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5.4 Properties of a SiN nanowire on a membrane without PnC. (a) The cross-
section of the nanowire (height = 400 nm and width = 600 nm) on a mem-
brane with the width of w and the height of 80 nm. (b) The breathing-
like acoustic modes of the structure shown in (a) at Km = 0 for different
membrane widths. The color code for the representation of the acoustic
resonances is the “breathing-like parameter”. (c) Zoomed version of a res-
onance mode of the structure in (a) in the region identified by the dashed
black square in (b) demonstrating mode-splitting (or avoided crossing) due
to the coupling between a breathing-like acoustic branch and other acous-
tic branches of the structure. (d) The FSBS gain calculated for the closest
mode of the structure in (a) to the breathing mode of an ideal nanowire (i.e.,
the mode with the largest “breathing-like parameter” in (b)) as a function
of w. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5 (a) Etching SiN devices using an RIE recipe [149]. (b) Etching SiN using
the developed ICP etching recipe. It clearly shows the sidewalls of the ICP
etching are much more vertical compared to the RIE recipe. . . . . . . . . . 75

5.6 KOH wet releasing of SiN structures on Si after 22 hours in normal temper-
ature at cleanroom. (a) Different SiN devices patterned on Si. (b) Releasing
a double-disk SiN structure. (c) and (d) releasing waveguides patterned at
different angles with respect to [100] direction. . . . . . . . . . . . . . . . 76

6.1 An optical microdisk resonator in the double-layer Si platform [156]. The
thickness of the top and bottom Si layers are 110 nm that are vertically
spaced by a 60-nm SiO2 layer. . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Optomechanical interaction between an (electro)mechanical and optical res-
onator along with the underlying classical equations. . . . . . . . . . . . . 78

6.3 Overview of the process flow for the fabrication of the on-chip optome-
chanical devices in double-layer Si platforms. . . . . . . . . . . . . . . . . 81

6.4 Fabricated double-layer optomechanical devices. SEMs show the devices
in step 3 of the process flow (see Fig. 6.3). . . . . . . . . . . . . . . . . . . 81

6.5 Fabricated double-layer optomechanical cavity after releasing (or partially
undercutting the SiO2 interlayer). All SEMs were taken at different angles
from a single double-layer optomechanical cavity. . . . . . . . . . . . . . 82

6.6 Characterization setup for the optomechanical oscillation when the input
laser power is above the oscillation threshold. . . . . . . . . . . . . . . . . 83

xvii



6.7 Lowest-order (standing-wave) flexural resonance modes of a double-layer
structure. (a) Out-of-plane displacement profile of several flexural reso-
nance modes in a microdisk double-layer Si resonator with the radius of
4.5µm. The bottom layer is fixed while the top layer is free to deform. (b)
Variation of the resonance frequency of the fundamental flexural resonance
mode as a function of the undercut. . . . . . . . . . . . . . . . . . . . . . . 84

6.8 Characterization of an optomechanical double-layer Si microdisk with the
radius of 4.5µm. (a) Optical transmission of the device at low input power,
and (b) RF characterization of mechanical resonating mode at input laser
power above the oscillation threshold. . . . . . . . . . . . . . . . . . . . . 85

6.9 Characterization of an optomechanical double-layer Si microdisk with the
radius of 4.5µm. (a) Linear optical transmission (at low power), and (b) RF
characterization of mechanical resonating mode (Pi,1 < Pi,2 < Pi,3). . . . . 85

6.10 An electrostatically actuated wideband tunable optical resonator. (a) The
schematic cross section view of the microdisk cavity and the location of the
tuning electrodes. The top and bottom Si layers both have 110 nm thick-
ness including a 50 nm pedestal for the bottom layer, with the initial gap of
60 nm. (b) SEM Image of the the fabricated double-layer optomechanical
resonator after releasing. (c) and (d) optical and zoom-in SEM of the fabri-
cated double-layer structure along with the electrical pads before releasing.
(e) The schematic cross-section of the fabricated structures shown in (c)
and (d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.11 (a) and (b): Schematics of the proposed double-layer resonators for wide-
band tunable optical resonators. (c) and (d): Variation of the optical wave-
length (red curve, left axis) and the resonance frequency of the first mechan-
ical flexural mode (green curve, right axis) as a function of the applied volt-
age between the two Si layers for a double-layer microdisk shown in 6.11(a)
and a double-layer microring shown in 6.11(b), respectively. Schematics
shown in 6.11(a) and 6.11(b) scaled for clarity in mode-profile demonstra-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xviii



SUMMARY

All my efforts during the course of my Ph.D. have been devoted to the study of phononic-

based devices to gain a deep understanding of their rich physics and to design new phononic

devices that overcome the limitations of the previous phononic devices. Some of these

major limitations include low efficiency, not being CMOS-compatible, material/structural

losses, and difficulty of integration with integrated optics and electronics systems. Over-

coming these challenges demands innovations in design and fabrication.

The studied devices in this dissertation aim to enable practical integrated phononic de-

vices, which benefit to the field of integrated optics and micro-electromechanical systems

(MEMS) with unprecedented on-chip functionalities. The designed structures were exten-

sively simulated and optimized in terms of key parameters prior to the fabrication.

In particular, I designed, simulated, optimized, and fabricated novel integrated phononic

devices that interact with optical modes and/or high-frequency electrical signals. The em-

ployed optical modes inside my phononic structures are either the waveguide modes or the

resonance modes that are actuating (or shaking) the phononic structure by applying the ra-

diation pressure forces to enable novel on-chip radio frequency (RF)-photonic applications.

The high-frequency electrical signals, on the other hand, vibrates my phononic structures

through the piezoelectric effect and the capacitive actuation to enable new on-chip CMOS-

compatible devices with lower losses for RF/optical signal processing.

The fabrication of the presented devices in this dissertation demands expertise in di-

verse fabrication techniques including electron-beam (e-beam) lithography, optical lithog-

raphy, alignment, dielectric deposition techniques [atomic layer deposition (ALD), low-

pressure chemical vapor deposition (LPCVD), and plasma-enhanced chemical vapor depo-

sition (PECVD)], metalization techniques (sputtering and evaporation), wet and dry etch-

ing [reactive-ion etching (RIE) and inductively-coupled plasma(ICP)-RIE], releasing, and

scanning electron microscopy (SEM). The fabricated devices have gone through many
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rounds of fabrication optimization (specially in e-beam lithography and ICP etching) to

maximize their performance.

The studied phononic devices in this dissertation include:

• hypersonic CMOS-compatible surface phononic crystal (PnC) structures with piezo-

electric excitation [as detailed in Chapter 2], for enabling low-loss surface acoustic

wave waveguides [as studied in Chapter 3] and high-Q surface acoustic resonators

[as discussed in Chapter 4] in AlN-on-Si substrates,

• hypersonic membrane PnC devices in SiN substrates for the realization of on-chip

stimulated Brillouin scattering devices for microwave photonics applications, with

all-optical excitation and detection of the engaged phononic mode [as presented in

Chapter 5],

• flexural vibrating structures in an extremely thin Si layer with optical and/or ca-

pacitive excitation for RF-photonics as well as high-speed wide-band reconfigurable

optical devices [as investigated in Chapter 6].

This dissertation aims to pave the way towards advancing the field of phononics and

improving the performance of the existing integrated photonic-phononic devices. I hope

this dissertation stimulates new directions and ideas for device designs in the realm of

phononics.
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CHAPTER 1

INTRODUCTION

Much of the remarkable technological advances (from semiconductor to lightwave tech-

nology) within the last several decades stem from the understanding of how to manipulate

the electrons and the photons. Today our life without cellphones, laptops, and the Internet

seems impossible. Phonon—the quanta energy of the mechanical waves—is another ele-

mentary particle that exists everywhere around us. The melodious sound of the piano, the

tiny ripples generated by throwing a stone to a pond, and the destructive vibrations of seis-

mic waves are just a very few daily examples of the mechanical waves. Although, phononic

devices (e.g., µ-disks, µ-cantilevers, etc.) have integrated into commercial devices as radio-

frequency (RF) filters and inertial sensors, they are still under intensive research owing to

their rich and complex physics. Phononic devices are yet to be explored to perfectly com-

plement the existing technologies and to emerge new technologies.

The field of phononic crystals (PnCs) [1, 2, 3]–periodic structures designed to ma-

nipulate and tailor the propagation of the acoustic/elastic waves in the bulk materials–has

witnessed a growing attention over the last two decades to enable superior phononic de-

vices that are not offered by natural materials. The early research efforts in this field

were primarily devoted to the modeling and understanding of the rich physics of PnCs

and studying their phononic band structures. Later, with the technological advances in

micro/nano-fabrication techniques, fruition in the micro/nano-electromechanical systems

(MEMS/NEMS), and along with the intense research in photonic crystals devices [4] (its

optical counterpart), the interest in PnCs has gained momentum. Many research groups

has begun to experimentally study PnCs at (ultra-)high frequencies with the focus on the

phononic bandgap. Despite the promising demonstrated PnC platforms, these platforms

are limited and not suitable for the practical applications because they are not CMOS-
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Figure 1.1: The phononic spectrum [5].

compatible (owing to the utilization of crystalline piezoelectric materials) or they incor-

porate metallic pillar-based structures to form the PnC, which is known to have a high

phononic material loss. Therefore, there is still a clear need for developing a high-frequency

PnC platform that is CMOS-compatible with low phononic material loss for advanced

MEMS/NEMS applications.

The phononic spectrum (shown in Fig. 1.1) covers a wide range of frequencies from the

infrasound waves (e.g., seismic waves with a few Hertz frequencies) to the heat waves (with

terahertz frequencies). Over such a wide range of frequencies, this dissertation focuses

on the study of the integrated PnC devices exhibiting PnBGs at hypersonic regimes (i.e.,

GHz frequencies) for designing new integrated electromechanical devices (e.g., micro-

electromechanical filters integrated with RF electronics circuits) as well as designing novel

optomechanical devices which scatter light to other frequencies by the self-induced acous-

tic waves for new on-chip high-performance RF-photonics applications. In particular, this

dissertation covers the theoretical and experimental investigation of the integrated hyper-

sonic surface phononic devices realized in CMOS-compatible aluminum-nitride-on-silicon

(AlN-on-Si) platforms and the theoretical investigation of Raman-like stimulated Brillouin

scattering in a thin membrane of silicon nitride (SiN) pillar-based PnC. Moreover, the ex-

perimental and theoretical investigation of optomechanical interaction in double-layer Si

platforms will be also presented in this dissertation. In the remainder of this introductory

chapter the main topics of this dissertation are discussed.

2



1.1 Theory of elastic waves in piezoelectric materials

The piezoelectric stress-charge relations that link the second-rank stress (T) and strain (S)

tensors to the first-rank electric field (E) and electric displacement field (D) are [6]

T = cE : S− e · E

D = e : S + εS · E,
(1.1)

in which, e is the third-rank piezoelectric tensor, cE and εS are the fourth-rank elastic

stiffness tensor and second-rank dielectric matrix, respectively, which are measured under

the constant electric field and strain. Dot and double dot products in Eqs. (1.1) represent

the summation over single subscripts and the pairs of subscripts, respectively. Structural

lattice symmetries in the elastic materials allow us to incorporate the abbreviated notation

in which the mathematical description of a higher-rank tensor is simplified to a lower-rank

matrix. Hence, the relations in Eqs. (1.1) can be rewritten as:

TI = cEIJSJ − eIjEj

Di = eiJSJ + εSijEj,

(1.2)

where I, J = 1, 2, · · · , 6 (the Voigt notation) and i, j = x, y, z. Also, eIj=ejI . Tables 1.2

and 1.1 provide the abbreviated representation of all elastic, electrical, and electromechan-

ical coefficients in Si and AlN, respectively. Identical elements due to symmetry has been

labeled the same. The values of the relevant (non-zero) coefficients are summarized in

Table 1.3.

The coupled equations governing the elastic and electromagnetic waves propagating in

a piezoelectric material free of any sources and external forces has been formulated in [6]
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Table 1.1: Elastic and dielectric coefficients of Si with cubic (m3m) symmetry [6].
S1 S2 S3 S4 S5 S6 Ex Ey Ez

T1 c11 c12 c12 0 0 0 0 0 0
T2 c12 c11 c12 0 0 0 0 0 0
T3 c12 c12 c11 0 0 0 0 0 0
T4 0 0 0 c44 0 0 0 0 0
T5 0 0 0 0 c44 0 0 0 0
T6 0 0 0 0 0 c44 0 0 0
Dx 0 0 0 0 0 0 εxx 0 0
Dy 0 0 0 0 0 0 0 εxx 0
Dz 0 0 0 0 0 0 0 0 εxx

Table 1.2: Elastic, dielectric, and piezoelectric coefficients of AlN with hexagonal (6mm)
symmetry [6]. cE66=(cE11– cE12)/2.

S1 S2 S3 S4 S5 S6 Ex Ey Ez
T1 cE11 cE12 cE13 0 0 0 0 0 -e1z

T2 cE12 cE11 cE13 0 0 0 0 0 -e1z

T3 cE13 cE13 cE33 0 0 0 0 0 -e3z

T4 0 0 0 cE44 0 0 0 -e5x 0
T5 0 0 0 0 cE44 0 -e5x 0 0
T6 0 0 0 0 0 cE66 0 0 0
Dx 0 0 0 0 ex5 0 εSxx 0 0
Dy 0 0 0 ex5 0 0 0 εSxx 0
Dz ez1 ez1 ez3 0 0 0 0 0 εSzz

(by incorporating Eqs. 1.1)

∇ · cE : ∇s(∂tu) = ρ ∂3
t u +∇ · (e · ∂tE)

−∇×∇× E = µ0ε
S · ∂2

t E + µ0e : ∇s∂
2
t u,

(1.3)

where ∇ = x̂∂x + ŷ∂y + ẑ∂z, and (∇su)ij = Sij = (∂iuj + ∂jui)/2. ∂βα = ∂α/∂β de-

scribes a partial derivative. The constants ρ and µ0 are the mass density and the free-space

permeability, respectively. It is worth mentioning that by setting e to zero in Eqs. (1.3),

the corresponding propagating elastic and electromagnetic waves equations in the non-

piezoelectric elastic materials are obtained. The application of quasi-static approximation

(i.e., E = −∇Φ with Φ being the electrostatic potential) simplifies the coupled Eqs. (1.3)
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Table 1.3: Material constants of AlN and Si. [7]
Symbol AlN Si

Elastic constants c11 345 166
(GPa) c12 125 64

c13 120 64
c33 395 166
c44 118 80
c66 110 80

Piezoelectric constants ex5 -0.48 –
(C/m2) ez1 -0.58 –

ez3 1.55 –
Mass density (kg/m3) ρ 3260 2330
Relative permittivities εxx/ε0 8 11.7

εzz/ε0 9.5 11.7

to

∇ · cE : ∇su− ρ ∂2
t u = −∇ · (e · ∇Φ),

∇ · (εS · ∇Φ) = ∇ · (e : ∇su).

(1.4)

The coupled Eqs. 1.4 have been used in the literature [8, 9] as the starting point for study-

ing the propagation of the acoustic waves in the piezoelectric materials. In a multi-layer

platform, Eqs. 1.4 are solved in each layer (for a non-piezoelectric material e is set to zero),

then the solution in each layer is matched other layers via the continuity boundary condi-

tions of the electrical and elastic fields. The total stress has to also vanish on stress-free

surfaces. Equations (1.4) have been used for extracting the band structure of the piezoelec-

tric pillar-based surface PnCs in this dissertation, which have been implemented using the

piezoelectric package in the COMSOL software platform (version 5.2a).

It is worth noting that the presented phononic study throughout this dissertation assumes

a small motion (i.e., elastic motion). This means that the nonlinear (or quadratic) term of

the strain tensor is assumed negligible and any phononic wave-packet can be constructed
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Figure 1.2: Pictorial representaion of surface acoustic waves [10] propagating in half-space
isotropic substrates, so called Rayleigh waves. The amplitude of vibration decays exponen-
tially with distance from the surface.

by the superposition of the distinct monochromatic acoustic waves. In other words,

Sij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

+
∂ul
∂xj

∂ul
∂xi

) ∼=
1

2
(
∂ui
∂xj

+
∂uj
∂xi

) (1.5)

where Sij and ui represent the strain field and displacement vector, respectively, and xi

forms the coordinate systems.

1.2 Surface acoustic waves

Surface acoustic waves (SAWs)—a class of acoustic waves confined within a few wave-

lengths from the surface of a semi-infinite elastic medium—range from the giant seismic

waves with kilometer wavelengths on the surface of the Earth [10] to the tiny traveling rip-

ples on the surface of a chip with micron wavelengths [11]. Micro-fabricated SAW-based

devices are integral parts of numerous filtering and duplexing applications in wireless com-

munications [11, 12] owing to the ease of surface micro-machining for mass production

and the scalability of the operating frequency by adjusting the lateral dimensions. As the

working frequency of SAW devices is defined by the surface feature sizes, wireless devices

supporting a multitude of spectral bands (e.g., LTE, GPS, Wi-Fi, etc.) can be fabricated by

co-integration of SAW devices on a single chip. SAW devices have also been investigated

in the quantum studies [13, 14, 15, 16, 17, 18] and in conjunction with the photonic crystal
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cavities for the dynamic modulation of the optical signals [19, 20, 21].

On the surface of a homogeneous isotropic elastic solid, a single class of acoustic waves,

namely Rayleigh waves [22], is allowed to propagate. This acoustic wave is formed by a

mixture of longitudinal and shear vertical bulk acoustic waves (see Fig. 1.2) satisfying the

stress-free surface condition of the host solid. The phase velocity of the Rayleigh waves

on the surface of the stress-free half-space isotropic substrates is dispersion-less and can be

approximated by [6]
vR
vs

=
0.87 + 1.12σ

1 + σ
, (1.6)

where σ = (1 − 2(vs/vl)
2)/(2(1 − (vs/vl)

2)), vl, vs, and vR denote the Poisson’s ratio,

longitudinal phase velocity, shear phase velocity, and Rayleigh phase velocity, respectively.

