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SUMMARY 
 
 
 
The genome-scale analysis of cellular metabolites, “metabolomics”, provides 

data ideal for applications in metabolic engineering. The goals of metabolic 

engineering are well-served by the biological information provided by 

metabolomics: information on how the cell is currently using its biochemical 

resources is perhaps one of the best ways to inform strategies to engineer a cell 

to produce a target compound. In the first chapter, I review the most common 

systematic approaches for integrating metabolite data with metabolic engineering 

and discuss some of the most common approaches for computational modeling 

of cell-wide metabolism, including constraint-based models (CBMs). This 

overview provides the motivation and the context for the contributions presented 

in this thesis. 

 

In the second chapter, I present several improvements to current approaches for 

smoothing metabolite time course data using defined functions. First, I use a 

biologically-inspired mathematical model function taken from transcriptional 

profiling and clustering literature that captures the dynamics of many biologically 

relevant transient processes. I demonstrate that it is competitive with, and often 

superior to, previously described fitting schemas, and may serve as an effective 

single option for data smoothing in metabolic flux applications. I also implement a 

resampling-based approach to buffer out sensitivity to specific data sets and 
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allow for more accurate fitting of noisy data. I find that this method, as well as the 

addition of parameter space constraints, yields improved estimates of 

concentrations and derivatives (fluxes) in previously described fitting functions. 

These methods have the potential to improve the accuracy of existing and future 

dynamic metabolic models by allowing for the more effective integration of 

metabolite profiling data. 

 

In the third chapter, I address this problem of accounting for metabolite levels in 

CBMs by discussing the main contribution of this thesis: an improved constraint-

based modeling framework I refer to as Linear Kinetics-Dynamic Flux Balance 

Analysis (LK-DFBA). I describe and assess a modeling framework based on 

dynamic FBA (DFBA) that tracks metabolite concentrations and uses them to 

constrain system fluxes using strictly linear equations describing the kinetics and 

regulation of metabolism. I discuss procedures to identify model parameters 

using both regression and global parameter optimization. With these methods, I 

show that we were able to produce fitted models that performed comparable or 

better than Ordinary Differential Equation models fitted to Generalized Mass 

Action and Michealis-Menten rate laws. I also implement a larger, biologically 

relevant model in LK-DFBA and further discuss the consequences and benefits 

of two different parameterization structures. 
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In the analysis of the third chapter, the correct regulatory structure of the network 

was known and provided to the LK-DFBA simulation. I continue to assess the LK-

DFBA framework in the fourth chapter by exploring the impact of modeling 

different regulatory connections on model performance. In a small test case with 

two true regulatory connections, I use a brute-force approach to fit a series of LK-

DFBA models with differing regulatory structures to noisy data, and find that I can 

robustly detect the contribution of one connection to model fitting performance, 

but have difficulty with the other, suggesting that models implemented using LK-

DFBA has in principle some ability to distinguish between correct and incorrect 

model regulatory structures, but some care must be taken when interpreting the 

results of this task. 

 

The contributions presented in this thesis are a series of strategies and methods 

for working with metabolomics data and constructing working, biologically 

relevant metabolic models that will aid strain design. These models capture the 

dynamics and regulation of metabolism in a structure that is easily compatible 

with existing tools build around FBA. While this approach has promise, it also has 

not yet been used for actual strain design or experimentally validated. In the fifth 

chapter, I discuss the steps necessary to see this ultimate aim to fruition, and 

describe some complementary strategies that may help further improve the 

model or use metabolomics data in interesting new ways. 
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Chapter 1: Background—Metabolomics in Metabolic 
Engineering 

 
 

Portions of this chapter are reproduced from my publication “Systematic 

applications of metabolomics in metabolic engineering”1 in Metabolites under 

the Creative Commons Attribution License (CC BY 3.0). 

https://creativecommons.org/licenses/by-nc-sa/3.0/ 

 

1.1 Introduction 

Organisms such as Saccharomyces cerevisiae and Aspergillus niger have a long 

history of commercial use in natural fermentation processes to produce 

chemicals such as ethanol and citric acid. Traditional bioprocess engineering 

entails the design and optimization of the equipment and procedures necessary 

to efficiently manufacture these and other biologically derived products. The 

development of recombinant DNA technologies enabled the direct manipulation 

and expansion of the metabolic capabilities of S. cerevisiae and A. niger (as well 

as other organisms such as Escherichia coli and Bacillus subtilis), which resulted 

in the emergence of metabolic engineering as a field distinct from bioprocess 

engineering2. Metabolic engineering is the (usually genetic) control of the 

metabolic activities of a living organism to establish and optimize the production 

of desirable metabolites—the class of small molecules that comprise the primary 

resources and intermediates of all cellular activity. With widespread and growing 

interest in environmentally sustainable industrial technologies, metabolic 
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engineering is poised to provide an effective and efficient means for producing 

various small molecule chemicals from clean and renewable sources, such as 

biofuels derived from lignocellulosic feedstocks3-13. 

 

Frequently, metabolic engineering studies use targeted analysis of a few carefully 

selected intracellular or secreted extracellular compounds to drive or assess the 

progress of their efforts3,10,14-25. High-Performance Liquid Chromatography 

(HPLC) and enzymatic assays have typically been the methods of choice to 

generate this data, used in engineering S. cerevisiae3,14,22,24, E. coli17,20, 

Clostridium acetobutylicum15,19, and other organisms. These measurements may 

be direct readouts of the performance of an engineered strain3, or they may be 

interpreted as performance and response characteristics (for example, trehalose 

as a marker for stress response in yeast22,24). These analyses are typically 

focused on effects at the level of individual pathways3,20,22,26. 

 

 Another technique used to characterize metabolic pathways during metabolic 

engineering is Metabolic Flux Analysis (MFA). MFA provides more information 

than measurement of just a few metabolites, and is a staple technique of many 

who work in metabolic engineering15,19,21,23,25,27-33. In MFA, isotopically labeled 

metabolites (typically using 13C labels) are leveraged to calculate fluxes—the rate 

at which material is processed through a metabolic pathway—from knowledge of 

carbon-carbon transitions in each reaction and the measured isotopomer 
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distribution in each metabolite2. Ongoing research in MFA includes continued 

improvement of 13C protocols and analytical platforms34-37, improvements to 

software for MFA calculations33,38, use of network stoichiometry to determine the 

minimal set of required metabolite measurements39, and study of Elementary 

Metabolite Units (EMUs) for more efficient analysis of flux patterns32,40,41. 

 

Metabolic engineering seeks to maximize the production of selected metabolites 

in a cell, whether produced by the organisms’ natural metabolic activities or by 

entire exogenous pathways introduced through genetic engineering. Strategic, 

small-scale measurements and flux calculations have to date been indispensable 

tools for metabolic engineering. However, the development of systems-level 

analyses—precipitated by whole-genome sequencing and the rapid accumulation 

of data on RNA, protein and metabolite levels—has provided new opportunities 

to more completely understand the effects of strain manipulations. Genetic 

modifications often have additional effects outside the immediately targeted 

pathway, and a better understanding of the nature and extent of these 

perturbations would lead to more effective strategies for redesigning strains, as 

well as improved ability to understand why a proposed design may fail to achieve 

its predicted performance. 

 

Aided by recent advancements in analytical platforms that allow for the 

simultaneous measurement of a wide spectrum of metabolites, metabolomics 



  4 

(the analysis of the total metabolic content of living systems) is approaching the 

level of maturity of preceding “global analysis” fields like proteomics and 

transcriptomics42,43. Metabolomics approaches have already found some 

success in clinical applications, where studies have demonstrated their efficacy 

in identifying clinically relevant biomarkers in diseases such as cancer44-46. 

Surprisingly though, the application of metabolomics approaches to problems in 

metabolic engineering has been somewhat scarce. 

 

Here, we review examples of recent strategies to integrate metabolomics 

datasets into metabolic engineering. First, we briefly cover the fundamentals of 

metabolomics. We then discuss strategies for assessing metabolic engineering 

strain designs, and how metabolomics methods can extend these strategies. We 

follow with discussion of computational tools for metabolic engineering, with an 

emphasis on how these methods are used to design strains and predict their 

performance as well as how metabolomics datasets are currently applied to 

computational modeling. We conclude with a brief summary of the state of the 

field and the potential that integrating metabolomics presents. 

 

1.2 Metabolomics Background 

 The development of metabolomics, the newest of the global analysis methods, 

has much in common with its predecessor fields of genomics, transcriptomics, 

and proteomics42,43. The analytical platforms used for metabolomics have now 
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developed to the point that metabolomics datasets can serve as an excellent 

complement to standard metabolic engineering approaches. The goals of 

metabolic engineering ultimately focus on producing desired metabolites, and 

metabolomics offers a means of broadly and directly assessing how well a strain 

meets those goals. What follows is a cursory overview of metabolomics 

technologies and the most common ways that metabolomics data are interpreted 

and analyzed, provided as context for how metabolomics data can be used 

towards metabolic engineering efforts. 

 

1.2.1 Analytical Platforms 

One of the primary difficulties facing the development of metabolomics has been 

the staggering diversity of metabolites. Metabolites are substantially more 

chemically diverse than the subunit-based chemistries of DNA, RNA, and 

proteins, impeding the progress of metabolomics as a truly “omics” field that 

measures all metabolites. The entire genome and transcriptome can be (at least 

theoretically) surveyed using single platforms, from simple PCR to more 

exhaustive sequencing and microarrays, whereas metabolomics requires multiple 

analytical platforms to achieve complete coverage of all metabolites. 

 

Common approaches involve coupling of a chromatographic separation to mass 

spectrometry, including gas chromatography-mass spectrometry (GC-

MS)7,26,29,30,35,47-59, liquid chromatography-mass spectrometry (LC-
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MS)27,34,35,50,53,55,57,60-64, and capillary electrophoresis-mass spectrometry (CE-

MS)35,64-66. Other common platforms include nuclear magnetic resonance 

(NMR)29,44,67-70 and an assortment of direct injection-mass spectrometry 

methods44,49,52,54,68. Protocols for using these platforms are under constant 

development, and span sample processing and work-up52,57,71, efforts to improve 

the quantitative reliability of measurements34,57,62, and data processing 

software72-84. These referenced software tools, along with those presented in 

subsequent sections of this chapter, are summarized in Table 1 (though we 

emphasize that this list is far from exhaustive). A more extensive review of these 

platforms is available from Dunn et al.85.  

 

1.2.2 Data Analysis 

As the youngest of the global analysis methods, metabolomics has drawn heavily 

from the data analysis techniques developed for transcriptomics and proteomics. 

Like these two fields, the datasets generated by metabolomics suffer from a 

“curse of dimensionality,” where there are far more variables than there are 

samples. Methods taken from transcriptomics and proteomics, as well as some 

derived from the field of chemometrics, have been used extensively to analyze 

metabolomics data as a result42,43 (some examples given in Figure 1.1). Though 

metabolomics datasets are of high dimension, the connected nature of 

biochemical pathways and networks can often lead to strong underlying patterns 

in the data; multivariate techniques have proven effective at identifying these 
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underlying factors even if individual effect sizes are too small to be detected by 

univariate analyses (e.g., Figure 1.1A), and so here we highlight several of the 

methods most widely adopted for metabolomics studies. 

 

One of the most prominent methods for analysis of metabolomics data is 

Principal Components Analysis (PCA) (Figure 1.1B). This technique identifies the 

natural “axes” of variation in the dataset by constructing a series of orthogonal 

component axes from the original metabolite features. Each component is a 

weighted combination of the original metabolite measurements that provides the 

maximum possible variance in a single composite variable; the components are 

all mutually orthogonal. The weights of the original features for each component 

(“loadings”) and the projections of the samples onto the components (“scores”) 

can reveal putative biomarkers or lead to simplified separation between biological 

sample classes, respectively42,49,50,58,71,86-92. Notably, this is an unsupervised 

technique; PCA uses no information about sample classes in its calculations, and 

the user can try to identify clusters of data points before projecting class 

information onto the score plot. 

 

A few examples of using PCA to reveal underlying patterns in metabolomics 

datasets include the characterization of extracellular culture conditions in 

Chinese Hamster Ovary (CHO) cell batch cultures91, a study of the response of 

S. cerevisiae to very high gravity (VHG) fermentations86, comparisons of 
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metabolomes across mutant strains of S. cerevisiae43,49,71,88, and analyses of 

Pseudomonas putida growth on various carbon sources50,87. In this context, the 

loadings from the components that capture the separation between sample 

classes (e.g., culture condition or strain) on the score plot provide information 

about which metabolites are important to each class. The magnitude of each 

metabolite’s loading coefficient and the groups of metabolites with high loadings 

in components that capture separation can be used to infer biological 

significance. 

 

Much of the value of PCA comes from its dimensional reduction capabilities: 

typically the first few components contain biologically relevant information, and 

higher components contain variance due to noise or biological variability. The 

number of components that are “significant” is an open question, and depends 

predominantly on the dataset or even the specific downstream processing and 

applications93. Since the principal component scores are “optimal” lower-

dimension projections of the original data, they can be used in place of the 

original data in subsequent analysis, such as Hierarchical Clustering Analysis 

(HCA, Figure 1.1C)91. For example, Barrett et al. performed PCA on a flux 

balance analysis solution space to identify a lower-dimension set of key reactions 

that form the underlying basis of the solution space90. 
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Figure 1.1. Examples of data analysis techniques for metabolomics 
The effects of glucose deprivation on a cancer cell line were measured with GC-MS and analyzed 
in MetaboAnalyst81 (unpublished data). 
A. Pairwise t-tests of metabolites identify statistical significance of differences in individual 
compounds between control and experiment. The dotted line indicates p < 0.05 (no multiple 
hypotheses testing corrections). 
B. PCA score plot reveals separation between control and experiment samples in components 2, 
3, and 4. Component 1 (not shown) corresponds to analytical batch separation. 
C. HCA (Ward method, Pearson’s correlation) and heatmap using the 150 most significant 
compounds as determined by t-test. Compounds along top, samples along left side. 
D. PLS-DA score plot shows separation achieved using components 1 and 2. Dashed circles 
indicate the 95% confidence interval for each class. 
E. Leave-one-out cross-validation shows that the majority of the predictive capacity is derived 
from the first two PLS-DA components. R2 and Q2 denote, respectively, the goodness of fit and 
goodness of prediction statistics. 
F. Contribution of individual compounds to PLS-DA component 1. The 30 most important 
compounds and their relative abundance in control and experiment are shown, sorted by the 
Variable Importance in the Projection (VIP) for the first component. 
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Partial Least Squares (PLS) regression and discriminant analysis (PLS-DA, 

Figure 1.1D-F) are also common tools in metabolomics analysis. They are 

multivariate analogs of linear regression and linear discriminant analysis, 

respectively. They are constructed in a manner similar to PCA, but require 

response variables (e.g. titer, viability, or conversion) or a class label, 

respectively, to determine the component axes94. Again, assessment of 

metabolite loading coefficients in PLS-DA axes allows biological interpretability. 

In one representative application, Cajka et al. used PLS-DA to identify a set of 

compounds that could discriminate between different beers by their origin68. 

Kamei et al. used OPLS-DA, a variant of PLS-DA that constructs distinct 

predictive and orthogonal components that describe between-class and within-

class variance, respectively,95,96, to assess the effects of knockouts related to 

replicative lifespan in S. cerevisiae92. They found that a component 

corresponding to separation between short-lived and long-lived strains identified 

differences in TCA cycle metabolites as predictors of longevity. These are just a 

few examples of the increasingly prevalent applications of PLS-based techniques 

in the field. 

 

Complete and effective use of a metabolomics dataset necessitates not only 

careful design of experiment and data processing methods, but also a thorough 

validation of conclusions from data analysis (e.g. apparent clusters in principal 

component space). For example, discussion of p-value distributions by Hojer-
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Pedersen et al. touches upon the importance of multiple hypothesis testing 

corrections in metabolomics studies, such as Bonferroni or false discovery rate 

corrections88,97. As a supervised method, PLS-DA is particularly susceptible to 

over-fitting, and so cross-validation is critical98. Statistical issues aside, non-

biological factors can also lead to separation in principal component space, with 

sources of variance potentially including derivatization protocols71,86,87, analytical 

platform49, chromatographic drift or batch effects99 and data processing 

methods87. Broadhurst & Kell review other potential pitfalls in greater detail100. 

 

1.3 Applications of Metabolomics in Metabolic Engineering 

Metabolomics continues to be exploited for numerous biomedical applications, 

ranging from the study of differences between clinically isolated and industrial 

yeast strains89, to blood or urine-based biomarkers for many human diseases, 

including diabetes65,101, gallstone diseases102, sepsis70, and multiple types of 

cancer44-46 (Blekherman et al. provide a more comprehensive review of the 

applications of metabolomics to cancer biomarker discovery103). Metabolomics 

also has the potential for a significant biotechnological impact in metabolic 

engineering: as the goal of metabolic engineering is to manipulate metabolite 

production, metabolomics naturally lends itself to that goal. Moreover, organisms 

such as S. cerevisiae and E. coli have been studied extensively, providing a rich 

biological context in which the metabolome of strains derived from both rational 

design and directed evolution strategies can be interpreted and understood. 
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Nonetheless, the use of metabolomics in metabolic engineering is not as 

prevalent as one might expect. 

 

1.3.1 Metabolomics Data as an Extension of Small-scale, Targeted Analysis 

The simplest and most direct use of metabolomics datasets is as an extension of 

existing small-scale metabolite analyses; metabolomics inherently enables a 

more comprehensive assessment of a strain than a handful of narrowly selected 

measurements. Studies employing this approach typically either compare strains 

and culture conditions, or seek to monitor the time-course evolution of many 

metabolite concentrations in parallel. These studies use a combination of 

measured growth and production parameters in conjunction with direct 

examination of the metabolomics data (e.g. significant increases or decreases in 

metabolite levels) in the context of known biochemical pathways to determine the 

effects of mutations and culture conditions. For example, if one overexpresses 

the enzyme that is the first step in a linear biosynthetic pathway and finds that the 

first few metabolites accumulate significantly but subsequent metabolites do not, 

this may suggest a rate-limiting step further down the pathway that needs to be 

upregulated. Broader knowledge of metabolite levels beyond the target pathway 

can serve to determine the wider-ranging effects of a given metabolic 

engineering perturbation and can suggest candidate supplementary perturbations 

(to address, for example, cofactor imbalances).  
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One example of a strain- or condition-comparison approach is a study of an arcA 

mutant in E. coli by Toya et al., which compared parent and mutant responses to 

aerobic, anaerobic and nitrate-rich media conditions66. Through analysis of fold-

changes in the metabolome, transcriptome, and 13C MFA-derived fluxes, they 

found significant differences in tricarboxylic acid (TCA) cycle metabolism and 

ATP production among conditions. Similarly, Christen et al. compared the 

metabolomic profiles of seven yeast species to assess differences in aerobic 

fermentation on glucose63. While 13C MFA suggested differences between TCA 

cycle fluxes and consistent flux through glycolysis, there was a much wider 

variation of metabolite levels across species–especially in amino acid pool 

compositions. They also found that across species, these values correlated 

poorly with fluxes. 

 

In an example of time-course analysis, Hasunuma et al. studied the effects of 

acetic and formic acid, chemicals commonly found in lignocellulosic hydrolysates, 

on xylose-utilizing strains of S. cerevisiae11. A separate similar study by Klimacek 

et al. also explored differences in xylose-utilizing strains10. Continued work in 

time course analysis has also exploited improved collection of time-course 

metabolomics data. Link et al. developed a procedure for measuring over 300 

metabolites at 15 to 30 second intervals, and demonstrated it in E. coli104.  With 

this, they were able to identify feedback in amino acid biosynthesis and efficient 

recycling for purine that avoided expensive biosynthesis104. 
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Other work with S. cerevisiae has investigated the transient effects of redox 

perturbations105 relief from glucose limitation27,106, diauxic shift107, as well as 

differences between S. cerevisiae and Pichia pastoris57. However, examples 

branch out in to a span a variety of organisms and culture conditions, from xylose 

utilization in A. niger7 to the effects of extended culture periods108 and low 

phenylacetic acid conditions after key pathway knockouts30 on penicillin 

biosynthesis in Penicillium chrysogenum. Work by Sevin et al. explored the 

impact of osmtic stress via salt shock on the metabolome of twelve bacteria, two 

yeast, and two human cell lines, finding glycolysis, TCA, branch-chain amino acid 

synthesis, and heme biosynthesis as key pathways across organisms109. 

 

One area of particular interest involves identifying changes in regulation, whether 

at the transcriptional or metabolic level. Work by Goncalves et al. used time-

course metabolomics data to search for regulatory connections such as 

transcription factors and kinases/phosphatases, and were able to identify and 

experimentally validate several regulatory connections without resorting to gene 

knockout strains110. Other work by Zampieri et al. used metabolomics to identify 

mechanisms behind the development of antibiotic resistance in E. coli, and 

identified potential fragility as well, such as hypersensitivity to fosfomycin in 

ampicillin-resistant strains111. 
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1.3.2 General Strategies for Integrating Metabolomics into Metabolic Engineering 

The simple approaches used to exploit the results of targeted measurements can 

be scaled up to metabolomics datasets, but they often do not take full advantage 

of structures or patterns in the data at the systems level. Many in the field of 

metabolic engineering have used multivariate techniques to interrogate 

metabolomics datasets on more complicated questions about strain performance 

and metabolite allocation. Due to the complexity of biological systems, the 

answers to these questions are often non-intuitive and increasingly difficult to 

identify without taking such a systems-scale approach.  

 

1.3.2.1 Adaptive Evolution and High Throughput Libraries: Locating the Cause of 

Improved Phenotypes 

While rational design approaches were the original driving force in metabolic 

engineering, directed evolution and high throughput screens of mutant libraries 

have since become increasingly commonplace4,5,9,12,13,112-119. One of the main 

difficulties involved in these two “inverse metabolic engineering” approaches is 

the identification of the underlying behaviors responsible for the improved 

phenotype120. These frequently non-intuitive changes can often best be 

characterized with a direct, systems-scale readout of the metabolic state117. 

 

Common techniques employed in such approaches include HCA, PCA, and PLS-

DA. These methods generate clusters or loadings that identify key metabolite 



  16 

differences, which in turn suggest what genetic changes may have been selected 

for. For example, Hong et al. used PCA and clustering analysis of metabolomics 

data, supplemented with transcriptional data, to investigate strains of S. 

cerevisiae that had been selected via directed evolution for improved galactose 

uptake117. A study by Yoshida et al. examined metabolic differences between S. 

cerevisiae and Saccharomyces pastorianus in regards to SO2 and H2S 

production121. Similarly, Wisselink et al. investigated a xylose-utilizing strain of S. 

cerevisiae developed by introduction of L-arabinose pathway genes to an existing 

xylose-utilizing strain, followed by directed evolution to improve L-arabinose 

utilization122. 

 

Other examples of using metabolomics for after-the-fact assessment of 

engineered strains include studying the effects of repeated exposure to vacuum 

fermentation conditions on S. cerevisiae123, comparing evolved strains with 

knockouts proposed by the OptKnock algorithm48, and identifying the differences 

between several yeast species during aerobic fermentation on glucose63.  

 

1.3.2.2 Other Global Analysis Approaches: Harnessing Proteomics, 

Transcriptomics, and Genomics for Metabolic Engineering 

While the goal of metabolic engineering is to introduce a change on the metabolic 

level, many of these changes are necessarily implemented by introducing genetic 

modifications to affect transcriptional levels. As such, analysis of biological layers 
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beyond the metabolome, such as the transcriptome and proteome, can provide 

further, and sometimes crucial, insight into the wide-reaching effects of an 

alteration. 

 

A number of techniques widely used in metabolomics (such as PCA and HCA) 

are also well-established for many of these other “omics” datasets, though there 

are a number of other techniques that until recently were more specific to 

transcriptional or proteomic analyses. One of the most prominent examples of 

this is enrichment analysis, originally developed for transcriptomics datasets. 

Enrichment analysis uses information about the frequency of occurrence or the 

ranking of sets of gene names or functions in a given list of genes to examine the 

biological relevance of observed changes124. For example, the number of genes 

from a given pathway occurring in a list of interest (say, high-importance 

variables in PCA or a cluster from HCA) is assessed to see if that number of 

genes would be expected to be found in an arbitrary list of genes purely at 

random; this comparison is made using a hypergeometric distribution. If a list is 

statistically significantly “enriched” for a set of genes, one then may hypothesize 

that the list of genes plays an important role in the underlying biological process. 

This technique has recently been extended to metabolomics datasets81,125. A 

combination of enrichment, multivariate, and univariate analyses comprise the 

bulk of the strategies currently used in metabolic engineering to analyze “omics” 

datasets in parallel. 
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In metabolic engineering, use of metabolomics is comparatively much less 

common than using other global analysis approaches, perhaps attributable to the 

maturity of fields like transcriptomics compared to metabolomics. Proteomics, 

transcriptomics and genomics have frequently been combined with small-scale 

metabolite measurements for metabolic engineering purposes. Examples of this 

include functional genomics with targeted metabolite measurements for 

isoprenoid production in E. coli126, as well as the combination of the proteome, 

transcriptome and targeted metabolite measurements for E. coli carbon storage 

regulation64, penicillin production in P. chrysogenum108, glucose repression in S. 

cerevisiae53, and relief from glucose deprivation in S. cerevisiae106. 

 

The above examples at most used small-scale metabolite measurements, but a 

handful of studies have combined analysis of full metabolomics datasets with 

other “omics” datasets. Previously described analyses of adaptations from 

directed evolution generally fit this category: transcriptional measurements using 

microarrays48,117,121,122 and genomic analysis89 have each been combined with 

metabolomics to pinpoint the source of the observed phenotype. 

 

In other applications, Piddock et al. assessed high gravity beer brewing 

conditions to determine the effect of the protease enzyme Flavourzyme on the 

free amino nitrogen content of the wort 56. A collaborative study by Canelas et al. 

investigated the growth characteristics of two strains of S. cerevisiae under two 
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standard growth conditions.67. Work by Dikicioglu et al. examined the combined 

metabolomic and transcriptomic response of S. cerevisiae to transient 

perturbations in glucose and ammonium concentrations59.  

 

The emergence of genome-scale investigations has led to a deluge of 

information about all molecular layers in the cell. This in turn has provided a 

broader context in which metabolic engineering strategies can be evaluated. 

However, we note that many of the techniques discussed so far have focused on 

systematic assessment of the results of metabolic engineering strategies, rather 

than on systematic methods of designing strains to begin with. While some of 

these studies have used the insight gained from their evaluations to in turn 

design new strains, more systematic approaches to strain design are being 

developed – some of which are now capable of exploiting metabolomics 

datasets. 

 

1.4 Computational Methods for Combining Metabolomics and Metabolic 

Engineering 

One of the difficulties in applying metabolomics datasets to strain design is the 

volume of data produced in a metabolomics experiment. Computational 

approaches are well suited to systematically integrate large volumes of 

biochemical knowledge and data. As shown in Figure 1.2, they serve dual 

purposes: they can combine existing biochemical knowledge with strain design 
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objectives to execute putative metabolic engineering strategies in silico before 

taking the time and expense to execute them in vivo, and they can close the loop 

on experimental design by producing hypotheses that, when tested, can be used 

iteratively to refine broader biochemical knowledge and models. This in turn 

leads to improved predictive power for subsequent rounds of metabolic 

engineering design. 

 

Figure 1.2. Applications of various techniques to understanding and manipulating cellular 
metabolism 
Solid lines represent widely used strategies, dotted lines represent underused strategies. Both 
metabolomics and transcriptional profiling provide a direct readout that helps enable a deeper 
understanding of cellular metabolism, but only transcriptional profiling has seen widespread 
application to enhance standard computational modeling and metabolic engineering strategies. 
Integrating metabolomics data into metabolic engineering and computational modeling strategies 
would help bridge gaps in biochemical knowledge and improve our ability to control cellular 
metabolism. 

Metabolic
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Computational
Modeling

Transcriptomics

Cellular
Metabolism

Metabolomics
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One of the most powerful ways to extend this concept would be to include 

metabolomics data in the design and fitting of computational models. While there 

are many well-developed metabolic modeling strategies, most of these 

approaches have not yet been adapted to effectively leverage the additional 

information that metabolomics can offer. Nonetheless, these strategies have 

made substantial contributions to metabolic engineering. We discuss these 

computational approaches to establish how they have been used to date in 

metabolic engineering, to suggest how metabolomics can contribute to their 

effectiveness, and to highlight current efforts to integrate the two. 

 

1.4.1 Constraint-based Models 

The most basic models for metabolic engineering use simplified equations for 

bioreactor kinetics to empirically fit relationships between characteristics such as 

metabolite uptake or secretion and specific growth rate. While these models are 

useful as tools for investigating specific behaviors of existing strains, their small-

scale and coarse-grained nature precludes broader application to directing 

engineering strategies, as well as the possibility of substantively integrating 

metabolomics data even when available14. 

 

Early biochemical modeling strategies initially sought to move beyond such 

simplistic approaches by compiling knowledge of metabolic pathways and 

enzyme kinetics into detailed mechanistic models to predict the dynamic behavior 
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of metabolite concentrations127. However, numerous issues hampered these 

efforts. Incomplete knowledge of the regulatory structure or the form of reaction 

rate equations can limit the accuracy of these types of models128. More 

importantly, the necessary kinetic parameters are for the most part unknown, or 

have only been measured in vitro for specific organisms (although recent efforts 

have sought to develop methods to determine kinetic parameters relevant to in 

vivo conditions via selected intracellular metabolite measurements129,130). 

Additionally, many models in systems biology also exhibit “sloppy” behaviors in 

regard to parametric sensitivity, where model performance is sensitive only to 

certain parameter combinations and consistent parameter estimation is difficult 

even with sufficient data131. 

 

To attempt to overcome these issues, “constraint-based” approaches that 

calculate metabolic fluxes primarily from stoichiometry were developed. This 

change of focus from dynamic metabolite levels to fluxes made sense, as the 

idea of optimizing and controlling metabolic fluxes has long been a fundamental 

part of metabolic engineering. These approaches allow flux calculations without 

the difficulties arising from parametric uncertainty by predicting flux distributions 

from the structure of the biochemical network and constraints on the feasible 

range of fluxes132,133. 

 

 



  23 

1.4.1.1 Flux Balance Analysis: The Prototypical Constraint-based Model 

The prototypical CBM is Flux Balance Analysis (FBA)132,133. It is a modeling 

technique that uses metabolic network stoichiometry, a set of feasible flux 

ranges, and a cellular objective function to calculate an optimal flux distribution 

for a metabolic network132,133. 

 

First, mass balances are constructed around the metabolic network, describing 

the relationship between metabolite concentration changes and the metabolic 

reaction rates (fluxes). A key assumption of FBA is that the system is at steady-

state (i.e., metabolites are neither accumulating or depleting). As a result, the 

non-linear differential equations describing the stoichiometric metabolite mass 

balances are reduced to a set of linear equations in terms of unknown reaction 

fluxes and a stoichiometric matrix describing the connectivity between 

metabolites and fluxes. Based on the fact that metabolic reactions occur more 

quickly than upstream cellular processes like intracellular signal transduction, 

gene transcription, and RNA translation, this steady-state assumption may often 

be a reasonable simplification. 

 

Since the number of reactions exceeds the number of metabolites in biologically 

relevant metabolic networks, the system is underdetermined and there are 

multiple flux distributions that satisfy the stoichiometric equations. Additional 

information is used to select from this solution space. Upper and lower bounds 
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are set for each of the system fluxes, reflecting saturation rates (e.g. for 

transporters), enzyme reversibility (to specify irreversible reactions), or large 

nominal values necessary to bound the solution space (typical for intracellular 

fluxes). Then, an objective function representing the cell biology is constructed 

from a linear combination of the system fluxes. The most common objective 

functions in FBA seek to maximize biomass accumulation132 or ATP 

production132,134, or to minimize redox potential132. 

 

These constraints and objective are used to solve the FBA optimization problem: 

max
!
𝑐!𝑣 

𝑺𝑣 = 0 

𝑣!" < 𝑣 < 𝑣!"    

where 𝑣 is the flux distribution vector, 𝑐 is the vector of objective weights, 𝑺 is the 

stoichiometric matrix, and 𝑣!"  and 𝑣!"  are lower and upper bounds on 𝑣 , 

respectively. 

