significance level used in 

this test is 0.01. 

 To isolate the variation of simulated response in a K-S test, the bias of the 

simulation methods was identified and removed. Bias was estimated by comparing the 

ensemble average response between the different approaches, the results of which are 

shown in Figure 4.21. The bias of the BCJ-based methods is more pronounced in the 

approximation of the CP model with back stress. The BCJ model is known to predict 

elastic-plastic transitions to be sharper than the predictions of a CP model. This is a result 

of the presence of material heterogeneity in the polycrystal plasticity simulation, as well 

as differences in the form of the flow rule. In the results from the CP model form with 

back stress, the elastic-plastic transition is more gradual, and less suited to being 
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approximated by this formulation of the BCJ model. The K-S test repeated for the model 

results, after compensating for the estimated bias, is shown in Figure 4.22.  

 

Figure 4.21. The estimates of bias in axial stress (MPa) as a function of mean axial strain. 

Bias is measured in comparison with the full field CP simulations, using the difference 

between the ensemble mean of response of each simulation approach.  
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Figure 4.22. K-S 2-sample test results for each simulation approach in comparison to the 

full field CP simulations. The test is performed using the bias corrected distributions of 

axial stress response as functions of mean axial strain. A significance level of 0.01 was 

used for this test. 

4.5.   Conclusions 

 The analysis of the results is organized into main topics. The CP model form 

study showed that the inclusion of back stress has effects on the predicted response at 

higher length scales. The results of the SVE size study shows that the 200 μm  SVEs 

have larger numerical uncertainty than the 300 μm  SVE ensemble. The correlations in 

BCJ parameter estimates are discussed. The capability of the BCJ model in describing 

plasticity at the mesoscale is found to require covariance information between adjacent 

coarse grain elements. A prediction of the coarse-grained covariance is formulated, based 
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on quantitative characterization of simulated microstructure. The value of correlation 

enforced local response measurements is discussed. 

4.5.1. Back Stress in Crystal Plasticity 

 The inclusion of back stress in the simulation of material response at the 

mesoscale allows for the meta-elastic behavior observed in C260 to be included in the CP 

model. This study had limitations with respect to data availability. As a result, 

experimental data of a cyclic loading of C260 could not be used to specify the ratio of 

kinematic and isotropic hardening in the calibrated model. This work relies on the 

observations of Wagoner (1982) to assert that the hardening behavior in the material is 

primarily kinematic up to strains of 0.04, after which the saturation of kinematic 

hardening leaves isotropic mechanisms as the dominant influence on response. Thus, the 

calibration of kinematic and isotropic hardening could be identified from the limited data.  

 As seen in Figure 4.13 through Figure 4.16, the exclusion of back stress in the CP 

model leads to coarse grained representations whose kinematic hardening is dominated 

by inter-granular kinematic hardening. When the microstructure is varied from simulation 

to simulation, the predictions of kinematic hardening are more variable for the back stress 

exclusive calibration (relative to the magnitude of the expected mean kinematic 

hardening, which is lower), as shown in Table 4-6. This effect clarifies the importance of 

choosing appropriate models in microstructure-sensitive approaches. The consequences 

of choosing a lower fidelity alternative may persist into coarse-grained predictions. 

 The BCJ model struggled to replicate the gradual elastic plastic transition shown 

in the CP simulations. The inclusion of back stress in the CP model led to an even more 
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gradual transition between elastic and plastic response as a function of applied strain. To 

mimic this feature of the simulated response, the BCJ model requires extreme values of 

hardening parameters which lead to algorithmic instability. This limitation affects the 

fidelity of the coarse-grained model, as can be seen in Figure 4.21. Future work may 

benefit from using models and approaches which can overcome this numerical limitation. 

4.5.2. SVE Size Effects 

 Both SVE ensembles used in this study (hexahedra of 200 μm  and 300 μm ) were 

too small to capture some interactions. From a homogenization of microstructure 

perspective, neither was sufficient in size or number. Rather than focusing on 

performance of homogenization, the focus of this work is to articulate the challenges to 

the coarse-graining of polycrystalline response at length scales at which inhomogeneity 

in response is present.  

 The K-S test suggested that the 300 μm  SVE ensemble performed better than the 

200 μm  SVE ensemble. A clear difference in information loss existed between the two 

sizes of approach, as compared to the 600 μm  simulations. This information loss was 

observed prior to the BCJ approximation (see Figure 4.20) as well as after the bias 

compensation (see Figure 4.22). The smaller SVE size ensemble overestimated local 

variability. In situations where coarse graining at scales near the maximum grain size is 

needed, some method other than the SVE ensemble approach may be necessary. 
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4.5.3. Correlations Between BCJ Parameters in the Calibration Set 

 The predictions of the BCJ parameters exhibited covariations between E ,Y , and 

H . This covariation is a topic of interest to surrogate model development. In this work, 

the GP model was used as a calibration aid, and not in place of the BCJ simulations (as 

would be the case in a surrogate modeling approach). Nevertheless, an identification of 

the origin of these correlations is of interest. 

 If the parameters of the BCJ model are identifiable given the calibration data 

used, the covariation in the parameters reflects a covariation of behaviors present in the 

data. Commonly, parameters of a material model are treated as random variables, and 

analyzed as if they exhibit independence. In this work, care was taken to avoid this. BCJ 

parameter estimates were considered as vectors of six associated quantities as opposed to 

samples from six independent random variables. In future work with GP models on this 

material, the type of approach shown may be warranted unless some stronger basis for 

independent parametric variation can be made. 

4.5.4. Spatial Correlation of Coarse-Grained Elements 

 Properties have spatial correlations in microstructure-sensitive simulations. These 

correlations have consequences when making predictions of the variability of properties 

while traversing length scales. At the length scales simulated in this work, a proportion of 

the correlations are not enforced in a naïve coarse-graining approach, i.e., an approach 

which does not consider the expected correlation between the simulated response of an 

SVE and the response of a neighboring volume. 
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 The BCJ local variations model underpredicted the variance of response in 600 

μm  SVEs. The coarse-grained BCJ model with local variations was populated with 

parameter values without enforcing correlations between adjacent elements. The severity 

of the variance underprediction suggests that these correlations have significant effects on 

the variability of mean response as a function of SVE and coarse-graining element size. 

 The variances predicted by each model were compared to estimate the number of 

independently sampled calibrations whose average would vary in keeping with the full-

field simulations. The predictions are shown in Figure 4.23. The mean of four BCJ 

approximations of SVEs of 300 μm  in length had the most similar variance of response 

to that of the 600 μm  length CP simulations. If the full field volume is composed of 300 

μm in length sub-volumes and the response of each sub-volume is assumed to be 

independent of nearest neighbors, the mean of eight BCJ approximations would be 

needed to match variances. Such a significant difference (four instead of eight) suggests 

that the use of fully independent results in the informing of the coarse-grained model is 

not a viable approach for making predictions at the mesoscale for this material. 
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Figure 4.23. The variability predictions based on a reduced number of independent sub-

volumes which correspond to the full-field variability. The number of samples used is 

shown in parenthesis in the legend.  

4.5.5. Microstructure Quantification Based Prediction of Coarse-Grained Correlations 

 Microstructure determines the correlation between the responses of adjacent 

volumes. Grains which occupy multiple adjacent coarse-grained elements lead to 

covariance of the mean responses of those coarse-grained volumes. A simple algorithm is 

used to calculate the proportion of volume in SVEs of a given size which is occupied by 

these “boundary-split” grains. A 2d section is taken from each SVE, and two 

perpendicular lines are drawn on the section. The grain containing the intersection is 

counted three times, the grains intersected by either line are counted twice, and the other 
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grains appearing in the section are counted once. This frame is shown in Figure 4.24. The 

volumes of the grains 
iV  are multiplied by the counting multipliers 

im , and the sum is 

divided by 6 times the total SVE volume, i.e., 

 

 Corr SVENN E ,  for an SVE ensemble
6

i i

grains i

SVE

mV

V



 
 
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 
 
 


  (52) 

where E[x] is the expected value of x, here for the ensemble of SVEs, and 

 Corr SVENN  is the estimated correlation between nearest neighbor SVEs in a coarse-

grained model. The counting multipliers, along with the division factor (6) are included 

to account for the dependence of the covariance of regions which split a homogenous 

volume on the proportion of that shared volume in either region. The covariance is 

highest when the volume is split evenly. When counting grains on a planar section, lines 

and points have increasing preference for grains which are (A) larger and (B) bisected at 

a plane nearer to the grain’s centroid, assuming equiaxed spheroidal grains. The 

formulation is left as simple as possible, while reflecting the conditions imposed by 

periodic boundaries. 
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Figure 4.24. The counting frame used to estimate the shared volume for an SVE of a 

specific size. Numbers represent im  for each grain shown. Periodic boundaries are 

imposed.  

 The correlation of adjacent SVE sized volumes in the full-field simulations was 

calculated to compare with the above microstructure characterization base approach. The 

statistically measured full-field correlations were taken only in-plane, for the plane 

normal to the loading direction. This was done to avoid including the micromechanical 

covariation of stress along the loading direction in the estimate of microstructure-specific 

covariation in stress response. The correlation was averaged in an equal weighting of 
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stress values as a function of strain. These results are shown alongside the results of 

estimates of the shared volume correlation in Table 4-7. The precision of the match is 

considered coincidental, as many influential factors were not included, and the 

correlations change as a function of applied strain. 

Table 4-7. The estimates of the correlation which applies when embedding the properties 

of SVE results adjacently in a coarse-grained mesh. 

Coarse-Grained Nearest Neighbor Correlation Coefficient Estimates 

SVE Size Full-Field Statistics 

with A   

Full-Field Statistics 

without A   

MS-Characterization Based 

Estimates 

200μm   0.340 0.299 0.342 

300μm  0.212 0.186 0.218 

 

4.5.6. The Scale-Separation of Interaction Lengths 

 Coarse-graining of polycrystalline plasticity at the sub-RVE scale requires a 

separation of interactive and covariance effects by length scale. Localized simulations are 

needed to inform the material response at the length scales between single crystal and 

RVE. These local simulations do not contain all essential correlation lengths that 

influence the spatial covariance of microstructure and response. These additional 

covariances must be included as an additional “layer”. When informing a coarse-grained 

mesh, the local measurements must be used in conjunction with a correlation enforcing 

algorithm. This algorithm may need to be designed with the consideration that the 

parameters of the coarse graining (CG) model (BCJ in this work) and the response of the 

material may not have a linear relationship. As a result, interpolations in the CG 

parameter space may not suffice as a means of interpolating response. If interpolation is 
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used to enforce correlations in the CG mesh, it will depend on a detailed model of 

parameter effects. The development of such an approach is left to future work 

4.5.7. Summary 

 The conclusions of the work are summarized. SVEs which are too small will 

over-estimate variability specific to their length scale, as was observed with SVEs of 203 

elements. The exclusion of back stress from a CP model will result in kinematic 

hardening predictions of purely inter-granular character. Parameters which describe 

related behaviors are subject to covariation. Spatial correlations omitted from a local 

coarse-grained approximation are necessary to include in predictions of variability at 

length-scales larger than the SVE length of the approximation. 
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CHAPTER 5. MULTISCALE MODEL DEVELOPMENT: 

MICROINDENTATION AND MESOSCALE VARIABILITY IN 

POLYCRYSTALLINE CARTRIDGE BRASS 

 In this chapter, a multiscale model development strategy is proposed for a 

reduced-order mesoscale model for a polycrystalline ductile metal. Data is gathered on 

the deformation response to load of cartridge brass at two separate length scales. Uniaxial 

tensile test data, paired with EBSD image data, is used in calibrating a crystal plasticity 

(CP) model of polycrystalline cartridge brass. Microindentation data is gathered using 

cartridge brass specimens with matching microstructure statistics. A bottom-up pathway 

is established using Dream3D and the CP model to simulate statistical volume elements 

(SVE). A top-down pathway is outlined using the microindentation data and FEM 

simulations of microindentation. A multi-objective calibration is proposed to identify the 

reduced-order model designs to be used in a multiscale application. 