As Eq. 1.6 reveals, the phase velocity of Rayleigh waves is always less than that of bulk

acoustic waves whose phase velocity is given by v =
√
c/ρ (where ρ is the mass density,

c = λ + 2µ is the stiffness coefficient for longitudinal waves, and c = µ for shear waves

in isotropic materials; λ and µ denote Lamé constants). The lower phase velocity of the

Rayleigh waves is due to the smaller effective stiffness on the surface compared to the

bulk (i.e., ceff < cbulk where ceff = ρv2
R) [23], which results in the exponential decay of

acoustic power density in the direction perpendicular to the surface of the solid.

1.3 Phononic crystals

Phononic crystals (PnCs) have attracted a lot of attention due to their ability to harness

the propagation of acoustic waves [3, 24]. The periodic structure of the PnCs can result

in phononic bandgaps (PnBGs). A complete PnBG is a range of frequencies at which

no acoustic mode is allowed to propagate inside the structure at any direction within the

Brillouin zone. Even though the majority of early experimental demonstrations of PnC are

based on etching a periodic array of holes into the host materials (i.e., hole-based PnCs) [25,

26, 27], a great deal of later research effort has been focused on the pillar-based structures
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[28, 29, 30, 31] realized by an array of metallic or dielectric pillars on top of host materials

after the seminal work on locally resonant sonic materials [32]. Pillar-based PnCs offer

extra design flexibilities (e.g., material and height of pillars) and mitigate the stringent

fabrication constraints of wideband PnBGs at GHz frequencies imposed by the hole-based

structures [33].

By adding point and line defects to a perfect PnC, PnC resonators [34, 35] and waveg-

uides [36, 37] with unique properties can be created. The possibility of guiding and con-

fining acoustic waves by PnBGs in PnC waveguides and resonators can be used to form

more complex integrated phononic devices [38] (e.g., filters and multiplexers), where spe-

cial attention is dedicated to PnC resonators due to their frequency selective properties. In

comparison to conventional micro-electromechanical systems (MEMS)-based resonators

[39] (e.g., µ-cantilevers and bulk-mode resonators), PnC resonators offer considerably less

support loss (due to utilization of PnBG and elimination of phonons leakage) and thus,

potentially higher mechanical Qs. PnC resonators with high Qs have been demonstrated

in the membranes on different materials [35, 40, 41]. In addition, PnC resonators can be

designed to support only a single resonance frequency without any spurious modes that

usually exist in conventional MEMS structures.

1.3.1 Membrane phononic crystals

Membrane-based phononic crystals (MPnCs) are attractive because the elastic waves are

bounded to the membrane. Therefore, creating a point defect can perfectly confine the

elastic waves within the PnBG frequencies in three dimensions (3D) inside the MPnCs

mimicking a confinement obtained in 3D PnCs (see e.g., Fig. 1.3(d)) whose fabrication

is becoming challenging with increasing the operation frequency. The 3D confinement

in MPnCs allows for the fabrication of very high-quality-factor (high-Q) mechanical res-

onators. This is necessary for forming practical frequency-selective devices with relatively

low motional resistance by eliminating anchor losses in the conventional MEMS without

8



(a) (b) (c)

(d) (f)(e)

200 nm

1 kHz 100 MHz 1 GHz

1 kHz 1 GHz 1 THz

Figure 1.3: Different types of PnCs covering operation frequencies from sound and hyper-
sound waves to heat waves for bulk waves, membrane waves, and surface waves. [42, 27,
43, 32, 44].

sacrificing mechanical stability. The realization of MPnCs is based on forming a peri-

odic lattice of air holes (or inclusions) inside a free-standing membrane [27] or a periodic

lattice of metallic pillars on a free-standing membrane [30, 33] as shown in Fig. 1.3(b)

and Fig. 1.3(c), respectively. The metallic pillar-based MPnCs are specifically attractive

because of : 1) the additional degree of flexibility in design of the MPnCs (i.e., height

of pillars in addition to the shape and filling material for the holes or inclusion inside the

membrane) that can be used to adjust the PnC properties such as bandgap, 2) the possibility

of opening a wider bandgap (with less fabrication constrains as compared to the hole-based

MPnCs) by using metals with larger mass density such as nickel (ρ = 8.9 g/cm3) or tung-

sten (ρ = 19.350 g/cm3), and 3) formation of the PnBG through the interplay between the

Bragg scattering and the local resonance of the pillars [31], allowing for a richer physics

for mode engineering as compared to the hole-based MPnCs. These three distinctions in

the metallic pillars-based MPnCs allow for wider PnBGs using less fabrication-constrained

geometries.
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(c) (d) (e)

Figure 1.4: High-frequency surface PnCs in different platforms. (a) hole-based surface
PnCs in lithium niobate [45], (b) hole-based surface PnCs in Si [46], (c) and (d) all di-
electric pillar-based surface PnCs in lithium niobate [47, 48], and (e) metallic pillar-based
surface PnCs on lithium niobate [17].

1.3.2 Surface phononic crystals

Despite the superior acoustic confinement in MPnC devices, these devices usually require

multi steps of fabrications (in particular for active devices), and therefore are less attractive

for mass production. A promising alternative to the MPnCs devices is the surface PnCs

fabricated on the surface of a substrate, and provide PnBGs for surface acoustic waves

(SAWs) that are highly confined to the surface. Surface PnCs are also compatible with

the surface-oriented integrated optics and electronics fabrications, which often needs to a

few steps of surface micro-machining such as lithography and metalization. However, the

acoustic modes inside a surface-PnC-based device may suffer from radiation loss if not

designed carefully.

Surface PnCs are realized either by etching a lattice of holes on the surface of a sub-

strate (see Figs. 1.4(a) and 1.4(b)), or fabricating an array of dielectric or metallic pillars
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Figure 1.5: (a) Dispersion diagram of optical and acoustic modes engaged in backward
SBS. (b) Amplitude and phase response of the SBS process showing a narrow-band gain
and loss spectrum along with a strong phase variation for an optical signal placing at Ω
(acoustic frequency) away from the optical pump.

on the surface (see Figs. 1.4(c), 1.4(d), and 1.4(e)). Compared to the hole-based surface

platforms, the pillar-based platforms have shown a wider PnBG, thanks to the local reso-

nances of the pillars and the additional degrees of freedom allowed in the designing of the

surface PnCs (i.e., dimensions and materials of the pillars). Nowadays, most of the surface

PnCs are designed in the form of pillar-based structures.

1.4 Stimulated Brillouin scattering

Stimulated Brillouin scattering (SBS) is an important nonlinear optical phenomenon based

on coherent interaction of two optical waves with an acoustic wave under the phase-matched

condition (see Fig. 1.5(a)), inside a properly engineered structure. In SBS, the light passing

through a medium fuels an acoustic wave by the optical forces (i.e., the radiation pressure

and the electrostrictive forces). If the generated acoustic wave stays confined to the opti-

cally active region, it leads to an oscillation in the refractive index and accordingly scatters

the incident light to a down-converted frequency.

The prerequisite for the efficiency of this process is the perfect phase matching between

two optical waves (i.e., pump and Stokes) and an acoustic wave, that is the conservation

of momentum and energy exchange among the waves. Additionally, the structure for SBS
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Figure 1.6: On-chip SBS demonstration in various platforms. (a) Silica micro-
wedge-resonators [49], (b) Si nanowires supported by SiN membrane [50], (c) Chalco-
genide waveguides [51], (d) photonic crystal fibers [52, 53], (e) partially-undercut Si
nanowires [54], and (f) CaF2 crystalline resonators [55].

interaction has to be both optically and acoustically low-loss. Figure 1.5(a) shows the

dispersion diagram for the phase-matching condition between optical and acoustic waves

engaged in a backward SBS (i.e., counter-propagating optical modes) and Fig. 1.5(b) de-

picts the gain and loss spectrum of an SBS interaction for respectively red-shifted Stokes

wave and blue-shifted anti-Stokes wave that can amplify or attenuate a signal.

Although the SBS was initially considered an undesirable phenomena that degrades

the integrity of the transmitted optical signal in long-haul fiber optic communications [56,

57], SBS was later investigated in optical fibers to enable several promising applications

such as narrow-linewidth lasers [58], inertial sensors [59], non-reciprocal optical devices,

and slow light [60], and optical memories [61] thanks to the simultaneous localization of

the phase-matched optical and acoustic waves in fibers with very long interaction lengths.

More recently, there has been extensive research in extending these promising applications

to more chip-scale solutions by using material and device platforms that greatly enhance

photon-phonon interactions compared to optical fibers. This has resulted in the formation

of SBS-based structures in chalcogenide glasses [51, 62], Si [54, 50, 63], silica [52, 64,

53, 49, 65], and calcium fluoride (CaF2) [55] with reasonably large SBS gains and low
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Figure 1.7: Integrated optical structures for enabling SBS devices. (a) Si nanowire as the
building block of waveguides/resonators in the SOI platform. (b) LPCVD SiN nanowire
structure on thick SiO2. (c) SBS Si nanowire partially undercut. (d) SBS Si nanowire on a
SiN PnC membrane. (e) SBS Si nanowire with supporting arms.

threshold powers. However, ultimate on-chip SBS-based systems require compatibility

with both integrated optics and electronics platforms and the CMOS fabrication processes.

This essentially limits the material platform of choice to a few including Si, SiN, and SiO2.

The major shortcoming of the conventional integrated optics structures (i.e., Figs. 1.7(a)

and 1.7(b) ) is their failure to confine acoustic waves inside optical waveguides (or res-

onators) to facilitate efficient photon-phonon interaction. This is primarily caused by the

fact that in sharp contrast to light (which is confined to the Si or SiN waveguides with weak

evanescent tails in the underneath SiO2), the acoustic waves tend to be confined in the oxide

layer with lower acoustic velocity than that of Si or SiN.

To address this challenge, solutions using Si nanowires have been proposed as depicted

in Figs. 1.7(c)-(e) using basic integrated photonic structures in Si-on-insulator (SOI) plat-

form (Fig. 1.7(a)). In these structures, the acoustic waves are confined inside a Si nanowire

either by total internal reflection (TIR) inside the structure (Figs. 1.7(c) and 1.7(e)) or by

using a membrane-based SiN PnC (Fig 1.7(d)). Despite large optical forces resulting in an
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efficient SBS, these Si structures eventually suffer from linear losses (e.g., scattering loss)

and nonlinear losses (e.g., two-photon absorption (TPA) and TPA-induced free-carrier ab-

sorption) that limit the maximum input optical power and may stifle efficient on-chip SBS

generation. On the other hand, SiN is a promising material for SBS due to its relatively

large refractive index, wide transparency window, and extremely low optical losses. Wider

transparency window in SiN permits SBS interaction at shorter optical wavelengths (not

possible in Si and chalcogenide structures) and allows the use of low-noise solid-state

lasers at these wavelengths. High-power handling in SiN allows for achieving high SBS

gain without clamping by intrinsic nonlinear optical losses. Moreover, recent studies [66]

have shown LPCVD SiN is capable of demonstrating extremely low phononic losses due

to its intrinsic high-tensile stress. Therefore, the use of SiN nanowires (Fig. 1.7(b)) in con-

junction with the SiN PnCs provides a promising platform for the on-chip generation and

utilization of the SBS with unprecedented performance in a wide range of wavelengths.

1.5 Cavity optomechanics

The first observation of the optomechanical interaction in optical microcavities [67] was

unexpectedly happened during the study of the nonlinear optical properties of such cav-

ities [68]. This observation, however, stimulated a surge of interest to explore the rich

physics of the so called dynamical backaction with the advent of ultra-high-Q optical mi-

crocavities [69]. Optomechanical cavities are primarily referred to those deformable struc-

tures capable of co-localizing high-Q optical and mechanical resonance modes. In these

structures, the mechanical resonance modes (usually in radio frequencies) are excited by

an optical force generated from the confided optical resonance modes. Figure 1.8 illus-

trates the various kinds of optical forces observed in optical microcavities that shaking the

structure.

In these deformable cavities, the optical path length (OPL = neffL, the product of

the effective refractive index and the round-trip length of the cavity) is a function of a me-
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Figure 1.8: Different types of optical forces [70] that are utilized for studying optomechan-
ical interactions in microcavities: (a) optical gradient forces, (b) optical electrostrictive
forces, and (c) optical radiation pressure.

chanical degree of freedom (x), for instance, through the radius of microdisk, the length of

Fabry-Perot cavities, or the vertical gap between the stacked layers in double-layer struc-

tures. As a result, the optical resonance frequency (ωopt/2π) links to the deformation (x)

(through the resonance condition: OPL = mλopt, m is an integer number) and can be

expanded as

ωopt(x) = ωopt,0 + x∂ωopt/∂x+ · · · ≈ ωopt,0 + gOMx, (1.7)

where gOM = ∂ωopt/∂x quantifies the optomechanical interaction and suffices for most

experimental optomechanical studies. Therefore, gOM connects the mechanical degree of

freedom of the optomechanical cavities to the optical degree of freedom and indicates the

strength of coupling.

The interaction of a slightly-detuned resonating optical wave with the mechanical res-

onance mode results in the modification (or shift) in the mechanical resonance frequency.

The vibration of the structure accordingly scattered light and creates optical side-lobes

with frequency spacing identical to the mechanical resonance frequency. Dynamical back-
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Figure 1.9: A gallery of on-chip optomechanical cavities: (a) Silica microtoroids [71],
(b) double-layer SiN microring resonators [72], (c) double-layer silica ring resonators [73],
(d) silica microsphere [74], (e) silica spoked-microtoroid [75], and (f) optomechanical crys-
tal cavities [76].

action has been utilized for the demonstration of quantum effects such as laser cooling

of a micromechanical object to its ground state [77, 78], squeezing light [79], regenera-

tive oscillation instabilities [80, 81], and inertial sensing [82]. Optomechanical interaction

has been investigated in various types of high-Q optical microcavities that support high-Q

mechanical resonance modes. Figure 1.9 illustrates such optical microcavities from micro-

toroids [71] and microspheres [74] to microdisks [73] and nanobeams [83, 76] in material

platforms such as silica (SiO2) [71], silicon (Si) [76], and silicon nitride (SiN) [72].
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CHAPTER 2

HYPERSONIC SURFACE PHONONIC BANDGAP IN CMOS-COMPATIBLE

PILLAR-BASED PIEZOELECTRIC STRUCTURES ON SILICON

In this chapter, a new phononic crystal (PnC) platform with wideband hypersonic phononic

bandgaps (PnBGs) for surface acoustic waves (SAWs) is demonstrated. These SAW-PnCs

are fabricated on a CMOS-compatible substrate and constructed by a two-dimensional pe-

riodic array of piezoelectric aluminium nitride (AlN) pillars on silicon (Si) to achieve a

lowloss all-dielectric PnC platform. My experimental PnBG results acquired by integrated

wideband SAW filters (i.e., two slanted interdigital transducers (IDTs) as an emitter and a

receiver) show a surface PnBG from 1.6 GHz to 1.75 GHz for the fabricated surface PnC

enabling lowloss hypersonic PnC-based devices for a wide range of ultra-high-frequency

applications including wireless communications. Since, the pillars in my platform are non-

metallic, they can reduce the overall phononic material loss and enable practical SAW-PnC

devices for commercial applications requiring monolithic integration as well as scientific

applications seeking for lowloss SAW waveguides and high-quality SAW resonators. Be-

cause of the fewer fabrication steps of the proposed SAW-PnC and the selection of the

materials (i.e., AlN and Si), the platform is an ideal candidate for SAW devices integrated

with CMOS circuits on a single chip for multi-frequency wireless applications. This PnC

platform can enable the realization of low-loss surface phononic devices, which is of great

importance for next-generation phononic-based filtering circuits.

The ability to control the propagation of SAWs in periodic structures has motivated

researchers to extensively investigate SAW-PnCs [84, 25, 85, 86, 26, 46, 45, 87, 88, 89,

90, 91, 47], i.e., artificially-created surface periodic structures supporting a PnBG [1, 2,

92, 3] for SAWs. A complete PnBG is a range of frequencies in which the propagation of

acoustic waves in any direction within the defect-free PnC is prohibited. Therefore, similar
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to its optical counterpart, i.e., photonic crystals [4], introducing an appropriate defect [93,

43] inside a perfect SAW-PnC allows for lowloss localization and navigation of surface

acoustic phonons within PnBG frequencies.

SAW-PnCs are created by periodically varying the effective elastic properties (i.e., mass

density and stiffness) on the surface of host materials in one or two dimensions (e.g.,

through ordered synthesization and/or perforation). SAW-PnCs are broadly classified as

hole-based SAW-PnCs [25, 26, 46, 45] and pillar-based SAW-PnCs [88, 91, 47]. In com-

parison to hole-based SAW-PnCs, pillar-based SAW-PnCs are more promising in terms

of wider PnBGs in ultrasound (MHz) and hypersound (GHz) regimes with less stringent

fabrication constraints thanks to the additional design flexibility in selecting the geometry

and material of pillars. PnBGs in pillar-based PnCs [88] stem from the interplay of both

Bragg scattering from the periodic phononic structure and local resonances of the individ-

ual pillar (i.e., lattice sites). Depending on the frequency of the propagating SAWs in the

lattice, pillars can act as either local scatterers or local resonators, which is determined by

the geometry and elastic properties of the individual pillar and the global symmetry of the

lattice [90].

Previous experimental works on pillar-based SAW-PnCs are mostly based on deposited

metallic pillars [88, 91]. These platforms have enabled wideband SAW-PnBGs below the

substrate sound line. However, this wideband PnBG is achieved with the price of extra

phononic loss of metals for acoustic waves [6, 94]. Therefore, the realization of SAW-PnC

devices with wide PnBG and low phononic losses based on non-metallic structures is of

great importance.