 

A key feature of FBA is that due to its linear constraints and objective function, 

the problem specifies a Linear Program (LP) and can be solved very efficiently 

with freely available computational libraries and tools.  
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A few examples of basic FBA for metabolic engineering include estimation of flux 

distributions from MFA measurements32, prediction of knockout performances to 

assess proposed strain designs6, use of artificial (virtual) metabolites to better 

capture flux ratios from 13C MFA135, systematic evaluation of different objective 

functions in E. coli136, and evaluation of Elementary Flux Modes from flux 

measurements137 and transcription datasets138. Tools such as the COnstraints 

Based Reconstruction and Analysis (COBRA) toolbox for MATLAB139, 

CellNetAnalyzer140, the Systems Biology Research Tool (SBRT)141, and 

OptFlux142 are available for simplified implementation of constraint-based 

modeling methods (and are listed in Table 1.1). In particular, multiple tools have 

been developed to augment the COBRA toolbox, such as visualization tools 

MapMaker and PathTracer143, flux space sampling tool optGpSampler144, and a 

port to Python, CobraPy145. 

 

1.4.1.2 Model Reconstructions 

A prerequisite step in FBA is the reconstruction of genome-scale metabolic 

networks for the organism of interest. Reviews by Fiest et al.146 and by Thiele & 

Palsson147 describe this process in detail. The reconstruction process involves 

the synthesis of a genome-scale model from established biochemical and 

genomic knowledge, stored in publically accessible databases. These databases 

span various organisms and layers of biological information (e.g., biochemical 

pathways, transcription factors, and nutrient transport mechanisms). Examples of 
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relevant databases for this process (as well as several for metabolomics in 

general) are also listed in Table 1.1. 

 

New strategies for efficiently performing parts of this process are being 

continuously developed (listed in Table 1.1)148-151. For example, the Model 

SEED151 pipeline can automatically generate a metabolic model from annotated 

gene sequence data. Subsequent steps automatically determine biomass data 

via GrowMatch152 by progressively adding and removing connections in the 

model with GapFill148 and GapGen151, respectively, until the model matches the 

available Growth/NoGrowth data. Other tools such as fastGapFill have been 

developed to better handle gap filling 153, and many such methods are available 

in the COBRA toolbox139. 

 

A few recent genome-scale reconstructions particularly relevant to metabolic 

engineering and metabolomics include models of A. niger154, C. 

acetobutylicum149, Clostridium beijerinckii155, updated reconstructions of E. 

coli156,157, and addition of lipid metabolism to a model for S. cerevisiae158. 

Notably, a reconstruction of Mycoplasma genitalium159 has recently been 

incorporated into a whole-cell computational model by Karr et al.160, who have 

suggested development of a similar model for E. coli as a possible next step. 

Network reconstructions for several dozen species are publicly available, and 
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programs such as MetRxn have been developed to aid comparison across model 

reconstructions161. Some examples of these are shown in Table 1.1. 

 

1.4.1.3 Applications of Constraint-based Models in General to Metabolic 

Engineering 

The original FBA framework has been supplemented with dozens of refinements 

broadly referred to as constraint-based models. While these models retain the 

optimization problem framework based on stoichiometric constraints, the flux 

constraints or objective function are altered. We direct the reader to reviews on 

the topic of FBA by Lee, Gianchanani, and others for more complete discussion 

of these methods162,163, though it is instructive to analyze a few representative 

classes relevant to metabolic engineering. Further, we note that these 

approaches do not generally make use of metabolite measurements. 

 

The most basic refinements are straightforward extensions of FBA, from adding a 

simplified representation of transcriptional regulatory constraints, to integrating 

uptake/effluxes and comparing against extracellular concentration profiles. 

Examples from this family include regulatory FBA (rFBA)164-166, dynamic FBA 

(DFBA)167,168, GIM3E169, integrated FBA (iFBA)168,170, and integrated-dynamic 

FBA (idFBA)171. Similar in application to idFBA, one CBM refinement by Vardi et 

al. modeled steady-state intracellular signal transduction using flux balancing, 

with added proportionality conditions to tie certain flux values together to act as 
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regulators. While these refinements demonstrate improved accuracy over basic 

FBA, most dynamic examples only make use of targeted extracellular 

concentration profiles as a means of constraining their dynamic elements. Using 

metabolomics data to constrain FBA solutions could provide these strategies 

direct information about intracellular metabolite levels in place of relying purely on 

the calculated fluxes to infer intracellular behaviors.  

 

In the case of DFBA, one approach discussed in that work has been adapted for 

use in kinetic ODE modeling via DFBALab172,173. This method performs FBA to 

describe dynamics rapid enough to become steady-state compared to the outer 

model to calculate the RHS of an ODE model. However, this requires adaptations 

to the LP to make it compatible with the ODE solver, which may fail if the LP at a 

given intermediate step is infeasible172,173. This method has been applied in 

spatial bioreactor models174 and to design a strain of Dunaliella salina for beta-

carotene overproduction175 

 

Another class of refinements to FBA comprises methods intended to better 

reduce the discrepancy between model predictions and experimental 

observations. Optimal metabolic network identification (OMNI) is used to identify 

discrepancies between measured and predicted fluxes, and then determine 

changes that need to be made to the model to better match the 

measurements176. This (and other178,179) methods would also directly benefit from 
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the additional information that metabolomics datasets can provide about the 

intracellular state of metabolism. 

 

More directly relevant to metabolic engineering applications is a class of 

refinements focused on predicting the result of metabolic network alterations. An 

early and well-known example of this is Minimization of Metabolic Adjustment 

(MOMA), which formulates a quadratic programming (QP) problem to find the 

feasible flux distribution nearest to the original FBA solution in response to a 

gene knockout180. OptKnock uses a bi-level optimization framework to balance 

an FBA objective function with a desired overproduction target181 (the work by 

Hua et al. compares the results of an evolved strain against an OptKnock 

prediction48). 

 

Recent extensions to this work by Tervo and Reed take advantage of information 

about the feasibility space and shadow prices (marginal impact of moving a 

constraint) to allow OptKnock and related techniques to satisfy additional design 

criteria182. They demonstrated the tractability of these extensions by using it to 

engineer the ethanol production of E. coli on glucose182. OptGene uses a genetic 

algorithm to generate metabolic engineering strategies183, and was used by 

Asadollahi et al. to design a strain exhibiting improved sesquiterpene production 

in S. cerevisiae184. Another extension is OptForce, which uses flux measurement 

data to generate a minimal set of engineering interventions required to guarantee 
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the desired overproduction target185. In addition to recapitulating already proven 

strategies for succinate production in E. coli, it also identified several other 

successful and nonintuitive strategies. The CosMos method developed by Cotton 

et al. uses a similar approach, but instead allows more flexibility in the constraints 

by allowing them to be selected by the algorithm rather than before run-time via 

e.g. Flux Variability Analysis186. An extension of Opt-Force, k-Opt-Force, was 

developed to incorporate targeted metabolite data into strain design by refining 

constraints using kinetics information, which was not accounted for previously187. 

A similar tool for performing strain design in the context of microbial communities 

is d-OptCom, which uses multi-level, multi-objective optimization to account for 

extracellular dynamics and interactions between multiple species188. Again, while 

many of these methods do not integrate metabolomics data into their 

calculations, the trend is moving towards incorporating them more and more 

frequently, with the goal of realizing significant improvements by harnessing such 

data. 

 

1.4.1.4 Integrating Metabolomics Data into Constraint-based Models 

As reviewed above, many constraint-based modeling strategies make negligible 

use of systems-scale metabolite data in their calculations. The requirement that 

organisms adhere not only to stoichiometric mass conservation but also to 

thermodynamic restrictions on energy and entropy provides one means of 

introducing metabolite concentrations into the constraints. Several constraint-
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based model techniques make use of metabolite or metabolomics data in this 

fashion. 

Table 1.1 Summary of Software Tools Presented in Chapter 1  
Tool Name Reference Description 
Metabolomics Data Processing 
ChromA  75 GC-MS Peak Alignment 
Metab  78 GC-MS Data Statistical Analysis Package 
MetaboAnalyst 2.0  81 Web-based Metabolomics Data Processing Pipeline 
MetAlign  79 GC-MS and LC-MS Data Processing Pipeline 
Mzmine 2  77 MS Data Processing Pipeline 
SpectConnect  74 GC-MS Peak Alignment 
Xalign  72 LC-MS Data Pre-processing 
XCMS Online  80 Web-based Untargeted Metabolomics Pipeline 

 
  

Constraint-Based Modeling  
anNET  190 MATLAB-based NET analysis 
CellNetAnalyzer  140 MATLAB-based Metabolic and Signal Network Analysis 
COBRA Toolbox 139 MATLAB-based FBA Toolbox Suite 
OptFlux  142 Open Source, Modular Constraint-based Model Strain Design Software Toolbox 
Systems Biology 
Research Tool  

141 Open Source, Modular Systems Biology Computational Tool 

 
  

Network Reconstruction  
GapFind, GapFill  148 Automated Network Gap Identification and Hypothesis Generation 
GeneForce  150 Regulatory Rule Correction for Integrated Metabolic and Regulatory Models 
MetRxn  161 Web-based Knowledgebase Comparison Tool 
Model SEED  151 Web-based Generation, Optimization and Analysis of Genome-scale Metabolic Models 

 
  

Databases 
BioCyc 191 Genome and pathway database for >2000 organisms 
BRENDA 192 Comprehensive enzyme database, ~5000 enzymes 
ChEBI 193 Biologically relevant small molecules and their properties 
KEGG 194 Genomes, enzymatic pathways, and biological chemicals 
MetaCyc 195 >1,900 metabolic pathways from >2,200 different organisms 
PubChem 196 Biological activity and structures of small molecules 

 

Network-embedded Thermodynamic (NET) Analysis combines pre-determined 

flux directions with quantitative metabolomics datasets and the metabolite Gibbs 

energy of formations to determine the feasible ranges of Gibbs free energy of 

reaction throughout the system189. This method can assess the internal 

consistency of a metabolomics dataset, predict thermodynamically feasible 

ranges for unmeasured metabolites, and identify putative sites of transcriptional 

regulation. anNET is a MATLAB implementation of the algorithm designed to 

facilitate straightforward application of NET analysis190. NET analysis of a 
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metabolomics dataset for S. cerevisiae by Canelas et al.  revealed a 

thermodynamic inconsistency in modeled whole-cell NAD/NADH ratio197. Other 

studies have also used NET analysis to verify the thermodynamic consistency of 

their measurements in a variety of metabolic engineering contexts10,60,198. 

 

Henry et al. developed Thermodynamic Metabolic Flux Analysis (TMFA), a 

constraint-based modeling approach similar to NET analysis199. The E. coli 

network reconstruction published by Fiest et al. includes thermodynamic 

information, and the manuscript includes an assessment of thermodynamic 

consistency using TMFA156. More recently, Hamilton et al. used a genome-scale 

model of E. coli with experimental gene knockout and metabolomics data in an 

effort to validate it, finding good agreement with data and model predictions200. 

Recent improvements to group contribution methods should improve this 

approach’s accuracy201,202.  

 

Several other methods that incorporate metabolite concentrations and 

thermodynamic constraints have been developed as well. For example, Bordel et 

al. developed a constraint-based model based on Ziegler’s principle for the 

maximization of entropy production that uses non-equilibrium thermodynamics to 

identify flux bottlenecks203. Hoppe et al. designed a constraint-based model that 

combines thermodynamic constraints similar to TMFA and NET analysis with a 

penalty function for deviations from concentration measurements204.  
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Other recent efforts have sought ways to take advantage of metabolomics as 

well. One such approach is kFBA, which uses kinetic rate laws with flux variability 

analysis to provide better bounds on flux values205. Information about metabolite 

levels can be incorporated into the rate law calculations.  

 

Another set of approaches build from MFA, and seek to extend it to dynamic 

contexts. Several dynamic MFA approaches break time course data into intervals 

and use the metabolite slope to estimate the accumulation terms in the mass 

balances, and subsequently use this to calculate the flux distribution over that 

interval. These include the DMFA approach of Leighy et al.206, the TremFlux 

approach of Kleessen et al.207, the MetDFBA, and the unsteady-state FBA 

(uFBA) of Bordbar et al.208 We discuss similar approaches for ODE models in 

section 1.4.2.4. 

 

1.4.2 Kinetic Models 

Constraint-based models have successfully directed numerous metabolic 

engineering projects. However, by construction they often ignore or have trouble 

dealing with dynamic metabolite behaviors that may have significant impact on 

final product titers, and in general they only indirectly make use of metabolite 

concentration measurements. Improved knowledge of network structures and 

strategies for dealing with parametric uncertainty have made ordinary differential 

equation (ODE) based models of metabolic kinetics increasingly viable tools for 
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strain design. These methods explicitly model intracellular concentrations, 

making them attractive and convenient frameworks for integrating metabolomics 

datasets.  

 

1.4.2.1 Recent Developments in Kinetic Modeling Strategies 

Kinetic models are built around explicit mathematical descriptions of enzyme-

metabolite interactions. Natural choices for kinetic rate laws are mass action 

kinetics and Michaelis-Menten kinetics, but a review by Heijnen highlights several 

approximate rate laws that require fewer parameters and are relevant to 

metabolic engineering applications209. Included are discussions of S-systems and 

power-law kinetic rate laws, long established by the early efforts at kinetic 

modeling that developed into Biochemical Systems Theory (BST), and reviewed 

specifically in the context of metabolic networks recently by Voit210-213. 

 

Several investigators have sought to assess the properties of several of these 

approximate forms in the context of metabolic networks. These include studies of 

the glycolytic pathway in S. cerevisiae using a local linearization method214 and 

lin-log kinetics215,216, as well as study of central carbon metabolism in E. coli to 

compare lin-log kinetics, convenience kinetics, power law kinetics, and Michaelis-

Menten kinetics217.  
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1.4.2.2 Examples of Kinetic Models for Metabolic Engineering 

Independent of metabolomics, kinetic models have already been applied in 

several recent metabolic engineering contexts. Rasler et al. constructed a 

dynamical model of cellular redox state in S. cerevisiae to assess response to 

oxidative stress218. Chassagnole et al. constructed a kinetic model of central 

carbon metabolism in E. coli.128. A similar study by Oh et al. constructed a model 

of lactic acid fermentation in Lactococcus lactis21. 

 

Ensemble approaches are also promising, and are in part a response to issues of 

parametric “sloppiness” which can preclude precise determination of kinetic 

parameters131, and can be assessed with tools such as the STRIKE-GOLDD 

toolbox developed by Villaverde et al.219 These ensemble approaches entail 

constructing a set of models that are structurally identical, but each using a 

different parameter set. Each model fits the training data comparably well, and 

the behavior of the whole ensemble is used to make predictions. Tran et al. 

developed a model for central metabolism in E. coli as a proof of concept220. This 

effort led to an ensemble model constructed by Rizk et al. that predicted the 

effect of gene knockouts on the production of aromatic compounds in E. coli221, 

and a model by Contador et al. to predict flux data in L-lysine-producing E. coli222. 

More recent work has expanded to the genome-scale with a model of E. coli by 

Khodayari et al.223 that used extensive metabolite measurements to refine their 

previous work in this system224. 
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1.4.2.3 Integrating Metabolomics Datasets into Kinetic Models 

The aforementioned ODE models generally do not explicitly look to integrate 

metabolomics data into their analyses, but some other efforts have. For example, 

Klimacek et al. used published kinetic parameters with time-course metabolomics 

measurements to assess metabolic control in xylose-fermenting S. cerevisiae10. 

Similarly, a model of nitrogen assimilation in E. coli developed by Yuan et al. 

used kinetic parameters from the literature together with a genetic algorithm to fit 

undefined parameters to metabolomics data61. While these examples both use 

metabolomics data, the modeling strategies focused only on capturing the 

dynamics of individual pathways and modules—not the whole metabolic network. 

 

Two early examples attempted to apply metabolomics measurements to models 

of an entire metabolic network. Yizhak et al. developed a constraint-based 

modeling approach they referred to as integrative “omics”-metabolic analysis 

(IOMA), which solves a QP problem in a constraint-based model to fit a flux 

distribution to proteomic and metabolomics data225. Their approach introduces a 

reaction rate model based on Michaelis-Menten kinetics, and uses proteomic 

data in conjunction with metabolomics data to fit the kinetic parameters and 

satisfy the steady-state flux requirement in the unperturbed system. This results 

in a defined system of ODEs. When compared against FBA and MOMA to predict 

the effects of gene knockouts based on an erythrocyte kinetic model and 
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published data for E. coli, IOMA demonstrated significantly improved recall, 

precision, and accuracy. 

 

A mass action stoichiometric simulation (MASS) modeling strategy described by 

Jamshidi et al. follows a different scheme, by fitting thermodynamic equilibrium 

constants to a measured metabolomics dataset and a calculated flux 

distribution226. The kinetic rate law equations are then solved to obtain the 

forward reaction rate constants. As a proof of concept, they used this method to 

construct a human erythrocyte model and demonstrated many of the key 

behaviors of the original erythrocyte model. 

 

Notably, these last two methods both take advantage of constraint-based 

modeling strategies, but result in ODE-based kinetic models that can 

subsequently be used for strain design. This reflects the complementary nature 

of metabolite fluxes and concentrations, especially when faced with system-wide 

parametric uncertainty. However, to fully capture the wide-ranging dynamics that 

directly and indirectly contribute to the often subtle and nonintuitive behaviors 

exhibited in engineered strains, additional model detail is necessary. More 

advanced modeling strategies will need to find ways to integrate additional 

information, including proteomics and transcriptomics, to meet this need. 
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A more recent example by Mannan et al. used steady-state data from the Keio 

multi-omics dataset to train a hybrid kinetic-FBA model of E coli metabolism227. 

Using the genome-scale model at steady state to augment the ODE model 

allowed them to close the open system of their ODE model, and to identify two 

growth phenotypes that arise due to bistability that reflected a real subpopulation 

difference in experimental populations227. 

 

1.4.2.4 Dynamic Flux Estimation 

Previous we described several methods that sought to expand MFA to wider 

contexts, such as dynamics. Here, we discuss work that uses similar 

approaches, but with the emphasis typically placed on producing ODE models. 

 

One set of tools can be described under the umbrella of Dynamic Flux Estimation  

(DFE), a procedure for generating fitted models from metabolite time course data 

and knowledge of the system stoichiometry228. As in DMFA, the slope of the data 

is estimated and used to calculate a dynamic flux distribution. In turn, model rate 

law equations can be identified as independent fitting problems, reducing error 

compensation that can occur when simultaneously solving for all model 

parameters228. This builds off previous work in the field of BST, such as the 

Artificial Neural Network (ANN) data smoothing working of Voit and Almeida229, 

or the alternating regression method of Chou et al.230 for solving for parameters 

in S-systems models. 
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This DFE framework involves three key steps. The first step involves smoothing 

the data and estimating the slope of the metabolite concentrations228. Common 

methods for accomplishing this include polynomials231 and splines232, and our 

own work exploring the use of an impulse function is described in the next 

chapter233. More sophisticated methods include techniques such as piecewise 

approximation of sub-intervals234. 

 

The second step is to apply the mass balance equations with the estimated 

slopes to determine the dynamic flux distribution. One consideration at this step 

is the preservation of conservation of mass when data is noisy or the model is 

incomplete228,235. The basis for calculating flux distributions may be derived from 

DFBA, as is the case in the MetFBA procedure of Willemsen et al.236, or by 

breaking the flux set into dynamic and static subsets and using FBA for the static 

sets, as was described by Yugi et al.237. Many of the DMFA methods described 

previously in Section 1.4.1 also focus on this problem. Alternatively, the flux 

distribution may be bounded to Elementary Flux Modes plus dynamic 

perturbations238. The relationship between metabolites and fluxes may also be 

cast as Guassian Process models, as was done by Zurauskiene et al239. 

 

The final step involves the application of a kinetic rate law model, such as S-

systems230,240 or Generalized Mass Action (GMA) power-law kinetics228,241. The 

previous step generated the dynamic flux distribution, and individual fluxes can 



  40 

be matched against the corresponding metabolites to identify kinetic rate law 

parameters using regression. This breaks the highly interconnected parameter-

fitting problem (which often requires performing integrations to solve) down in to 

a series of decoupled algebraic equations. The method of Chou et al. identifies a 

subset of the flux-metabolite relationships that can be estimated from time series 

data by isolating one metabolite that varies when the others in the rate law hold 

constant, and generates piece-wise a reconstruction of this relationship242.  

 

While not building from the DFE framework per se, several parameter 

optimization approaches by Jia et al. use similar concepts243,244. Somewhat 

similar to the alternating regression procedure of Chou et al.244, one approach 

alternates between slope and concentration error calculations to iteratively refine 

model parameters243. Another breaks the flux distribution into subsets, and uses 

these subsets to sequentially calculate a flux distribution using decoupled 

parameter fitting on one subset244. 

 

1.4.2.5 Whole-cell modeling strategies 

One relatively recent development mentioned briefly before is the publication of a 

whole-cell model of Mycoplasma genitalium160. This model incorporated 

interacting modules for gene expression, protein synthesis, DNA synthesis, 

metabolism, growth, replication, and other cellular processes to produce a 

simulation of M. genitalium growth through one full division. This model was 
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generated from and validated against a wide variety of data types, including 

metabolomics, proteomics, and transcriptomics. Later efforts with this model 

have led to exploration of its deficiencies and have used its predictions to guide 

experimental efforts, such as determination of kinetics parameters245. Offshoots 

from this work include new strategies for formulating objectives and accounting 

for time-varying conditions and metabolite utilization across modules246. The 

resulting analysis has been made accessible at WholeCellSimDB in an effort to 

help develop other whole-cell modeling projects247. 

 

1.5 Summary 

Metabolomics is the global analysis of the metabolic content of a living system. 

While it has found increasing application in fundamental biological research and 

in fields of clinical interest (e.g. disease biomarker discovery), there is 

surprisingly little use of metabolomics approaches to drive metabolic engineering 

efforts. Existing experimental approaches to supplement rational metabolic 

engineering efforts typically focus instead on the determination of flux with MFA 

techniques, or the use of enzyme assays and analytical platforms such as HPLC 

for highly targeted metabolite measurements.  

 

While global analysis methods have been used to better predict and assess the 

effects of metabolic engineering modifications, the techniques most typically used 

have been transcriptomic or proteomic analyses—not metabolomics. While this 
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may have previously been due to the relative immaturity of metabolomics 

techniques, the current technology in the field should allow for easy integration of 

metabolomics into metabolic engineering workflows. 

 

Direct applications of metabolomics datasets to metabolic engineering include 

expanding the existing narrowly targeted analysis methods to a broader scope, 

identifying non-intuitive mutations in strains produced by directed evolution, and 

adding direct metabolic context to other global analysis datasets. Computational 

approaches have also begun to integrate metabolomics datasets through 

thermodynamic constraints in constraint-based models or even more directly in 

the case of some kinetic models. 

 

However, long-term strategies will need to find novel ways of incorporating the 

system-wide perspective provided by metabolomics and other global analysis 

methods. Such approaches will facilitate strain design based on increasingly 

detailed mechanistic descriptions and enable us to engineer strains towards any 

arbitrary product, not just those well-suited to high-throughput screens and 

directed evolution. Computational methods have a great deal of potential here. 

 

In the case of kinetic models, combining the metabolome and proteome can help 

address issues of in vivo parameter estimation. Ensemble models are proving to 

be one effective method of addressing issues of parametric uncertainty and 
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model “sloppiness”, and metabolomics provides substantial data to better 

constrain feasible parameter sets. With proper alterations and structural 

changes, constraint-based models may be able to more explicitly incorporate 

metabolite concentrations into constraints to capture effects such as allosteric 

regulation. 

 

It is this last case we will focus on primarily in this thesis. In the following 

chapters, we will discuss our contributions to computational strategies for 

leveraging metabolomics data for metabolic engineering.  These efforts improve 

on gaps in existing processing methods for metabolite time course data and 

expand existing CBM frameworks to allow us to more completely integrate 

metabolomics data. The work presented is aimed ultimately at using 

metabolomics to improve the efficiency and accuracy of prospective strain 

designs; we close with a discussion of the next steps necessary to apply our 

contributions towards that end and explore several potential complementary 

strategies.  
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Chapter 2: Improved Metabolite Profile Smoothing for 
Flux Estimation 

 
 

Portions of this chapter are reproduced under license from my publication 

“Improved metabolite profile smoothing for flux estimation”1 in Molecular 

Biosystems. http://pubs.rsc.org/en/Content/ArticleLanding/2015/MB/C5MB00165J 

 
 
2.1 Background 

Genome-scale metabolic modeling is an area of research with the potential for 

significant impact on many biomedical and biotechnological applications. As 

discussed in Chapter 1, such models have been used to identify drug targets that 

specifically inhibit cancer proliferation2, to identify genomic manipulations that 

can facilitate production of valuable chemicals3, and to uncover and characterize 

metabolic pathways even in well-understood models4. This modeling approach 

entails using metabolic reconstructions that include all of the cataloged metabolic 

reactions in an organism (i.e., genome-scale reconstructions) in a defined 

mathematical modeling framework.  

 

Effectively modeling biological systems at the genome scale calls for 

measurements and data also at the genome scale. As discussed in Chapter 1, to 

date very few genome-scale metabolic models have attempted to integrate 

metabolite profiling information, in contrast to the prominent use of 

transcriptomic, fluxomic, and proteomic data in such models5-9. In the few cases 
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where metabolomics data have been integrated into these models, the 

application of the data has typically been in setting thermodynamic constraints 

and estimating free energies rather than in more direct applications10,11.  

 

The primary reason for this omission is that most metabolic models using 

genome-scale metabolic reconstructions assume the cell or organism to be at a 

steady state, typically to simplify the model framework and associated 

computational complexity. While models exploiting such an assumption have 

shown great utility, their validity and potential for extrapolation have an intrinsic 

limit: while the steady state assumption may be true over short time periods, it 

ultimately is violated once varying forms of metabolic regulation begin to exert 

their influence.  

 

The use of detailed ordinary differential equation (ODE) models would allow for 

the capture of dynamic behaviors and regulation, but application of ODE models 

on a genome-wide scale is not currently feasible due to (among other issues) the 

many unknown reaction rate and thermodynamic parameters12-14, each of which 

would require extensive effort to be ascertained experimentally. As such, 

significant recent effort has focused on softening the steady state assumption in 

genome-scale metabolic modeling without requiring a full ODE model of the 

entire metabolic system6,7,15. These efforts hold great promise for future 
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biotechnological applications, and they are the background motivation for efforts 

described in this chapter. 

 

Use of metabolomics data is a promising approach for bridging the gap between 

the steady state assumption and the dynamic intracellular reality. This data can 

be used to estimate the accumulation or depletion “fluxes” of certain metabolites 

in a system, which can then be used in place of the steady state assumption so 

common in genome-scale metabolic modeling. This approach has been 

described and implemented in multiple prior works16-20. The most common 

approach to estimating these accumulation fluxes from metabolite data is to first 

smooth the data or fit it to a specific mathematical function, and then use the 

resulting data or function to determine the flux of that metabolite at any given 

time (potentially between measured time points). The accuracy of these 

estimates has an obvious impact on the accuracy of the overall model, but 

effective estimation of these fluxes is a non-trivial problem given the noise 

inherent to measurement of metabolite levels and the limitations of the current 

methods for flux estimation16. 

 

One of the more thorough treatments of the problem of flux estimation from 

metabolite data for metabolic modeling was included in work by Ishii et al.19 

While the main focus of that work was on developing a broader metabolic model, 

data smoothing and flux estimation were integral parts of the data processing for 
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the algorithm. They fit a variety of polynomial and rational functions to simulated 

metabolite data and, on a metabolite-wise basis, selected as the representative 

function the one that minimizes the fitting error (accounting for the number of free 

parameters to minimize over-fitting). Of note is that none of the candidate fitting 

functions are derived from or selected based on biological insight. Additionally, as 

we show later, the fitting of an arbitrary time course can yield unphysical results. 

Splines, another common alternative, are sensitive to noise and outliers—this is 

particularly problematic when the derivative of the concentration (the 

accumulation flux) is the important quantity being estimated. 

 

In this chapter, we present two approaches for improving the estimation of 

accumulation fluxes from metabolite time series data. First, we investigate the 

use of a biologically reasonable and biologically-inspired sigmoidal impulse 

function21,22 as an effective and perhaps generalizable alternative to the fitting 

functions previously used. This functional form emulates behavior observed in 

known biological systems, and our work represents the first time that it has been 

applied in the context of metabolic modeling. Second, we investigate whether a 

resampling-based approach to smoothing and fitting data might yield more 

accurate concentration profile fits and derivative (flux) predictions than the 

previously used approach. In the course of these investigations, we also 

identified the importance of enforcing constraints on fitting equation parameter 

values to prevent the selection of unphysical solutions. Each of these approaches 
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improves the accuracy of flux estimation from metabolite time series data, 

providing more reliable results to be integrated into the larger metabolic modeling 

framework with reasonable computational expense. 

 

2.2 Methods 

2.2.1 Fitting functions 

Eight functions, shown in Table 2.1, were considered as candidates to best fit the 

time series metabolite data. The first seven were used by Ishii et al.19. Four of 

these were polynomials, of order two to five. The other three were rational 

functions, composed of a first, second, or third order polynomial numerator and a 

first or second order polynomial denominator. The eighth function was the 

sigmoidal impulse, which was first presented in the context of filtering and 

clustering gene expression profiles21,22; it is here applied for the first time in the 

context of metabolic models. Unlike the other functions, it has a biologically 

relevant interpretation: a two-phase transition from one steady state to a 

(potentially new) steady state through an intermediate state. Its parameters 

directly correspond to features of this trajectory, representing: transition time 

delays; the initial, intermediate state, and steady-state metabolite levels; and the 

rapidity of the transitions. 
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Table 2.1. Fitting functions evaluated in Chapter 2 
 
Name	   Formula	  

P2  
 
𝐶 𝑡 =   𝑝! ∙ 𝑡! +   𝑝! ∙ 𝑡 +   𝑝! 
 

P2  
 
𝐶 𝑡 =   𝑝! ∙ 𝑡! +   𝑝! ∙ 𝑡! +   𝑝! ∙ 𝑡 +   𝑝!   
 

P4  
 
𝐶 𝑡 =   𝑝! ∙ 𝑡! +   𝑝! ∙ 𝑡! +   𝑝! ∙ 𝑡! +   𝑝! ∙ 𝑡 +   𝑝!   
 

P5  
 
𝐶 𝑡 =   𝑝! ∙ 𝑡! +   𝑝! ∙ 𝑡! +   𝑝! ∙ 𝑡! +   𝑝! ∙ 𝑡! +   𝑝! ∙ 𝑡 +   𝑝! 
 

R11  

 
𝐶 𝑡 =   

  𝑝! ∙ 𝑡 +   𝑝!
𝑡 +   𝑝!

 

 

R22  

 

𝐶 𝑡 =   
𝑝! ∙ 𝑡! +   𝑝! ∙ 𝑡 +   𝑝!
𝑡! +   𝑝! ∙ 𝑡 +   𝑝!

 

 

R31  

 

𝐶 𝑡 =   
𝑝! ∙ 𝑡! +   𝑝! ∙ 𝑡! +   𝑝! ∙ 𝑡 +   𝑝!

𝑡 +   𝑝!
 

 
  
I  

  

𝐶 𝑡 =
1
ℎ!
∙ 𝑠 𝑡, 𝜏!, ℎ!,𝛽! ∙ 𝑠 𝑡, 𝜏!, ℎ!,𝛽!  

 

𝑠 𝑡, 𝜏, ℎ,𝛽 = ℎ +
(ℎ! − ℎ)

1+ 𝑒!!!(!!!)
 

 
 
 
2.2.2 Synthetic Reference Data 

We tested our new methods using two different ODE models of central carbon 

metabolism taken from the literature, which were used to generate noise-free 

“gold standard” synthetic reference data for our analyses. These models were 
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selected because their dynamics are believed to reasonably represent in vivo 

metabolic dynamics; the fact that they are not genome-scale does not detract 

from their relevance as a model system, as the data smoothing/fitting step of flux 

estimation is independent of the scale of the model. 

 

The first model simulates central carbon metabolism in E. coli12. While the model 

includes 18 metabolites, only the 17 metabolites with substantial dynamics were 

included in our analysis. (As implemented, metabolite 1 was a fixed value.) The 

second model simulates central carbon metabolism in S. cerevisiae23, comprising 

22 metabolites (21 of which had substantial dynamics, and were included in our 

analysis—changes in metabolite 17 were several orders of magnitude smaller 

than the concentration). While the yeast model was initially presented in the 

context of stable concentration oscillations, the initial conditions we used for our 

simulations do not produce oscillatory behaviors. To validate our implementation 

of the model, we used it to reproduce Figure 6 from Hynne et al.23.  

 

We obtained curated SBML code for both models from the BioModels Database, 

and solved systems of ODEs using the LSODA method in the Time Course 

module of Copasi 4.14, Build 89, with the default tolerances and parameters24,25. 