5.1.   Introduction 

 The maturation of additive manufacturing (AM) is leading to the rise of 

increasingly intricate components in demanding applications (Bikas et al., 2016; Frazier, 

2014). The features of these parts will soon exist at the same length scales as features of 

the microstructure (Hirt et al., 2017). For these components, the influence of material 

response variability and feature geometry will likely interact in determining the reliability 

of a specific design. To optimize feature geometry and microstructure, a model may be 

needed which can capture the influence of both. 
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 Engineering models cannot yet capture the interactions of microstructure and 

geometry which influence performance (Francois et al., 2017; Hirt et al., 2017). 

Designing a new modeling tool will require a consideration of both cost and fidelity. 

Homogeneous treatments are unsuited to capturing microstructure-sensitive response. 

The expense of full field resolution of microstructures may make CP modeling cost-

prohibitive to engineering applications. A reduced-order model of ductile metal plasticity 

which can approximate mesoscale response variability may be appropriate as a 

compromise of cost and fidelity. 

 To avoid bias in the model, the bottom-up CP-SVE simulations are used in 

conjunction with top-down observations of mesoscale variability. Microindentation has 

been historically used as a non-destructive test of material properties (Bishop et al., 1945; 

Blau, 1986). Recently, nanoindentation has been proposed as a method for gathering high 

throughput observations of local materials properties (Weaver et al., 2016). In this work, 

microindentation is used as a top-down data source for variability in the mesoscale 

response of polycrystalline cartridge brass. 

 To develop a computational engineering tool for mesoscale polycrystalline ductile 

metals, a reduced-order modeling approach is proposed along with a multiscale approach 

to the calibration and design of that model. Microindentation measurements, 

microstructure statistics, and uniaxial tensile tests are used to develop a multiscale 

calibration dataset. Discussion is focused towards the obstacles to model development 

and model formulations which may lead to improved multiscale performance.   
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5.2.   Methodology 

 The proposed multiscale model development framework is described in detail in 

this section. The content is divided into three subsections: the bottom-up pathway, the 

top-down pathway, and the multiscale development criteria formulation.  

5.2.1.  Bottom-Up Pathway: CP-SVE 

 This section describes the steps involved in connecting crystal plasticity to 

mesoscale response variability predictions. A previously calibrated CP model is 

identified. The microstructure statistics of the material are used with Dream3D to 

generate finite element mesh instantiations of the material. A sufficient size is identified 

for the SVEs to capture variation in mesoscale response. An ensemble of SVEs is used to 

comprise a BU prediction of mesoscale response and variation.  

 The initial work for the BU pathway is taken from the work of Chapter 4. The 300 

μm  SVE ensemble is chosen to investigate variability in the material response at the 

mesoscale.  

5.2.2. Top-Down Pathway: Spherical Microindentation 

 This section contains a stepwise description of the methods used to establish a 

top-down connection pathway from spherical microindentation to the mesoscale 

variability of material response to loading. These steps are outlined here, and details are 

provided in the remainder of the section. Brass sheet is cut into samples, characterized by 

visual microscopy, and compared to the BU statistics. Microindentation experiments are 

carried out on samples of annealed rolled cartridge brass plate at room temperature. 
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Variations in deformation response to two different indentation loads is measured within 

each set of 50 tests per load. FEM simulations of microindentation is used to relate 

measurements to material variability.  

5.2.2.1. Specimen Preparation and Characterization 

 The Cartridge brass samples are taken from plate procured from McMaster-Carr. 

The specimen from McMaster-Carr is to specifications of ASTM standard B36. The plate 

measured 0.125" 0.007"  thick and 6"  square. The material is ½ hard, with a heat 

treatment H02. The plate is cut into small samples of roughly 0.5 2in  in area using a 

waterjet cutter (Maxiem 1515 manufactured by Omax) operated by the Georgia Tech 

Invention Studio. 

 The material samples are prepared for characterization and testing. Sample 

preparation was performed by Theodore Zirkle. The samples are mounted in Bakelite, 

forming cylindrical mounted samples with circular top surfaces of 3 cm in diameter. The 

mounted samples are polished under 5-10 lbs force per sample at 100 rpm for 1 minute 

using ALO paper for each at three grit levels, P220, P500, and P1200 with water as a 

lubricant. Polishing is continued with 1 μm  DIAMAT diamond abrasive grit on an 

ATLANTIS polishing pad with DIALUBE Purple Extender lubricant for an additional 

two minutes. Polishing is concluded with 0.05 μm  alumina grit on a NAPPAD polishing 

pad at 100 rpm for one minute. The details of polishing are summarized in Table 5-1. 
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Table 5-1. The stepwise details of the polishing procedure followed in preparing the 

C260 samples. 

Abrasive Surface Lubricant Force per 

sample 

Speed Duration 

P220 grit ALO paper Water 5-10 lbs 100 rpm Until planar 

P500 grit ALO paper Water 5-10 lbs 100 rpm 1 min 

P1200 grit ALO paper Water 5-10 lbs 100 rpm 1 min 

1 μm  

DIAMAT 

diamond 

ATLANTIS 

polishing 

pad 

DIALUBE 

Purple 

Extender 

5-10 lbs 100 rpm 2 min 

0.05 μm  

Nanometer 

alumina  

NAPPAD 

polishing 

pad 

None 5-10 lbs 100 rpm 1 min 

 

 A sample is etched to characterize microstructure. Etching was performed by 

Theodore Zirkle. The etching is completed in three steps. The first step consists of an 

immersion of the polished sample in dilute ammonium hydroxide. Pace Technologies 

pre-mixed etchants, Copper No. 1 and Copper No. 2 are used by swabbing the sample 

with the etchant. The details of the etching procedure are summarized in Table 5-2. 

Table 5-2. A stepwise summary of the etching procedure used in this work. 

Etchant Concentration Application 

Dilute NH4OH/H2O Dilute Aqueous Immersion 

Pace Technologies 

Copper No. 1 

50% (v/v) DI Water 

50% (v/v) Nitric Acid 

Swabbing 

Pace Technologies 

Copper No. 2 

80% (v/v) DI Water 

20% (v/v) HCl 

40g/L FeCl3 

Swabbing 

 

 Microstructure statistics are gathered from micrographs of the etched specimen. 

Micrographs were taken by Theodore Zirkle. The optical microscopy is performed using 
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a Leica DM IRM microscope, and the sample is placed on a Prior Proscan electronic 

stage. Micrographs are taken at 2.5X and 10X magnification. Micrographs are obtained 

using a Photometrics RS CCD camera operated using Imagepro MC imaging software. 

An example micrograph is shown in Figure 5.1. Analysis of the micrographs (performed 

by Theodore Zirkle) provided grain size statistics of a lognormally distributed type, with 

a mean apparent grain size of 71 μm . 

 

Figure 5.1. A 10X magnification micrograph taken of the etched and polished sample of 

the C260 H02 plate obtained from McMaster-Carr.  

5.2.2.2. Microindentation Procedure 

 Proprietary microindentation equipment is used to perform testing. Spherical 

microindentation testing was performed by Theodore Zirkle, using a Futuretech FR-e 
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indenter. The indentation tip is a Leco 1/16” (1.58mm) ball indenter, which meets the 

ASTM E-18 standard. The Futuretech indenter can only apply specific magnitude loads. 

The loads used in this study are 60 kg and 100 kg. Each load is applied to points on the 

surface of the sample, with a 3 mm separation between points. A total of 50 tests are 

performed at each of the two specified loads. Measurements of the radius of each 

indentation are gathered by using imaging software to analyze micrographs taken after 

testing. 

5.2.2.3. FEM Simulation 

 To relate the testing results to material response, a FEM simulation was 

performed. The FEM simulation was performed using ABAQUS (Simulia, 2007)The 

details of the simulation are summarized in this section, with specific attention given to 

the mesh construction and the material model used. Theodore Zirkle performed the 

simulations described in this section. 

 A mesh was created to accommodate the loading conditions of spherical 

microindentation in an efficient simulation. The mesh is based on work of a previous 

student on FEM simulations of spherical nanoindentation (Priddy, 2016). The simulation 

mesh is a 2D axisymmetric formulation, with the axis of symmetry at the point of initial 

contact of the indenter and the sample. The mesh has a free surface at the top and outer 

boundaries. The bottom boundary is displacement controlled in the z-direction (parallel to 

indentation direction). The mesh density is varied linearly to maximize resolution at the 

critically stressed region. An image of the mesh is included in Figure 5.2. 
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Figure 5.2. The axisymmetric mesh used in initial simulations of microindentation. 

 A material model was created by fitting tensile test data. The tensile data was 

taken from published work on cartridge brass with matching microstructure statistics 

(Carroll et al., 2012). Abaqus’s built in piecewise linear model was fitted to the tensile 

response corresponding to the mean grain size of 71 μm . The model is isotropic and rate 

insensitive. The indentation is performed in simulation until a target applied load is 

reached. 

 The material model is varied linearly to investigate the sensitivity of 

microindentation radius to material response. A response coefficient is used to 

multiplicatively modify the material response to a given stress, i.e., 

    Coef. f    (53) 
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where   is stress,  f   is the modeled strain response to stress, and  Coef.  is the 

response coefficient. Microindentation simulations are performed using a range of values 

for the response coefficient between 0.88 and 1.12.  

 The influence of the response of spatially distinguished volumes on the variation 

of indentation radius is investigated. The variability of the indent radius at fixed load is 

compared for a range of response coefficient values, applied to the entire simulation 

volume. An additional comparison is made, only modifying the response of the material 

within the critically stressed volume (defined at maximum indent depth). 

5.3.   Initial Results 

 Microindentation data is presented. Initial FEM simulations are used to 

investigate the volumetric domain of the material response which influences the 

variations found in the microindentation data. 

 Two loads are investigated. The 60 kg load indentations are observed with a mean 

indentation radius of 388.1 μm  and a standard deviation of 3.13 μm . The 100 kg load 

indentations are observed with a mean indentation radius of 490.9 μm  and a standard 

deviation of 3.85 μm . The data are shown in histograms in Figure 5.3 and Figure 5.4. 
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Figure 5.3. A histogram of the 60-kg load spherical microindentation measured radii. 
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Figure 5.4. A histogram of the 100-kg load spherical microindentation measured radii. 

 Initial FEM simulations are used to explore the relation of the measured quantity 

to material response. A 60-kg load is used in the initial simulations. The indentation radii 

are shown in Figure 5.6. The volume of material critically stressed (>90% of maximum 

stress) is measured and shown in. The critically stressed volume only contributes 12.1% 

of the variation in measured indentation radius, relative to the variation from modifying 

the response of the entire simulated material volume homogenously. It is noted that the 

simulations predict indentation radii which are larger than the experimentally observed 

values by a factor of two. 
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Figure 5.5. The critically (>90% of max) stressed volume in microindentation as 

simulated. 

 

Figure 5.6. Initial simulated indentation radii sensitivity to modification of material 

response in entire material homogenously, and in only a critically stressed volume of the 

material. 
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5.4.   Discussion 

 The remaining challenges of informing polycrystalline response variability from 

microindentation data are discussed. The use of a set of CP-SVE microindentation 

simulations may be needed to explore interactions between microstructure and 

microindentation. The coordination of TD and BU information in reduced-order model 

development is outlined.   

 Microindentation variability and microstructure variability are not well linked. 

This connection requires a simulation of microindentation in order to relate the measured 

quantity (indentation radius) to an indication of material response as well as a volume of 

material associated with the measurement. Typically, this volume is estimated in an 

equally weighted sampling of grains, according to a relation of grain size and indentation 

stress zone size. It is yet to be determined if the dependence of the measured response is 

equally dependent on each of the grains in the affected zone. The model used to make 

this connection is a biasing influence on any subsequent connections between length 

scales. Additionally, the differences between the simulated indentation and the 

indentation-as-measured experimentally can have profound influence on the 

interpretation of the data. For example, the elastic deformation of the indenter tip may 

affect the observed indentation radius. An optimization of the TD pathway may be 

critical to the full development of a reduced-order multiscale model. 

 A fully resolved CP-SVE study of microindentation may be needed to explore the 

interactions of microstructure variability and the deformation of microindentation. Initial 

simulations suggest that material response outside the critically stressed volume has 
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greater influence on the observed indentation radius than the material response within the 

critically stressed volume. The extent to which material surrounding the plastically 

deformed region is included in the determination of the microindentation radius has not 

been fully explored. Such an exploration is needed to aid in developing a reduced-order 

model of the deformation response.  