In this chapter, I present the first report on experimental demonstration of a SAW-PnC

based on non-metallic pillars at hypersonic frequencies on a CMOS-compatible piezoelec-

tric platform. Such structures allow for direct integration of SAW-based devices with

RF electronics. In the remainder of this chapter, I first discuss dissipation processes in

phononic devices and draw a comparison between metallic pillars and dielectric pillars in
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Table 2.1: Nominal material properties and the level of thermoelastic damping for selected
dielectrics and metals [95, 94].

Material
Thermal

conductivity
κ [W/(m ·K)]

Linear thermal
expansion
α [10−6K−1]

Specific heat at
constant pressure
Cp[J/(kg ·K)]

Thermoelastic
damping

γ ∼ κα2/C2
P

Silicon 120 2.6 686 0.0017
AlN 70 4.5 740 0.0026

Tungsten 200 5 125 0.32
Gold 315 14.2 129 3.8

Nickel 92 13 438 0.08
Aluminum 237 22.5 899 0.15

Copper 400 20 426 0.88
Platinum 70 8.94 133 0.32

SiC 70 3 938 0.0007

terms of major intrinsic losses. In Sec. 2.2, I describe my design approach for both the

SAW-PnC and the input/output IDTs. In Sec. 2.3, I discuss the fabrication process and the

experimental characterization results of the fabricated SAW-PnC devices.

2.1 Phononic material loss in PnC structures: Metallic pillars versus nonmetallic

pillars

The design of a lowloss phononic structure requires mitigation of acoustic loss through

different extrinsic and intrinsic processes such as coupling to radiative acoustic modes,

thermoelastic damping, phonon-phonon interaction, and phonon-electron scattering [96,

97]. With the suppression of radiation loss (or coupling to bulk modes) in surface PnC

structures through appropriate design of PnC defects [93], thermoelastic damping becomes

the primary loss mechanism in PnC structures [98, 99, 100, 101, 102, 103]. The thermoe-

lastic damping is caused by the irreversible conversion/coupling of the strain energy to heat

due to thermal diffusion. Thermoelastic loss is in general higher in metals [99, 104, 94] due

to the larger thermal diffusivity (i.e., D = κ/CP , where κ and CP are the thermal conduc-

tivity and specific heat capacity at constant pressure, respectively) and larger linear thermal

expansion coefficients (i.e., α = ∂(lnL)/∂T ). Landau and Lifshitz [101] have shown the
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thermoelastic damping generally scales with γ ∼ κα2/C2
P . Table 2.1 compares γ as an

indication of thermoelastic loss in a list of selected dielectric and metallic materials. As it

is clear from Table 2.1, metallic materials have much higher thermoelastic damping losses

as compared to dielectric materials. In addition, dielectric structures are much less prone to

electron-phonon scattering losses [97] as compared to metals. The electron-phonon scatter-

ing is one of the major sources of acoustic dissipation for ultrasonic acoustic waves in bulk

metals at low temperatures [105, 97]. In addition to the intrinsic losses (i.e., thermoelastic

and phonon-electron dissipations) in metals, the friction at metal-piezoelectric interfaces

in PnC structures formed by metallic pillars on a piezoelectric substrate also contributes to

the overall phononic loss [106, 107]. Similar to the case of metallic-pillar PnCs, the use of

metallic electrodes in directly excited PnC structures will lead to increased acoustic losses.

Recently, it has been demonstrated that by using capacitive excitation and avoiding direct-

contact metallic electrodes in a piezoelectric membrane structure, the mechanical quality

factor (Qph) of the membrane structure at 1.2 GHz can be significantly improved [107].

These observations show that the utilization of non-metallic pillars results in surface PnC

devices with potentially higher Qph than those based on metallic-based PnC platforms.

2.2 Surface phononic crystal band structure and wideband IDT design

Silicon (Si) is a crystalline substrate suitable for fabricating phononic devices due to the

availability of mature fabrication techniques, ease of integration with CMOS electronic

circuitry, and low acoustic losses. However, Si is not a piezoelectric material. Thus, a

piezoelectric film on Si is required to enable efficient excitation/detection of SAWs through

interdigital transducers (IDTs) [108, 11]. Thin-film AlN [109] is a CMOS-compatible ma-

terial with a very well reproducible deposition [110] that can fulfill the role of an elec-

tromechanical transducer while enabling the formation of a surface PnC by patterning it

into pillar structures. AlN has, also, recently received attention in piezo-optomechanical

studies (e.g., [111, 21, 112]).
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2.2.1 Elastic wave simulations in surface PnC structures

Radiation loss of SAW-PnC devices (e.g., caused by coupling of surface confined waves

to bulk waves) and presence of a PnBG depend on the extent of the non-radiative spec-

tral region, which is set by the slowest bulk mode of the substrates and the PnC lattice

symmetries. Among the various two-dimensional lattice structures, the triangular lattice

provides the largest non-radiative wavevector extent for a certain lattice constant [90]. Fig-

ure 2.1 provides the simulated surface phononic band structure of the cone-like AlN pillars

in a triangular lattice on (100)-oriented Si with a primary surface PnBG from 1.6 GHz to

1.74 GHz. As shown in Fig. 2.1(a), the edges of the irreducible Brillouin zone (IBZ) of the

PnC structure is Γ–X–L–K–Γ due to the elastic anisotropicity in Si and symmetry of the

PnC lattice.

The phononic band structure in Fig. 2.1 is calculated for a primitive unit cell of the

SAW-PnC using the finite element method (FEM) in the COMSOL Multiphysics environ-

ment. The material constants used in this simulation are listed in Table 1.3. Figure 2.1(a)

shows the coordinate axes of the simulation domain, in which the c-axis of AlN and Z-axis

of the Si stiffness tensor are along the z-axis of the simulation domain, and the X- and Y-

axes of the Si stiffness tensor are along the x- and y-axes of the simulation domain, respec-

tively. By applying the Floquet periodic boundary condition to the boundaries of the prim-

itive unit cell perpendicular to the x − y plane and setting the wavenumber (kx, ky ∈ IBZ,

kz = 0), I find the corresponding eigen-frequencies and eigen-modes, and extract the band

structure of the surface acoustic modes propagating through the lattice in the x − y plane.

In Fig. 2.1(a), the thin blue curves denote the confined surface phononic modes of the PnC

structure, and the thick red line (i.e., the slowest shear bulk mode) represents the border

between the phononic modes well bounded to the surface and the radiative modes (i.e., the

bulk modes or leaky surface modes—gray region) not bounded to the surface.

My simulation results reveal that to achieve a wide PnBG, it is critical to have close-to-

vertical sidewalls. In addition, simulations show that, for thin AlN pedestals, the PnC lattice
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Figure 2.1: (a) Simulated surface phononic band structure of the fabricated SAW-PnC,
which is a triangular lattice of cone-like AlN pillars on a (100)-oriented Si substrate (see
the schematic of the lattice primitive unit cell in (a)) over the edges of the IBZ. The shaded
yellow region specifies the extent of the theoretical complete surface PnBG from 1.6 GHz
to 1.74 GHz. The lattice constant (a) (i.e., the distance between the nearest adjacent pillars)
of the simulated PnC is 1.4 µm, and the angle, height, and top radius of the cone (i.e., r′)
are 80 degrees, 530 nm, and 340 nm, respectively. (b) Displacement profiles of the selected
points from the primary dispersion bands of the PnC structure in (a). (c) The acoustic
power flow inside the SAW-PnC unit cell corresponding to the points (or modes) specified
in (a) and the associated displacement profiles in (b). Little red arrows show the density
and direction of the power flow in the mid-plane of the unit cell (i.e., in the plane of x = 0
for modes A, B, and C, and in the plane of y = 0 for modes D, E, and F). For the modes
propagating in the Γ−K and Γ−X directions, the flow of the acoustic power is along the y-
and x-directions, respectively, as seen from (c).
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constant (i.e., a) does not play a major role in adjusting the width and center frequency of

the first (primary) PnBG. However, as the thickness of the AlN pedestal increases, both the

width of the first PnBG and its dependence on the PnC lattice constant increase, indicating

that both Bragg scattering and local resonances contribute to the PnBG. Also, at the vicinity

of the maximum radius for the pillars, a weak relation between the PnBG and the radius of

pillars is observed. To find the optimum structure in terms of the bandgap width, I fixed the

angle of the pillars to be 80 degrees as it is determined by the developed fabrication process,

the filling fraction (i.e., 2π√
3
(r/a)2) to be between 0.3 and 0.45 (for ease of fabrication), and

the total height of the AlN layer (i.e., height of the pillars plus the thickness of the pedestal)

to be 1µm. Therefore, the optimization parameters reduce to three, namely the height of

the pillars, which accordingly sets the thickness of the pedestal, the lattice constant, and

the filling fraction (or the pillar radius,r). By finely sweeping these parameters, I found

that by selecting a = 1.40µm, r = 430 nm, and pillar’s height = 530 nm a wide 0.14 GHz

SAW-PnBG centered at 1.67 GHz can be obtained (see Fig. 2.1(a) for definition of the

parameters). In this optimization process, the high frequency of the PnBG has been the

first priority, and the width of the PnBG has been the secondary criterion. While I kept

some parameters fixed (e.g., AlN thickness and pillar angles) to reduce the fabrication

complexity, changing these parameters might result in better characteristics (e.g., wider

PnBG) at the cost of fabrication complexity. Nevertheless, the simulated PnBG width

obtained in my optimization is enough for all practical applications.

To get more insight into the types of surface phononic modes in the PnC structure, I

provide in Fig. 2.1(b) the displacement profile of the selected points from the phononic

band structure shown in Fig. 2.1(a) for aky = 3.5 along Γ−K and akx = 3.2 along Γ−X.

Figure 2.1(c) illustrates the density and direction of the acoustic power flow in the PnC unit

cell. For the modes in the Γ−K and Γ−X directions, the flow of the acoustic power is along

the y and x directions, respectively, as seen from Fig. 2.1(c). In addition, the higher level of

acoustic vibration (or acoustic power flow) in the pillars (as seen from Fig. 2.1(c)) causes
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Figure 2.2: Simulated surface acoustic wave transmission through the fabricated SAW-PnC
along: (a) Γ−K (11 layers: 11×a) and (b) Γ−X (9 layers: 9×a

√
3).

the corresponding dispersion branches to flatten, which is another indication of the local

resonance behavior. In addition, the simulated acoustic transmissions of the SAW-PnC

along Γ−K and Γ−X directions are shown in Figs. 2.2(a) and 2.2(b).

2.2.2 Designing wideband surface slanted IDTs

To experimentally demonstrate the predicted large PnBG of the PnC structure, I studied and

designed wideband IDTs (or wide-band band-pass SAW filters, see Fig. 2.3). For the real-

ization of wideband IDTs, a chirping is required such that at each frequency only a selected

portion of the IDT effectively contributes to the generation and detection of the SAW pro-

24



1

Slanted IDTs

𝜆2
𝜆𝑘

𝜆𝑛

Chirped IDTs

𝜆1
𝜆2

𝜆𝑛

𝜆𝑘

𝜆1

(a)

(b)

Figure 2.3: Wideband band-pass SAW filters. (a) Chirped IDTs, and (b) slanted IDTs.

vided that its wavelength (or periodicity) matches the wavelength of the emitted/received

SAW. Figure 2.3 provides two strategies for designing wideband SAW-IDTs. In Fig. 2.3(a)

the introduced chirping is along the direction of SAW radiation (or the x-axis). These IDTs

are commonly called in literature [11] as chirped IDTs in which the periodicity of the strips

gradually and continuously changes along the x-direction. As a result, a small number of

IDTs’ period effectively contributes to the launching of the acoustic power at each wave-

lengths (or frequency). On the other hand, in slanted IDTs (see Fig. 2.3) the chirping is
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Figure 2.4: Optical image of the SAW-PnC device showing a ribbon of the SAW-PnC
between a pair of wideband slanted IDTs (emitter and receiver transducers) connected to
Cu contact pads. The crossed arrows show the crystallography orientation of (100) silicon
substrate with respect to the SAW-PnC.

across the aperture of the IDTs and whole length of the IDTs assist to the generation and

detection of the SAWs. I fabricated both IDTs and slanted IDTs performed better in the

characterization and provided a stronger received acoustic signal. Therefore, I used slanted

IDTs for the PnBG characterization of the fabricated pillar-based PnC structures.

I designed three wideband slanted IDTs [113, 114, 46], each covering 150 MHz band-

width in the vicinity of the expected PnBG range. Figure 2.4 shows the optical micrograph

of one of the fabricated devices with the slanted excitation and receiver IDTs. The designed

wideband slanted IDTs are formed by gradually changing the width of the metal strips and

the distance between them across the aperture of IDTs, according to the dispersion (or

wavelength) of the Rayleigh-type SAW under the loading of the metal strips. We can

imagine the slanted IDTs as many narrow flat-aperture single-frequency IDTs connected in

parallel. Advantage of slanted IDTs over the wideband unchirped apodized IDTs and wide-

band chirped IDTs is their maximum use of the area underneath the IDTs for transduction,
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which lowers their input impedance, and launching more acoustic power to each frequency,

respectively. To avoid acoustic beam steering and yet obtain a wide fractional bandwidth,

I incorporated symmetrical 500-µm-wide-aperture slanted IDTs and have limited finger-

slant angles to ±2 degrees. It is worth highlighting that in a multi-layer substrate (i.e., a

stack of multiple thin-film elastic materials on a semi-infinite substrate), the medium can

be single- or multi-mode, depending on the frequency of operation. In my case, I limit my

design to the frequency range in which my substrate allows only the fundamental Rayleigh-

type SAW emitted by the slanted IDTs.

2.3 Fabrication and experimental results

The fabrication of the SAW-PnC devices (Fig. 2.4) can be divided into three key steps: 1)

fabricating the AlN pillars, 2) fabricating copper (Cu) contact pads, and 3) fabricating alu-

minum (Al) IDTs. The cross-section scanning electron microscopy (SEM) image of the

starting substrate for the fabrication of the SAW-PnC is shown in Fig. 2.5(a), which is

a stack of 1 µm AlN / 100 nm molybdenum (Mo) / 520 µm Si. AlN is sputtered (by

Tegal Corporation) with the c-axis perpendicular to the surface of (100)-oriented highly-

resistive Si substrates. The high resistivity in Si substrate minimizes the electromagnetic

feedthrough coupling between the IDTs, interconnection wiring, and contact pads. Fig-

ure 2.4 shows the microscope image of one of the final fabricated SAW devices containing

SAW-PnC, slanted IDTs, and contact pads.

I begin the fabrication of the devices by carefully cleaning the sample. I then spin

coat MicroChem PMMA positive electron-beam (e-beam) resist on the sample and write

the SAW-PnC pattern using a JEOL JBX-9300FS e-beam lithography (EBL) system, at

the Georgia Tech institute for electronics and nanotechnology (IEN) facilities, with a 2 nA

beam current and 100 kV accelerating voltage. I add the proximity error correction to min-

imize slight dimension variation throughout the phononic crystal lattice due to the back

scattering of electrons during the exposure. After developing PMMA, chromium (Cr) is
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Figure 2.5: Fabricated pillar-based SAW-PnC structures. (a) SEM image of the cross-
section of the starting substrate for the SAW-PnCs showing the material stack of
1 µm AlN/ 100 nm Mo/ 520 µm Si. (b) Zoom-in SEM image of the SAW-PnC shown
in Fig. 2.4 for studying SAW-PnBG in the Γ−X direction. (c) Tilted SEM image of the
cross-section of the SAW-PnC. The cone-like AlN pillars were etched by 530nm using
plasma dry etching. (d) SEM image of the cross-section of the slanted IDTs showing 80-
nm-thick Al metal strips fabricated on 470-nm-thick AlN after I etched 530 nm of AlN to
form the pillars on the substrate.

evaporated and lifted off to create a hard etching mask for the subsequent 530 nm ICP-

RIE etching of AlN, which is done using Cl2/BCl3/Ar chemistry [115]. After forming AlN

pillars by partially etching the AlN thin-film, I remove the remaining Cr by wet etching

(see Figs. 2.5(b) and 2.5(c)). In the next step, I fabricate Cu contact pads by pattern-

ing the sputtered film of 400 nm Cu/10 nm Ti, aligned with AlN pillars, through liftoff

process using optical lithography and Microposit SC1813 positive photoresist. After fab-

ricating the contact pads, I fabricate Al IDTs on the 470-nm-thick AlN by first patterning

ZEON ZEP-520A positive e-beam resist followed by e-beam evaporation and liftoff of
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Figure 2.6: AFM measurement of fabricated pillar-based SAW-PnC in Fig. 2.5(c). The in-
set provides the height variation averaged over three paths highlighted by the white dashed
lines, which show that the height of the fabricated pillars is 530 nm.

80 nm Al/5 nm Cr (Fig. 2.5(d)). Figure 2.6 provides atomic force microscopy (AFM) im-

age of the final pillars, which can accurately capture the height of the pillars. However, the

pillars in the AFM measurements appear slightly laterally deformed due to the finite width

of the AFM tip and limited scanning resolution.

To characterize the fabricated SAW-PnC structures, I used an HP 8753D network an-

alyzer connected to a pair of Infinity Probes from Cascade Microtech to measure the S21

parameter (i.e., transmission through the SAW-PnC structure between the emitter and re-

ceiver IDTs in Fig. 2.4). The data acquisition is performed with 30 kHz resolution from

1.3 GHz to 1.85 GHz. The raw data obtained from the network analyzer is, in fact, a mix-

ture of electromagnetic and acoustic signals [116]. The electromagnetic contribution comes

from the capacitance that forms between input and output interconnects. The electromag-

netic feedthrough can be minimized by appropriately shielding or isolating SAW IDTs.

