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SUMMARY

Computer experiments have played an increasingly important role in science and technol-

ogy and received enormous attention from industries and research institutes. One prominent

example is the redesign of a new rocket engine by the U.S. Air Force[1].

This dissertation makes contributions in two important aspects of computer experiments:

(i) binary-output computer experiments and (ii) large-scale computer experiments. For (i),

the dissertation contains two chapters: a new emulation method in Chapter 1 and a novel

calibration method in Chapter 2, respectively. For (ii), the dissertation contains two chapters,

in which new computationally efficient search limiting techniques for local Gaussian process

approximation are developed in Chapter 3, and a new model, which is called multi-resolution

function ANOVA, is proposed in Chapter 4.

In Chapter 1, we study the emulation problem of computer experiments whose response

is binary. Such non-Gaussian observations are common in some computer experiments.

Motivated by the analysis of a class of cell adhesion experiments, we introduce a general-

ized Gaussian process model for binary responses, which shares some common features

with standard Gaussian process models. In addition, the proposed model incorporates a

flexible mean function that can capture different types of time series structures. Asymptotic

properties of the estimators are derived, and an optimal predictor as well as its predictive

distribution are constructed. Their performance is examined via two simulation studies. The

methodology is applied to study computer simulations for cell adhesion experiments. The

fitted model reveals important biological information in repeated cell bindings, which is not

directly observable in lab experiments.

In Chapter 2, we develop a calibration method for binary-output computer experiments.

Calibration refers to the estimation of unknown parameters which are present in computer

experiments but not available in physical experiments. An accurate estimation of these

parameters is important because it provides a scientific understanding of the underlying
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system which is not available in physical experiments. Most of the work in the literature

are limited to the analysis of continuous responses. Motivated by a study of cell adhesion

experiments, we propose a new calibration method for binary responses. This method

is shown to be semiparametric efficient and the estimated parameters are asymptotically

consistent. Numerical examples are given to demonstrate the finite sample performance. The

proposed method is applied to analyze a class of T cell adhesion experiments. The findings

can shed new light on the settings of kinetic parameters in single molecular interactions

which are important in the study of the immune system.

In Chapter 3, we develop two computationally efficient search limiting techniques for

local Gaussian process approximation, which can be used in large-scale computer experi-

ments. Gaussian process models are commonly used as emulators for computer experiments.

However, developing a Gaussian process emulator can be computationally prohibitive when

the number of experimental samples is even moderately large. Local Gaussian process

approximation [2] was proposed as an accurate and computationally feasible emulation

alternative. However, constructing local sub-designs specific to predictions at a particular

location of interest remains a substantial computational bottleneck to the technique. In

this chapter, two computationally efficient neighborhood search limiting techniques are

proposed, a maximum distance method and a feature approximation method. Two examples

demonstrate that the proposed methods indeed save substantial computation while retaining

emulation accuracy.

In Chapter 4, we propose a novel model, multi-resolution functional ANOVA, for large-

scale and many-input computer experiments that have become typical. More generally,

this model can be used for large-scale and many-input non-linear regression problems. An

overlapping group lasso approach is used for estimation, ensuring computational feasibility

in a large-scale and many-input setting. New results on consistency and inference for the

(potentially overlapping) group lasso in a high-dimensional setting are developed and applied

to the proposed multi-resolution functional ANOVA model. Importantly, these results allow

xvii



us to quantify the uncertainty in our predictions. Numerical examples demonstrate that the

proposed model enjoys marked computational advantages. Data capabilities, both in terms

of sample size and dimension, meet or exceed best available emulation tools while meeting

or exceeding emulation accuracy.

xviii



CHAPTER 1

A GENERALIZED GAUSSIAN PROCESS MODEL FOR COMPUTER

EXPERIMENTS WITH BINARY TIME SERIES

1.1 Introduction

Cell adhesion plays an important role in many physiological and pathological processes.

This research is motivated by the analysis of a class of cell adhesion experiments called

micropipette adhesion frequency assays, which is a method for measuring the kinetic rates

between molecules in their native membrane environment. In a micropipette adhesion

frequency assay, a red blood coated in a specific ligand is brought into contact with cell

containing the native receptor for a predetermined duration, then retracted. The output of

interest is binary, indicating whether a controlled contact results in adhesion. If there is

an adhesion between molecules at the end of contact, retraction will stretch the red cell.

If no adhesion resulted, the red cell will not be stretched. The kinetics of the molecular

interaction can be derived through many repeated trials. In theory, these contacts should be

independent Bernoulli trials. However, there is a memory effect in the repeated tests and the

quantification of such a memory effect is scientifically important [3, 4].

A cost-effective way to study the repeated adhesion frequency assays is through computer

experiments, which study real systems using complex mathematical models and numerical

tools such as finite element analysis [5]. They have been widely used as alternatives to

physical experiments or observations, especially for the study of complex systems. For cell

adhesion, performing physical experiments (i.e., lab work) is time-consuming and often

involves complicated experimental manipulation. Therefore, instead of performing the

experiments only based on the actual lab work, computer simulations based on mathematical

models are conducted to provide an efficient way to examine the complex mechanisms

1



behind the adhesion.

The analysis of computer experiments has three objectives: (i) to build a model that

captures the nonlinear relationship between inputs and outputs; (ii) to estimate the unknown

parameters in the model and deduce properties of the estimators; (iii) to provide an optimal

predictor for untried input settings, also called “emulator” or “surrogate model”, and quantify

its predictive uncertainty [6, 5]. This objective (iii) is crucial because computer simulations

are generally expensive or time-consuming to perform and therefore the emulators based

on computer simulations are used as surrogates to perform sensitivity analysis, process

optimization, calibration, etc. In particular, it is critical for calibration problems in which

the emulators and physical experiments are integrated so that some unknown calibration

parameters can be estimated. In the literature, Gaussian process (GP) model, use of which

achieves the three objectives, is widely used for the analysis of computer experiments. A

GP model accommodates nonlinearity using GP and provides an optimal predictor with an

interpolation property. The applications of GP can be found in many fields in science and

engineering.

The conventional GP models are developed for continuous outputs with a Gaussian

assumption, which does not hold in some scientific studies. For example, the focus of the

cell adhesion frequency assays is to elicit the relationship between the setting of kinetic

parameters/covariates and the adhesion score, which is binary. For binary outputs, the

Gaussian assumption is not valid and GP models cannot be directly applied. Binary outputs

are common in computer experiments, but the extensions of GP models to non-Gaussian

cases have received scant attention in computer experiment literature. Although there are

intensive studies of generalized GP models for non-Gaussian data in machine learning and

spatial statistics literature, such as [7], [8], [9], [10] and [11], the asymptotic properties

of estimators have not been systematically studied. Moreover, an analogy to the GP

predictive distribution for binary data is important for uncertainty quantification in computer

experiments, which has not yet been developed to the best of our knowledge.
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Apart from the non-Gaussian responses, analysis of the repeated cell adhesion frequency

assays poses another challenge, namely, how to incorporate a time series structure with

complex interaction effects. It was discovered that cells appear to have the ability to

remember the previous adhesion events and such a memory has an impact on the future

adhesion behaviors [3, 4]. The quantification of the memory effect and how it interacts with

the settings of the kinetic parameters in the binary time series are important but cannot be

obtained by direct application of the conventional GP models. To consider the time series

structure, a common practice is to construct a spatial-temporal model. However, a separable

correlation function (e.g., [12, 13]) in which space and time are assumed to be independent

is often implemented as a convenient way to address the computational issue. As a result,

the estimation of interaction between space and time, which is of major interest here, is not

allowed for. Even in the cases where nonseparable correlation functions (e.g., [12, 14]) are

implemented, the interaction effect is still not easily interpretable. Therefore, a new model

that can model binary time series and capture interaction effects is called for.

To achieve the objectives in the analysis of computer experiments and overcome the

aforementioned limitations with binary time series outputs, we introduce a new class of

models in this article. The idea is to generalize GP models to non-Gaussian responses

and incorporate a flexible mean function that can estimate the time series structure and

its interaction with the input variables. In particular, we focus on binary responses and

introduce a new model which is analogous to the GP model with an optimal interpolating

predictor. Rigorous studies of estimation, prediction, and inference are required for the

proposed model and the derivations are complicated by the nature of binary responses

and the dependency of time series. Since binary responses with serial correlations can be

observed in computer experiments, the proposed method can be readily applicable to other

fields beyond cell biology. For example, in manufacturing industry computer simulations are

often conducted for the failure analysis where the outputs of interest are binary, i.e., failure

or success [15]. Examples can also be found in other biological problems where binary

3



outputs are observed and evolve in time, such as neuron firing simulations, cell signaling

pathways, gene transcription, and recurring diseases [16, 17]. The proposed method can also

be broadly applied beyond computer experiments. In many scientific experiments, such as

medical research and social studies, binary repeated measurements are commonly observed

with serial correlations. In these situations, the proposed method can be implemented to

provide a flexible nonlinear model that quantifies the correlation structure and explains the

complex relationship between inputs and binary outputs. More examples can be found in

functional data analysis, longitudinal data analysis, and machine learning.

The remainder of this article is organized as follows. The new class of models is

discussed in Section 1.2. In Section 1.3 and 1.4, asymptotic properties of the estimators

are derived and the predictive distributions are constructed. Finite sample performance

is demonstrated by simulations in Section 1.5. In Section 1.6, the proposed method is

illustrated with the analysis of computer experiments for cell adhesion frequency assays.

Concluding remarks are given in Section 1.7. Mathematical proofs and algorithms are

provided in Appendix A. An implementation for our method can be found in binaryGP

[18] in R [19].

1.2 Model

1.2.1 Generalized Gaussian process models for binary response

We first introduce a model for binary responses in computer experiments which is analogous

to the conventional GP models for continuous outputs. Suppose a computer experiment has

a d-dimensional input setting x = (x1, . . . , xd)
′ and for each setting the binary output is

denoted by y(x) and randomly generated from a Bernoulli distribution with probability p(x).

Using a logistic link function, the Gaussian process model for binary data can be written as

logit(p(x)) = α0 + x′α+ Z(x), (1.1)
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where p(x) = E[y(x)], α0 and α = (α1, . . . , αd)
′ are the intercept and linear effects of

the mean function of p(x), and Z(·) is a zero mean Gaussian process with variance σ2,

correlation function Rθ(·, ·), and unknown correlation parameters θ.

Various choices of correlation functions have been discussed in the literature. For

example, the power exponential correlation function is commonly used in the analysis of

computer experiments [5]:

Rθ(xi,xj) = exp

{
−

d∑
l=1

(xil − xjl)p

θl

}
, (1.2)

where θ = (θ1, . . . , θd), the power p controls the smoothness of the output surface, and the

parameter θl controls the decay of correlation with respect to the distance between xil and

xjl. Recent studies have shown that a careful selection of the correlation function, such

as orthogonal Gaussian processes proposed by [20], can resolve the identifiability issue in

the estimation of Gaussian process models [21, 22, 23]. This is particularly important in

the application of calibration problems where the parameter estimation plays a significant

role. Depending on the objectives of the studies, different correlation functions can be

incorporated into the proposed model and the theoretical results developed herein remain

valid.

Similar extensions of GP models to binary outputs have been applied in many different

fields. For example when x represents a two-dimensional spatial domain, (1.1) becomes the

spatial generalized linear mixed model proposed by [8]. In a Bayesian framework, Gaussian

process priors are implemented for classification problems, such as in [7] and [24]. Despite

successful applications of these models, theoretical studies on the estimation and prediction

properties are not available. Therefore, one focus of this chapter is to provide theoretical

supports for the estimation and prediction in (1.1).
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1.2.2 Generalized Gaussian process models for binary time series

In this section, we introduce a new model for the analysis of computer experiments with

binary time series, which is an extension of (1.1) that takes serial correlations between binary

observations into account. Suppose for each setting of a computer experiment, a sequence

of binary time series outputs {yt(x)}Tt=1 is randomly generated from Bernoulli distributions

with probabilities {pt(x)}Tt=1. A generalized Gaussian process model for binary time series

can be written as:

logit(pt(x)) = ηt(x) =
R∑
r=1

ϕryt−r(x) + α0 + x′α+
L∑
l=1

γ lxyt−l(x) + Zt(x), (1.3)

where pt(x) = E[yt(x)|Ht] is the conditional mean given the previous information Ht =

{yt−1(x), yt−2(x), . . .}. In model (1.3), {ϕr}Rr=1 represents an autoregressive (AR) process

with order R andα = (α1, . . . , αd)
′ represents the effects of x. The d-dimensional vector γ l

represents the interaction between the input and the past outputs and provides the flexibility

of modeling different time series structures with different inputs. Given that the interactions

between x and time are captured by xyt−l, Zt is assumed to vary independently over time

to reduce modeling and computational complexity. Further extensions can be made by

replacing Zt(x) with a spatio-temporal Gaussian process Z(t,x), but the computational

cost will be higher. Without the Gaussian process assumption in (1.3), the mean function

is closely related to the Zeger-Qaqish model [25] and its extensions in [4] and [26], all of

which take into account the autoregressive predictors in logistic regression.

Model (1.3) extends the applications of conventional GP to binary time series generated

from computer experiments. The model is intuitively appealing; however, the issues of

estimation, prediction, and inference are not straightforward due to the nature of binary

response and the dependency structure.
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1.3 Inference

Since model (1.1) can be written as a special case of model (1.3) when R = 0, L = 0 and

T = 1, derivations herein are mainly based on model (1.3) with additional discussions given

for (1.1) when necessary.

1.3.1 Estimation

Given n input settings x1, . . . ,xn in a computer experiment, denote yit ≡ yt(xi) as the

binary output generated from input xi at time t, where xi ∈ Rd, i = 1, ..., n, and t = 1, ..., T .

Let N be the total number of the outputs, i.e., N = nT . In addition, at each time t, denote yt

as an n-dimensional vector yt = (y1t, ..., ynt)
′ with conditional mean pt = (p1t, . . . , pnt)

′,

where pit = E(yit|Hit) and Hit = {yi,t−1, yi,t−2, . . .}. Based on the data, model (1.3) can

be rewritten into matrix form as follows:

logit(p) = X ′β +Z, Z ∼ N (0N ,Σ(ω)), (1.4)

where p = (p′1, . . . ,p
′
T )′,β = (ϕ1, . . . , ϕR, α0,α

′, (γ ′1, . . . ,γ
′
L)′)′,ω = (σ2,θ)′,

Z = (Z1(x1), . . . , Z1(xn), . . . , ZT (x1), . . . , ZT (xn))′,X is the model matrix (X ′1, . . . , X
′
T )′,

Xt is an n×(1+R+d+dL) matrix with i-th row defined by (Xt)i = (1, yi,t−1, . . . , yi,t−R,x
′
i,

x′iyi,t−1, . . . ,x
′
iyi,t−L), and Σ(ω) is an N ×N covariance matrix defined by

Σ(ω) = σ2Rθ ⊗ IT (1.5)

with (Rθ)ij = Rθ(xi,xj). Model (1.1) can also be rewritten in the same way by setting

R = 0, L = 0 and T = 1.

With the presence of time series and their interaction with the input settings in model

(1.3), we can write down the partial likelihood (PL) function [27, 28] according to the

formulation of [29]. Given the previous information {Hit}i=1,...,n;t=1,...,N , the PL for β can
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be written as

PL(β|Z) =
n∏
i=1

T∏
t=1

(pit(β|Z))yit(1− pit(β|Z))1−yit , (1.6)

where pit(β|Z) = Eβ|Z [yit|Hit]. Then, the integrated quasi-PL function for the estimation

of (β,ω) is given by

|Σ(ω)|−1/2

∫
exp{logPL(β|Z)− 1

2
Z ′Σ(ω)−1Z}dZ. (1.7)

Note that, for model (1.1) where no time series effect is considered, (1.6) and (1.7) should

be replaced by the likelihood function

L(β|Z) =
n∏
i=1

(pi1(β|Z))yi1(1− pi1(β|Z))1−yi1

and the integrated quasi-likelihood function

|Σ(ω)|−1/2

∫
exp{logL(β|Z)− 1

2
Z ′Σ(ω)−1Z}dZ, (1.8)

respectively. Hereafter, we provide the framework for the integrated quasi-PL function (1.7),

but the result can be applied to the integrated quasi-likelihood function (1.8) by assuming

R = 0, L = 0 and T = 1.

Because of the difficulty in computing the integrated quasi-PL function, a penalized

quasi-PL (PQPL) function is used as an approximation. Similar to the procedure in [30],

the integrated quasi-partial log-likelihood can be approximated by Laplace’s method [31].
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Ignoring the multiplicative constant and plugging (1.5) in Σ(ω), the approximation yields

−1

2
log |In + σ2W (Rθ ⊗ IT )|+

n∑
i=1

T∑
t=1

(
yit log

pit(β|Z̃)

1− pit(β|Z̃)
+ log(1− pit(β|Z̃))

)
− 1

2σ2
Z̃
′
(Rθ ⊗ IT )−1Z̃,

(1.9)

where W is an N × N diagonal matrix with diagonal elements Wit = pit(β|Z̃)(1 −

pit(β|Z̃)), pit(β|Z̃) = Eβ|Z̃ [yit|Hit], and Z̃ = Z̃(β,ω) is the solution of
∑n

i=1

∑T
t=1 eit(yit−

pit(β|Z)) = (Rθ ⊗ IT )−1Z/σ2, where eit is a unit-vector where ((t− 1)n+ i)-th element

is one. The estimator β̂ which maximizes the PQPL function (1.9) is called maximum quasi-

PL estimator. Thus, similar to the derivations in [30] for score equations of a penalized

quasi-likelihood function, the score equations of the PQPL function for β and ω are

n∑
i=1

T∑
t=1

Xit(yit − pit(β,ω)) = 0

and
n∑
i=1

T∑
t=1

eit(yit − pit(β,ω)) = (Rθ ⊗ IT )−1Z/σ2,

where pit(β,ω) = Eβ,ω[yit|Hit]. The solution to the score equations can be efficiently

obtained by an iterated weighted least squares (IWLS) approach as follows. In each step,

one first solves for β in

(X ′V (ω)−1X)β = X ′V (ω)−1η̃, (1.10)

where V (ω) = W−1 + σ2(Rθ ⊗ IT ), W is an N × N diagonal matrix with diagonal

elements Wit = pit(β,ω)(1− pit(β,ω)), and η̃it = log pit(β,ω)
1−pit(β,ω)

+ yit−pit(β,ω)
pit(β,ω)(1−pit(β,ω))

, and

then sets

Ẑ = σ2(Rθ ⊗ IT )V (ω)−1(η̃ −X ′β̂) (1.11)
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and replaces pit(β,ω) with pit(β̂,ω) =
(

exp{X′β̂+Ẑ}
1N+exp{X′β̂+Ẑ}

)
it

.

Estimation of the correlation parameters θ and variance σ2 is obtained by the restricted

maximum likelihood (REML) approach [32] because it is known to have smaller bias

comparing with the maximum likelihood approach [33]. See also [34] and [35] for details.

According to [36, 34], the REML estimators of σ2 and θ can be solved by minimizing the

following negative log-likelihood function with respect to ω,

L(ω) =
N −m

2
log(2π)−1

2
log(|X ′X|)+1

2
log(|V (ω)|)+1

2
log(|X ′V (ω)−1X|)+1

2
η̃′Π(ω)η̃,

(1.12)

wherem = 1+R+d+dL andΠ(ω) = V (ω)−1−V (ω)−1X(X ′V (ω)−1X)−1X ′V (ω)−1.

Therefore, the estimators β̂ and ω̂ (≡ (σ̂2, θ̂)′) can be obtained by iteratively solving

(1.10), (1.11) and minimizing (1.12). The explicit algorithm is given in Appendix A.1.

Note that V (ω) is a block diagonal matrix, i.e., a square matrix having main diagonal

blocks square matrices such that the off-diagonal blocks are zero matrices. Therefore the

computational burden for the matrix inversion of V (ω) can be alleviated by the fact that the

inverse of a block diagonal matrix is a block diagonal matrix, composed of the inversion of

each block.

1.3.2 Asymptotic Properties

Asymptotic results are presented here to show that the estimators β̂, σ̂2 and θ̂ obtained in

Section 1.3.1 are asymptotically normally distributed when N(= nT ) becomes sufficiently

large. In the present context both n and T are sufficiently large. The assumptions are given

in Appendix A.2, and the proofs are stated in Appendix A.3 and A.4. These results are

developed along the lines described in [4] and [37, 38].

Theorem 1.3.1. Under assumptions A.2.1 and A.2.2, the maximum quasi-PL estimator for
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the fixed effects β are consistent and asymptotically normal as N →∞,

√
N(β̂ − β) = Λ−1

N

1√
N
SN(β,ω) + op(1)

and
√
NΛ

1/2
N (β̂ − β)

d−→ N (0, Im),

where m is the size of the vector β (i.e., m = 1 + R + d + dL), the sample information

matrix

ΛN =
1

N

n∑
i=1

T∑
t=1

XitX
′
itpit(β,ω)(1− pit(β,ω)),

and SN(β,ω) =
∑n

i=1

∑T
t=1Xit(yit − pit(β,ω)).

Remark 1.3.2. For model (1.1), the estimator β̂ can be obtained by minimizing the penal-

ized quasi-likelihood (PQL) function, which can be written as (1.9) with T = 1. Under

assumption A.2.1 and the application of central limit theorem, such estimator has the same

asymptotic properties as in Theorem 1.3.1 with N = n.

For models (1.1) and (1.3), we have the following asymptotic properties for ω̂.

Theorem 1.3.3. Denote [ΓN(ω)]i,j = ∂2L(ω)/∂ωi∂ωj and JN(ω) = [EωΓN(ω)]1/2. Then,

under assumptions A.2.3 and A.2.4, as N →∞,

JN(ω̂)(ω̂ − ω)
d−→ N (0, Id+1).

1.4 Construction of Predictive Distribution

For computer experiments, the construction of an optimal predictor and its corresponding

predictive distribution is important for uncertainty quantification, sensitivity analysis, process

optimization, and calibration [5].

First, some notation is introduced. For some untried setting xn+1, denote the predictive

probability at time s by ps(xn+1) = E[ys(xn+1)|Hs], where Hs = {yn+1,s−1, yn+1,s−2, . . .}.
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Assume thatDn+1,s represents the “previous information” including {yn+1,s−1, yn+1,s−2, . . . ,

pn+1,s−1, pn+1,s−2, . . .} at xn+1 and {yit, pit}, where i = 1, . . . , n and t = 1, . . . , T . Also,

let Logitnormal(µ, σ2) represent a logit-normal distribution P , where P = exp{X}/(1 +

exp{X}) andX has a univariate normal distribution with µ and variance σ2. Denote the first

two moments of the distribution by E[P ] = κ(µ, σ2) and V[P ] = τ(µ, σ2). In general, there

is no closed form expression for κ(µ, σ2) and τ(µ, σ2), but it can be easily computed by

numerical integration such as in the package logitnorm [39] in R [19]. More discussions

on logit-normal distribution can be found in [40, 41, 42].

We first present a lemma which shows that, given Dn+1,s, the conditional distribution of

ps(xn+1) in model (1.3) is logit-normal. This result lays the foundation for the construction

of predictive distribution. The proof is given in Appendix A.5.

Lemma 1.4.1. For model (1.3), the conditional distribution of ps(xn+1) can be written as

ps(xn+1)|Dn+1,s ∼ Logitnormal(m(Dn+1,s), v(Dn+1,s)),

where

m(Dn+1,s) =
R∑
r=1

ϕryn+1,s−r + α0 + x′n+1α+
L∑
l=1

γ lxn+1yn+1,s−l + r′θR
−1
θ

(
log

ps
1n − ps

− µs
)
,

v(Dn+1,s) = σ2
(
1− r′θR−1

θ rθ
)
, rθ = (Rθ(xn+1,x1), . . . , Rθ(xn+1,xn))′,Rθ = {Rθ(xi,xj)},

ps = (ps(x1), . . . , ps(xn))′, and (µs)i =
∑R

r=1 ϕryi,s−r + α0 + x′iα+
∑L

l=1 γ lxiyi,s−l.

Remark 1.4.2. For model (1.1), the result in Lemma 1.4.1 can be applied by having

R = 0, L = 0, s = 1 and T = 1. Then, Dn+1,s can be written as Dn+1 containing only

{p1,1, . . . , pn,1}, and we have the conditional distribution

p(xn+1)|Dn+1 ∼ Logitnormal(m(Dn+1), v(Dn+1)),

where m(Dn+1) = α0 + x′n+1α+ r′θR
−1
θ (log p1

1−p1
− µn), v(Dn+1) = σ2(1− r′θR−1

θ rθ),
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µn = (α0 + x′1α, . . . , α0 + x′nα)′, rθ = (Rθ(xn+1,x1), . . . , Rθ(xn+1,xn))′, and Rθ =

{Rθ(xi,xj)}.

Based on Lemma 1.4.1, the prediction of ps(xn+1) for some untried setting xn+1 and its

variance can then be obtained in the next theorem. The proof is given in Appendix A.6. The

definition of minimum mean squared prediction error of p given D is first stated as follows,

p̂ = p̂(D) = arg min
η

EF [(p− η)2],

where F (·) is the joint distribution of (p,D) and EF [·] denotes expectation under distribution

F (·).

Theorem 1.4.3. GivenDn+1,s = {y′1, . . . ,y′T ,p′1, . . . ,p′T , yn+1,s−1, . . . , yn+1,1, pn+1,s−1, . . . , pn+1,1},

(i) the minimum mean squared prediction error (MMSPE) predictor of ps(xn+1), denoted

by p̂s(xn+1), is

E [ps(xn+1)|Dn+1,s] = κ(m(Dn+1,s), v(Dn+1,s))

with variance V [ps(xn+1)|Dn+1,s] = τ(m(Dn+1,s), v(Dn+1,s));

(ii) the MMSPE predictor is an interpolator, i.e., if xn+1 = xi for i = 1, · · · , n, then

p̂s(xn+1) = E [ps(xn+1)|Dn+1,s] = ps(xi) and the predictive variance is 0;

(iii) the q-th quantile of the conditional distribution p(xn+1)|Dn+1,s is

exp{m(Dn+1,s) + zq
√
v(Dn+1,s)}

1 + exp{m(Dn+1,s) + zq
√
v(Dn+1,s)}

,

where zq is the q-th quantile of the standard normal distribution.

Theorem 1.4.3 shows that, givenDn+1,s, the new predictor for binary data can interpolate

the underlying probabilities which generate the training data. According to Theorem
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1.4.3(iii) and the fact that v(Dn+1,s) increases with the distance to the training data, this

result shows an increasing predictive uncertainty for points away from the training data.

This predictive property is desirable and consistent with the conventional GP predictor.

In practice, only the binary outputs are observable and the underlying probabilities are

not available in the training data. Thus, the following results construct the MMSPE predictor

of ps(xn+1) given Y = (y′1, . . . ,y
′
T , y1(xn+1), . . . , ys−1(xn+1))′. These results can be used

for prediction and quantification of the predictive uncertainty, such as constructing predictive

confidence intervals for untried settings.

Corollary 1.4.4. Given Y = (y′1, . . . ,y
′
T , y1(xn+1), . . . , ys−1(xn+1))′,

(i) The MMSPE predictor of ps(xn+1) is

p̂s(xn+1) = E [ps(xn+1)|Y ] = Ep|Y [κ(m(Dn+1,s), v(Dn+1,s))|Y ] (1.13)

with variance

V [ps(xn+1)|Y ] = Ep|Y [τ(m(Dn+1,s), v(Dn+1,s))|Y ]+Vp|Y [κ(m(Dn+1,s), v(Dn+1,s))|Y ] ,

(1.14)

where p = (p′1, · · · ,p′T , p1(xn+1), . . . , ps−1(xn+1))′.

(ii) When xn+1 = xi, the MMSPE predictor becomes p̂s(xi) = Ep|Y [ps(xi)|Y ] with

variance Vp|Y [ps(xi)|Y ].

Remark 1.4.5. For model (1.1), the results of Theorem 1.4.3 and Corollary 1.4.4 can be

applied by assuming s = 1 and T = 1.

Without the information of the underlying probabilities, the predictor does not interpolate

all the training data as in Theorem 1.4.3 (ii). From Corollary 1.4.4, when xn+1 = xi, the

predictor is still unbiased but the corresponding variance is nonzero. Instead, the variance

becomes Vp|Y [ps(xi)|Y ], which is due to the uncertainty of the underlying probability.
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The proof is similar to Theorem 1.4.3 (ii). To show the empirical performance of the

predictive distribution in Corollary 1.4.4, a one-dimensional example is illustrated in Figure

1.1. Consider the true probability function, p(x) = 0.4 exp(−1.2x) cos(3.5πx) + 0.4, which

is represented by a black dotted line, and the training set that contains 12 evenly-spaced

inputs and the corresponding binary outputs represented by red dots. The blue line is the

MMSPE predictor constructed by equation (1.13) and the gray region is the corresponding

95% confidence band constructed by the 2.5%- and 97.5%-quantiles. It appears that the

proposed predictor and the confidence band reasonably capture the underlying probability.
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Figure 1.1: Illustration of predictive distribution. Black dotted line represents the true
probability function, red dots represent the binary response data, black dots represent the
true probabilities at the chosen locations, and the emulator is represented by the blue line,
with the gray shaded region providing a pointwise 95% confidence band.

Although there is no closed form expression for the distribution of p|Y , the random

samples from p|Y can be easily generated by the Metropolis-Hastings (MH) algorithm.

See Appendix A.7 for the explicit algorithm. Based on these samples, the expectation

and variance in Corollary 1.4.4 can be approximated by using a Monte Carlo method. For

example, let {p(j)}j=1,...,J be the J random samples generated from distribution p|Y , then

the MMSPE predictor of ps(xn+1) in Corollary 1.4.4 can be approximated by

Ep|Y [κ(m(Dn+1,s), v(Dn+1,s))|Y ] ≈ 1

J

J∑
j=1

κ(m(D
(j)
n+1,s), v(D

(j)
n+1,s)),
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where D(j)
n+1,s = {p(j),Y }. Similar idea can be applied to compute V [ps(xn+1)|Y ]. The

quantiles of ps(xn+1)|Y can be obtained from random samples {p(1)
s , . . . , p

(J)
s }, where p(j)

s

is generated from ps(xn+1)|D(j)
n+1,s following a logit-normal distribution by Lemma 1.4.1.

When the historical time series for an untried setting (i.e., y1(xn+1), . . . , ys−1(xn+1)

in Corollary 1.4.4) is not available, we can emulate a completely new time series (or

batch of time series) with input xn+1. The idea is to generate draws from the conditional

distribution ps(xn+1)|Y for future outputs, starting from s = 0, and take pointwise median

of the random draws. This idea is similar to the dynamic emulators introduced by [43] for

continuous outputs. The random samples from ps(xn+1)|Y can be generated by the fact

f(ps(xn+1),p|Y ) = f(p|Y )f(ps(xn+1)|p,Y ), where f(ps(xn+1)|p,Y ) is a logit-normal

distribution provided in Lemma 1.4.1. As mentioned above, the random samples from

f(p|Y ) can be generated through the MH algorithm. Therefore, generating a draw from

ps(xn+1)|Y consists of two steps: (i) generating the “previous” probability values p∗ given

output Y from the distribution p|Y through the MH algorithm, and (ii) based on the sample

p∗, draw a sample p∗s(xn+1) from ps(xn+1)|p∗,Y , which is a logit-normal distribution, and

also draw a sample y∗s(xn+1) from a Bernoulli distribution with parameter p∗s(xn+1). An

explicit algorithm is given in Appendix A.8.