 A reduced order model which can be fitted to data from TD and BU will likely 

include certain capabilities. At the mesoscale lengths of interest, the response of an SVE 

is anisotropic. Given that the loading conditions of the BU (uniaxial tension) and the TD 

(spherical microindentation) are different, a reduced order model which fits both datasets 

will likely need to reflect anisotropy in coarse-grained response. Given that the mesoscale 

lengths of interest are likely smaller than the largest lengths of measurable microstructure 

correlation, correlations between coarse-grained elements may be necessary to 

appropriately populate larger simulation volumes. 

 To summarize, an initial exploration of a multiscale development framework for 

modeling the mesoscale variability of deformation response in cartridge brass is 

performed. More work is needed to use microindentation to quantify microstructure 

response variability from TD. A full CP-SVE testing may be needed to explore the 

interactions of deformation and microstructure at the mesoscale. Coarse-grained models 

with support for anisotropic response may be necessary in candidate reduced-order 

models. 
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CHAPTER 6.  -TI TEXTURE EFFECT CALIBRATION IN THE 

MATERIALS KNOWLEDGE SYSTEM 

 Microstructure-sensitive modeling of materials is an expensive part of the ICME 

paradigm. Data-driven structure-property relation discovery algorithms, such as those 

based on the Materials Knowledge System (MKS) (Fast and Kalidindi, 2011; Kalidindi et 

al., 2010) accelerate microstructure-sensitive modeling, making it applicable to time-

sensitive use cases. The calibration of MKS to a new material system can be a time-

consuming procedure, and it requires the user to understand texture analysis, the crystal 

plasticity (CP) model used in the calibration, and the manner by which the MKS 

constructs a model for a material. Exercising the CP model is also the largest 

computational expense associated with the use of MKS. Optimization of the calibration 

procedure for MKS would both further accelerate the use of MKS and simplify the 

process for developing MKS for new materials. In this work, a typical approach to 

calibration of MKS is compared with a calibration method which uses Gaussian process 

(GP) based adaptive sampling in an application to  -Ti. The typical approach uses both 

known textures and hypothetical textures in a statistical volume element (SVE) ensemble 

approach to calibrate the MKS model for the predefined textures. The adaptive sampling 

method uses a systematic “binning of textures” procedure to generalize the MKS 

calibration across the range of feasible textures. The finite set of textures obtained with 

the binning procedure is indexed for use with the GP model using generalized spherical 

harmonic (GSH) functions, which constitute an orthonormal, primitive basis of texture. 

The number of SVEs in each ensemble is studied to assess effects on the efficiency of 
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exploring textures. The predicted variance of the GP at randomly selected textures is 

correlated with the validation uncertainty of the MKS model calibrated on the set of SVE 

ensembles which inform the GP. The validation of the MKS model is used as a measure 

of calibration success and is used to determine the relative merit of the different 

calibration approaches considered. The results of the approach indicate the influence of 

misorientation in polycrystalline response. Improvements supporting the use of MKS as a 

predictive tool are discussed. 

6.1.   Introduction 

 The Materials Knowledge System is a collection of structure-property relationship 

discovery tools (Kalidindi et al., 2016; Paulson et al., 2017; Wheeler et al., 2014) and is 

implemented in python as PyMKS (Wheeler et al., 2014). The homogenization model of 

MKS links microstructure to properties with sophisticated regression methods. The 

properties are interpolated from results of CP simulation of SVEs. Microstructure is 

parameterized using two-point correlations between the crystallographic orientations of 

the material at each element in the SVE. Principal component analysis (PCA) is used to 

extract the most important correlations. A polynomial regression is used to explain the 

variation in CP results with differences in the microstructure. Once calibrated, the MKS 

homogenization method offers profound efficiency increases over CP simulations alone 

(Paulson et al., 2017). The design of the calibration dataset is the most computationally 

expensive and analytically intensive step for applying MKS to a new material. In order to 

expand on the advantages offered by MKS, this work uses a Gaussian process model to 

direct CP simulations in the exploration of a material system across texture. The 

challenges to this work are the high dimensionality of texture and the expense of high 
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precision simulations. Strategies are employed to make efficient use of computational 

time in the exploration of texture effects on properties. A systematic binning of texture is 

explored on a parametric basis.  

 When texture is part of the design space for a material, the definition of a hull 

(Adams et al., 2013a, 2013b) is needed. The microstructure hull is a convex set of texture 

definitions which contain all possible microstructures for the material system. Without 

this hull, the design space is incompletely defined, and unphysical microstructures might 

be preferred by optimization of the design parameters. The work in this chapter is a 

preliminary step in the design process. To simplify the calibration, the incorporation of a 

complete microstructure hull is left to subsequent work. 

 Data selection is a bottle-neck for algorithmic pattern-recognition. Differing 

notably from the scientific approach to data collection, data-driven applications require 

algorithms to work in an a priori use-case, i.e., the data needed to inform the algorithm 

must be collectible without expert knowledge guiding that collection procedure. To 

specify what this means in a material modeling context, the calibration of MKS for a 

newer material system is described. Assuming a CP model of this material is calibrated to 

experimental specimen testing such that it is considered accurate across all textures, an 

MKS model can be calibrated using the CP model. A scientific approach to the data 

selection for the CP to MKS calibration would explore the microstructure hull for this 

material. In a data-driven paradigm, the microstructure hull may or may not be available. 

The data-driven calibration of MKS for this new material could be used to investigate its 

potential design performance. This approach could motivate research investment in the 

material system. The data-driven data selection requires a generalizable procedure which 
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considers computational budgetary constraints. The data selection methods which abide 

by these requirements are significantly different from the traditional scientific 

approaches. Such differences are discussed in this work. 

 Generalized spherical harmonic (GSH) functions are used to provide reduced-

order representations of texture (Adams et al., 2013c, 2013d; Bunge, 2013). The GSH 

functions, mn

lT  , form an approximate basis for all definitions of textures,  f g  , in a 

crystallographic system, i.e., 

 
   

0

l l
mn mn

l l

l m l n l

f g C T g
  

  

   (54) 

where g  represents an orientation in Euler angle form,  1 2, ,   . This basis is navigated 

using coefficients 
mn

lC . While the GSH functions are an infinite series, they are truncated 

for use. The truncation leads to an approximate representation of texture space within a 

finite parameter space. The GSH coefficients are used to index the textures generated 

with a binning procedure such that they can be explored parametrically. 

 Gaussian Process (GP) models are used for regression, classification and as 

surrogates for more expensive models (Forrester et al., 2008; McHutchon and 

Rasmussen, 2011; Rasmussen and Williams, 2006). These GP models use kernel 

functions, whose hyperparameters are informed using observations over some specified 

input basis. The hyperparameters are tuned to maximize the conditional likelihood of the 

model, given the observations. The definition of the kernel function allows the GP to 

define predictions over the basis in terms of a mean function and a covariance function. A 
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Gaussian process model is used to monitor the exploration of texture space in the 

calibration simulation set. The GP model gives predictions of response as well as the 

predicted standard deviation from the mean at any point in the input space. Combining 

these predictions with an incremental data collection approach allows the design of 

experiments to adapt to the responses as they are measured. 

 Adaptive sampling has been used in materials design (Dehghannasiri et al., 2017; 

Gopakumar et al., 2018). Adaptive sampling methods depend on a feedback loop 

between observations and subsequent experiments. This feedback loop can be crafted 

with a surrogate model and an objective criterion. The surrogate model presents ‘best 

guesses’ of properties and uncertainty across the design space, based on collected 

measurements or simulations. In design problems, adaptive data collection is often 

approached as a two-phase procedure, composed of exploration and exploitation. In the 

exploration phase, new experiments are selected to maximize reduction to uncertainty. In 

the exploitation phase, experiments are chosen which are likely to improve upon the best 

possible observed design properties. The adaptive sampling application in this work uses 

an uncertainty reduction objective, i.e., it is exclusively employed in the exploration 

phase. In this work, a calibration of a MKS model for all textures is the desired outcome, 

as opposed to an optimization of a set of design properties. It is also noted that for this 

work, the CP-FEM simulations replace the laboratory experiments in the feedback loops 

of the examples referenced. 

 The use of GP surrogate models in high dimensional adaptive sampling has 

notable limitations. The GP model, under an uncertainty reduction sampling criterion, 

will tend to prefer the exploration of the “corners” of a parameter space, i.e., the 
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combinations of parameter values near to the maximum and minimum of a space. This 

tendency can be problematic for the case of GSH coefficients, for which the “corners” 

indicate aphysical combinations of GSH coefficients. Additionally, the exploration of 

these “corners” can be expensive in high-dimensional spaces. The work in this chapter 

efficiently avoids these issues by limiting the exploration to an independently defined 

data frame. The GSH functions and GP model are used to select from a limited set of 

textures by developing covariances in terms of a GSH space.  

  -Ti is the material modeled in this work. Ti-6Al-4V, also known as Ti64, is an 

important alloy in aerospace applications (Boyer, 1996). The two-phase alloy consists of 

the hexagonal   phase and the cubic   phase (Donachie, 2000). The alloy has useful 

fatigue and creep resistance, as well as the characteristically high specific strength of 

titanium. While the two phases appear as a mixture in Ti64, the work in this chapter 

models the texture of the   component alone, as a simplification of the full problem of 

texture and phase fraction. Krzysztof Stopka et al. approach the two-phase Ti64 problem 

in recent work (n.d.). Krzysztof Stopka implemented the crystal plasticity modeling and 

MKS work which is documented in this chapter. The crystal plasticity model used for  -

Ti in this work is taken from previous work (B. D. Smith, 2013; Zhang et al., 2007). The 

quantities of interest in this work are the texture dependence of the yield strength, Y , 

(measured as the 0.2% offset yield, 
,0.2%Y ) and the uniaxial elastic stiffness modulus, 

11E . 
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6.2.   Methodology 

 The systematic exploration of textures was approached as follows. Multiple 

calibrations were designed to explore the effect of binning textures and the use of the GP 

model. The design scheme is summarized in a flowchart in Figure 6.1.  

 

Figure 6.1. A flowchart of the calibration dataset design.  

 

The number of total simulations is held constant between calibrations to reflect 

computational budget constraints. Two control calibrations were designed which do not 

use a GP model: one which uses texture targets belonging to the binned procedurally 

generated set, the other using textures from previous MKS calibration work and are not 

contained by the binned set. Three calibrations are formulated to use GP-driven adaptive 

sampling with differently sized SVE ensembles. A set of textures chosen to maximize 

coverage in the calibration space are used to initialize the GP model. Batches of SVE 

ensembles are run at textures which have maximum predicted potential to reduce the GP 

prediction uncertainty. Validation sets are designed to test the performance of the 

calibrations in different situations. The validation sets are either selected from the binning 
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procedure or originate external to the binning procedure. The MKS models, calibrated on 

each calibration design, are compared in terms of mean relative error in predicting the 

results of the validation simulations. 

6.2.1. Data Selection: Texture Binning Procedure 

 A texture binning procedure was used to define a limited set of textures for use in 

the calibration of an MKS model. The section of Euler angle space which describes all 

hcp crystals is discretized by taking eight values of the first two Euler angles,  1 2, ,   . 

The third Euler angle, 2 , was not explored, given that the GSH indexing method used 

did not distinguish between different values of 2 . The 64 combinations of the discrete 

values are used in addition to random texture as a fundamental set of orientations. These 

orientations are used individually to establish the basic 65 textures. The texture set is 

expanded by including binary combinations of all 65 preferred orientations in ratios of 

0.25-0.75, 0.5-0.5, and 0.75-0.25. The total set of textures has 6,305 specific orientation 

distributions. 