To extract the transmitted acoustic signal from the mixed signal, I take an inverse Fourier

transform and examine the signal in the time domain. Owing to the difference between
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the propagation speeds of the electromagnetic waves and the surface acoustic waves, the

acoustic portion is well separated from the electromagnetic feedthrough in the time domain.

After applying a lossless time-domain filter and taking the Fourier transform, I recover the

acoustic signal in the frequency domain.

Plots in Fig. 2.7 provide the acoustic characterization results. In Fig. 2.7(a), I show

the acoustic response of three wideband reference IDTs (i.e., the transmission between

the input and output IDTs with no SAW-PnC in between) covering 1.4 GHz–1.55 GHz

(blue line), 1.5 GHz–1.65 GHz (black line), and 1.6 GHz–1.75 GHz (red line) indicat-

ing a dynamic range of better than 50 dB. Transmitted signals are measured along two

major crystallographic directions: Γ−X (9 PnC periods: 9×a
√

3) and Γ−K (14 PnC peri-

ods: 14×a) (see Fig. 2.7(d) for the definition of the directions). The transmitted acoustic

signal detected by the receiver IDTs are depicted in Figs. 2.7(b) and 2.7(c) for the Γ−X

and Γ−K directions, respectively. By normalizing the transmitted acoustic signal to the

response of the reference IDTs (i.e., Fig. 2.7(a)), I extract the frequency profile of the at-

tenuation for the transmitted acoustic signal (see Figs. 2.7(e) and 2.7(f)). The frequency

ranges corresponding to the directional PnBGs and deaf band [92, 31] (discussed in the

next paragraph) are highlighted by the shaded yellow and red regions in Figs. 2.7(e) and

2.7(f). The experimental results reveal at least a 150-MHz-wide PnBG at 1.65 GHz along

the Γ−X direction. The results of characterization along the Γ−K direction, also, reveal at

least a 150-MHz-wide PnBG centered at about 1.65 GHz.

It is worth mentioning that the width of the experimental PnBG along Γ−X in Fig. 2.7(e)

is slightly larger than that of the simulated PnBG predicted by the band structure in Fig.2.1(a),

which can be due to the slight geometry difference between the actual fabricated structure

and the simulated structure, the material constants incorporated in the simulations, as well

as the presence of a deaf band. A deaf band is a frequency range of attenuation in the

transmission of acoustic waves through a PnC beyond the actual directional PnBG, and it

is caused by poor coupling between the acoustic waves emitted from the SAW IDTs and
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Figure 2.8: Displacement profiles for modes B, E, and F, as specified in Fig. 2.1, on the
central cut perpendicular to the flow of the acoustic power propagating along the Γ−K
direction (or the y-axis, mode B) and the Γ−X direction (or the x-axis, modes E and F).
Ux, Uy, and Uz show mode profiles of vibration along x-, y-, and z-axes, respectively.

the phononic modes of the PnC adjacent to the PnBG region because of the impedance (or

group velocity) and/or polarization mismatches. Comparing the simulated acoustic trans-

missions in Fig. 2.1(d) with the experiments in terms of the attenuation bandwidth, I believe

the presence of a deaf band is the most likely reason for the slightly larger observed stop

band. Figure 2.8 illustrates the mode profiles of points E and F in Fig. 2.1 that are adjacent

to the directional PnBG in the Γ−X direction. As the displacement profiles of Ux and Uz

for the SAW-PnC mode marked by F show, an incident Rayleigh SAW mode in the Γ−X

direction (i.e., along the x-axis of Fig. 2.8) can couple to this mode because of its vibration

resemblance with Rayleigh modes. In addition, the incident Rayleigh SAW whose phase-

front lies in the y-z plane (according to the axes in Fig. 2.8) can excite mode F, although

with low coupling efficiency. Therefore, the experimental results do not show a deaf band

for the upper frequencies of PnBG in the Γ−X direction. However, the vibration profile
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of the SAW-PnC mode marked by E (see Fig. 2.8) indicates the formation of a deaf band

for the frequencies below the directional PnBG in the Γ−X direction because of the asym-

metric vibration profile of the SAW-PnC mode in the x- and z-directions, as it is verified

by the experimental results. In addition, the symmetries of the vibration profile of mode

B in z- and y-directions depicted in Fig. 2.8 resemble those of the incident Rayleigh wave

emitted from IDTs. Therefore, the deaf band at frequencies below the directional PnBG

along Γ−K direction is not noticeable. Nevertheless, comparing the results in Fig. 2.1

and Fig. 2.7 show good agreement between simulations and experiments. The results in

Fig. 2.7 clearly show the existence of hypersonic PnBGs in SAW-PnCs formed without

using metallic pillars. The relatively large PnBG (10% PnBG width–to–center frequency)

enables the formation of functional SAW devices by using line and point defects for many

applications including wireless communication filters.
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CHAPTER 3

CMOS-COMPATIBLE HYPERSONIC SURFACE PHONONIC WAVEGUIDES ON

SILICON CHIPS WITH PIEZOELECTRIC EXCITATION

In the previous chapter, I demonstrated a hypersonic phononic bandgap (PnBG) in pillar-

based AlN on Si surface phononic crystals (PnCs). This CMOS-compatible platform with

its wide PnBG and potentially much lower material loss paves the way for enabling on-chip

complex all-phononic signal processing systems consist of surface waveguides and res-

onators as their Lego pieces. This chapter is dedicated to the design of surface waveguides

in AlN on Si with focus on PnC-based structures and the next chapter details the design

of a low-loss PnC-based resonator. It is worth noting that the “lowloss” here means the

phononic structure supports a PnC mode highly confined inside the introduced line/point

defect with minimal coupling to the unguided surface and radiative bulk modes. There are

also other sources of loss such as thermoelastic damping (as detailed in Section 2.1) which

is not discussed in this chapter.

3.1 Motivations for the development of surface phononic waveguiding

The integrated acoustic waveguides and resonators controlling the flow of surface vibra-

tions on the surface of the chips are attractive for a diverse range of applications spanning

from micro/nano-electromechanical systems (MEMS/NEMS) [117, 118] to acousto-optic

devices [20, 21] and quantum studies [13, 15, 16, 18] owing to: (1) the convenience of

surface micro-machining (i.e., a few deposition, etching, or lithography steps) which is

fully compatible with surface-oriented integrated optics and electronics fabrications, (2)

adjusting their operation frequency by surface feature sizes (essential for multi-frequency

devices), (3) the localization of acoustic waves over a fraction of their wavelength near the

surface of the chips (beneficial for sensing [119, 120] and nonlinear acoustic [121, 122]
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applications), and (4) the ability to excite and detect surface acoustic waves (SAWs) at any

point on the surface of the chips. Among these on-chip surface acoustic devices, those

structures realized on silicon (Si) chips at hypersonic frequencies (i.e., GHz) are of promi-

nent interest for applications including radio-frequency (RF) wireless communications [11]

when directly integrated with electronics.

Despite advances in the fabrication of SAW devices, these devices are not CMOS-

compatible because of the utilization of crystalline substrates such as quartz, lithium nio-

bate (LiNbO3), and lithium tantalate (LiTaO3). Therefore, enabling SAW devices on CMOS-

compatible platforms diversifies their applications in various integrated MEMS/NEMS

platforms.

Here, I intend to discuss and present a new surface phononic waveguide structure ex-

cited by a CMOS-compatible aluminium nitride (AlN) piezoelectric thin film that fits the

aforementioned applications. The proposed acoustic structure is created by introducing

special surface topography (i.e., periodic features) to the surface of the Si chips so that the

SAWs become laterally confined to a region inside the piezoelectric material, which then

allows for (1) the efficient use of the substrate area (which considerably scales down the

size of surface devices), (2) avoiding the cross talk between surface waves in wide-beam

structures as well as (3) ease of navigation on the surface of the substrate [123], and more

importantly (4) better excitation and detection of surface acoustic waves in a high-acoustic-

phase-velocity AlN thin film on Si substrates.

3.2 Surface elastic waves on half-space substrates

The Rayleigh mode [22] (shown in Fig. 1.2) is the most common surface acoustic mode

utilized in various SAW-based devices. The phase velocity of Rayleigh modes is relatively

close to bulk acoustic modes, which makes them prone to the radiation loss (or coupling

to bulk acoustic modes) specially in surface acoustic resonators. Therefore, the surface

acoustic modes slower than Rayleigh modes have weaker radiative components (or acoustic
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(a) (b)

xy
z

(c)

Figure 3.1: Surface acoustic waveguides with finite lateral spreading created by surface
micro-machining. (a) Slot-based structures for high-acoustic-velocity thin-film material
deposited on the substrate, (b) ridge-based thin-film structure for low-acoustic-velocity
material deposited on the substrate, and (c) ridge structures formed by directly etching
the substrate.

loss), which highlights the importance of engineered surface waveguide modes not offered

by planar surfaces. In addition, the lateral extent of Rayleigh waves on untreated surfaces

is unlimited. Therefore, the primary goal of designing an integrated surface waveguide is

to design a structure which has (considerably) lower phase velocity (compared to the bulk

waves) and finite spreading on the surface perpendicular to the direction of propagation,

which hereafter I call them Rayleigh-like acoustic waves. Another major concern is, of

course, a high electromechanical transduction between the input power and the mechanical

domain for the efficient excitation/reception of the surface waves to maintain the integrity

of the transmitted acoustic signal.

Two common approaches for creating structures supporting Rayleigh-like waves are [23,

124]: (1) the deposition of another thin-film material [in the form of creating a slot in the

deposited high-phase-velocity film, Fig. 3.1(a), or a strip of the low-phase-velocity film,

Fig. 3.1(b)] and (2) introducing the so-called surface topography by selectively etching
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the substrate, as illustrated in Fig. 3.1(c). The mechanism of confinement in the former

approach (i.e., deposition of another material) is analogous to optics in which the higher

refractive index (or a lower phase velocity) inside the core waveguide prevents the guided

mode from coupling to radiative optical modes of the surroundings with lower refractive

index (or a higher phase velocity). However, the mechanism of guiding in topography-

based waveguides (i.e., the later approach) is based on reducing the restraining force (or

reducing the effective stiffness, ceff ) acting on a selected region, which does not have any

optical analogue [125]. In either scenarios, the half-space structures may deviate from sup-

porting a single surface acoustic mode and the upper frequency of the operation limits to

the cut-off frequency of the first higher acoustic mode. Additionally, SAWs become dis-

persive because of a characteristic length governing the distribution of the acoustic power

flow (e.g., the thickness of the deposited film or the width of the surface topography).

Compared to the thin-film-enabled acoustic waveguides, the topography waveguides

allow for sharper bending due to the much higher acoustic localization inside the topogra-

phy region. Despite the simplicity of topography waveguides and the lack of the need for

finding two distinct materials, the electromechanical excitation is challenging particularly

at hypersonic frequencies (i.e., micron/nano-scale devices). While the thin-film-deposited

surface structures at hypersonic frequencies can be designed to be excited easier; however,

the localization of the acoustic waves inside the guiding region should be improved, which

is the focus of the rest of this chapter.

3.3 Surface acoustic waveguiding in AlN on Si

AlN has proven itself as a widespread piezoelectric thin-film material for nowadays on-

chip commercial devices due to the best balance among high transduction efficiency, high-

volume manufacturing, and low intrinsic acoustic losses [126, 127, 128] in a wide range

of devices [109] from film-bulk-acoustic resonators (FBARs) [129] and solidly-mounted

resonators (SMRs) to contour-mode resonators (CMRs) [130] and recently investigated for
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direction. The c-axis of AlN points in z-direction.

SAW devices [128]. The slowness contours (i.e., 1/v = k/ω) of Si and AlN for three bulk

polarizations of shear vertical, shear horizontal, and longitudinal are plotted in Fig. 3.2

using the material constants listed in Tab. 1.3. Slowness contours provide information

regrading the phase velocities of particular polarization, elastic stiffness symmetries (where

circles indicate isotropicity) and the acoustic power flow direction (which is indicated by

the normal direction to the contours). By inspecting the contours in Fig. 3.2, we realize that

AlN supports faster bulk acoustic waves. Hence, the appropriate architecture for guiding

Rayleigh-like waves in thin-film AlN on Si is the slot-based architecture, Fig. 3.1(a), as

the velocity of the SAW inside the slot is lower compared to the velocity of the SAW

propagating in AlN/Si. This has been confirmed by Fig. 3.3, where the simulation of SAW

phase velocity in 1 µm AlN deposited on Si as a function of the slot width is illustrated.

Figure 3.3 shows increasing the slot width results in a lower acoustic phase velocity and a

higher localization in Si.

It is worth mentioning that bulk acoustic waves may not be perfectly dispersion-less
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Rayleigh-type SAW for selected widths of 5µm, 10µm, and 15µm.

(which is often negligible) and accordingly the slowness contours become frequency de-

pendent. The dispersive behavior of materials comes from all anharmonicities such as

thermoelastic damping and viscosity, and it is commonly modeled by the Zener’s standard

model of linear anelasticities [99, 102] by incorporating the time derivatives of stress (σ)

and strain (ε) in the following canonical equation

σ + τεσ̇ = MR(ε+ τσ ε̇), (3.1)

where τε and τσ are the relaxation time constants under constant strain and stress, respec-

tively, and MR is called relaxed elastic stiffness tensor. The material constants listed in

39



Tab. 1.3 are valid up to hypersonic frequencies.

Albeit the slot-based architecture provides a better confinement of SAWs in higher-

phase-velocity piezoelectric thin-film AlN on Si, the excitation or detection of such SAWs

is problematic due to the concentration of the acoustic power inside Si as shown in Fig. 3.3.

To overcome the challenge of the simultaneous confinement and the efficient excitation of

SAWs in AlN on Si, I investigated PnC-based surface structures formed in a structured AlN

piezoelectric film on Si, allowing for localizing SAWs inside the introduced piezoelectric

ridge structure and enabling a higher level of electromechanical transduction.

3.4 Surface phononic crystals in AlN on Si

Periodic alteration of elastic properties (i.e., cIJ and/or ρ) on the surface of host materials

can influence the dispersion (or phase velocity) of surface phononic modes to a degree that

depends on the strength of alternation, where the tagged phononic wavelength is compara-

ble or smaller than the periodicity length scale. These periodic structures are called surface

phononic crystals (PnCs) [1, 2, 86, 3] and usually designed to exhibit a range of frequen-

cies, the so-called phononic bandgap (PnBG), devoid of any propagating phononic mode

at any direction on the surface. These PnC structures have been extensively studied numer-

ically and experimentally in various platforms for surface acoustic waves on the surface of

solids [88, 91, 47].

The judicious creation of a line defect inside the surface PnC lattice may allow for a sin-

gle phononic wave to propagate along the direction of the defect (over a range of frequen-

cies) within the PnBG frequencies, i.e., phononic waveguiding [35, 93, 43], enabling a wide

range of different phononic devices (in particular, phononic cavities [35, 93]). Phononic

waveguides are the integral parts of any all-phononic systems [38] composed of phononic

cavities communicating through phononic waveguides.
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3.4.1 Surface phononic band structure in pillar-based AlN periodic structures on Si

Figure 3.4 shows the phononic band structure of a pillar-based surface PnC arranged in the

form of a triangular lattice supporting a wide PnBG from 1550 MHz to 1800 MHz whose

dimensions are as follows: AlN pedestal thickness is 500 nm, pillar’s height is 500 nm,

and the lattice constant (i.e., the distance between nearest-neighbor pillars) is 1.3 µm. The

details of phononic simulations and phononic mode profiles were discussed in Chapter 2.

Briefly, the non-radiative surface phononic modes reside outside of the sound cone (repre-

sented by the gray region in Fig. 3.4) whose border illustrates the dispersion of the slowest

acoustic bulk mode. To extract the surface PnBG, the eigen acoustic modes of the primi-

tive unit cell are simulated over the boundaries (or wavenumber) of the irreducible Brillouin

zone. The shaded yellow region in Fig. 3.4 specifies the complete surface PnBG frequen-

cies as there is no surface bands existing over this range of frequencies at any direction.

The irreducible Brillouin zone is determined by the symmetry of the material properties

as well as the symmetry of the PnC lattice. Due to the anisotropicity in Si (see Fig. 3.2),

the edges of the irreducible Brillouin zone in the triangular lattice of AlN pillars on Si be-

comes Γ−X−L−K−Γ. In order to design the AlN-on-Si PnC for possessing PnBGs at

other frequency ranges, the lattice constant (or center-to-center distance between adjacent

pillars), the height and radius of AlN pillars, and the thickness of AlN pedestal should be

accordingly modified, where the lattice constant primarily sets the center frequency and the

pillar’s height adjusts the width of the surface PnBG. Other parameters are used for the fine

tuning and optimization of the PnBG range of frequencies.

3.5 Surface waveguiding in pillar-based AlN-on-Si phononic crystal

Phononic waveguides in surface PnCs provide two-dimensional confinements (similar to

slab PnCs if designed carefully), in which the out-of-plane confinement comes from the

phase velocity mismatch between surface waves and bulk waves, and the in-plane con-
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MHz to 1800 MHz. AlN thickness is 1 µm and pillars’ height is 500 nm. The distance
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finement is due to the PnBG of the host surface PnC prohibiting the surface leakage of

phonons. The line defect creating the phononic waveguide should be periodic to obtain a

well-defined wavenumber according to the Floquet’s theorem, guarantying the propagation

without any reflection along the defect [131].