1.5 Simulation Studies

In Section 1.5.1, we conduct simulations generated from Gaussian processes to demonstrate

the estimation performance. In Section 1.5.2, the prediction performance is examined by

comparing several existing methods using the data generated from a modified Friedman

function [44].

1.5.1 Estimation Performance

Consider a 5-dimensional input space, d = 5, and the input x is randomly generated from a

regular grid on [0, 1]5. The binary output, yt(x) at time t, is simulated by a Bernoulli dis-
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tribution with probability pt(x) calculated by (1.3) and α0 = 0.5, α = (−3, 2,−2, 1, 0.5)′,

ϕ1 = 0.8, σ2 = 1, and the power exponential correlation function (1.2) is chosen with

θ = (0.5, 1.0, 1.5, 2.0, 2.5)′ and p = 2. Four sample size combinations of n and T are

considered in the simulations.

The potential confounding between the polynomials in the mean function and the

zero-mean Gaussian process can lead to the lack of identifiability, which will cause the

estimated mean model to lose interpretability. In order to tackle this problem, [20] proposed

an orthogonal Gaussian process model whose stochastic part is orthogonal to the mean

function. The key idea is to construct the correlation function that achieves the orthogonality.

The orthogonal correlation function derived from the exponential correlation functions

with power p = 2 is given in equation (8) of [20]. We implemented the orthogonal

correlation function (abbreviated as OGP) as well as the power exponential correlation

function (abbreviated as PE) in the simulation.

The estimation results for the linear function coefficients are summarized in Table 1.1

based on 100 replicates for each sample size combination. In general, the proposed approach

can estimate the linear function coefficients (α0,α, ϕ1) reasonably well. Compared with PE,

the estimation improvement using OGP is reported as IMP. It appears that the estimation

accuracy can be further improved by the use of orthogonal correlation functions. Therefore,

orthogonal correlation functions are generally recommended when estimation is of major

interest, such as in variable selection and calibration problems.

The parameter estimation results for σ2 and PE correlation parameters θ are reported in

Table 1.2. The estimation with OGP has similar results, so we omit them to save space. The

proposed approach tends to overestimate the correlation parameters for small sample size.

This is not surprising because the estimation of correlation parameters is more challenging

and the same phenomenon is observed in conventional GP models (see [45]). This problem

can be ameliorated by the increase of sample size as shown in Table 1.2. Given the same

number of total sample size, (n = 200, T = 50) and (n = 500, T = 20), it appears that a
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Table 1.1: Estimation of linear coefficients. The values are the average estimates over
100 replicates, while the values in parentheses are the standard deviation of the estimates.
The parameter settings are α0 = 0.5, α1 = −3, α2 = 2, α3 = −2, α4 = 1, α5 = 0.5, and
ϕ1 = 0.8.

n T Corr α̂0 α̂1 α̂2 α̂3 α̂4 α̂5 ϕ̂1

200 20

PE
0.46 −2.71 1.82 −1.82 0.91 0.46 0.72

(0.11) (0.15) (0.13) (0.12) (0.09) (0.10) (0.11)

OGP
0.48 −2.77 1.84 −1.85 0.91 0.46 0.71

(0.12) (0.12) (0.10) (0.09) (0.08) (0.08) (0.10)
IMP (%) 4 2 1 1.5 0 0 −1.25

200 50

PE
0.45 −2.68 1.80 −1.79 0.90 0.46 0.70

(0.07) (0.10) (0.09) (0.08) (0.07) (0.06) (0.07)

OGP
0.47 −2.75 1.83 −1.83 0.92 0.46 0.71

(0.08) (0.09) (0.06) (0.06) (0.06) (0.05) (0.08)
IMP (%) 4 2.3 1.5 2 2 0 1.25

500 20

PE
0.47 −2.76 1.82 −1.83 0.91 0.48 0.73

(0.09) (0.14) (0.12) (0.10) (0.08) (0.07) (0.07)

OGP
0.49 −2.81 1.89 −1.88 0.95 0.46 0.74

(0.08) (0.09) (0.07) (0.06) (0.06) (0.06) (0.07)
IMP (%) 4 1.7 3.5 2.5 4 4 1.25

500 50

PE
0.45 −2.75 1.83 −1.83 0.92 0.45 0.74

(0.06) (0.07) (0.06) (0.06) (0.06) (0.05) (0.04)

OGP
0.47 −2.80 1.87 −1.87 0.93 0.47 0.75

(0.06) (0.05) (0.04) (0.04) (0.03) (0.03) (0.04)
IMP (%) 4 1.7 2 2 1 2 1.25
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Table 1.2: Estimation of correlation parameters and variance. The values are the average
estimates over 100 replicates, while the values in parentheses are the standard deviation of
the estimates. The parameter settings are θ1 = 0.5, θ2 = 1.0, θ3 = 1.5, θ4 = 2, θ5 = 2.5,
and σ2 = 1.

n T θ̂1 θ̂2 θ̂3 θ̂4 θ̂5 σ̂2

200 20
0.86 1.80 2.35 3.30 4.10 0.82

(0.81) (1.13) (1.41) (1.76) (1.85) (0.07)

200 50
0.65 1.55 2.38 3.01 3.80 0.79

(0.16) (0.63) (1.12) (1.25) (1.49) (0.05)

500 20
0.61 1.17 1.93 2.66 3.24 0.87

(0.16) (0.25) (0.54) (0.96) (1.17) (0.05)

500 50
0.57 1.16 1.78 2.37 3.11 0.87

(0.08) (0.16) (0.35) (0.39) (0.68) (0.03)

larger n can improve the estimation accuracy more effectively.

Based on the construction of predictive distribution in Section 1.4, we can emulate

a new time series with an untried input. Here we generate 100 random untried inputs

to examine its prediction performance. The prediction performance is evaluated by the

following two measures. Define the 100 random untried inputs (ntest = 100) by x∗1, . . . ,x
∗
100,

the misclassification rate (MR) is calculated by

1

ntestT

ntest∑
i=1

T∑
t=1

(yt(x
∗
i )− ŷt(x∗i ))2,

where ŷt(x∗i ) is the predictive binary response by the proposed method. Since the underlying

probabilities are known in the simulation settings, we can also evaluate the prediction

performance by the root mean squared prediction error

RMSPE =

(
1

ntestT

ntest∑
i=1

T∑
t=1

(pt(x
∗
i )− p̂t(x∗i ))2

)1/2

,

where p̂t(x∗i ) is the predictive probability. The MR and RMSPE results are given in Table

1.3. Overall, the proposed predictor has the misclassification rate less than 17.3% and the
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Table 1.3: Comparison of RMSPEs and misclassification rates.

n = 200 n = 200 n = 500 n = 500
T = 20 T = 50 T = 20 T = 50

MR (%)
17.22 17.27 17.08 16.83
(1.55) (1.39) (1.58) (1.19)

RMSPE
0.1188 0.1193 0.1058 0.1053

(0.0066) (0.0058) (0.0060) (0.0045)

root mean squared prediction error less than 0.12. Also, with the increase of sample size,

the prediction error, in terms of both MR and RMSPE, decreases in general.

Furthermore, the predictive distributions can be used to quantify the prediction uncer-

tainty. The predictive distributions with two random untried inputs are shown in Figure 1.2,

where the green dotted lines represent the true probability, the red dashed lines represent

the MMSPE predictors obtained in Corollary 1.4.4. From Figure 1.2, it appears that the

MMSPE predictors provide accurate predictions in both cases. Moreover, the predictive

distributions provide rich information for statistical inference. For example, we can construct

95% predictive confidence intervals for the two untried settings as indicated in blue in Figure

1.2.
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Figure 1.2: Predictive distributions. The green dotted lines are the true probability, the red
dashed lines are the MMSPE predictors, and the 95% predictive confidence intervals are
indicated in blue.
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1.5.2 Prediction Performance

To examine the performance of the proposed model as an emulator, we compare its prediction

accuracy with four existing methods: (1) the logistic regression model, (2) a combination

of logistic regression model with time series mean function, (3) the Bayesian generalized

Gaussian process model [7], which incorporates a Gaussian process prior but does not take

into account the time series structure, and (4) the functional Gaussian process proposed by

[46], which captures the serial correlation by functional data analysis techniques. These

methods are respectively implemented by R [19] using packages binaryGP [18], stat

[19], a modification of stat, kernlab [47] and GPFDA [48] adapted to classification.

The simulated data are generated by a modification of the Friedman function [44],

logit(pt(x)) = yt−1(x) +
1

3

[
10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5

]
− 5,

where x ∈ [0, 1]5 and the Friedman function is given in the brackets with intercept −5 and

scale 1/3 to ensure pt(x) is uniformly located at [0, 1]. The input x is randomly generated

from [0, 1]5 and the corresponding binary output yt(x) at time t is generated by a Bernoulli

distribution with probability pt(x). The size of the training data is set to be n = 200, T = 20.

The prediction performance is evaluated by RMSPE using 100 randomly generated

untried settings (ntest = 100, T = 20). The results for the five methods based on 100

replicates are shown in the left panel of Figure 1.3. In general, the proposed method has

lower RMSPE than the other four methods. By incorporating a Gaussian process to model

the nonlinearity, the proposed method outperforms the straightforward combination of

logistic regression model and time series structure. On the other hand, comparing with

Bayesian generalized Gaussian process model (i.e., kernlab in Figure 1.3), the proposed

method further improves the prediction accuracy by taking into account the time series

structure. The computation time, for model fitting and prediction, is given in the right

panel of Figure 1.3. The proposed method is faster than GPFDA. Comparing with glm and
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glm ts, the major computational difficulty lies in the estimation of correlation parameters,

which is a common issue in conventional GPs because there is no analytical solution for the

parameter estimation. The kernlab has better computational performance since it assumes

that all the correlation parameters are the equal and estimated by analytic approximation,

that is, θ1 = . . . , θd in (1.2). However, the computation time of kernlab is expected to

increase if this assumption is relaxed to a correlation function with different correlation

parameters as in (1.2).
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Figure 1.3: Comparison of prediction performance in terms of accuracy (left) and compu-
tation time (right). binaryGP: proposed method, glm: logistic regression, glm ts: logistic
regression with time-series mean function, kernlab: Bayesian generalized GP, and GPFDA:
functional Gaussian process model.

1.6 Computer Experiments for Cell Adhesion Frequency Assay

In an earlier study based on in vitro experiments, an important memory effect was discov-

ered in the repeated adhesion experiments of the micropipette adhesion frequency assay.

However, only limited variables of interest can be studied in the lab because of the technical

complexity of the biological setting and the complicated experimental manipulation. There-

fore, computer simulation experiments are performed to examine the complex mechanisms

behind repeated receptor-ligand binding to rigorously elucidate the biological mechanisms
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behind the memory effect.

In these computer experiments, two surfaces are simulated to reflect the two opposing

membranes in the adhesion frequency assays. The molecules on the surfaces are permitted

to interact for the contact duration and then separated for a period of waiting time to simulate

the retract-approach phase of the assays. The computer experiments are constructed based

on a kinetic proofreading model for receptor modification and solved through a Gillespie

algorithm [49], which is a stochastic simulation algorithm. The contact is scored as 1 or 0

depending on whether at least one bond or no bond is observed, respectively. The process is

repeated until the given number of contacts is completed.

The biological system investigated here is the T Cell Receptor (TCR) binding to antigen

peptide bound to Major Histocompatibility Complex (pMHC), which has previously been

shown to exhibit memory in repeated contacts [3]. The TCR is the primary molecule involved

in detecting foreign antigens which are presented on pMHC molecules expressed by infected

cells. Memory in serial interactions of these foreign antigens may be a mechanism which

underlies the major properties of T cell antigen recognition: sensitivity, specificity, and

context discrimination. It has largely remained uninvestigated due to the small time scales

at which the mechanism operates and the complexity of the experimental system. Although

there are many possible cellular mechanisms which may induce this behavior, we investigate

a specific mechanism, called free induction mechanism [50], in this study as to how this

memory may be controlled: pMHC binding to a single TCR within a cluster upregulates the

kinetics of all TCRs within that cluster.

The free induction mechanism has six control variables given in Table 1.4. The range

of each control variable in Table 1.4 is given by physical principles or estimated through

similar molecular interactions. The design of the control variables is a 60-run OA-based

Latin hypercube designs [51]. For each run, it consists of 50 replicates and each replicate

has 100 repeated contacts (T = 100).

The proposed estimation method is implemented with orthogonal correlation functions
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Table 1.4: Control variables in cell adhesion frequency assay experiments.

Variable Description Range

xKf,p on-rate enhancement of activated TCRs (1,100)
xKr,p off-rate enhancement of activated TCRs (0.1,100)
xThalf half-life of cluster activation (0.1,10)
xTc cell-cell contact time (0.1,10)
xTw waiting time in between contacts (0.1,10)
xKc kinetic proofreading modification rate for activation of cluster (0.1,10)

derived from the power exponential correlation function with p = 2, which can be found in

equation (8) in [20]. We start with a large model in which the mean function includes all the

main effects of the control variables and their interactions with the past time series output

yt−1. The model is written as:

logit(pt(x)) = −0.07+ϕ̂1yt−1(x) + α̂1xKf,p + α̂2xKr,p + α̂3xThalf + α̂4xTc + α̂5xTw + α̂6xKc+

(γ̂1xKf,p + γ̂2xKr,p + γ̂3xThalf + γ̂4xTc + γ̂5xTw + γ̂6xKc)yt−1(x) + Zt(x),

where all the control variables are standardized to [0, 1], σ̂ = 0.43 and the estimated correla-

tion parameters are θ̂ = (θ̂Kf,p , θ̂Kr,p , θ̂Thalf , θ̂Tc, θ̂Tw, θ̂Kc) = (3.28, 1.70, 7.77, 0.06, 4.78, 0.74).

Estimation results for the mean function coefficients are given in Table 1.5 with p values

calculated based on the asymptotic results in Theorem 1.3.1. We use these p values to

perform variable selection and identify significant effects for the mean function. According

to Table 1.5, xThalf has no significant effect in the mean function at the 0.01 level. By

removing xThalf , the model can be updated as

logit(pt(x)) =− 0.07 + 0.14yt−1(x) + 0.13xKf,p + 0.37xKr,p + 0.47xTc − 0.08xTw + 0.15xKc

+ (0.16xKf,p + 0.23xKr,p − 0.09xThalf + 0.23xTc − 0.17xTw + 0.36xKc)yt−1(x) + Zt(x),

where σ̂ = 0.44, the estimated correlation parameters are θ̂ = (θ̂Kf,p , θ̂Kr,p , θ̂Thalf ,

θ̂Tc, θ̂Tw, θ̂Kc) = (3.27, 1.71, 7.77, 0.06, 4.81, 0.74). Based on the updated model, among
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Table 1.5: Estimation results.

Standard
Value deviation Z score p value

ϕ̂1 0.14 0.02 7.96 0.0000
α̂1 0.13 0.02 5.96 0.0000
α̂2 0.37 0.02 17.82 0.0000
α̂3 0.00 0.02 0.08 0.9331
α̂4 0.47 0.02 22.54 0.0000
α̂5 -0.08 0.02 -3.79 0.0001
α̂6 0.15 0.02 6.86 0.0000
γ̂1 0.16 0.03 5.2 0.0000
γ̂2 0.23 0.03 7.68 0.0000
γ̂3 -0.09 0.03 -2.92 0.0035
γ̂4 0.23 0.03 7.28 0.0000
γ̂5 -0.17 0.03 -5.47 0.0000
γ̂6 0.36 0.03 11.83 0.0000

the interaction effects, all the control variables except xThalf are significant for inducing

memory in the free induction model.

The application of this statistical approach to the analysis of simulations and experimental

data will be powerful in illuminating the unknown biological mechanism, and also informs

the next round of experiments by advising future manipulations. Additionally, developments

on the calibration of computer experiments based upon the proposed predictive distribution

will help provide insight into the range of possible values of variables, such as the increases in

kinetic rates, which are difficult to determine through existing methods due to the small time

scale at which this mechanism operates and the limits of existing experimental techniques.

Besides estimation, the proposed method also provides predictors which can serve as

efficient and accurate emulators for untried computer experiments. The construction of

emulator is an important step for future research on calibration where computer experiment

outputs under the same settings of the lab experiments are required but not necessarily

available. To assess the predictive performance, we compare the proposed predictor with

the four existing methods discussed in Section 1.5 based on a 10-fold cross-validation study.

The prediction error measured by the misclassification rate is reported in Figure 1.4, which
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shows that the proposed predictor has a smaller prediction error compared to the other

alternatives.
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Figure 1.4: Comparison of misclassification rate. binaryGP: proposed method, glm: logistic
regression, glm ts: logistic regression with time-series mean function, kernlab: Bayesian
generalized GP, and GPFDA: functional Gaussian process model.

1.7 Summary and Concluding Remarks

In spite of the prevalence of Gaussian process models in the analysis of computer experi-

ments, their applications are limited to the Gaussian assumption on the responses. Motivated

by the study of cell adhesion where the computer simulation responses are binary time series,

a generalized Gaussian process model is proposed in this chapter. The estimation procedure

is introduced and asymptotic properties are derived. An optimal predictor and its predictive

distribution are constructed which can be used for uncertainty quantification and calibration

of future computer simulations. An R package is available for implementing the proposed

methodology. The methodology is applied to analyze stochastic computer simulations for

a cell adhesion mechanism. The results reveal important biological information which is

not available in lab experiments and provide valuable insights on how the next round of lab

experiments should be conducted.

The current work can be extended in several directions. First, we will extend the
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proposed method to other non-Gaussian data, such as the count data. It is conceivable

that the current estimation procedure can be directly extended to other exponential family

distributions, but different predictive distributions are expected for different types of non-

Gaussian data. Second, the computational cost in the proposed procedure can be further

reduced. In particular, the inversion ofRθ can be computationally prohibitive when sample

size is large. This computational issue has been addressed for conventional GP models in

the recent literature. Extensions of these methods (e.g., [2, 52]) to binary responses deserve

further attention. Third, many mathematical models underlying the computer simulations

contain unknown parameters, which need to be estimated using data from lab experiments.

This problem is called calibration and much work has been done in the computer experiment

literature. However, the existing methods (e.g., [53], [23] and [54]) are only applicable

under the Gaussian assumption. Based upon the model and prediction procedure proposed

herein, we will work on developing a calibration method for non-Gaussian data.
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CHAPTER 2

CALIBRATION FOR COMPUTER EXPERIMENTS WITH BINARY

RESPONSES

2.1 Introduction

To study a scientific problem by experimentation, there are generally two different ap-

proaches. One is to conduct physical experiments in a laboratory and the other is to perform

computer simulations for the study of real systems using mathematical models and numerical

tools, such as finite element analysis. Computer experiments have been widely adopted

as alternatives to physical experiments, especially for studying complex systems where

physical experiments are infeasible, inconvenient, risky, or too expensive. For example, [1]

study high-fidelity simulations for turbulent flows in a swirl injector, which are used in a

wide variety of engineering applications. In computer experiments, there are two sets of

input variables. One is the set of general inputs that represents controllable quantities which

are also present in physical experiments, while the other is the set of unknown parameters

that represents certain inherent attributes of the underlying systems but cannot be directly

controlled or measured in physical experiments. These unknown parameters are called

calibration parameters in the literature [5]. The focus of this paper is calibration which

refers to the estimation of the calibration parameters using data collected from both physical

and computer experiments, so that the computer outputs can closely match the physical

responses. [53] first developed a Bayesian method for calibration and has made a large

impact in various fields where computer experiments are used [55, 56, 54, 23, 57].

An accurate estimation of calibration parameters is important because it can provide

scientific insight that may not be directly obtainable in physical experiments. For exam-

ple, calibration parameters in the implosion simulations are not measurable in physical
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experiments, the understanding of which provides important information regarding the yield

stress of steel and the resulting detonation energy [58]. In the study of high-energy laser

radiative shock system, one of the calibration parameters is the electron flux limiter, which

is useful in predicting the amount of heat transferred between cells of a space-time mesh in

the simulation but cannot be controlled in physical experiments [54].

This paper is motivated by a calibration problem in a study of molecular interactions,

where the output of interest is binary. We study the molecular interaction by an important

type of single molecular experiments called micropipette adhesion frequency assays [59]. It

is the only published method for studying the kinetic rates of cell adhesion, which plays

an important role in many physiological and pathological processes. Typically, there are

two ways to perform micropipette adhesion frequency experiments: conducting physical

experiments in a laboratory, and studying the complex adhesion mechanism by computer

experiments based on a kinetic proofreading model through a Gillespie algorithm [49]. For

both physical and computer experiments, the output of interest is binary, which indicates

whether a controlled contact results in adhesion or not [60, 3, 50].

Binary outputs are common in many applications. For example, in manufacturing

applications computer simulations are often conducted for failure analysis where the outputs

of interest are binary, i.e., failure or success [15]. In other biological problems, binary

outputs are observed and evolve in time, such as neuron firing simulations, cell signaling

pathways, gene transcription, and recurring diseases [16, 17]. Despite numerous scientific

studies with binary outputs, there has been few studies for binary responses. Most of the

calibration methods are developed for continuous outputs. Extensions of existing calibration

methods to binary outputs are not straightforward for two reasons. First, calibration relies

on statistical modeling for both computer experiments and physical experiments, but the

required modeling techniques for binary outputs are different from those for continuous

outputs. Second, the conventional approach to estimating calibration parameters is to match

the computer outputs and physical responses, while our interest for binary responses is to
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match the underlying probability functions for the computer and physical outputs.

In this paper, we develop a general framework for calibration problems with binary

outputs. Calibration parameters are estimated by minimizing the discrepancy between the

underlying probability functions in physical experiments and computer experiments. The

remainder of the paper is organized as follows. In Section 2.2, the calibration procedure is

described in details. Theoretical properties of the proposed method are stated in Section

2.3, where we show that the estimation procedure is consistent and semiparametric efficient.

Numerical studies are conducted in Section 2.4 to demonstrate the finite sample performance

of estimation. In Section 2.5, the proposed framework is implemented in micropipette

adhesion experiments. Concluding remarks are given in Section 2.6. Detailed derivations

are provided in Appendix B.

2.2 Calibration by L2 projection

Suppose n binary outputs are observed from physical experiments and are denoted by

(yp1, · · · , ypn), where the superscript p stands for “physical” and ypi is the ith observation

taking value 0 or 1. Let Ω denote a d-dimensional experimental region for the control

variables x, which is a convex and compact subset of Rd. For each output, the corresponding

setting of the control variable is denoted by xi, where i = 1, . . . , n. Suppose the probability

of observing y = 1 is assumed to have the following model,

η(xi) := Pr(ypi = 1|xi) = g(ξ0(xi)), (2.1)

where g is a pre-specified link function. For the binary outputs, we assume g to be the

commonly used logistic function, i.e., g(x) = 1/(1 + exp{−x}). The function ξ0(·) is

unknown and often called the true process in the computer experiment literature [53, 23,

57].

To study the same scientific problem, a more cost-effective way is to conduct computer
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simulations (or called computer experiments in this paper). Apart from the control variables

x, computer experiments involve calibration parameters, denoted by θ and θ ∈ Θ which is

a compact subset of Rq. These parameters are of scientific interest but their “true” values

are unknown. The binary output from computer experiment is denoted by ys(x, θ) with

the superscript s standing for “simulation”. The conditional expectation of ys(x, θ) can be

written as

p(x, θ) := Pr(ys = 1|x, θ),

where (x, θ) ∈ Ω × Θ. Even though computer experiments require less experimental

manipulation and have smaller risk compared to physical experiments, they can also be

computationally intensive (e.g., the Λ-cold dark matter model in [61] and the high-fidelity

simulation in [1]). Therefore, it is not practical to have simulation conducted over the

entire experimental region Ω × Θ. Instead, the computer experiments are conducted by

employing a careful design of experiment, such as space-filling designs [5], on a subset of

the experimental region.

The goal of calibration is to search for the setting of the calibration parameters such that

the outputs from physical experiments fit as closely as possible to the corresponding outputs

of computer experiments. This problem is rigorously formulated by [53] in a Bayesian

framework. Despite many successful applications using the Bayesian approach (e.g., [62, 58,

63]), recent studies have raised concerns about the nonidentifiability issue of the calibration

parameters in [53]. See [55, 64, 56, 54]. To tackle this problem, [23, 57] propose a

frequentist framework based on the method of L2 projection. The idea is to estimate the

calibration parameters by minimizing the L2 distance between the physical output and the

computer output. It was shown in [23, 57] that the calibration method achieves estimation

consistency with an optimal convergence rate.

Although there is a rich literature on calibration, the existing approaches focus mainly

on continuous outputs. Inspired by the optimality of the frequentist approach proposed by

[57], we develop a calibration framework for binary outputs using the idea of L2 projection.
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Ideally, θ can be obtained by minimizing the discrepancy measured by the L2 distance

between the underlying probabilities of success in the physical and computer experiments,

respectively. This can be written as

θ∗ = arg min
θ∈Θ
‖η(·)− p(·, θ)‖L2(Ω), (2.2)

where the L2 norm is defined by ‖f‖L2(Ω) = (
∫

Ω
f 2)1/2. The direct calculation of (2.2),

however, is not feasible because the true process ξ(·) in (2.1) is unknown and therefore η(·)

is unknown. Furthermore, p(·, ·) is often unknown because the computer outputs are binary.

Instead of solving (2.2) directly, we propose to perform L2 projections based on the

estimates of η(·) and p(·, θ). First, the true process ξ(·) is estimated by a kernel logistic

regression, that is,

ξ̂n := arg max
ξ∈NΦ(Ω)

1

n

n∑
i=1

(ypi log g(ξ(xi)) + (1− ypi ) log(1− g(ξ(xi)))) + λn‖ξ‖2
NΦ(Ω),

(2.3)

where ‖ · ‖NΦ(Ω) is the norm of the reproducing kernel Hilbert space NΦ(Ω) generated by a

given positive definite reproducing kernel Φ, and λn > 0 is a tuning parameter, which can

be chosen by some model selection criterion like cross-validation. The optimal function

(2.3) has the form ξ̂n(x) = b̂+
∑n

i=1 âiΦ(xi,x), where b̂ and {âi}ni=1 can be solved by the

iteratively re-weighted least squares algorithm. Detailed discussions can be found in [65,

66, 67, 68]. Based on the estimated true process, we then have η̂n = g(ξ̂n). Because the

computer outputs are binary, p(·, ·) is not observable and needs to be estimated. Therefore,

we assume that a surrogate model p̂N(·, ·) can be constructed as a good approximation

to p(·, ·) based on N computer outputs, where N is assumed to be larger than n because

computer experiments are usually cheaper than physical experiments. Recent studies on

generalized Gaussian process models, such as [7], [10], and [69], can be used as the surrogate

model for binary computer experiments. Given η̂n and p̂N(·, ·), we are ready to estimate the
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calibration parameters by minimizing the L2 projection as follows,

θ̂n = arg min
θ∈Θ
‖η̂n(·)− p̂N(·, θ)‖L2(Ω). (2.4)

2.3 Theoretical Properties

This section consists of two parts. Theoretical properties for the physical experiment

modeling, η̂n, are first discussed in Section 2.3.1 and then the results for the calibration

parameters θ̂n are given in Section 2.3.2.

2.3.1 Asymptotic Results for Physical Experiment Modeling

We start with a result developed by [70] for general nonparametric regression (Lemma 11.4

and 11.5 in [70]). Denote ξ0 as the true process, g as a logistic function, and

η0(x) = g(ξ0(x)). (2.5)

Suppose F is the class of all regression functions equipped with the Sobolev norm ‖·‖Hm(Ω),

which is defined by

‖ξ‖2
Hm(Ω) = ‖ξ‖2

L2(Ω) +
m∑
i=1

∥∥∥∥∂iξ∂xi
∥∥∥∥2

L2(Ω)

.

Let

ξ̂′n := arg max
ξ∈F

1

n

n∑
i=1

(ypi log g(ξ(xi)) + (1− ypi ) log(1− g(ξ(xi)))) + λn‖ξ‖2
Hm(Ω),

for some λn > 0. Then the convergence rate of ξ̂′n is given in the following lemma.

Lemma 2.3.1. Let ξ0 ∈ F . Assume that there exists some nonnegative k0 and k1 so that

k2
0 ≤ g(ξ0(x)) ≤ 1− k2

0 and |∂g(z)/∂z| ≥ k1 > 0 for all |z − z0| ≤ k1,
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where z0 = ξ0(x) and x ∈ Ω. For λ−1
n = O(n2m/(2m+1)), we have

‖ξ̂′n‖ = Op(1), ‖g(ξ̂′n)− g(ξ0)‖L2(Ω) = Op(λ
1/2
n ),

and

‖ξ̂′n − ξ0‖L2(Ω) = Op(λ
1/2
n ).

In fact, the norms of some reproducing kernel Hilbert spaces (RKHS) are equivalent to

Sobolev norms. For instance, the RKHS generated by the Matérn kernel function, given by

Φ(x,x′) =
1

Γ(ν)2ν−1
(2
√
ν‖ρ(x− x′)‖)νKν(2

√
ν‖ρ(x− x′)‖), (2.6)

where ν ≥ 1 and ρ ∈ Rd
+ are parameters and Kν is a Bessel function with parameter ν, is

equal to the (fractional) Sobolev space Hν+d/2(Ω), and the corresponding norms ‖ · ‖NΦ(Ω)

and ‖ · ‖Hν+d/2(Ω) are equivalent [71, 57]. Therefore, as a consequence of Lemma 2.3.1, we

have the following proposition for ξ̂n obtained by (2.3).

Proposition 2.3.2. Suppose that ξ0 ∈ F = NΦ(Ω), and NΦ(Ω) can be embedded into

Hm(Ω). Then, for λ−1
n = O(n2m/(2m+d)), the estimator ξ̂n in (2.3) and η̂n = g(ξ̂n) satisfy

‖ξ̂n‖NΦ(Ω) = Op(1), ‖η̂n − η0‖L2(Ω) = Op(λ
1/2
n ),

and

‖ξ̂n − ξ0‖L2(Ω) = Op(λ
1/2
n ).

Proposition 2.3.2 suggests that one may choose λn � n−2m/(2m+d) to obtain the best

convergence rate ‖η̂n − η0‖L2(Ω) = Op(n
−m/(2m+d)), where an � bn denotes that the two

positive sequences an and bn have the same order of magnitude.
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2.3.2 Asymptotic Results for θ̂n

In this section, we show that θ̂n obtained by the L2 calibration in (2.4) is consistent with the

true calibration parameter θ∗ in (2.2) and follows an asymptotic normal distribution. These

results rely on some regularity conditions as well as assumptions on the fitted nonparametric

model for the physical experiments and the emulator built by computer experiments.

The regularity assumptions and the detailed proofs are given in the Appendix B. Addi-

tional assumptions are highlighted below.

Assumption 2.3.1. Assumptions B1-B4 are related to the nonparametric models and As-

sumptions C1 and C2 are related to the emulators.

B1: ξ ∈ NΦ(Ω) and NΦ(Ω, ρ) is Donsker for all ρ > 0.

B2: ‖η̂ − η‖L2(Ω) = op(1).

B3: ‖ξ̂‖NΦ(Ω) = Op(1).