For each model, we solved the system of ODEs using the initial conditions 

specified in Table 2.2, derived from those previously reported19, to simulate a 

perturbation in glucose concentration. As previously described19 we used a 
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perturbation from 0.0556 mM to 1.67 mM for “Extracellular Glucose” in the E. coli 

model and a perturbation from 2.5 mM to 5.0 mM for “Mixed flow glucose” in the 

S. cerevisiae model. For the E. coli model, we fixed the concentrations of ATP, 

ADP, AMP, NAD(H), and NADP(H) at their initial values, as was done previously. 

The resulting gold-standard data contained concentrations at intervals of 0.01 

seconds for the E. coli model and 0.0025 minutes for the S. cerevisiae model. 

 

To generate data for parameter estimation, simulated time points were sampled 

at 1 second intervals from 0 seconds to 20 seconds for the E. coli model, and at 

0.25 minute intervals from 0 minutes to 15 minutes for the S. cerevisiae model. 

The selection of different sampling rates was to be consistent with the approach 

taken by Ishii et al. for the E. coli  model, but to account for the different time 

scales of the dynamics in the two mathematical models as observed in the 

BioModels implementations while still keeping the number of samples used for 

each respective model the same as that used by Ishii et al. By keeping the 

number of samples the same as in previous work for each respective model, our 

fitting results would be most directly comparable. We used a first-order centered 

finite difference approximation on the ODE output to estimate the derivatives in 

the synthetic reference data for each metabolite, 𝐶!. 
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Table 2.2. Model Initial Conditions 
Initial conditions listed here were used to generate synthetic data as a gold standard from each 
model as described in the Methods section. 
 

Chassagnole (E. coli)  Hynne (S. cerevisiae) 

# Metabolite Conc (mM)  # Metabolite Conc (mM) 

1 Extracellular Glucose 1.670E+00  1 Extracellular glucose 3.330E-02 

2 Glucose-6-Phosphate 3.480E+00  2 Cytosolic glucose 3.700E-03 

3 Fructose-6-Phosphate 6.000E-01  3 Glucose-6-Phosphate 5.708E-01 

4 Fructose-1,6-bisphosphate 2.720E-01  4 Fructose-6-Phosphate 7.190E-02 

5 Dihydroxyacetonephosphate 1.670E-01  5 Fructose 1,6-bisphosphate 5.090E-02 

6 Glyceraldehyde-3-Phosphate 2.180E-01  6 Dihydroxyacetone phosphate 2.851E-01 

7 1,3-diphosphosphoglycerate 8.000E-03  7 Glyceraldehyde 3-phosphate 1.240E-02 

8 3-Phosphoglycerate 2.130E+00  8 1,3-Bisphosphoglycerate 0.000E+00 

9 2-Phosphoglycerate 3.990E-01  9 Phosphoenolpyruvate 6.300E-03 

10 Phosphoenol pyruvate 2.670E+00  10 Pyruvate 6.540E-02 

11 Pyruvate 2.670E+00  11 Acetaldehyde 1.268E-01 

12 6-Phosphogluconate 8.080E-01  12 Extracellular acetaldehyde 1.100E-01 

13 Ribulose-5-phosphate 1.110E-01  13 EtOH 3.754E+00 

14 Xylulose-5-phosphate 1.380E-01  14 Extracellular ethanol 3.210E+00 

15 sedoheptulose-7-phosphate 2.760E-01  15 Glycerol 3.642E-01 

16 Ribose-5-phosphate 3.980E-01  16 Extracellular glycerol 1.462E-01 

17 Erythrose-4-phosphate 9.800E-02  17 Extracellular cyanide 5.564E+00 

18 Glucose-1-Phosphate 6.530E-01  18 AMP 6.055E-01 

    19 ADP 1.757E+00 

    20 ATP 1.571E+00 

    21 NAD 7.787E-01 

    22 NADH 2.013E-01 

 
2.2.3 Synthetic Noisy Data 

We generated sets of noisy metabolite time courses from this synthetic reference 

data. For each metabolite 𝐶!, we generated a noisy time course by adding noise 

at each sampled time point, 𝑡!, to the true value at that timepoint, 𝐶!(𝑡!), by 

drawing 5 simulated measurements from a normal distribution, 

𝑁!,!   ~  (𝐶! 𝑡! ,𝐶𝑜𝑉 ∙ 𝐶!(𝑡!)), and then taking the mean of those 5 measurements, 
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called 𝐷! 𝑡! . We refer to each individual noisy time course as 𝐷!,! . This 

approach paralleled the common experimental approach of taking biological 

replicate measurements and then collapsing them into one value for analyses. 

Here, we set the Coefficient of Variation (𝐶𝑜𝑉) to 0.15, a reasonable value for 

many mass spectrometry-based metabolite profiling approaches. The same 

noisy values were used for all functions, allowing for direct comparison of the 

performance of each function. In total, 500 noisy time courses were generated for 

each metabolite in each model for the Direct Fit Method (described below), while 

an additional 50 time courses were used as the base data for the Resampling 

Method (described below). 

 

2.2.4 Direct Fit Method 

We refer to a basic nonlinear least squares fitting of parameters as the “Direct 

Fit” method for the purposes of this work. In this approach, we directly fitted each 

function of interest to each noisy time course, 𝐷!,!, to produce the smoothed time 

course estimate, 𝑓!,!,!. Best-fit parameters for a given function were selected by 

minimizing the root-mean-square-displacement (RMSD) of the function to the 

data, defined as 

𝑅𝑀𝑆𝐷!,!,! =
𝐷!,! 𝑡! − 𝑓!,!,! 𝑡!

!

𝑛 − 𝑝!!

 

where 𝑖 represents a specific metabolite, 𝑗 represents a function being fitted, 𝑘 

represents an individual time point, 𝑚 represents the use of a specific noisy data 



  78 

set, 𝑛 is the number of sampled time points in the time course 𝐷!,!, and 𝑝! is the 

number of parameters being fit for function 𝑓!. The denominator reflects a penalty 

on the number of parameters for a function, to help guard against over-fitting 

when comparing different functions26. 

 

Polynomials were fit using the built-in polyfit() function in MATLAB. Rational 

functions and the impulse function were fitted using fmincon() in MATLAB to 

allow for bounds on the parameter space, as described in sections 2.3.2.1 and 

2.3.2.2  To improve the likelihood of finding globally optimal parameter sets for 

the rational and impulse functions, we selected optimal parameters from 20 

solver runs seeded with different sets of initial conditions as described in section 

2.3.2.3. 

 

2.2.5 Resampling Method 

In an approach we refer to as the “Resampling Method”, we took advantage of 

the stabilizing effect of calculating the median of fits to multiple noisy datasets to 

produce more robust estimates of metabolite concentrations and derivatives. 

 

Starting with the noisy time courses that model experimental data (described 

above), we generated resampled time courses by repeating the procedure used 

to produce the original noisy time courses, but using a noisy time course 𝐷!,! as 

input rather than the true metabolite concentration 𝐶!. We again used a fixed 𝐶𝑜𝑉 
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of 15% for this procedure; however, in practice, a dataset-specific and/or 

metabolite-specific 𝐶𝑜𝑉 could be estimated and use in place of the fixed 𝐶𝑜𝑉. We 

generated 250 such resampled noisy time courses, 𝑅!,!,!, for each initial noisy 

time course 𝐷!,!.  

 

We used the Direct Fit Method as described above to generate a nominal 

parameter solution from each base noisy time course 𝐷!,! . Then, for each 

resampled time course 𝑅!,!,!  derived from that noisy time course, we fit the 

function of interest (once) using the parameter solution from the Direct Fit Method 

as the initial guess. Parameter fitting was performed as described above. 

 

We then used the resample-derived parameters to calculate concentration and 

derivative trajectories for each resampled time course 𝑅!,!,!, and calculated the 

median value across all resampled time courses at the time points of interest 

(either the original or interpolated time points, as described below). The output of 

the Resampling Method was this list of concentration and derivative medians. 

 

2.2.6 Performance Calculations 

The performance of each fitting function using each method (direct and 

resampling) on both concentration and derivative predictions was quantified for 

each metabolite and for each base noisy time course, 𝐷!,! . Concentration 

accuracy is useful for assessing the effectiveness of smoothing, while derivative 
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accuracy is more relevant for downstream applications in estimating flux 

distributions18. Accuracy for each noisy time course 𝐷!,! was calculated using an 

adjusted RMSD between the synthetic reference data, 𝐶!, and the predicted value 

for a given function, parameter set, and noisy data set, 𝑓!,!,!. Specifically, we 

calculate accuracy as 

𝑅𝑀𝑆𝐷!,!,! =
𝐶! 𝑡! − 𝑓!,!,! 𝑡!

!
!

𝑛! ⋅ 𝑆 ⋅ 𝜇
 

where 

𝑆 =
𝑓!,!,! 𝑡!

!
!

𝑛  

𝜇 =
𝑛 − 𝑝!
𝑛  

and 𝑛! is the number of time points used in assessing predictive accuracy. 𝑆 is a 

scaling factor facilitating comparison and visualization by controlling for 

differences in the magnitude of different metabolites, and 𝜇 is a penalty factor 

scaling with the number of parameters in a function and the number of data 

points used to fit the function. For calculating derivative accuracy, the derivative 

values 𝑓!,!,!! 𝑡!  and 𝐶!! 𝑡!  are substituted in place of 𝑓!,!,! 𝑡!  and 𝐶! 𝑡! . 

 

For these performance calculations, we more densely sampled metabolite 

concentration and derivative time courses to provide a more accurate 

representation of interpolation performance, relevant to the general case of 

dynamic genome-scale metabolic modeling. For each model, results were 
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sampled at time steps a factor of ten smaller than those used for the fitting data, 

resulting in 𝑛!  = 201 interpolated points for the E. coli model and 𝑛!  = 601 

interpolated points for the S. cerevisiae model (these sets included the original 

sampled time points). 

 

We ranked the functions’ performance and averaged these ranks to provide a 

quantitative overall comparison of each function. We ranked the performance of 

each function for each noisy time course (𝐷!,!) of each metabolite and averaged 

the ranks for each function across all of these time courses. In both cases, a 

harmonic mean was used to average ranks, emphasizing the relative importance 

of comparing functions that perform strongly in some cases; in this way, the 

difference between rank 1 and rank 2 was weighted more heavily than the 

difference between, for example, rank 4 and rank 5.  

 

This averaged rank approach was used to compare performance of fitting 

functions for the Direct Fit method only and for the Resampling Method only, as 

well as to compare performance between these two methods for all of the 

different fitting functions. 

 
2.3 Results 

2.3.1 A description of the overall approach 

Two small-scale ODE metabolic models describing E. coli and S. cerevisiae 

metabolism were used to generate synthetic reference data for the assessment 
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of new methods for concentration and flux inference from metabolite data. Using 

this synthetic reference data as a basis, noisy time courses were generated to 

represent the noisy data that typically result from metabolite profiling 

experiments. Eight different functions, including four polynomials, three rational 

functions, and one impulse model function (as described in the Methods section 

2.2.1 and in Table 2.1), were used as candidate fitting functions for these noisy 

metabolite time course data. Two different approaches were used to fit 

metabolite concentration curves to the noisy synthetic datasets generated from 

the original ODE models. 

 

The Direct Fit Method, described in the Methods section, was a standard fitting of 

functions to given experimental data. The approach used to assess the 

effectiveness of the Direct Fit Method for each of the candidate fitting functions is 

outlined in Figure 2.1. Briefly, after multiple noisy time courses were generated 

from the synthetic reference data, each candidate function was fitted to each of 

the noisy time courses. Each of these fits was then assessed for their 

performance at recapitulating and interpolating the original data; these 

assessments were performed on both the fitted concentrations and the derivative 

values that resulted from those fitted concentrations. 
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Figure 2.1. Schematic of the Direct Fit Method 
Synthetic gold standard data are generated by simulating a system of ODEs over the time interval 
of interest. From the synthetic data, noisy time courses are generated by adding Gaussian noise 
with a 15% coefficient of variation to the synthetic data, to simulate experimental sources of 
variation in measurements. Multiple such noisy time courses are generated. A smoothing function 
is fit directly to a noisy time course, and the resulting fit (or its derivative) is compared against the 
synthetic data to determine how closely they match. The performance of each function can then 
be compared based on their performance relative to the initial synthetic data. 
 

The Resampling Method, also described in the Methods section, involved fitting 

multiple noisy datasets generated from a single experimental (or noisy synthetic) 

dataset. By taking the median of these multiple fits, susceptibility to noise and 

outliers in the original experimental data was reduced, providing more robust 

estimates of metabolite concentrations and derivatives. The approach used to 

assess the effectiveness of the Resampling Method for each of the candidate 

fitting functions is outlined in Figure 2.2. 
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Figure 2.2. Schematic of the Resampling Method 
As in the Direct Fit method, synthetic data and base noisy time courses are generated from a 
system of ODEs. In the Resampling Method, each base noisy time course is then used to 
generate a set of “Resampled” time courses, by using the same process used to generate the 
base noisy time courses from the synthetic data, only now with the base noisy time course as the 
input. The function of interest is fit to each of these resampled time courses, and the median of 
these functions (or their derivatives) is used to generate the resulting smoothed time course 
corresponding to the specific base noisy time course. As in the Direct Fit method, these median 
profiles can be assessed to determine accuracy and performance of the function.  
 

Briefly, multiple “base” noisy time courses were generated from the original 

model to represent experimental measurements; these were fitted using the 

Direct Fit Method for comparison. In parallel, additional noisy time course profiles 

were generated (“resampled”) from each of these base noisy time courses and 

subsequently fitted using the methods described for the Direct Fit Method—

yielding a fitted concentration for each resampled noisy time course for a given 

base noisy time course. For each base noisy time course, the median per time 

point of the fitted profiles (or profile derivatives) for the resampled noisy time 
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courses was then used to determine the overall fitted profile. This profile, along 

with the Direct Fit Method profile, was compared to the original synthetic 

reference data to assess prediction accuracy.  

 
 
2.3.2 Parameter constraints improved the behavior of fitted results 

 

 
 
Figure 2.3. Performance of different fitting functions for fitting concentration trajectories 
Thin, dotted black lines are the original synthetic data. Red crosses are the noisy time course 
data used to fit the functions. Solid blue lines are the function fitted to the data. 
A. Polynomial curves were consistent but typically not very accurate. 
B. The sigmoidal impulse function performed well but sometimes exhibited steep derivatives. 
C. Constraining the parameter space for the impulse function prevented this behavior. 
D. The rational function R22 can exhibit unphysical asymptotes in the time interval of the data due 
to a polynomial term in the denominator. 
E. Constraining the parameter space for R22 prevents such asymptotes. 
F. However, near-asymptote behavior can still occur in the rational functions, despite the 
parameter restrictions, when the value of the denominator polynomial becomes sufficiently small.  
Note: A-E all use the same noisy data set. 
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Figure 2.3 provides representative examples of performance for different 

candidate fitting functions using the Direct Fit Method and the E. coli model. 

Polynomial functions provided computationally efficient data smoothing with little 

susceptibility to noise, but had limited abilities to qualitatively capture the 

dynamics present in the E. coli model. For certain sets of noisy data, the rational 

functions or the impulse function returned unphysical or unreasonable results. 

This result highlighted a shortcoming in the basic implementation of the rational 

functions and prompted the development of additional constraints for use in the 

optimization step of fitting the rational functions and the impulse function. 

 

2.3.2.1 Bounding the second order denominator polynomial of the R22 function 

We observed that for approximately 29% of noisy datasets, the R22 rational 

function produced asymptotic behavior, as shown in Figure 2.3D. The frequency 

of asymptote occurrence varied significantly across the different metabolites in 

the model, as shown in Figure 2.4A. The source of these asymptotes was 

selection of “optimal” parameters such that the polynomial in the denominator of 

R22 had a root over the time range of the data. Technically, such parameter 

selections would be optimal based on the RMSD objective function, since the 

RMSD only considers the ability of the function to match the data provided for 

fitting. However, such selections lead to clearly unphysical profiles at interpolated 

points that would confound any efforts to use such fitted functions in genome-

scale metabolic simulations. 
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Accordingly, we constrained the RMSD optimization for all rational functions such 

that parameters could not be selected that would cause a zero in the 

denominator over the time range of the data. In the case of R22, the denominator 

is a second order polynomial. Examples of these polynomials are shown in 

Figure 2.4B; the position of the roots relative to the interval (t1, t2) is determined 

by the parameters p4 and p5. By bounding the values these parameters may 

take, we can prevent the resulting trajectory from producing asymptotes in the 

interval of the data. 

 

We construct these bounds by starting with the denominator polynomial equation, 

𝐷 𝑡 =    𝑡! + 𝑝! ⋅ 𝑡 + 𝑝! 

And the equation for the roots of a quadratic polynomial, 

𝑟 =   
−𝑏  ± 𝑏! − 4 ⋅ 𝑎 ⋅ 𝑐

2 ⋅ 𝑎  

 In this instance, a = 1, b = p4, and c = p5, and hence:  

𝑟 =   
−𝑝!   ± 𝑝!! − 4 ⋅ 𝑝!

2  

We isolate the square root term to get 

2 ⋅ 𝑟 + 𝑝! = ± 𝑝!! − 4 ⋅ 𝑝! 

and square both sides to get 

4 ⋅ 𝑟! + 4 ⋅ 𝑟 ⋅ 𝑝!  +  𝑝!! = 𝑝!! − 4 ⋅ 𝑝! 

We then solve for p5, and get 

𝑝! = −(𝑟 ⋅ 𝑝! + 𝑟!) 
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We set r = t1 and r = t2 to produce the main divisions in the space spanned by p4, 

and p5; these equations are plotted in Figure 2.4C, and described mathematically 

in Table 2.3. The value of p5 relative to these divisions determines the placement 

of the roots of the corresponding denominator polynomial. In practice, we 

introduce a buffer to avoid cases in which the optimization forces the roots to t1 or 

t2 and produces asymptotes at the edges of the data. By default, this buffer is 

calculated from the time data used to fit the function to have a magnitude of ΔT, 

where ΔT is the time interval between sequential data points in the time course to 

be fit. As a concrete example, the E. coli model is simulated from 0 seconds to 20 

seconds, and the fitted data is sampled at 1 second intervals; the corresponding 

buffers lead to t1 = -1 and t2 = 21, which prevents the roots of the denominator 

from falling in the interval of [-1, 21]. 

 

In some cases, a quadratic equation may have no real roots. This situation will 

never lead to asymptotes in the resulting R22 function, and so is also acceptable. 

We determine the boundary of this condition by setting the discriminant 

𝑝!! − 4 ⋅ 𝑝! < 0. Solving for p5, we get 𝑝! >
!
!
𝑝!! . Under these conditions, the 

resulting roots are imaginary and do not produce asymptotes, regardless of the 

values of t1 and t2. This boundary is plotted in Figure 2.4C.  

 

Of these seven regions, four produce behavior that is acceptable for our 

application. Region RI represents the case where the roots straddle the time 
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interval of the data. Regions RII and RIII represent the cases where the roots are 

either both above or both below the boundaries, respectively. Region RIV 

represents the case where there are no real roots. Because Regions RII and RIV 

border each other, as do Regions RIII and RIV, in practice we re-divide the 

regions to simplify the parameter bounds assigned to the solver to minimize the 

number of nonlinear constraints (the orange points in Figure 2.4C where the 

linear boundaries lie tangent to RIV mark the values for p4 we chose). 

 

As described in section 2.3.2.3 below, we fit the data using multiple sets of 

random initial conditions. For each set of initial conditions, we perform four 

parameter optimizations, corresponding to the four (adjusted) Parameter Regions 

we described here and shown in Figure 2.4C. From these four regions, we 

choose the parameter set with the lowest RMSD to represent the parameter set 

for a given set of initial conditions. Parameter optimizations were performed using 

fmincon() in MATLAB. 

 

Figure 2.3E shows the trajectory of R22 after adding additional constraints to the 

allowed parameter values in rational functions. However, this solution does not 

protect against near-asymptotic behavior in R22, where the denominator 

approaches but does not reach zero; Figure 2.3F depicts such a case using a 

different set of noisy data for the same metabolite. Nonetheless, the results in 
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Figure 2.3E demonstrate significant improvement upon the results from Figure 

2.3D with no parameter constraints. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

 
 

Figure 2.4. Parameter domain and bounding for the rational function denominators 
A. In 28.6% of cases, the best-fit R22 concentration trajectory in the E.coli model contains an 
asymptote in the domain of the data, leading to the qualitatively invalid fitted concentration 
behavior shown in Fig 3D. 
B. Some R22 denominator polynomials (colored red) contain roots in the time interval of the data, 
leading to asymptotes in the resulting concentration trajectory. Others (green) produce 
qualitatively valid trajectories. Polynomials are labeled by the region in panel C from which 
parameters p4 and p5 were taken. 
C. Multiple regimes exist in the parameter space spanned by the R22 denominator polynomial, 
with different root positions for the denominator polynomial. Blue lines designate the boundaries 
between regions. Green text (RI, RII, RIII, RIV) indicates regions that preclude problematic roots, 
while red text (RV, RVI, RVII) indicates regions that produce qualitatively invalid behaviors. In 
practice, the valid R22 denominator parameter regions are modified to simplify solver 
implementation by grouping sub-regions of RIV instead with RII and RIII.  
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Table 2.3. A description of parameter space for the rational function R22 
The parameters p4 and p5 determine the behavior of the denominator polynomial in R22 by 
determining the location of its roots. The space spanned by these parameters can be divided into 
7 regions, based on the position of each of these roots relative to the interval (t1, t2). 
 

Region Constraints Description 

RI 
𝑝! < −(𝑡! ⋅ 𝑝! + 𝑡!!) 
𝑝! < −(𝑡! ⋅ 𝑝! + 𝑡!!) 

𝑟! < 𝑡! 
𝑟! > 𝑡! 

RII 

𝑝! > − 𝑡! ⋅ 𝑝! + 𝑡!!  

𝑝! <
1
4𝑝!

! 
𝑟! > 𝑡! 
𝑟! > 𝑡! 

RIII 

𝑝! > −(𝑡! ⋅ 𝑝! + 𝑡!!) 

𝑝! <
1
4𝑝!

! 
𝑟! < 𝑡! 
𝑟! < 𝑡! 

RIV 𝑝! >
1
4𝑝!

! 𝑟!  𝜖  ℂ 
𝑟!  𝜖  ℂ 

RV 

𝑝! > − 𝑡! ⋅ 𝑝! + 𝑡!!  
𝑝! > − 𝑡! ⋅ 𝑝! + 𝑡!!  

𝑝! <
1
4𝑝!

! 

𝑡! < 𝑟! < 𝑡! 
𝑡! < 𝑟! < 𝑡! 

RVI 
𝑝! > − 𝑡! ⋅ 𝑝! + 𝑡!!  
𝑝! < − 𝑡! ⋅ 𝑝! + 𝑡!!  

𝑡! < 𝑟! < 𝑡! 
𝑟! > 𝑡! 

RVII 
𝑝! < − 𝑡! ⋅ 𝑝! + 𝑡!!  
𝑝! > − 𝑡! ⋅ 𝑝! + 𝑡!!  

𝑟! < 𝑡! 
𝑡! < 𝑟! < 𝑡! 

 
 
2.3.2.2 Bounding the Impulse Function 

The impulse function exhibited a similar phenomenon, insofar as it yielded results 

that were technically correct based on the RMSD optimization function but were 

physically unreasonable. As depicted in Figure 2.3B, the impulse function 
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sometimes produced sharp shifts in concentration, which translated to sharp 

spikes in the derivative trajectory. In addition, we noticed that our parameter-

fitting solver was prone to getting stuck in local minima when the resulting time 

delay parameters were outside the time span of the data. Conveniently, the direct 

correspondence between parameter values and features in the graph of the 

impulse function made it straightforward to implement effective and beneficial 

parameter boundaries. One fixed constraint and two new adjustable optimization 

parameters were created that were used to constrain the possible parameter 

space. These bounds were implemented as constant parameter values, and 

optimization was performed using fmincon() in MATLAB. 

 

Our first set of bounds is on the time delay parameters. Because there is no 

basis from the data for modeling a transition outside the interval of the data, we 

restrict these values to the range of the time values in the data. This has the 

advantage of removing insensitive local optima from the available parameter 

space, and helps ensure that the fitting error remains sensitive to parameter 

values. In effect, we restrict τ1 and τ2 to the interval (t1,t2). Unlike the rational 

functions, by default we did not add a buffer to the time interval of the data; for 

example, in the E.coli model, we used t1= 0 seconds and t2 = 20 seconds to 

restrict τ1 and τ2. 
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Figure 2.5. The impact of global parameters on Impulse performance 
The impulse function was tested over a range of values for bf and hf to determine optimal values 
for these parameters, and to assess sensitivity to those values. Solid black lines indicate 
individual metabolites. Dashed red lines indicate our selected values of bf = 0.5 or hf = 0.1. 
A-C. bf was varied in the E.coli model, and we found that a value of bf = 0.5 generally worked well 
based on RMSD during fitting, concentration accuracy, and derivative accuracy. 
D-F. hf was varied in the E.coli model, and found not to strongly affect the performance of any of 
our metrics. We chose a value of hf = 0.1 to permit small fluctuations relative to the range of the 
data due to expected noisiness in the data. 
G-I. We verified our choice of bf = 0.5 in the S. cerevisiae model, and found that this value worked 
reasonably well for this model as well.  
 

The second set of bounds we introduced restrict the magnitude of the impulse 

function transition parameters, β1 and β2; this prevents the transitions from 

becoming too sharp. The justification for this restriction is that since the data are 

sampled at a given frequency, there is no justification from the data to model 

faster dynamics in the resulting function than is present in the data. As such, the 

sharpness of the impulse transitions is set to be inversely proportional to the size 
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of the time interval used to fit the data. The proportionality factor for this inverse 

relationship is a global parameter, which we label bf. In effect, we enforce that 

𝛽 < !!
!!

, where Δt is the time interval between sequential data points in the time 

course to be fit. For the E. coli dataset, we determined that a value of bf = 0.5 

was generally near optimal for the data, as shown in Figure 2.5A-C. The two 

exceptions to this were Metabolites 12 and 18; for these metabolites, the error in 

derivative accuracy decreased as the sharpness was more heavily restricted (i.e., 

as bf was decreased). 

 

The last set of bounds we introduced restrict the height parameters controlling 

the initial, intermediate, and steady-state values of the resulting impulse (h0, h1, 

and h2, respectively). We restrict these parameters to a window defined by the 

range of the concentration data. The rationale behind this restriction is that there 

is no basis from the data for the function to model a change in value far outside 

the range seen in the data. We allowed this window to be extended by an added 

percentage, represented by the global parameter, hf. For example, a value of hf = 

0.10 corresponds to extending the bounds an additional 10% both above and 

below the range of the data. As shown in Figure 2.5D-F, we found the 

performance of the impulse in the E.coli model to be generally insensitive above 

relatively small values of hf; a value of hf = 0.1 was selected to permit some 

fluctuation due to the expected noisiness of the data. 

 



  95 

Using hf = 0.1 and bf = 0.5 resulted in more realistic profiles like those shown in 

Figure 2.3C. Importantly, in addition to the direct physical interpretation of these 

global parameters, the results of the parameter fitting are not highly sensitive to 

small changes in hf and bf (see Figure 4.5), and as a result the values of hf and bf 

that we used were generalizable to both model systems even though they were 

selected only based on their performance for the E. coli model. 

 

It is important to note two features of the global parameters hf and bf. First, they 

are not parameters in the resulting fitted parameter set; they only determine 

bounds on those parameters. Second, they were not fit to individual noisy time 

courses, or even to individual metabolites. Because of this, we hypothesized that 

we could directly re-use these values from the E. coli model with the S. 

cerevisiae model without adjusting them. To validate that this was the case, we 

tested a range of bf values on the S. cerevisiae model. As shown in Figure 2.5G-

I, the value of bf = 0.5 determined from the E. coli model was also an effective 

choice for the S. cerevisiae model. This suggests that these global parameters 

may generalize reasonably well to other models, and as such we did not penalize 

our metrics to account for them. 

 
 
2.3.2.3 Addressing issues of local minima and solver consistency 

For the rational and impulse functions, our solver routines use initial random 

parameter values with the built-in MATLAB function fmincon() to find the 
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parameter values with the lowest RMSD, subject to the constraints described 

previously. During our investigation, we found that using a single initial random 

parameter set would lead to inconsistent RMSD values for the resulting fitted 

parameters; this indicates that for a single set of initial conditions, there is a real 

risk of encountering local minima when minimizing the fitting RMSD. To counter 

this, we seeded our solvers with multiple sets of random initial parameters and 

selected from the resulting fitted parameters the set that produced the lowest 

RMSD. 

 

To determine how many sets of random initial parameters was needed for each 

function, we tested values between 1 and 50 seeds for each function, repeating 

the procedure for each metabolite in the E.coli model using the dataset we 

produced for the Direct Fit method. The RMSD values of the resulting optimal 

parameter sets for each noisy time course were then compared against the 

RMSD values generated using 50 seeds by calculating a Pearson correlation 

between the RMSD values. As shown in Figure 2.6, we found that 20 seeds were 

sufficient across all functions to ensure consistent results; in many cases, far 

fewer seeds were necessary to produce RMSD values equivalent to the 50 seeds 

case. For the results shown in this chapter, we used 20 seeds for all four 

functions. 
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Figure 2.6. The effect of using multiple solver initial conditions on the consistency of the 
solver output 
The parameter solver may identify only a local minimum RMSD value. In these cases, seeding 
the solver with multiple sets of random initial conditions may enable identification of a parameter 
set that produces a lower RMSD. We tested the effect of multiple optimizations with different 
initialization values; the parameter numTries indicates the number of initial condition sets with 
which we seeded the solver. Functions were fit to the noisy time courses generated for the Direct 
Fit method on the E. coli model. For each function and metabolite, numTries was varied from 1 to 
50. The resulting RMSD values for each value of numTries were then compared to the RMSD 
values determined when numTries=50 using a Pearson correlation; a higher value indicates that 
the parameters found for that value of numTries is more consistent with the parameters produced 
when numTries=50. A) R11 requires very few seeds to produce consistent results. B) R22 also 
produces consistent results with few seeds. C) For most metabolites, R31 requires few seeds. 
However, this was not the case for two of the 17 metabolites (M07 and M09). D) The Impulse 
required few tries for some metabolites, but some metabolties do improve as numTries is 
increased. The results in this chapter used numTries = 20; we note that this indicates that 
increasing the number of seeds would likely improve the performance of this function modestly.  
 

2.3.3 The impulse model consistently fits metabolite data with low error 

To quantitatively assess the effectiveness of the candidate fitting functions using 

the Direct Fit Method in the E. coli model, we generated 500 noisy time course 
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data sets for each of the 17 metabolites. The parameters resulting from fitting 

each noisy time course were used to calculate concentration and derivative 

trajectories, with the corresponding performance accuracy calculated and 

averaged as described in the Methods section. The results of these calculations 

are summarized in Table 2.4, which presents the averaged ranks for each 

function and each metric. Figure 2.7A and 2.7B provide a detailed quantitative 

comparison of each fitting function. The impulse function, I, showed the best rank 

averages for accuracy in both concentration and derivatives, and was almost 

always the best-performing function across all of the metabolites. 

 
Table 2.4. Average rank of function accuracy using the Direct Fit method on the E. coli 
model 
 

Average Rank of Metric P2 P3 P4 P5 R11 R22 R31 I 
Concentration Accuracy 3.68 4.13 2.50 2.94 3.94 2.33 4.83 1.74 

Derivative Accuracy 3.18 3.45 2.48 3.08 3.58 2.61 3.77 2.18 
 

The notable exceptions to the superior performance of the impulse function were 

on Metabolites 12 and 18. Figure 2.8 summarizes the performance of the impulse 

function and an average fitting function, P4, for Metabolite 12, with representative 

fitted profiles in Figure 2.8A and 2.8B, and a direct comparison between the 

performance of P4 and I in Figure 2.8C. P4 consistently performed better than I. 

However, as is clear from Figure 2.8A and 2.8B, the total change in metabolite 

level was smaller than the expected range of variability of experimental 

measurements. Given the sparsity of samples, this metabolite’s profile is likely 

essentially unidentifiable, and so the performance of the different functions is 
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likely based only on general trends of the functional forms near the ends of the 

time range, rather than any reliably accurate fitting. 