Considering the feasibility (or ease) of fabrication, there are two practical ways of cre-

ating a line defect with no additional fabrication steps allowing for a single AlN etching

step forms the surface PnC as well as the line defect: (1) a line defect primarily formed by

dislocating/removing pillars (basically introducing a void structure), and (2) a line defect

primarily formed by introducing additional AlN structures with the same height as of the

pillars. Figure 3.5 shows an example line defect created in the pillar-based PnC structure by

removing a row of pillars. Thanks to the structural mirror symmetry of the PnC waveguide

with respect to the y-z plane, the simulation domain can be limited to only a half of the

PnC structure (shown in Fig. 3.5) by enforcing symmetry [i.e., symmetric boundary condi-

tion (which filters the modes with the normal displacement components to the boundary)
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direction. “d” identifies the spacing between the two PnCs. (b) Top view of the simulated
PnC structure (i.e., the half of the structure) with boundary conditions labeled.

and the asymmetric boundary condition (which filters the modes with the tangential dis-

placement component)] to find all surface eigenmodes of the actual waveguide structure.

The incorporation of symmetry lowers the demanding computational resources as well as

improving the simulation accuracy by using a finer meshing element.

For the surface PnC structure whose PnBG is illustrated in Fig. 3.4, the line defect is

created along Γ − K or y-direction as depicted in Fig. 3.5. As a result, for the waveg-

uide super-cell (shown in Fig. 3.5(b)) the projected irreducible Brillouin zone becomes

k = ky ∈ [0, π/a] and kx = kz = 0, in which a identifies the periodicity of waveguide

super-cell identical to the lattice constant of the PnC. Among those wavenumbers inside the
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irreducible Brillouin zone, we are interested in the wavenumbers lying outside of the sound

cone and in the frequencies within the PnBG. This allows the surface mode to be confined

to the defect and not propagating through the PnC or couple to the radiative bulk modes.

It is worth noting that we observe a zero group velocity at ky = π/a due to the symmetry

of the phononic bands. Therefore, the phononic wave-packet transmission should be away

from high symmetry points and mostly over the linear part of the dispersion [4] to avoid

the distortion of the transmitted wave-packet. On the other hand, for designing a phononic

cavity it is often preferred to select the wavenumbers close to the high symmetry points in

the middle of the PnBG to lower the radiation loss as much as possible.

3.5.1 Type 1: line defect created by removing AlN pillars

The simplest way of creating a waveguide (or line defect) in a PnC structure is by putting

two arrays of surface PnCs (acting as a perfect acoustic mirror over the PnBG frequencies)

at a distance away from each other. In this case, the surface acoustic wave can only exist

over the distance between the two PnCs (see Fig. 3.5). The eigenmodes of the surface

PnC waveguide are then extracted by applying the symmetric and asymmetric boundary

conditions. Figure 3.6 provides the dispersion of selected line defect widths formed by

introducing a pillar-free region (i.e., Fig. 3.5) for d/a = {1, 1.4, 2}. In Fig. 3.6(a), the

light gray region contains the radiative bulk modes while the dark gray region consists

of unguided surface PnC modes. As Fig. 3.6(a) shows, the single-mode region for the

symmetric modes is close to the sound-line while for the asymmetric modes it is close to

the phononic conduction bands (i.e., PnC surface modes not confined to the line defect).

In this type of the line defect, the only design parameter for adjusting the dispersion and

obtaining a desired single-mode operation is the width of the defect or “d”. Albeit, with

increasing the defect width the asymmetric bands go to a lower frequency and distance from

the radiative conduction bands, it causes the width of the single-mode operation for the

asymmetric modes becomes narrower. Therefore, the Type-1 defect provides the desired
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of the surface guided modes at ky = 0.484(2π/a) obtained by the symmetric boundary
condition (f = 1819.6 MHz) and asymmetric boundary conditions (f = 1725.0 MHz),
respectively.
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confinement and localization of acoustic waves inside AlN. However, the limited range of

usable single-mode operation in this defect makes them less attractive for practical single-

mode waveguide applications.

3.5.2 Type 2: line defect created by introducing a ridge AlN structure

Another type of the line defect is formed by introducing a (corrugated) ridge AlN structure.

The additional design parameters of this structure can be used to tailor a desire phononic

dispersion for the waveguide modes in particular a single-mode operation, which is essen-

tial for designing a waveguide-based surface phononic cavity. For the ease of fabrication,

the height of pillars and that of the ridge waveguide are identical. The ridge AlN structure

is shown in Fig. 3.7(a) and its corresponding surface modes are illustrated in Fig. 3.7(b). As

Fig. 3.7(b) illustrates, the surface waveguide structure supports a much wider single-mode

operation for the symmetric mode. Figures 3.7(c) and 3.7(d) provide the displacement

mode profile of the symmetric and asymmetric modes selected from the lower branches of

the symmetric and asymmetric bands of the structure.

47



CHAPTER 4

INTEGRATED MODE-GAP WAVEGUIDE-BASED PHONONIC CRYSTAL

RESONATORS

Resonators in PnCs or any kinds of periodic structures are commonly formed by adding a

point (or regional) defect [132], which is usually achieved by modifying the geometry or

dislocating a subset of holes or pillars in the perfect periodic structure in the range of the

PnC bandgap frequencies. The resulting confinement of the acoustic mode in the defect

area by the PnC bandgap reduces the coupling-loss of localized modes to the unconfined

modes in the periodic structure. The quality factors (Qs) of such resonators are, therefore,

limited by the material loss if the PnC structure is designed carefully. Here, I focus on

the systematic design of mechanical resonators in PnCs, in particular, waveguide-based

PnC resonators. In these resonators, the input and output electrodes are integrated with

the resonator (over the resonant area) to allow for direct excitation and detection of the

resonant mode of the PnC resonator.

One of the main design challenges of a waveguide-based phononic resonator is the

waveguide termination, which can highly affect the Q (or loss) of the resonator. Previ-

ous waveguide-based PnC resonators were implemented by abruptly terminating the PnC

waveguide with a complete PnC structure [35]. However, such abrupt terminations result in

high perturbation of the waveguide mode that can result in coupling to the lossy unconfined

PnC modes. An alternative approach for confining the acoustic modes while minimizing

the PnC waveguide perturbation is to use the concept of phononic mode-gaps rather than

complete phononic bandgaps at the waveguide terminations. Such approaches have already

been successfully implemented in photonic crystal cavities [133]. In mode-gap-based res-

onators, a heterogeneous-waveguide structure is used, in which the guided mode of the

core waveguide is not supported by the surrounding waveguides (i.e., surrounding waveg-

48



uide have a mode-gap at the frequency range corresponding to the target guided mode of

the core waveguide); hence, the energy remains inside the middle region (i.e., the resonant

area). The introduced perturbation in this approach is sufficiently small that still preserves

the global periodicity of the structure.

In this chapter, I present a new design for integrated phononic crystal (PnC) resonators

based on confining acoustic waves in a heterogeneous waveguide-based PnC structure [134,

93]. In this architecture, a PnC waveguide that supports a single mode at the desired res-

onance frequencies is terminated by two waveguide sections with no propagating mode at

those frequencies (i.e., have mode gap). The proposed PnC resonators are designed through

combining the spatial-domain and the spatial-frequency domain (i.e., the k-domain) analy-

sis to achieve a smooth mode envelope. This design approach can benefit both membrane-

based and surface-acoustic-wave-based architectures by confining the mode spreading in

k-domain that leads to improved electromechanical excitation/detection coupling and re-

duced loss through propagating bulk modes. The new design for PnC resonators based on a

heterogeneous three-region PnC waveguide based architecture is composed of: 1) a single-

mode PnC waveguide, 2) two end terminating PnC waveguides with mode gap, and 3) two

adiabatic transition regions. This new design enables us to design a PnC resonator mode

with smooth spatial mode profile with maximum localization in k-domain that allows for

higher coupling efficiency and possibly lower loss. The proposed architecture also can be

extended to SAW-based devices in which it can considerably suppress radiation loss due to

coupling to the bulk modes. The high-Q and low input impedance enabled by the proposed

structure are applicable to a wide range of PnC lattices and material structures for various

applications.

4.1 Proposed resonator structure

Two common PnC resonator structures are the Fabry-Perot resonators [34] (see Fig. 4.1(a))

and the waveguide-based PnC resonators formed by a line segment defect in otherwise
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Figure 4.1: Different schemes for PnC resonators. (a) Transversal resonances between two
arrays of PnC. (b) Multi-mode waveguide-based resonators without dislocating adjacent
unit cells to the waveguide. (c) Single-mode waveguide that is abruptly connected to PnC.
(d) Single-mode waveguide that is adiabatically terminated to mode-gap waveguides.

complete PnC lattice [35] (see Fig. 4.1(b)). Despite impressive performance, both of these

architectures have structural limitations. The former has a large structure and is not suitable

for dense integration with other functional PnC structures while the latter may suffer from

inherently multi-mode waveguide with difficult excitation (see Fig. 4.1(b)) as well as leak-

age of phonons at the abrupt discontinuity between the PnC waveguide and the complete

PnC (see Fig. 4.1(c)). An ideal waveguide-based resonator should support single-mode

operation with minimal leakage (or no abrupt termination). The design of such optimal

resonators is the focus of this chapter. While the proposed approach can be implemented

in different PnC platforms, I demonstrate it in a membrane PnC structure (see Fig. 4.3(a)).

The proposed resonator structure (schematically shown in Fig. 4.1(d)) is composed of a
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Figure 4.2: Schematic of the mode-gap waveguide-based resonators. (a) The mechanism
of confinement in mode-gap termination and the frequency ranges the phononic mode is
propagating or confined. (b) The acoustic resonance mode with mode-gap termination.

segment of single-mode PnC waveguide terminated at both ends to another PnC waveguide

with no allowed guided mode (i.e., terminated to PnC waveguides with a mode gap for the

middle single-mode waveguide). The detailed implementation of this resonator is shown

in Fig. 4.2 in which the single-mode PnC waveguide in the middle is formed by removing

one row of metallic PnC pillars and reducing the width of the PnC waveguide to remove

unwanted guided modes and obtain a single-mode waveguide at the frequency of interest.

The geometry of the PnC structure is adiabatically adjusted from the middle single-mode

PnC waveguide to the mode-gap PnC-waveguides at two sides.

As highlighted in Fig. 4.2(a), the mode gap in the surrounding waveguides is obtained

by engineering the phononic dispersion of the PnC waveguide through changing the spac-

ing (w) between the pillar rows forming the waveguide super cell. In addition to smoothing

the transition between the single-mode waveguide and the mode-gap waveguides, the tran-

sition region allows for fine tuning of the acoustic resonance mode. The length of the

middle waveguide is usually selected based on: 1) the target resonance frequency, 2) the

dimension needed for implementation of the necessary transducers to excite and detect the
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Figure 4.3: Unit cell phononic band structure. (a) The composition of the PnC and the
dimensions. (b) The band structure of the phononic unit cell on the edges of the irreducible
Brillouin zone showing two complete phononic bandgaps at 1.07 GHz and 1.45 GHz.

acoustic mode, and 3) the desired input impedance of the resonator. Figure 4.2(b) shows

the simulated out-of-plane field pattern of the resonance mode of the proposed structure; it

clearly demonstrates the acoustic wave confinement in the center of the PnC resonator.

4.2 Design and simulation of the mode-gap resonator

The first design step is to form a PnC structure with a large phononic bandgap (PnBG).

Based on the detailed theoretical simulation, I chose a triangular lattice of nickel (Ni) pillars

with detailed dimensions shown in Fig. 4.3(a). This structure is selected by calculating the

band structure of a large number of PnC structures with different lattice symmetry and unit

cell geometry. The calculated band structure of this PnC is shown in Fig. 4.3(b), which is

based on 3D-FEM implemented in the COMSOL environment. The wavenumber is swept

over the edges of the irreducible Brillouin zone shown in the inset of Fig. 4.3(b) (due to

the anisotropicity in Si and lattice symmetry) to accurately extract the unit cell phononic
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Figure 4.4: (a) The schematic of the waveguide unit cell formed by removing a row of pil-
lars and the vectorial displacement profile of a vibration mode inside the mode-gap region
(i.e., point A in (b)). (b) Phononic dispersion of the designed single-mode PnC waveguide
and the mode-gap PnC waveguide. The shaded region specifies the range of mode-gap fre-
quencies if the waveguide width wi varies to wf . The blue dash lines specify the extent of
the single-mode range of frequencies for wi.

band structure. The details of the physics and simulation of the PnBG in the pillar-based

membrane structure discussed in Ref. [31]. Figure 4.3(b) shows the existence of two PnBGs

centered at 1.07 GHz and 1.45 GHz. I implemented my resonator in the lower PnBG due

to its wider bandgap. The next step is to design a single-mode PnC waveguide (by adding

a line defect) with a reasonably large single-mode guiding bandwidth. The line defect is

created by removing one row of pillars in the Γ−K direction (see Fig. 4.4). To design the

single-mode PnC waveguide and the mode-gap PnC waveguides in Fig. 4.2(b), I vary the

width of the guided region (w) over a large range and calculate the dispersion diagrams of

the guided mode(s) within PnBG of the PnC waveguide. The simulation results (using 3D-

FEM) for two values of w (wi and wf corresponding to the width of the single-mode and

the mode-gap PnC waveguide respectively) are shown in Fig. 4.4(b). Figure 4.4(b) clearly

shows the single-mode operation of the center waveguide withw = wi = 0.8×a
√

3 and the

53



(a) (b)

(c) (d)

L=12a

L=16a

L=16aL=12a

L=12 a

f =1084.8 MHz f =1084.4 MHz

L=16 a

a

max

min

0

Figure 4.5: Mode-gap phononic resonators at different lengths. (a)-(b) k-domain and real
domain of two acoustic resonance modes for the out-of-plane displacement profile shown
in (c)-(d) with normalized length of 12 (red curve) and 16 (blue curve) and the same termi-
nation profile.

existence of the mode gap for wi at the terminating waveguides w = wf = 0.64 × a
√

3 in

the frequency range of 1.05 GHz–1.07 GHz. The mode of the single-mode waveguide is an

asymmetric Lamb wave with dominant out-of-the-plane vibration, which can be efficiently

excited by IDTs on top of the structure.

The design of the adiabatic transition region on the two sides of the single-mode PnC

waveguide depends on the difference between wf and wi in Fig. 4.4. To optimize these

transition region, I use the design strategy developed for the photonic crystal counterpart

of these structures [133]. The design goal in this approach is to form a waveguide-based

resonance mode with two sharp peaks in the k-domain (i.e., Fourier transform of the spatial

coordinate in the out-of-plane direction, z-direction in Fig. 4.4). This assumes the relatively

uniform distribution of the field energy of the resonant mode over the central region, which
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facilitates the excitation by IDTs and reduces the input impedance of the structure. The de-

sign approach is demonstrated in Fig. 4.5 for two different lengths of the transition region,

in which the waveguide width changes from wf to wi.

Figures 4.5(a) and 4.5(b) show the z-component (i.e., out-of-plane component) dis-

placement profiles of two flexural resonance modes in the k-domain and the spatial do-

main, respectively. The uniform distribution of the resonance mode energy over the entire

single-mode region in spatial domain and tight localization in k-domain in the form of two

sharp peaks are evident from Figs. 4.5(a) and 4.5(b). In addition, the L = 16 a results in

weaker strength of uz in DC content of k-domain outside of the two sharp peaks as it is

a longer waveguide with less acoustic energy concentration at the terminations, which is

desirable. Note that, these two sharp peaks correspond to the forward and backward wave

propagation in the center PnC waveguide, which forms a standing wave as evidenced by the

spatial mode pattern in Fig. 4.5(b). Also note that the suppression of the acoustic energy

corresponding to low k values (i.e., among DC component) is highly desirable in extending

this design to the SAW-based PnCs in which the low wave vector components of resonant

acoustic mode, that fall within sound cone (or the radiative region), can couple to the bulk

modes, resulting in considerable acoustic loss and low resonator Q.

Designing a high-Q low-input-impedance waveguide-based resonator also requires: 1)

the resonance frequency to be close to the middle of the PnC bandgap to minimize leakage

through limited number of fabricated PnC layers, 2) lower elastic energy concentration in

the metallic pillars to reduce the metallic loss, and 3) dominant vibration in the out-of-

plane direction to be efficiently excited by the fabricated IDTs, which accordingly lowers

the input impedance.

4.3 High-Q surface phononic crystal resonator

The demonstration of hypersonic surface PnC platform in Chapter 2 paves the way toward

fabricating practical CMOS-compatible low-loss PnC devices for filtering applications in
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wireless communications. At the heart of such PnC devices, a high-Q phononic resonator

is always necessary. My surface PnC platform offers a lower level of material phononic

loss due to the utilization of non-metallic (i.e, dielectric-based) pillars for realizing the

surface PnC devices. However, in addition to the material loss, structural losses including

the radiation loss (i.e., coupling to bulk modes) and fabrication-induced phononic losses

(e.g., sidewall roughness) should be also minimized. To minimize the radiation loss in

the surface PnC resonator, an appropriate defect should be introduced to the PnC lattice

supporting a phononic resonance mode (close to the middle of the surface PnBG) whose

wavenumber content within sound cone of the underlying Si substrate is sufficiently weak.

This will ensure that the coupling to the radiative bulk modes as well as coupling to the

unconfined surface PnC modes is suppressed.

I designed my surface PnC resonators according to the proposed mode-gap waveguide-

based technique as detailed in Sec. 4.2. My strategy to realize such a point-like defect is

to connect a single-mode surface PnC waveguide smoothly (or adiabatically) over a tran-

sition region with mode-gap termination waveguides. I use an optimized surface phononic

waveguide based on the ridge-type structure as detailed in Chapter 3.

To address fabrication imperfection losses, I optimized an ICP etching recipe for dry

etching AlN by using a high-resolution negative e-beam resist flowable oxide (FOx) to

pattern a hard etching mask for AlN PnC structures by e-beam lithography (see Fig. 4.6).

This significantly reduces roughness compared to the lift-off process of chromium (Cr).

Additionally, the FOx etching mask allows for more vertical sidewalls compared to Cr

etching mask. This enables patterning a dense array of (high-aspect-ratio) AlN pillars for

realizing SAW-PnC supporting a PnBG at multi-GHz.

