

Evaluating Container Deployment
Implementations for Foglets

Michael Mutkoski
College of Computing

Georgia Institute of Technology
Atlanta, Georgia, USA
mutkoski@gatech.edu

 2

Abstract

In recent years, the number of devices connected to local networks has rapidly expanded to

create a new internet known as The Internet of Things. The applications run on these devices

often require lower latency solutions than cloud computing can provide in order to perform time-

sensitive interactions with other devices near the network’s edge. One solution to this problem is

fog computing, a geo-distributed architecture that provides computational resources closer to the

edge of the network. This proximity yields low-latency connections among such devices. In

order to implement a powerful fog computing network, applications must be able to deploy and

migrate quickly throughout the geo-distributed resources. In the Foglets project, containers are

used to efficiently deploy applications. The Foglets project currently contains two platforms that

handle container deployment: one that utilizes system calls, and another that uses the well-

established Docker API. In this work, we evaluate the latency and throughput of the two

deployment platforms, as well as the impact of container commands and size on these metrics.

We found that while serving many simultaneous deployments through multithreading, the

Docker API yields lower latency and higher throughput. We also found that the size of the

container and commands run on the container had a negligible impact on the deployment’s

latency and throughput.

Introduction

The increase of internet connected hardware devices, commonly known as The Internet of

Things, has led to a need for lower latency connectivity in a technological landscape that is

dominated by cloud computing. While methods such as compression, local caching, and TCP

window sizing have dramatically increased the speed at which internet connected devices can

 3

communicate with the Cloud, the physical limitations of transferring data over hundreds of miles

to these cloud-based data centers still impose severe limitations on situationally aware

applications that require increasingly low latency computation. (Belli 2015)

The fog computing model is a simple, low latency solution to the expanding hardware

infrastructure behind the Internet of Things. The idea behind fog computing is to extend the

cloud computing model out to the edges of the network. This involves using devices close to the

user’s local network for utility computing, allowing for shared computational power and data

storage, accompanied by the low latency of communication close to the network’s edge.

(Bonomi et al. 2012)

The current programming model used to implement fog computing is known as Foglets. This

model first identifies resources within the network topology, deploying application components

to the identified resources that meet the latency thresholds of each component. Foglets also

allows each fog node, or computational resource, in the topology to handle multi-application

collocation. It provides APIs to allow application components to communicate over the network.

Finally, Foglets supports situationally aware applications by allowing for latency and workload-

driven resource adaptation, as well as geographic and temporal state migration. (Saurez et al.

2016)

The Foglets project initially required an efficient way to deploy and migrate applications across

fog nodes. The simple, but greedy, solution was virtual machines, which would allow for full

operating systems containing all necessary dependencies to be wrapped around an application

 4

and distributed to be run on fog nodes quickly with reliable results. However, virtual machines

require the transfer of relatively large files, and necessitate a new guest operating system to be

booted up on top of the node’s existing operating system on each deployment, making it a very

bulky and suboptimal solution. Containers, on the other hand, are software packages containing

applications and all of their dependencies, without the added size of a guest operating system.

These containers are lightweight, fast to deploy, and run reliably on different computing

environments. In addition, many containers can run simultaneously on a single engine that

functions on top of the node’s operating system. This made containers the clear solution for the

scalable deployment and migration of applications in the Foglets project. (Saurez et al. 2016)

The Foglets project currently implements two methods of deploying containers, one through

system calls and another using the Docker API wrapped in a custom Docker Manager class. In

the system calls implementation, the Foglets code makes a call to the host’s operating system,

which spawns a command line process. This process then sends a deployment command to the

Docker Daemon, which spawns a container. Once this command has been sent, there is no longer

an open connection between the Foglets project and the Docker Daemon.

The second deployment method is a custom Docker Manager class, which establishes a

connection directly with the Docker Daemon through the Docker API. The connection

established by the Docker Manager is kept open, allowing for subsequent API calls to be made

over the same connection. This research is designed to prove whether or not the properties of the

Docker API, wrapped by the Docker Manager, affects the latency and throughput of deploying

containers. The results of this research will determine which implementation is better for the

 5

future of Foglets, as well as other Edge Computing projects that utilize mass deployment of

containers.