 Random noise is added to sharp texture components when informing the SVE 

instantiations. The CP model depends on crystallographic differences between grains, 

rather than grain boundaries, to simulate a polycrystal. If sharp textures were imposed, 

the CP simulation would effectively combine grains of the same orientation into a single 

crystal. To reflect the grain size statistics used in the instantiation of the microstructures 

used in this work, random noise is added to the sharp textures when informing the grains 

of a SVE, prior to simulation. Noise is applied in a Euclidean space which is 
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subsequently mapped onto the Euler angle space. The mapping is performed for the hcp 

crystal system of  -Ti as follows: 

    
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Noise is added to the Euclidean coordinate for the sharp texture as a sample from a 

Gaussian distribution of mean 0 and variance 0.025, i.e.,  0, 0.025N . Random texture is 

drawn from the Euclidean space using a uniform distribution for each component. Each 

grain in an instantiation is assigned an orientation in this manner. 

 This binning procedure does not approach misorientation in any systematic way. 

It is expected that misorientation statistics have important effects on the homogenized 

stress response of a polycrystal to strain. The potential for these misorientation effects to 

be missing from the binned set of textures is acknowledged. The results of this study are 

used to suggest whether a larger, more sophisticated binning procedure which considers 

misorientation is necessary to generalize MKS across texture space.  

6.2.2. Calibration Design 

 The proposed calibration design contains a data-driven sampling loop. The 

components of this loop include GSH functions, a set of binned textures, an initialization 

dataset selection, the instantiation of microstructure volumes for simulation, the 

extraction of data from simulations, a sampling criterion, a stopping criterion, and a 

parametric exploration of the data collection approach. To provide context for the many 
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components described in this section, a flowchart of the sampling loop is shown in Figure 

6.2.  

 

Figure 6.2. A flowchart of the initialization and adaptive sampling loop employed in this 

work. 

 To initialize the GP calibration, an initialization dataset is selected. A set of SVE 

ensembles are selected to initialize a GP model which relates GSH coefficients to 

simulated yield strength and elastic stiffness of polycrystalline  -Ti. These initial data 

are expected to influence the results of the calibrations. To compare the approaches with 

consistency in starting conditions, the textures selected for the initialization set are 

chosen once and used for all the calibrations. The initialization set of textures contains 

0N  textures selected from the 6,305 combinations of the binning procedure. The 

selection of these textures depends on an indexing of the texture options using GSH 

coefficients. 
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 Four calibration datasets were used as controls to the GP based methods. The first 

control was made from the initial set of textures which were used to initialize the GP 

model in the other calibrations. In this control approach, the number of SVEs simulated at 

each initial texture was higher, totaling to the entire simulation budget. A random 

sampling of 240 textures in the binned set were simulated as an alternative strategy to the 

GP approach. These controls allow the effect of the GP model to be distinguished from 

the effect of the binning procedure and from the effect of different SVE ensemble size. 

The other control calibrations used previously specified textures as targets. These textures 

were taken from previous work on MKS for Ti64 (Paulson et al., 2017). These external 

textures were included to investigate limitations in the binned dataset. 

 The computational cost of the calibration is held fixed in comparing multiple 

approaches. The purpose of this constraint is to test these calibration approaches in terms 

of efficacy at a fixed cost. The cost of all CP-FEM simulations is calculated as 

  0 1runs SVE iterN N N N N  , (56) 

where runsN  is the total number of CP-SVE simulations in the calibration design, SVEN  is 

the number of SVEs in each ensemble, 0N  is the number of ensembles in the 

initialization batch, 1N  is the number of ensembles in each adaptive batch, and iterN  is 

the number of adaptive steps in the calibration. The parameter values are described for 

the different calibration designs in this work in Table 6-1. 
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Table 6-1. The design parameters for the calibrations which use the GP model and which 

use pre-selected textures*.  

Calibration Design 
runsN

  SVEN
 0N

  1N
  iterN

  
Total 

Textures 

GP-3 240 3 8 4 18 80 

GP-5 240 5 8 4 10 48 

GP-10 240 10 8 4 4 24 

Control-Binned 240 30 8       8 

Control-External 1 240 30 8       8*  

Control-External 2 240 30 8       8*  

Random Binned 240 1 240     240 

 

 The GSH functions are used to index the texture combinations generated in the 

binning procedure. The formula which calculates the GSH coefficients can be simplified 

for the summation of equally weighted orientations, i.e., 
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where mn

lC  are the coefficients for the GSH functions mn

lT  , l  is the degree of the 

function, J  is the total number of orientations, g , indexed by j  , and the asterisk 

denotes the complex conjugate. The 6305 textures are indexed by the first 15 GSH 

functions so that the textures can be located in a consistent parametric space. This 

parametric definition is a requirement for the exploration of these textures in a GP 

regression. 
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 The 15 GSH coefficients mn

lC   C  are mapped to equally sized intervals of 

uniform density, p . GSH coefficients can have complex values. The values for 

coefficients in the texture set may have ranges which differ from coefficient to 

coefficient. To avoid complications which could arise from using a GP model on a 

complex and anisotropic parameter space, a mapping is applied to C . Symmetry of the 

crystal system allows the separation of the real and imaginary components of the 

complex valued coefficients. 0,0

0C  is not included in p , as it is not variable. The values of 

each component of C  for each included texture are mapped to the interval  0,1  and 

given uniform spacings. The values of p  are used in the GP model. 

 The initialization texture set is chosen according to an algorithm to fill the GSH-

space. 0N  textures are selected from the 6,503 procedurally generated textures by 

identifying the 0N  points in GSH-space which refer to those textures. The first point is 

selected from the binning procedure set at random. The subsequent points are chosen 

such that the minimum of the Euclidean distances between the new point and all 

previously identified points is maximized. Due to the randomness of the first selection, 

this method can be repeated to investigate the effects of the initialization on the 

calibration performance. 

 Dream3D is used to generate the microstructure instantiations used in the CP 

simulations (Groeber and Jackson, 2014). The grain size distribution is defined using a 

discretized lognormal distribution with 10 equally spaced bins, defined according to 
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where the parameter   is equal to 4.064 and   is equal to 0.264. The grain shapes are 

assumed to be equiaxed. The microstructures are generated prior to the calibrations. The 

orientation of each grain is overwritten to reflect the selected texture. As a result, for 

those calibrations which use the binning procedure, the influence of the inherently 

variable procedure of microstructure instantiation on the difference in the calibrations is 

minimized. A notable exception to this procedure is the second control calibration, whose 

SVE instantiations are generated using Dream3D and orientation distribution data. 

 The initialized GP model is used to select textures for subsequent simulations. 

Points in GSH-space which correspond to procedurally generated textures are selected 

which have the highest predicted variance. The GP model is used to predict the standard 

deviation from the mean predicted response, i.e., 

    1 2 14, , , ,GPE p p p   p p  (59) 

where  E w  denotes the expected value of some quantity w , p  is the vector of 

parameters ip  which correspond to the GSH coefficients, mn

lC , each mapped to the 

closed interval,  0,1 , and GP  is the estimated standard deviation of the GP, defined as a 

function of p . For each subsequent batch of 1N  SVE ensembles used in the calibration, 
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p  values are chosen according to an algorithm. For all textures in the binned set, 
GP  is 

predicted. The textures whose 
GP  values are above the cutoff criterion, i.e., 

          max max minGP GP GP GPtol      p p p  (60) 

where the maximum and minimum refer only to the values for the binned textures. The 

value used for tol  is set to select the top 50 to 100 values. Of those selected textures, the 

maximal value is taken as the first point of the next batch. Each subsequent point is taken 

by searching the selected samples for the point with the maximal minimum distance to 

the already selected new points. 

 The number of SVEs per ensemble used for the GP calibrations, SVEN , is smaller 

than typical of SVE ensembles. This SVEN is a parameter of the calibration and is large 

enough to provide a reasonable estimate of the variance of the SVE results within each 

ensemble. Due to the interpolation from the GP model, multiple small ensembles can be 

used to explore more of the parametric space at a lower precision. The work in this 

chapter explores whether this strategy can give more efficient reductions in the expected 

deviation from the predicted mean than can fewer, larger ensembles.  

 Smaller ensembles of SVEs are used in informing the GP model. The cost of the 

calibration is fixed, as is the total number of simulations. To explore texture more broadly 

in a calibration of the MKS model, smaller ensembles of SVEs must be used. The 

properties determined by small SVE ensemble are inherently noisy. To accommodate that 

noise in the GP, the kernel of the model is built with a noise parameter. This parameter is 
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estimated from results of simulations on a larger ensemble of SVEs. The unbiased 

predictor for the variance of the SVE response for 
Y , written here as 

ix  , is given as 
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where SVEN  is the number of SVEs in the ensemble, m  is the mean of the ensemble of 

responses, and 
2̂  is the unbiased estimate of population variance, 

2 . This informs the 

GP via a hyperparameter  , which determines the level of noise to expect in the data. 

Without an appropriate level of noise, the solution of the covariance equations would 

become singular for any points that are close together in GSH-space.  

6.2.3. Gaussian Process Regression Model 

 The texture space was adaptively sampled using the GP model. The expected 

value of the standard deviation GP  of the GP model was maximized to find the next 

texture to explore. By investigating the texture defined by the maximum of GP , the 

expected reduction in uncertainty of the GP is maximized. The use of this  max GP  

criteria replaces the need for a list of expert-designed texture classes to generate a design 

of experiments for the calibration of the MKS model. 

 The GP formulation used predicts the ensemble average elastic stiffness and 

offset yield strength from the GSH approximation of the texture bin which corresponds to 

the SVE ensemble simulated. I.e., 
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    , ~yE E E GP   p   (62) 

where  E E  is the ensemble average of the elastic stiffness, yE     is the expected 

value of the 0.2% offset yield strength, and p  is the linear mapping onto  0,1  intervals 

of the 14 GSH coefficients used to parameterize the texture bins.  

 The adaptive sampling is performed on 1-point statistics. As a result, the adaptive 

sampling can only include 1-point statistics in its coverage of the binned dataset. In other 

words, the variation of misorientations (a 2-point statistic) present in a binned dataset 

would not be explored by this GP model as formulated. The current binning procedure 

was not made to survey misorentations. However, should future work include 

misorientation in the binned data, the GP model would need to be made sensitive to those 

misorientations in order to adaptively sample that variation. 

 The python package scikit-learn (Pedregosa et al., 2011) was used to generate the 

GP model which relates the SVE ensemble-mean yield strength to texture. The Gaussian 

process regression module was used. The kernel function was constructed as a product of 

the squared exponential kernel and a constant kernel, with the white noise kernel 

function, i.e., 
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where h  and l  are hyperparameters controlling the scale and length of the squared 

exponential kernel function,   is the hyperparameter controlling the noise in the GP, and 

ij  is the Kronecker delta. The value of   varied with each SVE ensemble, as estimated 

from the response of the constituent SVEs. For more detail on kernel functions and GP 

models like the one used here, see the book by Rasmussen and Williams (2006). 

6.2.4. Crystal Plasticity Model and Simulations 

 The CP model of  -Ti was adapted from previous work (B. D. Smith, 2013; 

Zhang et al., 2007). The formulation is phenomenological and rate sensitive, and plastic 

deformation is calculated in the intermediate kinematic configuration. The kinematic 

treatment and the constitutive equations are outlined. 

 The deformation gradient of the material is decomposed multiplicatively into 

elastic (stretch and rigid rotation) and inelastic (dislocation motion) parts, i.e., 

 e in F F F   (64) 

where e
F  is the deformation gradient contribution of the elastic stretching of the lattice 

and the rigid rotation of the lattice, and in
F  is the deformation gradient contribution 

which arises from dislocation motion. The Asaro equation (Asaro, 1983) is used to 

express the inelastic velocity gradient in
L  in terms of the activities of the crystallographic 

slip systems, i.e., 
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where
0


m  and 

0


n  are the unit vectors in the slip and slip plane normal directions for slip 

system , and   are the crystallographic shearing rates. For  -Ti, the number of slip 

systems, 
sN , is 24 (Mayeur, 2004), including 3 basal, 3 prismatic, 6 first-order 

pyramidal, and 12 second-order pyramidal systems. Slip system details are compiled in 

Table 6-2. 

Table 6-2. The slip systems of  -Ti considered in the CP model. 