4.3.1 Designing mode-gap termination in the pillar-based SAW-PnC platform

Designing a wideband single-mode waveguide is challenging and requires an extensive

search through FEM simulations with several optimization parameters. In Chapter 3, the
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Figure 4.6: AlN waveguide structures patterned by FOx and etched in an ICP etching
tool. (a) The top-view SEM of the fabricated AlN waveguides. (b) Cross-section of the
fabricated AlN waveguides (from top to bottom: FOx/10 nm Cr/AlN/Si). Evaporated Cr
was initially used to protect AlN structures in TMAH (TMAH is the developer for FOx).
Later, I used ALD SiO2 to protect AlN in TMAH. (c) and (d) show the roughness on the
sidewall of the fabricated AlN waveguides. The sidewalls are close to vertical.

surface phononic waveguiding in the pillar-based PnC platform in AlN on Si was studied

and the ridge-based line defect was proposed for the realization of surface phononic waveg-

uiding. In such pillar-based platforms, the strategy for designing the mode-gap termination

(starting from the main single-mode waveguide positing in the central part of the cavity) is

not by laterally adjusting the size of the defect, but by anisotropically scaling the waveguide

super-cell along the direction of the defect. This approach of perturbation allows for side-

coupling of several PnC resonators for designing higher-order SAW filters by conveniently

adjusting the mechanical couping between the surface PnC resonators without worrying

about lattice mismatches.
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Figure 4.7: ICP etching of AlN PnC structure using a chromium (Cr) lift-off mask. (a) and
(b) show the side-view SEMs from an AlN sample patterned with a Cr mask prior to ICP
etching. (c) and (d) provide side SEMs from the AlN sample after 500 nm etching of AlN
and removing the residue of Cr in a wet process.

4.3.2 Etching AlN PnC devices using FOx hard mask

Despite simplicity, creating a Cr hard mask by a lift-off process [i.e., patterning a posi-

tive e-beam resist followed by evaporation of Cr and then lift-off of the deposited Cr, see

Figs. 4.7(a) and 4.7(b)] limits the density of AlN feature sizes by their angle of the side-

walls. Since in pillar-based surface PnCs, the aspect ratio of the pillars is usually high, the

sidewall angle could limit the realization of hypersonic surface PnCs. Moreover, the de-

viation from vertical sidewalls lowers the bandwidth of the PnBG. Non-vertical sidewalls

stem from the fact that the lift-off process creates a Cr mask with non-vertical sidewalls

because of the shadowing effect (see Fig. 4.7(b)), which results in non-vertical AlN pillars

during ICP etching of AlN as shown in Figs. 4.7(c) and 4.7(d).
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Figure 4.8: ICP etching of AlN PnC resonators using the FOx e-beam resist with the thick-
ness of 700 nm. (a) and (b) show the top-view SEMs from an AlN sample patterned with
FOx prior to ICP etching. (c) and (d) provide side SEMs from the AlN sample after 500 nm
etching of AlN and removing the residue of FOx with BOE.

To fabricate the surface PnC resonators a new etching mask was developed by e-beam

patterning of a high-resolution negative resist FOx (from Dow Corning) to enable ver-

tical sidewalls. Tetramethylammonium hydroxide (TMAH) is the developer of Fox and

severely etches AlN. Therefore, AlN samples have to be protected in TMAH. I deposit 10

nm AlD SiO2 to protect the AlN samples during the development of the FOx. Figures 4.8(a)

and 4.8(b) show the FOx etching hard mask patterned on an AlN sample coated with a thin

layer of ALD SiO2. As Figs. 4.8(c) and 4.8(d) show, FOx enables the fabrication of more

vertical sidewalls which helps to increase the width of the PnBG as well as the fabrication

of AlN PnC structures for much higher frequency.
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CHAPTER 5

STIMULATED BRILLOUIN SCATTERING IN

PHONONIC-CRYSTAL-ASSISTED SILICON NITRIDE WAVEGUIDES

In this chapter, I investigate the application of hypersonic pillar-based membrane PnC

structure for designing stimulated Brillouin scattering (SBS) structures in silicon nitride

(SiN) [135, 136]. These SiN PnC structures benefit from low optical losses, wide op-

tical transparency window, and high optical power-handling of SiN, which enables my

structures to achieve high total SBS gain (i.e., GSBS = gmPp). Additionally, the tensile-

stressed LPCVD SiN when accompanied by my designed PnC membrane can lower the

SBS threshold power by suppressing phononic leakage. Moreover, the PnC membrane in

the proposed SiN waveguides can enhance SBS by: 1) maximizing the overlap between the

desired acoustic modes with the optical forces, and 2) reducing the number of unwanted

acoustic modes. Minimizing unwanted acoustic modes could also potentially reduce the

power budget for the SBS process by eliminating the creation of unwanted Stokes wave

from the scattered input pump. My photonic/phononic platform allows for the design of

single-mode acoustic waveguides, which benefits applications including GHz-rate comb

generation with a uniform RF spacing between comb lines. Harnessing SBS in SiN enables

monolithic integration of SBS devices with on-chip photonics and electronics functional-

ities, which promises unprecedented on-chip nonlinear optics and GHz signal processing

applications in an integrated platform.

5.1 Theory of stimulated Brillouin scattering

Inelastic scattering of light by lattice vibration (so called phonon) falls into two regimes,

according to whether the phase shift between the adjacent vibrating lattice sites (i.e., atoms)

is negligible or not. In the Brillouin regime, light scattering induces a tiny phase shift
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between atoms and results in the excitation of acoustic phonons. In the Raman regime,

however, the phase shift is non-negligible and light scattering involves optical phonons.

Depending on whether the creation of phonons is due to fluctuations or an intense optical

force, the scattered light falls in either the spontaneous or stimulated regime, respectively.

Similar to optical parametric oscillations (OPOs), the prerequisite to an efficient stimulated

Brillouin scattering (SBS) is the precise phase-matching between a pair of optical modes

(pump and red-shifted Stokes) and an acoustic mode. In other words,

ωp − ωs = Ωm (energy conservation),

−→
k p −

−→
k s =

−→
Km (momentum conservation),

(5.1)

in which, ω/2π (Ω/2π) and
−→
k (
−→
K ) are the frequency and wavevector of the optical (acous-

tic) modes, and p, s, and m denote the pump, Stokes, and acoustic modes, respectively.

Although Brillouin scattering was predicted in the 1920s, the interaction was exper-

imentally confirmed in quartz and sapphire [137] in 1964 following the invention of the

laser. Since then, with the advancement in microphotonic and nanophotonic fabrication

technologies, devices that meet the essential requirements of SBS process have been pro-

gressively enhanced, enabling numerous applications for SBS including narrow-linewidth

lasers [58, 138, 65], inertial sensors [59], non-reciprocal optical devices [139, 140], GHz-

rate comb generation [52, 53, 141, 142], and slow light and optical memories [60, 61, 143].

These appealing applications have motivated further investigations of SBS and its imple-

mentation in platforms compatible with integrated photonics [54, 50, 63] and electronics

[144].

Different platforms have been studied for SBS such as chalcogenide glasses [51, 62],

Si [54, 50, 63], silica [52, 64, 49, 65], and CaF2 [55] to obtain a large SBS gain, g, and

ultimately a very low threshold power, Pth, quantified as [145, 146, 54]
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g(Ω) =
ωoQm

2km
|〈f,um〉|2Lm(Ω− Ωm),

Pth = α/gm,

(5.2)

where ωo/2π and α are the optical frequency and the optical loss of the waveguide, re-

spectively; f is the power-normalized optical force vector, and Ωm/2π, um, Qm, and km are,

respectively, associated with the resonance frequency, displacement vector, quality factor,

and effective stiffness of the acoustic mode m, gm = g(Ωm) and Lm(Ω − Ωm) is the nor-

malized Lorentzian lineshape with Lm(0) = 1. I assumed ωs = ωo and ωp−ωs � ωs as the

SBS frequency spacing between optical pump and Stokes waves is often a few GHz. Once

the total SBS gain, GSBS = gmPp, exceeds the optical loss (α), i.e., there is a net SBS gain,

the Stokes wave grows as

Ps(L) = Ps(0) exp(gmPpLeff − αL), (5.3)

in which Pp is the (non-depleted) input pump power and Leff = (1 − exp(−αL))/α.

Eq. (5.2) reveals that to achieve the maximum gain (i.e., gm) the integral overlap between

the optical force and the acoustic mode over the cross section of the structure (A) (i.e.,

〈f,um〉 =
∫
A

f ∗ · umda) has to be maximized. This necessitates tight localization of optical

and acoustic modes along with a large optical force whose profile matches the displacement

profile of the acoustic mode. Additionally, Eq. (5.2) emphasizes the importance of optical

loss and mechanical quality factor in lowering the threshold power. As a result, different

materials and designs have been investigated for low-loss tight confinement of optical and

acoustic waves.

To achieve a large optical force, a large refractive index contrast is needed. This is the

motivation behind using free-standing Si nanowires [50, 54, 147] that confine both acous-

tic and optical waves via total internal reflection. However, Si nanowires suffer from linear
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losses (i.e., scattering loss) and nonlinear losses (such as two-photon absorption (TPA)

and TPA-induced free-carrier absorption [54, 148]) that may stifle efficient on-chip SBS

generation. Some other proposed platforms like CaF2 or silica either are not suitable for

integrated photonics or possess small refractive index contrasts. Among several alternative

materials, silicon nitride (SiN) is a promising platform as it is fully compatible with inte-

grated photonics technology with a relatively large refractive index, wide transparency win-

dow (i.e., from visible to infrared wavelengths), and ultra-low optical losses [149]. Wider

transparency window in SiN permits SBS interaction at shorter optical wavelengths (not

possible in Si and chalcogenide structures) and allows the use of low-noise solid-state lasers

[77, 150] at these wavelengths. In addition, high-tensile stress in low-pressure-chemical-

vapor-deposited (LPCVD) SiN allows extremely low phononic losses [151, 152, 66, 153],

enabling higher SBS gains.

5.2 Design of the phononic crystal structure

Figure 5.1(a) shows the schematic of a free-standing SiN nanowire, and the corresponding

phononic dispersion diagram of its acoustic modes propagating along the y direction cal-

culated using the finite element method (FEM) implemented in COMSOL. The dispersion

diagram is extracted by applying Floquet periodic boundary conditions on the boundaries

perpendicular to the y axis (see Fig. 5.1(b)). Figure 5.1(b) depicts the displacement profiles

of different bands in the nanowire phononic dispersion diagram at normalized wavenum-

bers Kma = 0.01 and 0.3.

Investigation of the phononic bands starting with Ωm(Km = 0) = 0 (i.e., the blue

curves in Fig. 5.1(a)) reveals that the polarization of bands 1 and 2 are shear vertical and

shear horizontal, respectively. Band 3 is a torsional mode resulting from mixing bands

1 and 2 via the boundaries of the nanowire, and band 4 is a longitudinal mode. Since

the polarizations of bands 1–4 resemble those of the acoustic modes in bulk material (that

are utilized in conventional Brillouin scattering), we refer to them as Brillouin-like acous-
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Figure 5.1: Phononic dispersion diagram of a free-standing SiN nanowire. (a) Phononic
dispersion bands of a nanowire with (w, h) = (600, 400) nm and (E, ν, ρ) = (250 GPa,
0.25, 3100 kg/m3). E, ν, and ρ are Young’s modulus, Poisson’s ratio, and mass density,
respectively. The acoustic wavenumber is normalized to ”a”, which is the length of the
simulated portion of the waveguide (i.e., a = 500 nm ); Dispersion bands can be classified
as Brillouin-like acoustic phonons and Raman-like acoustic phonons based on the starting
frequency at Kma = 0. (b) Vibration profiles and propagation direction (i.e., along the
y direction) of the acoustic modes of the SiN nanowire at Kma = 0.3 for bands 1–4 and
Kma = 0.01 for band 5 in (a). White arrows depict the dominant vibration direction.

64



tic phonons. However, the phononic bands with Ωm(Km = 0) 6= 0 (i.e., red curves in

Fig. 5.1(a)) resonate transversally between boundaries of the nanowire at smaller wavenum-

bers and gradually tend to be traveling as wavenumber increases. As these red bands in

Fig. 5.1(a) behave similar to optical phonons in the vicinity of Km = 0, we refer to them as

Raman-like acoustic phonons [53]. By expanding the structure from nanowire to bulk with

no boundaries, Raman-like acoustic phonons merge with Brillouin-like acoustic phonons

and what remain are the three fundamental types of acoustic plane waves: longitudinal,

shear vertical, and shear horizontal.

Among Raman-like acoustic modes, the breathing acoustic mode (i.e., the green band

5 in Fig. 5.1(a)) yields the highest interaction with the fundamental guided photonic mode

(i.e., TE1) of the SiN nanowire. This is because the cross-sectional variation of the displace-

ment profile of these breathing acoustic modes closely matches the profile of the radiation

pressure of the photonic mode, which is normal to the surface of the optical waveguide.

This greatly enhances the SBS gain (because of gm ∝ |〈f,um〉|2) and reduces the thresh-

old optical pump power for nonlinear processes (e.g., phonon lasing) compared to other

acoustic modes of the structure. The mechanical resonance frequency of these Raman-

like breathing modes in sub-micron-size dimensions for SiN devices falls in multi-GHz

frequency ranges.

The need for a mechanical support in a practical structure results in acoustic loss

through the support that will reduce the overall SBS gain. To overcome this challenge,

in my design, the optimal SiN nanowire is held in place by adding a PnC structure on

the two sides (see Fig. 5.2(a)) exhibiting a phononic bandgap (PnBG) at the desired range

of frequencies, which provides the support for the nanowire and yet confines the acoustic

phonons to the SiN optical waveguide region at bandgap frequencies for strong photon-

phonon interaction. Compared to the structures confining the generated acoustic phonons

through the acoustic refractive index contrast between the waveguide and substrate (e.g.,

[51]), membrane structures enable tighter confinement because there is no decaying tail
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for the acoustic modes to the surrounding environment (unless through the membrane).

The application of the PnC structure, furthermore, limits the number of confined acous-

tic modes to those over a certain range of frequencies within the PnBG, culminating in a

smaller resonant mode as compared to membrane-based nanowires suspending with arms

at far distances [50], which are in general acoustically highly multi-mode. Therefore, PnCs

prevent the formation of SBS at frequencies outside the PnBG because of the small overlap

between the associated vibration profile with the optical force, which is highly localized

to the optical waveguide region, yielding an extremely small SBS gain (i.e., 〈f,um〉 ≈ 0).

This minimizes the competition between different acoustic modes in SBS, resulting in SBS

with a cleaner spectrum and lower threshold power.

The mechanism of phononic confinement in a pillar-based PnC is the Bragg reflection

that is enhanced by local resonances of the SiN pillars [31]. Due to the large optical refrac-

tive index contrast between SiN and air, a small distance between the PnC structure and the

SiN nanowire in Fig. 5.2(a) is enough to make sure that the guided optical modes of the

SiN waveguide do not interact with the PnC pillars. Since the pillars in the structure (see

Fig. 5.2(a)) do not scatter the guided photons, the design of the line defect inside the PnC

(which effectively forms a PnC cavity) is independent of the design of the optical (SiN)

waveguide. This simplifies the design procedure.

To design the PnC cavity, I first optimize a unit cell of the triangular pillar-based PnC

(see Fig. 5.2(a)) to support a wide PnBG with a center frequency close to resonance fre-

quency of the desired breathing acoustic mode of the free-standing SiN nanowire. Af-

ter designing the unit cell, I create a phononic defect by removing a few rows of pillars

from the perfect PnC and replacing them with the SiN nanowire (i.e., the center region in

Fig. 5.2(a)). The resulting structure can be visualized as a SiN nanowire with side pedestals

surrounded by two perfect PnC regions (see Fig. 5.2(a)). The width of the PnC line defect

is then finely adjusted to support a breathing-like acoustic mode possessing the maximum

breathing vibration inside the optical waveguide. For ease of fabrication, I assume the
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height of the pillars and the waveguide to be identical, which then allows to fabricate the

whole structure using a single lithography-and-etching step without the need for separately

aligning pillars with the SiN waveguide. This is very important when fabricating a long

waveguide as a minor misalignment between the waveguide and the PnC can significantly

change the spectrum of SBS and make the Stokes linewidth broader. As an example, using

a search through FEM simulations, for the optical waveguide width of w = 0.7 µm (see

Fig. 5.2(a)), I chose a = 0.5 µm, r = 0.22 µm, h = 0.32 µm, and t = 80 nm for the PnC

structure whose dispersion diagram is shown in Fig. 5.2(b) demonstrating a large PnBG in

the 5.48 – 7.69 GHz frequency range. I also selected the width of the phononic line defect

w′ = 2.77 µm because it yields stronger breathing vibration inside the selected optical

waveguide width, which accordingly maximizes the overlap between the confined acoustic

mode and the guided photonic modes in the optical waveguide width of w = 0.7 µm.

5.3 Optical forces and SBS gain calculations

Traditional SBS theory [154] only captures the bulk-induced nonlinearity (i.e., the elec-

trostriction effect —the material density variation in response to the light intensity, which

accordingly affects the material permittivity) and treats optical and acoustic waves as plane

waves. However, as the cross-section of the waveguide scales down, plane-wave-approximated

SBS is no longer valid because it misses the boundary-induced nonlinearities primarily

caused by radiation pressure that plays a major role in SBS at nanoscale structures.