Literature Review

Within the research field of networking and pervasive systems, there has been a notably dramatic

increase in the number of network-connected devices over the past decade. The expansion of the

Internet of Things (IoT) has pushed researchers to study new ways of supporting and utilizing

the computing power of network connected devices in order to create and improve on

technologies within the field of computer science. (Bonomi et al. 2012)

Currently, the most commonly supported network structure for employing computing power and

data storage to edge IoT devices is known as cloud computing. Within the cloud computing

paradigm, edge devices are connected through a series of routers and switches, commonly

known as the internet, to computers outside the device’s local network. These “cloud computers”

are often located hundreds of miles away and allocate computing and storage resources to the

processes of the original device. This model allows for the edge devices to have limited local

computing power and storage, making it possible for each device to be made cheaper and

smaller. (Belli 2015)

There has been a wealth of research in the field of cloud computing in order to make it a viable

backend system for edge devices. There have been significant breakthroughs in the

implementation of data reduction algorithms on the Cloud’s backend, which alleviates data loads

on edge devices and allows for the transfer of data to be faster and more robust. (Papageorgiou et

 6

al. 2015) A recent advancement in the field of cloud computing is the use of virtual machine-

based Cloudlets for mobile computing. In the Cloudlets model, containers and virtual machines

are used in the Cloud to create dynamic environments that have transient customization. This

allows for faster set-up and teardown of environments, as well as a more modular and

customizable structure within the machines in the Cloud. The end result of the Cloudlets model

is lower latency cloud computing specifically engineered for supporting a multitude of edge

devices. (Satyanarayanan et al. 2009)

Even with the abundance of research intended to optimize cloud computing to support the

Internet of Things, there is an inherent latency associated with data traveling hundreds of miles

to cloud computing centers. There are certain devices and use cases that cannot function as

intended with these levels of latency. The next field of research that is meant to support the

abundant need for low latency computation on edge devices is known as fog computing. The

concept of fog computing was introduced in 2012 as a form of distributed computation that takes

place at a network level and would be able to handle the low latency needs of network connected

devices. (Bonomi et al. 2012)

The first published implementation of a fog computing platform was released in 2013 under the

name Mobile Fog. This implementation was rudimentary and incomplete, with many systems

still utilizing greedy algorithms. Although many details such as dynamic scaling and software

evaluation were addressed in the publication, much of the research into algorithmic efficiency

and implementation at scale was underdeveloped (Hong et al. 2013)

 7

The next significant advancement to the field of distributed systems also took place in 2013 with

the concept of service-oriented heterogenous resource sharing in the Mobile Cloud. The

publication of this concept discussed how resource sharing within a mobile cloud could be

accomplished with optimally low latency. The paper then gave a comparative analysis of the

process. (Nishio et al. 2013)

Eventually, in 2015, the concept of using containers and clusters was introduced to the fog

computing paradigm. It was presented as a lightweight solution for deploying programs onto fog

nodes and allowed for low latency and high customizability. (Pahl, Lee 2015) This idea evolved

into the implementation of the Foglets project. This program focused on the creation of a more

advanced fog computing system which would allow developers to incrementally deploy and

migrate geo-distributed, situationally aware applications in a fog network structure. Foglets also

supports the deployment of multiple containers to each fog node, and supports monitoring and

migration of the applications and nodes, creating a constantly shifting optimal fog. (Saurez et al.

2016)

In 2018, a paper was published on the inefficiencies of Docker container deployment. It detailed

how the Docker system deploys containers without parallelization, thereby wasting the hardware

resources of the deploying devices. The researchers then proposed three optimizations:

sequential image layer downloading, multi-threaded layer decompression, and I/O pipelining.

This research was focused around fog computing, and the single-board devices that it commonly

takes place on, such as Raspberry Pis. On such devices, the combination of these three

 8

techniques resulted in container deployment times reduced by a factor of up to four. (Ahmed et

al. 2016)

The intent of this paper is to extend the current research of the Foglets project. The efficiency of

the deployment and migration of containers in the Fog is fundamental to the competence of

Foglets. Up to this point, no research has been published comparing the efficiency of system

calls and the Docker API as used within the Foglets platform. The purpose of this paper is to fill

this gap and provide an optimal deployment method for the future of Foglets.

Methods and Procedures

The objective of this study was to test the latency and throughput of the two deployment methods

implemented in the Foglets project. We constructed the Docker Benchmark program within

Foglets, which used both system calls and the Docker API to deploy containers, meanwhile

recording the respective latencies and throughput.

Since the Foglets project was originally implemented in C++, the Docker Benchmark program

followed this convention. The resulting program was executed on a machine running Ubuntu

16.04.6 LTS, with the x86-64 architecture and the Linux 4.4.0-112-generic kernel. The machine

had 24 CPU cores and 50 gigabytes of RAM.