 

 

 

 

 
 
Figure 2.7. Quantitative assessment of function accuracy across metabolites in the E. coli 
model 
The impulse function performs consistently well across most metabolites for both (A) 
concentration and (B) derivative accuracy.  The resampling method improves the performance of 
a number of functions for both (C) concentration and (D) derivative accuracy. Error metrics are 
normalized to average metabolite concentrations (see Methods) for easier visualization and are 
presented in log-transformed format.  
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Figure 2.8. Comparison of the Impulse and P4 on Metabolite 12 (6-Phosphogluconate) over 
500 random noisy time courses 
A. The P4 polynomial function intrinsically curves upwards or downwards at the ends of the 
interval, which helps match the early slope in the synthetic data. 
B. The impulse function exhibits greater variability across different noisy replicates due to the 
small dynamic concentration range in the synthetic data relative to the noise introduced. Solid 
black lines indicate the synthetic data. Dashed black lines indicate the 15% coefficient of variation 
envelope, used to generate the noisy time course data. Blue lines indicate the concentration 
trajectory of functional fits to individual noisy time courses. 
C. As a result, the P4 polynomial consistently fits the synthetic data concentration with lower error 
than the impulse. Blue dots indicate the error of each function in recapitulating the synthetic data 
when fit to a particular noisy time course. The red star indicates the average error of the blue 
dots. 
 

2.3.4 The Resampling Method can improve fitting and predictions in the E. coli 

model 

To quantitatively assess the performance of the Resampling Method in the E. coli 

model, we generated 50 noisy time courses from the synthetic reference data for 

each of the 17 metabolites, and for each noisy time course, an additional 250 
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resampled noisy time courses. For each noisy and resampled time course, each 

function was fitted as described in the Methods, and the resulting Direct Fit or 

Resampling Method trajectories used to calculate the performance metrics. The 

overall results are shown in Table 2.5. Results jointly ranking the performance of 

functions across both the Direct Fit Method and the Resampling Method are 

shown in Table 2.6. The Resampling Method had the greatest impact on the 

ranking of the rational function R22, resulting in it being similar in accuracy and 

consistency to the impulse function, I. This consistently good performance is also 

evident in Figure 2.7C and 2.7D, which provide a detailed quantitative 

comparison of each fitting function.  

 
Table 2.5. Average rank of function accuracy using the Resampling Method on the E. coli 
model 
 

Average Rank of Metric P2 P3 P4 P5 R11 R22 R31 I 

Concentration Accuracy 4.02 4.16 2.44 3.11 4.22 1.83 5.32 1.90 

Derivative Accuracy 3.38 3.40 2.50 3.07 3.68 2.16 4.66 2.20 
 
 
Table 2.6. Average rank of function and method accuracy using the E.coli model 
Results from both the Direct Fit (DF) and Resampling (RM) methods are all ranked together to 
facilitate direct comparison of their performance. 
 

 P2 P3 P4 P5 R11 R22 R31 I 
Average Rank of 

Metric DF RM DF RM DF RM DF RM DF RM DF RM DF RM DF RM 

Concentration 
Accuracy 6.62 6.70 7.36 7.35 3.76 3.94 5.34 5.35 7.17 6.62 3.48 2.55 8.77 10.17 2.60 2.88 

Derivative 
Accuracy 5.40 5.50 6.20 6.21 3.98 4.02 5.12 5.09 6.49 5.85 3.76 3.12 6.33 8.96 3.30 3.17 

 

The impacts of the Resampling Method varied across the different types of 

functions; representative graphs are presented in Figure 2.9, with a complete 

summary provided in Table 2.6. Polynomial functions showed little to no change 
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in results from using the Resampling Method, while rational functions show 

moderate to noticeable benefit. The impulse function benefited in some cases as 

well. Across all functions, use of the Resampling Method only infrequently 

caused decreased performance, and typically with very small changes relative to 

the magnitude of the error. 
 

 

Figure 2.9. The effect of the Resampling Method on the derivative accuracy of three 
representative functions 
The error for fitted concentration profiles was determined for both the Direct Fit and Resampling 
Methods and directly compared. A) For polynomial functions the Resampling Method produces 
results nearly identical to the Direct Fit method. B) The R22 rational function can produce 
derivative errors several orders of magnitude greater using the Direct Fit method (not shown on 
these axes) than when using the Resampling Method, making the Resampling Method more 
accurate on average. C) The impulse function is generally consistent between the Direct Fit and 
Resampling Methods, but does show some variability. Other metabolites exhibit modest benefits 
from the Resampling Method relative to the Direct Fit Method. 
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2.3.5 The S. cerevisiae model results show similar trends 

We then quantitatively assessed the performance of all candidate fitting functions 

using both the Direct Fit Method and the Resampling Method in the S. cerevisiae 

model. We generated 500 noisy time courses for each of the 21 metabolites for 

use in the Direct Fit method. For use in the Resampling Method we generated 50 

base noisy time courses for each of the 21 metabolites, along with an additional 

250 resampled noisy time courses for each base noisy time course. Parameters 

were fit for each method as described in the Methods section. Tables 2.7 and 2.8 

present the average ranks for the Direct Method and Resampling Method, both 

separately and combined, respectively. Figure 2.10 provides a detailed 

quantitative comparison of each fitting function. For this model, the R22 rational 

function and the impulse function, I, were usually among the best-performing 

fitting functions, with R22 performing best for concentrations and I performing best 

for derivatives. 

 
Table 2.7. Average rank of function accuracy using the S. cerevisiae model 
Here, the Direct Fit and Resampling Methods are ranked and averaged separately. 

 Direct Fit Method Resampling Method 
Average Rank of 

Metric P2 P3 P4 P5 R11 R22 R31 I P2 P3 P4 P5 R11 R22 R31 I 

Concentration 
Accuracy 4.28 4.00 3.83 3.22 4.81 1.34 4.45 2.07 4.48 4.15 3.90 3.33 4.82 1.24 4.79 2.10 

Derivative 
Accuracy 3.99 3.65 3.55 2.77 4.80 1.95 4.44 1.66 4.39 4.00 3.81 2.92 4.81 1.61 5.06 1.64 

 
 
Table 2.8. Average rank of function and method accuracy using the S. cerevisiae model 
Results from both the Direct Fit (DF) and Resampling (RM) methods are all ranked together to 
facilitate direct comparison of their performance. 

 P2 P3 P4 P5 R11 R22 R31 I 
Average Rank of 

Metric DF RM DF RM DF RM DF RM DF RM DF RM DF RM DF RM 

Concentration 
Accuracy 7.37 7.82 7.05 7.55 7.14 7.17 5.86 6.02 7.92 7.98 1.85 1.65 7.85 8.98 3.59 3.22 

Derivative 
Accuracy 7.52 7.41 7.16 6.75 6.64 6.74 4.79 4.85 8.23 8.10 2.95 2.14 8.34 9.43 2.72 2.15 
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Figure 2.10. Quantitative assessment of function accuracy across metabolites in the S. 
cerevisiae model 
Results by metric are presented for the Direct Fit Method for (A) concentration accuracy and (B) 
derivative accuracy, and for the Resampling Method for (C) concentration accuracy and (D) 
derivative accuracy. Error metrics are normalized to average metabolite concentrations (see 
Methods) for easier visualization and are presented in log-transformed format. 
 
 
2.4 Discussion 

2.4.1 Context 

The goal of this effort was to improve the prediction of concentration and 

derivative time-course profiles derived from experimentally measured (or 

synthetic, noisy) metabolite data. Two small-scale model metabolic systems were 

used as the basis for assessing the performance of new methods to calculate 

and interpolate concentration and flux values based on metabolite data. These 

two models have different time scales and dynamics, which provided a broader 
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assessment of the potential utility of our approaches. These models were also 

used in previous work on estimating flux distributions from metabolite data19, 

which allowed for direct comparison. Integrating these systems numerically 

provided an exact reference dataset to which we could compare fitted results. 

However, real metabolite concentration data contain significant variability, so we 

only used noisy synthetic data derived from this reference data to test the 

effectiveness of our approaches. In this way, we were able to generate data of 

defined quality and arbitrary quantity with known underlying dynamics; this 

allowed us to precisely and rigorously determine the performance of each 

approach under study.  

 

The approach of Ishii et al. was to fit all of the functions to the time course in 

question and select the function with the lowest fitting error, once accounting for 

the number of fitted parameters19. While this is certainly a viable approach that 

can be extended to include the sigmoidal impulse model, here we have also 

investigated whether this single, biologically reasonable function can be used 

instead of selecting the best-fitting function from a list of arbitrary candidates. We 

consider the relative benefits of each function type below. 

 

2.4.2 Polynomials are consistent but inaccurate 

The polynomial functions are computationally inexpensive to fit, use few 

parameters (ranging from three to six), and are widely used for smoothing noisy 
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data. They are consistent and well-behaved, exhibiting very little sensitivity to 

noise. As demonstrated by their ranks in Tables 2.4, 2.5, and 2.6, they can do a 

reasonable job in estimating concentrations and at times even in estimating 

derivatives (ranking as low as 2.5 but often closer to 3.5 or 4). However, they are 

ill-suited to capturing dynamics that include a terminal steady state, particularly 

since their functional form requires them to be monotonically increasing or 

decreasing at the ends of the time range; this also makes them a poor choice for 

even limited extrapolation. 

 

2.4.3 Resampling improves rational function accuracy 

The rational functions (using three to five parameters) can exhibit a wider range 

of behaviors than the polynomials with the same number of parameters, and it 

has been reported that for many metabolite time courses, they yield better 

performance than the polynomials19. Our parameter restriction strategy was 

largely effective in addressing their potential to fit best with parameters that 

produce asymptotic behavior, though there are still lingering issues with near-

asymptotes that yield spurious behavior and even negative concentrations for the 

R22 function (see Figure 2.2F). However, as shown in Table 2.5, this effect is 

largely ameliorated by the use of the Resampling Method to filter out asymptotic 

trajectories, making R22 one of the more effective functions we studied. 
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2.4.4 The impulse function is a generally effective single fitting function model 

The last function, the sigmoidal impulse, is the product of two sigmoidal logistic 

functions21,22. As previously stated, it recapitulates the dynamics of a common 

biological process: a two-phase transition from one steady state to a (potentially 

new) steady state through an intermediate state. Its parameters directly 

correspond to features of this trajectory: the ℎ parameters represent the initial, 

intermediate, and steady-state metabolite levels; the 𝜏 parameters represent the 

timing of the on and off transitions (accumulation and depletion driven by 

processes such as synthesis and degradation) in response to a perturbation; and 

the 𝛽  parameters represent how rapidly those transition processes occur. In 

contrast with the work done by Chechik et al., we allowed the 𝛽 parameters to 

vary independently to reflect the fact that the on and off transitions can represent 

different biological processes (e.g., glucose uptake versus metabolism), which 

one would reasonably expect to exhibit distinct dynamics21. 

 

While potentially exhibiting undesirable behaviors with unrestricted parameter 

values, our parameter bounding strategies for avoiding broad local minima and 

overly sharp transitions were effective at preventing these undesirable behaviors 

(Figure 2.3B and 2.3C). Of particular note is that these parameters themselves 

typically exhibited broad local optima in performance (Figure 2.5), meaning that 

the fitting method was not very sensitive to the specific values selected; 

additionally, the default parameters we selected for the E. coli model generalized 
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well to a completely separate model, meaning that while they are technically 

adjustable parameters, they did not add significant risk of over-fitting to the 

parameter selection process.  

 

Using the Direct Fit Method for the E. coli model, the impulse function performed 

consistently better than other functions (see Table 424) across all metabolites 

except for two: metabolites 12 and 18. For these metabolites, the actual dynamic 

range of metabolite concentrations in the synthetic reference data was 

substantially less than the range of the random noise used to construct the noisy 

time courses (see Figure 2.9). We cannot realistically expect to recover the 

underlying concentration in this case without either much more dense or much 

more accurate sampling. We suspect that the better performance of the 

polynomials was due in part to their tendency to swing upwards or downwards 

near the edges of the data, which captured the early time dynamics of each of 

these metabolites well; we note that the other high-performing fitting function, 

R22, did poorly on these metabolites as well. The Resampling Method 

substantially improved the performance of R22 and slightly improved the 

performance of the impulse function on these metabolites (Figure 2.7), leading to 

qualitative behavior where the derivative effectively fluctuated around zero. Given 

the lack of statistically significant change over the time course of these 

metabolites, we argue that this is the behavior we should not only expect, but 
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actually be seeking given the essentially unidentifiable change in metabolite 

levels. 

 

2.4.5 The Resampling Method generally improves on Direct Fit Method results 

In general, the resampling method ranged from negligibly detrimental to highly 

beneficial. In a few cases, a very minor loss of performance was observed. 

Consistently, resampling provided no benefit to polynomials (Figure 2.9A); this is 

to be expected, since the polynomial functions are already insensitive to small 

changes in the data. The R11 and R31 rational functions saw minor improvements 

in general, while the impulse function saw improvements in cases where it 

performed most poorly (Figure 2.8C). The Resampling Method had the biggest 

effect on R22; in the E. coli model, it moved from one of the worst performers to 

one of the overall best (Figure 2.7, Table 2.6). Generally speaking, then, the 

Resampling Method seems to be an effective way to improve accuracy at only a 

mild computational cost. 

 

The Resampling Method appears to have an effect similar to parameter 

regularization by avoiding over-fitting due to noisy data27. However, we note that 

the Resampling Method returns a median of multiple fits, rather than a single 

parameter set. As a result, concentration and derivative values derived from this 

method need not strictly adhere to the functional form of the smoothing function; 

this flexibility can allow better approximation of the underlying data in cases 
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where the form of the particular function happens to be biased against the correct 

behavior.  

 

2.4.6 S. cerevisiae model results generally recapitulate E. coli model results 

The S. cerevisiae model generally recapitulated results from the E. coli model, 

demonstrating the potential generalizability of the Resampling Method and the 

impulse function (including the parameters used to restrict the fitting search 

space for the impulse function). For both the Direct Fit and Resampling Methods, 

the impulse function performed fairly well. One feature that distinguished the S. 

cerevisiae model from the E. coli model was the wider range of time scales 

present in the model’s dynamics. Several metabolites (1-4,8-10,18-20) reached 

steady-state in several minutes, while others (12,13,14) took tens of minutes, and 

as a result did not reach steady-state during the time interval of the data. As the 

impulse function assumes long-term steady-state behavior for the time course, it 

did not perform as strongly for the Direct Fit Method for these metabolites. 

However, the Resampling Method did provide some improvement for these 

metabolites. 

 

2.4.7 Selection of fitting functions should be driven by applications 

In this chapter we considered the problem of data smoothing specifically in the 

context of genome-scale metabolic modeling. Two key factors in this application 

have driven our assessment of function and method performance. First, we 
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expect that we may need to provide flux values at points other than those for 

which experimental measurements are available (for instance, if a genome-scale 

model entails something akin to a Runge-Kutta numerical integration). This 

means that function accuracy should be assessed not only at the sampled points, 

but in between them as well. Without the inclusion of such interpolated values, 

some differences can be seen in apparent effectiveness; for example, previous 

work indicated that polynomials were more frequently optimal for the S. 

cerevisiae model19, but in terms of practical applications they are usually inferior 

to R22 and the impulse function. Second, the main application of the metabolite 

concentration smoothing is for the estimation of metabolite fluxes; this means 

that while recapitulating the concentration profile is important, the more directly 

applicable metric is how accurate the derivative profile is. This distinction is most 

relevant for the S. cerevisiae model, where R22 more accurately recapitulates 

concentrations, but the impulse model more accurately recapitulates the 

derivatives that will be used in downstream analyses. 

 

2.4.8 Single functions and biologically-inspired functions can be effective fitting 

models 

While previous work selected the best-fitting of an essentially arbitrary set of 

functions for each individual metabolite based on the experimental data, we 

suggest that this may be a suboptimal approach. First, this increases the 

likelihood for over-fitting; it is difficult to estimate the number of effective 
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parameters that are introduced to the system by allowing for the variable 

selection of seven different models, but it suffices to say that the number of 

effective parameters is likely greater than the number of explicit parameters in 

the highest-order polynomial. As such, restricting the fitting to one function may 

be desirable from an information content perspective; both the R22 and impulse 

functions seem like reasonable, viable candidates for universal fitting functions. 

In fact, once the assessment metrics are based on a criterion more reasonable 

for the application (i.e., inclusion of interpolated points), there are few if any 

cases where the polynomials would be a desirable option. Second, there is 

inherent value in using biologically-inspired fitting functions. These functions, by 

design, recapitulate behaviors previously observed in biological systems; biasing 

the fit towards these results integrates prior knowledge that may help ensure that 

the model is closer to the underlying biology. Even though there are more 

parameters in these functions than the polynomials, the space of characteristic 

curves that can be fit is more restrictive and more relevant to expected biology, 

partially mitigating concerns about over-fitting due to excess parameters. In this 

sense, the impulse function may be the most desirable choice; either way, 

applying the Resampling Method ensures that the smoothing and fitting is 

improved over previous approaches.  
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2.4.9 Limitations 

There are a few limitations to our analyses that bear noting. First, the number of 

variable parameters in the impulse function places a lower limit on the number of 

samples needed to fit the function well, which could stretch the experimental 

feasibility of acquiring a sufficient number of samples. However, our analyses 

have been consistent with previous work in terms of the number of samples 

used, and considering the possibility of using multiple biological replicates and 

multiple experiments to fit the same data, obtaining one or two dozen samples is 

often reasonable for a metabolomics experiment. Second, the impulse model 

assumes a steady state is reached at the end of the experiment, which may not 

be valid for all datasets. However, this concern is partially mitigated by the fact 

that many experiments would actually be continued until something more closely 

resembling a steady state is reached, minimizing the number of times significant 

non-zero derivatives were present at the end of the time range. There is also an 

obvious computational cost to fitting non-linearizable functions (as opposed to 

polynomials) and to applying the Resampling Method; however, since the data 

smoothing task is ultimately performed just once, not many times, we believe that 

the improvement in results is worth this computational cost, which is itself 

reasonable and does not require parallelization or even particularly long 

runtimes. Finally, we have not analyzed the ultimate downstream impacts in the 

genome-scale metabolic modeling application of the improvements we have 

made to assess their magnitude. Based on the tendency of functions like 
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polynomials to have nonzero derivatives at the end of the time range and the 

importance of being able to capture a steady state in a metabolic model, we 

expect that these improvements may be important, but will be to some extent 

model-specific and is thus beyond the scope of this chapter. Either way, it is often 

generally accepted that optimization of each intervening analysis or data 

processing step is desirable for complex modeling schema.  

 

2.5 Conclusions 

In this chapter, we have demonstrated two improvements to standard 

approaches to smooth metabolite concentration data for application to genome-

scale metabolic modeling, including a Resampling Method to minimize 

susceptibility to experimental noise and the establishment of a single, 

biologically-inspired fitting function that performs well in almost all cases. In the 

course of this chapter, we also identified additional constraints that should be 

applied to existing data smoothing fitting functions to increase their robustness 

and activity. Taken together, these contributions have provided consistent and 

substantial improvements in existing methods to smooth and fit metabolite data 

for downstream applications, whether via a new fitting function or improvements 

made to existing fitting functions. We have shown these results to be 

generalizable across multiple models of metabolism, suggesting the potential for 

general utility of these improved methods to improve the accuracy of flux 

distributions calculated from the derivatives of their time courses. 
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Chapter 3: LK-DFBA: A Linear Programming-based 
modeling strategy for capturing dynamics and 

metabolite-dependent regulation in metabolism 
 
 
 
3.1 Introduction 

Metabolism constitutes the supply chain for all other cellular processes, such as 

DNA replication, transcription of RNA, and protein synthesis. It is perhaps the 

most immediate readout available of cellular state. An increasing focus on 

systems-level behavior in cellular biology coupled with the development of 

appropriate chemical analyses to enable such work has led to the field of 

metabolomics, which studies metabolism at the genome scale1. Metabolomics is 

a growing field, and the challenges associated with performing the chemical 

analyses and data processing necessary to harness this data are steadily 

improving2,3. 

 

As a direct readout of the state of cellular metabolism, metabolomics is a natural 

complement to efforts in metabolic engineering, in which an organism is 

genetically engineered to facilitate the overproduction of a target small molecule4. 

The diversity of chemistry in metabolism far outstrips that of proteins 

(polypeptides) and DNA (nucleic acids), and many of these molecules have 

known or potential commercial or clinical value. Some of these, such as ethanol, 

are known products or byproducts of primary metabolism in commonly used 

model organisms and can be produced in more useful quantities by careful co-
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opting the metabolic machinery5. Other metabolites, such as many 

pharmaceutical precursors, derive from secondary metabolism in organisms that 

may be difficult to culture and can be produced in a more cost-efficient manner 

by exporting the corresponding metabolic pathway into a more amenable host, 

such as Bacillus subtilis, Escherichia coli or Saccharomyces cerevisiae6. 

 

Given how tightly tied metabolism is to so many other cellular processes and the 

inherent toxicity of some metabolites (which are necessary intermediates), 

metabolic reactions are highly connected and tightly regulated7,8. These 

regulatory effects can range from long-term changes due to transcriptional 

regulation of enzyme expression to short-term rapidly reversible direct regulation 

of enzyme reaction rates (metabolic fluxes) via allosteric mechanisms8,9. Genetic 

engineering strategies may target any of these mechanisms, but a proposed 

intervention derived from reductionist reasoning may lead to unintended side 

effects that may undermine the desired engineering goal10. Metabolic modeling 

and computational strain design tools are effective methods of anticipating these 

side effects, allowing metabolic engineers to more strategically allocate the 

significant time and resources required to produce a desired strain in the lab. 

 

The primary methods for metabolic engineering strain modeling are constraint-

based models (CBMs), of which Flux Balance Analysis (FBA) is the prototypical 

example11,12. In FBA, a stoichiometric model of metabolic reactions is combined 
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with a steady-state assumption, restrictions on rates of enzyme reversibility and 

saturation, and an objective describing the cell’s preferred behavior; taken 

together, these specify a linear program (LP)11. From this, an optimal metabolic 

flux distribution can be calculated with relatively few data requirements. 

 

The general class of CBMs builds on this framework through various strategies. 

These range from modifying the objective function (MOMA)13, to adding further 

constraints on the space of valid flux distributions14-17, to leveraging mathematical 

properties of LPs10. Due to its simplicity and the range of potential modifications, 

FBA has been the basis for a whole host of tools for strain design, such as 

OptKnock10 and its derivatives18-22. A great amount of work has gone into 

genome-scale model reconstructions of many organisms critical to metabolic 

engineering as a result. 

 

However, FBA was developed well before the advent of metabolomics, and some 

of its core assumptions preclude directly integrating metabolomics data into the 

model. This primarily arises from the steady-state assumption: decoupling the 

flux distribution from any consideration of metabolite concentrations produces a 

convenient linear system in terms of the fluxes and network stoichiometry, but 

comes at the expense of any consideration of metabolite concentrations. While 

this assumption may be valid for certain cell types under specific conditions such 

as exponential growth or chemostat culture, in general metabolite concentrations 
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will vary23. This is an important consideration in batch culture, where extracellular 

concentrations vary throughout and the state of the organism changes 

significantly as is evidenced by phenomena such as lag-phase and growth 

saturations24. 

 

This loss of metabolite representation also makes it more difficult to incorporate 

metabolite-dependent regulation directly into the model, especially if dynamics 

are to be accounted for. Several methods do exist to use some data for modeling 

regulation. Regulatory FBA (rFBA) uses transcriptome data to modulate 

metabolic fluxes, adjusting fluxes relative to changes in gene expression; a 

similar approach could be used with metabolite levels25. A similar approach, 

kinetic FBA (KFBA), uses metabolite concentrations with non-linear kinetic rate 

laws to constrain flux values26. However, these models are still limited to steady-

state flux distributions, and only apply to the experimental conditions reflected in 

the data used for a particular calculation.  

 

Approaches that have made more effort to account for dynamics and regulation 

have taken a few routes. Systems of Ordinary Differential Equations describing 

kinetic rate laws and mass balance equations are a well-established alternative 

to CBMs, but require integration of systems of equations that are highly non-

linear and may represent processes at drastically different time-scales, leading to 

issues such as model stiffness27-29. In addition, large numbers of parameters are 
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required to construct models of even a modest scale30. This requires either 

extensive experimental effort to identify and construct appropriate kinetic rate 

laws if the model is to be constructed from the bottom-up, or else expensive 

global parameter searches with extensive time course data if the model is to be 

constructed top-down (a process made much more difficult by the non-linear 

dynamics of the kinetics rate law equations, leading to issues with parameter 

identifiability and error compensation)31-36. 

 

Much work has been done to tackle these challenges. A particularly relevant 

example is the Dynamic Flux Estimation (DFE) procedure described by Goel et 

al., in which metabolite time courses are used to generate estimates of the mass 

balance derivatives, and subsequently a dynamic flux distribution32. Specific 

kinetic rate laws can then be fit to the appropriate combinations of flux and 

metabolite data from the time courses, using regression to independently solve 

the decoupled equations. Goel et al. demonstrated this with generalized mass 

action kinetic rate laws, but any functional form can be fit this way32. However, 

these models still require substantial additional work to integrate them into the 

many strain design tools built around CBMs. 

 

Alternatively, adhering to the CBM paradigm, Mahadevan et al. developed 

Dynamic Flux Balance Analysis (DFBA)37, an extension of FBA which discards 

the steady state assumption and adds non-linear  constraints, such as those 
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describing kinetic rate laws37. The addition of non-linear constraints converts the 

LP into a non-linear program (NLP), which can be solved either over a series of 

independent intervals, or as a single top-down discretization. This approach 

allows much of the flexibility of ODE models and regulation, while retaining the 

basic philosophy behind CBMs. 

 

However, because of the many non-linear constraints present in DFBA, FBA’s 

most attractive mathematical properties are lost. The most critical of these derive 

from FBA’s formulation as an LP: linear programs are a well-understood convex 

optimization (which allows results from Duality Theory to place guarantees on 

solution optimality and to provide insight into the solution properties) and are 

incredibly efficient to solve. The popular OptKnock strain development tool takes 

advantage of LP duality to guarantee optimality of the FBA problem while 

simultaneously performing an optimization on the engineering objective in 

question; LP duality allows the bi-level optimization to be recast as a single level 

optimization by incorporating constraints derived from the dual of the FBA primal 

problem10. 

 

In this work, we modified the DFBA formulation with the goal of producing a 

system of equations describing metabolite dynamics and regulation, but without 

the non-linear equations that are incompatible with an LP formulation. In this 

approach, metabolite stoichiometry and difference equations describing changes 
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in concentration are tied together by representing the metabolite accumulations 

term from the mass balances as part of the flux distribution (this concept is 

described in iFBA as “pooling fluxes” or by Karr et al. as  “internal transport 

fluxes”)30,38.  Kinetics and regulation are approximated as a set of linear 

equations specifying upper bounds on flux values, rather than as potentially 

complicated non-linear equations. As in DFBA, these equations are applied over 

the discretized simulation interval to produce a completely linear system of 

constraint equations, which are combined with the other elements of FBA to 

perform the usual LP optimization37. The result, which we call Linear Kinetics-

Dynamic Flux Balance Analysis or LK-DFBA, is a system that combines many of 

the main advantages of FBA and DFBA, and can be directly combined with any 

of the strain design tools that accept FBA as input. 

 

The lynchpin of the LK-DFBA framework is the addition of linear kinetics 

constraints in conjunction with pooling fluxes. On their own, pooling fluxes are not 

sufficient to induce biologically relevant behavior, and other information (kinetic 

rate law equality30 or inequality37 constraints; connected biological process 

modules38) must be included to incentivize accumulation and depletion. 

 

One example of such an incentivization is the diurnal-FBA approach of Knies et 

al., which represented day and night phases in the photosynthetic algae 

Emiliania huxleyi as two compartments of a combined metabolic model39. The 
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day module converted photons to biomass and a few storage metabolites, which 

were the only source available to supply biomass maintenance during the night 

module. However, the steady-state assumption was applied over the whole of 

each module, and the metabolites used for storage were only modeled as 

transport fluxes between the two. Modeling dynamics and regulation was beyond 

the intended scope of this work.  

 

While the idea of linearized regulation has been implemented before in a CBM of 

intracellular signal transduction, this approach ignored concentrations and 

presumed steady-state behavior40. The resulting linear constraints simply 

constrained certain flux tradeoffs. Here, we combine both of these elements to 

both permit and incentivize metabolite dynamics in what is still an LP formulation. 

 

These constraints have a direct impact on model dynamics, and as a result 

model performance depends heavily on successfully identifying appropriate 

parameters to describe them. Thus, a critical step to modeling correct time 

course dynamics is parameter optimization. We explored this in two model 

systems. The first model is a small in silico model of a Branched Pathway from 

Biochemical Systems Theory (BST), and the second is a model of glycolysis and 

pentose phosphate pathway in E. coli41,42. For each model, we generated 

reference time course data, and then created multiple noisy synthetic time course 
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data replicates by varying both the data sampling frequency and the coefficient of 

variance (𝐶𝑜𝑉) of added noise. 

 

We used DFE and global optimization strategies to fit model parameters for our 

LK-DFBA framework and compared the resulting simulations against ODE-based 

frameworks that use BST power-law kinetics and Michaelis-Menten rate laws. 

We found that LK-DFBA is able to capture the behavior of the original model 

systems and that for the Branched Pathway model, it is able to outperform the 

BST-based comparator under the conditions most relevant to metabolomics data. 

In the larger E. coli model, we explored the challenges associated with model 

scale-up and with structural features not present in the Branched Pathway model. 

We also addressed the tradeoff between two strategies for parameterizing 

branch points, finding that in this case the more heavily parameterized version 

improved performance sufficiently to justify its use. 

 

3.2. Materials and Methods 

3.2.1 Simulating regulated metabolite dynamics as a linear program  

3.2.1.1 Model input 

We describe here the implementation of our modified form of DFBA. It takes as 

input two sets of information. The first set comprises the constraints and 

objective from FBA: a stoichiometric matrix describing the relationship between 

metabolites and fluxes in the model, a set of upper and lower bounds on 
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metabolic fluxes, and an objective function specifying the flux(es) the network 

tries to locally maximize or minimize. To these, we add metabolite concentration 

initial conditions, a time interval, a parameter describing the number of segments 

into which the simulation interval is to be evenly divided, and a list of regulatory 

interactions (and the corresponding parameters to describe them) are required. 

 

 
 
Figure 3.1. A graphical depiction of the LK-DFBA modeling framework 
A. Pooling fluxes are added to capture model43 accumulation 
B. Model stoichiometry is adjusted to include pooling fluxes 
C. Linear constraints describe positive and negative regulation dependent on metabolite 
concentrations 
D. Constraints can be systematically generated as templates applied across time steps  
E. The time course is discretized and accumulation integrated over time steps 
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3.2.1.2 Discretizing the time interval 

Following the basic template of the Dynamic Optimization Approach (DOA) of 

DFBA37, the simulation interval is divided into nT segments, as shown in Figure 

3.1A. By our convention, metabolite concentrations are represented at the time 

points separating the intervals, and fluxes are represented over the interval 

between time points. Initial conditions for metabolite concentrations specify the 

concentrations at the time point prior to the first interval. 

 

3.2.1.3 Stoichiometry and pooling fluxes 

The mass balances on a set of nm metabolites, 𝑥, can be represented by the 

system of equations 

𝑑𝑥
𝑑𝑡   =   𝑺𝑣 

where !!
!"

 is the accumulation or depletion of metabolites in the system, 𝑺 is the 

stoichiometric matrix describing the connectivity of nm metabolites and nv fluxes 

in the metabolic network, and 𝑣 is a vector of the nv enzymatic rates through the 

metabolic network, i.e. the flux distribution. 

 

In FBA, !!
!"

 is assumed to be zero, and the linear equation 

0   =   𝑺𝑣 

applies. Combined with a linear objective function 

𝑧   =    𝑐!𝑣 
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where 𝑐! specifies the weight of flux 𝑣! in the objective (e.g. to maximize growth 

rate, set so that 𝑐!"#$%&& = 1 and all other 𝑐! = 0) and bounds 

𝑣!" ≤ 𝑣 ≤ 𝑣!", 

an LP can be specified as 

max
!
  𝑧   =    𝑐!𝑣 

𝑠. 𝑡.    0   =   𝑺𝑣 

𝑣!" ≤ 𝑣 ≤ 𝑣!". 

 

In LK-DFBA, we relax the steady state assumption, working from 

𝑑𝑥
𝑑𝑡   =   𝑺𝑣 

Moving the !!
!"

 term to the right side and adding it to the solution vector, gives us 

the system shown in Figure 3.1B, 

0   =   𝑨𝑤 = 𝑺 −𝑰
𝑣
𝑣!