B4: λn = op(n
−1/2).

C1: ‖p̂N − p‖L∞(Ω×Θ) = op(N
−1/2).

C2: ‖∂p̂N
∂θi
− ∂p

∂θi
‖L∞(Ω×Θ) = op(N

−1/2) for i = 1, . . . , q.

The Donsker property is an important concept in the theoretical studies of empirical

processes. The definition and detailed discussion are referred to [72] and [73]. [23] showed

that if the conditions of Proposition 2.3.2 hold and m > d/2, then NΦ(Ω, ρ) is a Donsker.

The authors also mentioned that under Assumption A1 and E[exp{C|Y p
i − η(xi)|}] < +∞

for some C > 0, the conditions of Proposition 2.3.2 are satisfied. Therefore, by choosing

a suitable sequence of λn, say λn � n−2m/(2m+d), one can show that condition B4 holds

and B2 and B3 are ensured by Proposition 2.3.2. Assumptions C1 and C2 assume that the

approximation error caused by emulation in computer experiments is negligible compared
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to the estimation error caused by the measurement error in physical experiments. Given the

fact that the cost for computer experiments is usually cheaper than physical experiments,

this assumption is reasonable because the sample size of computer experiments is usually

larger than that of physical experiments (i.e., N > n). Under some regularity conditions,

the emulators constructed by the existing methods, such as [7], [10], and [69], satisfy the

assumptions and can be applied in this framework.

Theorem 2.3.3. Under Assumption 2.3.1 and the regularity conditions in Appendix B.1, we

have

θ̂n − θ∗ = 2V −1

(
1

n

n∑
i=1

(Y p
i − η(xi))

∂p

∂θ
(xi, θ

∗)

)
+ op(n

−1/2), (2.7)

where V = E
[

∂2

∂θ∂θT
(η(X)− p(X, θ∗))2

]
.

According to the central limit theorem and the results in Theorem 2.3.3, θ̂n has an

asymptotically normal distribution as follows.

Corollary 2.3.4. Under the assumptions in Theorem 2.3.3, we have

√
n(θ̂n − θ∗)

d−→ N (0, 4V −1WV −1),

provided that W is positive definite and can be written as

W = E
[
η(X)(1− η(X))

∂p

∂θ
(X, θ∗)

∂p

∂θT
(X, θ∗)

]
. (2.8)

In calibration problems, the parameter of interest is a q-dimensional calibration parameter

θ∗, while the parameter space of model (2.1) contains an infinite dimensional function space

which covers ξ. Therefore, the calibration problem is regarded as a semiparametric problem,

and if one method can reach the highest estimation efficiency for semiparametric problem,

we call it semiparametric efficient. We refer to [74] and [73] for more details. The following

theorem shows that, similar to its counterpart for continuous outputs [23], this method

enjoys the semiparametric efficiency.
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Figure 2.1: True functions in the physical experiment and computer experiment. Block line
represents the true function of the physical experiment, and blue line represents the true
function of the computer experiment with calibration parameter (a) θ = 0; (b) θ = 0.3; (c)
θ = 1.

Theorem 2.3.5. Under the Assumptions in Appendix B.1, the L2 calibration method (2.4)

is semiparametric efficient.

2.4 Numerical Study

Assume that the binary physical outputs are randomly generated from a Bernoulli distribution

denoted by Y p ∼ Ber(η(x)), where

η(x) = exp{exp(−0.5x) cos(3.5πx)− 1},

x ∈ Ω = (0, 1), and η(x) ∈ (0, 1) for all x ∈ Ω. The binary computer outputs Y s are

randomly generated from Ber(p(x, θ)), where

p(x, θ) = η(x)− |θ − 0.3| exp(−0.5x) cos(3.5πx),

x ∈ Ω = (0, 1), θ ∈ Θ = (0, 1), and p(x, θ) ∈ (0, 1) for all x ∈ Ω and θ ∈ Θ. Figure 2.1

shows the functions η(x) (black lines) and p(x, θ) with three different calibration parameters

(blue dashed lines). In this example, the true calibration parameter θ∗ = 0.3 because it leads

to no discrepancy between the physical and computer experiments (Figure 2.1(b)).

Consider the physical experiments with sample size n, where the inputs {xi}ni=1 are
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Table 2.1: Mean and standard deviation (SD) of the estimated calibration parameters in 100
replicates.

n N θ∗ Mean SD

50 150 0.3 0.3085 0.1761
100 300 0.3 0.2986 0.1372

selected with equal space in [0, 1]. The sample size for computer experiments is N , and

the inputs {(xi, θi)}Ni=1 are uniformly selected from [0, 1]2. The calibration parameter is

estimated by (2.4), in which η̂n(x) is obtained by the kernel logistic regression (2.3) and the

Matérn kernel function (2.6) is chosen with ν = 1.5. The parameters ρ and λn are chosen

via cross-validation. p̂N(x, θ) is obtained by the generalized Gaussian process in [7], where

the radial basis function kernel,

Φφ((xi, θi), (xj, θj)) = exp

{
−(xi − xj)2 + (θi − θj)2

2φ

}
,

is chosen with the parameter φ chosen via cross-validation.

The calibration performance based on 100 replicates are summarized in Table 2.1. The

proposed L2 calibration method leads to a small calibration bias, which is less than 0.01,

and the standard deviation decreases when the sample size increases, which agrees with the

asymptotic results developed in Section 2.3.

2.5 Applications in single molecular studies

The adaptive immune system defends the organism against diseases by recognition of

pathogens by the T cell. T cell receptor (TCR) is the primary molecule on T cell in

detecting foreign antigens which are present on major histocompatibility complex (pMHC)

molecule expressed by infected cells. Failure to recognize pathogens can result in immune

deficiency. False recognition can lead to autoimmune diseases. Therefore, how TCR

discriminates different peptides is a central question in the research on adaptive immunity.
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To understand the molecular interactions on T cells, there are two approaches. One is to

preform experiments in a lab and the other is to conduct computer simulations. Here we

focus on the study of molecular interactions in micropipette adhesion frequency assays.

In a lab, the micropipette adhesion frequency assay is performed as follows. A red blood

cell (RBC) pressurized by micropipette aspiration is used to present the ligands and to detect

binding with the receptor on a T cell. The T cell is put into controlled contact with the RBC

for a constant area and a preprogrammed duration and then retracted. The output of interest

is binary, indicating whether a controlled contact results in adhesion or not. If there is an

adhesion between molecules at the end of the contact, retraction will stretch the red blood

cell and the RBC membrane will be elongated; otherwise the RBC will smoothly restore its

spherical shape.

Although physical experiments allow accurate measurements of the adhesion frequency,

they are time-consuming and often involve complicated experimental manipulation. More-

over, only limited variables of interest can be studied in the lab because of the technical

complexity of the biological settings. Therefore, a cost-effective approach is to illuminate

the unknown biological mechanism in cell adhesion through computer simulations. For the

micropipette adhesion frequency assays, computer simulations can be conducted based on a

kinetic proofreading model and simulated through a Gillespie algorithm [49]. Figure 2.2

illustrates the computer model for the micropipette adhesion frequency assays.

Figure 2.2: Illustration of the computer experiments
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Table 2.2: Control variables in cell adhesion frequency assay experiments.

Variable Description Range

xTc cell-cell contact time (0.1,10)
xTw waiting time in between contacts (0.1,10)

xKf,p on-rate enhancement of activated TCRs (1,100)
xKr,p off-rate enhancement of activated TCRs (0.1,100)
xThalf half-life of cluster activation (0.1,10)
xKc kinetic proofreading modification rate for activation of cluster (0.1,10)

There are two shared control variables, denoted by xTc and xTw, in both physical and

computer experiments. Additionally, four calibration parameters, denoted by xKf,p , xKr,p ,

xThalf , and xKc, only appear in the computer simulations. Their values are of biological

interest but cannot be measured or controlled in the lab experiments. The detailed descrip-

tions for these variables are given in Table 2.2. For the lab experiments, the values of xTc

and xTw are randomly chosen from the sample space (0.1, 10)2 with size n = 3, 081, and

the corresponding outputs are generated by conducting the lab experiments. The design for

computer experiments is a 60-run OA-based Latin hypercube design [51], and for each run

it consists of 100 replicates, i.e., N = 6, 000.

Similar to the estimation procedure in Section 2.4, the L2 projection procedure can be

implemented and the estimated calibration parameters are

(xKf,p , xKr,p , xThalf , xKc) = (4.48, 0.95, 2.23, 0.45),

and the corresponding L2 distance is 0.05. Plugging in the estimated calibration parameters

to the emulator, the adhesion probabilities obtained from computer experiments (red dashed

lines) are compared with those from physical experiments (black lines) in Figure 2.3 as

a function of the two control variables, contact time and waiting time. It appears that

the emulator with the estimated calibration parameters can reasonably capture the trend

observed in the physical experiments. The proposed calibration procedure provides insight

into the values of the calibration parameters in the T cell adhesion experiments, which are
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Figure 2.3: Fitted functions for physical and computer experiments. Black lines represent
the fitted model η̂n based on the physical experiments, and red lines represent the fitted
model p̂N based on the computer experiments.

difficult to determine by physical experiments due to the small time scale at which this

mechanism operates and the limitation of existing experimental techniques.

2.6 Summary and Concluding Remarks

How to estimate the calibrate parameters in computer experiments is an important problem,

but the existing calibration methods mainly focus on continuously outputs. Motivated by an

analysis of single molecular experiments, we propose a new calibration framework for binary

responses. The method of estimated calibration parameters is shown to be asymptotically

consistent and semiparametric efficient. Our numerical studies confirm the estimation

accuracy in finite-sample performance, and the application in single molecular studies

illustrates that the proposed calibration method reveals important insight on the underlying

adhesion mechanism which cannot be directly observed through existing methods.

Our work lays the foundation for calibration problems with binary responses. This work

can be extended in several directions. First, it can be extended to other non-Gaussian data,

such as count data. To do so, the logistic function g in (2.1) can be replaced by other link

functions of the exponential family type, such as the log function for Poisson distribution.

The true process ξ can then be estimated by maximizing the objective function in (2.3) where
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the likelihood function of the Bernoulli distribution is replaced by other exponential family

distributions. The theoretical results in Section 2.3, however, cannot be directly applied

to other exponential family distributions. Moreover, aside from the proposed frequentist

framework, a Bayesian framework for binary responses is worth exploring. In the recent

literature, the nonidentifiability issue in typical Bayesian framework has been addressed for

continuous responses, such as the orthogonal Gaussian process [75] and the projected kernel

calibration [76]. Extensions of these methods to binary responses deserve further attention.
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CHAPTER 3

EXPLOITING VARIANCE REDUCTION POTENTIAL IN LOCAL GAUSSIAN

PROCESS SEARCH

3.1 Introduction

Due to continual advances in computational capabilities, researchers across fields increas-

ingly rely on computer simulations in lieu of prohibitively costly or infeasible physical

experiments. One example is [77], who use computer simulations to investigate the interac-

tion of energetic particles with solids. Physical effects such as elastic energy loss when a

particle penetrates a solid, particle transmission through solids, and radiation damage are

explored. These processes can be approximated by simulating the trajectories of all moving

particles in a solid based on mathematical models. An example in linguistics is the study of

language evolution [78], which is made challenging by the unobserved nature of language

origin. Modeling techniques such as genetic algorithms can be used to simulate the process

of natural selection and make it possible to explore a virtual evolution. While computer

simulations provide a feasible alternative to many physical experiments, simulating from

mathematical models is often itself expensive, in terms of both time and computation, and

many researchers seek inexpensive approximations to their computationally demanding

computer models—so-called emulators.

Gaussian process (GP) models [6] play an important role as emulators for computa-

tionally expensive computer experiments. They provide an accurate approximation to the

relationship between simulation output and untried inputs at a reduced computational cost,

and provide appropriate (statistical) measures of predictive uncertainty. A major challenge in

building a GP emulator for a large-scale computer experiment is that it necessitates decom-

posing a large (N ×N ) correlation matrix. For dense matrices, this requires around O(N3)
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time, where N is the number of experimental runs. Inference for unknown parameters can

demand hundreds of such decompositions to evaluate the likelihood, and its derivatives, un-

der different parameter settings for even the simplest Newton-based maximization schemes.

This means that for a computer experiment with as few as N = 104 input-output pairs,

accurate GP emulators cannot be constructed without specialized computing resources.

There are several recent approaches to emulating large-scale computer experiments,

most of which focus on approximation of the GP emulator due to the infeasibility of actual

GP emulation. Examples include covariance tapering which replaces the dense correlation

matrix with a sparse version [79], multi-step interpolation which successively models global,

then more and more local behavior while controlling the number of non-zero entries in

the correlation matrix at each stage [80], and multiresolution modeling with Wendland’s

compactly supported basis functions [81]. Alternatively, [82] developed an R package called

bigGP that combines symmetric-multiprocessors and GPU facilities to handle N as large

as 67, 275 without approximation. Nevertheless, computer model emulation is meant to

avoid expensive computer simulation, not be a major consumer of it. Another approach,

proposed by [83], is to sample input-output pairs according to a specific design structure,

which leads to substantial savings in building a GP emulator. That method, however, can be

limited in practice due to the restriction to sparse grid designs.

In this chapter, [2]’s local GP approach is considered. The approach is modern, scalable,

and easy to implement with limited resources. The essential idea focuses on approximating

the GP emulator at a particular location of interest via a relatively small subset of the original

design, thus requiring computation on only a modest subset of the rows and columns of the

large (N ×N ) covariance matrix. This process is then repeated across predictive locations

of interest, ideally largely in parallel. The determination of this local subset for each location

of interest is crucial since it greatly impacts the accuracy of the corresponding local GP

emulator. [2] proposed a greedy search to sequentially augment the subset according to

an appropriate criteria and that approach yields reasonably accurate GP emulators. More
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details are presented in Section 3.2.

A bottleneck in this approach is that a complete iterative search for the augmenting point

requires looping over O(N) data points at each iteration. In Section 3.3, motivated by the

intuition that there is little potential benefit in including a data point far from the prediction

location, two new neighborhood search limiting techniques are proposed, the maximum

distance method and the feature approximation method. Two examples in Section 3.4 show

that the proposed methods substantially speed up the local GP approach while retaining its

accuracy. A brief discussion follows in Section 3.5. Mathematical proofs are provided in

Appendix C.

3.2 Preliminaries

3.2.1 Gaussian Process Model

A Gaussian process (GP) is a stochastic process whose finite dimensional distributions are

defined via a mean function µ(x) and a covariance function Σ(x, x′), for d-dimensional

inputs x and x′. In particular, for N input x-values, say XN , which define the N -vector

µ(XN) and N ×N matrix Σ(XN , XN), and a corresponding N -vector of responses YN , the

responses have distribution YN ∼ N (µ(XN),Σ(XN , XN)). The scale σ2 > 0 is commonly

separated from the process correlation function, YN ∼ N (µ(XN), σ2Φ(XN , XN)), where

the N ×N matrix Φ(XN , XN) = (Φ(xi, xj)) is defined in terms of a correlation function

Φ(·, ·), with Φ(x, x) = 1. As an example, consider the often-used separable Gaussian

correlation function

ΦΘ(x, x′) = exp

{
−

d∑
j=1

(xj − x′j)2/θj

}
,where Θ = (θ1, . . . , θd), θj > 0, j = 1, . . . , d.

(3.1)

As this correlation decays exponentially fast in the squared distance between xj and x′j

at rate θj , the sample paths are infinitely differentiable and the resulting predictor is an

interpolator.
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The GP model is popular because inference for µ(·), σ2, and Θ is easy and prediction is

highly accurate. A popular inferential choice is maximum likelihood, with corresponding

log likelihood (up to an additive constant)

`(µ, σ2,Θ) =− 1

2

{
n log(σ2) + log(det(ΦΘ(XN , XN)))+

(YN − µ(XN))TΦΘ(XN , XN)−1(YN − µ(XN))/σ2
}

and the MLEs of µ(·), σ2, and Θ are

(µ̂(·), σ̂2, Θ̂) = arg max
µ,σ2,Θ

`(µ, σ2,Θ). (3.2)

Here, µ(·) and its estimate are described somewhat vaguely. Common choices are µ(·) ≡ 0,

µ(·) = µ, or µ(·) = h(·)Tβ, for a vector of relatively simple basis functions h(·). More

details on inference can be found in [84] or [5]. Importantly, the predictive distribution

of Y (x) at a new setting x can be derived for fixed parameters by properties of the condi-

tional multivariate normal distribution. In particular, it can be shown that Y (x)|XN , YN ∼

N (µN(x), VN(x)), where

µN(x) = µ(x) + ΦΘ(x,XN)ΦΘ(XN , XN)−1(YN − µ(XN)), (3.3)

VN(x) = σ2(ΦΘ(x, x)− ΦΘ(x,XN)ΦΘ(XN , XN)−1ΦΘ(XN , x)). (3.4)

In a practical context, the parameters µ(·), σ2, and Θ can be replaced by their estimates (3.2)

and it can be argued that the corresponding predictive distribution is better approximated by

a t-distribution than normal (see 4.1.3 in [5]). Either way, µ̂N(x) is commonly taken as the

emulator, and VN(x) captures uncertainty.
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3.2.2 Local Gaussian Process Approximation

A major difficulty in computing the emulator (3.3) and its predictive variance (3.4) is solving

the linear system ΦΘ̂(XN , XN)y = ΦΘ̂(XN , x), since it requires O(N2) storage and around

O(N3) computation for dense matrices. A promising approach is to search small sub-designs

that approximate GP prediction and inference from the original design [2]. The idea of the

method is to focus on prediction at a location, x, using a subset of the full data Xn(x) ⊆ XN .

Intuitively, the sub-design Xn(x) may be expected to be comprised of XN close to x. For

typical choices of ΦΘ(x, x′), correlation between elements x, x′ in the input space decays

quickly for x′ far from x, and x′’s that are far from x have vanishingly small influence on

prediction. Ignoring them in order to work with much smaller, n× n matrices brings big

computational savings, ideally with little impact on accuracy. Figure 3.1 displays a smaller

sub-design (n = 7) near location x = 0.5 extracted from the original design (N = 21).

Although the emulator (dotted line) performs very poorly from 0 to 0.3 and from 0.6 to 1.0,

the sub-design provides accurate and robust prediction at x = 0.5.
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Figure 3.1: An example sub-design X7(x) for a one dimensional input. Dots represent
the full design, X21, the triangle represents the point of interest x = 0.5 and the diamonds
represent the sub-design,X7(x). Based on the sub-designX7(x), the emulator is represented
as the dotted line, with the shaded region providing a pointwise 95% confidence band.

For an accurate and robust emulator, a smaller predictive variance (3.4) for each x
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is desirable. We seek a small sub-design Xn(x) ⊆ XN for each location of interest x,

which minimizes the predictive variance (3.4) corresponding to the sub-design Xn(x). This

procedure is then repeated for each location of interest x. The identification of sub-designs

and subsequent prediction at each such x can be parallelized immediately, providing a

substantial leap in computational scalability. However, searching for the optimal sub-design,

which involves choosing n from N input sites, is a combinatorially huge undertaking. A

sensible idea is to build up Xn(x) by n nearest neighbors (NNs) close to x, and the result is

a valid probability model for Y (x)|Xn(x), Y (Xn(x)) [85]. [2] proposed a greedy, iterative

search for the sub-design, starting from a small NN set Xn0 and sequentially choosing the

xj+1 which provides the greatest reduction in predictive variance to augment Xj(x), for

j = n0, n0 + 1, . . . , n. That is,

xj+1 = arg min
u∈XN\Xj(x),
Xj+1=Xj(x)∪u

Vj+1(x) (3.5)

and Xj+1(x) = Xj(x) ∪ xj+1. Both the greedy and NN schemes can be shown to have

computational order O(n3) (for fixed N ) when the scheme is efficiently deployed for

each update j → j + 1. Specifically, the matrix inverse ΦΘ(Xj+1, Xj+1)−1 in Vj+1(x)

can be updated efficiently using partitioned inverse equations [86]. Before the greedy

subsample selection proceeds, correlation parameters can be initialized to reasonable fixed

values to be used throughout the sub-design search iterations. After a sub-design has been

selected for a particular location, a local MLE can be constructed. Thus, only O(n3) cost

is incurred for building the local subset and subsequent local parameter estimation. For

details and implementation, see the laGP package for R [87]. An initial overall estimate of

the correlation parameters can be obtained using the Latin hypercube design-based block

bootstrap subsampling scheme proposed by [88], which has been shown to consistently

estimate overall lengthscale θj-values in a computationally tractable way, even with large

N .
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The greedy scheme, searching for the next design point in XN \ Xj(x) to minimize

the predictive variance (3.5), is still computationally expensive, especially when the design

size N is large. For example, the new xj+1 based on (3.5) involves searching over N − j

candidates. In that case, the greedy search method still contains a serious computational

bottleneck in spite of its improvements relative to solving the linear system in (3.3) for GP

prediction and inference. [89] recognized this issue and accelerated the search by exporting

computation to graphical processing units (GPUs). They showed that the GPU scheme with

local GP approximation and massive parallelization can lead to an accurate GP emulator for

a one-million-run full design, with the GPUs providing approximately an order of magnitude

speed increase. [90] noticed that the progression of xj+1, j = 1, 2, . . . qualitatively takes

on a ribbon and ring pattern in the input space and suggested a computationally efficient

heuristic based on one dimensional searches along rays emanating from the predictive

location of interest x.

In Section 3.3, two computationally efficient and accuracy preserving neighborhood

search methods are proposed. Both neighborhood searches reduce computation by decreas-

ing the number of candidate design points examined. It is shown that only locations within a

particular distance of either the prediction location x or the current sub-design, or locations

in particular regions within a feature space, can have substantial influence on prediction.

Using these techniques, it is possible to search a much smaller candidate set at each stage,

leading to huge reductions in computation and increases in scalability.

3.3 Reduced Search in Local Gaussian Process

For prediction at location x, there is intuitively little benefit to considering input locations that

are distant from x (relative to the correlation decay) as the response value at these locations

is nearly independent of the response at x. In Section 3.3.1, a maximum distance bound

and corresponding algorithm are provided, and in Section 3.3.2, a feature approximation

bound and corresponding modification to the algorithm are provided. The algorithms furnish

49



a dramatically reduced set of potential design locations which need to be examined, in a

computationally efficient and scalable manner. Notably, for the algorithms presented below,

Θ is fixed. Updating of Θ could follow [2], where an overall estimate of Θ is generated

initially, then the local design formed, then a local Θ estimated. The below algorithms, and

subsquent complexity comparison, focus on updating the local design, while the updating of

Θ is considered as an offline procedure.

3.3.1 Maximum Distance Method

Here x is the particular location of interest, in terms of emulation/prediction, and Xj(x) is

the greedy sub-design at stage j. To augment the sub-design Xj(x), we downplay locations

distant from x with little loss.

Assume that the underlying correlation function is radially decreasing after appropri-

ate linear transformation of the inputs: there is a strictly decreasing function φ so that

ΦΘ(x, x′) = φ(‖Θ(x− x′)‖2) for some Θ. In practice, Θ can be estimated using the local

MLE as discussed in Section 3.2.2, using as a starting value the overall, consistent estimate

from the sub-design search iterations. Now, consider a candidate input location xj+1 at stage

j + 1 of the greedy sub-design search for an input location to add to the design and take

dmin(xj+1) to be the minimum (Mahalanobis-like) distance between the candidate point

xj+1 and the current design and location of interest,

dmin(xj+1) = min{‖Θ(x−xj+1)‖2, ‖Θ(x1 − xj+1)‖2,

‖Θ(x2 − xj+1)‖2, . . . , ‖Θ(xj − xj+1)‖2}. (3.6)

We use the term Mahalanobis-like distance to emphasize that the rescaling and rotation

of the inputs induced by Θ is not related to the variance-covariance matrix of the input

locations. For example, consider the sub-design Xj(x) with two-dimensional inputs shown

in Figure 3.2 for j = 8.
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Figure 3.2: An example sub-design X8(x) with two-dimensional inputs. The circled ×
represents the location of interest. With Θ = diag(1/

√
3, 1/
√

3), the dots • represent
current design points X8(x), the dot • represents the new input location x9, and the shaded
region represents the candidate points x∗ with dmin(x∗) < 3.07.

Based on the local design scheme introduced in Section 3.2 and (3.5), the sub-design

Xn(x) is built up through the choices of xj+1 to sequentially augment Xj(x), at each stage

aiming to minimize predictive variance. Proposition 3.3.1 provides an alternate formula for

this variance, which is used to greatly reduce the number of candidates in the minimization

problem.

Proposition 3.3.1. The predictive variance Vj(x) in (3.4) can be represented via the recur-

rence

Vj+1(x) = Vj(x)− σ2R(xj+1). (3.7)

Here, R(xj+1) is the (scaled) reduction in variance,

R(xj+1) =
(ΦΘ(x, xj+1)− ΦΘ(xj+1, Xj)ΦΘ(Xj, Xj)

−1ΦΘ(Xj, x))2

ΦΘ(xj+1, xj+1)− ΦΘ(xj+1, Xj)ΦΘ(Xj, Xj)−1ΦΘ(Xj, xj+1)
. (3.8)

The recurrence relation (3.7) is useful for searching candidates to entertain. Further,

minimizing variance after adding the new input location xj+1 is equivalent to maximizing
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reduction in variance R(xj+1).

Theorem 3.3.2. Suppose Φ : Ω × Ω → R is a symmetric positive-definite kernel on a

compact set Ω ⊆ Rd and there exists a strictly decreasing function φ : R+ → R such that

ΦΘ(x, y) = φ(‖Θ(x− y)‖2) for some Θ. Then, for δ > 0, R(xj+1) ≤ δ if

dmin(xj+1) ≥ φ−1

(√
δ

(1 +
√
j‖ΦΘ(Xj, Xj)−1ΦΘ(Xj, x)‖2)2 + jδ/λmin

)
, (3.9)

where λmin is the minimum eigenvalue of ΦΘ(Xj, Xj).

This result indicates that candidate locations that are sufficiently distant from the location

of interest and the current sub-design do not have potential to reduce the variance more than

δ. Importantly, if the full set of design locations XN is stored in a data structure such as a

k-d tree [91], then the set of candidate locations that do not satisfy (3.9) can be identified in

O(logN) time, with constant depending on δ, dimension of the input space, and stage j;

This provides a computationally efficient and readily scalable technique for reducing the set

of potential candidate locations.

Our Algorithm 1 is a starting point for efficiently selecting sub-designs for prediction

at location x. In the algorithm, a larger value of δ is desirable since this leads to fewer

candidate design locations to search. One way to obtain a relatively large value of δ is

to examine the variance reductions on the set of k nearest neighbors which are not yet

in the sub-design, as is shown in Step 2. The number of nearest neighbors k is a tuning

parameter. A larger value of k provides a larger variance reduction and therefore excludes

more candidate design locations, albeit at an additional computational expense since the

variance reduction must be checked at each of these locations. Intuitively, larger-scale and

higher-dimensional problems might be expected to benefit from a larger k—larger-scale

problems because the cost of computing the variance reductions across k might be relatively

modest compared to the potential cost of computing the variance reductions across a large

candidate set, higher-dimensional problems because more points are needed to explore the
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surface of the hyper-sphere of points near the location of interest. A large value of δ can

be obtained by applying the heuristic proposed in [90]. From the result of Theorem 3.3.2,

T (Xj) in Step 3, which indicates the region such that

dmin(xj+1) ≤ φ−1

(√
δ

(1 +
√
j‖ΦΘ(Xj, Xj)−1ΦΘ(Xj, x)‖2)2 + jδ/λmin

)
, (3.10)

gives the subset of candidate locations that have potential to reduce the variance more than

δ.

For each update j → j+ 1, the algorithm ideally involves O(j2 + j logN) computations

in Step 3: O(j logN) for eliminating search locations, and O(j2) for computing the right-

hand side of (3.10). In particular, the matrix inverse ΦΘ(Xj, Xj)
−1 can be updated via

the partitioned inverse equations [86] with O(j2) cost at each iteration. Analysis of the

computational complexity of obtaining (an approximation to) the minimum eigenvalue

of ΦΘ(Xj, Xj) is more challenging. It is convenient to work with the reciprocal of the

maximum eigenvalue of ΦΘ(Xj, Xj)
−1, for which relatively efficient algorithms, such as

the power or Lanczos method, exist [92]. If the starting vector is not orthogonal to the

target eigenvector, then convergence of the (less efficient, but easier to analyze) power

method is geometric with rate depending on the ratio between the two largest eigenvalues

of ΦΘ(Xj, Xj)
−1 (see equation 9.1.5 in [92]). While this rate and the constants in front are

not fixed across j, they can be bounded, with the exception of the influence of the starting

vector, across all subsets of the full dataset. The starting vector might be expected to be

increasingly collinear with the target eigenvector as j increases, thereby improving the

rate bound. All together this implies an approximately constant number of iterations, each

costing O(j2), is required to approximate λmin for each j. Another perspective chooses a

random starting vector, for which [93] provide respective average and probabilistic bounds

of O(j2 log j) for the power method and O(j2 log2 j) for the Lanczos method. If standard

eigen-decomposition routines that return all the eigenvalues are used, then the j2 term in
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the computational complexity is j3. The inverse function φ−1 : R→ R can be computed in

roughly constant time by a root-finding algorithm or even computed exactly for many choices

of Φ. For example, for the power correlation function, ΦΘ(x, y) = exp{−‖Θ(x − y)‖p2},

the φ can be formed as φ(u) = exp{−up}, so φ−1(v) = (− log v)1/p. When a large n is

required, computation of λmin might be numerically unstable. A remedy in that case may be

to stop the search when λmin falls below a prespecified threshold, or perhaps to introduce a

penalty inversely proportional to λmin.

Algorithm 1 Maximum distance search method in local Gaussian process.
1: Set j = 1 and x1 as the point closest to the predictive location x. Throughout, let
Xj(x) ≡ Xj = {x1, x2, . . . , xj}, dropping the explicit (x) argument.

2: Let Njk(x) denote the k nearest neighbors to x in XN \Xj , the candidate locations not
currently in the sub-design. Set δj+1 equal to the maximum variance reduction from
Njk(x),

δj+1 = max
u∈Njk(x)

R(u), (3.11)

where R(·) is shown in (3.8).

3: Set y = φ−1
(√

δj+1

(1+
√
j‖ΦΘ(Xj ,Xj)−1ΦΘ(Xj ,x)‖2)2+jδj+1/λmin

)
, where ΦΘ(x, x′) =

φ(‖Θ(x− x′)‖2) and λmin is the minimum eigenvalue of ΦΘ(Xj, Xj). For

T (Xj) = {u ∈ XN \Xj : ‖Θ(u− v)‖2 ≤ y for some v ∈ {x,Xj}}, (3.12)

take
xj+1 = arg max

u∈T (Xj)
R(u).

4: Set j = j + 1 and repeat 2 and 3 until either the reduction in variance R(xj+1) falls
below a prespecified threshold, or the local design budget is met.