The deployment functionality of the Foglets project is multi-threaded and can potentially serve

many simultaneous deployments of containers. Therefore, the first objective of the Docker

Benchmark program was to implement a thread pool service that would allow for multithreading

 9

of the container deployments. We wrote the locked queue class, which implemented a mutex

locked generic queue data structure that we used to store processes that would be run when a

thread became available. We then wrote a thread pool class, which stored an input number of

threads, using them to execute tasks automatically as jobs were added to the locked queue. We

implemented functions to enqueue system calls as well as Docker Manager calls. These functions

also measured and stored, in a member variable vector, the latencies of each deployment

executed in order for them to be output and reviewed later.

Next we implemented the functions that measured the execution time of large-scale

deployments, which made up the main class of the Docker Benchmark program. These functions

accepted an input number of threads and containers to deploy, and then queued the deployments

in the thread pool. As the thread pool handled the calculation of individual deployments for

latency, these functions measured the overall throughput of the simultaneous deployments. They

also accept the container and command to be run.

Our first series of tests evaluated whether or not the size of the container and the command

executed affects the latency and throughput of the deployment on the system call and Docker

API implementations. For these tests, we used a constant 24 threads and 24 deployments to

match the number of cores on the machine we were testing on. For each deployment, we

recorded latency and throughput.

 10

We ran the following commands:

• ls

• ping localhost -c 100

• watch -n 1 ls

We ran these commands on the following container images:

• CentOS – 193 MB

• Debian – 125MB

• Ubuntu – 118 MB

• Alpine – 4 MB

Next, after finding that image size and command had a negligible effect on the latency and

throughput of the system, as shown in the Results section of this paper, we tested the latency of

deploying the Alpine image with the “ls” command. Once again, this was run with both the

system call and Docker API implementations. For this test, we used a variable number of

threads, with the number of containers staying constant. Starting at one thread and twenty-four

containers, we incremented the number of threads until we’d reached twenty-four threads with

twenty-four containers deployed, measuring the latency of each deployment.

Finally, we tested the throughput of both the system call and Docker API implementations. We

chose the lowest latency number of threads and deployments, as found in the latency tests above.

 11

We then ran this combination thirty times, recording the throughput of each implementation over

each iteration. For this test we used the Alpine image with the “ls” command once again.

Results

As explained in the Methods and Procedures section, our first evaluations tested the effect of

container size and commands on latency and throughput. For this experiment, we used four

container images of different sizes, and three different commands to be executed on those

containers. We deployed twenty-four containers on twenty-four threads for each combination of

container image and command. This was repeated using the system calls implementation and the

Docker API. The results are recorded in the tables below. The top number in each white cell is

the average latency of each container deployed, and the bottom number is the overall throughput

after deploying the 24 containers.

System Calls Alpine
4 MB

Ubuntu
118 MB

Debian
125MB

CentOS
193 MB

ls 13.832 sec
1.015 containers/sec

13.043 sec
1.041 containers/sec

13.517 sec
1.005 containers/sec

13.010 sec
1.038 containers/sec

ping localhost -c 100 13.480 sec
1.035 containers/sec

13.587 sec
1.056 containers/sec

13.190 sec
1.021 containers/sec

13.182 sec
1.047 containers/sec

watch -n 1 ls 13.813 sec
1.024 containers/sec

13.587 sec
1.028 containers/sec

13.422 sec
1.015 containers/sec

13.458 sec
1.026 containers/sec

Docker API Alpine
4 MB

Ubuntu
118 MB

Debian
125MB

CentOS
193 MB

ls 12.474 sec
1.049 containers/sec

12.873 sec
1.051 containers/sec

12.218 sec
0.980 containers/sec

12.73 sec
1.040 containers/sec

ping localhost -c 100 12.621 sec
1.046 containers/sec

12.891 sec
1.030 containers/sec

13.137 sec
1.023 containers/sec

12.764 sec
1.053 containers/sec

watch -n 1 ls 12.635 sec
1.034 containers/sec

12.574 sec
1.066 containers/sec

12.367 sec
1.066 containers/sec

12.828 sec
1.060 containers/sec

 12

Next, we tested latency by deploying twenty-four containers on a variable number of threads,

and tracking the latencies of the system call and Docker API implementations. The values in the

white boxes of the table below are latency measurements, and therefore represent the number of

seconds it took to deploy each container.

Threads 1 2 3 4 5 6 7 8 9 10 11 12

System
Calls 1.598 2.582 3.147 3.850 4.917 5.619 6.149 6.749 7.935 8.521 9.220 10.241

Docker API 1.523 2.571 3.165 3.859 4.899 5.729 6.374 7.065 7.702 8.832 8.375 9.746

Threads 13 14 15 16 17 18 19 20 21 22 23 24

System
Calls 10.261 10.867 11.173 11.422 12.102 12.276 12.016 12.956 12.657 12.733 13.217 13.796

Docker API 9.941 10.377 10.142 11.503 11.281 11.688 12.157 12.143 12.315 12.452 12.409 12.594

We repeated this process to ensure accurate data, and the second dataset matched the first. Line

graphs of both trials are presented below.