Recent studies [145] predict a large enhancement of SBS in nanostructures as a result

of the boundary effects, which add to the SBS caused by electrostriction effect. In fact,

traveling photons inside a structure with nanoscale cross section exert a noticeable optical

pressure normal to the boundaries of guiding region formulated as [146]

f (r) = (
−1

2
∆ε Ept(r)E∗st(r) +

1

2
∆(ε−1)Dpn(r)D∗sn(r)) n̂ δ(r− rΩ), (5.4)
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derived from the Maxwell stress tensors (MSTs). In Eq. (5.4), E, D, and ∆ε denote the

electric field amplitude, the electric displacement field amplitude, and the difference in the

permittivity across the boundaries, respectively; subscripts t and n refer to the tangential

and normal components, subscripts p and s refer to the pump and Stokes waves, respec-

tively. In addition, r is the position vector and n̂ represents the unit vector normal to the

boundaries of the waveguides; and δ(r) is the Dirac delta function. The force is non-zero

only at the boundaries of the waveguide (i.e., r = rΩ) and pointing from the high-index

region (larger ε) to the low-index region (smaller ε). MSTs can also induce a body force

inside optical waveguides if the refractive index varies across the cross-section, which is

not the case for our structure.

To calculate the force and the overlapping integral between the optical and acoustic

modes of the structure shown in Fig. 5.2(a), I first use the FEM to simulate the optical and

acoustic modes (and their corresponding frequencies and field profiles) using eigen-mode

analysis. Then these modes are imported in the vectorial format into an in-house MATLAB

code to calculate the optical force using Eq. (5.4), and then the overlapping integral between

optical and acoustic modes to find the SBS gain as formulated in Eq. (5.2). Here, I consider

forward SBS (FSBS) in which pump and red-shifted Stokes waves are co-propagating as

the designed PnC structure supports a Raman-like acoustic mode within its PnBG.

Considering the energy and momentum conservations in FSBS (i.e., Eq. (5.1)) when

pump and Stokes waves are from the same optical dispersion band, we obtain

Km = kp(ωp)− ks(ωs) = Ωm
∂k

∂ω
= Ωm/vg, (5.5)

where vg is the group velocity of the optical waves. Therefore, to satisfy the phase match-

ing condition in the FSBS, the phononic structure should support an acoustic mode with

acoustic phase velocity that matches the group velocity of the engaged optical modes. The

nonzero frequency of the Raman-like modes at zero wavenumber and the flat nature of their

69



band structure will ensure the phase matching condition. Owing to the fact that the fre-

quency of the Raman-like breathing acoustic mode is several orders of magnitude smaller

than the frequency of the optical pump and Stokes modes (i.e., (ωp − ωs)/ωp � 1), we

can assume in the structure that the optical mode profile of the incident pump and Stokes

modes are similar.

Figure 5.3(a) shows the magnitude of the FSBS gain in free-standing nanowires as a

function of the waveguide width (i.e., w) simulated for the breathing acoustic mode at

λopt = 1.55 µm. As shown in Fig. 5.3(a), the maximum radiation pressure gain normal-

ized to the mechanical quality factor of the acoustic mode (i.e., gm/Qmech) is achieved for

a SiN waveguide with h = 400 nm and w = 550 nm, which is gm/Qmech = 0.06 (W.m)−1.

Figure 5.3(a) highlights the importance of tight localization, i.e., the smaller width of the

waveguide results in a larger SBS gain or a stronger photon scattering due to the gener-

ated SBS acoustic phonons. For waveguides with widths smaller than 0.5 µm, the light

confinement inside the physical cross section of the SiN nanowire is considerably reduced,

resulting in a reduction in the integral overlap of optical and acoustic modes, and therefore,

the SBS gain.

In Fig. 5.3(a), I also compare the normalized SBS gain (i.e., gm/Qmech) in the PnC-

assisted structure with SiN nanowire. To calculate the gain in the PnC-assisted structure as

a function of the width, the PnC is accordingly adjusted to have the breathing frequency at

the middle of its PnBG. The smaller value of gm/Qmech in the PnC-assisted structure can be

attributed to the emerging flexural vibration in the pedestal (see Fig. 5.3(b)), which slightly

delocalized the acoustic mode from the optical waveguide. In fact, the flexural vibration

does not significantly scatter light compared to breathing vibration because it preserves

the total area of the nanowire cross-section. However, the PnC membrane provides loss-

less support for the SiN waveguide and better structural stability compared to the bare SiN

waveguide with arms at far distances. This enables fabrication of longer SBS waveguides

leading to a larger power in the Stokes wave.
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Figure 5.3: FSBS gain in SiN nanowires and PnC-assisted SiN waveguides. (a) Variation
of the FSBS gain in the SiN nanowire for the acoustic mode shown in (b) as a function of
its width (w) for three different heights (h = 0.3 µm, h = 0.4 µm, and h = 0.45 µm). In
addition, the FSBS gain for a PnC-assisted waveguide with the total thickness of 400 nm
is compared with that of different nanowires. The gain slightly reduces because of the
extension of the acoustic waves to the pedestal. (b) The acoustic breathing vibration mode
and the electric field of the fundamental TE optical mode (i.e., TE1 whose electric field
lies in the plane of the nanowire) used in the simulation of the FSBS gain of nanowires. In
addition, the breathing-like acoustic vibration mode inside the PnC-assisted waveguide is
depicted, which is a combination of two primary vibrations: breathing and flexural.
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Table 5.1: Comparison of SBS gain and linear optical loss between different optical struc-
tures.

Structure gm [W−1·m−1] Linear optical loss [dB·cm−1]
Si nanowire [147] 1152 0.18
Si nanowire [54] 6561 5.5

Single-mode fiber [155] 0.14 0.2
As2S3 waveguide [51] 310.8 0.8

This work (Theory) 500 0.1

It has been shown that the high tensile stress in LPCVD-deposited stoichiometric SiN

results in extremely high mechanical quality factors (Qm-frequency product > 2 × 1013

[66]) at room temperature and (Qm-frequency product > 3 × 1015 [153]) at millikelvin

temperatures in SiN membranes. Therefore, having additional PnC to prevent anchor loss

(or phononic leakage) makesQm ≈ 104 a reasonable prediction at GHz frequencies for SiN

membrane. Therefore, we expect that the SBS gain around gm = 600 can be achieved in

tensile-stress SiN. In addition, the presence of the PnC structure eliminates several unde-

sired acoustic modes that naturally exist in the nanowire structures, which can result in the

generation of unwanted Stokes modes. Thus, the proposed PnC-assisted structure improves

several properties of a single nanowire for SBS generation.

Table 5.1 compares the (forward/backward) SBS interaction in different optical struc-

tures in terms of the SBS gain (gm) and linear optical loss. As it is clear, single-mode fiber

has the lowest SBS gain among the structures because of the loose confinement of the en-

gaged optical and acoustic modes. However, thanks to the low loss of optical fibers, SBS

is still observed although over several kilometers lengths. By shrinking the cross section of

optical structures, we generally observe that the SBS gain is increased; however, the tighter

cross-section confinement introduces additional scattering optical losses. In particular, in

the case of the Si nanowires listed in Tab. 5.1, the increasing SBS gain incurs (signifi-

cantly) higher optical loses. Therefore, even though the SBS gain in SiN is not as high as

the Si structures, the lower optical losses in SiN can compensate the difference and enable

promising on-chip SBS devices with low threshold powers.
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Figure 5.4: Properties of a SiN
nanowire on a membrane without
PnC. (a) The cross-section of the
nanowire (height = 400 nm and width
= 600 nm) on a membrane with the
width of w and the height of 80 nm.
(b) The breathing-like acoustic modes
of the structure shown in (a) at Km =
0 for different membrane widths. The
color code for the representation of the
acoustic resonances is the “breathing-
like parameter”. (c) Zoomed version
of a resonance mode of the structure
in (a) in the region identified by the
dashed black square in (b) demonstrat-
ing mode-splitting (or avoided cross-
ing) due to the coupling between
a breathing-like acoustic branch and
other acoustic branches of the struc-
ture. (d) The FSBS gain calculated
for the closest mode of the structure
in (a) to the breathing mode of an
ideal nanowire (i.e., the mode with the
largest “breathing-like parameter” in
(b)) as a function of w.
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In order to further highlight the benefits of integrating the membrane structure with

PnCs, I also study the FSBS gain in a nanowire sitting on a membrane without PnCs (see

Fig. 5.4(a)). Because the nanowire-on-membrane structure (Fig. 5.4(a)) with infinite width

(w) does not support a breathing mode confined inside the nanowire, I calculate the FSBS

gain for membrane structures with finite width. In Fig. 5.4(b), the acoustic resonances of

this structure as a function of w are shown and color-coded based on the “breathing-like

parameter”, which is the overlap integral over the region specified in Fig. 5.4(a) between

the normalized field patterns of the acoustic resonance mode of the nanowire-on-membrane

structure and that of the corresponding ideal nanowire (a free-standing nanowire with no

membrane) with the same height and width. Figure 5.4(c) illustrates the zoomed version

of Fig. 5.4(b) around w = 4 µm, which shows an avoided crossing (or mode splitting)

between different acoustic branches. The simulated mode profiles of different points on

the band structure in Fig. 5.4(c) reveals the transition of the acoustic mode families across

the avoided crossing. Figure 5.4(d) shows variation of the FSBS gain as a function of

w for the breathing-like vibration and illustrates that by extending the width of the struc-

ture, the FSBS gain reduces owing to the lower concentration of the acoustic mode en-

ergy (or power) in the form of breathing vibration inside the optically relevant region (i.e.,

nanowire). This highlights one of the benefits of the PnC-based structure that enables con-

finement of the (breathing) acoustic modes to the optical region. In addition, Fig. 5.4(d)

reveals that the FSBS gain drops when breathing acoustic modes transition from one acous-

tic branch to another acoustic branch of the structure.

I should also highlight that in addition to radiation pressure, electrostrictive force also

contributes to the SBS interaction and could be significant as those in silicon nanostruc-

tures. However, there is no reported measurement on the photo-elastic coefficients of SiN

[41] that allows me to incorporate them in my study.
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Figure 5.5: (a) Etching SiN devices using an RIE recipe [149]. (b) Etching SiN using the
developed ICP etching recipe. It clearly shows the sidewalls of the ICP etching are much
more vertical compared to the RIE recipe.

5.4 Fabrication of membrane-based SBS PnC devices

My PnC-based SBS membrane devices in SiN require a very smooth and vertical sidewall

for the fabrication of very low loss optical structures as well as the fabrication of the hy-

personic pillar-based PnC structure. The previously-optimized SiN RIE etching, shown in

Fig. 5.5(a), yields extremely low-loss optical devices [149]. However, the tail of the side-

walls in the RIE etching does not allow to fabricate the dense hypersonic PnCs structure.

Therefore, I developed an ICP etching recipe for fabricating SiN devices in an Ar/O2/CF4

chemistry as shown in Fig. 5.5(b). I use a high-resolution FOx e-beam resist to create a

hard etching mask for the SiN devices prior to ICP etching.

Another challenge to fabricate SBS SiN devices was to release several microns of high-

stress LPCVD SiN. The SiN releasing process should meet the following two requirements:

1) an (extremely) high selectivity between the SiN film and the underlying substrate to

not damage the SiN devices during etching of the substrate, and 2) a very slow rate for

LPCVD SiN undercutting to let the accumulated stress inside the high-stress SiN to be

released gradually during undercutting as the sudden releasing of the stress breaks the SiN

thin structures. After examining several releasing options [i.e., using buffered oxide etch

(BOE), xenon difluoride (Xef2), and potassium hydroxide (KOH)], KOH wet etching was
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Figure 5.6: KOH wet releasing of SiN structures on Si after 22 hours in normal temperature
at cleanroom. (a) Different SiN devices patterned on Si. (b) Releasing a double-disk SiN
structure. (c) and (d) releasing waveguides patterned at different angles with respect to
[100] direction.

selected for releasing SiN devices fabricated on Si because of the extremely high selectivity

between SiN and Si in KOH wet etching, and the extremely slow etch rate of Si in KOH

at cleanroom normal temperature (it usually takes about 15 hours for releasing SiN SBS

structures on Si). Figure 5.6 show a number of test structures on a same Si chip patterned

in a 400-nm-thick high-stress LPCVD SiN film. The bright region shows the extent of SiN

undercutting. In contrast to Xef2 that etches Si isotropically, KOH etches Si anisotropically

(see Fig. 5.6(b)). This requires that SiN structures to be patterned along certain directions

on Si. As Figs. 5.6(c) and 5.6(d) show, long waveguide structures have to be along the

[110] direction.
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CHAPTER 6

ON-CHIP OPTOMECHANICAL PHOTONIC RESONATORS IN

DOUBLE-LAYER SILICON PLATFORMS

This chapter deals with the standing-wave vibrational modes at the RF frequencies that

interact with the resonating optical modes inside a microcavity to enable the so called

cavity optomechanics. Researchers, during the last two decades have extensively explore

cavity optomechanics for diverse areas [157, 158] spanning from the quantum studies such

as cooling of a mechanical object to its ground state [77, 78] and squeezing light [79] to

the classical effects such as sensing [82] and RF oscillations [80, 81].

Here, I present the first report on the fabrication of the optomechanical cavities in a

double-layer Si platform [156]. In these structures, the optical resonance modes (which

form a photonic molecule) are extremely sensitive to the gap size because of the large re-

fractive index of Si, as well as the tiny separation between layers. This collectively leads

to a significant optomechanical interaction as compared to all alternative platforms. More-

over, these structures are able to be integrated with the existing integrated optical devices

to enable novel on-chip optical systems for RF-photonic applications [159]. In this chapter,

Figure 6.1: An optical microdisk resonator in the double-layer Si platform [156]. The
thickness of the top and bottom Si layers are 110 nm that are vertically spaced by a 60-nm
SiO2 layer.
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Figure 6.2: Optomechanical interaction between an (electro)mechanical and optical res-
onator along with the underlying classical equations.

I investigate particularly the above-threshold optomechanical oscillation in the fabricated

double-layer structures with no external feedback as well as high-speed wideband-tunable

optical resonators tuned by an electrical signal in telecom bandwidth.

Figure 6.1 shows an example of a microdisk resonator fabricated in the double-layer

Si platform. The incorporation of the gap (by partially undercutting the sandwiched SiO2)

in these platforms enables the realization of novel cavity optomechanical structures, where

the optical resonance frequency is a strong function of the gap size. Such sensitivity to the

gap size (which has not been reported in any previous demonstrations) makes the fabricated

double-layer structure a very promising candidate for the study of the optomechanical ef-

fects. The tiny gap (∼ 60 nm) between the Si layers also allows for independently adjusting

the optical and mechanical resonance frequencies.

These structures can also accommodate the application of an RF electrical signal that

can capacitively excite the fundamental symmetrical flexural mechanical mode, thereby

communicating with the resonating optical mode inside the structure. Figure 6.2 illustrates

the optomechanical interaction in which the linear optomechanical coefficient (i.e., gOM =
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∂ω/∂x, which indicates the sensitivity of the optical resonance mode to the gap variation

as well as the amount of force exerted by a single photon (Fopt = h̄gOM , where h̄ is the

reduced Planck’s constant)) which mediates the nonlinear coupling between the optical and

mechanical resonance modes of the microcavity.

6.1 On-chip optomechanical oscillators

Resonating optical modes in a double-layer structure exert a gradient-based radiation pres-

sure (Fopt) [160, 72, 73]. This force can be either attractive or repulsive force [160, 161]

depending on whether the excited optical supermodes are bonding (or symmetric) or anti-

bonding (or asymmetric). It has been shown that the gradient-based radiation pressure in

the vertically stacked layers [73] is stronger than the scattering-based radiation pressure

commonly observed in the single-layer (single-object) cavities [67, 80].

Using a slightly-detuned input laser with respect to the optical resonance frequency of

the optomechanical microcavity causes the exerted optical force (gradient-based or scattering-

based radiation pressure) to modify the mechanical resonance mode in the following ways

[162]: 1) the modification of the mechanical resonance frequency (i.e., Ω0 = ΩOM + Ωm),

and 2) the modification of the mechanical damping (i.e., Γ0 = ΓOM + Γm), where Ωm and

Γm are the cold-cavity mechanical resonance frequency and damping, respectively, and

ΩOM and ΓOM are the shifts due to the existing optical forces. ΩOM stems from the fact

that the optically-induced stiffness k = −∂Fopt/∂x adds to the intrinsic stiffness of the

mechanical cavity. However, ΓOM is due to the retarded nature of the optical force which

is delayed on the order of τ = Qopt/wopt (the photon storage time).

Depending on the detuning of the input laser, the mechanical damping modification

(ΓOM ) can result in either the cooling of the mechanical resonator (when the input laser

is red-detuned, ωL < ωopt) or the amplification of the mechanical vibration or oscillation

(when the input laser is blue-detuned, ωL > ωopt). When the input laser is properly detuned

and the power inside the microcavity is above the oscillation threshold power (which is the
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power at which Γ0 = 0), the following explains how the microcavities in the double-layer

structures fall in oscillation leading to the modulation of the input light and creation of

side-lobes at ωL ± Ω0 (which requires δω = 1/τ > Ω0 or the side-lobes lie within the

linewidth). Closely-resonating input laser builds up light inside the optical cavity which

accordingly intensifies the optical forces. The optical forces then deform the double-layer

structure and reduce the gap if the resonating optical mode is symmetric, or the optical

forces increase the gap if the resonating optical mode is antisymmetric [161]. In either of

these scenarios, as the gap size is changing or the optical resonance frequency is shifting,

the laser becomes progressively less resonating and therefore, the optical force weakens and

eventually diminishes and the structure then goes back to its initial state. This process (or

cycle) repeats at the frequency of the excited mechanical resonance mode which is usually

in RF frequencies for microcavities without a need to any external (electric) feedback.