 

where 𝑨 is the (nm × (nm+nv)) augmented stoichiometric matrix and 𝑤  is the 

((nm+nv) × 1) augmented flux vector, and using the “pooling flux” nomenclature of 

Covert et al. in iFBA, 

𝑣!   =   
𝑑𝑥
𝑑𝑡  

i.e., we will describe  !!!
!"

 as the pooling flux for metabolite 𝑥!, 𝑣!,!. This augmented 

stoichiometric constraint will apply over each segment of the discretized interval, 

producing a set of nm ∙ nT constraint equations, 
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0   =   𝑨𝑤(𝑡!) 

where 𝑤(𝑡!) is the augmented flux vector 𝑤 evaluated at the interval ending at 𝑡!. 

 

3.2.1.4 Difference Equations 

Concentrations are explicitly represented in the model, and metabolite dynamics 

are incorporated by integrating metabolite concentrations over each interval 

using a difference equation and the corresponding pooling flux term (i.e. the   !!!
!"

 

term) 

𝑥! 𝑡!!!   =   𝑥! 𝑡! +   Δ𝑡   ∙ 𝑣!,!(𝑡!) 

to produce a series of nm ∙ nT constraint equations, as shown in Figure 3.1E. 

 

3.2.1.5 The Solution Vector 

Combining the augmented flux vector over each time segment and the 

concentrations at each time point, the final solution vector for the LP is 

constructed as 

𝜔   =    [𝑤! 𝑡! ,𝑤! 𝑡! ,…𝑤! 𝑡!"!! ,𝑤! 𝑡!" , 𝑥! 𝑡! , 𝑥! 𝑡! ,… 𝑥! 𝑡!"!! , 𝑥! 𝑡!" ]! 

and is of dimension ((nv + nm) ∙ nT + nm ∙ (nT + 1) × 1). 

 

3.2.1.6 Constant constraints on Concentration and Flux values 

As in FBA, lower and upper bounds on system fluxes are provided and apply to 

the flux distribution at each interval. Typically the upper and lower bound 

constraints on internal system fluxes are expected to be inactive and are set at a 
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large nominal value to guarantee the space is bounded. Pooling fluxes are given 

nominal bounds as well; due to limitations on the product Δ𝑡   ∙ 𝑣! combined with 

constraints on concentrations and elsewhere in the system, it is expected that the 

nominal bounds will not act as active constraints. 

 

Like bounds on flux values, constraints bounding concentrations can be set by 

the user, but generally it is expected that concentrations are strictly positive. If a 

concentration is know to be at a fixed quantity, the upper and lower bound can be 

set accordingly. 

 

The initial conditions 𝑥! are specified by setting 𝑥 𝑡!   =   𝑥!. 

 

3.2.1.7 Linearized Kinetics Constraints 

The key feature of LK-DFBA is the addition of linear equations to describe 

constraints in which fluxes are controlled by metabolites, as is the case in 

circumstances ranging from mass action kinetics to allosteric regulation (on short 

time scales) or transcriptional regulation (on longer time scales). Any 

dependence of flux on metabolite concentrations is implemented in this manner, 

and this turns out to be a critical requirement for incentivizing relevant dynamics 

in the model. 
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These constraints are specified by a list of nr mappings. Corresponding to each 

mapping is a pair of parameters (𝑎 ,   𝑏 ) such that for mapping 𝑛  between 

“controller” metabolites {𝑥}!  and “target” fluxes {𝑣}!, 

    𝑣!,! 𝑡!!!!   ≤ 𝑎! 𝑥!,! 𝑡!! + 𝑏!, 

where 𝑣!,!  is a target flux in {𝑣}! , 𝑥!,!  is a controller metabolite in {𝑥}! , and 

(𝑎!, 𝑏!) are the parameters describing the linear kinetics constraint. When 𝑎!   >0, 

this interaction produces a promotional effect, and when 𝑎!   < 0, this interaction 

has an inhibitory effect. Applied over the whole discretized time course, this 

produces a total of nr ∙ nT kinetics constraint equations. Examples of these 

mappings are shown in Figure 3.1C. 

 

These constraints allow us to not only represent interactions such as allosteric 

regulation, but also to linearly approximate the dependence of enzyme activity on 

its substrate concentration. Consider the case of the positive regulator shown in 

Figure 3.1C: we note that the profile produced by simultaneously considering the 

effect of the constant flux bounds constraints (“𝑣!"#”) in conjunction with the 

constraint produced by mapping the enzyme substrate as a “regulator” of enzyme 

flux 𝑣 ≤ 𝑎 ∙ 𝑥 + 𝑏 is comparable to the flux vs concentration profile of a simple 

Michaelis-Menten reaction mechanism. We refer to these types of “kinetics” 

constraints as “mass action” constraints, to differentiate them from “regulatory” 

constraints produced through mechanisms such as allostery. Our code includes a 

procedure to automatically generate mass action kinetics constraints from a 
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stoichiometric matrix, giving the user the convenience of only needing to 

manually specify the regulatory constraints. 

 

We note that these regulatory interactions are implemented as bounds on the 

controlled fluxes, rather than as equality constraints: this is a very fundamental 

difference from the behavior of ODE models, in which each (non-linear) equation 

reduces the dimension of the solution space. For linear equations, this would 

often create cases in which the system of equations would produce negative 

concentrations, for example by forcing an efflux term to exceed an influx term 

when a metabolite was already depleted. However, in LK-DFBA, this just leads to 

a situation in which the kinetic constraint is no longer active, and the other model 

constrains preclude blatantly unphysical behavior. As a result, LK-DFBA has a 

degree of both simplicity and flexibility, which comes with advantages and 

disadvantages that we will explore in more depth in the Results section. 

 

In a model with nr regulatory constraints, each regulatory constraint adds two 

parameters (𝑎, 𝑏) to the model, for a total of (2 ∙ nr) parameters. In many cases, a 

single controller is paired with a single target, but certain cases may allow 

lumping multiple species together, allowing a reduction in the number of model 

parameters. For example, one might reduce the number of model parameters by 

choosing to constrain only the sum of the effluxes from a given metabolite, such 

as at branch point, rather than to introduce separate constraints for each of the 
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individual fluxes. Our Results and Discussion in Section 3.3.5 includes an 

assessment of the tradeoffs between these two options to determine if this 

consolidation represents an improvement or an oversimplification. 

 

To run a given simulation, the set of (𝑎, 𝑏) parameter values is provided along 

with the map of controllers and targets. In practice, this will need to be 

determined via parameter fitting, as the linear equations in general are simplified 

approximations that do not directly correspond to intrinsic physical quantities. We 

consider this question in-depth in subsequent sections, where we provide several 

methods for determining these parameters and comment on their effectiveness 

and practicality. 

 

3.2.1.8 Model Objective 

As in FBA, LK-DFBA requires an objective. While there are several ways in 

which to construct this objective37 we found that an objective that applied to the 

fluxes weighed equally at each time point (an “instantaneous” objective) was 

effective in producing stable, robust behavior. This style of objective function can 

be generated easily by expanding the original FBA objective to apply over each 

interval. We also tested an alternate “terminal” objective function (in which the 

objective function only looks at the concentration of a selected final time point), 

and found that this often led to degenerate solutions, erratic behavior, and 
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numerical artifacts at intermediate time points. We discuss this more in the 

Results section 3.3.1. 

 

We also found it effective to add a modest penalty to the L2 norm of the solution 

vector during optimization, changing the problem objective to 

𝑧   =    𝑐!𝜔 + 𝜔!𝑸𝜔 

where 

𝑸   =   −𝜆𝑰 

And 𝜆 is a small penalty on the solution norm. This has the effect of imposing a 

parsimony preference on the solution vector 𝜔, which has been shown to be an 

effective and reasonable strategy, and helped resolve some occasional observed 

issues with solution degeneracy44. While the resulting problem is technically now 

a (linearly-constrained) quadratic program, we observed no appreciable increase 

in solution time, and this particular case still specifies a convex optimization (and 

therefore preserves the very desirable Strong Duality features of the LP). The 

option to instead use the linear objective remains, but our implementation 

defaults to the QP formulation.  

 

3.2.1.9 The LK-DFBA Optimization Problem 

Assembling the constraints described in the previous sections produces the 

following linearly-constrained QP for simulating metabolic time courses which we 

refer to as LK-DFBA. For  

𝜔   =    [𝑤! 𝑡! ,𝑤! 𝑡! ,…   𝑤! 𝑡!"!! ,𝑤! 𝑡!" , 𝑥! 𝑡! , 𝑥! 𝑡! ,…   𝑥! 𝑡!"!! , 𝑥! 𝑡!" ]!, 
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max
!

  𝑧 = 𝑐!𝜔 − 𝜆𝜔!𝜔 

s.t. 0   =   𝑨𝑤 𝑡!                                         ∀  𝑘 ∈ [1,𝑛𝑇] 

𝑤!" ≤ 𝑤 𝑡! ≤ 𝑤!"             ∀  𝑘 ∈ [1,𝑛𝑇] 

𝑥!" ≤     𝑥 𝑡! ≤ 𝑥!"               ∀  𝑘 ∈ [1,𝑛𝑇] 

𝑥 𝑡!   =   𝑥! 

𝑥! 𝑡!   =   𝑥! 𝑡!!! +   Δ𝑡   ∙ 𝑣!,! 𝑡!                   ∀  𝑘 ∈ [1,𝑛𝑇] 

𝑣!,! 𝑡!!!
!

  ≤ 𝑏! + 𝑎! 𝑥!,! 𝑡!
!

 

∀  𝑘 ∈ 1,𝑛𝑇 ,∀  𝑖 ∈ {𝑣}!,∀  𝑗 ∈ {𝑥}!,∀  𝑛 ∈ 1,𝑛!  

 

3.2.2 Model generation codes 

We developed a procedure in MATLAB to automatically translate a standard FBA 

model into an LK-DFBA model, and then solve the resulting optimization 

problem. This procedure works by taking as input the original FBA model, plus 

the inputs specified above. This code has been made publically available on 

GitHub at https://github.com/gtStyLab/lk-dfba. 

 

3.2.3 Test Models 

To test our modeling and parameter fitting strategies, we used several models to 

produce “synthetic” datasets. The advantage of using these datasets as a point 

of comparison is that it allows us to produce idealized cases under which we can 

study the theoretical performance and limitations of our modeling strategy without 

being limited by practical concerns such as data sampling frequency, signal-to-
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noise ratio in the data, or limits in the cross-section of metabolites we can 

measure. 

 

3.2.3.1 The Branched Pathway Model 

Our first test model is a modified version of a popular, well-established in silico 

model from BST describing a simple branched pathway with both positive and 

negative regulatory interactions41. Our modified version introduces several 

changes, and is shown in Figure 3.2. 

 
Figure 3.2. The modified Branched Pathway model used in this work, adapted from the 
model of Almeida et al. 
Black arrows indicate fluxes. The green and red arrows denote positive and negative regulatory 
interactions. The dashed line denotes the system boundary. Metabolites are X1, X2, X3, X4, and 
XBM. System fluxes are v1, v2, v3, v4, and v5. Pooling fluxes for X1, X2, X3, X4, and XBM are v6, v7, 
v8, v9, and vBM, respectively. The parameters in blue specify reaction rates and stoichiometry. Not 
shown are initial conditions. Kinetic rate laws are implemented as generalized mass action (GMA) 
rate laws from BST. 
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First, we replaced the two effluxes in the original model with a single, fixed-

stoichiometry “biomass” reaction, which produces a biomass “metabolite” subject 

to a mass balance equation. This introduces some additional biological relevance 

(such reactions are ubiquitous in genome-scale models) and allows us to define 

a clear objective for the system. 

 

Second, we modified the two regulatory interactions to change their targets. The 

negative regulatory target of X3 is changed from the input flux v1 to the opposite 

branch’s first flux v4, and we hold the input flux at a constant value of v0. This 

allows us to simplify the model, while still producing interesting dynamics for X1 

via interactions with the branch fluxes v2 and v4. Second, we change the positive 

regulatory interaction of X4 to target v3, the first flux in the other branch, to avoid 

introducing a parameter identifiability problem by having the same metabolite 

acting as a controller for the same flux, v5, twice (i.e. both as a mass action and 

regulator constraint). 

 

Like the original BST model, we implement power-law kinetics, as shown in the 

equations of Figure 3.2. We produce several noiseless datasets by modifying the 

initial conditions, biomass equation stoichiometry, and kinetic rate constants; the 

conditions for these models are shown in Table 3.1. 
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Table 3.1. Parameters used to generate noise-free Branched Pathway data sets 

  Stoichiometry Kinetics Initial Conditions 
k bm3 bm4 a2 b21 a3 b32 br34 a4 b41 br43 a5 b53 b54 X1 X2 X3 X4 X5 
1 0.6 0.4 0.8 0.5 1.0 0.8 0.2 0.5 0.4 -0.8 0.5 0.5 0.8 0.1 0.2 0.3 0.4 0.5 
2 0.6 0.4 0.8 0.5 1.0 0.8 0.2 0.5 0.4 -0.8 0.5 0.5 0.8 0.1 0.1 0.1 0.1 0.1 
3 0.6 0.4 0.8 0.5 1.0 0.8 0.2 0.5 0.4 -0.8 0.5 0.5 0.8 1.0 1.0 1.0 1.0 1.0 
4 0.6 0.4 0.22 0.925 0.691 0.856 0.302 0.416 0.107 -0.564 0.436 0.816 0.52 1.0 1.0 1.0 1.0 1.0 
5 0.6 0.4 0.935 0.457 0.24 0.763 0.759 0.74 0.743 -0.106 0.681 0.463 0.212 1.0 1.0 1.0 1.0 1.0 
6 0.6 0.4 0.52 0.725 0.791 0.656 0.402 0.816 0.807 -0.364 0.936 0.616 0.82 1.0 1.0 1.0 1.0 1.0 
7 0.6 0.4 0.679 0.036 0.809 0.748 0.12 0.525 0.325 -0.546 0.398 0.415 0.18 1.0 1.0 1.0 1.0 1.0 
8 0.9 0.1 0.8 0.5 1.0 0.8 0.2 0.5 0.4 -0.8 0.5 0.5 0.8 1.0 1.0 1.0 1.0 1.0 
9 0.8 0.2 0.8 0.5 1.0 0.8 0.2 0.5 0.4 -0.8 0.5 0.5 0.8 1.0 1.0 1.0 1.0 1.0 
10 0.7 0.3 0.8 0.5 1.0 0.8 0.2 0.5 0.4 -0.8 0.5 0.5 0.8 1.0 1.0 1.0 1.0 1.0 
11 0.5 0.5 0.8 0.5 1.0 0.8 0.2 0.5 0.4 -0.8 0.5 0.5 0.8 1.0 1.0 1.0 1.0 1.0 
12 0.4 0.6 0.8 0.5 1.0 0.8 0.2 0.5 0.4 -0.8 0.5 0.5 0.8 1.0 1.0 1.0 1.0 1.0 
13 0.3 0.7 0.8 0.5 1.0 0.8 0.2 0.5 0.4 -0.8 0.5 0.5 0.8 1.0 1.0 1.0 1.0 1.0 
14 0.2 0.8 0.8 0.5 1.0 0.8 0.2 0.5 0.4 -0.8 0.5 0.5 0.8 1.0 1.0 1.0 1.0 1.0 
15 0.1 0.9 0.8 0.5 1.0 0.8 0.2 0.5 0.4 -0.8 0.5 0.5 0.8 1.0 1.0 1.0 1.0 1.0 

 

3.2.3.2 Glycolysis and Pentose Phosphate Pathway in E. coli 

While the Branched pathway model is convenient as an initial test case, it lacks 

physiological significance and is too simple to capture some of the challenges we 

expect in real metabolic networks. To explore initial scale up and to better gauge 

the challenges of implementing LK-DFBA, we test a model of central carbon 

metabolism in E. coli, specifically encapsulating glycolysis and the pentose 

phosphate pathway (PPP)42. The network structure is shown in Figure 3.3, and a 

list of model abbreviations in Tables 3.2 and 3.3. The model is a system of ODEs 

with empirically derived rate laws. Metabolite concentrations were generated 

using the procedure described in Chapter 2. Briefly, noiseless data at high 

resolution was generated from the default model initial conditions and parameters 

in Copasi 4.14 (Build 89), with the exception that moieties such as ATP, ADP, 

and NADH, etc. were held at constant concentrations during simulation42,45-48. 
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Figure 3.3. The model of E. coli central carbon metabolism 
Adapted from Figure 2 of Chassagnole et al.42 Abbreviations used in this figure are expanded in 
Tables 3.2 and 3.3. 
A. The model includes glycolysis and the pentose phosphate pathway. Circles denote 
metabolites, and rectangles denote fluxes. Arrows with one head are irreversible reactions, and 
those with two heads are reversible; the larger head indicates the forward reaction direction. 
Numbers next to arrows denote non-unity stoichiometric coefficients. Not shown are degradation 
and dilution reactions. 
B. The regulatory connections used in our implementation of the E. coli model. Red ‘x’ 
connections signify negative regulators, and green ‘+’ connections represent positive regulators. 
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Table 3.2. Metabolite abbreviations used in the E. coli model 
Index Metabolite Abbreviation 

1 Extracellular Glucose glc 
2 Glucose-6-Phosphate g6p 
3 Fructose-6-Phosphate f6p 
4 Fructose-1,6-bisphosphate fdp 
5 Glyceraldehyde-3-Phosphate gap 
6 Dihydroxyacetonephosphate dhap 
7 1,3-diphosphosphoglycerate pgp 
8 3-Phosphoglycerate 3pg 
9 2-Phosphoglycerate 2pg 

10 Phosphoenol pyruvate pep 
11 Pyruvate pyr 
12 6-Phosphogluconate 6pg 
13 Ribulose-5-phosphate ribu5p 
14 Xylulose-5-phosphate xyl5p 
15 sedoheptulose-7-phosphate sed7p 
16 Ribose-5-phosphate rib5p 
17 Erythrose-4-phosphate e4p 
18 Glucose-1-Phosphate g1p 

 

 
Table 3.3. Flux abbreviations used in the E. coli model 

Index Name Abbreviation Index Name Abbreviation 

1 Extracellular glucose kinetics glc_kin 25 Pyruvate dehydrogenase PDH 
2 Phosphotransferase system PTS 26 Methionine synthesis MetSynth 
3 Glucose-6-phosphate isomerase PGI 27 6-Phosphogluconate dehydrogenase PGDH 
4 Phosphoglucomutase PGM 28 Ribose-phosphate isomerase R5PI 

5 Glucose-6-phosphate dehydrogenase G6PDH 29 Ribulose-phosphate epimerase Ru5p 
6 Phosphofructokinase PFK 30 Ribose phosphate pyrophosphokinase RPPK 
7 Transaldolase TA 31 Glucose-1-phosphate adenyltransferase G1PAT 
8 Transketolase a TKa 32 G6P degradation g6p_deg 
9 Transketolase b TKb 33 F6P degradation f6p_deg 

10 Mureine synthesis MurSynth 34 FDP degradation fdp_deg 
11 Aldolase ALDO 35 GAP degradation dhap_deg 
12 Glyceraldehyde-3-phosphate dehydrogenase GAPDH 36 DHAP degradation dhap_deg 
13 Triosephosphate isomerase TIS 37 PGP degradation pgp_deg 
14 Tryptophan synthesis TrpSynth 38 PG3 degradation pg3_deg 
15 Glycerol-3-phosphate dehydrogenase G3PDH 39 PG2 degradation pg2_deg 
16 Phosphoglycerate kinase PGK 40 PEP degradation pep_deg 

17 Serine synthesis SerSynth 41 Pyruvate dilution pyr_dil 
18 Phosphoglycerate mutase PGluMu 42 PG dilution pg_dil 
19 Enolase ENO 43 Ribu5P dilution ribu5p_dil 
20 Pyruvate kinase PK 44 XYL5P dilution xyl5p_dil 
21 PEP carboxylase PEPCxylase 45 SED7P dilution sed7p_dil 
22 Synthesis 1 Synth1 46 Rib5P dilution rib5p_dil 
23 Synthesis 2 Synth2 47 E4P dilution e4p_dil 
24 DAHP synthesis DAHPS 48 GLP dilution g1p_dil 



  142 

Reversible reactions were implemented by splitting them into two irreversible 

reactions representing the forward and reverse directions. For mass action 

constraints, the substrate of the original reaction was designated as the controller 

for the forward reaction, and the product was set as the controller for the reverse 

reaction. Fluxes such as Met and Trp synthesis, which are set to fixed values in 

the ODE model, were explicitly provided this information as well. We modeled the 

degradation reactions using equality constraints where the 𝑎  parameter was 

known and assigned to the model based on the value in the underlying ODE 

model, and set 𝑏   =   0 to produce a first-order kinetic rate law. By setting 𝑏   =   0, 

we avoid creating the potential for our linear kinetics constraints to create 

conflicts with non-negative concentration constraints that would result in an 

infeasible LP. 

 

3.2.4 Generating noise-added datasets 

We generated datasets with different sampling frequencies and noise 

characteristics using the procedure described in section 2.2.3 of the previous 

chapter, allowing us to produce multiple replicates of noisy data with a specified 

sampling frequency and measurement noise45. 

 

Briefly, the noiseless data at high sampling frequency were down-sampled such 

that the initial conditions and nT additional time points are sampled evenly over 

the time interval of interest. Then, the metabolite or flux values are replaced with 
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a random value drawn from 𝑁!,!   ~  (𝑦! 𝑡! ,𝐶𝑜𝑉 ∙ 𝑦!(𝑡!)), where 𝑦! 𝑡!  is the value 

of species (metabolite or flux) 𝑖 at time point 𝑘, and 𝐶𝑜𝑉 is the coefficient of 

variance. We leave the initial time point at the original model values, and use it as 

unfitted input for the LK-DFBA simulation. 

 

3.2.5 Parameter fitting 

As the primary driver of system dynamics, the linear constraints play a key role in 

determining the performance of a model implemented in LK-DFBA. An effective 

and reliable method for determining appropriate parameters is critical. We pose 

the parameter-fitting problem as follows: given data describing a set of metabolite 

(and flux) time courses, determine the set of model parameters that minimize the 

weighted sum of squares error between the data and the time courses predicted 

by the model. We explored several strategies for addressing this problem. 

 

For all methods, we assumed that the structure of the network and the regulatory 

interactions were known, including the signs of the interactions. In all cases, the 

true initial conditions (i.e. with no noise added) were provided for all metabolites. 

 

3.2.5.1 Global Parameter Optimization 

The most general strategy is a standard global optimization approach. We 

constructed a fitness function from the weighted sum-of-squares error (SSE) 

between the provided data and model predictions, subject to an L2 regularization 
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penalty on the fitted parameters. The SSE weights are specified by the user, and 

can be used to reflect features such as differences in scale between metabolites, 

or heuristics to enable attempts to more effectively recapitulate the behavior of 

certain metabolites. These weights can potentially be applied to concentrations, 

fluxes, or pooling fluxes, but we only used weights on concentrations in our work. 

Our implementation also allows the user to specify a regularization weight and 

reference vector for the regularization penalty. 

 

This SSE fitness function was used to fit FBA models for the methods based on 

global optimization. For the “Regression-Plus” method (‘LR+’), we used the 

results of the Linear Regression (‘LR’) method (described below) as an initial 

starting point for the Nelder-Mead simplex solver using the MATLAB function 

fmincon(). The other method (‘GA’) used the ga() function in MATLAB to 

search using a genetic algorithm. 

 

In the case of the genetic algorithm, we improved convergence of the algorithm 

by introducing constraints on the parameter search space to remove areas where 

we anticipated poor parameter sensitivity. These restrictions are described in 

Figure 3.4. 
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Figure 3.4. Bounding the parameter search space for the Genetic Algorithm 
A. Kinetics constraints are formulated as linear inequalities. Also present are pre-specified 
bounds on flux values from FBA, a constraint on minimum metabolite concentrations to guarantee 
physically realistic concentration values, and an effective upper bound on concentration at a given 
time point due to mass balance constraints and the equations integrating pooling fluxes over the 
previous time points. This specifies a feasible solution space. 
B. Under certain regions of parameter space when 𝑎 < 0 (inhibition), the initial concentration of 
the metabolite, x0, is outside the feasible space. This produces a conflicting constraint with the 
kinetics constraints, and the resulting LP is infeasible. We avoid this by restricting (𝑎,  𝑏) such that 
vmin < 𝑎 � x0 + 𝑏. 
C. For certain regions of parameter space, the kinetics constraint will be guaranteed inactive. In 
this situation, the fitness function will be insensitive to small changes in (𝑎,  𝑏), making it difficult to 
optimize these parameters. We minimize this issue by restricting b such that when 𝑎 > 0, 𝑏 ≤ vmax 
and when 𝑎 < 0,  𝑏 ≥ vmin. 
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For larger systems, we found that it may be more tractable to perform multiple 

sequential optimization problems by fixing a subset of the parameter values and 

switching off between optimizing different parameters at each step. We provide 

an option for the user to specify multiple rounds of optimization, in which 

individual pairs of parameters can be set as fixed or fitted for a given round of 

optimization. This is accomplished by specifying a design matrix in which rows 

represent kinetics constraints, and columns specify individual optimization 

rounds. If a particular kinetics constraint (parameter pair) is fixed at its initial 

values for a particular round, its value for the corresponding column is set to 1; 

otherwise, if it is to be optimized, it is set to 0. For example, we simultaneously fit 

all 6 kinetics constraints in a single step by setting this matrix as a (6×1) matrix of 

zeros. For the E. coli model, we chose to optimize over individual constraints (i.e. 

individual (𝑎,  𝑏) parameter pairs) in sequential order until we had cycled through 

fitting all kinetics constraints twice. 

 

3.2.5.2 Dynamic Flux Estimation and parameter regression 

We used a DFE scheme to fit noisy data in the Branched pathway model. We 

smoothed concentration time course profiles using the Impulse function as 

described in Chapter 2, and determined the slope (metabolite accumulation or 

pooling flux) from the derivative of the smoothed function45. From these slope 

values the dynamic flux distribution was calculated according to a procedure 

based on the method of Ishii et al.47 Fluxes were divided into “static” and 
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“dynamic” sets, and the stoichiometric mass balance equations re-organized to 

solve for the “dynamic” fluxes using MATLAB’s backslash pseudo-inverse. From 

this, we paired the resulting calculated dynamic flux distribution data with the 

original noisy concentration data for subsequent regression analysis. 

 

To estimate Branched pathway model parameters in the regression-based 

methods (‘BST’,’MM’,’LR’), we used the inferred flux data and the concentration 

data to fit the parameters of the individual rate law equations to the 

corresponding flux and metabolite data. For the BST-based generalized mass 

action kinetic rate law model (‘BST’), we log-transformed the data to linearize the 

system and solved for the power-law parameters. For the Michaelis-Menten 

Kinetic Rate Law model (‘MM’), we performed a non-linear regression by seeding 

the solver with 100 random initial parameters and selecting the fit with the lowest 

residuals. Rate law equations for the MM model were as follows: 

𝑣! = 𝑣! 

𝑣! = 𝑉!!
𝑋!

𝑉!! + 𝑋!
 

𝑣! = 𝑉!!
𝑋!

(𝑉!! + 𝑋!)(𝑉!! + 𝑋!)
 

𝑣! = 𝑉!!
𝑋!

(𝑉!! +
1
𝑋!
)(𝑉!! + 𝑋!)

 

𝑣! = 𝑉!!
𝑋! ∙ 𝑋!

𝑉!! + 𝑉!,!! ∙ 𝑋! + 𝑉!,!! ∙ 𝑋! + 𝑋! ∙ 𝑋!  
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where 𝑉!!,  𝑉!!, 𝑉!!,  𝑉!!, 𝑉!!, 𝑉!!,  𝑉!!, 𝑉!!,  𝑉!!,  𝑉!!,  𝑉!,!! ,  𝑉!,!!  are the fitted Michaelis-

Menten parameters49. 

 

For the Linear Regression FBA model (‘LR’), we performed linear regression on 

the combined flux and/or concentration data for each target-controller mapping 

as appropriate (for example, regression on the sum (v2 + v4) against X1 when 

controller metabolite X1 is mapped to target fluxes v2 and v4). 

 

During our analysis, we explore the impact of incomplete data in the form of 

missing time course data. To model this, we select a metabolite, designate it as 

“missing”, and withhold the time course data for that metabolite from the analysis 

(with the exception that we provide the initial concentration of the metabolite as a 

means of starting the process). For the DFE procedure, we designate the pooling 

flux as a static flux and set its value to 0 on the basis that we have no information 

to justify assigning it a non-zero value. Similarly, the weight of this metabolite is 

set to 0 in the fitness function to preclude it from influencing global optimization. 

 

3.2.5.3 Assessing fitted model performance: metrics and equations 

Once we determined fitted parameters for each model type and noisy dataset, we 

simulated the time course from a particular fitted parameter set and compared it 

against the original noiseless data at high resolution to assess how well it 

recapitulated the underlying behavior. For each fit, we calculated the penalized 
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relative SSE (prSSE) to allow us to compare each modeling method based on the 

conditions used to generate the noisy synthetic data (𝐶𝑜𝑉, nT, missing Xi). 

 

First, for model 𝑚 and noisy data replicate 𝑛, we calculate the resulting simulated 

time course data as  

𝑦!,!,!,!   =   𝑓!(𝑥!!;𝜃!,!) 

where 𝑦!,!,!,! is the simulated value of concentration or flux 𝑗 at time 𝑘 for model 

𝑚 fitted to noisy data replicate 𝑛, and 𝑓! is the function integrating model 𝑚 over 

the time course with initial conditions 𝑥!! and fitted parameters 𝜃!,!. From this, we 

calculated prSSE as  

𝑝𝑟𝑆𝑆𝐸!,!   =   𝑤!,! 𝑤!
   𝑦!,!,!,! −   𝑦!,!

!!!
!

𝑛!!
               

where 𝑦!,! is the value of species 𝑗 at time 𝑘 in the original noiseless time course 

data, 𝑛! is the number of time points in the simulation interval,  

w!   =   𝑤∗(𝑗)   max 𝑦! −min  (𝑦!)
!! 

is the species scaling factor, 𝑦! is the noiseless data time course for species 𝑗, 

𝑤∗(𝑗) is a binary variable denoting participation in the prSSE calculation (e.g. for 

𝑗  𝜖 pooling fluxes, we set 𝑤∗(𝑗) to 0 to exclude them from the prSSE),   

w!,!   =   
𝑛!(𝑚) ∙ nT(n)− 𝑛!(𝑚)

𝑛!(𝑚) ∙ nT(n)

!!

 

is the penalty on parameterization, 𝑛!(𝑚) is the number of species used to fit 

𝜃!,!, nT n  is the number of time points used to fit 𝜃!,!, and 𝑛! 𝑚  is the number 

of parameters in 𝜃!,!. 
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3.3 Results 

3.3.1 Simulating a time course with a nominal set of parameters 

We implemented LK-DFBA in MATLAB using the Gurobi solver library50. These 

codes take a model specified by the user (including an FBA model structure and 

the additional information for concentrations, regulation, and simulation interval, 

as described in Section 3.2.1.1, generate the extended LP problem structure for 

the dynamic FBA problem, and solve the optimization using Gurobi. The results 

of this optimization are parsed into data matrices for the concentration and flux 

time course profiles, and are returned to the user. An example time course 

simulation is shown in Figure 3.5. One behavior we observe is a change in active 

constraints over the time course, leading to shifts in the resulting flux distribution. 

We note here that an instantaneous shift in fluxes takes time to produce changes 

in concentrations, due to the integration equations. 

 

To demonstrate the necessity of including our linear kinetics constraints, we 

performed a simulation with a model containing no kinetics constraints. The result 

of this is shown in Figure 3.6. After an initial transient period in which the 

metabolite pools are immediately depleted, the model quickly reverted to the 

steady-state flux distribution one would observe from an FBA optimization with no 

dynamics or regulation.  
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Figure 3.5. Examples of time course simulations using LK-DFBA 
The ODE time course data in black were fitted with the GA, LR, and LR+ methods to identify 
model parameters. The resulting parameters were used with the LK-DFBA model to simulate the 
time course behavior. 
A. The overall time course, showing metabolite concentrations, system fluxes, and pooling fluxes. 
B. A closer look at metabolite X2. 
C. A closer look at pooling flux vp2. 
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Figure 3.6. Pooling fluxes are insufficient to incentivize meaningful metabolite dynamics 
Additional constraints are necessary to incentivize biologically relevant behavior. When the 
regulatory constraints are specified as an empty set, the model exhibits an initial burst of activity 
as the metabolite pools are consumed. This is followed by steady-state behavior in which the 
model produces the same steady-state flux results that are observed in an unmodified FBA 
model. 
 