Name Number Family 

Basal 3  1120 0001   

Prismatic 3  1120 1010  

1st order Pyramidal 6  1120 1011  

2nd order Pyramidal 12  1123 1011  

 

 A power-law hardening model is used for the shearing rate relation. The 

constitutive shearing rate is given by 

 

 0 sgn

M

D

  

  



  
   

 
    (66) 

where 0  is the reference shearing rate,   is the resolved shear stress on slip system  , 

  is the back stress,   is the threshold stress, D
 is the drag stress, and M  is the 
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strain-rate sensitivity exponent. Here,   includes a Hall-Petch term and a softening term 

s

 , i.e., 

 
y

s
d

 


     (67) 

where 
y  is the Hall-Petch slope and d  is the mean slip distance.   evolves with the 

dynamic recovery of s

 , i.e., 

 
s s

           (68) 

where   is the softening rate coefficient. The drag stress does not evolve, and is defined 

as, 
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where CRSS

  is the critical resolved shear stress for slip system  , and  
0s t




 is given as 

a constant. Back stress evolves with direct hardening and dynamic recovery, i.e., 

 
Dh h          (70) 

where h  is the direct hardening coefficient and Dh  is the dynamic recovery coefficient. 
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 The model is used to simulate the response of  -Ti at room temperature. The 

values of the parameters used in the CP model are contained in Table 6-3. More detailed 

explanation can be found in Smith (2013). 

Table 6-3. The parameters of the CP model for  -Ti (B. D. Smith, 2013). 

Name Value Name Value Name Value 

(MPa) 

Name 

CRSS

   

Value 

(MPa) 

d   5 μm   h   8000 MPa 11C   172,832 prism   275 

0   10.001s   Dh   8000 12C   97,910 basal   350 

M   15    2 13C   73,432 pyr a   470 

y   0.512.7 MPa mm   0t    0 MPa   33C   192,308 pyr a c   570 

 
0s t




 50 MPa   44C   49,700   

  

 CPFEM simulations were performed to gather the elastic stiffness and offset yield 

strength of each cube-shaped SVE. The simulations were run using periodic boundary 

conditions and hexahedral elements of 10 μm  in size, with eight nodes and one 

integration point per element. The initial SVE size measured 290 μm  in each direction. 

Along one axial direction, the simulation boundary was displaced at a constant rate to 

impose an effective strain rate of 10.0012 s  in uniaxial tension at room temperature. 

Abaqus Standard (Simulia, 2007) is used, and the model is contained in a UMAT. 

6.2.5. Calibrations of MKS 

 Each set of calibration simulations is used to calibrate an MKS model of the 

homogenized response of  -Ti as a function of texture. The MKS calibration procedure 

includes the determination of certain parameters which influence the numerical 

uncertainty of the resulting model. The methods used in this work in evaluating these 
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parameters are detailed. The parameter values taken in this work are summarized in Table 

6-4. 

Table 6-4. MKS homogenization parameter values selected to compare calibration data 

selection approaches. LOOCV stands for leave one out cross validation. 

Parameter Value or Criterion 

L   15, (lowest calibration error) 

S-P Regression Order 1 

R    min LOOCV  ,  

a posteriori:  min % ,MRE validation   

 

 The number of GSH coefficients, L , to use in characterizing the microstructures 

must be chosen. Before MKS identifies the most important PCs from the 2-point 

correlation statistics, the number of GSH coefficients to consider is selected. The number 

of coefficients is typically 6, 15, or 41, reflecting the number of coefficients included 

when the maximum degree, l , is 2, 4, or 6. For the work here, 15 GSH coefficients were 

used. The relative performance of MKS models formulated with different numbers of 

coefficients was explored. The calibration error was used to select the best performing L  

value. 

 The maximum order of the regression terms is 1 for this work. The terms in the S-

P linkage equations are regressions of the PCs. The inclusion of linear terms in the 

consideration can allow linear patterns to be captured by MKS. The most appropriate 

value for the regression order depends not only on the expected underlying dependence 

of properties to structure but also on the degree to which the calibration data collected 

can inform these higher order regressive coefficients. All calibration datasets in this work 

contained 240 simulations. For these datasets, first order regressions were the most able 
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to capture the S-P linkages, as indicated by the mean relative error for the calibration 

data. 

 The number of PCs to be included in the regression model, R , is selected using 

leave one out cross-validation (LOOCV). This measure is used in previous work with 

MKS. LOOCV is used as a measure to prevent overfitting of the calibration data. The 

choices for R  are specific to each calibration and to each QoI (modulus or strength). The 

specific R  values chosen for each calibration are used to compare the various 

calibrations, and are shown in Table 6-5. In addition, the performance when R  is chosen 

a posteriori is considered. This selection procedure demonstrates possible performance 

gains. Achieving such performance using a priori methods is considered in the 

discussion. 

Table 6-5. The values of R , selected to minimize LOOCV errors for each calibration 

design. 

Calibration 

Design Name 
Best R  Value for 

Modulus, Strength 

Control-External 1 14, 14 

Control-External 2 13, 2 

Control-Initial Binned 29, 7 

Control-Random Binned 17, 18 

GP- 10SVEN    26, 27 

GP- 5SVEN    24, 26 

GP- 3SVEN    23, 36 

 

6.2.6. Validation Data 

 The validation of the MKS model was performed with data withheld during each 

calibration. Four validation sets of simulations were defined. A validation set was made 
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from the textures of each external set (1 and 2). A validation set was made from the 

texture bins used as the initialization data for the GP model. A validation set was made 

from single SVEs from 240 of the bins randomly selected without replacement from the 

6,305 texture bins. These validation sets are named and detailed in Table 6-6. 

Table 6-6. The validation simulation sets by name and description. 

Validation Set Description 

Same texture-External 1 Eight textures defined without binning, taken from 

previous work (Paulson et al., 2017) same as those used 

in Control-External 1 but with new microstructure 

instantiations 

Same texture-Initial Binned The eight initial textures used in all the GP-informed 

calibrations, as well as Control-Initial Binned, with new 

instantiations 

New texture-External 2 Same eight textures as those used in Control-External 2 

but with new microstructure instantiations 

New texture-Random 

Binned 

240 textures taken from the binning procedure at random 

 

 The externally defined textures were determined by expert selection. Two sets 

were specified to demonstrate the performance of the expert decision calibration in both 

an interpolative validation and an extrapolative validation. For reference, orientation 

distribution functions (ODFs) of these external texture sets are included in Figure 6.3 (for 

External 1) and Figure 6.4 (for External 2). 
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Figure 6.3. ODFs which describe the simulated textures included in the validation set 

External 1. 

 

 

Figure 6.4. ODFs which describe the simulated textures included in the validation set 

External 2. 
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6.3.   Results 

 The calibration designs are compared in this section. The PC representation of the 

different designs are explored. The percent mean relative error (%MRE) in validation of 

each calibration design is measured for each combination of data sets. The %MRE is also 

recorded for each combination when R  is chosen a posteriori to minimize validation 

error. The GP designs performed as well as the external designs using preselected R  

values and better than the external designs when using ideal R  values. 

 PC space is used to inspect the calibration designs. The data from every 

calibration is included in a single PC space and plotted in terms of the first two shared 

PCs in Figure 6.5. The variations in 2-point correlation statistics within the calibration 

sets are described in terms of the PCs which are derived for each calibration set 

separately. The calibration sets are plotted in terms of the values of the first two PCs for 

each SVE in Figure 6.6. In the externally defined calibration sets, the colors indicate 

different texture ensembles. In the binned sets, the colors indicate the iteration in which 

the textures were selected. It should be noted that multiple textures were included in each 

iteration for the GP and binned calibrations. In interpreting these figures, it should be 

noted that the first two PCs amount to different levels of explained variance with respect 

to the different sets of calibration data. More than 80% of the variance of the external sets 

is explained in the first two PCs. Less than 50% of the variance of the binned sets is 

explained by the first two PCs. These statistics are shown in Figure 6.7.  
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Figure 6.5. All calibrations plotted in terms of two principal components, derived from a 

calibration of MKS including all data shown.  



160 

 

Figure 6.6. The different calibration sets shown in terms of the top two PCs which 

explain the variation in their microstructure instantiations.  
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Figure 6.7. The percent cumulative explained variance for the first five PCs for each 

calibration design used in this work. 

 The performance of the calibration designs was compared based on a priori 

selections of the MKS parameter R . The values of R  used to predict elastic modulus and 

yield strength are shown in Table 6-7 and Table 6-8, respectively. The %MRE was 

measured for the validation sets for elastic modulus and for yield strength, as shown in 

Table 6-7 and Table 6-8, respectively, and plotted in Figure 6.8 and Figure 6.9, 

respectively. The best performances were observed for cases where the validation set and 

the calibration set were most similar. 
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Table 6-7. The mean relative percent error of MKS elastic modulus predictions based on 

each calibration design, measured on each validation set, where R  is determined by 

minimizing LOOCV. 

Elastic Modulus Validation Set 

Calibration Set R   Bin 30SVEN   Bin Random External 1 External 2 

Bin 30SVEN   29 0.017 0.448 0.288 0.231 

GP 10SVEN   26 0.054 0.914 0.339 0.224 

GP 5SVEN   24 0.299 0.231 0.357 0.145 

GP 3SVEN    23 0.423 0.206 0.403 0.149 

Bin Random 17 0.479 0.208 0.397 0.172 

External Textures 1 14 0.955 0.494 0.052 0.554 

External Textures 2 13 0.237 0.319 0.276 0.063 

 

 

Figure 6.8. The mean relative percent error of MKS elastic modulus predictions based on 

each calibration design, measured on each validation set (see legend), where R  is 

determined by minimizing LOOCV. 
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Table 6-8. The mean relative percent error of MKS yield strength predictions based on 

each calibration design, measured on each validation set, where R  is determined by 

minimizing LOOCV. 

Yield Strength Validation Set 

Calibration Set R   Bin 30SVEN   Bin Random External 1 External 2 

Bin 30SVEN   7 0.32 4.46 3.54 1.29 

GP 10SVEN   27 0.76 12.25 4.95 1.67 

GP 5SVEN   26 3.31 2.85 4.91 0.91 

GP 3SVEN    36 4.02 2.82 4.98 1.27 

Bin Random 18 5.10 2.41 2.85 3.16 

External Textures 1 14 6.62 5.58 0.72 4.63 

External Textures 2 2 3.45 2.59 2.24 0.48 

 

 

Figure 6.9. The mean relative percent error of MKS yield strength predictions based on 

each calibration design, measured on each validation set (see legend), where R  is 

determined by minimizing LOOCV. 
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 The MKS calibrations were also compared on the basis of ideal choices for R . 

For a given calibration and validation pairing, including some number of PCs ( R ) 

resulted in the least %MRE on the validation set. This value was often different from that 

value of R  predicted by finding the minimum LOOCV error. This evaluation of R  is 

based on analysis of validation data, and hence is referred to as an a posteriori approach 

to the selection of R . It is included in this work as an indication of the best possible 

configuration of MKS, under the assumption that the favorable R  values could be 

predicted from data available a priori, using a criterion other than the minimum LOOCV 

error. The best performing values for R  were specific to each calibration validation pair, 

and are shown in Table 6-9 for elastic modulus and Table 6-10 for yield strength. The 

%MRE in validation is shown for elastic modulus in Table 6-9 and in Figure 6.10; yield 

strength is shown in Table 6-10 and in Figure 6.11. 

Table 6-9. The mean relative percent error of MKS elastic modulus predictions based on 

each calibration design, measured on each validation set, where R  is chosen a posteriori 

based on mean validation error. The R  values are specific to each calibration-validation 

pair. 

Elastic Modulus Bin 30SVEN   Bin Random External 1 External 2 

Calibration Set R  %Error R  %Error R  %Error R  %Error 

Bin 30SVEN   60 0.013 16 0.422 13 0.266 12 0.219 

GP 10SVEN   26 0.053 16 0.267 9 0.159 9 0.205 

GP 5SVEN   30 0.295 19 0.205 9 0.206 21 0.139 

GP 3SVEN   39 0.400 16 0.202 11 0.232 26 0.143 

Bin Random 19 0.479 14 0.208 60 0.363 44 0.172 

External Textures 1 53 0.929 59 0.480 14 0.052 60 0.550 

External Textures 2 31 0.228 33 0.267 6 0.269 58 0.059 
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Figure 6.10. The mean relative percent error of MKS elastic modulus predictions based 

on each calibration design, measured on each validation set, where R  is chosen a 

posteriori based on mean validation error. 