6.1.1 Fabrication of double-layer optomechanical Si devices

Figure 6.3 illustrates the process flow of fabricating optomechanical cavities in the double-

layer Si platforms. The fabrication begins by first patterning a hard mask for etching waveg-

uides and resonators. The hard etching mask for Si devices is usually HSQ (a negative

e-beam resist). Recently, a new double-patterning hard mask has been developed [163] in

which the pattern of devices is first transfered to a very thin layer of ALD Al2O3 from the

HSQ mask by etching using a fluorine-based etching chemistry. This enables a hard mask

with rounded corners compared to the single HSQ mask directly patterned by the electron

beam. Then Al2O3 forms a hard-mask for etching optical devices. Al2O3 provides higher

selectivity in chlorine etching chemistry compared to HSQ. In addition, compared to metal

masks such as chromium, ALD Al2O3 has smaller grain sizes and therefore it yields a bet-

ter resolution. Figure 6.1 shows a double-layer Si resonator etched using an Al2O3 hard

mask.

After etching devices (Fig. 6.3: step 1), I deposit 20 nm ALD SiO2 followed by 30
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1) Etching DL-Si devices 2) 30 nm ALD SiO2 (RIE etch stop), then
40 nm high-stress LPCVD Si3N4 (hard mask for HF)

3) EBL alignment (ZEP openings), 
then RIE etching of Si3N4.

Si

Thermal SiO2

Resonator WG

SiO2

Si3N4

4) Piranha Cleaning ZEP, short HF dip, 
soak in DI water, rest in IPA, 
and then super critical dryer.  

ZEP
> 3𝜇𝑚

Cross section view

Figure 6.3: Overview of the process flow for the fabrication of the on-chip optomechanical
devices in double-layer Si platforms.

nm high-stress LPCVD Si3N4 (Fig. 6.3: step 2). The ALD SiO2 forms an etch-stop layer

(protecting optical devices during etching Si3N4) and the LPCVD Si3N4 protects selected

regions during the wet releasing of optical devices. The high-stress LPCVD Si3N4 has an

advantage of high resistance to HF or BOE. Therefore, a thin-layer of Si3N4 is sufficient

for protection. Besides, a thin layer of Si3N4 covering waveguides and coupling gratings

after releasing does not introduce optical losses, nor does it significantly shift the optical

Si3N4

ZEP

Figure 6.4: Fabricated double-layer optomechanical devices. SEMs show the devices in
step 3 of the process flow (see Fig. 6.3).
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Figure 6.5: Fabricated double-layer optomechanical cavity after releasing (or partially un-
dercutting the SiO2 interlayer). All SEMs were taken at different angles from a single
double-layer optomechanical cavity.

transmission of the coupling grating. The next step is patterning the Si3N4 by an EBL

alignment to form openings in the positive-EBL-resist ZEP, followed by an RIE etching of

Si3N4 (Fig. 6.4).

The residue of the ZEP after etching Si3N4 is then removed using the Piranha solution

and the devices are released in the next step (Fig. 6.3: step 4). To release the devices (i.e.,

partial etching of the middle SiO2 layer), I suspend the devices in pure hydrofluoric acid

(HF) for ∼ 20 seconds, followed by immersing the devices in DI water for 20 minutes,

and then in IPA over night. Eventually, the devices are dried out in a tousimis supercritical

point dryer. Figure 6.5 shows the SEMs of final devices after releasing.
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Figure 6.6: Characterization setup for the optomechanical oscillation when the input laser
power is above the oscillation threshold.

6.1.2 RF characterization of on-chip optomechanical oscillators

The apparatus for the characterization of the optomechanical oscillation in the fabricated

double-layer Si structures is shown in Fig. 6.6. After identifying the optical resonance

wavelengths of the cavity by sweeping the tunable laser and looking at the optical trans-

mission of the device, the laser is then blue-detuned to one of the optical resonances. The

output of the laser first goes to the polarization controller to maximize the coupling of the

light to the on-chip integrated grating couplers (originally designed for TE optical modes).

The light then goes through the waveguide and coupled to the resonator at resonance. The

transmitted (modulated) light (aout = ain −
√
κexa, see Fig. 6.2) is then photo-detected and

converted to an RF signal. By looking at the frequency content of the electrical signal us-

ing an electrical spectrum analyzer, the frequency of the vibrational resonance modes that

efficiently interact with the circulating optical resonance mode are identified.

The lowest order vibrational resonance modes of a double-layer Si structure with the

radius of 4.5µm and the SiO2 undercut of 2µm are shown in Fig. 6.7(a). Due to the sym-

metry of the exerted optical force which is localized at the periphery of the resonator and

pointing in the out-of-plane direction, only the fundamental flexural resonance mode is

efficiently excited. Fig. 6.7(b) provides the simulation of fundamental flexural resonance

mode (shown in the inset) as a function of the undercut for a double-layer microdisk with

the radius of 4.5µm.
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Out-of-plane 
displacement

1-1 0

(a) (b)

Figure 6.7: Lowest-order (standing-wave) flexural resonance modes of a double-layer
structure. (a) Out-of-plane displacement profile of several flexural resonance modes in
a microdisk double-layer Si resonator with the radius of 4.5µm. The bottom layer is fixed
while the top layer is free to deform. (b) Variation of the resonance frequency of the fun-
damental flexural resonance mode as a function of the undercut.

Fig. 6.8 provides the optical and RF characterization of a fabricated double-layer Si

structures with the input laser power above the oscillation threshold with no external feed-

back. The RF characterization reveals the optical force excites a flexural vibration mode

at 75 MHz. It is worth noting that the characterization of the devices at vacuum and low

temperature results in higher mechanical quality factors [164]. Because of the 60 nm gap

inside the double-layer structure, squeezing thin-film damping is one of the major sources

of phononic loss in the structure that can be mitigated by operation at vacuum, which ac-

cordingly further lowers the threshold power of the optomechanical oscillation.

Figure 6.9 shows the characterization of another double-layer Si structure for differ-

ent input power, with a lower threshold power as well as a lower oscillation frequency

compared to Fig. 6.8. Additionally, Fig. 6.9 shows that by increasing the input power the

frequency of the oscillation slightly increases which is another indication of an optome-

chanical interaction. It is worth noting that the RF characterizations shown in Figs. 6.8 and

6.9 have been obtained without using an erbium-doped fiber amplifier (EDFA).
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Optomechanical Characterization: Device 1

𝛿𝜆 = 0.25 𝑛𝑚

(a) (b)

Figure 6.8: Characterization of an optomechanical double-layer Si microdisk with the ra-
dius of 4.5µm. (a) Optical transmission of the device at low input power, and (b) RF
characterization of mechanical resonating mode at input laser power above the oscillation
threshold.
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Figure 6.9: Characterization of an optomechanical double-layer Si microdisk with the ra-
dius of 4.5µm. (a) Linear optical transmission (at low power), and (b) RF characterization
of mechanical resonating mode (Pi,1 < Pi,2 < Pi,3).
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6.2 Wideband-tunable resonators using electrostatic actuation

Optical network-on-chip has established itself as a viable alternative to the conventional

metal wire interconnection as it enables to drastically increase the total available band-

width and to reduce the overall interconnect power dissipation. Nevertheless, optical in-

terconnects for intra-chip communications need to meet very stringent power consump-

tion and size requirements to comply with the needs of multi-core processors in future

decades [165]. Among the important building blocks of optical networks-on-chip are tun-

able optical elements. While most of the proposed tunable photonic devices to date are

based on carrier dispersion and thermal tuning, they suffer from intrinsic loss and small

tuning range (for tuning based on carrier dispersion) or very low tuning speed and high

power consumption (for thermal tuning). Among the various approaches for extending the

tuning range, the switching speed, and lowering the power consumption, mechanically-

tunable photonic devices have proven themselves as promising candidates [166, 167, 168].

Several demonstrations of mechanically tunable photonic devices have been reported

[166, 167]. However, most of these devices are based on photonic crystal cavities, which

limits their applicability for dense optical networks. Here, an alternative opto-mechanical

architecture that enables low-power and wideband tunable micro-optical traveling-wave

resonators in double layer silicon material platforms is presented [156, 169].

6.2.1 Proposed wideband-tunable devices

Figure 6.10(a) shows the schematic of the proposed tunable microdisk resonators on double-

layer SOI platform. The material platform is formed by two thin layers of crystalline Si that

are separated by a thin (e.g., 20-100 nm) oxide layer. The development of the double-layer

Si platform has been detailed in [156]. The device is realized by patterning the microdisk

structure in the double-layer SOI substrate and partially undercutting the thin oxide layer

between the upper and lower Si layers (see Fig. 6.10(b)). The top and the bottom Si layers
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Resonator WG
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Figure 6.10: An electrostatically actuated wideband tunable optical resonator. (a) The
schematic cross section view of the microdisk cavity and the location of the tuning elec-
trodes. The top and bottom Si layers both have 110 nm thickness including a 50 nm pedestal
for the bottom layer, with the initial gap of 60 nm. (b) SEM Image of the the fabricated
double-layer optomechanical resonator after releasing. (c) and (d) optical and zoom-in
SEM of the fabricated double-layer structure along with the electrical pads before releas-
ing. (e) The schematic cross-section of the fabricated structures shown in (c) and (d)

in such an undercut structure form a capacitor with an air dielectric layer, which allows

for the movement of the upper Si layer. The resonator wavelength tuning is achieved by

changing the size of the gap between the two Si layers. An electric voltage is applied

between the upper and the lower Si layers resulting in an attractive electrostatic force be-

tween the two capacitor electrodes that pulls the upper Si layer down and reduces the gap

(see Fig. 6.10(a)).
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6.2.2 Theory and simulations

To obtain a high tuning efficiency (defined as the ratio of the wavelength shift (∆λ) to

the change in the applied voltage (∆V ), i.e., ∆λ/∆V ), a high sensitivity of the resonance

wavelength to the change in the gap size and a relatively strong electrostatic force and/or

relatively low structure stiffness for the moving electrode (i.e., the upper Si layer) are re-

quired. All of these have been achieved by using the structure proposed here: the vertical

slot architecture with the thin air gap (Fig. 6.10(a)), allowing us to concurrently achieve

wide tuning bandwidth and a low tuning voltage. Furthermore, the upper electrode is pat-

terned to adjust/reduce its stiffness for the target device tuning range.

The proposed optomechanical structure supports both TE and TM modes (slot-mode)

simulated in COMSOL [170]. While the TM mode (i.e., Electrical field normal to the

double SOI wafer surface) of the structure provides slightly higher sensitivity to changes

in the gap size, my focus is on the TE mode (i.e., Electrical field parallel to the double SOI

wafer surface) of the structure as it provides lower loss (i.e., higher quality factors for the

optical resonance modes) and allows for more compact resonators with larger free spectral

ranges (FSRs). Reducing the gap size results in increasing the TE1 resonance wavelength

(Figs. 6.10(a) and 6.10(b), red curves) of the fundamental TE mode (vertically even-mode).

While the change in the optical resonance wavelength is almost linearly proportional to the

change in the gap, the change in the gap size is a nonlinear function of the applied voltage

and depends on the gap size itself. The maximum tuning range is also limited by the pull-in

voltage that limits the maximum change in the gap size. As indicated in Figs. 6.11(c) and

6.11(d), 35 nm and 22 nm wavelength shifts can be obtained, respectively, for the structures

in Figs. 6.11(a) and 6.11(b) by applying a reasonably small voltage. This shows the unique

feature of the proposed structures in providing a very wideband tuning range.

The tuning speed of the proposed electro-statically tunable devices is limited by the

mechanical time constant of the moving Si layer, which is in-turn limited by the fundamen-

tal flexural resonance frequency (fmech) of the double-layer structure. The patterned and
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Figure 6.11: (a) and (b): Schematics of the proposed double-layer resonators for wide-
band tunable optical resonators. (c) and (d): Variation of the optical wavelength (red curve,
left axis) and the resonance frequency of the first mechanical flexural mode (green curve,
right axis) as a function of the applied voltage between the two Si layers for a double-layer
microdisk shown in 6.11(a) and a double-layer microring shown in 6.11(b), respectively.
Schematics shown in 6.11(a) and 6.11(b) scaled for clarity in mode-profile demonstrations.

unpatterned structures exhibit a range of fmech depending on the applied voltage starting at

19 MHz and 10 MHz (corresponding to the rise times, tr, of 19 ns and 35 ns, respectively),

respectively for Figs. 6.11(a) and 6.11(b), green curves. One way to increase fmech is to

extend the radius of the anchor. For example, simulations show fmech > 50 MHz (i.e., tr=

7 ns) when the radii of the anchor and the upper unpatented disk are 3.5 µm and 5 µm,

respectively, and the thickness of the upper and lower Si layers being 110 nm. This me-

chanical resonance frequency can result in switching time constant of a few nanoseconds

for the optical device. However, increasing the mechanical resonance frequency in this

structure comes at the cost of losing the tuning efficiency (∆λ/∆V ); which in turn can

limit the tuning bandwidth for a given operating voltage. This trade-off among the tuning

range, the operation voltage, and the tuning speed can be used to design devices for any
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desired application by adjusting the stiffness of the upper electrode through tailoring its

geometry and pattern.

In addition to the large tuning range and fast tuning speed, the proposed device has a

zero static power consumption (due to the capacitive structure) and very small dynamic

energy consumption of < 60 fJ for tuning through the whole tuning range of 35 nm (based

on our simulations). The high Q of the TE-mode resonance of the proposed structures

(e.g., Q > 50 k [156] ) also enables very low loss tunable devices. This set of performance

measures are by far superior to that of the reported tunable devices based on thermal tuning

and carrier dispersion.
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CHAPTER 7

EPILOGUE

7.1 Brief summary of contributions

In this dissertation, I have designed, simulated, fabricated, and characterized integrated

phononic devices fabricated on silicon chips, very promising for integrated nano-electromechanical/

optomechanical systems, for enabling novel on-chip sensing and RF/optical signal process-

ing. Here I would like to summarize my main research achievements during the course of

my PhD studies.

• I have demonstrated the first platform for phononic crystal (PnC) structures that ex-

hibits high-frequency phononic bandgaps (PnBGs) for surface acoustic waves (SAWs)

in a CMOS-compatible all-dielectric pillar-based platform. These SAW-PnCs are

formed by a periodic array of non-metallic piezoelectric pillars on a CMOS-compatible

AlN-on-Si substrate, which reduces the overall material phononic loss by avoiding

metallic pillar-based structures. My experimental results have shown a wideband

PnBG (from 1.6 GHz to 1.75 GHz) in the developed PnC platform which has the

potential for enabling low-loss phononic devices for any high-frequency applications

including wireless communications by proper design modifications.

• I have demonstrated a new design approach for integrated PnC resonators based on

confining acoustic waves in a heterogeneous waveguide-based PnC structure. In this

architecture, a PnC waveguide that supports a single mode at desired resonance fre-

quencies is terminated by two waveguide sections with no propagating mode at those

frequencies (i.e., have mode-gap). This design approach can benefit both membrane-

based and SAW-based architectures by confining the mode spreading in the k-domain

that leads to reduced loss by minimizing the coupling to the bulk modes.
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• I have studied stimulated Brillouin scattering (SBS) in SiN structures, created as a

phononic line defect inside a pillar-based PnC membrane for efficient confinement

of the generated acoustic phonons to the optical waveguides. The phononic defect is

carefully designed to confine the transversally-resonating breathing acoustic modes

inside the PnBG of the host PnC. These breathing acoustic modes can be efficiently

excited by the fundamental optical modes of the waveguides. The combination of the

low-loss traveling photons and the long-lasting resonating phonons in the designed

SiN waveguide paves the way for the demonstration of efficient on-chip SBS devices

for novel RF-photonics signal processing applications.

• I have demonstrated on-chip optomechanical oscillations in the double-layer Si plat-

forms, enabling novel on-chip RF-photonics signal processing applications. My

structures show strong optomechanical interaction owing to the high sensitivity of

the resonating optical modes of the structure with respect to the gap size. Thus,

these structures are very promising for different classical and quantum optomechan-

ical studies. In addition, my theoretical studies of the double-layer structures reveal

that the incorporation of an electrostatic signal for capacitive actuation can enable

wide-band high-speed optical switches with high prospect for integrated optical in-

terconnects.

7.2 Future directions

Indeed, designing new integrated structures, specially in CMOS-compatible platforms,

allows for the co-integration of such structures with existing integrated systems and de-

vices for achieving new on-chip functionalities, which are the natural extension of my PhD

works.

On the experimental side, the SBS devices in the membrane SiN PnC are under fabri-

cation and characterization. I am also working on the fabrication of the electrostatically-

actuated double-layer structures for the demonstration of wide-band high-speed reconfig-
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urable optical devices. A verity of waveguide-based surface phononic resonators are under

the fabrication. However, what I would like to highlight here is the investigation of novel

SBS-based surface devices fully-compatible with the popular integrated optic platforms.

These devices are Si3N4 waveguides on SiO2 that do not need to be released for achieving

the required acoustic confinement, crucial for an efficient SBS process.

7.2.1 On-chip surface-based SBS devices

Surface devices have been always and will remain of great interest because of their ease of

surface macro-machining and compatibility with the surface-oriented integrated optics de-

vices and electronics. In this dissertation, I have studied membrane-based PnC structures in

SiN for SBS demonstration. These structures provides highly-efficient SBS due to the tight

co-localization of optical and acoustic waves inside the membrane structures. However,

their fabrication is challenging because of the thin fragile SiN membrane in the structure

similar to other membrane devices operating at GHz frequencies. Therefore, designing

rigid surface structures solves this fabrication difficulty and makes them more suitable for

real-world applications. However, the challenge is to find a surface structure compatible

with integrated optics platforms that yields the co-localization of both optical and acoustic

waves. SiN-on-Ox substrates provide the lowest possible optical loss compared to other

popular integrated optics platforms such as SOI platforms. However the challenge in the

conventional SiN waveguides on SiO2 is that the generated acoustic wave is not confined

to the optical region, which prevents the efficient SBS interaction. This challenge can be

solved by either further additional etching of the substrate or creating slot-based surface

structures. These devices are currently under investigations.
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