 
To produce the stable behavior shown in Figures 3.5 and 3.6, we tested several 

options to determine the optimal configuration of the optimization problem. We 

explored a terminal and an instantaneous objective function, and determined that 

an instantaneous objective produced more stable behavior. The justification for 

this decision is shown in Figure 3.7, in which the prevalence of degenerate 

solutions and inconsistent time course behavior led us to abandon the terminal 

objective function. 
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Figure 3.7. The terminal objective was prone to several serious numerical deficiencies 
A. Using the same kinetics parameters and the same Δt, we simulated the model using the 
terminal objective under differing simulation end times. We observed that the trajectories 
produced under this variation were inconsistent, leading to wide variation in model behavior in the 
overlapping intervals. In this example, an L2 penalty has been assigned to the solution vector to 
combat the degeneracy issue shown in panel B.  
B. Simulations with the terminal objective without a secondary penalty were heavily sensitive to 
the choice of parameter nT during simulation. In this set of graphs, the genetic algorithm was 
used with the terminal objective at nT = 200. The resulting parameters were simulated at nT = 
200, shown in red. The simulation was repeated at nT = 150, nT = 200, nT = 250, up to to nT = 
2000 with the same parameters; the resulting trajectories are shown in blue. We note that the 
trajectories shown here represent degenerate solutions to the optimization problem: for each 
trajectory, the objective function (final concentration of XBM) obtains the same value. 
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To combat degenerate solutions, we further explored penalties on the norm of 

the solution vector 𝜔 . These included secondary optimizations in which the 

optimal 𝑧   =    𝑐!𝜔  was set as a constraint, and the L1- or L2-norm of 𝜔  was 

minimized, as well as schemes penalizing (𝑣 𝑡!!! −   𝑣 𝑡! ) (not shown). The 

results of several regularization schemes are shown in Figure 3.8. From this 

analysis, we concluded that the best solution was a single optimization using the 

instantaneous objective with a penalty on the L2-norm of 𝜔 , which we 

implemented as described in Section 3.2.1.8 as objective 𝑧   =    𝑐!𝜔 − 𝜆𝜔!𝜔. 

 

In hindsight, the improved performance of the instantaneous objective function 

over the terminal objective is perhaps unsurprising. In a biological system, the 

organism lacks any foreknowledge of resource abundance, and instead is limited 

only to sensing the current stats of its internal and external environment. The 

instantaneous objective better reflects this reality, and is justified both on a 

theoretical basis and on the practical basis demonstrated in Figures 3.7 and 3.8. 
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Figure 3.8. Qualitative comparison of solution-norm penalization schemes 
In addition to comparing the instantaneous and terminal objective types, we explored solution-
norm penalization. Model trajectories were simulated from parameters identified using the genetic 
algorithm method and the FBA model configuration specified on high-resolution noiseless ODE 
data (in black). 
A. An overall comparison across the Branched Pathway model. 
B. A more detailed view of metabolite X4. The un-penalized Terminal objective (green) led to poor 
and inconsistent behavior, whereas the instant objective with primary L2 minimization (formulated 
as a QP; magenta) gave the best fit and most robust behavior. 
 



  156 

3.3.2 Assessment of five model types on noiseless Branched Pathway data 

As described in Section 3.2.4, we generated a set of ODE time course profiles to 

provide a set of high-quality, high-abundance synthetic data sets with which to 

initially compare several modeling options. By using synthetic data, we can 

generate data sets at arbitrary quality and in arbitrary quantities, and have full 

knowledge of the true time course profiles for metabolite concentrations and 

metabolic fluxes. This allows us to subject LK-DFBA to a rigorous and thorough 

theoretical treatment. For each of these data sets, we used the overall structure 

of the modified Branched pathway model, but varied the initial conditions, kinetic 

rate law parameters, and biomass stoichiometric ratios. From this, we generated 

15 sets of synthetic data. The parameters used for each data set are shown in 

Table 3.1.  

 

In this initial stage, we used noise-free data at high sampling frequency (nT = 

100) to fit parameters. We implemented the five methods described in the 

Sections 3.2.5.1 and 3.2.5.2: BST, MM, LR, LR+, and GA. The first four methods 

used regression between the metabolite and flux time course data directly from 

the data, and the last two used global optimization with the fitness function 

described in Section 3.2.5.1. The fitness function was configured to fit only 

metabolite concentrations by assigning a weight of 0 to system and pooling flux 

values. The results of this analysis are shown in Figure 3.9. 
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Figure 3.9. Quantitative comparison of prSSE for the BST, MM, LR, LR+, and GA methods 
for 15 parameterizations of the Branched Pathway model 
 
 
The results of fitting these different methods to the noiseless data sets are shown 

in Figure 3.9. We compare the prSSE for each method across the 15 

parameterizations of the ODE model described in Table 3.1. In this case, the 

prSSE is the sum of terms from concentrations and system fluxes (i.e. errors 

from pooling fluxes are omitted). A qualitative example was shown previously in 

Figure 3.5 for the data using the k = 01 parameters in Table 3.1. 

 

For the noiseless, high-resolution data sets, we observe several trends. First, the 

BST method by far has the best performance. This is to be expected, since this 

method’s model equations are identical to those of the underlying ODE model. 

Second, the LR method has the lowest performance, which is perhaps 

unsurprising given the number of approximations used in this method. We do 

note that for the k = 01 time course, it actually manages to outperform the MM 
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model. Third, the LR+ method substantially improves on the LR parameters, 

leading it to produce time course data similar in accuracy to the GA and MM 

methods. While the GA method outperforms the LR+ method in the majority of 

the cases, the differences are relatively small, and this modest improvement 

comes at the cost of 5-6 hours of computational time, compared to the <10 

minutes required for the LR+ method (which in this case includes performing 

multiple fits with random perturbations to the initial LR guess). For this reason, 

we omit using the GA in subsequent sections. 

 

3.3.3 Comparing the performance of methods using noisy data in the Branched 

pathway model 

While exploring the noise-free synthetic data gives us some basic insights into 

the behavior of LK-DFBA under ideal conditions, there is substantial practical 

value in characterizing the impact of data quality on the performance of LK-

DFBA. To this end, we generated datasets with different sampling frequencies 

and noise characteristics using the procedure described in the previous chapter. 

Briefly, high-resolution time course data for the modified Branched Pathway 

model were generated using the k = 01 parameter set. Noisy time course data 

were generated by sampling the high resolution data at nT = 15, 20, 30, 40, and 

50, and adding Gaussian noise to data points after the initial time point with 𝐶𝑜𝑉 

= 0.05, 0.15, and 0.25. For each combination of nT and 𝐶𝑜𝑉, 50 replicate data 

sets were produced, for a total of 750 noisy data sets. 
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For each noisy data set replicate and each modeling method (MM, BST, LR, 

LR+) we employed the DFE procedure as described in detail in Section 3.2.5.2. 

For estimating dynamic flux profiles, we used the following steps. First, 

metabolite time course profiles were smoothed and slopes estimated using the 

Impulse smoothing function32,51. Then, the dynamic flux distribution was 

calculated using the procedure of Ishii et al.32,47 From this, the inferred flux values 

were regressed against the original noisy metabolite concentrations as 

appropriate for the specific method32. For the LR+ model, we used the 

parameters from the LR model as an initial seed for a global parameter 

optimization. We fit parameters for each of the 4 models to each of the 750 noisy 

datasets. The fitted parameters were used to simulate the system time course for 

each case at high resolution. These simulated data were compared against the 

noiseless version of the data to calculate model prSSE as described in Section 

3.2.5.3. The results of this analysis are shown in Figure 3.10. 

 
In this analysis, we observe a few basic trends. First, as expected, as the 

quantity of data in the time courses increase, the methods all consistently 

achieve lower error (higher -log10(prSSE)), with some evidence of diminishing 

returns in a few cases at high nT. In addition, the quality of fits decrease as the 

added noise increases. Across conditions, the LR+ method outperforms all other 

methods. We also note that the BST method performs well in cases when data 

quality is very good, such as at low noise (𝐶𝑜𝑉 = 0.05), or when there is a high 

sampling rate (nT = 40, nT = 50). When data is more sparse or noisy, the LR 
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method performs comparably or slightly better than the BST method. The MM 

method performs the worst, and in light of this we omit it from the analysis of 

cases where a metabolite time course is missing. We note that like the 

improvement from LR to LR+, an additional global optimization for the BST model 

can produce better results for this model as well; however, this improved 

performance (in which it outperforms LR+) is to be expected given that the BST 

model has the advantage of containing the true underlying system structure and 

kinetic rate laws. 

 

 
 
Figure 3.10. Comparison of fitting performance for MM, BST, LR, and LR+ methods 
The black line for data is a benchmark comparison; each of the 750 noisy datasets was 
compared against the noise-free data to establish a baseline level of inaccuracy dependent on 
𝐶𝑜𝑉; the error calculations terms are all normalized to allow a consistent comparison against this 
reference. A. 𝐶𝑜𝑉 = 0.05. B. 𝐶𝑜𝑉 = 0.15. C. 𝐶𝑜𝑉 = 0.25. 
 

3.3.4 The effects of withholding metabolite time courses from model performance 

in the Branched pathway Model 

In order to test the impact of missing data on fitting performance, we repeated the 

analysis from the previous section, but modified the procedure by withholding 

information about one metabolite from the fitting pipeline to model it as “missing” 
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from the data (The value of the metabolite’s initial condition was retained). This 

was accomplished by setting the pooling flux of the missing metabolite as “static” 

for the flux estimation step, and the corresponding regressions were performed 

with only the initial value as a placeholder. Each of the five metabolites in the 

Branched pathway were modeled as missing this way, for each of the 750 noisy 

datasets from the previous section. For each case, the BST, LR, and LR+ fitting 

methods were performed. In the case of the LR+ method, the missing metabolite 

was also removed from the weights of the fitness function. The results of this 

analysis are shown in Figure 3.11. 

 

The position of the missing metabolite in the metabolic network leads to some 

dramatically different trends from Figure 3.10. These trends can be shown to 

derive from the quality of the performance of estimating dynamic flux distribution; 

by setting the pooling flux as static, the calculated system fluxes adjacent to that 

metabolite are skewed accordingly. This in turn affects the regression step, and 

the resulting parameters. 

 

While global parameter fitting may be useful for counteracting this source of 

inaccuracy, it is not guaranteed to do so. The most interesting outcome from this 

analysis is the performance of the LR and LR+ methods in Figure 3.11D-E, in 

which the LR method actually outperforms the LR+ method. 
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Figure 3.11. Comparison of the fitting performance of BST, LR, and LR+ when one 
metabolite time course is withheld from the fitting procedure 
A,B,C. Performance when X1 is missing (X1-Missing) 
D,E,F. X2-Missing. 
G,H,I. X3-Missing. 
J,K,L. X4-Missing. 
M,N,O. XBM-Missing.  
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Figure 3.12. Comparing error contribution for Missing-X1 and Missing-X2 cases 
For a given noisy dataset, the data was fit using the LR and LR+ methods. The prSSE for an 
individual metabolite was calculated for each fitted model, and compared as shown above. The x-
axis denotes the time course total prSSE of that metabolite in the LR model, and the y-axis the 
corresponding prSSE in the LR+ model. Individual dots represent the error for a specific 
metabolite in a specific dataset, with the color indicating the metabolite. Data above the solid 
black line indicates that for that data noisy data set, the error in the LR+ model exceeded the data 
in the LR model. 
A. CoV = 0.05, Missing-X1 data sets. 
B. CoV = 0.25, Missing-X2 data sets. 
 
 
In the Missing-X2 cases, the lack of data describing X2 dynamics led to poor 

optimization using the global method: the parameters that best optimized the 

remaining data pushed the model to poorly approximating the time course of the 

unmeasured metabolite (which was still included in the calculation of prSSE), as 

shown in Figure 3.12. Looking at the contribution of individual metabolites to the 

overall error, we indeed see that the largest contribution comes from the prSSE 

for predicting X2. This serves to demonstrate a point made by Goel et al. 

regarding error compensation and the advantages of performing parameter 
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optimization over smaller independent subsets of the system via e.g. 

regression32. 

 

We do also note that when X4 is withheld from flux estimation and parameter 

optimization (represented in Figure 3.11J-K), the LR+ model usually fails to 

outperform the BST model. This suggests that X4 has a larger impact on the 

ability of the LR+ model to capture the correct behavior. Given that X4 is the 

controller for one of the two regulatory interactions, and this interaction is a 

positive regulator, this serves to highlight the importance of capturing metabolite 

dynamics in order to incorporate regulation, and further justifies our interest in 

capturing these sorts of interactions. 

 

3.3.5 Recapitulating results with the E. coli model 

The branched pathway model is a useful model for exploring some basic 

characteristics of the approach, but lacks biologically relevant features. To 

introduce some of these complexities and to explore the performance of our 

approach with a medium-scale model with biological relevance, we generated 

synthetic data using the E. coli model of Chassagnole et al.42 This larger model 

includes 18 metabolites of differing magnitude, and 48 fluxes; of these fluxes, 13 

are reversible and 17 represent first order “degradation” reactions that act as sink 

terms for metabolites. The topology of this network is more complicated, with 

multiple branch and convergence points. Implementing this model in LK-DFBA 
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resulted in several modifications to our procedure, which are discussed in more 

detail in Section 3.2.3.2 and below. 

 

We produced synthetic noisy data from the E. coli model using the procedure 

previously described. High quality, noise-free data for the model’s 18 metabolites 

and 48 fluxes were generated over the interval of 10s from the ODE model and 

nominal parameters. From this, we produced 20 noise-added replicates each for 

nT = 20, 30, and 40 and 𝐶𝑜𝑉 = 0.10 and 0.20 (for a total of 120 noisy data sets). 

For these datasets, we observed severe difficulties in recapitulating a 

qualitatively correct dynamic flux distribution using impulse smoothing and the 

procedure of Ishii et al. for dynamic flux estimation (before any LK-DFBA 

calculations were performed), as shown in Figure 3.1347. To circumvent this 

issue, we opted to instead use noise-added flux data directly from the ODE 

results for regression. We considered this to be a reasonable means of ensuring 

that the analysis was assessment of the modeling approach itself, rather than of 

the DFE procedure. 

 

We fit each of these noisy data sets using two different implementations of LK-

DFBA. In the first, a single constraint was used to limit the total efflux from a 

given metabolite (i.e. all effluxes were listed as targets for that constraint), adding 

17 constraints (34 parameters) of this type. In the second case, we split the 

targets so that each metabolite-efflux mapping had only one target flux, resulting 
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in 49 constraints (98 parameters). We refer to the two model implementations as 

the “unsplit” and “split” constraint implementations, respectively. For both models, 

we also included 6 constraints (12 parameters) describing allosteric regulation 

interactions, resulting in fitting 23 constraints (46 parameters) in the unsplit 

implementation, and 55 constraints (110 parameters) in the split implementation. 

The 17 degradation and dilution reactions were modeled as first order kinetic rate 

laws by setting b = 0 and the a values as the rate constants from the ODE model. 

 

 
 
Figure 3.13. Dynamic Flux Estimation in the E. coli model 
The black trajectories are flux profiles from the ODE model, and the red trajectories are the 
dynamic flux distributions calculated using the DFE procedure described in Section 3.2.3.2. In 
most cases, DFE failed to qualitatively capture the correct flux behaviors, making it difficult to use 
the regression method with any accuracy. We opted to instead use noise-added flux values from 
the ODE model for parameter regression. 
 

For the E. coli data, we asked whether the additional parameters introduced in 

the split constraints implementation was justified by an improvement in model 

accuracy (reflected by penalizing the relative SSE value commensurate with the 
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additional parameters to determine prSSE); additional considerations include the 

increased time required to fit these extra parameters and the increased risk of 

producing an over-fitted model. For each implementation and noisy data set, we 

identified parameters both with the LR and LR+ methods, modifying the LR+ 

method to use the sequential parameter fitting scheme described in Section 

3.2.5.1. As with the Branched pathway model, we evaluated the quality of the 

resulting fits by calculating a parameter-penalized relative sum-of-squares error 

against higher-resolution noise-free data. The results of this analysis are shown 

in Figure 3.14. 

 

 
 
Figure 3.14. Results of fitting the Unsplit and Split LK-DFBA models to the E. coli data 
A. 𝐶𝑜𝑉 = 0.10. 
B. 𝐶𝑜𝑉 = 0.20. 
 
 
We note several trends in Figure 3.14. First, the unsplit model behaves with the 

same general trends we observed in the Branched Pathway model, in which 

increasing nT and decreasing 𝐶𝑜𝑉 consistently lead to improved prSSE, and the 

LR+ method outperforms the LR method. Second, the split model generally 

outperforms the unsplit model, with the exception of using the LR method with 
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𝐶𝑜𝑉 = 0.10 data. Third, the split model performs better on the 𝐶𝑜𝑉 = 0.20 data 

than on the 𝐶𝑜𝑉 = 0.10 data, for both the LR and LR+ methods. On average, for 

the LR+ method the unsplit model (46 parameters) took ~30 minutes to fit for 

each noisy dataset, while the split model (110 parameters) took ~50 minutes (For 

both split and unsplit models, the LR method took fractions of a second). 

 

3.4 Discussion 

In this work, we devised and implemented LK-DFBA, a fully linear modification of 

DFBA that allows us to capture metabolite dynamics and metabolite-dependent 

kinetic and regulatory interactions while retaining the linearity of regular FBA. 

Given the same information necessary for FBA, initial conditions for metabolites, 

and a suitable description of the connectivity and parameterization of the kinetics 

interactions, we showed that LK-DFBA successfully reproduces biologically 

relevant model dynamics. 

 

Further, we demonstrated using a DFE approach to fit two models (Branched 

Pathway, E. coli) to synthetic noisy data to recapitulate the correct underlying 

model behavior. Our method performed competitively against ODE models using 

Michaelis-Menten and GMA kinetic rate laws, can generally handle cases where 

metabolite time courses are missing from the data. It is more robust than other 

methods under the most realistic cases, such as in the presence of noise or 

when the numbers of time points available for fitting are relatively scarce. 
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We also demonstrated the viability of LK-DFBA in a biologically relevant model, 

and examined some of the additional challenges inherent to more realistic 

models. These include different scaling for variables, the presence of reversible 

reactions, more complicated model topology, and procedures for fitting larger 

numbers of model parameters. We explored the impact of different modeling 

options on the model performance, finding that a more heavily parameterized 

model may still be beneficial for better capturing the correct behaviors, if 

sufficient data is available to justify their addition. 

 

In the work discussed in this chapter, we modeled regulatory kinetics constraints 

that correspond to regulation of fluxes via rapid, direct mechanisms such as 

allostery. However, LK-DFBA is not inherently restricted to modeling this type of 

regulation. By choosing a simulation interval over which transcriptional changes 

are relevant, changes in enzyme levels could easily be modeled as well. 

Capturing these other types of regulation may require modifications to reflect 

differences in the underlying mechanisms.  For example, the implementation 

described in this chapter assumed that the constraints on targeted fluxes are 

dependent on the concentration of the controller metabolites at the immediately 

preceding time point. However, changes in target fluxes associated with 

transcriptional regulation may be subject to a time delay due to the intermediate 

biochemical steps necessary to produce the relevant changes in enzyme levels. 

Such a time delay could be introduced by shifting the linkage between controller 
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metabolites and target fluxes from the adjacent time interval to instead a later   

time interval, with the exact offset specified using parameters set by the user or 

determined through parameter fitting. 

 

By retaining the LP structure and the original stoichiometry of the FBA problem, 

we have created a problem that can integrate metabolite dynamics and 

regulation into the many strain design tools created around FBA. For example, 

we envision that a tool such as OptKnock could be used on a model represented 

in LK-DFBA. The mappings between knockout genes and fluxes in the FBA 

model could be applied to the flux values over the whole time course, producing 

predictions that now take into account metabolic dynamics and regulation. 

Metabolism is heavily regulated, and metabolic engineering efforts that ignore 

that will inevitably come up short. Development of genome-scale models with 

regulation will enable more accurate prediction and more effective metabolic 

engineering that could have a drastic impact on titers and productivity. Our work 

here establishes a basis for working towards that goal, and merits further 

investigation to see such applications to fruition. 
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Chapter 4: Identifying Non-Stoichiometric Metabolite-
Flux Interactions from Data and LK-DBFA 

 
 
 
4.1 Background 

In the previous chapter, we established and validated a constraint-based 

modeling framework called Linear Kinetics-Dynamic Flux Balance Analysis (LK-

DFBA) designed to modify dynamic flux balance analysis (DFBA) to instead 

retain the linear program structure of classic FBA1. In order to induce dynamic 

metabolite behavior, we introduced constraints that curtailed system flux in 

accordance with metabolite concentrations. By implementing these kinetics 

constraints as linear equations, we could successfully induce metabolite 

dynamics, incorporate regulatory interactions into the model, and retain the linear 

structure of the overall optimization. 

 

LK-DFBA kinetics constraints reflect two basic classes of interactions. The first 

class comprises cases in which the controller metabolite participates as a 

substrate for the enzymatic reaction. The constraint then represents a sort of 

mass action effect on enzyme kinetics, dependent on the concentration of 

metabolite available. Because these metabolites are substrates, the resulting 

reaction consumes the metabolite, and the metabolite mass balance reflects this 

effect by including the relevant flux in the resulting stoichiometric matrix. For this 

class, identifying a controller-target pair is trivial: this can be read directly from 
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the stoichiometric matrix by identifying the list of fluxes that consume as a 

substrate the metabolite in question. 

 

The second class comprises interactions in which the controller metabolite does 

not participate as a substrate in the target flux. In these cases, the metabolite 

instead modulates the reaction rate via some mechanism other than mass action. 

As discussed in the previous chapter, there are multiple mechanisms by which 

this may occur, with distinct properties and time-scales. An allosteric binding 

interaction may change protein conformation; by binding the enzyme non-

competitively, the enzyme conformation may change to an active state (in the 

case of an allosteric activator), or to an inactive state (in the case of an allosteric 

inhibitor)2. The time-scale for these changes is rapid, on the orders of seconds or 

less2. At longer time scales (on the order of hours), metabolite concentrations 

may induce transcriptional changes, leading to changes in enzyme 

concentrations3. The linear constraints in LK-DFBA are gross linear 

approximations and are fairly agnostic as to the specific mechanism at play. But 

because these mechanisms do not directly participate in reaction stoichiometry, 

they cannot be directly deduced from it. If they are to be included in the model, 

this fact must come from additional information—whether biological knowledge or 

experimental data.  
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These kinetics constraints are critical to the performance and behavior of the 

model, and much of the work of the previous chapter explored the impact of the 

parameterization of the constraints on model behavior and performance. 

However, that analysis assumed that the true structure of these constraints were 

known, in that the complete and correct list of mappings between metabolite 

controllers and flux targets was available for the parameter identification and 

model simulation steps. In practice, we may not be able to assume that this is the 

case, and we need to have some sense for the consequences of this knowledge 

gap. How severely does an error or an omission hamstring model performance? 

Can we use the data and the model to postulate corrections, or to produce a 

ranked list of putative missing interactions? In this chapter, we explore these 

questions. 

 

This information can come from existing biochemical knowledge, or must be 

inferred from available data. In the former case, this can occur via a preliminary 

literature search and will be supported by previous experimental results. In the 

latter case, such experimental validation is often a necessary follow-up step to 

validate an inferred and therefore putative interaction. Computational tools are 

often useful means of identifying candidates for experimental validation, and here 

we are interested in exploring if LK-DFBA may have a potential application in 

generating such candidates. 
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Previous work has sought to combine computational modeling with data to 

construct ranked lists of putative regulatory interactions. To perform this analysis 

with LK-DFBA, we work specifically with the procedure established by Link et al.4, 

in which they investigated the influence of various regulatory connections on an 

ordinary differential equations (ODE) model of E. coli metabolism. In their work, 

they tested a set of candidate models, determined the Akaike Information 

Criterion (AIC) value for each model given the parameterization required to 

construct the model and the resulting fit, and compared those candidates against 

a nominal, regulation-free model4,5. By examining the trends in the candidate 

models, they were able to assess the influence of correct model connections on 

the model performance. We use this analysis approach with synthetic data from 

the modified Branched Pathway model to determine the impact of a small list of 

elementary regulatory connections on the performance of our fitting procedure6. 

In particular, we are interested in recapitulating the two correct regulatory 

interactions from the data used to generate the model. 

 

4.2 Methods 

The work in this chapter uses the approach of Link et al. with synthetic noisy data 

generated using the procedures described in previous chapters4. Specifically, the 

modified Branched Pathway model of the previous chapter is used to initially 

generate 50 noisy datasets with number of sampling data points nT = 50 and 

Coefficient of Variation CoV = 0.05 for the analysis described below7,8. We later 
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repeat this analysis with two additional sets of 50 noisy replicates: one at nT = 20 

and CoV = 0.05, and the other at nT = 50 and CoV = 0.25. 

 

The candidate models are constructed by combining elementary regulatory 

connections together. In a model with m metabolites and n fluxes, there are (m × 

n) potential elementary controller-target pairings or connections. These pairs can 

be grouped into three categories. First, some controller-metabolite pairs 

represent the mass action kinetics resulting from the metabolite participating in 

the reaction flux as a substrate. Another set of controller-metabolite pairs 

represent regulatory interactions, such as from allostery or transcriptional 

mechanisms. The third set comprises the remaining possible connections, and 

represents those connections not present in the system. In this analysis, we 

assume the mass action connections are known, and are interested in searching 

over the remaining two categories to identify the true regulatory connections. 

 

In the modified Branched Pathway model, there are 5 metabolites and 5 system 

fluxes, allowing for a total of 25 potential elementary controller-flux pairings6. 

However, X5 represents biomass rather than a true metabolite that we expect 

would act as a potential regulator, and we set v1 to be a constant influx in the 

modeling assumptions for the modified Branched Pathway model. The result is 

instead a space of 16 potential pairings, five of which are represented already by 

the model’s substrate-activity mass action relationships. We avoid re-using these 
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pairings as regulatory interactions due to the high risk that these interactions are 

not identifiable; in LK-DFBA, there is no clear way to distinguish between effects 

due to participation in mass action kinetics as a substrate vs. participation in a 

regulatory mechanism such as allostery. This leaves 11 potential regulatory 

interactions, 2 of which represent the correct regulatory interactions in the 

underlying model. This list of elementary regulatory interactions is shown in Table 

4.1. 

 
Table 4.1. The 11 elementary regulatory connections investigated in this analysis 
The true connections, {3;4} and {4;3}, are shaded. 
 

Connection Name Controller Metabolite Target Flux 

{1;3} 1 3 
{1;5} 1 5 
{2;2} 2 2 
{2;4] 2 4 
{2;5} 2 5 
{3;2} 3 2 
{3;3} 3 3 
{3;4} 3 4 
{4;2} 4 2 
{4;3} 4 3 
{4;4} 4 4 

 

These elementary connections can be combined to produce additional models, 

but the size of the resulting space is combinatoric; there are 55 models with two 

elementary connections, 165 models with 3 elementary connections, and 330 

models with 4 elementary connections. To focus the analysis and reduce the 

model space in a systematic manner, we introduce criteria for combining 
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elementary connections. First, elementary connections with the same controller 

cannot be combined. Second, elementary connections with the same target 

cannot be combined. These criteria allowed us to considerably prune the 

combinatoric space while still retaining a wide sampling of the possible 

combinations (though, they were selected primarily for convenience rather than 

on some biological basis). The result is a total of 87 possible models (including 

the unregulated model), shown in Table 4.2. 

 

Using the approach of Link et al., we tested this set of candidate models4. Each 

candidate is fitted to the 50 noisy data sets using the procedure from the previous 

chapter. As per Link et al., we also calculated the AIC for a given model m and 

noisy dataset n as 

𝐴𝐼𝐶!,! = 𝑁 log
𝑆𝑆𝑅!,!
𝑁 + 2𝑝! 

where the sum-of-squares residual 

𝑆𝑆𝑅!,! =   
!!,!,!!!!,!,!,!

!

!"#  (!!,!)!!"#  (!!,!)!,! , 

𝑥!,! is the concentration of metabolite 𝑖 at timepoint 𝑗 in noisy dataset 𝑛, 𝑥!,!,!,! is 

the concentration of metabolite 𝑖  at timepoint   𝑗  predicted by model 𝑚  using 

parameters fitted to data from noisy replicate 𝑛, 𝑁 = 250 is the number of fitted 

data points (nT = 50 x 5 metabolites), and 𝑝! is the number of model parameters 

in model 𝑚 (8 for the mass action kinetics constraints in the unregulated model, 

plus 2 for every elementary regulatory connection included in model 𝑚)4. 



  183 

Table 4.2. A list of the candidate regulatory models in Chapter 4 
The true model with connections {3;4} and {4;3} is shaded. 
 

Model # Controller Target Model # Controller Target Model # Controller Target Model # Controller Target 

1 [] [] 34 2 4 56 1 3 73 2 2 
2 1 3   4 2   3 2   3 4 
3 1 5 35 2 4   4 4   4 3 
4 2 2   4 3 57 1 3 74 2 4 
5 2 4 36 2 5   3 4   3 2 
6 2 5   3 2   4 2   4 3 
7 3 2 37 2 5 58 1 5 75 2 4 
8 3 3   3 3   2 2   3 3 
9 3 4 38 2 5   3 3   4 2 

10 4 2   3 4 59 1 5 76 2 5 
11 4 3 39 2 5   2 2   3 2 
12 4 4   4 2   3 4   4 3 
13 1 3 40 2 5 60 1 5 77 2 5 
  2 2   4 3   2 2   3 2 

14 1 3 41 2 5   4 3   4 4 
  2 4   4 4 61 1 5 78 2 5 

15 1 3 42 3 2   2 2   3 3 
  2 5   4 3   4 4   4 2 

16 1 3 43 3 2 62 1 5 79 2 5 
  3 2   4 4   2 4   3 3 

17 1 3 44 3 3   3 2   4 4 
  3 4   4 2 63 1 5 80 2 5 

18 1 3 45 3 3   2 4   3 4 
  4 2   4 4   3 3   4 2 

19 1 3 46 3 4 64 1 5 81 2 5 
  4 4   4 2   2 4   3 4 

20 1 5 47 3 4   4 2   4 3 
  2 2   4 3 65 1 5 82 1 3 

21 1 5 48 1 3   2 4   2 5 
  2 4   2 2   4 3   3 2 

22 1 5   3 4 66 1 5   4 4 
  3 2 49 1 3   3 2 83 1 3 

23 1 5   2 2   4 3   2 5 
  3 3   4 4 67 1 5   3 4 

24 1 5 50 1 3   3 2   4 2 
  3 4   2 4   4 4 84 1 5 

25 1 5   3 2 68 1 5   2 2 
  4 2 51 1 3   3 3   3 3 

26 1 5   2 4   4 2   4 4 
  4 3   4 2 69 1 5 85 1 5 

27 1 5 52 1 3   3 3   2 2 
  4 4   2 5   4 4   3 4 

28 2 2   3 2 70 1 5   4 3 
  3 3 53 1 3   3 4 86 1 5 

29 2 2   2 5   4 2   2 4 
  3 4   3 4 71 1 5   3 2 

30 2 2 54 1 3   3 4   4 3 
  4 3   2 5   4 3 87 1 5 

31 2 2   4 2 72 2 2   2 4 
  4 4 55 1 3   3 3   3 3 

32 2 4   2 5   4 4   4 2 
  3 2   4 4 	  	   	  	   	  	   	  	   	  	   	  	  
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The individual AICm,n values were compared against the unregulated model case, 

M-01 (i.e. m=1). First, we calculated 

∆𝐴𝐼𝐶!,! =   𝐴𝐼𝐶!!!,! −   𝐴𝐼𝐶!,! 

and 

𝑎𝑣𝑒∆𝐴𝐼𝐶! =
1
50 ∆𝐴𝐼𝐶!,!

!"

!!!

 

to determine aveΔAICm, the average ΔAIC for each model5.  

 

From here, we explore the aveΔAICm values for the models listed in Table 4.2. 

However, many of these models are constructed from multiple elementary 

connections. To more directly assess the impact of the elementary connections 

themselves, we used the ΔAICm,n values to perform a linear regression as 

follows. Each model can be mapped to a binary vector indicating the presence or 

absence of a particular elementary connection in Table 4.1. For example, the 

unregulated model M-01 (m=1) maps to a vector of zeros, whereas model M-02 

(m=2) contains a vector of zeros, except for the element corresponding to 

connection {1;3}. This set of vectors can be collated into a design matrix 𝑨, in 

which the number of rows is the total number of fitted models (87 models fitted 

each to 50 noisy datasets, or 4350 total), and the number of columns is the 

number of elementary connections (12 total). The list of ΔAICm,n values comprise 

the right-hand side of the regression equation 

𝑨𝑥 = ∆𝐴𝐼𝐶 
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which can be solved for regression coefficient vector 𝑥 . These coefficients 

represent the sensitivity of ΔAIC to each of the elementary connections; a larger 

value of 𝑥! indicates that ΔAIC is more sensitive to elementary connection 𝑘. 