Table 6-10. The mean relative percent error of MKS yield strength predictions based on 

each calibration design, measured on each validation set, where R  is chosen a posteriori 

based on mean validation error. 

Yield Strength Bin 30SVEN   Bin Random External 1 External 2 

Calibration Set R  %Error R  %Error R  %Error R  %Error 

Bin 30SVEN   60 0.24 4 4.02 2 2.99 2 0.95 

GP 10SVEN   26 0.75 16 3.03 5 1.24 14 0.73 

GP 5SVEN   17 3.24 17 2.66 7 1.57 17 0.82 

GP 3SVEN   37 4.02 13 2.75 9 2.62 44 1.21 

Bin Random 45 4.65 48 2.29 8 1.92 14 3.06 

External Textures 1 59 6.23 7 4.37 24 0.72 41 4.49 

External Textures 2 10 3.18 8 2.58 7 2.19 60 0.41 
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Figure 6.11. The mean relative percent error of MKS yield strength predictions based on 

each calibration design, measured on each validation set, where R  is chosen a posteriori 

based on mean validation error. 

6.4.   Discussion 

 This work demonstrates the use of MKS to extrapolate across textures based on a 

systematic calibration. MKS has been calibrated to specific textures in previous work. 

The current work is unique in attempting to make predictions beyond the specific textures 

contained in the calibration set. Predictions of this type are more demanding with respect 

to a calibration. The discussion is focused on the proof of concept this work provides, the 

limitations encountered in extrapolation, and suggestions for future improvements to 

MKS for the sake of reliability in predictions. 
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6.4.1. Proof of Concept 

 A systematic binning of texture was used to calibrate MKS in homogenization of 

 -Ti deformation response with respect to variations in texture. The binning method, 

when paired with a GP adaptive sampling method, led to results competitive with expert 

selection of texture-based calibration methods. In establishing this new approach as 

viable, the contributions of this work include developmental advantages which allow for 

incremental improvements to the method over time.  

 Systematic approaches to calibration are easier to improve upon incrementally. 

The performance of the expert selection calibrations was highly variable. The binning/GP 

method also exhibited some variability in performance. Whereas expert selection 

provides no suggestions for improvement, the systematic approach can be parametrically 

optimized without additional expert guidance. This work did not explore varying 

parameters of the binning procedure. By adjusting the numbers of bins for each Euler 

angle, the variation simulated in grains of each orientation, the number of weightings to 

include for each combination of orientations, and the maximum number of orientations in 

a combination to explore, shortcomings of this version of the binning method can be 

addressed. 

 The simulation of SVEs in ensembles in MKS calibration allows for the capture 

of effects of microstructure not explicitly explored in the calibration design. SVE 

ensemble size was investigated as a parameter of calibration design. If texture was the 

only influential design variable, the GP 3SVEN   would have outperformed the other GP 

methods instead of exhibiting a trade-off between validation sets, as was observed. By 
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simulating multiple microstructure volumes of the same texture, MKS can be trained to 

include the effects of misorientation and other higher-order correlation statistics. This 

suggests that the efficiency and reliability of future calibration designs could be improved 

by including a systematic exploration of misorientation, in addition to texture. 

6.4.2. “Edge Cases” in Data-Driven Predictions 

 Using MKS to represent a specific texture set is much simpler than generalizing 

predictions to all textures of a material. Addressing this additional complexity exposes 

new failure mechanisms or ‘edge cases’ for the MKS model. The character of these ‘edge 

cases’ is valuable information to the advancement of MKS as a data-driven tool. These 

cases are documented here. 

 Dissimilarity between validation data and calibration data can lead to unreliable 

extrapolation on PCs as R  increases. The variance of the calibration set, with respect to 

each PC, decreases with each subsequent PC. This trend follows from the method by 

which the PCs are derived. If the validation data is dissimilar to the calibration data, the 

trend may not hold for the validation data. As R  increases, it becomes increasingly likely 

that the next additional PC would lead to extrapolation in the MKS predictions 

corresponding to the validation data. Extrapolation is unreliable in regression models 

such as MKS. One case from the study is shown as an example in Figure 6.12. The 

%MRE for the calibration, LOOCV, and validation data is plotted for the elastic modulus 

and yield strength predictions for the MKS model calibrated on the GP 10SVEN   design 

and validated on the Binned Random set. At PCs 18, 23, and 24, notable increases in 

validation %MRE are present. In the lower portion of Figure 6.12, the values of the PC 
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corresponding to the calibration and validation data are shown in a histogram heatmap, 

shown in blue and red respectively. At these PCs (18, 23, and 24) the validation (red) 

data extends far beyond the calibration data (blue). Improved robustness in these 

applications could be found by using an estimate of the extrapolation in each PC from the 

calibration to the validation data in PC selection for a validation domain-specific 

prediction model. 
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Figure 6.12. The %MRE scores for each QoI for a single calibration-validation pair, 

plotted above heatmap histograms of the calibration (blue) and validation (red) 

microstructure statistics with respect to each PC. 

 Misorientation was found to be influential with respect to yield strength 

predictions. The GP and binned calibrations had some limitations which did not appear in 

the traditional expert selection calibration approaches. These limitations can be linked to 

the formulation of the binning procedure, which did not explicitly track misorientations 

between grains. In the texture bins which included a combination of two orientations of 
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grains, misorientation statistics were sampled within an SVE ensemble. The 

misorientation distributions present in the expert selected textures were more complicated 

and diverse than those found in the binned textures. This is evident, given the expert 

selected textures often included more than two (up to 12) preferred orientations. Without 

calibration data which represents diverse misorientation distributions, the effects of 

misorientation will not be captured by the MKS model. 

6.4.3. Future Work 

 The findings of this work support development of new functionality for MKS. To 

support MKS as a predictive tool, new prediction confidence estimation techniques will 

be needed, and the development of a systematic sampling of misorientations will be 

useful to improve the robustness of predictions across textures.  

 LOOCV minimization resulted in less-than-ideal performing choices for R . 

LOOCV, as a parameter selection method, only performs optimally when the validation 

data and the calibration data belong to the same distribution. I.e., when validation data 

includes new textures, LOOCV does not operate as intended. More appropriate for this 

application of MKS would be a version of LOOCV where an entire SVE ensemble is left 

out of the calibration at a time. The comparison of calibration and validation data in PC 

space could be used to reject PCs which would lead to extrapolation. This approach 

would be purely a priori, and could increase the reliability of the MKS model in 

predictive applications such as the case shown in this work. 

 An efficient sampling procedure for misorientation would improve the calibration 

of MKS. The data binning used in this work was intended to explore texture space with a 
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finite set of simulations. The GP model was selected as a method for systematically 

selecting data from that finite set. By training MKS on smaller ensembles of SVEs, more 

textures could be represented in the calibration set. Misorientation effects were not 

captured as effectively. To incorporate misorientation alongside texture in a calibration 

data binning procedure, two components will be needed: (1) a systematic approach to 

discretely binning the influential variations in misorientation distributions and (2) an 

approximate basis of misorientation which is independent of texture for indexing the bins 

for GP-driven bin selection. A sensitivity study on the effect of the number of bins 

dedicated to either design variable (texture and misorientation), may be necessary.  
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CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS 

 This chapter provides a new context to the work developed in each of the main 

topics of the dissertation. The contributions of each section are summarized with respect 

to the overall goals of this work. Perspectives gained from this work, which do not 

pertain to a single section alone are compiled here.  

7.1.   Overview of Contributions 

 The work contained in this dissertation has identified obstacles to the widespread 

application of scientific multiscale material models and contributed to the resolution of 

those obstacles. The following individual topics are reintroduced alongside their 

respective obstacles. 

 In Chapter 3, the coordination of information across length-scales was formulated 

in a TDBU approach to calibrate a CP model of bcc Fe. The reconciliation of parameter 

estimates introduced in this chapter is a necessary ingredient in the development of 

multiscale models. Models require calibration; multiscale models often lack multiscale 

calibration. Comprehensive multiscale development of material models will require 

accounting for how much the information from each scale is included in calibration and 

application. The constrained likelihood methods developed in Chapter 3 allow for this 

accounting. Data-driven selection of model-model connections will depend on 

formulations of a connection cost, a concept established in Chapter 3. 

 Chapter 4 contains an investigation of reduced-order approximations of 

polycrystal plasticity with respect to SVE size and model form. Reliable design of 
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additively manufactured components will require a modeling paradigm which can 

simultaneously consider microstructure statistics and a complex geometry in a robust and 

time-efficient approach. The work in Chapter 4 demonstrates the need for a multiscale 

treatment of this approach, which includes both reduced-order local response 

approximations and longer-range correlations. 

 In Chapter 5, the implementation of microindentation as the TD component of a 

TDBU mesoscale variability estimate is outlined. The variability of microstructures will 

be a critical factor in designing components at the mesoscale. TDBU inclusion of 

experimental measurements of that variability will be needed to avoid the potential bias 

that relying solely on CP variability estimates may impose. The descriptions in this 

chapter indicate the problems to be considered while developing such a TDBU approach. 

 In Chapter 6, the calibration of the MKS homogenization model of  -Ti in the 

prediction of texture effects is formulated in a systematic binning and adaptive sampling 

method. The predictive ability of data-driven tools such as MKS depends upon those 

tools being sufficiently calibrated. Currently, the user must determine the calibration 

quality of the MKS model, limiting the number of qualified users. The systematic 

definition of the calibration of MKS, as was performed in Chapter 6, is a prerequisite for 

developing MKS into a self-calibrating approach to the efficient prediction of 

microstructure-sensitive material response.  

 In brief, the contributions are as such. Chapter 3 developed a TDBU 

reconciliation of parameters and an empirical TDBU connection test. Chapter 4 

investigates the CG description of variability in polycrystals. Chapter 5 identifies the 
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challenges to using microindentation variability to inform microstructure response 

variability. Chapter 6 formulates an automated generator of calibration data for a data-

driven S-P relation model. 

7.2.   Perspectives on Difficulties in ICME  

 Prevailing challenges exist in the pursuit of ICME, and the perspectives on those 

challenges gleaned from the work of this dissertation are mentioned here. This 

dissertation is organized around the efforts of ICME. Progress in specific cases is 

essential to these efforts. Additionally, some details of those specific cases are 

consequences of unifying difficulties which are endemic to the multiscale problems of 

ICME. Commentary on the nature of those difficulties is offered along with 

recommendations.  

 The goals of ICME include developing the capability of engineering design tools 

to include the processing-structure-property linkages established by scientific 

computational models and experimental data. Remaining obstacles to the achievement of 

this goal are consequences of the unique conditions in which knowledge is gathered in 

materials science; these obstacles are not observed in simply any massive collection of 

data. Descriptions of nature which are not scale-specific defy even physicists their 

discovery--there is no Theory of Everything. Nevertheless, ICME has need of a holistic 

perspective of materials across length and time scales. The barriers to assembling this 

perspective are numerous, though they may include the following: material models are 

predominantly developed with a single length-scale in mind, scale linking between 

models is not yet accountable to differences in predictions based at constituent scales, 
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there is a lack of uncertainty estimation in engineering toolkits, and source criticism is 

required for data-driven multiscale modeling. Each of these is discussed here. 

7.2.1. Over-specification of Models at a Length-Scale 

 Models which are conceptualized and calibrated at a single length scale are 

unreliable in making predictions at different length scales. Cutting-edge material models 

are often very specific in terms of material and QoI. These trends reflect the scarcity of 

high quality data on these materials and responses. Models are also typically defined 

based on physical assumptions which are length and time scale-specific. The data 

selected to calibrate the models is often restricted to that physically defined length scale. 

While data collection is often restricted by data scarcity, the barriers to using data from 

other length scales arise from the difficulty of the analysis involved--not scarcity. These 

single-scale models are numerous, yet there are few models which are specified to 

incorporate the scale-dependence of material response.  

 ICME has been predicated on the coordination of multiple single-scale models in 

a multiscale hierarchy. This formulation leads to a critical issue: the relative influence of 

competing mechanisms across length-scales does not “drop out” from an ideal 

arrangement of scale-specific treatments. Connections between scales are not trivial 

additions to the existing models. In order to apply the rigor necessary to construct useful 

connections between scales, those connections must be included in the development of 

the models themselves. 