3.3.2 Feature Approximation Method

In addition to the maximum distance method and associated algorithm, an approximation via

eigen-decomposition can be applied to reduce the potential locations in a computationally

efficient manner. Suppose that Φ is a symmetric positive-definite kernel on a compact set
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Ω ⊆ Rd and P : L2(Ω)→ L2(Ω) is the integral operator

Pv(x) :=

∫
Ω

Φ(x, y)v(y)dy, v ∈ L2(Ω), x ∈ Ω. (3.13)

Mercer’s theorem guarantees the existence of a countable set of positive eigenvalues {λj}∞j=1

and an orthonormal set {ϕj}∞j=1 in L2(Ω) consisting of the corresponding eigenfunctions

of P , Pϕj = λjϕj [71]. The eigenfunctions ϕ’s here are continuous on Ω and Φ has the

absolutely and uniformly convergent representation

Φ(x, y) =
∞∑
j=1

λjϕj(x)ϕj(y).

In particular, Φ can be approximated uniformly over inputs in terms of a finite set of

eigenfunctions

Φ(x, y) ≈
D∑
j=1

λjϕj(x)ϕj(y) (3.14)

for some moderately large integer D. For some kernel functions, closed form expres-

sions exist. For example, the Gaussian correlation function (3.1) (on Rd, with weighted

integral operator) has eigenfunctions given by products of Gaussian correlations and Her-

mite polynomials [94]. More generally, [95] show high-quality approximations to these

eigen-decompositions can be obtained via Nyström’s method.

Theorem 3.3.3. Assume Φ : Ω × Ω → R is a symmetric positive-definite kernel on a

compact set Ω ⊆ Rd which can be approximated via D eigenfunctions (3.14). Then, the

reduction in variance (3.8) has approximate representation

R(xj+1) ≈ ‖CXj(x)‖2
2 cos2(ϑ), (3.15)
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where ϑ is the angle between CXj(x) and CXj(xj+1),

CXj(t) = [I − U(Xj)[U
T (Xj)U(Xj)]

−UT (Xj)]U(t),

U(t) =
(√

λ1ϕ1(t), . . . ,
√
λDϕD(t)

)T
, and

U(Xj) = [U(x1), . . . , U(xj)] ,

for eigenfunctions ϕi(t), t ∈ Ω and corresponding ordered eigenvalues λ1 ≥ . . . ≥ λD.

According to this approximation, the candidate set can be reduced by transforming the

inputs into a feature space. A modified algorithm is suggested as follows. The variance

reduction threshold in (3.11) now places a restriction on the angle between CXj(x) and

CXj(xj+1), where we would like to exclude points outside the cones

cos2(ϑ) ≤ δj+1

‖CXj(x)‖2
2

. (3.16)

A feature approximation is shown in Algorithm 2. To reduce the computational burden

in checking (3.16), the values of the first D eigenfunctions at the full dataset XN , U(XN),

could be computed in advance and stored based on a locality-sensitive hashing (LSH)

scheme [96]. LSH is a method for answering approximate similarity-search queries in

high-dimensional spaces. The basic idea is to use special locality-sensitive functions to

hash points into “buckets” such that “nearby” points map to the same bucket with high

probability. Many similarity measures have corresponding LSH functions that achieve this

property. For instance, the hashing functions for cosine-similarity are the normal vectors of

random hyperplanes through the origin, denoted for example as v1, . . . , vk. Depending on

its side of these random hyperplanes, a point p is placed in bucket h1(p), . . . , hk(p), where

hi(p) = sign(vTi p). A simple example, following [97], is provided in Figure 3.3. Figure

3.3a illustrates the hashing process for a point p, where the point p is hashed into the bucket

(h1(p), . . . , h6(p)) = (−1,−1, 1, 1, 1, 1) by the definition hi(p) = sign(vTi p), i = 1, . . . , 6
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Figure 3.3: Illustration of locality-sensitive hashing (LSH) scheme. Lines — are random
hyperplanes through origin, and v1, . . . , v6 (arrows→) are the corresponding normal vectors.
Dots • present stored data points, and the dot • with circle presents the query data point.

(when the point p is above the hyperplane, the inner product is negative, otherwise the

inner product is positive). Similarly, other points are placed in their corresponding buckets.

In the search process, shown in Figure 3.3b, the query point q is mapped to the bucket

(h1(q), . . . , h6(q)) = (−1, 1, 1, 1, 1, 1), which matches the bucket of point p′. Thus, the

hashing and search processes retrieve p′ as the most similar neighbor of q. Also, since the

one different label in the buckets of p and q implies that the angular difference is close to

π/6 (six hyperplanes), p is retrieved when querying the points whose angular difference

from q is less than π/6. Many more than six hyperplanes are needed to ensure that the

returned angle similarity is approximately correct. In a standard LSH scheme, the hashing

process is performed several times by different sets of random hyperplanes, and the search

procedure iterates over these random sets of hyperplanes. More details and examples can be

seen in [96],[97], and [98].

Apart from cosine-similarity, [99] showed for the pairwise similarity

yTkAjyh
‖Gjyk‖2‖Gjyh‖2

,

where yk, yh ∈ Rd, GT
j Gj = Aj and Aj is a d× d positive-definite matrix that is updated
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for each iteration j, the hash function can be defined as:

hAj(y) =


1 rTGjy ≥ 0

0 otherwise
, (3.17)

where the vector r is chosen at random from a d-dimensional Gaussian distribution. Let

Gj = I−U(Xj)[U
T (Xj)U(Xj)]

−UT (Xj) and Aj = Gj (Gj is symmetric and idempotent),

then cos(ϑ) in (3.15) can be represented as

cos(ϑ) =
U(xj+1)TAjU(x)

‖GjU(xj+1)‖2‖GjU(x)‖2

.

Thus, in the feature approximation method, an LSH scheme can be employed by storing

U(XN) in advance and updating the hash function (3.17) at each iteration, where y is

replaced by U(y). At query time, similar points are hashed to the same bucket with the

query U(x) and the results are guaranteed to have a similarity within a small error after

repeating the procedure several times. In particular, for each update j → j + 1, given that

the LSH method guarantees retrieval of points within the radius (1 + ε)M from the query

point U(x), where M is the distance of the true nearest neighbor from U(x), the method

requires O(D2 + jDN1/(1+ε)) computational cost, O(D2) for updating matrix Gj (via the

partitioned inverse equations [86]) and computing the hash function hAj(y) (via the implicit

update in [99]), and O(jDN1/(1+ε)) for identifying the hashed query [99], where D is the

number of eigenfunctions in Theorem 3.3.3. In Section 3.4, two examples show the benefit

from the LSH approach in the feature approximation method.

As an illustration of how cones in feature space relate to the design space, consider a

full design XN consisting of 2500 Unif(0, 1) data points, plotted in dots in the left panel of

Figure 3.4. The correlation function is Φ(x, x′) = exp{−‖(x−x′)/10‖2
2} and the predictive

location of interest is x = (0.5, 0.5), shown as a triangle in the left panel. The first 7 design

points are chosen greedily and indicated with numbers. The right panel shows the first two
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Algorithm 2 Feature approximation modification to Algorithm 1.

In Step 3 of Algorithm 1, replace T (Xj) with T ∗(Xj), where

T ∗(Xj) = {u ∈ XN \Xj : ‖Θ(u− v)‖2 ≤ y and cos2(ϑ) ≥ δj+1/‖CXj(x)‖2
2

for some v ∈ {x,Xj}},

and ϑ, CXj(x) are defined in Theorem 3.3.3. Then,

xj+1 = arg max
u∈T ∗(Xj)

R(u).

components of the feature space (the first two eigenfunctions evaluated at the design points),

labeled correspondingly. The vector CX7(x) is denoted as the middle dotted line in the right

panel, with |ϑ| ≤ π/20 shown as the outer dotted lines. Design points falling within these

cones are shown in shaded region in both panels. The design points in the left panel which

fall in the stripe have the most potential to reduce predictive variance.
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Figure 3.4: Dots • and • represent design points in the original space (left) and a D = 2
dimensional feature space approximation (right). Location of interest and current design
are annotated with triangle and numbers, respectively. Vector CX7(x) and cones |ϑ| ≤ π/20
shown with dotted lines. Design points falling within these cones are shown in shaded
region in both panels.

The storage requirements and computational complexity of each update j → j + 1 at

each predictive location of interest for the proposed algorithms are summarized in Table

3.1. Notably, if n local data points are needed, then the updating costs are incurred for

j = 1, . . . , n. Costs across predictive locations are ideally incurred largely in parallel. Here,

the original greedy approach proposed in [2] is referred to as exhaustive search. Recall
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Table 3.1: Complexity comparison between exhaustive search and two proposed methods
for each update j → j + 1. The notation | · | denotes the cardinality of a set, and ε is a
pre-specified value for the LSH method. *The complexity of pre-computation for feature
approximation method is O(D3).

Exhaustive Maximum Distance Feature Approximation Method
Search Method with D Features*

w/o k-d tree w/ k-d tree w/o LSH w/ LSH

Storage N N N ND ND
Overhead O(j2 + jN) O(j2 + j log(N)) O(j2 +D2N) O(j2 +D2 + jDN1/(1+ε))

Search O(j2N) O(j2|T (Xj)|) O(j2|T (Xj)|) O(j2|T ∗(Xj)|) O(j2|T ∗(Xj)|)

that T (Xj) and T ∗(Xj) are the candidate sets from maximum distance method and feature

approximation method, respectively. Let | · | denote the cardinality of a set. Since |T (Xj)|

and |T ∗(Xj)| are expected to be much smaller than N , the computational cost of the two

proposed algorithms can be substantially reduced at each stage j relative to the original

greedy search. Overhead cost, for computing benchmarks and eliminating search locations,

is required for both methods. Also, with a k-d tree or LSH search method, the specially

adapted data structure indeed improves overhead computational costs (O(j2 + jN) →

O(j2+j log(N)) andO(j2+D2N)→ O(j2+D2+jDN1/(1+ε)), respectively). Considering

the two proposed methods, |T ∗(Xj)| might be expected to be much smaller than |T (Xj)|

if the correlation function is well approximated by the finite set of eigenfunctions and

eigenvalues, and the dimension of input is not too large, since distance becomes a very

powerful exclusion criteria in even moderately high-dimensional space. The maximum

distance method has smaller storage and overhead requirements. Section 3.4 presents two

examples implementing the two proposed methods and shows the comparison.

3.4 Examples

Two examples are discussed in this section: a two-dimensional example that demonstrates

the algorithm and visually illustrates the reduction of candidates; a larger-scale, higher-

dimensional example. Both examples show the proposed methods considerably outperform-
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ing the original search method with respect to computation time. All numerical studies were

conducted using R [19] on a laptop with 2.4 GHz CPU and 8GB of RAM. The k-d tree

and LSH were implemented via R package RANN [100] and modifications to the source

code of the Python package scikit-learn [101, 102], and accessed in R through the

rPython package [103]. Notably, the Lanczos method offered little consistent advantage

for the scale of local datasets (j ≤ 30) entertained below, and relatively typical of practical

situations. As such, reported timings correspond to computing λmax (Φ(Xj, Xj)
−1) via the

full eigen-decomposition using eigen.

3.4.1 Two-dimensional problem of size N = 502

Consider a computer experiment with full set of design locations XN consisting of a regular

50× 50 grid on [−10, 10]2 (2500 design points, light small dots in Figure 3.5), and take the

predictive location of interest x to be (0.216, 0.303) (circled × in Figure 3.5). Set σ2 = 1,

and consider the Gaussian correlation function

ΦΘ(x, y) = exp

{
−
(

(x1 − y1)2

θ1

+
(x2 − y2)2

θ2

)}
,

with θ1 = θ2 = 3. This correlation function implies the φ in Algorithm 1 is φ(u) =

exp{−u2} and Θ = diag(1/
√
θ1, 1/

√
θ2). Then we have φ−1(v) =

√
− log v.

Figure 3.5 illustrates the sub-design selection procedure shown in Algorithm 1, in

which k = 8 nearest neighbors (from the candidate set) are used to generate the threshold

in Step 2. In Figure 3.5, the dots represent the current design Xj(x) and the optimal

augmenting point xj+1, and the points that are excluded from the search for that location are

those which fall outside the shaded region. The panels in the figure correspond to greedy

search steps j ∈ {3, 16, 29}. Notably, the optimal additional design points illustrated in

Figure 3.5 are not always the nearest neighbors to the location of interest. In this example,

only 7.40% (185/2500) of candidates need to be searched in the beginning. Even after
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choosing thirty data points, there is no need to search much more than half of the full data

(56.92%=1423/2500).

Continuing the same example, Figure 3.5 shows substantial improvement from the

feature approximation method. In the example, a D = 500-dimensional feature space

approximation is pre-computed using Nyström’s method [95]. The points annotated with +s

are the points that are not excluded from the search. In fact, the number of candidates which

need to be searched is usually reduced at least 10-fold and in many cases 50- or 100-fold, or

more.
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Figure 3.5: Left, middle, and right panels respectively illustrate selection at j = 3, 16, and
29. The circled × is the location of interest, (0.216, 0.303). Dots • are the current design
points; dots • are the optimal xj+1; points which are excluded from the search based on
maximum distance method are those which fall outside the shaded region. Points which are
excluded from the search based on feature approximation method are those which are not
annotated with a +.

While the maximum distance method and original greedy approach proposed in [2]

produce the same sub-designs and, in turn, the same predictive variances, the feature

approximation method is approximate and can produce different sub-designs and slightly

different predictive variances (not necessarily inflated due to greedy nature of search). Table

3.2 shows relative differences in predictive variance resulting from feature approximation

method with D = 10, 200, and 500 features as compared to take maximum distance method

(or equivalently the original greedy approach). The number of search candidates is listed in
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Table 3.2: The relative difference in variance of the emulator at location (0.216, 0.303)
between maximum distance search as a baseline and feature approximation search with
number of features D: 10, 200 and 500. Baseline variance by maximum distance search is
shown in the last column. The value in parentheses is the number of search candidates.

Relative Difference Variance by
(# of searching D = 10 D = 200 D = 500 Maximum

candidates) Distance Method

Stage 10 0 (842) 0.178 (4) 0 (47) 1.95× 10−6 (844)
Stage 15 0.006 (1057) -0.76 (7) 0 (69) 9.35× 10−7 (1040)
Stage 20 0.018 (1149) -0.722 (30) 0 (12) 6.12× 10−7 (1168)
Stage 25 -0.155 (1332) -0.091 (4) 0 (116) 1.66× 10−7 (1295)
Stage 30 0.009 (1459) 0.024 (20) 0 (2) 1.28× 10−8 (1423)

parentheses. The relative difference in predictive variance is defined as

Vj,FA(x)− Vj,MD(x)

Vj,MD(x)
,

where Vj,FA(x) and Vj,MD(x) denote the predictive variance of the emulator at location x at

stage j using the feature approximation method and maximum distance method, respectively.

As might be expected, a larger number of features, D = 500, reduces the search candidates

without any loss in variance reduction. For D = 200, although there are small differences

in predictive variance, the discrepancies may be small enough to be of little practical

consequence. At stage 15, 20, and 25, the predictive variance for D = 200 is even smaller

than that of the maximum distance method, due to the greedy nature of the searches. Notably,

if a small number of features, say D = 10, is chosen, feature approximation search offers

little improvement over the maximum distance method in terms of search reduction, even

though the predictive variances are similar to maximum distance method. In this case,

D = 200 features might be a reasonable choice, balancing ease of computation and small

predictive variance.

To further compare the performance of the proposed methods with the original greedy

approach (exhaustive search), a Sobol’s quasi-random sequence [104] of 100 predictive
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locations was generated. Table 3.3 shows the average computation time and proportion of

search candidates for the proposed methods and exhaustive search over the 100 predictive

locations. The proportion of search candidates for the maximum distance method ran from

22.78% to 39.15%. The method also marginally speeds up computation time from 21 to

18 seconds with a k-d tree data structure. Although the feature approximation method

needed 6 seconds for computing the features in advance, the proportion of search candidates

for feature approximation method with D = 200 was reduced to 5.88% at stage 30. The

computation time, on an ordinary laptop, was less than 15 seconds for 30 stages of iteration

in the N = 502 experiment. Relative average predictive variance increases due to using

the feature approximation method, both with and without LSH, are shown in Table 3.4. At

stage 30 the average predictive variance increases due to using the feature approximation

method are, with and without LSH, 4.6% and 1.4%, respectively, potentially small enough

to be disregarded in a practical context. The LSH data structure also marginally reduces

search time from 13 to 11 seconds. Recall that the feature approximation method with

LSH approximates both the covariance function and the cosine similarity measure, so the

candidate set is slightly different from the one without LSH. While in this moderately-sized

problem the k-d tree and LSH data structures do not greatly improve the computational cost

(at stage 30, k-d tree: 21→ 18, LSH: 13→ 11), in a larger-scale problem the improvements

due to incorporating a k-d tree or LSH data structure can be relatively substantial.

3.4.2 6-dimensional problem of size N = 5× 104

Even more substantial reductions in the number of search candidates are seen for both

methods in a larger-scale, higher-dimensional setting. In this example, we generated a 6-

dimensional Sobol’s quasi-random sequence of size N = 5×104 in a [−1, 1]6 for the design

space and the predictive locations were chosen from a Sobol’s quasi-random sequence of

size 20. We took σ2 = 1 and tuning parameter k = 30, and used the correlation function

ΦΘ(x, y) = exp{−
∑6

i=1
(xi−yi)2

θi
} with θi = 1.5, i = 1, . . . , 6.
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Table 3.3: Average time (seconds) comparison between exhaustive search and two proposed
methods in two-dimensional setting with N = 502 over 100 Sobol predictive locations. The
values in parentheses are the average percentage searched of full design. *Pre-computation
time for feature approximation method is 6 seconds.

Seconds Exhaustive Maximum Distance *Feature Approximation
(Candidates %) Search Method Method with D = 200

w/o KD-tree w/ KD-tree w/o LSH w/ LSH

Stage 10 11 3 (22.78%) 2 (22.78%) 3 (2.69%) 2 (1.98%)
Stage 15 19 5 (28.04%) 4 (28.04%) 5 (3.31%) 4 (2.90%)
Stage 20 30 9 (32.68%) 7 (32.68%) 8 (7.57%) 6 (5.56%)
Stage 25 44 14 (36.10%) 12 (36.10%) 10 (6.41%) 8 (5.66%)
Stage 30 61 21 (39.15%) 18 (39.15%) 13 (5.88%) 11 (6.65%)

Table 3.4: The relative difference in average predictive variance of the emulator between
maximum distance search as a baseline and feature approximation search with number of
features D = 200 over 100 Sobol predictive locations in 2-dimensional setting.

Relative Difference Feature Approximation Average Variance by
Method with D = 200 Maximum Distance Method

w/o LSH w/ LSH

Stage 10 0.192 0.168 4.15× 10−6

Stage 15 0.348 0.140 1.08× 10−6

Stage 20 0.171 0.066 4.34× 10−7

Stage 25 0.011 -0.124 2.26× 10−7

Stage 30 0.046 0.014 1.62× 10−7

Table 3.5 shows the comparison between exhaustive search and the two proposed meth-

ods. The two methods outperform exhaustive search in terms of computation time. Further,

the number of candidates searched for both methods are less than 10% (= 5000/50000)

across all 30 stages. While the exhaustive search took 3423 seconds (≈ 1 hours) for 30

stage iterations, 240 seconds (4 minutes) were required for maximum distance method.

Incorporating a k-d tree data structure, the computation time decreased to 193 seconds (≈

3.2 minutes). Compared to the 2-dimensional example in Section 3.4.1, incorporating a k-d

tree data structure has moderately more computational benefit in this larger-scale setting.

The feature approximation method, as expected, has a smaller-sized candidate set than
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Table 3.5: Time (seconds) comparison between exhaustive search and two proposed methods
in 6-dimensional setting with N = 5× 104 over 20 Sobol predictive locations. The values
in parentheses shows the percentage searched of full design. *Pre-computation time for
feature approximation method was 26 seconds.

Seconds Exhaustive Maximum Distance *Feature Approximation
(Candidates %) Search Method Method with D = 300

w/o KD-tree w/ KD-tree w/o LSH w/ LSH

Stage 10 488 24 (2.77%) 10 (2.77%) 74 (1.71%) 26 (1.7%)
Stage 15 953 50 (4.27%) 28 (4.27%) 126 (3.34%) 45 (3.68%)
Stage 20 1601 93 (5.84%) 62 (5.84%) 199 (4.77%) 76 (5.16%)
Stage 25 2423 154 (7.34%) 115 (7.34%) 296 (5.28%) 121 (5.21%)
Stage 30 3423 240 (8.62%) 193 (8.62%) 435 (6.70%) 189 (6.38%)

the maximum distance method. Using D = 300 features, less than 2% average predictive

variance increases at stage 30 are observed due to approximation, as shown in Table 3.6.

On the other hand, due to the moderately expensive computation in Algorithm 2 using

D = 300 features, feature approximation search without LSH is more time-consuming than

the maximum distance method. As shown in Table 3.1, the computation of more design

points incurs higher computational costs in order of D2 for feature approximation search

without LSH (complexity O(j2 + D2N)). With an LSH approximate similarity-search

method, computation time is reduced by 189 seconds (≈ 3 minutes) across all 30 stages.

While the feature approximation approach outperforms exhaustive search, it appears to

be most useful when the maximum distance approach is very conservative, such as in the

two-dimensional case in Section 3.4.1.

3.5 Conclusion and Discussion

The two methods considered here can be extended for selecting more than one point in

each stage j in a straight-forward manner. For example, suppose two points are to be

selected in each stage. Let j′ = 2j, Xj′ be the current sub-design at stage j, and xj′+1

and xj′+2 be two points selected at the stage j + 1. Proposition 3.3.1 can be extended

to Vj+1(x) = Vj(x) − σ2R∗(xj′+1, xj′+2) for a function R∗, Theorem 3.3.2 can narrow
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Table 3.6: The relative difference in average predictive variance of the emulator between
maximum distance search as a baseline and feature approximation search with number of
features D = 300 over 20 Sobol predictive locations in 6-dimensional setting.

Relative Difference Feature Approximation Average Variance by
Method with D = 300 Maximum Distance Method

w/o LSH w/ LSH

Stage 10 0.049 0.047 0.2328
Stage 15 0.030 0.032 0.2120
Stage 20 0.023 0.022 0.1997
Stage 25 0.017 0.017 0.1913
Stage 30 0.016 0.016 0.1850

the window of potential pairs of candidate locations, to say T ′(Xj), and Algorithm 1 can

be updated accordingly. On the other hand, retaining good computational properties in a

batch-sequential framework is not straight-forward. For example, searching for the optimal

candidates, (xj′+1, xj′+2) = arg max(u1,u2)∈T ′(Xj)R
∗(u1, u2), can be very expensive, say

O(|T ′(Xj)|2), compared to searching for one point in each stage. Efficiently augmenting

multiple points at each stage, for example by alternating maximizations on xj′+1 and xj′+2,

might be worth exploring in future work.

The essential ideas of the proposed approaches have potential for application in search

space reduction in global optimization. Consider the following example. [105] modified

the maximum entropy design [106] for use as a sequential algorithm to efficiently construct

a space-filling design in computer experiments. They showed that the algorithm can be

simplified to selecting a new point that maximizes the so-called sequential maximum entropy

criterion

xj+1 = arg min
u∈D\Xj

ΦΘ(u,Xj)ΦΘ(Xj, Xj)
−1ΦΘ(Xj, u),

where D is a discrete design space. For this global optimization problem, let

dmax(xj+1) = max{‖Θ(x1 − xj+1)‖2, ‖Θ(x2 − xj+1)‖2, . . . , ‖Θ(xj − xj+1)‖2}
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and δ > 0. It can be shown that if dmax(xj+1) ≤ φ−1
(√

λmaxδ
)
, where λmax is the maximum

eigenvalue of ΦΘ(Xj, Xj), then the objective function ΦΘ(xj+1, Xj)ΦΘ(Xj, Xj)
−1ΦΘ(Xj, xj+1) >

δ. Thus, similar to Algorithm 1, a maximum distance approach could be used to eliminate

search candidates. For other specific global optimization problems, detailed examination is

needed.

An implicit disadvantage of these methods is the impact of the correlation parameters.

Take the example in Figure 3.2, where dmin(x9) < 3.07. From the definition (3.6) of

dmin(xj+1), if Θ = (1/
√
θ, 1/
√
θ), then the larger θ is, the bigger the search area, the shaded

region in Figure 3.2. When θ is large, the correlation is close to one and the data points tend

to be highly correlated, implying that every data point in the full design carries important

information for each predictive location. Thus, the algorithm requires more computation for

“easier” problems—i.e., with a “flatter” surfaces. On the other hand “flatter” surfaces do not

require large sub-designs to achieve small predictive variance.

An improvement worth exploring is how to determine of the number of features D in

the feature approximation method. Cross-validation to minimize predictive variance of

an emulator may present an attractive option. An examination of the choice between the

maximum distance and feature approximation methods might be desirable. Although using

them both in concert guarantees a smaller candidate set in the feature approximation method,

pre-computation of the features constitutes a moderately expensive sunk cost in terms of

computation and storage. In the example in Section 3.4.2, a 500× 50, 000 matrix needed to

be computed and stored in advance. In either case, the two methods outperform exhaustive

search, as shown in Table 3.5.
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CHAPTER 4

MULTI-RESOLUTION FUNCTIONAL ANOVA FOR LARGE-SCALE,

MANY-INPUT COMPUTER EXPERIMENTS

4.1 Introduction

Computer models are implementations of complex mathematical models using computer

codes. They are used to study systems of interest for which physical experimentation is

either infeasible or very limited. For example, [107] model crystalline micro-structure

of alloys as a function of solidification velocity. Another example is the simulation of

population-wide cardiovascular effects based on salt intake in the U.S. presented in [108].

Calibration, exploration, and optimization of a computer model requires the response

given many potential inputs. Computer models are often too computationally demanding

for free generation of input/response combinations. A well-established solution to this

problem is the use of emulators [6, 5]. This solution involves evaluting the response at a

series of well-distributed inputs. Then, an emulator of the computer model is built using

the collected data. Calibration, exploration, or optimization can then be carried out on the

emulator directly [109, 5, 110, 111, 112, 84].

A standard method for building emulators after computer experiments is Gaussian

process [5], or almost equivalently [113] reproducing kernel Hilbert space regression [114].

Gaussian process modeling leverages known properties of the underlying response surface

to produce both predictions and uncertainty quantification after an experiment. Gaussian

process emulation is mathematically simple and enables statistical uncertainty quantification

via confidence intervals.

Unfortunately, the use of Gaussian process emulators is limited for large-scale computer

experiments. Let X = {x1, . . . , xn} denote the set of input locations for the experiment,

69



f(x) the computer model response at input x, and Φ(x, x′) the kernel function at inputs

x and x′. Further, let Φ(X,X) denote the n × n matrix with entries Φ(xi, xj) and f(X)

the length n vector of responses f(xi). The simplest form of Gaussian process emulator

is then found by solving for the n vector α with Φ(X,X)α = f(X). There are at least

three major challenges that prevent using the Gaussian process emulator as n gets large,

ranked roughly in order of consequence for typical combinations of sample size, kernel, and

experimental design. (i) More than n2/2 values are needed to represent Φ(X,X), which

can cause memory challenges, particularly on a personal computer. (ii) Numeric solutions

to Φ(X,X)α = f(X) can be highly unstable, so that more data can lead to less accurate

results. (iii) The computational complexity for solving the linear system Φ(X,X)α = f(X)

can be burdensome for large n.

Overcoming these problems, which are also key bottlenecks for many related statistical

methods, is an active area of research. While much progress has been made in this area,

much work remains. There have been partial solutions proposed in the literature: using less

smooth kernels can address (ii) [71], covariance tapering (i,ii) [79, 115], a nugget effect

(ii) [116], multi-step emulators (i,ii) [80], specialized design (i,iii) [83], and parallelization

and computational methods (ii) [82]. To address all three challenges simultaneously, one

must exploit features present in the response surface. Local approaches to emulation address

(i),(ii), and (iii) using the principal that only a fraction of the total responses from an

experiment are needed to achieve accurate prediction at a particular input of interest [52, 90,

2, 89].

This article discusses a new multi-resolution functional ANOVA (MRFA) approach

to emulation of large-scale (large n) and many-input (many-dimensional x) computer

experiments. The MRFA operates by exploiting features which are commonly encountered

in practical computer models. The remainder of this article is organized as follows. In

Section 4.2, we provide background and preliminary results, then introduce the MRFA

model. In Section 4.3, we formulate the model fitting as an overlapping group lasso problem
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and discuss efficient model fitting, as well as tuning parameter selection. In Section 4.4,

we present new results on consistency and large-sample hypothesis testing for the high-

dimensional, potentially overlapping, group lasso problem. The test is then inverted to

obtain pointwise confidence intervals on the regression function. Basis function selection is

discussed in Section 4.5. In Section 4.6, we present a few illustrative examples showcasing

the capabilities of the MRFA technique in a large-scale, many-input setting. Finally, in

Section 4.7, we close with a brief discussion. Proofs are provided in the Appendix D.

4.2 Multi-Resolution Functional ANOVA

The motivation for the multi-resolution functional ANOVA emulator is as follows. First,

note that a function with a low-dimensional input can easily be approximated given a large

number of responses provided sufficient smoothness. One does not have to use anything

as complex as even the simplest Gaussian process regression to achieve good emulation,

and in many cases Gaussian process regression would fail for the reasons discussed in the

introduction. For example, if one has n = 100, 000, then a Gaussian process emulator has

100, 000 basis functions, which is far more than necessary for arbitrarily high-accuracy

approximation of most low-dimensional functions. Consider the example shown in Figure

4.1. In the example, 1000 evenly spaced data points are collected. Using Wendland’s kernel

[117] with k = 4 and width 0.75 implies Φ(X,X) has condition number 4.6× 1022, so that

the inverse is not useful in a floating point setting. On the other hand, the true function is

reasonably well-approximated by the set of five basis functions shown in gray in the left

panel and very well-approximated by the set of 15 basis functions shown in gray in the right

panel. This type of multi-resolution emulation [81] has been successfully employed for

function approximation, particularly in a low-dimensional input setting.

Approximating easily in low-dimensions does not directly improve approximations in

higher-dimensions, where coming up with a good set of basis functions is an onerous task.

Roughly, if an unknown function has a high-dimensional input and no simplifying structure,
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Figure 4.1: Multi-resolution example with 5 basis function (left panel) and 15 basis functions
(right panel). Here, the true function is shown in dotted black, the emulator in solid blue,
and the basis functions are Wendland’s kernels with k = 4 and widths 0.75 and 0.50, shown
in solid light gray.

then the exercise of trying to build an accurate emulator with finite data is essentially

hopeless, so a means for detecting simplifying structure should be a corner-stone of any

proposed technique.

Consider a relatively low-order functional ANOVA, where a function is represented as a

sum of main effect functions, two-way interaction functions and so on. Functional ANOVA

has played an important role in variable screening for many-input computer experiments.

See for example Chap. 6.3 of [84] or Chap. 7.1 of [5]. Functional ANOVA has also been

used for function approximation across a spectrum of other applications. For example, [118]

used a functional ANOVA representation to approximate the variance of scrambled net

quadrature and [119] approximated a general regression function using a functional ANOVA

structure. By considering a function with a low-order functional ANOVA, the curse of

dimensionality can be largely sidestepped. While this modeling approach can increase the

flexibility of additive modeling, it retains much of the interpretability.