 
 
4.3 Results and Discussion 

4.3.1 High-level trends in the low noise, high sampling frequency synthetic 

dataset 

We performed the fitting and analysis as described in the previous section, using 

first the Branched Pathway model with CoV = 0.05, nT = 50, and 50 noisy 

replicates. We fitted each of the 87 regulatory models described in Table 4.2 to 

each of the 50 noisy replicates, producing 4350 fitted models. For each fitted 

model, we calculated the ΔAIC as described previously. We then calculated the 

metrics described in Section 4.2. 

 

We first looked at aveΔAICm with the intent of examining some of the trends in 

model structure across candidate models. The values of this metric was ranked 

and ordered, yielding the results shown in Table 4.3 and Figure 4.1. 

 
  



  186 

Table 4.3. Ranked aveΔAICm for 50 noisy datasets (CoV = 0.05, nT = 50) 
The true model with connections {3;4} and {4;3} is shaded. 
 

Rank Model Score Rank Model Score Rank Model Score Rank Model Score 

1 M-39 91.03 23 M-11 77.85 45 M-55 38.29 67 M-13 29.07 
2 M-10 88.69 24 M-35 77.81 46 M-12 37.33 68 M-32 28.66 
3 M-18 87.93 25 M-47 77.80 47 M-16 37.27 69 M-04 27.92 
4 M-54 87.46 26 M-71 77.00 48 M-27 37.16 70 M-77 27.72 
5 M-34 85.92 27 M-26 75.70 49 M-15 37.00 71 M-67 27.53 
6 M-40 85.53 28 M-74 75.45 50 M-33 36.70 72 M-63 26.07 
7 M-78 85.53 29 M-65 74.61 51 M-05 36.67 73 M-62 25.80 
8 M-25 85.25 30 M-60 74.32 52 M-45 35.69 74 M-84 25.74 
9 M-80 85.24 31 M-42 74.14 53 M-14 34.82 75 M-72 25.02 

10 M-44 84.70 32 M-73 73.99 54 M-23 34.81 76 M-21 24.76 
11 M-51 82.65 33 M-85 73.31 55 M-61 34.19 77 M-09 24.01 
12 M-75 82.52 34 M-86 70.66 56 M-28 34.14 78 M-53 22.83 
13 M-57 82.25 35 M-66 66.79 57 M-69 33.81 79 M-17 21.68 
14 M-64 82.19 36 M-37 52.78 58 M-58 33.70 80 M-20 21.67 
15 M-46 81.91 37 M-52 45.43 59 M-06 33.17 81 M-29 20.62 
16 M-68 81.12 38 M-36 45.18 60 M-19 32.86 82 M-48 19.68 
17 M-83 81.06 39 M-41 40.12 61 M-82 31.11 83 M-24 12.79 
18 M-70 79.88 40 M-08 39.89 62 M-56 31.00 84 M-59 12.33 
19 M-30 78.53 41 M-22 39.82 63 M-50 30.96 85 M-02 8.82 
20 M-87 78.46 42 M-79 39.54 64 M-43 30.52 86 M-03 4.64 
21 M-81 78.14 43 M-07 39.35 65 M-38 29.93 87 M-01 0.00 

22 M-76 77.96 44 M-31 38.46 66 M-49 29.54       

 
 
We note a few characteristics the graph in Figure 4.1. First, the vast majority of 

the models produce a value of aveΔAICm indicating that the model dynamics are 

clearly distinguishable from the unregulated model, as can be inferred from the 

consistent lack of overlap between the distributions for each model and the 

reference value, aveΔAICm=1 = 0. Second, we note the rapid drop in aveΔAICm 

for models ranked 35 or below. This suggests that certain regulatory connections 

may be acting as a strong driver of model performance, and without them, the 

model performs noticeably worse. 
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Figure 4.1. Quantitative model performance for CoV = 0.05 and nT = 50 datasets 
The thick solid line represents the average model ΔAIC across replicates, and the thin error bars 
show the corresponding sample standard deviation. Model results are plotted by decreasing 
aveΔAICm, corresponding to the order shown in Table 4.3  
 

4.3.2 Sensitivity of model performance to elementary regulatory connections in 

the low noise, high sampling frequency dataset 

As described in the Section 4.2, we performed regressions to determine the 

sensitivity of ΔAICm,n to each of the elementary regulatory connections. The 

results of these regressions are shown in Table 4.4. 

 
Table 4.4. Regression against the participation of elementary regulatory connections 
Models fitted to data of CoV = 0.05 and nT = 50 to determine sensitivity of ΔAIC 
to elementary connections. The true regulatory connections are shaded. 

 CoV = 0.05, nT = 50 

Connection {1; 3} {1; 5} {2; 2} {2; 4} {2; 5} {3; 2} {3; 3} {3; 4} {4; 2} {4; 3} {4; 4} 

Coefficient 9.84 5.12 11.01 11.52 16.42 12.31 14.99 6.13 66.32 60.13 13.74 

 
 
One notable result observed in Table 4.4 is that while the true connection {4;3} 

has a high coefficient, it is actually the second highest, behind the connection 
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{4;2}. Further, the true connection {3;4} has one of the lowest sensitivities in the 

list, indicating that detecting this interaction is difficult to capture using ΔAICm,n. 

We note that in the underlying model, the connection represented by {4;3} is an 

activation interaction, whereas {3;4} represents an inhibition. What is not 

discernable from this model and analysis is if inhibitors are inherently difficult to 

capture robustly with LK-DFBA, or if this is a byproduct primarily of the 

stoichiometry and regulatory network in this particular model. 

 

4.3.3 Performance of a greedy search over model space for replicates of the low 

noise, high sampling frequency dataset 

We further considered the case of a greedy model selection search, in which 

ΔAIC is optimized by selectively adding a single elementary connection at each 

round of optimization. For a given round in the search, the current model is 

compared against a pool of models constructed by adding to each a single 

eligible elementary connection. Whichever model in this pool most improves the 

ΔAIC from the current model is selected as the reference for the next round, and 

the procedure repeated. If the current model outperforms all the candidate 

models, then the search terminates. Using the ΔAICm,n data used to construct 

Table 4.3 and Figure 4.1, we can determine the behavior we would have 

observed for this search procedure for each of the noisy datasets. Figure 4.2 

depicts what the search procedure results would look like for a single noisy 

dataset using hypothetical ΔAICm values as an example. 
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Figure 4.2 A graphical depiction of model selection using greedy search for a single noisy 
dataset with ΔAIC 
Nodes indicate model structures, and edges indicate candidate models constructed by modifying 
the parent model. Green edges indicate steps taken by the search procedure in this example. 
Grey edges indicate other models not shown in the diagram for clarity. 
A. The ΔAIC of the unregulated model is compared against the ΔAIC of models constructed by 
adding a single elementary connection. In this case, the model with {4;3} most improves ΔAIC, 
and model M-11 is chosen as parent for the next round. 
B. From model M-11, new candidates are generated by adding an additional eligible regulatory 
connection. A smaller subset of elementary connections is eligible for consideration at this stage. 
In this case, the greatest increase in ΔAIC is found by adding connection {3,4}. 
C. The algorithm terminates when either no new candidate models can be constructed, or the 
current model outperforms all the candidate models. In this case, ΔAIC of M-47 exceeds that of 
M-71 and M-73, and the final result from the search is M-47. 
 
 
In the example provided in Figure 4.2, a single execution of the search method 

led to a model with connections {3;4} and {4;3}. We are interested in the range 

and distribution of behaviors in practice. We simulated this search procedure 

independently over each of the 50 replicates with CoV = 0.05 and nT = 50 using 
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the observed ΔAICm,n values to identify the model that locally maximized 

ΔAICm,n. The distribution of results we observed is shown in Figure 4.3. 

 

 
 
Figure 4.3. The distribution of results for a greedy model selection search using ΔAICm,n 
for 50 noisy replicates (at CoV = 0.05 and nT = 50) 
Nodes represent models, and edges indicate instances in which the search selected that model 
over the parent node. At each stage in the search, an additional elementary connection has been 
added to the model to improve the ΔAIC. The number next to each edge indicates the frequency 
with which that edge was added to the parent model. For some replicates, the search terminated 
at an intermediate node in the graph. The label within each node indicates the model number and 
the regulatory connection added relative to the parent node. 
 
 
We observe a few major trends in the greedy search results shown in Figure 4.3. 

First, by far the most frequent first step is to add {4;2} to the model. This happens 

in 44 of the 50 cases, compared to the 5 cases in which the correct connection of 

{4;3} is added. In one case, {2;5} was added in the first step. However, this 
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connection was added on the second step in 20 of the other cases, which made it 

the most common connection added at that stage. Looking at the sensitivities 

shown in Table 4.4, we observe that these tendencies match the sensitivity of 

ΔAICm,n to each connection: {4;2} had by far the highest sensitivity, and {2;5} the 

next highest, after {4;3} (which by our criteria is incompatible with {4;2}). A few 

other common occurrences were the addition of connections where x1 is the 

controller, or v5 the target. 

 

4.3.4 High-level trends and sensitivity to elementary regulatory connections in the 

low sampling frequency datasets and in the high noise datasets. 

For our initial assessment described this far, we used low noise (CoV = 0.05) and 

high sample frequency (nT = 50), leading to conditions under which we expected 

more ideal behavior. We repeated our assessment using two additional 

conditions, again with 50 noisy replicates. The first additional data set reduced 

sampling to nT = 20 (with CoV = 0.05). The second additional data set explored 

the effect increased noise of CoV = 0.25 (with nT = 50). The results of these 

analyses are shown in Table 4.5, Table 4.6, Figure 4.4, Table 4.7, Figure 4.5, 

and Figure 4.6. 
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Table 4.5. Ranked aveΔAICm for 50 noisy datasets (CoV = 0.05 and nT = 20) 
The true model with connections {3;4} and {4;3} is shaded. 
 

Rank Model Score Rank Model Score Rank Model Score Rank Model Score 

1 M-10 35.79 23 M-42 25.59 45 M-41 8.96 67 M-33 2.91 
2 M-39 33.35 24 M-81 24.90 46 M-04 7.66 68 M-20 2.54 
3 M-18 31.67 25 M-76 24.44 47 M-22 7.06 69 M-02 2.36 
4 M-44 31.61 26 M-65 24.31 48 M-16 7.05 70 M-63 2.03 
5 M-34 31.47 27 M-83 23.98 49 M-27 6.92 71 M-24 1.88 
6 M-25 31.13 28 M-87 23.34 50 M-19 6.91 72 M-29 1.39 
7 M-11 30.98 29 M-60 23.26 51 M-31 6.52 73 M-58 0.90 
8 M-40 30.25 30 M-71 23.17 52 M-52 6.51 74 M-69 0.73 
9 M-46 29.36 31 M-74 23.06 53 M-09 6.23 75 M-56 0.70 

10 M-80 29.01 32 M-73 22.33 54 M-45 5.82 76 M-03 0.54 
11 M-78 28.91 33 M-66 22.00 55 M-38 5.81 77 M-62 0.31 
12 M-54 28.60 34 M-86 19.72 56 M-55 5.53 78 M-77 0.16 
13 M-75 28.57 35 M-85 19.27 57 M-21 5.10 79 M-01 0.00 
14 M-68 28.36 36 M-08 14.93 58 M-14 5.04 80 M-49 -0.05 
15 M-51 28.19 37 M-37 14.68 59 M-13 4.99 81 M-50 -0.06 
16 M-30 28.14 38 M-12 10.78 60 M-43 4.54 82 M-67 -0.53 
17 M-64 27.96 39 M-06 10.04 61 M-79 4.53 83 M-48 -1.57 
18 M-26 27.03 40 M-15 9.67 62 M-32 3.69 84 M-82 -1.72 
19 M-35 26.56 41 M-07 9.62 63 M-28 3.66 85 M-72 -2.08 
20 M-57 26.17 42 M-05 9.53 64 M-17 3.52 86 M-59 -2.42 

21 M-47 25.97 43 M-23 9.42 65 M-61 3.16 87 M-84 -3.77 

22 M-70 25.81 44 M-36 9.09 66 M-53 2.92       

 

Keeping in mind our observations in Figure 4.1, we note several features of 

Figure 4.4A and 4.4B. In the low sampling frequency case, we observe that the 

graph retains the marked shift around models ranked 35 and worse, but the 

overall aveΔAICm values are lower. The result of this is that the lower aveΔAICm 

models may not be consistently distinguishable from the unregulated model. 

However, we can still clearly distinguish certain models from the base model and 

expect similar trends in the regulatory interactions to those observed previously.  
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Table 4.6. Ranked aveΔAICm for 50 noisy datasets (CoV = 0.25 and nT = 50) 
The true model with connections {3;4} and {4;3} is shaded. 
 

Rank Model Score Rank Model Score Rank Model Score Rank Model Score 

1 M-10 0.44 23 M-47 -6.60 45 M-78 -8.72 67 M-50 -11.0 
2 M-01 0.00 24 M-19 -7.04 46 M-54 -8.80 68 M-63 -11.1 
3 M-11 -0.72 25 M-02 -7.09 47 M-13 -8.86 69 M-53 -11.2 
4 M-06 -1.87 26 M-46 -7.47 48 M-65 -8.87 70 M-52 -11.2 
5 M-40 -2.27 27 M-80 -7.59 49 M-17 -8.88 71 M-64 -11.4 
6 M-05 -3.79 28 M-14 -7.61 50 M-45 -9.05 72 M-48 -11.8 
7 M-39 -3.94 29 M-38 -7.76 51 M-43 -9.10 73 M-75 -12.1 
8 M-03 -4.24 30 M-22 -7.96 52 M-76 -9.10 74 M-69 -12.4 
9 M-25 -4.38 31 M-27 -8.07 53 M-44 -9.26 75 M-83 -12.6 

10 M-12 -4.57 32 M-31 -8.14 54 M-74 -9.30 76 M-67 -13.0 
11 M-34 -4.91 33 M-23 -8.22 55 M-24 -9.40 77 M-86 -13.1 
12 M-30 -4.96 34 M-21 -8.23 56 M-66 -9.64 78 M-85 -13.1 
13 M-26 -4.97 35 M-36 -8.23 57 M-71 -10.2 79 M-79 -13.3 
14 M-08 -5.03 36 M-57 -8.39 58 M-55 -10.4 80 M-77 -13.5 
15 M-35 -5.19 37 M-16 -8.45 59 M-62 -10.5 81 M-61 -13.7 
16 M-04 -5.32 38 M-33 -8.46 60 M-28 -10.6 82 M-58 -13.8 
17 M-07 -5.33 39 M-32 -8.49 61 M-49 -10.6 83 M-72 -14.2 
18 M-42 -5.99 40 M-41 -8.50 62 M-70 -10.8 84 M-87 -14.5 
19 M-18 -6.07 41 M-29 -8.54 63 M-56 -11.0 85 M-59 -14.6 
20 M-15 -6.40 42 M-51 -8.57 64 M-81 -11.0 86 M-82 -15.7 

21 M-09 -6.56 43 M-60 -8.64 65 M-73 -11.0 87 M-84 -16.2 

22 M-37 -6.59 44 M-20 -8.65 66 M-68 -11.0       

 

However, in the high noise case, the graph has lost the marked shift around 

Rank 35. Further, one of the highest ranked models is the unregulated model, M-

01, and the majority of models have lower aveΔAICm. More notably, nearly the 

entire range of models falls within a standard deviation of each other, indicating 

an expected general difficulty in differentiating between models with any 

reliability. 
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Figure 4.4. Quantitative model performance for aveΔAICk for low sampling frequency and 
high noise datasets 
The thick solid line represents the average model ΔAIC across replicates, and the thin error bars 
show the corresponding sample standard deviation. 
A. Average and standard deviation of ΔAICm,n at low sampling (CoV = 0.05 & nT = 20). Model 
results are plotted by decreasing aveΔAICm, corresponding to the order shown in Table 4.6. 
B. Average and standard deviation of ΔAICm,n at high noise (CoV = 0.25 & nT = 50). Model 
results are plotted by decreasing aveΔAICm, corresponding to the order shown in Table 4.7. 
 
 
We compare aveΔAICm trends across the nominal, low frequency, and high noise 

data sets by calculating Pearson (P) and Spearman (S) correlations for each pair. 

Comparing the nominal and low frequency cases, we observe P = 0.9635 and    
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S = 0.9254. Comparing the nominal and high noise cases, we observe P = 

0.1567 and S = 0.2088. Finally, comparing the low frequency and high noise 

cases, we observe P = 0.3564 and S = 0.4361. These indicate that the low 

frequency case in Figure 4.4A mostly matches the trends in the nominal case, 

whereas the high noise case is producing divergent results and that producing 

robust trends from this data for Table 4.6 and Figure 4.4B is difficult. However, 

despite the high noise, there is still detectable information in the dataset: if the 

noise completely dominated the information in the high noise cases, we would 

expect comparably low correlations with both nominal and low frequency. 

 
Table 4.7. Regression against the participation of elementary regulatory connections for 
low frequency or high noise 
The true regulatory connections are shaded. 
 

  CoV = 0.05, nT = 20 

Connection {1; 3} {1; 5} {2; 2} {2; 4} {2; 5} {3; 2} {3; 3} {3; 4} {4; 2} {4; 3} {4; 4} 

Coefficient 1.059 -0.083 0.280 1.003 3.720 0.446 2.261 -0.659 27.043 23.903 1.039 

            
  CoV = 0.25, nT = 50 

Connection {1; 3} {1; 5} {2; 2} {2; 4} {2; 5} {3; 2} {3; 3} {3; 4} {4; 2} {4; 3} {4; 4} 

Coefficient -3.425 -3.759 -4.375 -3.756 -2.868 -4.714 -5.136 -5.096 -1.662 -1.071 -4.278 

 
 
Looking at Table 4.7, we observe that for both cases, the basic trends observed 

in Table 4.4 are recapitulated. We observe a Pearson correlation coefficient of 

0.9963 between the nominal and low sampling coefficients, 0.8435 between the 

nominal and high noise coefficients, and 0.8641 between the low sampling and 

high noise coefficients, indicating strong overall agreement. The negative sign on 

the coefficients for the high noise data is in agreement with the tendency of 
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adding parameters to the model to lower ΔAICm,n, seen in Figure 4.4B, but the 

largest (least negative) values again are seen for {4;2} and {4;3}, followed by 

{2;5}. 

 

4.3.5 Performance of a greedy search over model space for replicates of the low 

sampling frequency synthetic dataset. 

Since repeating the analysis with aveΔAICm and sensitivity provided us with 

some insight into the effects of noise and sampling on overall behavior, we also 

repeat the greedy search analysis to explore the impact of data quality in 

individual noisy datasets. We first explore greedy search in the low sampling 

case, the results of which are shown in Figure 4.5. First, for an overwhelming 

fraction of the datasets (46/50), the search found that adding the connection {4;2} 

was the most effective first step. In fact, this single step was often enough to 

terminate the search, leading to the most common outcome (34/50 cases): the 

only regulatory interaction added to the model was {4;2}. Another 12 cases led to 

a second interaction being added, most frequently {2;5} (in 7 cases). The only 

other interaction to get added in the first round was {4;3}, accounting for only 4 

cases. Interestingly, in only two cases (both resulting in M-44 as the final model) 

was X3 identified as a controller metabolite. 

 

This analysis is consistent with what we observed previously from the regression 

coefficients in Table 4.8. While both {4;3} and {4;2} had strong influences on 
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ΔAIC, of the two, {4;2} was more dominant. In addition, the elementary 

connections with X3 as controller had some of the lowest ΔAIC sensitivities. As 

before in Table 4.4 and Figure 4.3, the results of the sensitivity analysis are 

reflected in the resulting behavior of the greedy search method. 

 
 
Figure 4.5. The distribution of results for a greedy model selection search using ΔAICm,n 
for 50 replicates at low frequency (CoV = 0.05 and nT = 20) 
Nodes represent models, and edges indicate instances in which the search selected that model 
over the parent node. At each stage in the search, an additional elementary connection has been 
added to the model to improve the ΔAIC. The number next to each edge indicates the frequency 
with which that edge was added to the parent model. For some replicates, the search terminated 
at an intermediate node in the graph. The label within each node indicates the model number and 
the regulatory connection added relative to the parent node. 
 

4.3.6 Performance of a greedy search over model space for replicates of the high 

noise synthetic dataset. 

We explore next the greedy search under conditions of high noise, the results of 

which are shown in Figure 4.6. Two features of Figure 4.6 are particularly 

noteworthy. First, in 13 cases, the search terminated with Model M-01, indicating 

that none of the elementary interactions produced a sufficient reduction in 

residuals to offset adding additional model parameters and structure for that 
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dataset. Second, there was much greater variety in the initial steps taken by the 

search. While in 18 cases, the usual choices of {4;2} and {4;3} were added, in 7 

cases {4;4} was added, and in 12 cases, one of the other elementary connections 

was added. Only in 4 cases were models with two regulatory interactions added. 

This much flatter, broader tree structure is a reflection of the high degree of noise 

in the data, resulting in greater difficulty justifying model complexity with AIC, and 

the higher probability of ending up with a spurious structure due to over-fitting.  

 

 
 
Figure 4.6. The distribution of results for a greedy model selection search using ΔAICm,n 
for 50 replicates at high noise (CoV = 0.25 and nT = 50) 
Nodes represent models, and edges indicate instances in which the search selected that model 
over the parent node. At each stage in the search, an additional elementary connection has been 
added to the model to improve the ΔAIC. The number next to each edge indicates the frequency 
with which that edge was added to the parent model. For some replicates, the search terminated 
at an intermediate node in the graph. The label within each node indicates the model number and 
the regulatory connection added relative to the parent node. 
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While the precise details vary between the 3 conditions for CoV and nT, we 

observe similar and consistent trends between all 3 cases. Greedy search results 

closely matched the trends observed in the ΔAIC sensitivity analysis via 

regression. Further, in all three cases, we identified extremely similar trends 

concerning the importance of various regulatory connections. X4 was a strongly 

important controller metabolite, and X3 was very difficult to reliably detect as a 

regulator. 

 

We note that in the underlying model, X4 is an activator and X3 is an inhibitor. The 

models we are fitting have biomass generation as their objective, but this 

objective is hampered by X3 inhibition. As a result, the optimization problem we 

solve to simulate the model time course has an incentive to route fluxes and 

accumulation to minimize the impact of this inhibition on the resulting biomass 

generation. Coupled with the parameter optimization of the LR+ methods, this 

may bias parameter optimization to better fit the overall concentration behaviors 

at the expense of accurately modeling the effect of this single regulatory 

interaction. Such an error compensation effect would lead to a more spurious 

relationship between simulation output and inhibitory regulatory parameters, 

leading to the inability to reliably detect this regulatory interaction.  

 

In the case of Figure 4.6, we observed much less consistent behavior in the 

greedy search. This is to be expected when the noise is greatly increased: higher 
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noise increases the likelihood that a spurious regulatory connection may appear 

more favorable at a given stage, leading to a more diverse distribution of 

resulting models, depending on the specific noisy dataset. Given the behavior 

observed in Figure 4.4B, this perhaps is to be expected: across all models, the 

degree of variability is such that it is not clear that ΔAIC can be improved by 

moving to another model, and as a result it is more difficult to reliably distinguish 

between them. 

 

4.4 Conclusions 

In this chapter, we explored the impact of regulatory connections on LK-DFBA. 

We identified which connections have a greater impact on model performance 

and explored whether or not we can use the LK-DFBA to identify the correct 

regulatory connections. We assessed the performance of a greedy search using 

ΔAIC for model identification in the context of our modeling approach, looked at 

the overall trends across noisy synthetic datasets, and at the behavior for 

individual data sets. This analysis gives us a context for interpreting the results of 

our methods on experimental data, which are too limited in availability and quality 

to perform a robust validation. 

 

While we were able to consistently detect one of the true regulatory interactions 

from the data, we had a difficult time capturing the other. In addition, the 

interaction we could capture had a tendency of getting confused with a similar 
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regulatory interaction, which uses the same controller metabolite to instead target 

a flux one step upstream from the correct target. A possible consequence of this 

is that by targeting a flux upstream of the correct target (v2 instead of v3), the 

resulting model is able to use that regulatory connection to influence the 

dynamics of both X2 and X3, instead of just X3. An additional mass action 

constraint tying v3 to X2 allows these concentrations to be partially decoupled, 

negating the risk during parameter fitting of losing the ability to capture X3 by 

targeting the wrong flux. The interaction we had difficulty capturing is an inhibitor 

reaction, but it is unclear from the analysis performed if this was difficult because 

of this inhibition role, structural and stoichiometric limitations of the model used to 

generate synthetic data, or the particular set of model parameters and initial 

conditions used to generate the underlying time course.  

 

We explored performing model identification using a greedy search method to 

optimize ΔAIC, and compared that with the trends observed looking at the 

exhaustive analysis. We observed that the connections most frequently added by 

greedy search were those that displayed the highest effect in the sensitivity 

analysis, and that in general the greedy search exhibited trends consistent with 

the more exhaustive analyses. 

 

As might be expected, model identification performed less consistently when the 

sampling rate was reduced or noise increased, but even in these cases, the 
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analysis still yielded similar trends to those we observed when using higher 

quality data. For example, the two regulatory connections we consistently 

identified in the nominal conditions were also strong drivers in the low sampling 

frequency and high noise cases.  Of the two cases, higher noise produced a 

much more severe detrimental effect on model identification, making it difficult to 

justify adding the additional parameters necessary to add regulatory connections 

to the model in many cases. This highlights how it is important to be mindful of 

the degree of noise in the data, to be wary of over-fitting, and to adjust 

confidence in the learned model structure as appropriate. 

 

For larger models, we note that additional issues may make this task more 

challenging. These include limitations of data availability and quality, the 

combinatoric increase in candidate model search space as model size increases, 

and bias in model dynamics due to the assumptions of LK-DFBA. Depending on 

the specific circumstances, other approaches may be helpful, appropriate, or 

complementary for further tackling this challenge. Further work along those lines 

may be merited, but is outside the scope of the current chapter. 

 

Based on the analysis performed in this chapter, we conclude that a greedy 

search method to optimize ΔAIC with LK-DFBA appears to be a reasonable 

approach for identifying unknown regulatory interactions in the model from 

available data, though it comes with limitations. It may be reliable for producing 
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models with a good ability to simulate the underlying data, but the means by 

which this accomplished may not quite accurately represent the underlying 

regulatory structure. Competing candidates for regulatory connections with 

similar performance should be noted, and additional targeted experimental 

validation may be able to discern which of the candidates is most correct. 

Additional care is warranted when a higher degree of noise is present in the data, 

and methods such as bootstrapping or cross-validation would likely be 

appropriate. However, as long as these considerations have been accounted for, 

LK-DFBA may be a useful and valid way of generating these putative interactions 

and for guiding experimental design. 
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Chapter 5. Future Directions 
 
 

5.1 Introduction 

The goal of this thesis was to develop computational tools that can improve the 

quality and feasibility of metabolic engineering efforts. By improving the accuracy 

of metabolic models, we can more reliably and consistently produce accurate 

strain design predictions. Improving these predictions in turn reduces the time, 

effort, and materials spent in the lab by allowing metabolic engineers to more 

consistently produce their desired outcomes, rather than relying as heavily on 

trial and error. Producing a more accurate model comes with its own time 

investment and difficulties, and there is value in being able to produce a model 

with comparable accuracy in less time, or with less data. 

 

As genome-scale snapshots of metabolism, metabolomics data are well-suited 

for aiding both types of improvements. Metabolomics data reflect the dynamics 

and regulation that determine the real behavior of metabolism under the 

conditions present when the data were collected, which may not be apparent in 

assays measuring a single, pre-selected target1. Additionally, there is a much 

greater amount of data collected in an individual metabolomics assay than a 

targeted assay; collecting the same amount of data separately from targeted 

assays would take orders of magnitude longer, and this metabolomics is an 
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appealing approach to generate the data needed to train genome-scale 

metabolic models2. 

 

The work presented in this thesis addresses both model accuracy and feasibility. 

In the impulse smoothing work, I demonstrated that the impulse function from the 

gene transcription literature could also be used to smooth metabolite data, and 

that doing so allows for more accurate and interpretable results than the 

commonly used polynomial and rational functions. 

 

In the chapter on Linear Kinetics-Dynamic Flux Balance Analysis (LK-DFBA), I 

introduced a new modeling framework that incorporates attractive computational 

aspects of FBA3, DFBA4, and iFBA5 while producing results that are competitive 

with popular ODE-based frameworks, such as BST-style models with generalized 

mass action kinetic rate laws6. With it, I was able to model metabolite dynamics, 

incorporate regulatory interactions, and (as a result) produce interesting model 

behavior that reflected expected dynamics. LK-DFBA therefore captures detail 

outside the scope of the original FBA, and unlike ODE models, DFBA, or iFBA, 

retains one of FBA’s most attractive features: its membership in the subclass of 

convex optimization problems designated as Linear Programs. 

 

I further explored some basic properties of LK-DFBA and the influence of 

regulatory interactions on model performance. Representing these interactions is 
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important for capturing the behavior of real metabolic networks. This analysis 

gives us a sense for the impact these interactions have on the model behavior 

and on the ability of the correct model to make distinguishably correct predictions 

of metabolic behaviors. 

 

While I have laid the groundwork for a promising modeling framework, and I 

demonstrated its reasonableness and its viability, my work as it stands is still far 

from producing strain predictions. Next steps need to show that LK-DFBA really 

can be used for metabolic strain design. Specifically, these next steps need to 

build on foundation established in this thesis by taking real metabolomics data, 

incorporating it into a genome-scale metabolic model implemented in LK-DFBA, 

and using it to produce actual strain predictions. These predictions then need to 

be implemented in the lab, and compared against the model predictions and the 

original metabolomics data. This will allow us to definitively answer two 

questions. First: how well does LK-DFBA work in practice? Second: can we use 

the results of this analysis to systematically improve our model and strain design 

efforts, closing the gap between predictions and experimental results? In this 

chapter, I describe what these efforts entail and what we might expect for their 

outcomes. 

 

It is worth noting that while the specific trajectory described in the previous 

paragraph is necessary to see the goals behind LK-DFBA brought to fruition, 
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there are additional side paths that may provide useful further improvements. 

That is, their pursuit may improve the quality or the feasibility of producing a 

specific metabolic model, but doing so is likely not necessary for the overall 

process. Such efforts may also be academically interesting or have applications 

outside the scope of LK-DFBA or metabolic engineering, and as such may be 

worth pursuing for those reasons as well. I explore these ideas in this chapter as 

well. 

 

5.2 Towards Strain Design and Experimental Validation 

In this first section, I describe in detail the series of steps necessary to 

experimentally validate LK-DFBA by using it to produce real, testable predictions. 

I discuss some of the main considerations relevant to each step of this 

procedure, and provide recommendations on how best to proceed. These steps 

are as follows: first, using in-house metabolomics data and information from the 

literature, a genome-scale model for an organism of interest must be constructed 

in LK-DFBA. The resulting model must then be used with an appropriate strain-

design tool to identify a set of genetic engineering interventions for the modeled 

organism, to satisfy some metabolic engineering objective. The resulting 

predictions must then be experimentally tested by genetically engineering the 

modeled organism as dictated. Follow-up metabolomics assays and appropriate 

targeted assays can then be used to assess and confirm the model predictions. 

From here, the model can be further refined and tested as necessary. 
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5.2.1 Expanding to a genome-scale model 

In Chapter 3, where I discussed the development and validation of LK-DFBA, I 

worked with two models. The first was a modified version of a simple model from 

Biochemical Systems Theory, the Branched Pathway Model. The second was a 

model of glycolysis and the pentose phosphate pathway in Escherichia coli. The 

first of these was a toy model, and has little real biological relevance. While the 

second was originally constructed from experimental data to simulate real 

metabolic pathways, the scope of this model is small compared to the entirety of 

E. coli metabolism. A model of this scope is insufficient both for effective strain 

design and for effectively leveraging the breadth of data available from 

metabolomics analyses. Instead, a model that accounts for metabolism at the 

genome-scale is necessary. 

 

The construction of genome-scale metabolic models is an active area of 

research, with a key goal of enabling the use of constraint-based models for 

metabolic engineering strain design. I reviewed these efforts earlier in the 

document, during my discussion of metabolic reconstruction in Section 1.4.1.2. 