 Multiscale models can be calibrated with data which is gathered at multiple 

scales. A multiscale calibration of this description constitutes a multi-objective 
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optimization. In other words, a model developed around observations at a single scale 

would suffer in that single-scale performance in the course of being calibrated to data 

from multiple scales. The connections between these observations, should they be 

captured by any model, would likely be found in a model whose performance is less 

diminished by the inclusion of multiple scales of calibration data. It is therefore 

worthwhile to develop multiscale models with multiscale data and by extension, 

worthwhile to gather data at multiple scales in concurrence.  

7.2.2. Accountability in Linking Length-Scales 

 Hierarchical multiscale models are often built using parametric connections 

between scales which are examined for theoretical soundness but which are untested on 

an empirical basis. In the eventuality of multiple theoretically sound alternatives for a 

given connection, the de facto selection strategy is based in the preferences of the 

researcher. Where there is disagreement among researchers in this process, no resolution 

of that disagreement can be supported by such a selection process. As is the case with 

models in general, the prevailing connection between models must be the candidate 

which best suits the appropriate data. In the multiscale case, the appropriate data must 

belong to two separate categories (each scale is a category of data) which are only 

relatable if a connection of some sort is assumed. The development of a widely 

acceptable standard of practice is needed to make routine the testing of new model-model 

connections in the field of multiscale material modeling  

 The development of a multiscale model is built on the supposition that a single-

scale treatment is insufficient to accurately describe the behavior of interest. This 



178 

assumption is a foundation for the criterion on which model-model connections can be 

empirically tested. A connection between scales which is a component of a successful 

multiscale model must allow the following requirements to be met:  

5. The model must be able to fit calibration data at each length-scale included in 

consideration of the multiscale approach. The model and the data must be 

compatible. 

6. The predictions at each scale must be sensitive to the calibration data at each 

other scale (in addition to that of the same scale), that is, an appreciable 

change in the calibration data at one scale must in general produce a change 

in the predictions at another scale. The scales must not be independent in the 

multiscale approach. 

It is notable that the second requirement is not relevant to single-scale models. 

Additionally, this test of multiscale model connections is incompatible with the BU-only 

approach to multiscale modeling.  

 The work in Chapter 3 comprises a single example of the testing of TDBU model 

connections. The approach considered a cost associated with the use of data across an 

imperfect model-model connection. In introducing such a cost, the connection could be 

evaluated based on an apparent trade-off between the benefit of additional data and the 

cost of including multiscale data. The approach used likelihood based methods for 

analyzing the influence of additional data in terms of the model’s sensitivity. The 

approach used reconciliation methods to impose the compatibility of the model with both 

length scales of data. The criterion developed in Chapter 3 was useful in testing the 

multiscale approach used. Other conditions may necessitate the development of other 
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multiscale criteria. In such cases, the compatibility and sensitivity requirements 

mentioned here may still be useful.  

7.2.3. Uncertainty Estimation is Needed in Engineering Modeling Tools 

 Material modelers employ specific expertise to interpret models appropriately. 

When materials science is used to inform performance predictions, models of some sort 

are often developed. When these models are physically informed, the developers of that 

model gather an understanding of the limitations associated with the predictions of that 

model. When a physically derived model is too costly to be employed in engineering 

workflows, a surrogate modeling approach is often developed. The development of a 

surrogate model involves the careful selection of surrogate modeling approach, often 

providing the developer with a sense of the limitations associated with any application of 

that surrogate. In either case, the expertise accumulated during the development of these 

sophisticated models is essential to the responsible interpretation of the predictions which 

the model provides.  

 Without the expertise of a material modeler, models can be prone to improper use. 

In any case where predictions are made by a model, those predictions may become 

invalid. If the model is applied in a domain for which it is not validated (or at least 

considered valid) the predictions it provides may be subject to catastrophic errors. When 

a model is used in an appropriate domain, the predictions may become erroneous if they 

are interpreted to be more precise or more accurate than they are in fact. Most advanced 

material models are not formulated to indicate if either of these cases is present when a 

prediction is given. 



180 

 Material modeling tools can be used responsibly when uncertainty estimates 

accompany predictions. The precision and accuracy of a model can be modeled alongside 

predictions of material response. The development of such uncertainty models is needed 

to improve the suitability of materials models for widespread deployment. For cases of 

invalid application of a model, more sophisticated approaches to uncertainty estimation 

may be necessary to provide appropriate guidance. Domain-sensitive uncertainty 

modeling requires all inputs to be parameterized or embedded in a model (in the case of 

categorical inputs).  

 Uncertainty estimation for ICME modeling tools can benefit from the 

combination of surrogate modeling and UQ techniques. UQ is inherently costly, much 

more so than the models on which it is performed. For the sake of providing user 

guidance in modeling tools, the precision of many UQ techniques is unnecessary. It is 

likely that the uncertainty of a material model may be sufficiently captured using a 

surrogate model trained on a selection of UQ tests of the material model. The 

development of such uncertainty surrogate models will demand expertise on the part of 

the developer, however the results will reduce the expertise requirements on the end user 

of the modeling tool. 

7.2.3.1. Epistemic and Aleatory Uncertainty and their Use in an ICME Context 

 Epistemic and aleatory uncertainty are concepts which add value in specific 

applications. In reliability and risk assessment, the distinction of uncertainty into aleatory 

and epistemic components is valuable for decision making. Often, policy demands that 

risk is fully mitigated by a final design (consider the example of nuclear waste storage). 
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The additional cost of a design which can withstand the 99th percentile of predicted 

outcomes may be considerable. If an agency could expect the uncertainty of the 

prediction to diminish under continued study (and funding), the potential cost savings 

could motivate continuing research efforts. This is precisely the benefit of quantifying the 

epistemic component of uncertainty in such a design case. Many of the components of 

the uncertainty are tied to the goal of the design problem, and these contribute to the 

aleatory uncertainty. Where more knowledge might reveal more precise estimates, the 

epistemic uncertainty is the quantity which will be impacted. Broadly, these cases are 

well-defined applications accompanied by funding decisions which are sensitive to 

uncertainty.  

 Computational model design in ICME related problems requires decision making 

that does not extract much benefit from the epistemic and aleatory distinction. In ICME, 

the design problem often includes the design or selection of the model to be used. Often, 

the choice of one model over another will require uncertainty estimation, however the 

proportions of aleatory and epistemic components do not influence the decision making. 

To substantiate this assertion, each category of uncertainty will be described in the 

context of an ICME model design problem. 

 Aleatory uncertainty is not useful when comparing modeling approaches. When 

the chosen model is not fixed, the definition of aleatory uncertainty becomes more 

complicated in practice. Aleatory uncertainty is defined as the irreducible component of 

uncertainty, or variability. This definition is incomplete, as the variability and 

irreducibility are features of the answer given to a specific question. In many approaches 

to modeling materials (and especially with multiscale modeling), each potential approach 
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may include variations in foundational assumptions in approaching the estimation of 

roughly the same QoI. By modifying the question, the aleatory component of uncertainty 

is susceptible to change. In model design, it is very possible that the uncertainty in an 

answer is a result of asking an ill-posed question. To researchers of model design, the 

maintenance of flexibility in question formulation can be a powerful asset. At the same 

time, this flexibility renders aleatory uncertainty quantification unhelpful within the 

model design procedure. 

 Epistemic uncertainty in a model design problem is only ever partially 

quantifiable, and is only helpful in specific cases. Epistemic uncertainty is defined as the 

reducible component of uncertainty or the incertitude of a statement. In materials 

modeling, epistemic uncertainty is often quantified by exploring possible values of model 

inputs which cannot be precisely informed. This approach is common in part due to the 

data scarcity which often occurs in material modeling. In practice, this accomplishes little 

more than a sensitivity analysis. Additionally, this procedure cannot approach the 

quantification of the uncertainty caused by model discrepancy. Model discrepancy is the 

primary cause of epistemic uncertainty in modeling problems where sufficient 

appropriate calibration data is available. To quantify model discrepancy, a higher fidelity 

model must be available for comparison. The highest fidelity model available becomes 

the de facto ground truth, and the discrepancy of this “best” model is unquantifiable and 

unknown. These limitations inhibit the use of aleatory and epistemic uncertainty in the 

typical manner. 

 There do exist some examples in ICME where the distinction between aleatory 

and epistemic uncertainty is clearly useful. The uncertainty categories are useful in 
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technical criticism of problematic modeling approaches. The argument for replacing a 

method is strengthened if the model owes uncertainty to a large epistemic contribution. In 

surrogate modeling, uncertainty can be broken down into the component from the 

surrogate model and the component carried over from the full-fidelity model. In 

describing the uncertainty of the surrogate model relative to the existing uncertainty, the 

benefits of efficient alternatives can be more readily interpreted. Additionally, once a 

model and application have been identified, the distinction of uncertainty is critical to 

reliability modeling and process design.  

 Material modeling also presents unique conceptual challenges which are similar 

to those for which the disambiguation of uncertainty components is used. In the 

polycrystalline length scale, the effects of microstructure are often modelled 

deterministically by CP or an alternative, whereas the microstructure itself is instantiated 

statistically and contains variability. At the scale of homogeneous response, the influence 

of microstructure is characterized as an uncertainty. In development of mesoscale 

modeling approaches, the approximation of material response will require a clear 

definition of the difference between the variability inherent to the material at a given 

scale and the uncertainty which arises in the course of model order-reductions, 

approximations, and regressions. Quantities such as variability and conditional 

probabilities may become QoIs in addition to the typical mean-value estimates of 

response. Care is required to distinguish approximation error from variability. 



184 

7.2.4. Source Criticism is Needed for Data-Driven Multiscale Methods 

 In the informing of multiscale, multi-attribute, and multi-objective models, an 

equal weighting of all available data is not likely the ideal strategy. In a single scale 

model, not all data is useful. In statistical models, outliers are often rejected in order to 

draw clear conclusions from a dataset. In material models, calibration data is often 

processed in some way, e.g., a stress-strain curve returned from testing of an 

experimental specimen may be modified to account for machine compliance. The concept 

of informed decision making with regard to the inclusion and exclusion of available data 

is not new. In multiscale models, new considerations must be made which arise due to the 

consequences of modeling in multiple scales. 

 Data can be rejected on grounds of inaccuracy or irrelevance. In the case where a 

machine compliance adjustment is made to a raw tensile test result, the apparent elastic 

modulus of the raw test data is too inaccurate to be used in the modeling of the material 

in the absence of the tensile testing equipment. It is rejected in calibration of a material 

model in preference of a literature value of the elastic properties of the material, derived 

with a different method. The effect of machine compliance is often considered an error in 

the measurement of the elastic modulus. As an alternative interpretation, the 

measurement made by the test could be aimed at capturing the effective combination of 

the sample elastic properties and the machine compliance of the testing rig. The raw data 

is not necessarily inaccurate in this case--it may be an exact reflection of the elastic 

properties and machine compliance in combination. It is that the magnitude of that 

measurement is not relevant to a model of the material alone.  
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 The distinction between these data rejection criteria is important in a multiscale 

context. The accuracy of data is not intrinsic to the measurements which were made to 

provide it, rather, the accuracy of data is a property derived from the combination of the 

source and the use. In this, the concept of relevance is more indicative of this application-

specificity. 

 Multiscale models allow data to be included from one length scale in predictions 

made at another length scale. In a hierarchical multiscale model, a model is used at each 

length scale included in the hierarchy. Each model inevitably suffers imperfect accuracy 

due to neglected mechanisms, effects, etc. As more length scales are spanned from data 

to prediction, the more these inaccuracies accumulate. As a result, a HMM is 

disadvantaged in making predictions in this BU manner in comparison to a single-scale 

method. Additionally, when data are included from multiple scales, the accuracy of those 

data with respect to the prediction will vary as a function of scale. 

 For multiscale models to be most advantageous, they must incorporate data of 

different levels of accuracy/relevance at weights which reflect that difference. 

Additionally, any experimental observation is made with limited precision. A 

comprehensive approach to these demands may take benefit from the field of source 

criticism, information evaluation, or credibility (Rieh and Danielson, 2008). To advance 

the state of the art in multiscale modeling, multiscale source criticism will likely be a 

critical component. 