Our proposed multi-resolution, functional ANOVA approach respects two types of

effect heredity [120], (i) in the order of functional ANOVA, so that higher-order interaction

functions are only entertained if all their lower-dimensional components are present, and (ii)
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in the resolution of approximation to these relatively low-dimensional component functions,

so that not too many basis functions are used. The hope is that by targeting a simpler

representation (low-order functional ANOVA model), which is amenable to low-dimensional

approximation (via multi-resolution model), accurate emulators can be formed in a very

large-scale and many-input setting.

For an integrable function f : Ω → R, Ω ⊂ Rd, a functional ANOVA can be defined

recursively as follows. Let f∅ =
∫

Ω
f(x)dx and

fu(x) =

∫
Ω−u

(
f(x)−

∑
v(u

fv(x)

)
dx−u. (4.1)

Here, u, v ⊂ D = {1, . . . , d} denote sets of indices and the notation
∫

Ω−u
· · · dx−u indicates

integration over the variables not in u for a fixed value of xu. Now, f can be represented via

its ANOVA decomposition as

f(x) =
∑
u⊆D

fu(x).

Note that in this decomposition, each component function fu(x) is a function of x that only

depends on xu. f∅ is often referred to as the mean function, f{i}(x), i ∈ D as the main effect

functions, f{i,j}(x), i, j ∈ D, i 6= j as the two-way interaction functions, and so on. The

terms in the functional ANOVA (4.1) are orthogonal in L2(Ω), which ensures uniqueness of

the representation. Generally, there is no closed form for the component functions fu, so

Monte Carlo techniques are commonly used to approximate them.

It turns out that if the full-dimensional function f lives in an reproducing kernel Hilbert

space (RKHS) on [0, 1]d with a product kernel, then f can be represented as a sum of

component functions fu, which live in RKHS’s whose kernels (and therefore norms) are

determined by the full-dimensional kernel. This result is summarized in Theorem 4.2.1,

whose proof is given in Appendix D.1. Define an RKHS NΦ(Ω) for a symmetric positive-
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definite kernel Φ : Ω× Ω→ R as the closure of the normed linear space,

{∑
x∈X

βxΦ(·, x)

∣∣∣∣∣ βx ∈ R, x ∈ Ω

}
,

with inner product
∑

x∈X
∑

y∈Y αxβyΦ(x, y) for component functions
∑

x∈X αxΦ(·, x) and∑
y∈Y βyΦ(·, y).

Theorem 4.2.1. Suppose Φ ∈ Ω × Ω → R is a symmetric positive-definite kernel on

Ω = [0, 1]d and Φ is a product kernel, Φ(x, y) =
∏d

j=1 φj(xj, yj). Then, any f ∈ NΦ([0, 1]d)

has representation f =
∑

u⊆D fu, where fu ∈ NΦu([0, 1]|u|) and Φu =
∏

j∈u φj , where |A|

denotes the cardinality of a set A.

The proposed emulator is a low-resolution representation of a low-order functional

ANOVA, f̂ANOVA. Clearly, this process introduces approximation errors due to both the

resolution and the order of the ANOVA. On the other hand, it is anticipated that for target

functions encountered in practice, inaccuracy due to the low-order functional ANOVA and

low-resolution approximation will be small. In other words, high-order interaction functions

will be negligible and low-dimensional component functions will be well-approximated by

a relatively small set of basis functions.

An MRFA emulator can be represented as

f̂MRFA(x) =
∑
u∈E

∑
r≤R(u)

f̂u,r(x),

where E is a set of sets of indices which obeys strong effect heredity (if a set of indices

is in E , then every one of its subsets is also in E) and R(u) ∈ N denotes the resolution

level used to represent component function fu. Note that this model has no restrictions on

orthogonality of components functions. If each f̂u,r is represented as a linear combination

74



of nu(r) basis functions ϕrku : R|u| → R, k = 1, . . . , nu(r), then

f̂MRFA(x) =
∑
u∈E

∑
r≤R(u)

nu(r)∑
k=1

β̂rku ϕ
rk
u (xu).

For simplicity, level of resolution is taken in pre-specified increments indexed by positive

integers.

From a statistical learning perspective, the order of functional ANOVA and resolution of

representation can likely be gleaned from the collected data. This idea is adopted in the next

section to enable the construction of MRFA emulators.

4.3 Estimation and Regularization

A straight-forward approach to finding a set of sets of indices E which obeys strong effect

heredity, in both functional ANOVA and resolution, and allows construction of an accurate

model is stepwise variable selection. Initial investigations along these lines indicate that

stepwise variable selection is capable of producing a high-accuracy model, but introduces

a very serious computational bottleneck to model fitting, particularly for large-scale and

many-input problems. Alternatively, posing the problem as a penalized regression can

provide huge computational savings.

[121] proposed the group lasso penalty which can be used to perform variable selection

with grouped variables, for example a set of basis function evaluations. In the group lasso

framework, the overall penalty term is the sum of unsquared L2 norms of the coefficients of

variables within groups. This type of penalty ensures that all the components of the groups

have zero or non-zero coefficients simultaneously. [122] noticed that the group lasso penalty

could be used to enforce a spectrum of effect hierarchies by employing an overlapping

group structure. In particular, if a group of variables’ parents (those variables which must be

present if the group is present) are always included in the unsquared L2 penalty component

with the group of interest, then the group of variables can only have non-zero coefficients if
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the parents have non-zero coefficients. One can consider the penalized loss function

Q =
1

n

n∑
i=1

yi − Dmax∑
|u|=1

Rmax∑
r=1

nu(r)∑
k=1

βrku ϕ
rk
u (xiu)

2

+ λ
Dmax∑
|u|=1

Rmax∑
r=1

√√√√Nu(r)
∑
v⊆u

∑
s≤r

nv(s)∑
k=1

(βskv )2,

(4.2)

where Dmax and Rmax respectively denote maximal orders of functional ANOVA and

resolution level, and Nu(r) =
∑

v⊆u
∑

s≤r nv(s). Notably, Dmax � d and Rmax � n

to ensure computational feasibility in a large-scale, many-input setting. Efficient, large-

scale algorithms are available for coefficient estimation in the group lasso setting [123,

124]. In particular, the algorithm described in [123] is implemented in the R [19] package

grplasso [125].

Although the algorithm in [123] is quite computationally efficient, storage requirements

still have potential to cause computational infeasibility, particularly for a large-scale and

many-input problem. We propose a modification of the algorithm where candidate basis

function evaluations are added sequentially along the lasso path, as necessary to ensure

effects heredity, rather than storing all the basis functions in advance. The modified algorithm

is given in Appendix D.2. The algorithm starts from a candidate set consisting only of main

effect functions with resolution level one and an initial penalty λmax set as suggested in

[123]. Then, the penalty parameter is gradually decreased and the model re-fit over steps. If

the active set changes in a particular step, the candidate set is enlarged to include child basis

function evaluations as required by effects heredity in functional ANOVA and resolution.

A small value of the penalty parameter increment ∆ is required to ensure that at most one

new active group is included in each update. The algorithm stops when some convergence

criterion is met, or alternatively memory limits are approached.

The accuracy of the emulator can depend strongly on the tuning parameter λ. When

overfitting is not a major concern, for example when constructing an emulator or near
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interpolator for a deterministic computer experiment, the smallest λ (corresponding to the

most complex model) with no evidence of numeric instability could be taken, which in turn

would give near interpolation of outputs at input locations in the data used for fitting. On the

other hand, if overfitting is a concern, a few sensible choices for tuning parameter selection

include cross-validation or classical information criteria such as Akaike information criterion

(AIC) and Bayesian information criterion (BIC). Under some conditions, BIC is consistent

for the true model when the set of candidate models contains the true model, while AIC will

select a sequence of models which are asymptotically equivalent to the model whose average

squared error is smallest among the candidate models. Generalized cross-validation (GCV)

[126], leave-one-out cross-validation and AIC have similar asymptotic behavior. Delete-d

cross-validation [127] is asymptotically equivalent to the generalized information criterion

(GIC) with parameter λn = n/(n− d) + 1. See [128], [129] and [127] for more details. The

use of AIC and BIC for regularization parameter selection in penalized regression models

has been discussed in recent literature (see [130] and [131]). [130] showed that BIC can

consistently identify the true model for the smoothly clipped absolute deviation penalty

[132], whereas the models selected by AIC and GCV tend to overfit. For the group lasso

framework, our numerical results indicate BIC has slightly better performance than AIC.

On the other hand, if parallel computing environments are available, cross-validation can be

computationally efficient and can be used for selecting the tuning parameter λ.

In addition to prediction, uncertainty quantification is essential in practice. In Section

4.4, we develop some new theoretical results for estimation, and in turn prediction, inference.

Further, an algorithm for constructing pointwise confidence intervals as a means to quantify

one’s uncertainty in the predicted values is provided in Appendix D.3.

4.4 Statistical Properties of the MRFA Emulator

In this section, we develop new consistency and inference results for the, possibly over-

lapping, group lasso problem in a large n, large p setting, and apply these results to the
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MRFA emulator for the construction of confidence intervals. Notably, these results are

very general and relate to the MRFA emulator only in the sense that the MRFA model

forms an application case of particular interest. The results are developed along the lines

described in [133], [134], and [135]. Suppose for a particular input location x, the true value

is y∗(x). Pointwise convergence is ensured via Theorem 4.4.1 which establishes consistency

of the coefficient estimates under some assumptions. A pointwise confidence interval is

constructed by inverting a one-dimensional hypothesis test of H0 : y∗(x) = δ, as provided

in Theorem 4.4.3, after the model has been reparametrized so that y∗(x) equals a particular

coefficient in the model. The one-dimensional hypothesis test uses a decorrelated score

function, that converges weakly to standard normal, following [135]. Details are provided

below and in Appendix D.5.

For simplicity, the linear model is denoted by

yi = βTϕi + εi, (4.3)

with E(εi) = 0 and V(εi) = σ2 for i = 1, ..., n. In the context of the MRFA model, ϕi

and β ∈ Rp respectively denote unique basis function evaluations (i.e. not duplicate basis

function evaluations appearing in overlapping groups) at xi and basis function coefficients,

ϕrku (xi) and βrku , |u| ≤ Dmax, r ≤ Rmax, and k = 1, . . . , nu(r), and high-frequency “left-

overs” εi are approximated by independent and identically distributed (i.i.d.) noise. Inference

is considered in the n→∞, p→∞, p� n setting for n i.i.d. pairs (ϕi, yi). The following

definitions are used. For two positive sequences an and bn, we write an � bn if for some

C,C ′ > 0, C 6 an/bn 6 C ′. Similarly, we use an . bn to denote an 6 Cbn for some

constant C > 0. The following l2 consistency result can be established.

Theorem 4.4.1. Suppose the estimated coefficients of the overlapping group lasso are β̂λn

(see (D.3)), and the true coefficients are β∗. Under assumptions on the m-sparse eigenvalues

(see Definition D.5.2 and Assumption D.5.1) of EϕiϕTi , λn �
√

log p
n

, and d̄2 = o(log n),
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with probability tending to 1 for n→∞,

‖β̂λn − β∗‖2
2 .

c̄2sd̄ log p

n
,

where c̄, d̄, and s denote the largest number of groups that a variable appears in, the size

of the largest group, and the number of non-zero elements in unique representation β∗,

respectively.

Remark 4.4.2. Potential dependency of c̄, d̄, and s on n is suppressed for notational

simplicity.

In brief, the assumptions of Theorem 4.4.1 require a bounded largest eigenvalue of

1
n
ϕTϕ, where ϕ = (ϕ1, ..., ϕn)T , and eigenvalues corresponding to itsm-sparse eigenvectors

bounded away from zero. For a detailed discussion, see [133]. To ensure the l2 consistency

in Theorem 4.4.1, we need that the numerator of the right hand side not grow too fast, o(n).

This in turn requires the size of groups, number of nonzero (true) coefficients, and number of

groups that a variable appears in are relatively small compared with the sample size n. The

dimension of MRFA representation can grow, but not so quickly that log p is large compared

to n.

Now, we develop a theorem providing the large sample distribution of a decorrelated

score statistic. Following [135], rewrite the linear model in terms of a parameter of interest

θ ≡ βj ∈ R and a nuisance parameter γ ≡ (β1, . . . , βj−1, βj+1, . . . , βp)
T ∈ Rp−1, yi =

θZi + γTQi + εi, where Zi = ϕij and Qi = (ϕi1, . . . , ϕi,j−1, ϕi,j+1, . . . , ϕip)
T . Define a

decorrelated score function

S(θ, γ) = − 1

nσ2

n∑
i=1

(yi − θZi − γTQi)(Zi − wTQi),

where w = E(QiQ
T
i )−1E(QiZi). The score function for the target parameter has been

decorrelated with the nuisance parameter score function. Here, the full parameter vector
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β, consisting of target and nuisance parameters θ and γ, can be estimated via the original

overlapping group lasso problem, so that β̂ = (θ̂, γ̂T )T . On the other hand, w can be

estimated via

ŵ = arg min ‖w‖1, s.t.
∥∥∥∥ 1

n

n∑
i=1

Qi(Zi − wTQi)

∥∥∥∥
2

6 λ′ (4.4)

and the error variance σ2 can be estimated by a consistent estimator σ̂2. Note that λ′ is

another tuning parameter. The minimization is on the l1 norm of w, since we want to

ensure sparsity of ŵ. Let θ∗ and γ∗ denote the true values of θ and γ. The following

(one-dimensional) inference result can be obtained. A proof is provided in Appendix D.6.

Theorem 4.4.3. Under H0 : θ∗ = θ0, λ
′ �
√

log p
n

, and the assumptions of Theorem D.6.3,

√
nŜσ̂2(θ0, γ̂)Î

−1/2
θ|γ

dist.−→ N (0, 1),

where Îθ|γ = 1
nσ̂2

∑n
i=1 Zi(Zi−ŵTQi), and Ŝσ̂2(θ, γ) = − 1

nσ̂2

∑n
i=1(yi−θZi−γTQi)(Zi−

ŵTQi).

The solution to optimization problem (4.4) can also be represented as

ŵ = arg min

∥∥∥∥ 1

n

n∑
i=1

Qi(Zi − wTQi)

∥∥∥∥
2

+ λ′′‖w‖1, (4.5)

where λ′′ is a transformed tuning parameter. Notice that this is a lasso problem where the

j-th response, j = 1, . . . , p−1, is ( 1
n

∑n
i=1 QiZi)j and the covariate matrix is 1

n

∑n
i=1QiQ

T
i .

The tuning parameter λ′′ can be selected via cross-validation, aiming for a minimal sum of

squared errors, or simply fixed. Theorem 4.4.3 requires all the assumptions of Theorem

4.4.1. In addition, it is required that the smallest eigenvalue of E(QiQ
T
i ) is bounded away

from zero, the number of nonzero elements in w = E(QiQ
T
i )−1E(QiZi) is small compared

to n, and the tail probabilities of residuals and basis function evaluations are small in the

sense that they are sub-Gaussian. For details, see Appendix D.6.
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Let ϕ∗ denote the basis function evaluations at a particular predictive location x∗, and

y∗ denote the predictive output, y∗ = βTϕ∗. By extending ϕ∗ to a basis of Rp, B =

(ϕ∗, c2, . . . , cp), the linear model (4.3) can be written as yi = η1Z̃i + ηT(−1)Q̃i + εi, where

(Z̃i, Q̃i)
T = B−1ϕi and (η1, η

T
(−1))

T = Bβ. Thus, the hypothesis test H0 : y∗ = η10

is equivalent to H0 : η1 = η10, and a (1 − α) × 100% confidence interval on y∗ can

be constructed by inverting the hypothesis test, as stated in the following corollary. An

algorithm for confidence interval construction is provided in Appendix D.3. In the algorithm,

a simple construction for the matrixB is to take ci as a unit vector with i-th element equaling

one. Then, the inverse of B can be computed efficiently via partitioned matrix inverse results

[86].

Corollary 4.4.4. Under the assumptions of Theorem 4.4.3, a (1− α)× 100% confidence

interval on y∗ can be constructed as

{
y∗|Φ−1

(α
2

)
6
√
nŜσ̂2(y∗, η̂(−1))Î

−1/2
y∗|η(−1)

6 Φ−1
(

1− α

2

)}
,

where Îy∗|η(−1)
= 1

nσ̂2

∑n
i=1 Z̃i(Z̃i − ŵT Q̃i), Ŝσ̂2(y∗, η(−1)) = 1

nσ̂2

∑n
i=1(yi − y∗Z̃i −

ηT(−1)Q̃i)(Z̃i − ŵT Q̃i), Φ is the cumulative distribution function of the standard normal

distribution, and η̂(−1) is an estimator of η(−1), which can be obtained by plugging in the

estimator of β.

An illustration of these pointwise confidence intervals is shown in Figure 4.2. For the

example, the true (deterministic) function is f(x) = exp(−1.4x) cos(3.5πx), shown as

a black dotted line, and we attempt to build an interpolator using 15 evenly spaced data

points. The basis functions are Wendland’s kernels with k = 2 and width 0.75. The tuning

parameter λ′′ is chosen via cross-validation at each untried input site of interest. The 95%

confidence intervals are shown for (penalized regression) tuning parameters λ = 0.25 and

1.00 in the left and right panel, respectively. Given a set of testing samples of size 401,

97.8% and 99.0% of true values are contained by the respective confidence intervals for
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λ = 0.25 and 1.00. Notice that for a larger sparsity parameter, corresponding to a simpler

model, uncertainty is greater, reflecting more model bias. Recall that overfitting is less of a

concern in emulation of deterministic computer experiments.

y

Figure 4.2: Illustration of confidence intervals for λ = 0.25, 1.00. Black dotted line
represents the true deterministic function, black dots represent the collected data, and the
MRFA model is represented as the blue line, with the gray shaded region providing a
pointwise 95% confidence band.

Optimization problems (4.4) and equivalently (4.5) can be very computationally chal-

lenging when N is large. In particular, for Rmax = 10 and Dmax = 10 (as used in the

examples later), p is nearly 107, making storage of the Qi : (p − 1) × 1, i = 1, . . . , n

infeasible without specialized computational resources. In Appendix D.4, we provide a large

N modification to the confidence interval algorithm in Appendix D.3. In the modification,

only those nuisance basis function evaluations which have been included for consideration

up to the selected stage of the group lasso problem are considered in Qi, reducing the size

of Qi by several orders of magnitude. Given the reduced Qi, we propose to estimate w via

a ridge regression, since sparsity of w relative to the sample size N is ensured by default.

While the intervals are computationally feasible in a large scale, many-input setting, their

coverage is somewhat liberal, and we apply a post-hoc correction, as proposed by [136].

The idea is to regard σ2 as a tuning parameter and then apply a cross-validation method to

the confidence interval constructed by Corollary 4.4.4 to find the σ2 which most closely

achieves the nominal coverage (1− α)× 100%.
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4.5 Basis function selection

Basis functions of a given input dimension should be selected so that they are capable of

approximating a broad spectrum of practically encountered target functions, with flexibility

increasing as the level of resolution increases.

For a particular dimensionality of component function m = |u|, a reasonable building

block for a set of basis functions is a positive definite function. The function φ : Rm → R is

positive definite if
∑

i,j αiαjφ(xi − xj) ≥ 0 for any αi ∈ R, xi ∈ Rm and strictly positive

for distinct xi if at least one αi is non-zero. These could be constructed by integrating

the full-dimensional kernel over margins as indicated in Theorem 4.2.1. More simply, the

kernels could be selected to ensure a desired smoothness of the target component functions.

Common example kernels include the Matérn or squared exponential correlation functions,

and Wendland’s kernels [117], which are used in the examples presented here. The center

and scale of these basis functions, or kernels, can be adjusted via c and h, respectively,

in the representation φ((x − c)/h). For a particular resolution level, a straightforward

choice is to take as basis functions a set of kernels with centers well-spread through the

input space. The scale should be chosen large enough to ensure the desired smoothness

of the target function, but not so large that numeric issues arise in parameter estimation.

The number of centers, and in turn coefficients, concretely describes the complexity of the

resolution level. Take as an example the 5 basis functions shown in light gray in the left

panel of Figure 4.1. With centers 0, 0.25, . . . , 1 and width 0.75, these 5 basis functions

are capable of approximating a broad range of relatively smooth and slowly varying target

functions. For the next resolution level, the same basic kernel can be used again, but with

a denser set of centers and correspondingly smaller scale. Take once again the example

basis functions shown in Figure 4.1. The 10 second-level resolution basis functions with

centers 0, 0.11, . . . , 1 and width 0.5 augment the first-level resolution basis functions to

allow approximation of an even broader range of target functions. Note that for a fixed
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dimensionality m and resolution level r the span of these basis functions forms a linear

subspace of the RKHS associated with kernel φ((·− ·)/hr), where hr denotes the bandwidth

for the highest (or finest) resolution level r. Another reasonable choice for basis functions

could be polynomials of increasing degree.

4.6 Examples

Several examples are examined in this section, a ten-dimensional, large-scale example which

demonstrates the algorithm and statistical inference, a larger-scale and many-input example

with a relatively complicated underlying function, and a stochastic function example. A

few popular exemplar functions are examined additionally. These examples show that the

multi-resolution functional ANOVA typically substantially outperforms traditional Gaussian

process methods in terms of computational time, emulator accuracy, model interpretability,

and scalability. In addition, we also compare with the local Gaussian process method, which

is a scalable method proposed by [2]. All the numerical results were obtained using R [19]

on a server with 2.3 GHz CPU and 256GB of RAM. The traditional Gaussian process, local

Gaussian process and MRFA approaches were compared and respectively implemented in R

packages mlegp [137], laGP [87] and MRFA [138]. The default settings of the packages

mlegp and MRFA were selected. For the package laGP, initial values and maximum values

for correlation parameters were given as suggested in [87]. For laGP and MRFA, 10 CPUs

were requested via foreach [139] for parallel computing.

In the implementation of the MRFA model, Wendland’s kernels with k = 2 are chosen,

and at most 10-way interaction effects and 10 resolution levels (Rmax = 10 and Dmax = 10)

are considered. For the tuning parameter setting λ, in Sections 4.6.1, 4.6.2 and 4.6.4 where

the target functions are deterministic, the smallest λ, corresponding to the most complex

model, without exceeding memory allocation is taken. In Section 4.6.3 where a stochastic

target is considered, AIC, BIC and CV criteria were considered for choosing the tuning

parameter and the comparison is explicitly discussed.
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Table 4.1: Selected effects and resolution by model complexity.

λ Selected inputs
1904.819 f̂{3},1
1885.866 f̂{3},1, f̂{2},1
551.225 f̂{3},1, f̂{2},1, f̂{1},1
87.544 f̂{3},1, f̂{2},1, f̂{1},1, f̂{2,3},1

...
...

0.003 f̂{3},1, f̂{2},1, f̂{1},1, f̂{2,3},1, f̂{2},2, f̂{3},2, f̂{1},2, f̂{2,3},2, f̂{2},3, f̂{3},3, f̂{1},3, f̂{2,3},3

4.6.1 10-dimensional data set

Consider a 10-dimensional, uniformly distributed input set of size N in a [0, 1]10 design

space and n = 10, 000 random predictive locations generated from the same design space.

The deterministic target function

f(x1, . . . , x10) = sin(1.5x1π) + 3 cos(3.5x2π) + 5 exp(x3) + 2 cos(x2π) sin(x3π)

is considered. Note that changes in x3 have a relatively large influence on the output. Further,

x1, x2 and x3 are active while x4, . . . , x10 are inert. Table 4.1 presents the selected inputs by

MRFA in the fitted model for N = 1, 000. The main effect of x3 with resolution level one is

first entertained, and in the final fitted model (λ = 0.003) the influential inputs are correctly

selected while the irrelevant inputs (x4, . . . , x10) are also identified (in the sense that they do

not appear in the fitted model). Noticeably, our algorithm nicely finds the basis functions

which obey strong effect heredity in the final fitted model. For example, f̂{3},1, f̂{2},1, and

f̂{2,3},1 are selected in the final fitted model.

Table 4.2 shows the performance of MRFA based on designs of increasing size N , in

comparison to mlegp and laGP. The fitting time of laGP is not shown in the example

(and the ones in the following sections) because the fitting process of the approach cannot

be simply separated from prediction. Note that mlegp is only feasible at N = 1, 000

in the numerical study, so we omit the result in the cases N > 1000. In contrast, it can
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Table 4.2: Performance of 10-dimensional example with n = 10, 000 random predictive
locations.

N
Fitting Prediction RMSE Variable

time (sec.) time (sec.) (×10−5) detection
mlegp 1,000 1993 158 40.81 -

laGP

1,000 - 318 172998 -
10,000 - 331 71027 -

100,000 - 331 20437 -
1,000,000 - 361 6893 -

MRFA

1,000 44 6 3.24 100%
10,000 124 5 1.14 100%

100,000 1325 5 0.72 100%
1,000,000 61515 74 0.38 100%

be seen that MRFA is feasible and accurate for large problems. Furthermore, it is much

faster to fit and predict from and, even in cases when traditional Gaussian process fitting is

feasible, more accurate. In this example with several inert input variables, compared to local

Gaussian process fitting, even though laGP is feasible for large problems, the accuracy

of the emulators is not comparable with traditional Gaussian process fitting or MRFA. In

particular, MRFA can improve the accuracy at least 10000-fold over the considered sample

sizes and it is even faster than local Gaussian process fitting in the cases N = 1, 000 and

N = 10, 000. In addition, in all examples, the true active variables (i.e., x1, x2, x3 and

the interaction effect) are correctly selected, while all inactive variables (i.e., x4, . . . , x10)

are excluded. This example demonstrates that the MRFA method is capable of not only

providing an accurate emulator with much cheaper computational cost, but also identifying

important variables which can be useful for model interpretation.

To demonstrate the statistical inference discussed in Section 4.4, confidence intervals on

emulator predictions are compared. The evaluation includes coverage rate, average width of

intervals, and average interval score [140]. Coverage rate is the proportion of the time that

the interval contains the true value, while interval score combines the coverage rate and the
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Table 4.3: Performance of prediction intervals in the 10-dimensional example at N = 1, 000
with n = 10, 000 random predictive locations.

N
Coverage Average width Average interval
rate (%) (×10−5) score (×10−5)

mlegp 1,000 75.09 6139.29 6313.56

laGP

1,000 82.18 313469 1324927
10,000 92.85 126172 392917

100,000 93.54 53313 85058
1,000,000 93.20 24073 31478

MRFA

1,000 100.00 27.39 27.39
10,000 98.56 3.12 3.39

100,000 95.84 2.31 3.06
1,000,000 97.69 1.64 1.94

width of intervals,

Sα(l, u;x) = (u− l) +
2

α
(l − x)1{x < l}+

2

α
(x− u)1{x > u},

where l and u are the lower and upper confidence limits, and (1−α)×100% is the confidence

level. Note that a smaller score corresponds to a better interval.

Continue the above examples and consider 95% confidence intervals. Here, we consider

the large N modification to the confidence interval algorithm, as given in Appendix D.4.

The unmodified algorithm performs similarly for N = 1, 000 and N = 10, 000, but is not

feasible for the larger sample sizes. The results of the evaluations are given in Table 4.3. It

can be seen that the MRFA intervals have coverage rate close to the nominal coverage 95%,

while mlegp yields very poor intervals that are both wide and only contain less than 80% of

the true values. While laGP has a reasonable coverage rate, it yields very wide confidence

intervals, which results in a poor interval score. In contrast, the confidence intervals of

MRFA perform best in terms of the interval score, given their small width. Notably, the

technique of [136] could also be applied to mlegp and laGP to bring their coverage near

target, but their widths would still be much larger than MRFA.
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4.6.2 Borehole function

In this subsection, we use a relatively complex target function for a variety of input dimen-

sions to further examine the MRFA in a many-input context. The borehole function [141]

represents a model of water flow through a borehole, and has input-output relation

f(x) =
2πTu(Hu −Hl)

ln(r/rw)(1 + 2LTu
ln(r/rw)r2

wKw
+ Tu

Tl
)
,

where rw ∈ [0.05, 0.15] is the radius of borehole (m), r ∈ [100, 50000] is the radius

of influence (m), Tu ∈ [63070, 115600] is the transmissivity of upper aquifer (m2/yr),

Hu ∈ [990, 1110] is the potentiometric head of upper aquifer (m), Tl ∈ [63.1, 116] is the

transmissivity of lower aquifer (m2/yr), Hl ∈ [700, 820] is the potentiometric head of lower

aquifer (m), L ∈ [1120, 1680] is the length of borehole (m), and Kw ∈ [9855, 12045] is

the hydraulic conductivity of borehole (m/yr). Here, all inputs are rescaled to the unit

hypercube.

Similar to the setup in the previous subsection, N training locations along with n =

10, 000 predictive locations are randomly generated from a uniform distribution on [0, 1]d.

Notice in the borehole experiment, there are eight active variables. We include d − 8

irrelevant variables for demonstration. Table 4.5 shows the performance of traditional

Gaussian process, local Gaussian process, as well as MRFA based on designs of increasing

size N and input dimension d. For a fixed d, the MRFA is feasible and accurate for large

problems, while traditional Gaussian process fitting is only feasible for the experiment of

size 1, 000. Note that the accuracy for N = 1, 000, 000 can be further improved if more

memory allocation is in hand. Alternatives for the case where model fitting exceeds a user’s

limited budget are discussed in Section 4.7. In addition, in cases when traditional Gaussian

process fitting is feasible, the fitting and prediction procedure of MRFA is much faster while

retaining the accuracy (in some cases MRFA is much more accurate, see d = 20 and 60).

Similar to the results in the previous subsection, local Gaussian process fitting is feasible
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for large problems, but it is less accurate than both traditional Gaussian process and MRFA.

With increasing d, the performance of MRFA varies only slightly, while traditional Gaussian

process and local Gaussian process fitting perform substantially worse with larger d in

terms of time cost and accuracy. This result is not surprising, since the irrelevant inputs are

screened out (or equivalently, the influential inputs are identified) by our proposed algorithm,

as demonstrated in Section 4.6.1. Notice that the d = 20 mlegp example has very poor

accuracy. This example was explored quite extensively and for several random number

seeds. In all cases, the likelihood function was highly ill-conditioned, resulting in very low

accuracy. This numerical issue was also pointed out in [142].

4.6.3 Stochastic Function

In this subsection, a stochastic function is considered. In particular, this example demon-

strates tuning parameter selection. We consider the following function, which was used in

[143],

f(x1, x2, x3, x4, x5, x6) = exp
{

sin([0.9× (x1 + 0.48)]10)
}

+x2x3+x4+ε, ε ∼ N (0, 0.052),

where xi ∈ [0, 1], i = 1, . . . , 6. The function is nonlinear in x1, x2 and x3, and linear in x4.

In x1, it oscillates more quickly as it reaches the upper bound of the interval [0, 1]. x5 and

x6 are irrelevant variables.

Here, we consider 5 replicates at each unique training location, N = 5m, as indicated

in [144], along with n = 10, 000 unique predictive locations randomly generated from

a uniform distribution on [0, 1]d. Since the choice of tuning parameter λ in (4.2) can be

particularly crucial in stochastic function emulation, we consider AIC, BIC and 10-fold

CV as selection criteria. For the implementation of 10-fold CV, 10 CPUs are requested

for parallel computing. Table 4.5 shows the performance of traditional Gaussian process,

local Gaussian process, and MRFA with these three selection criterion based on designs
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Table 4.4: The borehole example with n = 10, 000 random predictive locations. *Note that
due to memory limits, in these cases Rmax = 3 and Dmax = 3 are considered instead.

d Method N
Fitting Prediction RMSE

Time (sec.) Time (sec.)