 13

During these trials, we also collected data on the throughput of both the system calls and Docker

API deployment implementations. In the graphs below, we can see how the addition of threads

affects the two deployment methods over the course of the two trials.

Next, we ran a new experiment to measure latency and throughput, keeping the number of

threads and containers both constant at twenty-four each. We ran this test ten times, recording

the latency and throughput of both the system calls and Docker API implementations. The data

recorded from these trials is in the tables and plots below. The measures of throughput are in

containers per second, and the measures of latency are in seconds.

 14

Throughput (containers/sec)

Trial System
Calls

Docker
API

1 1.055 1.112

2 0.972 1.038

3 1.042 1.06

4 1.06 1.073

5 0.991 1.023

6 0.983 1.08

7 1.014 1.045

8 0.992 1.039

9 0.97 1.074

10 0.987 1.027

Latency (sec)

Trial
System
Calls

Docker
API

1 13.055 11.581

2 14.219 12.603

3 13.102 12.446

4 12.937 12.324

5 14.082 12.537

6 14.279 12.289

7 13.349 12.419

8 13.898 13.042

9 14.340 12.225

10 14.075 13.060

 15

Discussion

Our first series of evaluations sought to test whether or not the size of the container and the

command run on the container has an impact on the deployment latency and throughput. From

the results, we can clearly see that these variables have no effect on either metric. First, we can

see that the command run has no effect on latency or throughput. For Alpine and Debian, when

deployed by system calls, the “ls” command took slightly longer than “ping localhost -c 100”

and “watch -n 1 ls,” while on Ubuntu and CentOS “ls” was slightly faster than the alternatives.

In every case, using either system calls or the Docker API, the latency was within 1 second

between all commands on the same container, and the throughput was within 0.07

containers/second of all other commands run with the same container image. There is no

discernable trend between the command deployed and latency or throughput of the deployment.

Next, we found that the size of the container also has a negligible impact on deployment speeds.

Using system calls, Alpine, the smallest container, had higher latency deployments than any

other container, while Debian, the second largest container, had the lowest throughput. Ubuntu,

another mid-sized container had the highest throughput. When deployed through the Docker

API, Ubuntu now has the highest latency deployments, while Alpine and Debian has the lowest.

CentOS, the largest container, is neither the highest nor lowest for both latency and throughput.

All latencies were once again within one second of each other across deployments of different

container images, and throughputs were within 0.06 containers per second. There are no

discernable trend between container size and deployment efficiency.

 16

Next, we tested the effect of multithreading on the system calls and Docker API deployment

implementations. As the number of threads was increased and the number of containers deployed

remained constant, we observed an increase in latency. This was expected when multithreading.

The computer’s resources are divided among multiple processes, so each process takes longer.

However, the work is being done synchronously, so the total deployment time of all containers

decreased, resulting in an increasing throughput. This throughput rose sharply at first as more

threads were added, but seemed to plateau at around six threads, with only small improvements

when more threads were added.

These trends were present across both the system calls and Docker API deployment

implementations. The system calls has a slightly higher latency and lower throughput across any

number of threads. This would suggest that the Docker API was performing slightly more

efficient deployments.

Our final series of tests were designed to hold the number of threads and containers constant,

both at twenty-four, to get a direct comparison of the System Calls and Docker API

implementations using the metrics of latency and throughput. Here we observed the largest

differences across the study. The throughput of deployments using system calls was significantly

lower than the deployments using the Docker API. Following a similar trend, the latency of

deployments was much higher using system calls than the Docker API.

 17

Conclusions and Future Work

The results of these evaluations suggest that the Docker API is a more efficient deployment

implementation for multithreaded container deployments. The lower latency measurements in

conjunction with higher throughput shows that the Docker API deploys individual containers

faster during large-scale deployments, as well as finishing more deployments per second on

average. The Docker API should be used in the Foglets system to synchronously deploy

containers to fog nodes.

There is room for future work studying the monitoring implementations of each of these

deployment methods. The Docker API maintains an established connection between the

deployment machine and the Docker Daemon, which should allow for faster and easier

monitoring of containers. However, the Foglets system allows for continuous migration of

containers. Each time a container migrates to a new fog node, this connection must be

reestablished. In environments with high migration rates, this added complexity could result in

higher latency and less efficient monitoring.