 If the methods of multiscale modeling of materials are to be implemented in data-

driven approaches, source criticism will become increasingly important. Data-driven 
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methods depend on intensive data curation. The complications which arise in multiscale 

modeling applications are not common in applications of data-driven algorithms at large. 

Therefore, the mainstream machine learning community is unlikely to address these 

challenges which are unique to multiscale materials models. The development of source 

criticism for multiscale models will likely fall to computational materials modelers.  
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APPENDIX A. AUTOCAL MANUAL 

A.1.  What is Autocal? 

 Autocal is a python package which provides a systematic calibration approach 

that builds on a python “pipeline” used in the McDowell research group to submit HPC 

cluster simulations (Kern, 2016). An overview of the calibration procedure is given here. 

The procedure implemented in Autocal for calibrating a model consists of three steps. (1) 

The user selects a set of calibration parameters and offers an estimate of their ranges. (2) 

Autocal studies the primary effects of each parameter and suggests revised parameter 

ranges by making comparisons to a target. (3) Autocal iteratively informs a Gaussian 

process model with the results of model runs across the revised parameter ranges until an 

acceptable calibration is reached. The procedure is summarized in a flowchart in Figure 

A-0.1. 

 

Figure A-0.1. A flowchart which shows the steps of the Autocal procedure. 
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 Autocal attempts to find appropriate ranges for the calibration parameters of a 

model. A linear effects model is built from a one at a time sensitivity test. This linear 

model is used to interpolate (or extrapolate) from the initial sensitivity ranges to match 

model response with a target (experimental) response. As extrapolation is a likely and 

necessary occurrence for range-finding, a linear model is the most stable and appropriate 

formulation of effects model to use in this application. In the case of nonlinear parameter 

dependence and strong interactions in parameters, this initial step may require iteration 

until convergence in range predictions has been reached. This initial step can save time 

by increasing the chances that the optimal calibration parameter values exist within 

chosen limits. 

 Once parameter ranges are established, Autocal optimizes the calibration of 

parameters. The optimization makes use of a Gaussian process model to (strictly) 

interpolate between model results. The GP model can support the time-interpolation of a 

time-series (such as a    curve) into equidistant samples, such that the response is 

considered as a vector of measurements. This equidistant sampling allows for equal 

weighting of the response as a function of time. The objective function is currently 

defined in terms of absolute squared error, i.e., 
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where  Obj θ  is the objective function of calibration parameters, θ , from time 0t   to 

 max t , and  M

tY θ  is the model response or QoI at time t  and calibration parameter 

values, θ . E

tY  is the experimental target response or QoI at time t . 

 An adaptive sampling is used to efficiently arrive at the optimal calibration. The 

GP model requires an initial set of results to predict response. Subsequent calibration 

values are selected by investigating the model response at the maximum of the objective 

function as predicted by the GP. The GP can accommodate non-linear relationships 

between parameters and QoIs.  

 Autocal is designed to handle interdependence (or interactions) in the effects of 

parameters in the calibration set. The range finding step can be repeated from different 

initial ranges to test for the existence of local minima in the response surface. The GP 

model, being a kernel method, is especially suited to follow variations which are 

analytically complicated. As a result, if a calibration set fails to lead to a consistent 

prediction, the problem may reside in the relationship between the measurement data and 

the parameter set. 

 The use of a GP in extrapolation is not recommended. When the optimal solution 

lies outside the range of the GP, it can be necessary to search solutions in an extrapolative 

manner or to rebuild the GP over different parameter ranges. The process of training a GP 

model is more expensive than the linear effects model. Autocal is designed to avoid 

building the GP more than once or using the GP in extrapolation. The two-step procedure 

is an important feature of Autocal.  
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 Autocal is a python package which builds on other common scientific packages. 

The optimization was performed using scipy (Millman and Aivazis, 2011), the initial 

linear effects model was built using statsmodels (statsmodels, 2018), and the GP 

regression model was built using scikit-learn (Pedregosa et al., 2011), all of which are 

python packages. 

 Autocal is built to be compatible with the McDowell Research Group job 

submission pipeline, developed by Paul Kern and maintained by Adrienne Muth. The 

code for Autocal, the pipeline, and the material models mentioned in this guide are all 

maintained on the McDowell Research Group Enterprise Github.  

A.2.  Getting Started 

 Prerequisites for the use of Autocal are Python 2.7.x, access to the McDowell 

Group’s Georgia Tech enterprise github, an operational implementation of the Autocal 

branch of the PythonScripting repository, and the installation of a number of python 

packages (many of which may be included in a distribution of python, such as 

Anaconda). To use the pipeline, other open-sourced software is required. These 

prerequisites are shown in Table A-1. 
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Table A-1. The prerequisite software, packages, and repositories which must be installed 

prior to testing Autocal. This list may change as features are added. Check the Autocal 

repository or contact Gary Whelan for help.  

Prerequisite Source Notes 

Python 2.7 www.python.org  

Ipython, Numpy, Scipy, 

Pandas, Matplotlib, 

Crypto, Scikit-learn, 

statsmodels, subprocess, 

pickle 

PIP Doesn’t include 

packages required 

by pipeline. Check 

version 

dependencies. 

Dream.3D dream3d.bluequartz.net Need to link in 

config.txt 

Gmsh gmsh.info Need to link in 

config.txt 

PythonScripting-Autocal https://github.gatech.edu/McDowell-

Lab/PythonScripting/tree/Autocal 

Clone repo to local 

system 

Autocal https://github.gatech.edu/McDowell-

Lab/Autocal 

Clone repo to local 

system 

Copper-Brass https://github.gatech.edu/McDowell-

Lab/Copper-Brass 

Clone repo to local 

system 

Other material folders https://github.gatech.edu/McDowell-

Lab/* 

As needed 

Access to Granulous Ask lab manager  

 

  Once prerequisites are operational, the installation can be tested. Using an 

interactive python session in the directory containing the cloned github repositories (type 

ipython in command prompt), import autocal, then run autocal.test_1(<your username>) 

once autocal finishes initializing. Your username is the username for accessing 

Granulous. Test results should be compared to the guide in the Autocal repository for 

troubleshooting and further help.  

A.3.  Pitfalls and Precautions 

 Autocal is a specialized application of a number of powerful techniques. The 

limitations of those techniques must be understood and respected, as potentially 
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undesirable and even disastrous consequences await those who put blind faith in a 

calibration result.  

A.3.1.  Scenario Descriptor Inputs Must Match Target  

 Models can have many inputs. Some of these inputs have external definitions, for 

example the temperature of a material or the applied rate of strain. These inputs, which 

are known prior to calibration, are referred to as scenario descriptor inputs.  

 Descriptor inputs must correspond between simulations and the data which are 

used to calibrate those simulations. This requirement is not automatically ensured, and it 

is up to the user to locate the metadata needed to ensure this requirement is met.  

A.3.2.  Calibration Parameters Must Be Identifiable by Quantity of Interest (QoI) 

 Calibration parameters are distinct from the previously mentioned scenario 

descriptor inputs, in that they adopt values as needed to fit a model to a target. 

Complications arise in this process when the relationship between a parameter and a QoI 

is tenuous.  

 Identifiability refers to the precision with which a parameter can be evaluated 

through comparisons in terms of a given QoI. In order to be identifiable by a QoI, a 

parameter must (1) have a significant effect on the value of the QoI predicted by the 

model, that is, a change in the value of the parameter results in a significant change in the 

QoI, and (2) that effect must be distinguishable from the effect of each other parameter in 

the active calibration set. 
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 Autocal does not currently specify the identifiability of parameters. Autocal can 

be used to investigate the relationships between calibration parameters. When the nature 

of the relationships between a calibration parameter set and a QoI is not established, it 

may be necessary to investigate different combinations of parameters and QoIs in order 

to find a workable set. 

A.3.3.  Calibration Parameter Set Should be Made Smaller if Possible  

 The efficiency and reliability of Autocal drop off dramatically as more calibration 

parameters are considered at once. Specific relationships between a QoI and a specific 

subset of the calibration parameters in a material model should be used to guide 

calibrations, in multi-stage calibration approaches, if needed. By no means should every 

possible calibration parameter be included in a single calibration with Autocal. To 

determine if a chosen set of parameters is small enough, examine the identifiability of 

each parameter. If all parameter effects are distinct and simple, the largest number of 

parameters that Autocal can handle is perhaps two dozen, though algorithmic efficiency 

issues will accumulate at numbers any higher than ten parameters.  

A.4.  Developing a New Material for Use with Autocal 

Autocal is designed to be adaptable to new material systems operating with the 

pipeline. Once the user has tested the installation and successfully run Autocal, they can 

begin developing a new material for use with Autocal. Assuming the new material 

folderis compatible with the pipeline, only three files need to be edited: in the material 

folder the user must make edits to material.py (e.g. Ti64.py, Al7075.py) and in the 

Autocal folder the user must make additions to autocal.py and _init_.py.  
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A.4.1 Material/Material.py 

 First, in the material folder, once the user has determined which parameters could 

be subject to calibration, material.py should be edited to take values from Autocal.py and 

assign them via the input file (and input file writer). (As needed, the UMAT should be 

altered to read in these parameters from the input file.) Under write_mat_defs, where the 

values assigned to these parameters are defined, the user should replace the hard-coded 

values with string variables passed in from the pipeline (using the DoE header ‘calib’). 

For more guidance in how to properly edit this section of the code the user can look to the 

differences between Ti64.py in the Autocal branch and master branch of Ti64 in the 

McDowell Group’s Georgia Tech enterprise github. Next, two files in the Autocal folder 

must be edited. 

A.4.2 Autocal/__init__.py 

_init_.py can be quickly edited using the template already existing in the code to add 

initialization for the new material.  

A.4.3 Autocal/autocal.py 

In autocal,py 3 sections, all near the top of the code above the “Make no changes below 

here” comment block, must be edited.  

A new local directory should be defined to hold the results of the calibration. In the initial 

block of code, define this directory as a global variable following the example of the 

existing “LOCAL#” directory definitions. The location of the target dataset being used to 

compare to QoIs to determine the quality of the calibration should be defined following 
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the example of the existing “EXP_Material_#”. The Dream.3D file being used to 

instantiate microstructures should be located and defined following the example of the 

existing “MaterialD3” lines in autocal.py.  

A.4.4 Testing a new material 

Testing the new material in autocal can be built using the “test_2” function as a template. 

For simplicity, rewrite test_2 to call a new material (or copy it and rename it test_3 if 

needed). Here the user must add their calibration parameter set and the respective initial 

range for each parameter (corresponding to the changes made in material.py). As 

appropriate given the user’s target data, specify changes to the parameters, options and 

features shown in Table A-2 below. 

Table A-2. User defined parameters for test_2. 

hmode1 -deprecated- 

cpus2 Number of cores per simulation 

ortho2 -deprecated- 

nsteps2 Approximate number of time-steps to specify 

n_el2 Number of elements per side of SVE 

ensemble1 Number of SVEs per ensemble 

iterations Number of times to perform range-finding step 

preserveMS If =1, microstructure instantiations are held fixed through 

subsequent iterations. if =0, new instantiations are used for each 

simulation  

its3 Number of iterations for GPM 

bm2 Experimental set up (see “get_load”) 

passkey -change this to a private pin to increase security- 

 

A.4.5 Putting the new material into production 

 Lastly the user must append the “material_selector” function to include their 

material. In this section a new elseif (elif) statement must be added following the 
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example of the existing elseif statements. A screenshot of this function is included for 

reference in Figure A-0.2.  

 

Figure A-0.2. The material_selector function, which allows quick, persistent changes to 

the options which can be material-specific. 

 In addition to these required changes to develop a new material for use with 

autocal, the user may find it necessary to add a new loading schedule to autocal.py to 

match their dataset. To do this the user should add a new elif statement in the “get_load” 

function of autocal.py, name their loading schedule appropriately and define the strain 

amplitude, number of loading cycles (0 delimited), load ratio for cyclic loading, and 

strain rate. A screenshot of this function is included for reference in Figure A-0.3. 
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Figure A-0.3. The get_load function, which allows persistent definition of loading paths. 
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