10

mlegp 1,000 9405 99 0.5406

laGP

1,000 - 324 2.2541
10,000 - 327 1.0952

100,000 - 326 0.5316
1,000,000 - 343 0.2667

MRFA

1,000 344 31 0.5659
10,000 858 15 0.1777

100,000 8753 72 0.1186
1,000,000 160326 179 0.0901*

20

mlegp 1,000 12358 172 16.4539

laGP

1,000 - 356 10.1838
10,000 - 359 9.7302

100,000 - 362 10.0245
1,000,000 - 429 9.3887

MRFA

1,000 278 24 0.5583
10,000 786 14 0.1853

100,000 8443 67 0.1220
1,000,000 254457 214 0.0924*

60

mlegp 1,000 15999 186 3.5841

laGP

1,000 - 599 20.6825
10,000 - 600 34.3782

100,000 - 638 45.3728
1,000,000 - 924 51.2694

MRFA

1,000 534 26 0.7034
10,000 812 15 0.1770

100,000 6482 50 0.1312
1,000,000 150477 90 0.0980*

of increasing size N . It can be seen that, similar to the results in the previous subsections,

traditional Gaussian process is only feasible at N = 1, 000, while MRFA is feasible and

accurate for large problems. Even when traditional Gaussian process is feasible, MRFA is

much faster in terms of fitting and prediction, and more accurate with any tuning parameter

selection method. Local Gaussian process fitting is feasible for large problems, but less

accurate than MRFA and traditional Gaussian process. Among the three criterion, it can been

seen that AIC, BIC and CV have no substantial difference except for the case N = 100, 000.
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Table 4.5: The 6-dimensional stochastic function example with n = 10, 000 random
predictive locations.

N
Fitting Prediction Selection RMSE

Time (sec.) Time (sec.) Time (sec.) (×10−1)
mlegp 1,000 2524 88 1.64

laGP

1,000 - 394 7.30
10,000 - 439 6.07

100,000 - 457 4.70
1,000,000 - 433 3.85

MRFA

1,000 96 8
AIC 1 1.36
BIC 1 1.36
CV 92 1.32

10,000 443 23
AIC 1 0.18
BIC 1 0.19
CV 423 0.26

100,000 3752 13
AIC 1 80.53
BIC 1 0.15
CV 3801 0.14

1,000,000 61504 103
AIC 1 0.01
BIC 1 0.01
CV 55849 0.05

Computationally, the tuning parameters can be chosen within 2 seconds using AIC or BIC,

while the computational costs of CV can be considerable.

4.6.4 Other Functions

In this subsection, we present three more exemplar functions in comparison with laGP and

mlegp, the 3-dimensional bending function [145], the 6-dimensional OTL circuit function

[146], and the 10-dimensional wing weight function [147]. The details of these examples

and their input ranges are given in Appendix D.8.

The comparison results are shown in Table 4.6. Similar to the results in the previous

subsections, the results indicate the MRFA outperforms the traditional Gaussian process

in terms of prediction accuracy, except for the wing function at N = 1, 000 where the

traditional Gaussian process fitting has better accuracy. The reason might be that the

underlying wing weight function contains high-order interaction functions making it not
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particularly well-suited to low-order representation. See (D.23) in the Appendix D.8.

Nevertheless, even when the traditional Gaussian process fitting is feasible (at N = 1, 000),

the MRFA is much faster than traditional Gaussian process fitting. Local Gaussian process

fitting is feasible for large problems and has better accuracy in the low-dimensional example

(see Table 4.6(a)), but it is less accurate in the other two examples and in some cases slower

than the MRFA.

4.7 Discussion

While large-scale and many-input nonlinear regression problems have become typical in the

modern “big data” context, Gaussian process models are often infeasible due to memory and

numeric issues. In this paper, we proposed a multi-resolution functional ANOVA (MRFA)

model, which targets a low resolution representation of a low order functional ANOVA, with

respect to strong effect heredity, to form an accurate emulator in a large-scale and many-input

setting. Implementing a forward-stepwise variable selection technique via the group lasso

algorithm, the representation can be efficiently identified without supercomputing resources.

Moreover, we provide some theoretical results regarding consistency and inference for a

potentially overlapping group lasso problem, which can be applied to the MRFA model.

Our numerical study demonstrates that our proposed model not only successfully identifies

influential inputs, but also provides accurate predictions for large-scale and many-input

problems with a much faster computational time compared to traditional Gaussian process

models.

The MRFA model has a similar flavor to multivariate adaptive regression splines (MARS)

[44]. On the other hand, the flexibility in basis function choice along resolution levels,

forward-stepwise variable selection via group lasso, and confidence interval development

for the MRFA, are quite different. Moreover, empirical studies in [146] show the Gaussian

process outperforming MARS in terms of prediction accuracy, while our numerical studies

show MRFA outperforming Gaussian process.
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Table 4.6: Performance of the bending, OTL circuit, and wing weight functions with
n = 10, 000 random predictive locations.

(a) Performance of the 3-dimensional bending function. *Note that due to memory limits, in the
cases Rmax = 3 and Dmax = 3 are considered instead.

d = 3 N
Fitting Prediction RMSE

time (sec.) time (sec.) (×10−5)
mlegp 1,000 1807 140 5.64

laGP

1,000 - 310 0.66
10,000 - 312 0.21

100,000 - 311 0.08
1,000,000 - 316 0.04

MRFA

1,000 49 8 2.16
10,000 293 14 0.46

100,000 3311 25 0.20
1,000,000 113279 159 0.14*

(b) Performance of the 6-dimensional OTL circuit function. *Note that due to memory limits, in the
cases Rmax = 3 and Dmax = 3 are considered instead.

d = 6 N
Fitting Prediction RMSE

time (sec.) time (sec.) (×10−4)
mlegp 1,000 3976 173 13.70

laGP

1,000 - 314 102.71
10,000 - 301 27.01

100,000 - 323 11.43
1,000,000 - 328 4.80

MRFA

1,000 294 19 7.81
10,000 798 17 2.05

100,000 6688 82 1.42
1,000,000 122075 133 1.18*

(c) Performance of the 10-dimensional wing weight function. *Note that due to memory limits, in
the cases Rmax = 1 and Dmax = 3 are considered instead.

d = 10 N
Fitting Prediction RMSE

time (sec.) time (sec.) (×10−1)
mlegp 1,000 2922 228 1.56

laGP

1,000 - 327 19.74
10,000 - 325 10.72

100,000 - 329 5.04
1,000,000 - 347 2.22

MRFA

1,000 1319 28 7.77
10,000 1633 21 1.52

100,000 12289 84 1.39
1,000,000 168854 148 1.18*
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The proposed MRFA indicates several avenues for future research. First, when the

sample size is too large due to a user’s limited budget (e.g., memory limitation), sub-sampling

methods can be naturally applied to the MRFA approach. For example, [148] proposed

pasting Rvotes and pasting Ivotes methods, which use random sampling and importance

sampling, respectively. Moreover, m-out-of-n bagging (also known as subagging) [149, 150,

151] uses sub-samples for aggregation and might be expected to have similar accuracy to

bagging, which uses bootstrap samples to improve the accuracy of prediction [152]. These

sub-sampling methods provide the potential to extend the MRFA model to even larger data

sets.

Next, if the basis functions are constructed by integrating the full-dimensional kernel

over margins as indicated in Theorem 4.2.1, one may consider the native space norm with

kernel Φ instead of the 2-norm in the penalized loss function (4.2). In fact, both norms were

examined in our numeric studies and the results indicated that the penalized loss function

with respective to the native space norm may increase computational costs without too

much improvement in prediction accuracy. For example, for the 10-dimensional example

in Section 4.6.1, with N = 1, 000, the fitting with the native space norm costs 47 seconds

while fitting with the 2-norm only costs 15 seconds, and both result in roughly the same

RMSE.

Last but not least, it is conceivable that the MRFA approach can be generalized to a

non-continuous, for example binary, response. One might proceed by replacing the residual

sum of squares in (4.2) by the corresponding negative log-likelihood function, and extending

the group lasso algorithm to other exponential families, as done in [123]. The inference

results, however, cannot be directly applied to a non-continuous response.
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APPENDIX A

APPENDICES OF CHAPTER 1

A.1 Algorithm: Estimation of (β,ω)

1: Set initial values ω = (σ2,θ) = 1d+1,β = 1m, pit = 1, and set η̃it = log pit
1−pit +

yit−pit
pit(1−pit) for each i and t.

2: repeat

3: repeat

4: SetW as an N ×N diagonal matrix with diagonal elements Wit = pit(1− pit)

5: Set V = W−1 + σ2(Rθ ⊗ IT )

6: Update β = (X ′V −1X)−1X ′V −1η̃

7: Set Z = σ2(Rθ ⊗ IT )V −1(η̃ −X ′β)

8: Update pit =
(

exp{X′β+Z}
1N+exp{X′β+Z}

)
it

and η̃it = log pit
1−pit + yit−pit

pit(1−pit) for each i and

t

9: until {η̃it}it converges

10: Update ω = arg minω L(ω), where L(ω) is the negative log-likelihood function

(1.12)

11: Update (σ2,θ) = ω

12: until β and ω converge

13: Return β and ω

A.2 Assumptions

1. The parameter β belongs to an open set B ⊆ Rm and the parameter ω belongs to an

open set Ω ⊆ Rd+1.

2. The model matrix Xit lies almost surely in a nonrandom compact subset of Rm such
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that Pr(
∑n

i=1

∑T
t=1 X

′
itXit > 0) = 1.

For any matrix A, define ‖A‖ ≡
√

tr(A′A); for the covariance matrix V (ω), define

Vi(ω) ≡ ∂V (ω)/∂ωi and Vij(ω) ≡ ∂V (ω)/∂ωi∂ωj; for ω ∈ Ω, denote u−→ as uniform

convergence of nonrandom functions over compact subsets of Ω.

3. JN(ω)PN(ω)−1 d−→ W (ω) for some nonsingular W (ω), which is continuous

in ω, where PN(ω) = diag(‖Π(ω)V1(ω)‖, . . . , ‖Π(ω)Vd+1(ω)‖) and Π(ω) =

V (ω)−1 − V (ω)−1X(X ′V (ω)−1X)−1X ′V (ω)−1.

4. If there exists a sequence {rN}N≥1 with lim supN→∞ rN/N ≤ 1− δ, for some δ ∈

(0, 1), such that for any compact subsetK ⊆ Ω, there exist constants 0 < C1(K) <∞

and C2(K) > 0 such that

lim sup
N→∞

max{|λN |, |λiN |, |λ
ij
N | : 1 ≤ i, j ≤ k} < C1(K) <∞

and

lim sup
N→∞

min{|λ1|, |λirN | : 1 ≤ i ≤ k} > C2(K) > 0,

uniformly in ω ∈ K, where |λ1| ≤ . . . ≤ |λN | are the absolute eigenvalues of V (ω),

|λi1| ≤ . . . ≤ |λiN | are the absolute eigenvalues of Vi(ω), and |λij1 | ≤ . . . ≤ |λijN | are

the absolute eigenvalues of Vij(ω).

Assumption 2 holds when the row vectors of X are linear independent. Thus, if only

the linear effect is considered in the mean function, then orthogonal designs or orthogonal

array-based designs, such as OA-based Latin hypercube designs [51], can be chosen for

sampling schemes. The conditions for Assumption 4 can be referred to [38], in which the

checkable conditions for rectangular lattice of data sites and irregularly located data sites are

given. For instance, for rectangular lattice of data sites, with certain correlation functions,

a sufficient condition is choosing data locations whose minimum distance is sufficiently
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large. More details can be seen in [38]. Thus, space-filling designs, such as Latin hypercube

designs [153] and maximin distance designs [154], can be chosen for sampling schemes.

A.3 Proof of Theorem 1.3.1

The model (1.4) can be seen as a binary time series model with random effects by multiplying

an identity matrix on Z, that is,

logit(p) = Xβ + INZ, Z ∼ N (0N ,Σ(ω)),

where IN and Z are viewed as the model matrix and coefficients of random effects, re-

spectively. Therefore, if the variance-covariance parameters are given, inference of β is a

special case of the binary time series model with random effects in [4]. Therefore, following

Theorem 1 in [4], the score function SN(β,ω) is asymptotically normally distributed.

A.4 Proof of Theorem 1.3.3

According to [30], one can view the inference on the variance-variance component as an

iterative procedure for the linear mixed model

η̃ = Xβ + INZ + ε, ε ∼ N (0N ,W
−1)

with the iterative weight W−1. Thus, it is a special case of the Gaussian general linear

model in [37] with response vector η̃ and variance-covariance component Σ(ω) +W−1

with parameters ω. Since the asymptotic distribution of REML estimators for the variance-

covariance parameters has been shown in [37] for a Gaussian general linear model, the result

directly follows as a special case of Corollary 3.3 in [37]. Note that Assumption 4 in the

supplementary material A.2 implies the conditions for Corollary 3.3 in [37]. See the proof

of Theorem 2.2 in [38].
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A.5 Proof of Lemma 1.4.1

We start the proof by deriving the conditional distribution from a simple model (1.1) (without

time-series), and then extend the result to prove Lemma 1.4.1. First, a definition and a

lemma about multivariate log-normal distribution are in order.

Definition A.5.1. Suppose ξ = (ξ1, . . . , ξn)′ has a multivariate normal distribution with

mean µn and covariance variance Σn×n. Then b = exp{ξ} has a multivariate log-normal

distribution. Denote it as b ∼ LN (µn,Σn×n).

Lemma A.5.1. Suppose bn and bn+1 have a multivariate log-normal distribution

 bn

bn+1

 ∼ LN

 µn

µn+1

 ,

Σn×n r

r′ σ2
n+1


 .

The conditional distribution of bn+1 given bn is bn+1|bn ∼ LN (µ∗, v∗), where µ∗ = µn+1 +

r′Σ−1
n×n(log bn − µn) and v∗ = σ2

n+1 − r′Σ−1
n×nr.

Proof. Using transformation of a standard normal distribution, one can show that the joint

probability density function of the multivariate log-normal distribution bn is

gbn(b1, . . . , bn) =
1

(2π)n/2|Σn×n|1/2
1∏n
i=1 bi

exp{−1

2
(log bn − µn)′Σ−1

n×n (log bn − µn)}.

Denote bn+1 = (b1, . . . , bn, bn+1), µn+1 = (µ1, . . . , µn, µn+1) and

Σ(n+1)×(n+1) =

Σn×n r

r′ σn+1

 .
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Then, the conditional probability density function of bn+1 given bn can be derived as

gbn+1|bn(bn+1|bn) ∝ g(b1, . . . , bn, bn+1)

∝ 1

bn+1

exp{−1

2

(
log bn+1 − µn+1

)′
Σ−1

(n+1)×(n+1)

(
log bn+1 − µn+1

)
}.

Let a1 = log bn − µn and a2 = log bn+1 − µn+1. Applying the partitioned matrix inverse

results (page 99 of [86]) gives

(
log bn+1 − µn+1

)′
Σ−1

(n+1)×(n+1)

(
log bn+1 − µn+1

)
=

[
a′1 a′2

]Σn×n r

r′ σn+1


−1 a1

a2


=(a2 − r′Σ−1

n×na1)′σ−1
22·1(a2 − r′Σ−1

n×na1) + a′1Σ
−1
n×na1

=(a2 − r′Σ−1
n×na1)2/σ22·1 + a′1Σ

−1
n×na1,

where σ22·1 = σ2
n+1 − r′Σ−1

n×nr and is a real number.

Thus, the conditional probability density function of bn+1 given bn can be simplified as

gbn+1|bn(bn+1|bn) ∝ 1

bn+1

exp{− 1

2σ22·1
(a2 − r′Σ−1

n×na1)2 − 1

2
a′1Σ

−1
n×na1}

∝ 1

bn+1

exp{− 1

2σ22·1
(a2 − r′Σ−1

n×na1)2}

=
1

bn+1

exp{− 1

2σ22·1

(
log bn+1 − (µn+1 + r′Σ−1

n×n(log bn − µn))
)2}.

Therefore, according to the probability density function of a log-normal distribution, we

have bn+1|bn ∼ LN (µ∗, v∗), where µ∗ = µn+1 + r′Σ−1
n×n(log bn − µn) and v∗ = σ22·1 =

σ2
n+1 − r′Σ−1

n×nr.

Lemma A.5.2. Consider the model (1.1) (without time-series), given (p(x1), . . . , p(xn))′ =

pn, the conditional distribution of p(xn+1) is a logit-normal distribution, that is, p(xn+1)|pn ∼
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Logitnormal(m(pn), v(pn)) with

m(pn) = µ(xn+1) + r′θR
−1
θ (log

pn

1− pn
− µn) and v(pn) = σ2(1− r′θR−1

θ rθ),

whereµn = (µ(x1), . . . , µ(xn))′, µ(xi) = α0+x′iα, rθ = (Rθ(xn+1,x1), . . . , Rθ(xn+1,xn))′,

andRθ = {Rθ(xi,xj)}.

Proof. Let ηi = µ(xi) +Z(xi) and bi = exp{ηi} = p(xi)/(1− p(xi)) for i = 1, . . . , n+ 1.

Since (η1, . . . , ηn, ηn+1)′ ∼ N (µn+1, σ2R∗θ), where µn+1 = ((µn)′, µ(xn+1))′ and

R∗θ =

Rθ rθ

r′θ 1

 ,
we have (b1, . . . , bn, bn+1)′ ∼ LN (µn+1, σ2R∗θ) by Definition A.5.1. Thus, using Jacobian

of the transformation and Lemma A.5.1, we have

gp(xn+1)|p(x1),...,p(xn)(pn+1|p1, . . . , pn)

=gbn+1|b1,...,bn(
pn+1

1− pn+1

| p1

1− p1

, . . . ,
pn

1− pn
)

1

(1− pn+1)2

∝1− pn+1

pn+1

exp{−

(
log pn+1

1−pn+1
− (µ(xn+1) + r′θR

−1
θ (log pn

1−pn − µ
n))
)2

2σ2(1− r′θR
−1
θ rθ)

} 1

(1− pn+1)2

∝ 1

pn+1(1− pn+1)
exp{−

(
log pn+1

1−pn+1
− (µ(xn+1) + r′θR

−1
θ (log pn

1−pn − µ
n))
)2

2σ2(1− r′θR
−1
θ rθ)

}.

Therefore, according to the probability density function of a logit-normal distribution, we

have p(xn+1)|pn ∼ Logitnormal(m(pn), v(pn)).

Similarly, the result of Lemma A.5.2 can be extended to the general model (1.3). Given

Y = (y′1, . . . ,y
′
T , yn+1,1, . . . , yn+1,s−1)′, at a fixed time-step s, ps(xi) can be seen to have

the model (1.1) with mean function µ(xi,Y ) =
∑R

r=1 ϕryi,s−r+α0+x′iα+
∑L

l=1 γ lxiyi,s−l.
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Thus, by Lemma A.5.2, denote ps = (ps(x1), . . . , ps(xn))′, we have

ps(xn+1)|ps,Y ∼ Logitnormal(m(ps,Y ), v(ps,Y )),

wherem(ps,Y ) = µ(xn+1,Y )+r′θR
−1
θ (log ps

1−ps
−µn),µn = (µ(x1,Y ), . . . , µ(xn,Y ))′,

and v(ps,Y ) = σ2(1− r′θR−1
θ rθ). By the fact that Zt(x) is independent over time, which

implies ps(x) is independent of pt(x) for any t 6= s, ps(xn+1)|Dn+1,s and ps(xn+1)|ps,Y

have the same distribution. So, ps(xn+1)|Dn+1,s ∼ Logitnormal(m(Dn+1,s), v(Dn+1,s)),

where m(Dn+1,s) = m(ps,Y ) and v(Dn+1,s) = v(ps,Y ).

A.6 Proof of Theorem 1.4.3

(i) First, one can show that if (ps(xn+1), Dn+1,s) has a joint distribution for which the

conditional mean of ps(xn+1) given Dn+1,s exists, then E [p(xn+1)|Dn+1,s] is the minimum

mean squared error predictor of p(xn+1). See Theorem 3.2.1 in [5]. Thus, by the result of

Lemma 1.4.1, we have the conditional mean E [p(xn+1)|Dn+1,s] = κ(m(Dn+1,s), v(Dn+1,s))

with variance V [p(xn+1)|Dn+1,s] = τ(m(Dn+1,s), v(Dn+1,s)).

(ii) If xn+1 = xi for i = 1, . . . , n, then m(Dn+1,s) = log(ps(xi)/(1 − ps(xi))) and

v(Dn+1,s) = 0, which implies that

κ(m(Dn+1,s), 0) = exp{m(Dn+1,s)}/(1 + exp{m(Dn+1,s)}) = ps(xi)

and τ(m(Dn+1,s), 0) = 0 by using transformation of a normal distribution. Thus, by

Theorem 1.4.3 (i), we have E [ps(xn+1)|Dn+1,s] = ps(xi) and V [ps(xn+1)|Dn+1,s] = 0.

(iii) Let X ∼ N (m(Dn+1,s), v(Dn+1,s)), P = exp{X}/(1 + exp{X}), which has the

distribution Logitnormal(m(Dn+1,s), v(Dn+1,s)), and Q(q;Dn+1,s) be the q-th quantile of

P . Consider the function f(x) = log(x/(1− x)). The derivative is f ′(x) = 1/(x(1− x)).
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Thus, for 0 < x < 1 the derivative is positive and the f(x) function is increasing in x. Then,

Pr {P > Q(q;Dn+1,s)} = q

⇔Pr
{

exp{X}
1 + exp{X}

> Q(q;Dn+1,s)

}
= q

⇔Pr
{
f(

exp{X}
1 + exp{X}

) > f(Q(q;Dn+1,s))

}
= q

⇔Pr
{
X > log

Q(q;Dn+1,s)

1−Q(q;Dn+1,s)

}
= q

⇔Pr

{
X −m(Dn+1,s)√

v(Dn+1,s)
>

1√
v(Dn+1,s)

(
log

Q(q;Dn+1,s)

1−Q(q;Dn+1,s)
−m(Dn+1,s)

)}
= q

⇔ 1√
v(Dn+1,s)

(
log

Q(q;Dn+1,s)

1−Q(q;Dn+1,s)
−m(Dn+1,s)

)
= zq

⇔Q(q;Dn+1,s) =
exp{m(Dn+1,s) + zq

√
v(Dn+1,s)}

1 + exp{m(Dn+1,s) + zq
√
v(Dn+1,s)}

.

A.7 Algorithm: Metropolis-Hastings Algorithm

1: for j = 1 to J do

2: Set Ns = nT + s− 1.

3: Start with a zero vector p of size Ns.

4: for k = 1 to Ns do

5: Generate a random value p∗k from Logitnormal(m(p−k,y−k), v(p−k,y−k)).

6: Generate an uniform random variable U ∼ Unif(0, 1).

7: if U < min{1, f(yk|p∗k)

f(yk|pk)
} then

8: Set p = (p1, . . . , p
∗
k, . . . , pNs).

9: Set p(j) = p

10: Return {p(j)}j=1,...,J .
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In the algorithm, we first sample a value for the k-th component pk from the conditional

distribution of pk given pj, yj, j 6= k, which is Logitnormal(m(p−k,y−k), v(p−k,y−k)),

where

m(p−k,y−k) = µt(xi)−
∑
k 6=j

Qkj

Qkk

(
log

pk
1− pk

− µt(xi)
)
, v(p−k,y−k) =

σ2

Qkk

,

in which µt(xi) =
∑R

r=1 ϕryi,t−r + x′iα+
∑L

l=1 γ lxiyi,t−l and Qkj is the (k, j)-element of

R−1
θ . Similar to [8], we use the single-component MH algorithm, that is, to update only a

single component at each iteration. Moreover, the proposed distribution f(pk) is used for

the single MH algorithm, so that the probability of accepting a new p∗k is the minimum of 1

and f(p∗k|yk)f(pk)

f(pk|yk)f(p∗k)

(
=

f(yk|p∗k)

f(yk|pk)

)
.

A.8 Algorithm: Dynamic Binary Emulator

1: for j = 1 to J do

2: Set N = nT .

3: Start with a zero vector p of size N .

4: for i = 1 to N do

5: Generate a random value p∗k from Logitnormal(m(p−k,y−k), v(p−k,y−k)).

6: Generate an uniform random variable U ∼ Unif(0, 1).

7: if U < min{1, f(yk|p∗k)

f(yk|pk)
} then

8: Set p = (p1, . . . , p
∗
k, . . . , pN).

9: Set pn+1 = p,Y n+1 = Y , zero vectors pnew and ynew of size T .

10: for t = 1 to T do

11: GivenDn+1,t = {pn+1,Y n+1}, draw a sample pt(xn+1) fromLogitnormal(m(Dn+1,t), v(Dn+1,t)),

and then draw a sample yt(xn+1) from a Bernoulli distribution with parameter pt(xn+1).

12: Update pn+1 = (p′n+1, pt(xn+1))′, Y n+1 = (Y ′n+1, yt(xn+1))′, (pnew)t =

pt(xn+1), and (ynew)t = yt(xn+1).
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13: Set p(j)
new = pnew and y

(j)
new = ynew.

14: Take pointwise median from {p(j)
new}j=1,...,J and {y(j)

new}j=1,...,J .
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APPENDIX B

APPENDICES OF CHAPTER 2

B.1 Assumptions

The regularity conditions on the models are given below. For any θ ∈ Θ ⊂ Rq, write

θ = (θ1, . . . , θq). Denote ei = ypi − η(xi).

A1: The sequences {xi} and {ei} are independent; xi’s are i.i.d. from a uniform distri-

bution over Ω; and {ei} is a sequence of i.i.d. random variables with zero mean and

finite variance.

A2: θ∗ is the unique solution to (2.2) and is an interior point of Θ.

A3: V := E
[

∂2

∂θ∂θT
(η(X)− p(X, θ∗))2

]
is invertible.

A4: There exists a neighborhood U ⊂ Θ of θ∗ such that

sup
θ∈U

∥∥∥∥ ∂p∂θi (·, θ)
∥∥∥∥
NΦ(Ω)

< +∞, ∂2p

∂θi∂θj
(·, ·) ∈ C(Ω× U),

for all θ ∈ U and all i, j = 1, . . . , q.

B.2 Proof of Theorem 2.3.3

Proof. The proof is developed along the lines described in Theorem 1 of [23]. We first

prove the consistency, θ̂n
p−→ θ∗. It suffices to prove that ‖η̂n(·)− p̂N(·, θ)‖L2(Ω) converges
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to ‖η(·)− p(·, θ)‖L2(Ω) uniformly with respect to θ ∈ Θ in probability, which is ensured by

‖η̂n(·)− p̂N(·, θ)‖2
L2(Ω) − ‖η(·)− p(·, θ)‖2

L2(Ω) (B.1)

=

∫
Ω

(η̂n(z)− η(z)− p̂N(z, θ) + p(z, θ)) (η̂n(z) + η(z)− p̂N(z, θ)− p(z, θ)) dz

≤
(
‖η̂n − η‖L2(Ω) + ‖p̂N(·, θ)− p(·, θ)‖L2(Ω)

) (
‖η̂n(·)‖L2(Ω) + ‖η(·)‖L2(Ω) + ‖p̂N(·, θ)‖L2(Ω) + ‖p(·, θ)‖L2(Ω)

)
,

where the inequality follow from the Schwarz inequality and the triangle inequality. Denote

the volume of Ω by V ol(Ω). It can be shown that

‖f‖L2(Ω) ≤ V ol(Ω)‖f‖L∞(Ω)

holds for all f ∈ L∞(Ω). Thus, we have

‖p̂N(·, θ)− p(·, θ)‖L2(Ω) ≤ V ol(Ω)‖p̂N(·, θ)− p(·, θ)‖L∞(Ω)

≤ V ol(Ω)‖p̂N − p‖L∞(Ω×Θ), (B.2)

and ‖f(·)‖L2(Ω) ≤ V ol(Ω) for f(·) = η̂(·), η(·), p̂N(·, θ), and p(·, θ) because ‖f(·)‖L∞(Ω) ≤

1. Then, combining (B.2) and assumptions B2 and C1, we have that (B.1) converges to 0

uniformly with respect to θ ∈ Θ, which proves the consistency of θ̂n.

Since θ̂n minimizes (2.4), by invoking assumptions A1,A2 and A4, we have

0 =
∂

∂θ
‖η̂n(·)− p̂N(·, θ̂n)‖2

L2(Ω)

= 2

∫
Ω

(
η̂n(z)− p̂N(z, θ̂n)

) ∂p̂n
∂θ

(z, θ̂n)dz,

and by assumption B2, C1 and C2, it implies

∫
Ω

(
η̂n(z)− p(z, θ̂n)

) ∂p
∂θ

(z, θ̂n)dz = op(n
−1/2). (B.3)
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Let l(ξ) = 1
n

∑n
i=1 (ypi log g(ξ(xi)) + (1− ypi ) log(1− g(ξ(xi)))) + λn‖ξ‖2

NΦ(Ω). From

(2.3), we know that ξ̂n maximizes l over NΦ(Ω). Since θ̂n
p−→ θ∗ and by assumption

A4, ∂p
∂θ

(·, θ̂n) ∈ NΦ(Ω) with sufficiently large n. Define h(z) = f(z)
g(z)(1−g(z)) and write

ĥn = h(ξ̂n). Since h(z) = 1 for any z ∈ R when g is a logit function, we have

0 =
∂

∂t
l(ξ̂n(·) + t

∂p

∂θj
(·, θ̂n))|t=0

= − 1

n

n∑
i=1

[g(ξ̂n(xi))− g(ξ(xi))]ĥn(xi)
∂p

∂θj
(xi, θ̂n) +

1

n

n∑
i=1

(Yi − g(ξ(xi)))ĥn(xi)
∂p

∂θj
(xi, θ̂n)

+ 2λn < ξ̂n,
∂p

∂θj
(xi, θ̂n) >NΦ(Ω)

= − 1

n

n∑
i=1

[g(ξ̂n(xi))− g(ξ(xi))]
∂p

∂θj
(xi, θ̂n) +

1

n

n∑
i=1

(Yi − η(xi))
∂p

∂θj
(xi, θ̂n)

+ 2λn < ξ̂n,
∂p

∂θj
(xi, θ̂n) >NΦ(Ω)

:= Cn +Dn + En. (B.4)

We first consider Cn. Let Ai(f, θ) = [g(f(xi)) − g(ξ(xi))]
∂p
∂θj

(xi, θ) for (f, θ) ∈

NΦ(Ω, ρ)×Θ for some ρ > 0. Define the empirical process

E1n(f, θ) =
1√
n

n∑
i=1

{Ai(f, θ)− E[Ai(f, θ)]} ,

where E[Ai(f, θ)] =
∫

Ω
[g(f(z)) − g(ξ(z))] ∂p

∂θj
(z, θ)dz. By assumption B1, NΦ(Ω, ρ) is

Donsker. Thus, by Theorem 2.10.6 in [72], F1 = {g(f) − g(ξ) : f ∈ NΦ(Ω, ρ)} is

also Donsker because g is a Lipschitz functions. By assumption A4, the class F2 =

{ ∂p
∂θj

(·, θ̂n), θ ∈ U} is Donsker. Since both F1 and F2 are uniformly bounded, by Example

2.10.8 in [72] the product class F1×F2 is also Donsker. Thus, the asymptotic equicontinuity

property holds, which implies that for any ε > 0 there exists a δ > 0 such that

lim sup
n→∞

Pr

(
sup

ζ∈F1×F2,‖ζ‖≤δ

∣∣∣∣∣ 1√
n

n∑
i=1

(ζ(xi)− E(ζ(xi)))

∣∣∣∣∣ > ε

)
< ε,
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where ‖ζ‖2 := E[ζ(xi)
2]. See Theorem 2.4 of [155]. This implies that for any ε > 0 there

exists a δ > 0 such that

lim sup
n→∞

Pr

(
sup

f∈NΦ(Ω,ρ),θ∈U,‖g(f)−g(ξ)‖L2(Ω)≤δ
|E1n(f, θ)| > ε

)
< ε. (B.5)

Suppose ε > 0 is a fixed value. Assumption B3 implies that there exists ρ0 > 0 such that

Pr(‖ξ̂‖NΦ
> ρ0) ≤ ε/3. In addition, choose δ0 to be a possible value of δ which satisfies

(B.5) with ε = ε/3 and ρ = ρ0. Assumption B2 implies that Pr(‖g(ξ̂n) − g(ξ)‖L2(Ω) >

δ0) < ε/3. Define

ξ̂◦n =


ξ̂n, if ‖ξ̂n‖NΦ(Ω) ≤ ρ0 and ‖g(ξ̂n)− g(ξ)‖L2(Ω) ≤ δ0,

ξ, otherwise.