 18

References

Belli, L. (2015). Big Stream Cloud Architecture for the Internet of Things. Proceedings of

the 2015 on MobiSys PhD Forum. Florence, Italy, ACM: 5-6.

Bernstein, D. (2014). "Containers and Cloud: From LXC to Docker to Kubernetes." IEEE

Cloud Computing 1(3): 81-84.

Bonomi, F., et al. (2012). Fog computing and its role in the internet of things. Proceedings

of the first edition of the MCC workshop on Mobile cloud computing. Helsinki, Finland,

ACM: 13-16.

Gedik, B., et al. (2008). SPADE: the system s declarative stream processing engine.

Proceedings of the 2008 ACM SIGMOD international conference on Management of

data. Vancouver, Canada, ACM: 1123-1134.

Ha, K., et al. (2017). You can teach elephants to dance: agile VM handoff for edge

computing. Proceedings of the Second ACM/IEEE Symposium on Edge Computing. San

Jose, California, ACM: 1-14.

Hong, K., et al. (2013). Mobile fog: a programming model for large-scale applications on

the internet of things. Proceedings of the second ACM SIGCOMM workshop on Mobile

cloud computing. Hong Kong, China, ACM: 15-20.

 19

Hong, K., et al. (2011). Target container: A target-centric parallel programming

abstraction for video-based surveillance. 2011 Fifth ACM/IEEE International Conference

on Distributed Smart Cameras.

Koldehofe, B., et al. (2012). Moving range queries in distributed complex event

processing. Proceedings of the 6th ACM International Conference on Distributed Event-

Based Systems. Berlin, Germany, ACM: 201-212.

Liu, Z., et al. (2010). Xen Live Migration with Slowdown Scheduling Algorithm. 2010

International Conference on Parallel and Distributed Computing, Applications and

Technologies.

Nishio, T., et al. (2013). Service-oriented heterogeneous resource sharing for optimizing

service latency in mobile cloud. Proceedings of the first international workshop on

Mobile cloud computing & networking. Bangalore, India, ACM: 19-26.

Ottenw, B., et al. (2013). MigCEP: operator migration for mobility driven distributed

complex event processing. Proceedings of the 7th ACM international conference on

Distributed event- based systems. Arlington, Texas, USA, ACM: 183-194.

Pahl, C. and B. Lee (2015). Containers and Clusters for Edge Cloud Architectures -- A

Technology Review. Proceedings of the 2015 3rd International Conference on Future

Internet of Things and Cloud, IEEE Computer Society: 379-386.

 20

Papageorgiou, A., et al. (2015). Real-time data reduction at the network edge of Internet-

of- Things systems. Proceedings of the 2015 11th International Conference on Network

and Service Management (CNSM), IEEE Computer Society: 284-291.

Satyanarayanan, M., et al. (2009). "The Case for VM-Based Cloudlets in Mobile

Computing." IEEE Pervasive Computing 8(4): 14-23.

Saurez, E., et al. (2016). Incremental deployment and migration of geo-distributed

situation awareness applications in the fog. Proceedings of the 10th ACM International

Conference on Distributed and Event-based Systems. Irvine, California, ACM: 258-269.

Simanta, S., et al. (2012). A Reference Architecture for Mobile Code Offload in Hostile

Environments. Proceedings of the 2012 Joint Working IEEE/IFIP Conference on

Software Architecture and European Conference on Software Architecture, IEEE

Computer Society: 282- 286.

Soltesz, S., et al. (2007). Container-based operating system virtualization: a scalable,

high- performance alternative to hypervisors. Proceedings of the 2nd ACM

SIGOPS/EuroSys European Conference on Computer Systems 2007. Lisbon, Portugal,

ACM: 275-287.

Urgaonkar, R., et al. (2015). "Dynamic service migration and workload scheduling in

 21

edge- clouds." Perform. Eval. 91(C): 205-228.

Wang, S., et al. (2017). "Dynamic Service Placement for Mobile Micro-Clouds with

Predicted Future Costs." IEEE Trans. Parallel Distrib. Syst. 28(4): 1002-1016.

Yao, H., et al. (2015). "Migrate or not? Exploring virtual machine migration in roadside

cloudlet- based vehicular cloud." Concurr. Comput. : Pract. Exper. 27(18): 5780-5792.

A. Ahmed and G. Pierre, "Docker Container Deployment in Fog Computing

Infrastructures," 2018 IEEE International Conference on Edge Computing (EDGE), San

Francisco, CA, 2018, pp. 1-8.