Two particular aspects of this discussion bear repeating here: the range of 

organisms relevant to metabolic engineering, and the challenges inherent to 

working with models at this scale, regardless of the choice of constraint-based 

model. 
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One critical question moving forward is the choice of organism for metabolic 

engineering projects. There are a number of considerations that go into this 

selection. The first is model availability and quality. Databases of genome-scale 

models, such as the BiGG Database7 provide ready access to models of the 

most popular and well-studied organisms. These include organisms relevant to 

metabolic engineering such as E. coli8,9, Saccharomyces cerevisiae10, 

Chlamydomonas reinhardtii11, and Bacillus subtilis12, as well as models for 

Mycoplasma genitalium13, Homo sapiens14,15, and Mus musculus16 that are less 

relevant to metabolic engineering specifically. 

 

Of these, the two most relevant organisms are E. coli and S. Cerevisiae. These 

two organisms are some of the most well-studied in biology, and many of our 

insights into metabolism and regulation come from extensive study of these 

organisms. They are also two of the most popular organisms in the bioprocessing 

industry. 

 

Recent research has begun to explore algae such as C. reinhardtii11 and 

Emiliania huxleyi17 for metabolic engineering, due to a few attractive features of 

these organisms: algae are free-floating single-cell photosynthetic organisms that 

are known to accumulate and store lipids, making them an ideal candidates for 

renewably and sustainably producing lipophilic products such as biofuels. 

However, these organisms aren’t as well-studied or as easy to work with as E. 
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coli or S. cerevisiae17. Modeling and engineering algae using LK-FBA would be a 

substantial contribution, but would best be approached by demonstrating the 

metabolic modeling and engineering pipeline first in another organism, then 

working with collaborators with experience in algae to expand into that 

application after18,19. 

 

Of E. coli and S. cerevisiae, I consider here the case of moving into engineering 

S. cerevisiae largely due to the wide range of existing biochemical knowledge20 

and characterization of yeast metabolism2. S. cerevisiae has multiple models 

available at the genome scale21 that may be appropriate for adaptation into LK-

DFBA, such as YeastNet10, iMM90422, and iIN80023. Implementing one of these 

genome-scale models into LK-DFBA will come with certain challenges, some of 

which I encountered when implementing the Chassagnole E. coli model24. In that 

chapter, I sidestepped the matter of finding an accurate dynamic flux distribution 

from the dynamic flux estimation (DFE) procedure in favor of using noise-added 

flux values25. This data will not normally be available, and a better choice of 

methods for addressing this issue is called for. One possible way to address this 

is to implement the procedure described by Chou et al. for estimating the 

relationship between metabolite and flux pairs26. A weakness of this method is 

the potential for uncertainty in the offset of the flux values when data points at low 

metabolite concentration values aren’t available to ground the flux values to a 

specific scale via considerations such as mass action kinetics. However, the 
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linear regression parameter fitting method may be able to address this with little 

extra effort by selecting the offset such that b = 0 in the resulting linear 

regression. 

 

Another challenge for implementing a genome-scale LK-DFBA model is closely 

tied to estimating dynamic flux distributions, and that is the problem of 

determining the ratio of forward and reverse reaction rates of reversible 

reactions. At any given point in time, the net flux is equal to the forward rate of 

reaction minus the reverse rate of reaction; adding a constant to both rates has 

no effect on the net flux. While this doesn’t matter for calculating an overall flux 

distribution, it does affect efforts to model kinetics of the flux as metabolite 

concentrations shift due to accumulation, depletion, or regulation. This is 

fundamentally an issue of model identifiabilty, and is not at all specific to LK-

DFBA. Handling these cases accurately will likely require additional data, 

potentially extracted from the literature. For example, existing kinetic studies of 

an enzyme in question may provide the necessary dynamics for fitting these 

individual parameters. Searching for these data would be called for when model 

performance can be shown to be sensitive to the parameters describing a 

particular flux. 

 

One feature of LK-DFBA, which is shared with iFBA, is the ability to easily handle 

cases in which we have no data about whole sections of metabolism5. In this 
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instance, these metabolites can be treated as static or unknown quantities, and 

the overall model simplified to remove pooling fluxes and kinetic interaction 

parameters. That part of the metabolic network would revert to the behavior 

observed under regular FBA, subject to the dynamic fluxes at the borders of 

these network segments. The important kinetic interaction parameters for the 

overall model would then be those controlling the flux into the “static” network 

segments. While reverting sections of metabolism back to standard FBA may be 

less informative, without data with which to train the model for these segments, 

there is not much justification for including the extra detail. However, the option to 

include dynamics or regulation is still available, and may be justified if other 

sources of data are available, such as kinetic rate law data for individual fluxes. 

 

For an S. cerevisiae model in particular, existing publications and databases will 

be important sources of information for training accurate models. In addition to 

the genome-scale stoichiometric models mentioned earlier in this section, 

databases such as KEGG27, BRENDA28, and SGD29 are rich sources of 

information on S. cerevisiae biology. Existing models of S. cerevisiae metabolic 

dynamics are also useful sources of information; for example, the model of 

Hynne et al.30 pulls data from multiple sources that could be used for reference 

as well31-36. 
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The primary source of data for experiments will need to come from metabolomics 

assays. These chemical analyses will provide the widest cross-section of 

metabolism for data, but a few considerations for using this data should be 

highlighted. 

 

First, experimental design should take into account a variety of conditions in 

order to provide a robust and representative picture of how yeast metabolism 

functions. Without this wide cross section, any model trained to the data will lack 

information that may be necessary to capture key regulatory or dynamic aspects 

of the underlying biology. Some appropriate experiments include growth on 

glucose, diauxic shift between carbon sources, heat shock, and salt shock. 

Experiments such as these capture a number of regulatory programs that 

influence metabolism in response to common environmental stresses, which may 

be relevant to a genetically modified strain of yeast. 

 

However, using metabolomics data will in itself present a few difficult challenges; 

these challenges may prove to be the primary source of difficulty in training a 

reliable model. The first results from a fundamental limitation in metabolomics 

assays due to chemistry. While metabolomics seeks to be comprehensive and 

genome-scale, this is incredibly challenging in practice due to the sheer chemical 

diversity of metabolites compared to transcript (nucleic acids) and protein 

(polypeptides). As a result, different analytical methods are best-suited for 
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capturing different chemistries. LC-MS is preferential for large non-polar 

metabolites, while GC-MS lends itself to small polar metabolites. The choice of 

engineering objective should reflect these limitations; our lab uses GC-MS, and 

as a result engineering carbon and amino acid metabolism is more likely to be 

effective than, for example, lipid metabolism. A target such as succinate would be 

appropriate, given its chemistry; this choice has also been previously 

demonstrated and would provide ample opportunity for comparison against 

previously reported methods and results. 

 

The second challenge with using metabolomics data stems from the difficulties 

inherent to quantifying untargeted data. As discussed in the Chapter 1, 

metabolomics data processing requires multiple steps before a final data matrix 

of metabolite abundances can be produced. Steps such as peak detection, peak 

alignment, and corrections for quality control all make this challenging, and will 

influence the resulting data quality. In addition, individual peak heights cannot be 

compared across metabolites to determine relative concentrations, and absolute 

quantification (i.e. of metabolite concentrations) cannot be performed without use 

of calibration curves from serial dilution experiments. This presents a difficult 

problem for model identification: how does one use semi-quantitative data to train 

and assess model performance? Questions of metabolite concentration scales 

will have a major impact on model parameterization and final performance, and 

this difficult problem will need to be addressed. 
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5.2.2 Strain Design using LK-DFBA 

One of the main considerations when I designed LK-DFBA was retaining a linear 

structure for the constraints, while still adding the features necessary for 

incorporating metabolite dynamics. This is a feature I have repeatedly 

highlighted, for important reason. In this section, I describe in more detail the 

main way in which I envision taking advantage of this decision; later, I will 

discuss several other possibilities. 

 

The parameterized genome-scale model produced by the process described in 

the previous section can then be used to engineering a strain that can 

subsequently be produced in the lab. In Chapter 1, I discussed one of the most 

notable cases of performing this task using constraint-based models, 

OptKnock37,38. For an initial experimental validaiton of LK-DFBA, OptKnock is 

both an appropriate and (I expect) effective tool for strain design. 

 

As a Linear Program, FBA satisfies the criteria for Strong Duality, which provides 

guarantees on the optimality of the solution identified by the solver. OptKnock 

takes advantage of this by identifying the complementary Dual Linear Program, 

and constructing a constraint from it to enforce FBA optimality37. This allows the 

OptKnock algorithm to search over the design space while ensuring the inner 

problem remains optimized. 
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It is this Strong Duality condition that motivated the choice to implement strictly 

linear equations in LK-DFBA. By constructing the model equations such that the 

resulting system remains a linear program, we guarantee Strong Duality and 

therefore compatibility with approaches that take advantage of it, such as 

OptKnock. Further, LK-FBA uses the same stoichiometry as an FBA problem; the 

map OptKnock uses to tie design variables to system fluxes can be re-used in an 

LK-FBA model by expanding it across time points. No additional control variables 

or dummy variables must be introduced, which means that the problem difficulty 

only scales due to increase in size of the inner problem LP (which is far less 

detrimental than an increase in the number of integer design variables). 

 

On this basis, implementation of a genome-scale LK-DFBA model in OptKnock is 

an appropriate step. While subsequent strain design tools39-42 explore more 

sophisticated changes than gene knockouts, the simpler design space for 

knockouts and the ease of constructing knockouts strains experimentally makes 

OptKnock implementation an appropriate proof-of-principle. 

 

5.2.3 Experimental Validation 

The goal of the strain design step is to identify a set of genetic engineering 

interventions that will lead to a maximal increase in the production of a target 

compound. Once these interventions have been identified, they must be carried 

out to experimentally validate the design predictions. The resulting strains can be 
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assessed to determine the quality of the predictions, and to then improve the 

model by retraining it with the new data. This cycle of data acquisition, model 

training, strain design, and genetic engineering can be iteratively conducted to 

repeatedly refine the model until the desired performance has been attained. 

 

Protocols for cell culture and gene knock-outs are well established in the 

literature2,43,44, and our lab has previously reported on our metabolomics data 

acquisition and processing pipeline45-48. 

 

As noted above, an ideal target to use for this validation would be succinate. This 

was the objective in the original OptKnock publications37,41, and has been 

described in other sources as well44,49. The existing experimental data for this 

choice is a useful point of comparison. Even outside of this literature context, it is 

an appropriate objective for a metabolic engineering project: succinate is 

commercially valuable, with uses in the production of polyethers and 

polyurethanes50. Engineering an S. cerevisiae strain to optimize succinate 

production is a reasonable objective that should provide ample opportunity for 

validating the strain design method and comparing it against the existing 

alternatives. 
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Performing this sort of experimental validation and assessment is a critical goal 

for next steps on this project, and is necessary to justify implementing additional 

models in LK-DFBA.  

 

5.3 Model Improvements 

In the second half of this chapter, I discuss a number of possible changes, 

refinements, and improvements that are relevant to the performance of LK-DFBA 

described in earlier chapters, but are not strictly necessary to achieving the 

ultimate goal of experimentally producing and validating this approach. Rather, 

these modifications are complementary, and are posited as potential means of 

improving model accuracy, taking advantage of the model structure to solve one 

of the model identification steps in a novel manner, or of relaxing assumptions 

inherent to the current implementation and exploring the consequences. 

 

5.3.1 Accounting for biomass accumulation 

An explicit goal when I developed LK-DFBA was to retain as much of the 

simplicity of FBA as reasonably possible, and consequently to preserve its 

attractive Linear Program structure. One of the earliest assumptions I invoked to 

achieve this end was an assumption that over the simulation interval, the 

biomass would not change sufficiently to influence the scaling of the variables 

represented in the model. The doubling time for organisms in culture can range 

from 30 minutes to 24 hours or more, whereas many of the fast dynamics in 
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metabolism are on the order of 30 seconds or less. For a model at this relatively 

short time scale a constant biomass assumption is reasonable. However, when 

the simulation interval becomes long enough that biomass changes by 10% or 

more, this assumption may begin to introduce unacceptable levels of inaccuracy 

into the results. 

 

In the original non-linear program formulation of DFBA, the system equations 

were scaled by multiplying them by the current biomass as appropriate to reflect 

the change in compartment volume between the intracellular and extracellular 

environments. This accounts for several effects. First, enzyme kinetics and 

regulation are affected by local (intracellular) concentrations, not absolute 

metabolite mass. Second, as the amount of biomass increases, the relative rate 

of substrate uptake increases relative to the pool of substrate available in the 

extracellular media. Third, the concentration of metabolites that are not being 

constantly produced (do not have a source term) will be diluted as biomass 

volume increases; the total mass of metabolite remains constant, while the 

intracellular volume grows. When conditions are appropriate for exponential 

growth (or during chemostat culture), the specific growth rate predictions of FBA 

are often sufficient. But outside these conditions, scaling reactor volume against 

cellular volumes must be accounted for. 
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To account for these effects, biomass must be reintroduced into the LK-DFBA 

model as a scaling factor when the desired simulation interval is long enough to 

call for it. Since our model explicitly models biomass concentration when a 

biomass generation flux is available to facilitate this, the open question focuses 

rather on how to use this quantity to adjust the other quantities modeled. There 

are several ways of accomplishing this, each with advantages and drawbacks. 

 

One method is to convert some linear constraints to bi-linear constraints by re-

introducing current biomass as a multiplier on model quantities. For the LK-DFBA 

kinetics constraints, the flux distribution over a given simulation time step is 

constrained by the metabolite concentration at the beginning of the time step. 

Using the DFBA equations as a reference, the model quantities can be scaled by 

a factor of biomass concentration. Because both the biomass and fluxes or 

concentrations in these equations are also system variables, the result is that the 

LP becomes a Bi-linear Program (BLP). Previously, the conversion of the 

problem from an LP to a QP by penalizing the L2-norm only affected the objective 

function (a modification which preserved the convexity of the solution space). The 

constraints remained linear equations. This is not the case in the BLP. The 

upside of this BLP conversion is that the only bi-linear terms over each time step 

are a result of a common quantity, the biomass concentration. The downside is 

that because this biomass value has a separate value over each interval, an 

additional bi-linear variable is introduced for each time step—quickly 
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compounding the complexity of the resulting optimization problem. For a 

simulation with nT = 100 or 200 time steps—and therefore 100 or 200 separate 

variables driving bi-linear constraints—this may prove to make the problem 

intractable. And at values of nT for which the problem becomes tractable, the 

value of nT may be too low to produce numerically reliable or consistent results. 

Depending on the specific model, this tradeoff between poor simulation accuracy 

and the tractability of the optimization may be irreconcilable. This concern led me 

to side step issues of biomass accumulation for my initial assessment of LK-

DFBA. 

 

An alternate method is to split the overall simulation interval into a series of sub-

intervals, and to sequentially solve a separate simulation problem for this interval. 

For each sub-interval, the biomass concentration at the beginning of the interval 

can be treated as a constant multiplier on the appropriate quantities over that 

time step. Because this multiplier is a constant, rather than a variable subject to 

optimization, this removes the bi-linear optimization problem described in the 

previous chapter, and retains the LP structure. The disadvantage of this 

approach is that it requires the user to solve multiple independent optimization 

problems to cover the overall simulation interval. However, this problem scales 

up linearly with the number of sub-intervals specified, and should be as tractable 

as solving the individual optimization problems as a result. 
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An approach similar to the one just described might be to explore integrating the 

FBA problem into an ODE framework, using the DFBAlab approach of Barton et 

al.18,51 Their research has focused on using a classic FBA problem to identify a 

flux distribution over the subintervals of an ODE simulation. Direct integration of 

FBA into the standard ODE solver framework available in e.g. MATLAB’s 

ode45() function fails due to frequent attempts to evaluate the FBA model under 

conditions that produce an infeasible LP, which in turns disrupts calculating the 

right-hand-side of the differential equation52. The DFBAlab procedure modifies 

the FBA LP to handle these situations, returning values that appropriately 

penalize these cases in a way that allows the ODE solver to adjust accordingly. 

Incorporating a model represented in LK-DFBA instead of classic FBA may help 

improve the quality DFBAlab simulations. 

 

5.3.2 Novel methods for parameter estimation 

One of the key steps for generating a usable model in LK-DFBA is the 

identification of parameters representing the kinetics constraints. These 

constraints represent elements such as mass action kinetics and metabolite-

dependent regulation, and including these constraints is critical for driving the 

metabolite dynamics in the resulting model. Once they are identified, the resulting 

model can be used for the downstream analysis and design steps, but parameter 

estimation is an important and non-trivial hurdle to reaching that point. 
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In the earlier chapter, I focused on using two common methods for parameter 

estimation to produce fitted models. The first method was the procedure 

described in dynamic flux estimation, which ultimately led to independent 

regression problems for each of the model’s metabolite-flux mappings. The 

second was a more generic global optimization strategy, for which I tested 

employing a genetic algorithm and the Nelder-Mead simplex algorithm53. I further 

modified this problem by splitting it into a series of sequential optimizations on 

subsets of the parameter space to more quickly search for optima, at the 

expense of increasing the probability that the solution was only a local minimum. 

 

An advantage of both the genetic algorithm and the Nelder-Mead simplex is that 

neither approach requires much information about the problem, making them 

versatile. As long as a fitness function mapping parameter values to an objective 

value can be specified, either method can be applied. However, in my 

experience, factors such as poor choice of initial parameters may lead these 

methods to perform poorly and produce unsatisfactory results. The regression 

procedure turned out to be critical for providing a suitable initial seed for the 

global optimization, allowing me to actually produce reasonable models from the 

optimization. 

 

However, a feature of the LK-DFBA modeling approach is that it comprises a 

linear system of constraints, and that because of this, we can take advantage of 
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certain properties that result from Duality Theory. For strain design, this means 

that we can guarantee an optimum objective for the FBA problem, while 

searching over the design space for the engineering problem. Can we similarly 

use this structure to instead search over the parameter space, using parameter 

estimation as our outer problem instead? A proposed bi-level optimization 

problem is presented in Figure 5.1. 

 

𝜔   =    [𝑤! 𝑡! ,𝑤! 𝑡! ,…   𝑤! 𝑡!"!! ,𝑤! 𝑡!" , 𝑥! 𝑡! , 𝑥! 𝑡! ,…   𝑥! 𝑡!"!! , 𝑥! 𝑡!" ]! 

min
(𝜽)

  𝑓 = 𝜙ℓ𝓁(𝜔ℓ𝓁 − 𝑦ℓ𝓁)!
ℓ𝓁

 

s.t. max!   𝑧 = 𝑐!𝜔 − 𝜆𝜔!𝜔 

s.t.     0   =   𝑨𝑤 𝑡!                                       ∀  𝑘 ∈ [1,𝑛𝑇] 

𝑤!" ≤ 𝑤 𝑡! ≤ 𝑤!"             ∀  𝑘 ∈ [1,𝑛𝑇] 

𝑥!" ≤     𝑥 𝑡! ≤ 𝑥!"               ∀  𝑘 ∈ [1,𝑛𝑇] 

𝑥 𝑡!   =   𝑥! 

𝑥! 𝑡!   =   𝑥! 𝑡!!! +   Δ𝑡   ∙ 𝑣!,! 𝑡!                   ∀  𝑘 ∈ [1,𝑛𝑇] 

𝑣!,! 𝑡!!!
!

  ≤ 𝑏! + 𝑎! 𝑥!,! 𝑡!
!

 

∀  𝑘 ∈ 1,𝑛𝑇 ,∀  𝑖 ∈ {𝑣}!,∀  𝑗 ∈ {𝑥}!,∀  𝑛 ∈ 1,𝑛!  

Figure 5.1. A bi-level optimization problem for parameter estimation in LK-DFBA 
The outer problem seeks to find the parameters 𝜽 (The set of all (𝑎!,  𝑏!)) that minimize the 
value of the fitness function 𝑓, which is a weighted sum-of-squares-error between the solution 
vector 𝜔 and the corresponding data, represented in vector form as 𝑦.  The weights are specified 
by variable 𝜙ℓ𝓁 and can be set as appropriate (c.f. Section 3.2.5.3). The inner problem is specified 
in detail in Section 3.2.1.9. 
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The major challenge in using this approach stems from the problem described in 

the previous section on biomass accumulation: the conversion of the Linear 

Program into a Bi-linear Program. This introduces three main challenges. 

 

The first is the inherent increase in difficulty moving from linear to bi-linear 

constraints. While an LP can be solved very easily with the Simplex algorithm, 

more sophisticated approaches are required to solve a BLP. For smaller 

problems, this may not be prohibitive. 

 

Second is the issue of scale-up. In the biomass BLP of the previous section, a 

new bi-linear variable was introduced for each time step in the simulation, making 

time resolution the primary barrier to scale up. For the parameter estimation 

problem, the bi-linear variables are instead the slope terms of the kinetics 

constraints. As a result, the major barrier to scale-up is model size and the 

resulting parameterization. The tradeoff to be considered here is instead between 

the tractability of the parameter optimization and the structural accuracy of the 

resulting model; removing kinetics constraints to simplify the model may be 

necessary. This may be more acceptable however, depending on whether or not 

including the additional parameters was justified relative to the improvement in 

model performance (c.f. use of AIC in Chapter 4). 
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The third issue is the most challenging one, and concerns the convexity of the 

resulting inner problem. When the kinetics constraints parameters are fixed 

quantities, the resulting system of equations is an LP, and therefore a convex 

optimization problem. However, the bi-linear program specified in Figure 5.1 

requires further scrutiny. Is this problem still convex? Does the resulting BLP 

satisfy the conditions for Strong Duality? Can we actually render this bi-level 

optimization into a single level, as is done in OptKnock37? It can be shown that by 

restricting all a > 0, the BLP solution space is convex. However, if any a < 0, then 

the resulting space becomes concave. As a result, we lose the a priori guarantee 

that the BLP is strongly dual. However, convexity is a sufficient, but not 

necessary, condition for strong duality. 

 

In order to implement the parameter optimization proposed in this suggestion, 

two steps are necessary. First, it must be determined whether or not the concave 

optimization problem created when the solution space allows a < 0 for one or 

more kinetics parameters still satisfies the necessary conditions to guarantee 

strong duality. If this cannot be demonstrated, then no further effort is called for: 

there is no way to add a constraint to the outer problem to guarantee the inner 

problem is optimal (at least as is done in OptKnock). Second, if Strong Duality 

can be proven, there is a practical question of implementation. Bi-linear 

optimization problems are an active area of research, and the method proposed 
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here may provide an additional application case to further motivate this 

research54-56. 

 

5.3.3 Structural Learning Methods for identifying regulatory interactions 

In the previous chapter, I explored the impact of model structure on the quality of 

the resulting fits by testing different combinations of putative regulatory 

interactions. I assumed the model stoichiometry and mass balances, added the 

appropriate mass action based kinetic constraints, and then investigated the 

influence of metabolites acting as non-stoichiometric regulators. At short time 

scales, such interactions may be allosteric interactions, in which a metabolite 

binds to an enzyme non-competitively to modulate its activity. At longer time 

scales, a metabolite may induce a transcriptional response, leading to an 

increase or decrease in concentration of the enzyme itself. In either situation, the 

net effect is that enzyme flux is influenced by a metabolite concentration despite 

that enzyme not directly participating as substrate or product. 

 

5.3.3.1 Broader Context 

As was demonstrated in the previous chapter, the performance of the fitted 

model is sensitive to the presence or absence of these interactions. Adding the 

correct interactions can greatly improve model performance, and even modestly 

incorrect connections may be better than nothing. The approach taken in that 

analysis is based off of work originally intended to identify those interactions in 
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the context of ODE models57, and resorted to brute-force exploration of a subset 

of the combinatoric space. For a small model such as the Branched Pathway, 

this is feasible. But for larger models where it is infeasible or when the data is ill 

suited for LK-DFBA, other approaches may be complementary, providing useful 

biological insight. 

 

This broader problem is of general interest, and has been explored in multiple 

contexts, both computational and experimental58-61. While high-throughput 

experimental techniques have exponentially increased our knowledge of 

metabolic network structure and its associated transcriptional regulation, 

knowledge of allosteric interactions has not accumulated nearly as quickly; it is 

likely that only a fraction of these interactions have been reported in the literature. 

While effort is being made to develop high-throughput assays for detecting 

allosteric interactions62,63, these assays are not yet common. 

 

5.3.3.2 Bayesian Networks 

One tool that may be useful for identifying these interactions are Bayesian 

Networks (BNs). BNs are a graphical representation of the multivariate probability 

distribution that describes the relationship between a set of variables. These 

directed acyclic graphs (DAGs) consist of a set of variables (nodes) and directed 

edges that compactly and intuitively describe the relationship between the 

variables. Edges represent the conditional dependence of one variable on 
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another in the underlying probability distribution; two variables are conditionally 

independent (i.e., given the value of all other variables, knowledge of one 

variable provides no additional information about the value of the other) if there is 

no edge connecting them. An example of a BN derived from the modified 

Branched Pathway model is shown in Figure 5.2. By inferring a BN from 

metabolomics data and model predictions, we may be able to identify important 

metabolite-dependent regulatory interactions and improve the model’s 

performance. 

 

While BNs are efficient tools for inference, my primary interest here is not in 

using BNs to directly calculate the probable system state from existing data—LK-

DFBA was designed to serve that purpose. Rather, I am interested in taking 

advantage of the structural learning algorithms that have been developed to 

produce BNs when expert sources are unavailable64 59. Using structure learning, 

we can perhaps identify potential metabolite-dependent regulatory interactions 

and incorporate them into our LK-DFBA models. 

 

Two general classes of structure-learning algorithms exist. Search-and-score 

methods use search algorithms to systematically explore the space of potential 

DAGs and find a structure that best describes the data, as determined by some 

scoring criterion  (such as the Bayesian Information Criterion or Bayesian 

Dirichlet scoring metric)65. These scoring criteria measure the relative probability 
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that the network structure describes the data, while penalizing additional model 

complexity (i.e., the number of edges). Constraint-based methods begin with a 

completely connected network and remove edges using tests for statistical 

independence. The Peter-Clark (PC) algorithm is an example of such66. Other 

specific algorithms that relevant to these methods include Sparse Candidate67, 

Max-Min Hill-Climbing68, and Three Phase Dependency Analysis69, and relevant 

software for performing calculations includes the Causal Explorer package70. 

 

As previously mentioned, a key challenge for learning BNs from metabolomics 

data stems from a requirement typically for large quantitates of data to produce 

robust results60. A key element of the approach proposed here is to focus on 

learning regulatory interactions by incorporating existing knowledge of the 

stoichiometry into the initial BN. The narrow focus and use of pre-existing 

knowledge may reduce the amount of data necessary to robustly infer regulatory 

interactions. 

 

5.3.3.3 The proposed BN structure learning approach 

To allow metabolite-flux interactions to be captured, both metabolite 

concentrations and fluxes will need to be represented as nodes in the BN. BNs 

are DAGs, and in light of this restriction, the metabolic network can be rendered 

with a bipartite structure in which metabolites are strictly parent nodes, fluxes are 

strictly child nodes, metabolites may only share edges with fluxes, and fluxes 
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may only share edges with metabolites. An example of this structure is shown in 

Figure 5.2, in which the modified Branched Pathway model has been rendered 

as a BN according to this convention. 

 

 
 
Figure 5.2. The modified branched pathway model represented as a Bayesian Network 
Black arrows indicate connections derived from the network stoichiometry. The green arrow 
indicates allosteric activation, and the red arrow allosteric inhibition. 
 

The other key element is the use of the existing stoichiometric matrix to better 

inform the structure identification problem. First, a procedure such as DFE may 

be used to infer flux time course values. Providing this data, even if only inferred, 

may be necessary for performing the structure learning algorithms. Care should 

be taken to avoid or reduce bias introduced by this step. Second, the 

stoichiometry can be used to initialize the BN structure. Additional steps should 

be taken to preserve these edges during structure learning by enforcing that only 

putative regulatory interactions may be added or removed from the graph. 

Alternatively, metabolite-metabolite and flux-flux edges might be removed from 

the resulting structure manually. 
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Once an optimal structure has been identified, regulatory connections (those note 

specified by model stoichiometry) can be sorted by their likelihood in to a list of 

metabolite-flux interactions. This list represents putative regulatory connections 

that must be further validated. If multiple algorithms are tested, common 

elements across lists may be compared to identify higher priority targets. 

Incorporating these putative connections into a model to test their impact (as was 

done in Chapter 4) may also be used as a screening step, but ultimately 

validation will need to come from experimental work.  

 

5.3.3.4 Methods for evaluating the BN learning procedure 

Previous efforts in our lab with Bayesian Networks has highlighted the difficulty of 

working with these structure learning methods in the absence of sufficient data60. 

For an initial assessment of the soundness of the described method, I propose 

the use of synthetic data from a small model to sidestep these issues, and to 

assess the impact of data availability on the method’s performance. Given the 

previous content presented in this thesis, the modified Branched Pathway model 

seems an obvious and ideal candidate. Data from those chapters can be re-used 

as is, allowing for rapid implementation and assessment of a data processing 

pipeline for the proposed method. 

 

Characterization of this method on the Branched Pathway model can allow for 

several tests to determine the method’s viability and performance. First, it is 
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critical to assess the impact of data sampling on the resulting learned structure. 

At high data availability and quality, one would expect to be able to consistently 

learn the correct model structure. Further, for a given noise level, one can 

decrease the number of samples available to the structure-learning algorithm to 

determine when its accuracy starts to degrade, and at what rate. This 

performance curve would give us a sense for how much data the proposed 

method requires before we trust its results to be robust. 

 

A second analysis should compare the method against a full structure-learning 

algorithm, in which the search is “naïve”, i.e., model stoichiometry is not used to 

initialize the network structure. While a version of this structure in which edges 

may be drawn in any order or orientation may be interesting as an extreme base 

case, the more important comparator is one in which the resulting graph obeys 

the same bipartite structural limitations on edge directions between metabolites 

and fluxes as shown in Figure 5.2. From this analysis, a performance curve 

depicting saturation accuracy at high sample availability and decreasing accuracy 

at low sample availability can be generated for the naïve method. This curve 

should then be compared against the curve for the proposed method generated 

as described in the previous paragraph (i.e. with known stoichiometry supplied 

and enforced). How many samples are required to guarantee high accuracy in 

each model? How does this change as noise is increased? 
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5.3.3.5 Potential difficulties 

A practical limitation of this approach is the availability of flux data for the 

structure leaning algorithms. For an initial analysis, it may be acceptable to use 

noise-added flux data, in much the same way that I did for the E. coli model when 

assessing LK-DFBA. Such data is available in the Branched Pathway model 

datasets used in the analysis in Chapters 3 and 4. A reasonable next step would 

be to repeat the analysis of the structure learning methods using flux values 

generated from the DFE procedure. What influence does this have on structure 

accuracy? On sample quantity requirements? Does this introduce a bias issue? 

Does it recapitulate the results observed before? 

 

On the smaller Branched Pathway model, it may be realistic to expect that the 

structure-learning algorithm is able to produce the correct structure consistently, 

given enough data. However, for larger models, this may not be the case. It will 

be worth investigating the behavior of the proposed method as data quantity 

decreases, to explore if there is a consistent pattern that emerges. Can the 

results of structure-learning be used to generate a triage list of putative 

interactions that still provides a relatively reasonable starting point for more 

targeted investigation? How does this list compare against the results from 

Chapter 4, in which a similar list was generated by performing brute-force 

analysis of AIC between different structural models?   
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Once these cases have been addressed in the small-scale model, moving to 

larger models can be explored. Natural options include the E. coli model of 

Chassagnole et al.24 used in previous chapters, and any model of S. cerevisiae 

used for strain design efforts as described in the first half of this chapter. In these 

larger models, the goal may be merely to recapitulate known allosteric 

interactions from the underlying model, or from the literature, respectively. By first 

characterizing the proposed structure-learning approach on the toy model, one 

would have a reliable sense for the influence of data availability and noise on the 

reliability and usefulness of the method. 

  

5.4 Closing Remarks 

In this thesis, I have discussed a number of contributions to metabolic 

engineering and metabolomics. The previous chapters described these 

contributions in detail, and discussed their impact and limitations. But these 

efforts are only a partial realization of a bigger vision. This chapter described in 

some detail the necessary steps left to fully realize this vision, established 

expectations for what these steps are to accomplish, and provided 

recommendations for how best to pursue them. In addition, I highlighted some 

interesting side problems that may prove useful in the context of the previous and 

proposed projects, or perhaps might represent opportunities to have an impact 

on a broader scale. It is my hope that these next steps will continue to contribute 

to research in metabolomics, metabolic engineering, and biochemical modeling. 
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