Then, for sufficiently large n, we have

Pr(|E1n(ξ̂n, θ̂n)| > ε) ≤ Pr(|E1n(ξ̂◦n, θ̂n)| > ε) + Pr(‖ξ̂n‖NΦ(Ω) > ρ0) + Pr(‖g(ξ̂n)− g(ξ)‖L2(Ω) > δ0)

≤ Pr(|E1n(ξ̂◦n, θ̂n)| > ε/3) + ε/3 + ε/3

≤ Pr

(
sup

f∈NΦ(Ω,ρ),θ∈U,‖g(f)−g(ξ)‖L2(Ω)≤δ
|E1n(f, θ)| > ε/3

)
+ ε/3 + ε/3

≤ ε.

The first and third inequalities follow from the definition of ξ̂◦n, and the last inequality follows

from (B.5). Thus, this implies that E1n(ξ̂n, θ) tends to zero in probability, which gives

op(1) = E1n(ξ̂n, θ̂n)

=
1√
n

n∑
i=1

{
[g(ξ̂n(xi))− g(ξ(xi))]

∂p

∂θj
(xi, θ̂n)

}
− 1√

n

∫
Ω

[g(ξ̂n(z))− g(ξ(z))]
∂p

∂θj
(z, θ̂n)dz

= −
√
nCn −

√
n

∫
Ω

[g(ξ̂n(z))− g(ξ(z))]
∂p

∂θj
(z, θ̂n)dz,
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which implies

Cn =−
∫

Ω

[g(ξ̂n(z))− g(ξ(z))]
∂p

∂θj
(z, θ̂n)dz + op(n

−1/2)

=−
∫

Ω

[η̂n(z)− η(z)]
∂p

∂θj
(z, θ̂n)dz + op(n

−1/2). (B.6)

Then, by substituting (B.3) to (B.6) and using assumption A2, Taylor expansion can be

applied to (B.6) at θ∗, which leads to

Cn =−
∫

Ω

[p(z, θ̂n)− η(z)]
∂p

∂θj
(z, θ̂n)dz + op(n

−1/2)

=−
(

1

2

∫
Ω

∂2

∂θi∂θj
[p(z, θ̃n)− η(z)]2dz

)
(θ̂n − θ∗) + op(n

−1/2),

where θ̃n lies between θ̂n and θ∗. By the consistency of θ̂n, we then have θ̃n
p−→ θ∗. This

implies that

∫
Ω

∂2

∂θ∂θT
[p(z, θ̃n)− η(z)]2dz

p−→
∫

Ω

∂2

∂θ∂θT
[p(z, θ∗)− η(z)]2dz = V,

so that

Cn = −1

2
V (θ̂n − θ∗) + op(n

−1/2). (B.7)

Next, we consider Dn. Define the empirical process

E2n(θ) =
1√
n

n∑
i=1

{
ei
∂p

∂θj
(xi, θ)− ei

∂p

∂θj
(xi, θ

∗)− E
[
ei
∂p

∂θj
(xi, θ)− ei

∂p

∂θj
(xi, θ

∗)

]}
=

1√
n

n∑
i=1

{
ei
∂p

∂θj
(xi, θ)− ei

∂p

∂θj
(xi, θ

∗)

}
,

where θ ∈ U . Assumption A1 implies that the set {ζθ ∈ C(R×Ω) : ζθ(e,x) = e ∂p
∂θj

(x, θ)−

e ∂p
∂θj

(x, θ∗), θ ∈ U} is a Donsker class, which ensures that E2n(·) converges weakly in

L∞(U) to a tight Gaussian process, denoted by G(·). Without loss of generally, we assume

G(·) has continuous sample paths. Then, by the continuous mapping theorem [156] and
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the consistency of θ̂n, we have E2n(θ)
p−→ G(θ∗). Because E2n(θ∗) = 0 for all n, we have

G(θ∗) = 0. Then, we have E2n(θ)
p−→ 0, which gives

Dn =
1

n

n∑
i=1

(Y p
i − η(xi))

∂p

∂θj
(xi, θ

∗) + op(n
−1/2). (B.8)

Lastly, we consider En. Applying assumption A4, B3, B4, we have

En ≤ 2λn‖ξ̂n‖NΦ(Ω)

∥∥∥∥ ∂p∂θj (·, θ̂n)

∥∥∥∥
NΦ(Ω)

= op(n
−1/2). (B.9)

By combining (B.4), (B.7), (B.8) and (B.9), we have

θ̂n − θ∗ = 2V −1

{
1

n

n∑
i=1

(Y p
i − η(xi))

∂p

∂θ
(xi, θ

∗)

}
+ op(n

−1/2).

B.3 Proof of Theorem 2.3.5

Proof. If suffices to show that θ̂n given in (2.4) has the same asymptotic variance as the

estimator obtained by using maximum likelihood (ML) method. Consider the following

q-dimensional parametric model indexed by γ,

ξγ(·) = ξ(·) + γT
∂p

∂θ
(·, θ∗), (B.10)

with γ ∈ Rq. By combining (2.1) and (B.10), it becomes a traditional logistic regression

model with coefficient γ. Regarding the model (2.1), the true value of γ is 0. Hence, under

the regularity conditions of Theorem 2.3.3, the ML estimator has the asymptotic expression

γ̂n =
1

n
W−1

n∑
i=1

(Yi − η(xi))
∂p

∂θj
(xi, θ

∗) + op(n
−1/2), (B.11)
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where W is defined in (2.8). Then a natural estimator for θ∗ in (2.2) is

θ̂ML
n = arg min

θ∈Θ
‖ξγ̂n(·)− p(·, θ∗)‖L2(Ω). (B.12)

Since the ML estimators (B.11) and (B.12) have the same expression as (3.22) and (3.23) in

[23], it follows that

θ̂ML
n − θ∗ = 2V −1

(
1

n

n∑
i=1

(Yi − η(xi))
∂p

∂θ
(xi, θ

∗)

)
+ op(n

−1/2). (B.13)

Therefore, since the asymptotic expression of the ML estimator in (B.13) has the same form

as the asymptotic expression of the L2 calibration given by (2.7), the L2 calibration (2.4) is

semiparametric efficient.
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APPENDIX C

APPENDICES OF CHAPTER 3

C.1 Proof of Proposition 3.3.1

In the variance definition (4), the variance of Y (x) at stage j + 1 is

Vj+1(x) = σ2{ΦΘ(x, x)− ΦΘ(x,Xj+1)ΦΘ(Xj+1, Xj+1)−1Φ(Xj+1, x)}. (C.1)

Since Xj+1 is comprised of Xj and xj+1, (C.1) can be rewritten as

Vj+1(x) = σ2
{

ΦΘ(x, x)−

[
ΦΘ(x, xj+1) ΦΘ(x,Xj)

]ΦΘ(xj+1, xj+1) ΦΘ(xj+1, Xj)

ΦΘ(Xj, xj+1) ΦΘ(Xj, Xj)


−1 ΦΘ(x, xj+1)

ΦΘ(Xj, x)

}.
(C.2)

For simplicity, the second term of (C.2) can be written as a partitioned matrix, that is,

[
aT1 aT2

]B11 B12

B21 B22


−1 a1

a2

 , (C.3)

where

a1 = ΦΘ(x, xj+1), a2 = ΦΘ(Xj, x),

B11 = ΦΘ(xj+1, xj+1), B12 = ΦΘ(xj+1, Xj) = BT
12 and B22 = ΦΘ(Xj, Xj).

Applying partitioned matrix inverse results [86] and simplifying (C.3) gives

aT2B
−1
22 a2 + (a1 −B12B

−1
22 a2)TB−1

11·2(a1 −B12B
−1
22 a2), (C.4)
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where B11·2 = B11 −B12B
−1
22 B21.

Then, taking (C.4) into (C.2) leads to

V (Xj+1) = σ2{ΦΘ(x, x)− aT2B−1
22 a2 − (a1 −B12B

−1
22 a2)TB−1

11·2(a1 −B12B
−1
22 a2)}

= σ2{ΦΘ(x, x)− ΦΘ(x,Xj)ΦΘ(Xj, Xj)
−1ΦΘ(Xj, x)

− (a1 −B12B
−1
22 a2)TB−1

11·2(a1 −B12B
−1
22 a2)}

= V (Xj)− σ2{(a1 −B12B
−1
22 a2)TB−1

11·2(a1 −B12B
−1
22 a2)}

= V (Xj)− σ2R(xj+1),

where

R(xj+1) = (a1 −B12B
−1
22 a2)TB−1

11·2(a1 −B12B
−1
22 a2)

= (a1 −B12B
−1
22 a2)2/B11·2

=
(ΦΘ(x, xj+1)− ΦΘ(xj+1, Xj)ΦΘ(Xj, Xj)

−1ΦΘ(Xj, x))2

ΦΘ(xj+1, xj+1)− ΦΘ(xj+1, Xj)ΦΘ(Xj, Xj)−1ΦΘ(Xj, xj+1)
,

and the second equality holds since B11·2 is a scalar.

C.2 Proof of Theorem 3.3.2

Since (a− b)2 ≤ (a+ b)2 for a, b ≥ 0, equation (8) can be bounded as

R(xj+1) =
(ΦΘ(x, xj+1)− ΦΘ(xj+1, Xj)ΦΘ(Xj, Xj)

−1ΦΘ(Xj, x))2

ΦΘ(xj+1, xj+1)− ΦΘ(xj+1, Xj)ΦΘ(Xj, Xj)−1ΦΘ(Xj, xj+1)

≤ (ΦΘ(x, xn+1) + ΦΘ(xj+1, Xj)ΦΘ(Xj, Xj)
−1ΦΘ(Xj, x))2

ΦΘ(xj+1, xj+1)− ΦΘ(xj+1, Xj)ΦΘ(Xj, Xj)−1ΦΘ(Xj, xj+1)
.

Also, since

aTB−1b ≤ ‖a‖2‖B−1b‖2
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and

aTB−1a ≤ ‖a‖2
2λmax(B−1) = ‖a‖2

2/λmin(B),

where λmax(·) and λmin(·) denote the maximum and minimum eigenvalues of a specific

matrix, respectively, the inequality becomes

R(xj+1) ≤ (ΦΘ(x, xj+1) + ‖ΦΘ(xj+1, Xj)‖2‖ΦΘ(Xj, Xj)
−1ΦΘ(Xj, x)‖2)2

1− ‖ΦΘ(Xj, xj+1)‖2
2/λmin

,

where λmin is the minimum eigenvalue of ΦΘ(Xj, Xj).

Furthermore, according to the definition dmin(xj+1) of the minimum (Mahalanobis-like)

distance as (6) and the definition φ(·) as in Theorem 1, we have

ΦΘ(u, xj+1) ≤ φ(dmin(xj+1)), for any u ∈ {x,Xj},

which also implies

‖ΦΘ(xj+1, Xj)‖2 = ‖ΦΘ(Xj, xj+1)‖2 ≤
√
jφ(dmin(xj+1)),

therefore the inequality can be bounded as

R(xj+1) ≤ (φ(dmin(xj+1)) +
√
jφ(dmin(xj+1))‖ΦΘ(Xj, Xj)

−1ΦΘ(Xj, x)‖2)2

1− jφ2(dmin(xj+1))/λmin

. (C.1)

Thus, for δ > 0, if

(φ(dmin(xj+1)) +
√
jφ(dmin(xj+1))‖ΦΘ(Xj, Xj)

−1ΦΘ(Xj, x)‖2)2

1− jφ2(dmin(xj+1))/λmin

≤ δ
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or equivalently

dmin(xj+1) ≥ φ−1

(√
δ

(1 +
√
j‖ΦΘ(Xj, Xj)−1ΦΘ(Xj, x)‖2)2 + jδ/λmin

)
,

then by (C.1), R(xj+1) ≤ δ.

C.3 Proof of Theorem 3.3.3

DefineU(t) = (
√
λ1ϕ1(t),

√
λ2ϕ2(t), . . . ,

√
λDϕD(t))T ∈ RD×1, whereϕi(·), i = 1, . . . , D

is an orthonormal basis of L2(Ω) consisting of the eigenfunctions of T , defined in (13), and

λ1 ≥ λ2 ≥ . . . ≥ λD are corresponding eigenvalues. According to (14), the approximated

eigen-decomposition can be rewritten as

Φ(x, y) ≈ UT (x)U(y).

Also, define a matrixU(K) = [U(k1), U(k2), . . . , U(kn)] ∈ RD×n forK = (k1, k2, . . . , kn).

Then, the reduction in variance R(xj+1) in (8) can be approximated to the following:

R(xj+1) =
(ΦΘ(x, xj+1)− ΦΘ(xj+1, Xj)ΦΘ(Xj, Xj)

−1ΦΘ(Xj, x))2

ΦΘ(xj+1, xj+1)− ΦΘ(xj+1, Xj)ΦΘ(Xj, Xj)−1ΦΘ(Xj, xj+1)

≈ (UT (xj+1)U(x)− UT (xj+1)U(Xj)[U
T (Xj)U(Xj)]

−UT (Xj)U(x))2

UT (xj+1)U(xj+1)− UT (xj+1)U(Xj)[UT (Xj)U(Xj)]−UT (Xj)U(xj+1)

=
(UT (xj+1)[I − U(Xj)[U

T (Xj)U(Xj)]
−UT (Xj)]U(x))2

UT (xj+1)[I − U(Xj)[UT (Xj)U(Xj)]−UT (Xj)]U(xj+1)
,

where [UT (Xj)U(Xj)]
− denotes a generalized inverse of [UT (Xj)U(Xj)].

Let CXj(t) = [I − U(Xj)[U
T (Xj)U(Xj)]

−UT (Xj)]U(t). Then,

CT
Xj

(xj+1)CXj(x) = UT (xj+1)[I − U(Xj)[U
T (Xj)U(Xj)]

−UT (Xj)]U(x).
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Similarly,

CT
Xj

(xj+1)CXj(xj+1) = UT (xj+1)[I − U(Xj)[U
T (Xj)U(Xj)]

−UT (Xj)]U(xj+1).

Therefore,

R(xn+1) ≈
(CT

Xj
(xj+1)CXj(x))2

CT
Xj

(xj+1)CXj(xj+1)
= ‖CXj(x)‖2

2 cos2(ϑ),

where ϑ is the angle between CXj(x) and CXj(xj+1).
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APPENDIX D

APPENDICES OF CHAPTER 4

D.1 Proof of Theorem 4.2.1

First, a useful lemma is given.

Lemma D.1.1. Denote Fu = {
∫

Ω−u

(
f(x)−

∑
v⊂u fv(x)

)
dx−u|f ∈ NΦ, fv ∈ Fv}. Sup-

pose Φ ∈ Ω × Ω → R is a symmetric positive-definite kernel on Ω = [0, 1]d and Φ is a

product kernel. Then,

fu ∈ Fu = {fv + gu|gu ∈ NΦu , v ⊂ u, fv ∈ Fv},

where Φu =
∏

j∈u φj .

Proof. Initially consider a finite element. The proof proceeds by induction. For u = ∅, we

have that if f ∈ NΦ, then

f∅ =

∫
Ω

f(x)dx =

∫
Ω

∑
y∈X

βyΦ(x, y)dx =
∑
y∈X

βy

∫
Ω

Φ(x, y)dx := α ∈ R.

This shows f∅ ∈ F∅ = {f(·) = α|α ∈ R}.

Let fu ∈ Fu for any |u| ≤ k. Note that
∫

Ω−u
dx−u = 1 for any u, since Ω = [0, 1]d.
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Thus, for |u′| = k + 1,

fu′(x) =

∫
Ω−u′

(
f(x)−

∑
v⊂u′

fv(x)

)
dx−u′ =

∫
Ω−u′

f(x)dx−u′ −
∑
v⊂u′

fv(x)

=
∑
y∈X

βy

∫
Ω−u′

Φ(x, y)dx−u′ −
∑
v⊂u′

fv(x)

=
∑
y∈X

βy

∫
Ω−u′

d∏
j=1

φ(xj, yj)dx−u′ −
∑
v⊂u′

fv(x)

=
∑
y∈X

βy
∏
j∈u′

φj(xj, yj)

∫
Ω−u′

∏
j /∈u′

φj(xj, yj)dx−u′ −
∑
v⊂u′

fv(x)

=
∑
y∈X

β̃y
∏
j∈u′

φi(xi, yi)−
∑
v⊂u′

fv(x),

where β̃y = βy
∫

Ω−u′

∏
j /∈u′ φj(xj, yj)dx−u′ . Hence, since

∑
y∈X β̃yφu′(·, yi) ∈ NΦu′

and

fv ∈ Fv for any |v| ≤ k, we have fu′ ∈ Fu′ = {f = fv + gu′|gu′ ∈ NΦu′
, v ⊂ u′, fv ∈ Fv}.

Therefore, by induction, fu ∈ Fu = {fv + gu|gu ∈ NΦu , v ⊂ u, fv ∈ Fv} is true for any

u ⊆ D.

Since any element of an RKHS is bounded [157], we may use the dominated convergence

theorem [158] to interchange the integral and the limit of the finite sums to extend to an

arbitrary element.

By Lemma D.1.1, we have f(x) =
∑

u⊆D fu(x), where fu(x) ∈ Fu = {fv + gu|gu ∈

NΦu , v ⊂ u, fv ∈ Fv}. Thus, by the fact that g(1)
u + g

(2)
u ∈ NΦu for g(1)

u , g
(2)
u ∈ NΦu , f(x)

can be represented as f(x) =
∑

u⊆D fu(x), where fu ∈ NΦu .

D.2 Algorithm for Estimation

1. Let A denote the set of active groups and C the set of candidate groups. Start with

A = ∅ and C = {(u, r)|u = {1}, . . . , {d}, r = 1}. Set an initial penalty λmax and a

small increment ∆.

2. Set up an overlapping group lasso algorithm which minimizes the penalized likelihood
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function

1

n

n∑
i=1

yi − ∑
(u,r)∈C

nu(r)∑
k=1

βrku ϕ
rk
u (xiu)

2

+ λ
∑

(u,r)∈C

√√√√Nu(r)
∑
v⊆u

∑
s≤r

nv(s)∑
k=1

(βskv )2.

Denote the input-output function as β̂λ = grplasso(λ, C, β̂λ+∆). The inputs in-

clude a penalty value λ, the candidate set C and the estimated coefficient with penalty

value λ + ∆, and the output β̂λ is the corresponding estimated coefficient by the

algorithm. Start with λ = λmax and β̂λ+∆ = 0.

3. Do β̂λ = grplasso(λ, C, β̂λ+∆) and obtain the set of active groups A′ ⊆ C based

on β̂λ. Set λ = λ − ∆. If A′ \ A 6= ∅, then A ← A′ and C ← C ∪ C ′, where C ′

contains the new candidate groups necessary to satisfy strong effects heredity given

the updated A.

4. Repeat step 3 until some convergence criterion is met.

D.3 Confidence Interval Algorithm

1. Let ϕ∗ denote the basis function evaluations at a particular predictive location x∗. Ex-

tend ϕ∗ to a basis of Rp and denote it as B = (ϕ∗, c2, . . . , cp). Compute (Z̃i, Q̃i)
T =

B−1ϕi for i = 1, . . . , n and (η̂1, η̂
T
(−1)) = BT β̂λ, where β̂λ is the estimated coefficient

with penalty λ.

2. Compute the estimated decorrelated score function

Ŝ(0, η̂(−1)) = − 1

nσ̂2

n∑
i=1

(yi − η̂T(−1)Q̃i)(Z̃i − ŵT Q̃i),

where

ŵ = arg min

∥∥∥∥ 1

n

n∑
i=1

Q̃i(Z̃i − wT Q̃i)

∥∥∥∥
2

+ λ′′‖w‖1,
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and σ̂2 is a consistent estimator of σ2. For example, σ2 can be estimated by σ̂2 =

1
n−s
∑n

i=1(yi−β̂Tλ ϕi)2, where s the the number of non-zero elements in β̂λ. Another es-

timator is the cross-validation based variance estimator. Define the K cross-validation

folds as {D1, . . . , DK} and compute

σ̂2 = min
λ

1

n

K∑
k=1

∑
i∈Dk

(yi − (β̂
(−k)
λ )Tϕi)

2,

where β̂(−k)
λ is the overlapping group lasso estimate at λ over the data after the kth

fold is omitted. This estimator has been used for the variance estimation in lasso

regression problems. See [159].

3. Compute the interval

[cα/2/b, c1−α/2/b],

where cα/2 = −Ŝ(0, η̂(−1)) +
√

b
n
Φ−1(α/2), c1−α/2 = −Ŝ(0, η̂(−1)) +

√
b
n
Φ−1(1 −

α/2), b = 1
nσ̂2

∑n
i=1 Z̃i(Z̃i − ŵT Q̃i). By some algebraic manipulation, one can show

that this interval is same as the one in Corollary 4.4.4.

D.4 Confidence Interval Algorithm Modification for Large N

1. In Algorithm D.3, replace Q̃i by Q̃∗i and p by p∗, where the nuisance ϕij , j = 1, . . . , p∗

only contain basis functions in the candidate groups at the selected λ, say Cλ.

2. Replace ŵ by

ŵ∗ =

(
n∑
i=1

Q̃∗iQ̃
T
∗i + ηIp∗−1

)−1( n∑
i=1

Q̃∗iZ̃i

)
(D.1)

with a small positive η, where Ip∗−1 is a (p∗ − 1)× (p∗ − 1) identity matrix.
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3. Define K cross-validation folds as {D1, . . . , DK} and partition the original samples

{xi, yi}ni=1 via the k folds.

4. Regard σ̂2 in Algorithm D.3 as an unknown parameter. Let û(−k)(x∗, σ̂2) and l̂(−k)(x∗, σ̂2)

be the upper and lower limits at a predictive location x∗ by Algorithm D.3 over the

data after the kth fold is omitted, respectively.

5. Replace σ̂2 by

σ̂2
∗ = arg min

σ̂2

∣∣∣∣∣
(

1

n

K∑
k=1

∑
i∈Dk

1{yi ∈ [l̂(−k)(xi, σ̂
2), û(−k)(xi, σ̂

2)]}

)
− (1− α)

∣∣∣∣∣ ,
where 1{A} is an indicator function of the set A.

D.5 Proof of Theorem 4.4.1

D.5.1 Notation and Reformulation

First, we introduce some additional notation. For a matrix M = [Mjk], let ‖M‖max =

maxj,k |Mjk|, ‖M‖1 =
∑

j,k |Mjk|, and ‖M‖l∞ = maxj
∑

k |Mjk|. For v = (v1, ..., vp)
T ∈

Rp, and 1 6 q < ∞, define ‖v‖q = (
∑p

i=1 |vi|q)1/q. Define ‖v‖0 = |{i : vi 6= 0}|. For

S ⊆ {1, ..., p}, let vS = {vj : j ∈ S} and S̄ be the complement of S. Given a, d ∈ R, we

use a ∨ b and a ∧ b to denote the maximum and minimum of a and b.

For convenience, we restate the loss function as follows. Consider groups J1, ..., Jpn ,

where Jj ⊆ {1, ..., p}, and
⋃pn
j=1 Jj = {1, ..., p}. Notice that we do not require Jj1

⋂
Jj2 = ∅.

Define Ck = {j : k ∈ Jj} and ck = |Ck|. Thus, Ck is the set of indices of the groups

variable k belongs to and ck is the number of groups that variable k belongs to. We can

also treat ck as replicates of index k. Define the vector of variable k coefficients over

all groups in which it appears βZkCk = (βkjk1
, . . . , βkjkck )T , where jkl denotes the index

of variable k within the lth group in which it appears, and the vector of all coefficients

βZ = ((βZ1C1
)T , . . . , (βZpCp)

T )T . Let βJj = (βkj)
T
k∈Jj , where βkj is the coefficient of the kth
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variable and k is in jth group. Let dj = |Jj|. Consider the following optimization problem

β̂Z,λn = arg min
βZ

{
1

2n

n∑
i=1

(yi −
p∑

k=1

( ck∑
m=1

βkjkm

)
ϕki)

2 + λn

pn∑
j=1

√
dj‖βJj‖2

}
, (D.2)

where λn is a positive number. We define the overlapping group lasso estimator as

β̂λn =

( c1∑
k=1

β̂λn1j1k
, ...,

cp∑
k=1

β̂λnpjpk

)T
, (D.3)

in which we stress λn since it will influence the solution of (D.2). Notice that by this

definition, the least squares term becomes 1
2n

∑n
i=1(yi − β̂Tϕi)2, which is the same as in

original group lasso case. We use 1
2n

instead of 1
n

for brevity of the Karush-Kuhn-Tucker

(KKT) conditions, which are as following.

Proposition D.5.1. Let ϕ be the matrix with rows ϕTi , i = 1, . . . , n. Let ψj denote the jth

column of ϕ, for j = 1, . . . , p. Necessary and sufficient conditions for β̂Z to be a solution

to (D.2) are

− 1

n
ψTj (y − ϕβ̂) +

λn
√
dkβ̂jk

‖β̂Jk‖2

= 0, ∀j ∈ Jk with β̂Jk 6= 0

‖ − 1

n
ψTj (y − ϕβ̂)‖2 6 λn

√
dk, ∀j ∈ Jk with β̂Jk = 0.

The following lemma [134] states that at most n groups can be nonzero.

Lemma D.5.2. Suppose λn > 0, a solution β̂Z,λn exists such that the number of nonzero

groups |S(β̂Z,λn)| 6 n, the number of data points, where S(β) = {Jj : β̂Jj 6= 0}.

Proof. The proof of Lemma 1 in [134] is also valid here.

By Lemma D.5.2, for brevity, sometimes we say β̂λn with |S(β̂Z,λn)| 6 n, which

is derived by combining (D.2) and (D.3), is the solution of (D.2). We will also write

‖y − ϕβ‖2
2 instead of

∑n
i=1

(
yi −

∑p
k=1

(∑ck
m=1 βkjkm

)
ϕki

)2

. Let c̄ = maxj{c1, ..., cp}
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and d̄ = maxj{d1, ..., dpn}, the maximum number of groups a variable appears in and

maximum group size, respectively. Let s be the number of nonzero elements in β∗ and p be

the dimension of β∗. Notice that s and p (as well as c̄ and d̄) can depend n.

D.5.2 Proof of Theorem 4.4.1

Our proof follows a similar line to [133], but extends their results to the overlapping group

lasso. A sketch of the proof is as follows. We first define the coefficients obtained from the

de-noised model as a de-noised estimator. Then, by showing the difference between the

de-noised estimator and true coefficients, and the difference between de-noised estimator and

the estimator obtained via overlapping group lasso are both small, we obtain l2 convergence.

All the proofs of the lemmas in this section are in Appendix D.7.

Before we state and prove the main result, we introduce a definition which is useful in

the proof.

Definition D.5.1. Denote y(ξ) = ϕβ∗ + ξε as a de-noised model with level ξ (0 6 ξ 6 1),

we define

β̂λ,ξ = arg min
β

1

2n
‖y(ξ)− ϕβ‖2

2 + λn

pn∑
j=1

√
dj‖βJj‖2 (D.4)

to be the de-noised estimator at noise level ξ, where β̂λ,ξ is defined similarly as in (D.3).

In order to characterize the eigenvalues of a matrix under sparsity, we introduce the

following definition, which can be found in [133].

Definition D.5.2. Them-sparse minimum and maximum eigenvalue of a matrix C = 1
n
ϕTϕ

are φmin(m) = minβ:‖β‖06m
βTCβ
βT β

and φmax(m) = maxβ:‖β‖06m
βTCβ
βT β

. Also, denote φmax =

φmax((sc̄+ n)d̄) where s, c̄, and d̄n are defined as in section D.5.1.

Now we introduce an assumption concerning φmin(·) and φmax. Detailed discussion has

been shown in [133].
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Assumption D.5.1. There exist constants 0 < κmin 6 κmax <∞ such that

lim infn→∞ φmin(sc̄d̄max{log n, c̄}) > κmin and lim supn→∞ φmax 6 κmax.

For continuity, we repeat Theorem 4.1 here.

Theorem 4.1. Under Assumption D.5.1, if λn � σ
√

log p
n

and d̄2 = o(log n), for the

(overlapping) group lasso estimator constructed in (D.2) and (D.3), with probability tending

to 1 for n→∞,

‖β̂λn − β∗‖2
2 .

c̄2sd̄ log p

n
.

Let βλn = β̂λn,0. The l2-consistency can be obtained by bounding the bias and variance

terms, i.e.

‖β̂λn − β∗‖2
2 6 2‖β̂λn − βλn‖2

2 + 2‖βλn − β∗‖2
2.

Let T = {t : β∗i 6= 0, β∗it is a component of βZ∗} represent the set of indices for all the

groups with possibly nonzero coefficient vectors. Let sn = |T |. Thus, sn 6 sc̄. The solution

βλn can, for each value of λn, be written as βλn = β∗ + γλn , where γλn is defined as the

solution of the following optimization problem:

arg min
γ

f(γ, γZ)

s.t.
ci∑
k=1

βZik = β∗i , i = 1, ..., p; (D.5)

ci∑
k=1

γZijik = γi, i = 1, ..., p,

where

f(γ, γZ) = nγTAγ + λn
∑
t∈T c

√
dt‖γZt ‖2 + λn

∑
t∈T

√
dt(‖γZt + βZt ‖2 − ‖βZt ‖2),
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where A = 1
n
ϕTϕ. This optimization problem is obtained by plugging β∗ + γλn into (D.4).

Notice the arg min problem is with respect to γ instead of (γ, γZ).

Next, we state a lemma which bounds the l2-norm of γλn . Its proof is provided in

Appendix D.7.1.

Lemma D.5.3. Under Assumption D.5.1, with a positive constant C, the l2-norm of γλn

is bounded for sufficiently large values of n by ‖γλn‖2 6
λn
√
c̄snd̄

n

/(√
κmin

2
(1− 4d̄

logn
)−√

2κmaxd̄2

logn

)
.

Now, we bound the variance term. For every subset M ⊂ {1, ..., p} with |M | 6 n,

denote θ̂M ∈ R|M | the restricted least square estimator of the noise ε,

θ̂M = (ϕTMϕM)−1ϕTMε. (D.6)

Now we state lemmas, which bound the l2-norm of this estimator, and are also useful

for the following parts of this development. First we define sub-exponential variables,

sub-exponential norms, sub-Gaussian variables, and sub-Gaussian norms.

Definition D.5.3. (sub-exponential variable and sub-exponential norm) A random variable

X is called sub-exponential if there exists some positive constant K1 such that P(|X| >

t) 6 exp(1− t/K1) for all t > 0. The sub-exponential norm of X is defined as ‖X‖ψ1 =

supq>1 q
−1(E|X|q)1/q.

Definition D.5.4. (sub-Gaussian variable and sub-Gaussian norm) A random variable X

is called sub-Gaussian if there exists some positive constant K2 such that P(|X| > t) 6

exp(1 − t2/K2) for all t > 0. The sub-Gaussian norm of X is defined as ‖X‖ψ2 =

supq>1 q
−1/2(E|X|q)1/q.

Lemma D.5.4. Let m̄n be a sequence with m̄n = o(n) and m̄n →∞ for n→∞

max
M :|M |6m̄n

‖θM‖2
2 6 C2 m̄n log p

nφ2
min(d̄)

.
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Proof. See Appendix D.7.2.

Now define Aλn,ξ to be

Aλn,ξ =

{
k : λn

√
dkβ̂jk

‖β̂Jk‖2

=
1

n
ψTj (Y (ξ)− ϕβ̂), with j ∈ Jk

}
,

which represents the set of active groups for the de-noised problem.

Lemma D.5.5. If, for a fixed value of λn, the number of active variables of the de-noised

estimators β̂λn,ξ is for every 0 6 ξ 6 1 bounded by m′, then

‖β̂λn,0 − β̂λn‖2
2 6 C max

M :|M |6m′
‖θM‖2

2.

Proof. See Appendix D.7.3.

The next lemma provides an asymptotic upper bound on the number of selected variables.

Lemma D.5.6. For λn >
√

log p
n

, the maximal number of selected variables, sup06ξ61

∑
k∈Aλ,ξ dk,

is bounded, with probability tending to 1 for n→∞, by

sup
06ξ61

∑
k∈Aλ,ξ

dk 6 C1snd̄c̄.

Proof. See Appendix D.7.4.

Now combining Lemmas D.5.4, D.5.5, and D.5.6, we have

‖β̂λn,0 − β̂λn‖2
2 6 C

sd̄c̄2 log p

nφ2
min(sd̄c̄2)

.
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Combining this and Lemma D.5.3, gives

‖β̂λn − β‖2
2 6 C

sd̄c̄2 log p

nφ2
min(sd̄c̄2)

+
λ2
nc̄

2sd̄

n2

/(√
κmin

2
(1− 4d̄

log n
)−

√
2κmaxd̄2

log n

)2

6 C
sd̄c̄2 log p

n
+ C

c̄2sd̄ log p

n

/(√
κmin

2
(1− 4d̄

log n
)−

√
2κmaxd̄2

log n

)2

.
c̄2sd̄ log p

n
,

which completes the proof of Theorem 4.4.1.

D.6 Proof of Theorem 4.4.3

In this section we will prove Theorem 4.4.3. A sketch of proof is as follows, following the

overall approach in [135]. First, we introduce a decorrelated score function, and prove the

decorrelated function converges weakly to a normal distribution under l2-consistency, which

is stated in Theorem D.6.1. The result is then applied to the overlapping group lasso model

with known variance of error. Then by showing the difference between the decorrelated

score function with known variance and decorrelated score function with estimated variance

is small, we finish the proof of Theorem 4.4.3.

D.6.1 Hypothesis Test based on Decorrelated Function and l2-Consistency

In this section, we will introduce a decorrelated score function, and prove several results

similar to [135] but with l2-consistency instead of l1. Suppose we are given n indepen-

dently identically distributed U1, ..., Un, which come from the same probability distribution

following from a high dimensional statistical model P = {Pβ : β ∈ Ω}, where β is a p

dimensional unknown parameter and Ω is the parameter space. Let the true value of β be

β∗, which is sparse in the sense that the number of non-zero elements of β is much smaller

than n, order log n. We consider the case in which we are interested in only one parameter.

Suppose β = (θ, γ), where θ ∈ R and γ ∈ Rp−1. Let θ∗ and γ∗ be the true value of θ
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and γ, respectively. For simplicity, we assume the null hypothesis is H0 : θ∗ = 0, which

can be generalized to the case θ∗ = θ0 in a straight forward manner. Suppose the negative

log-likelihood function is

`(θ, γ) =
1

n

n∑
i=1

(− log f(Ui; θ, γ)),

where f is the p.d.f. corresponding to the model Pβ, which it will be assumed has at least

two continuous derivatives with respect to β. The information matrix for β is defined as

I = Eβ(∇2`(β)), and the partial information matrix is Iθ|γ = Iθθ − IθγI−1
γγ Iγθ, where Iθθ,

Iθγ , Iγγ , and Iγθ are the corresponding partitions of I . Let I∗ = Eβ∗(∇2`(β∗)).

In this paper, we are considering testing parameters for high dimensional models and, as

mentioned in [135], the traditional score function does not have a simple limiting distribution

in the high dimensional setting. Thus, we use a decorrelated score function as mentioned in

[135] defined as

S(θ, γ) = ∇θ`(θ, γ)− wT∇γ`(θ, γ),

where w = I−1
γγ Iγθ. Notice that Eβ(S(β)∇γ`(β)) = 0. Suppose we are given the estimator

β̂ = (θ̂, γ̂) and tuning parameter λ′. We estimate ŵ by solving

ŵ = arg min ‖w‖1, s.t. ‖∇2
θγ`(β̂)− wT∇2

γγ`(β̂)‖2 6 λ′. (D.7)

We use this method to estimate w because since w has dimension d which is much greater

than n, we need some sparsity of w, which is useful in the rest part of this paper. Thus, we

can obtain estimated decorrelated score function Ŝ(θ, γ̂) = ∇θ`(θ, γ̂)− ŵT∇γ`(θ, γ̂).

Along the same lines as [135], we need the following assumptions. Assumption D.6.1

states that the estimators β̂ and ŵ converge to zero. However, we assume l2-consistency

here, which is weaker than the condition in [135].
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Assumption D.6.1. Assume that

lim
n→∞

Pβ∗(‖γ̂ − γ∗‖2 . η1(n)) = 1 and lim
n→∞

Pβ∗(‖ŵ − w∗‖1 . η2(n)) = 1,

where w∗ = I∗−1
γγ I∗γθ, and η1(n) and η2(n) converges to 0, as n→∞.

Assumption D.6.2 states that the derivative of log-likelihood function is near zero at the

true parameters.

Assumption D.6.2. Assume that

lim
n→∞

Pβ∗(‖∇γl(0, γ
∗)‖∞ . η3(n)) = 1,

for some η3(n)→ 0, as n→∞.

Assumption D.6.3 states that the Hessian matrix is relative smooth, so that we can use λ′

to control η4(n).

Assumption D.6.3. Assume that for γν = νγ∗ + (1− ν)γ̂ with ν ∈ [0, 1],

lim
n→∞

Pβ∗( sup
ν∈[0,1]

‖∇2
θγl(0, γν)− ŵT∇2

γγl(0, γν)‖2 . η4(n)) = 1,

for some η4(n)→ 0, as n→∞.

Assumption D.6.4 is the central limit theorem for a linear combination of the score

functions.

Assumption D.6.4. For v∗ = (1,−w∗T )T , it holds that

√
nv∗T∇l(0, γ∗)√

vT I∗v

dist.−→ N(0, 1),

where I∗ = Eβ∗(∇2l(0, γ∗)). Furthermore, assume that C ′ 6 I∗θ|γ < ∞, where I∗θ|γ =

I∗θθ − w∗T I∗γθ, and C ′ > 0 is a constant.
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Assumption D.6.5 states that we can estimate the information matrix relatively accu-

rately.

Assumption D.6.5. Assume

lim
n→∞

Pβ∗(‖∇2l(β̂)− I∗‖max . η5(n)) = 1

for some η5(n)→ 0, as n→∞.

Now under Assumptions D.6.1 to D.6.5, we can prove a version of Theorem 3.5 in [135]

which applies to the (potentially) overlapping group lasso.

Theorem D.6.1. Under Assumptions D.6.1 to D.6.5, with probability tending to one,

n1/2|Ŝ(0, γ̂)− S(0, γ∗)| . n1/2(η2(n)η3(n) + η1(n)η4(n)). (D.8)

If n1/2(η2(n)η3(n) + η1(n)η4(n)) = o(1), we have

n1/2Ŝ(0, γ̂)I
∗−1/2
θ|γ

dist.−→ N(0, 1). (D.9)

Proof. See Theorem 3.5 in [135]. The only difference is under l2-consistency,

|I1| 6 ‖∇2
θγl(0, γ̃)− ŵT∇2

γγl(0, γ̃)‖2‖γ̂ − γ∗‖2 . η1(n)η4(n).

Corollary D.6.2. Assume that Assumptions D.6.1 to D.6.5 hold. It also holds that ‖w∗‖1η5(n) =

o(1), η2(n)‖I∗θγ‖∞ = o(1), and n1/2(η2(n)η3(n) + η1(n)η4(n)) = o(1). Under H0 : θ∗ = 0,

we have for any t ∈ R,

lim
n→∞

|Pβ∗(Ûn 6 t)− Φ(t)| = 0, (D.10)
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where Û = n1/2Ŝ(0, γ̂)Î
−1/2
θ|γ .

Proof. See the proof of Corollary 3.7 in [135].

D.6.2 Linear model and the corresponding decorrelated score function

Now we apply the consequences of the general results to the linear model as described in

the previous section. In this section we first assume that the variance of noise is known.

Consider the linear regression, yi = θ∗Zi + γ∗TQi + εi, where Zi ∈ R, Qi ∈ Rp−1, and

the error εi satisfies E(εi) = 0, E(ε2i ) = σ2 for i = 1, ..., n. Let ϕi = (Zi, Q
T
i )T denote the

collection of all covariates for subject i. We first assume σ2 is known.

Consider the overlapping group lasso estimator (D.3), the decorrelated score function is

S(θ, γ) = − 1

nσ2

n∑
i=1

(yi − θZi − γTQi)(Zi − wTQi),

where w = Eβ(QiQ
T
i )−1Eβ(ZiQi). Since the distribution of the design matrix does not

depend on β, we can replace Eβ(·) by E(·) for notation simplicity. Under the null hypothesis,

H0 : θ∗ = 0, the decorrelated score function can be estimated by

Ŝ(0, γ̂) = − 1

nσ2

n∑
i=1

(yi − γ̂TQi)(Zi − ŵTQi),

where

ŵ = arg min ‖w‖1, s.t.
∥∥∥∥ 1

n

n∑
i=1

Qi(Zi − wTQi)

∥∥∥∥
2

6 λ′.

The (partial) information matrices are

I∗ = σ−2E(QiQ
T
i ), and I∗θ|γ = σ−2(E(Z2

i )− E(ZiQ
T
i )E(QiQ

T
i )−1E(QiZi)),
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which can be estimated by

Î =
1

nσ2

n∑
i=1

QiQ
T
i , and Îθ|γ = σ−2

{
1

n

n∑
i=1

Z2
i − ŵT

(
1

n

n∑
i=1

QiZi

)}
,

respectively. Thus, the score test statistic is Ûn = n1/2Ŝ(0, γ̂)Î
−1/2
θ|γ .

The following theorem states the asymptotic distribution Ûn under null hypothesis.

Theorem D.6.3. Assume that

1. λmin(E(QiQ
T
i )) > 2κmin for some constant κ > 0, and lim supn→∞ φmax 6 κmax,

where φmax is defined in Definition D.5.2.

2. Let S = supp(β∗) and S ′ = supp(w∗) satisfy |S| = s and |S ′| = s′. Let c̄ be the

maximal number of replicates, d̄ be the maximal number of group size. Assume

n−1/2(s ∨ s∗) log p = o(1), d̄2 = o(log n) and c̄2d̄
log p

= o(1).

3. εi, w∗TQi, and ϕij are all sub-Gaussian with ‖εi‖Ψ2 6 C, ‖w∗TQi‖Ψ2 6 C, and

‖ϕij‖Ψ2 6 C, where C is a positive constant.

4. λ′ �
√

log p
n

and λ � σ
√

log p
n

.

Then under H0 : θ∗ = 0 for each t ∈ R,

lim
n→∞

|Pβ∗(Ûn 6 t)− Φ(t)| = 0.

Proof. Before the proof, we need the following lemmas in [135], which is used to ensure

the assumptions of Theorem D.6.1 and Corollary D.6.2 hold. The proofs of Lemma D.6.4,

D.6.6, and D.6.7 can be found in [135].

Lemma D.6.4. Under the conditions of Theorem D.6.3, with probability at least 1− p−1,

‖ 1
n

∑n
i=1(ZiQi − ŵTQiQ

T
i )‖∞ 6 C

√
log p
n

, for some C > 0.
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Lemma D.6.5. Under the conditions of Theorem D.6.3, with probability at least 1− p−1,

‖β̂ − β∗‖2
2 6 C1

c̄2sd̄ log p

n
, and (β̂ − β∗)THϕ(β̂ − β∗) 6 C1κmax

c̄2sd̄ log p

n
,

where Hϕ = n−1
∑n

i=1 ϕiϕ
T
i and the constant C1 > 0.

Proof. See Appendix D.7.5.

Lemma D.6.6. Under the conditions of Theorem D.6.3, with probability at least 1− p−1,

‖ŵ − w∗‖1 6 8Cκ−1s′
√

log p

n
,

where C > 0 is a constant.

Lemma D.6.7. Under the conditions of Theorem D.6.3, it holds that T ∗ dist.−→ N(0, 1), and

sup
x∈R
|Pβ∗(T ∗ 6 x)− Φ(x)| 6 Cn−1/2,

where T ∗ = n1/2S(0, γ∗)/I
∗1/2
θ|γ and C is a positive constant not depending on β∗.

Now we can check that the assumptions of Theorem D.6.1 and Corollary D.6.2 hold,

which finishes the proof of Theorem D.6.3.

Next we introduce some lemmas which give properties of sub-exponential variables and

norms, as well as sub-Gaussian variables and norms, which will be used in the proof of

Theorem 4.4.3.

Lemma D.6.8. (Bernstein Inequality) LetX1, ..., Xn be independent mean 0 sub-exponential

random variables and let K = maxi ‖Xi‖Ψ1 . Then for any t > 0,

Pβ∗
(

1

n

∣∣∣∣ n∑
i=1

Xi

∣∣∣∣ > t

)
6 2 exp

[
− C min

(
t2

K2
,
t

K

)
n

]
,

where C > 0 is a constant.
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Lemma D.6.9. Under the conditions of Theorem D.6.3 with probability at least 1 − p−1,

‖ 1
n

∑n
i=1 ϕiεi‖∞ 6 C

√
log p
n

, for some C > 0.

The proofs of Lemmas D.6.8 and D.6.9 can be found in [135]. Now, we can begin the

proof of Theorem 4.4.3.

Proof. The proof is similar to [135] with a few changes. It is enough to show for any ε > 0,

lim
n→∞

sup
β∗∈Ω0

Pβ∗(|Ũn − Ûn| > ε) = 0. (D.11)

Notice that |Ũn − Ûn| = |Ûn||1 − σ∗

σ̂
|. For a sequence of positive constants tn → 0 to be

chosen later, we can show that limn→∞ supβ∗∈Ω0
Pβ∗(|Ûn| > t−1

n ) = 0. It remains to show

that

lim
n→∞

sup
β∗∈Ω0

Pβ∗
(
|1− σ∗

σ̂
| > tn

)
= 0. (D.12)

Notice that

σ̂2 − σ∗2 =

(
1

n

n∑
i=1

ε2i − σ∗2
)

+ ∆̂THϕ∆̂− 2∆̂T 1

n

n∑
i=1

εiϕi, (D.13)

where ∆̂ = β̂ − β∗. Since ‖ε2i ‖ψ1 6 2C2, by Lemma D.6.8, | 1
n

∑n
i=1 ε

2
i − σ∗2| 6 C

√
logn
n

,

for some constant C, with probability tending to one. By Lemma D.6.5, we have ∆THϕ∆ 6

C1κmax
c̄2sd̄ log p

n
, for some constant C1, with probability tending to one. By Lemma D.5.6

and Lemma D.6.5, we have

‖∆̂‖1 6 C1sd̄c̄
2‖∆̂‖2

6 C2sd̄c̄
2

√
c̄2sd̄ log p

n
,
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for some constant C2 > 0. By Lemma D.6.9, we have

∥∥∥∥ 1

n

n∑
i=1

εiϕi

∥∥∥∥
∞

6 C3

√
log p

n
.

Thus,

∣∣∣∣∆̂T 1

n

n∑
i=1

εiϕi

∣∣∣∣ 6 ‖∆̂‖1

∥∥∥∥ 1

n

n∑
i=1

εiϕi

∥∥∥∥
∞

6 C4sd̄c̄
2
√
c̄2sd̄

log p

n
,

for some constant C4 > 0. Thus, by (D.13), we have

|σ̂2 − σ∗2| 6 C0

√
log n

n
∨ (c̄2sd̄)3/2 log p

n
,

for some constant C0, with probability tending to one. Thus,

|1− σ∗

σ̂
| = σ̂−2|1 +

σ∗

σ̂
||σ̂2 − σ∗2| . |σ̂2 − σ∗2| .

√
log n

n
∨ (c̄2sd̄)3/2 log p

n
,

with probability tending to one, because σ∗2 > C2 and σ̂2 = σ∗2 + oP(1). Thus, if we

choose tn &
√

logn
n
∨ (c̄2sd̄)3/2 log p

n
, then (D.12) holds and (D.11) holds. Then by Theorem

D.6.3, the result holds.

D.7 Proofs of Lemmas

D.7.1 Proof of Lemma D.5.3

Proof. For simplicity, we use λ instead of λn, γ instead of γλ, and γZ instead of γZ,λ in

Appendix D.7. In this proof we will use γt instead of γJt for brevity. Let γZ(T ) be the

vector with elements γZijik(T ) = γZijikI{β∗i 6=0}. Similarly, γZijik(T
c) = γZijikI{β∗i =0}. Thus,

γZ = γZ(T ) + γZ(T c). Notice {β∗i 6= 0} = {i ∈ Jt, for some t ∈ T}. Since f(0, 0) = 0,
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and (D.5) is a minimizing problem, we have f(γ, γZ) 6 0. Since γTCγ > 0 for any γ,

and ‖βZt ‖2 − ‖γZt + βZt ‖2 6 ‖γZt ‖2 for any t ∈ T , combining f(γ, γZ) 6 0, we have∑
t∈T c
√
dt‖γZt ‖2 6

∑
t∈T
√
dt‖γZt ‖2. Also, we have

∑
t∈T

√
dt‖γZt ‖2 6

√∑
t∈T

dt‖γZ(T )‖2 6
√
snd̄‖γZ‖2. (D.14)

The first inequality is true because of Cauchy’s inequality, and the second inequality is true

because d̄ = max{d1, ..., dn} and sn = |T |.

For any βλijim1
and βλijim2

, if they are both not zero, by KKT conditions, we have

− 1

n
ψTi (y − βTϕ) +

λ
√
djim1

βλijim1

‖βJjim1
‖2

= 0, and − 1

n
ψTi (y − βTϕ) +

λ
√
djim2

βλijim2

‖βJjim2
‖2

= 0,

which indicates

λ
√
djim1

βλijim1

‖βJjim1
‖2

=
λ
√
djim2

βλijim2

‖βJjim2
‖2

.

Since λ > 0, we have βλijim1
βλijim2

> 0. Notice if βλijim1
or βλijim2

is zero, βλijim1
βλijim2

> 0

still holds. Together with the constraints of optimization problem, we have γλijim1
γλijim2

> 0,

which indicates ‖γZ‖2 6 ‖γ‖2. Thus, together with (D.14), we have

pn∑
t=1

√
dt‖γZt ‖2 6 2

√
snd̄‖γZ‖2 6 2

√
snd̄‖γ‖2. (D.15)

Since f(γ, γZ) 6 0, and ignoring the non-negative term λ
∑

t∈T c
√
dt‖γZt ‖2, it follows that

nγTCγ 6 λ
√
snd̄‖γZ‖2 6 λ

√
snd̄‖γ‖2. (D.16)

Next, we bound the term nγTCγ from below. Pplugging the result into (D.16) will yield

the desired upper bound on the l2-norm of γ. Let ‖γZ(1)‖2 > ‖γZ(2)‖2 > · · · > ‖γZ(pn)‖2

137



be the ordered block entries of γ. Let {un} be a sequence of positive integers, such that

1 6 un 6 pn and define the set of un-largest groups as U = {k : ‖γZk ‖2 > ‖γZ(un)‖2}.

Define analogously as before γZ(U), γZ(U c), γ(U), and γ(U c). Thus, γTCγ = (γ(U) +

γ(U c))TC(γ(U) + γ(U c) = ‖a+ b‖2
2, where a = ϕγ(U)/

√
n and b = ϕγ(U c)/

√
n. Thus,

γTCγ = aTa+ 2bTa+ bT b > (‖a‖2 − ‖b‖2)2. (D.17)

Assume l =
∑pn

t=1 ‖γZt ‖2. Then for every t = 1, ..., pn, ‖γZ(t)‖2 6 l/t, since γZ(t) is the tth

largest group with respect to ‖ · ‖2. Thus,

‖γZ(U c)‖2
2 =

pn∑
t=un+1

‖γZ(t)‖2 6

( pn∑
t=1

‖γZt ‖2
2

)2 pn∑
t=un+1

1

t2
6

( pn∑
t=1

√
dt‖γZt ‖2

)2
1

un
,

(D.18)

where the last inequality is because

pn∑
t=un+1

1

t2
6
∫ ∞
s=un

1

s2
ds =

1

un
,

and
√
dt > 1.

Together with (D.15), we have ‖γZ(U c)‖2
2 6 4snd̄‖γZ‖2

2
1
un

. Since γ(U) has at most∑
t∈U dt non-zero coefficients, and

∑
t∈U dt 6 und̄,

‖a‖2
2 > φmin

(∑
t∈U

dt

)
‖γ(U)‖2

2 > φmin

(∑
t∈U

dt

)
‖γZ(U)‖2

2

= φmin

(∑
t∈U

dt

)
(‖γZ‖2

2 − ‖γZ(U c)‖2
2) > φmin

(∑
t∈U

dt

)
(1− 4snd̄

un
)‖γZ‖2

2

> φmin(und̄)(1− 4snd̄

un
)‖γZ‖2

2. (D.19)

The first inequality is true because of the definition of φmin(·), and the equality is true

because γZ = γZ(U) + γZ(U c). From Lemma D.5.2, γ(U c) has at most n non-zero groups,
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which indicates

‖b‖2
2 6 φmax(nd̄)‖γ(U c)‖2

2 6 φmax‖γ(U c)‖2
2 6 d̄φmax‖γZ(U c)‖2

2 6
4φmaxsnd̄

2

un
‖γZ‖2

2.

(D.20)

The first inequality is true because the definition of φmax(·), the third inequality is true is

because of Cauchy’s inequality, and the last inequality is true because of (D.15) and (D.18).

Thus, plugging (D.19) and (D.20) into (D.17), and combining with the facts
∑

t∈U dt 6 d̄un

and φmax > φmin(un), under Assumption D.5.1, for sufficient large n, we have

‖a‖2 − ‖b‖2 >

(√
φmin(und̄)(1− 4snd̄

un
)−

√
4φmaxsnd̄2

un

)
‖γZ‖2

>

(√
φmin(und̄)(1− 4snd̄

un
)−

√
2κmaxsnd̄2

un

)
‖γZ‖2

Let un = sn log n, under Assumption D.5.1, for large n, we have

‖a‖2 − ‖b‖2 >

(√
κmin

2
(1− 4d̄

log n
)−

√
2κmaxd̄2

log n

)
‖γZ‖2.

Together with (D.16), we have

λ
√
snd̄

n
‖γZ‖2 > γTCγ >

(√
κmin

2
(1− 4d̄

log n
)−

√
2κmaxd̄2

log n

)2

‖γZ‖2
2.

Since by Cauchy’s inequality, we have ‖γZ‖2
2 > ‖γ‖2

2/c̄. Thus,

‖γ‖2
2 6

λ2c̄snd̄

n2

/(√
κmin

2
(1− 4d̄

log n
)−

√
2κmaxd̄2

log n

)2

,

which completes the proof.
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D.7.2 Proof of Lemma D.5.4

Proof. From (D.6), for every M with |M | 6 m̄n,

‖θM‖2
2 6

1

n2φ2
min(m̄n)

‖ϕTMε‖2
2. (D.21)

By Lemma D.6.9, with probability at least 1− d−1, ‖
∑n

i=1 ϕiεi‖∞ 6 C
√
n log p. Thus,

max
M :|M |6m̄n

‖ϕTMε‖2
2 6 m̄n‖

n∑
i=1

ϕiεi‖2
∞ 6 m̄nC

2n log p

where the first inequality is true because ‖ϕTMε‖2
2 6 |M |‖ϕTMε‖2

∞, and |M | 6 m̄n. Thus,

max
M :|M |6m̄n

‖θM‖2
2 6 C2 m̄n log p

nφ2
min(m̄n)

,

which finishes the proof.

D.7.3 Proof of Lemma D.5.5

Proof. Before the proof, we state a lemma.

Lemma D.7.1. For x ∈ Rq, suppose x̂1 = arg minx f1(x) and x̂2 = arg minx f2(x) where

f1(x) = 1
2
xTATAx + bTx with A ∈ Rn×q which is full rank and b ∈ Rq. Also, f2(x) =

f1(x) + cTx with c ∈ Rq. Let AZ , bZ and cZ be defined in the same way as before. Let

g1(yZ) = 1
2
‖AZyZ‖2

2 + (bZ)TyZ +h(yZ) and g2(yZ) = 1
2
‖AZyZ‖2

2 + (bZ)TyZ + (cZ)TyZ +

h(yZ), where h(y) is a convex function with respect to y and everywhere sub-differentiable,

and define ŷZ1 = arg minZy g1(yZ) and ŷZ2 = arg minZy g1(yZ). Then we have

‖ŷ2 − ŷ1‖2 6 γ‖x̂2 − x̂1‖2.

Proof. Our proof is similar to [134], with the only difference that ‖AZ(ŷZ1 − ŷZ2 )‖2
2 +

(cZ)T (ŷZ1 − ŷZ2 ) = ‖A(ŷ1 − ŷ2)‖2
2 + cT (ŷ1 − ŷ2).
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Let M(ξ) = Aλ,ξ. Let 0 = ξ1 < ... < ξJ+1 = 1 be the points of discontinuity of

M(ξ). At these locations, variables either join the active set or are dropped from the active

set. Fix some j with 1 6 j 6 J . Denote by Mj be the set of active groups M(ξ) for any

ξ ∈ (ξj, ξj+1). Assuming

∀ξ ∈ (ξj, ξj+1) : ‖β̂λ,ξ − β̂λ,ξj‖2 6 C(ξ − ξj)‖θ̂Mj‖2 (D.22)

is true, where θMj is the restricted OLS estimator of noise. Then

‖β̂λ,0 − β̂λ‖2 6
J∑
j=1

‖β̂λ,ξj − β̂λ,ξj+1‖2

6 C max
M :|M |6m

‖θM‖2

J∑
j=1

(ξj+1 − ξj)

= C max
M :|M |6m

‖θM‖2.

By replacing x̂1, x̂2, ŷ1 and ŷ2 with ξθ̂Mj , ξj θ̂Mj , β̂λ,ξ and β̂λ,ξj in Lemma D.7.1, respectively,

we obtain (D.22). Hence, we complete the proof.

D.7.4 Proof of Lemma D.5.6

Proof. Our proof is similar to [133]. The only thing need to be noticed is that for (38) in

[133], we have

(‖(XZ
Aλ,ξ

)TX(β − β̂λ,ξ)‖2 + ‖(XZ
Aλ,ξ

)T ε‖2)2 6 2(‖(XZ
Aλ,ξ

)TX(β − β̂λ,ξ)‖2
2 + ‖(XZ

Aλ,ξ
)T ε‖2

2)

6 2c̄(‖XT
Aλ,ξ

X(β − β̂λ,ξ)‖2
2 + ‖XT

Aλ,ξ
ε‖2

2).
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D.7.5 Proof of Lemma D.6.5

Proof. The second inequality is trivial if we prove the first inequality. To prove the first

inequality, we only need to prove under high probability we have there exist a constant

κmin > 0 such that

lim inf
n→∞

φmin(c̄sm̄n max{log n, c̄}) > κmin.

For any x ∈ Rd with ‖x‖0 6 c̄sm̄n max{log n, c̄}, we have

xTHϕx

‖x‖2
2

=
xT (Hϕ − E(ϕϕT ))x

‖x‖2
2

+
xTE(ϕϕT )x

‖x‖2
2

> 2κmin −
‖x‖2

1‖Hϕ − E(ϕϕT )‖max

‖x‖2
2

> 2κmin − Cc̄sd̄max{log n, c̄}
√

log p

n
,

with probability at least 1− p−1. As n goes to infinity, Cc̄sd̄max{log n, c̄}
√

log p
n

converges

to 0. Thus, the result holds.

D.8 Description of Functions in Section 4.6.4

• The amount of deflection of a bending function is given by

De =
4

109

L3

bh3
,

where the 3 inputs are L, b, and h.

• The midpoint voltage of a transformerless OTL circuit function is given by

Vm =
(Vb1 + 0.74)B(Rc2 + 9)

B(Rc2 + 9) +Rf

+
11.35Rf

B(Rc2 + 9) +Rf

+
0.74Rfβ(Rc2 + 9)

(B(Rc2 + 9) +Rf )Rc1

,

where Vb1 = 12Rb2/(Rb1 +Rb2), and the 6 inputs are Rb1, Rb2, Rf , Rc1, Rc2, and B.
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Table D.1: Input ranges of the OTL circuit function, the piston simulation function, and the
wing weight function.

Bending OTL circuit Wing weight

L ∈ [10, 20] Rb1 ∈ [50, 150] Sw ∈ [150, 200]
b ∈ [1, 2] Rb2 ∈ [25, 70] Wfw ∈ [220, 300]
h ∈ [0.1, 0.2] Rf ∈ [0.5, 3] A ∈ [6, 10]

Rc1 ∈ [1.2, 2.5] Λ ∈ [−10, 10]
Rc2 ∈ [0.25, 1.2] q ∈ [16, 45]
β ∈ [50, 300] R ∈ [0.5, 1]

tc ∈ [0.08, 0.18]
Nz ∈ [2.5, 6]
Wdg ∈ [1700, 2500]
Wp ∈ [0.025, 0.08]

• The wing weight function models a light aircraft wing, where the wing’s weight is

given by

W = 0.036S0.758
w W 0.0035

fw

(
A

cos2(Λ)

)0.6

q0.006R0.04

(
100tc

cos(Λ)

)−0.3

(NzWdg)
0.49+SwWp,

(D.23)

where the 10 inputs are Sw,Wfw, A,Λ, q, R, tc, Nz,Wdg, and Wp.

The input ranges are given in Table D.1.
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