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Abstract 

In recent years, the number of devices connected to local networks has rapidly expanded to 

create a new internet known as The Internet of Things. The applications run on these devices 

often require lower latency solutions than cloud computing can provide in order to perform time-

sensitive interactions with other devices near the network’s edge. One solution to this problem is 

fog computing, a geo-distributed architecture that provides computational resources closer to the 

edge of the network. This proximity yields low-latency connections among such devices. In 

order to implement a powerful fog computing network, applications must be able to deploy and 

migrate quickly throughout the geo-distributed resources. In the Foglets project, containers are 

used to efficiently deploy applications. The Foglets project currently contains two platforms that 

handle container deployment: one that utilizes system calls, and another that uses the well-

established Docker API. In this work, we evaluate the latency and throughput of the two 

deployment platforms, as well as the impact of container commands and size on these metrics. 

We found that while serving many simultaneous deployments through multithreading, the 

Docker API yields lower latency and higher throughput. We also found that the size of the 

container and commands run on the container had a negligible impact on the deployment’s 

latency and throughput. 

 

Introduction 

The increase of internet connected hardware devices, commonly known as The Internet of 

Things, has led to a need for lower latency connectivity in a technological landscape that is 

dominated by cloud computing. While methods such as compression, local caching, and TCP 

window sizing have dramatically increased the speed at which internet connected devices can 
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communicate with the Cloud, the physical limitations of transferring data over hundreds of miles 

to these cloud-based data centers still impose severe limitations on situationally aware 

applications that require increasingly low latency computation. (Belli 2015) 

 

The fog computing model is a simple, low latency solution to the expanding hardware 

infrastructure behind the Internet of Things. The idea behind fog computing is to extend the 

cloud computing model out to the edges of the network. This involves using devices close to the 

user’s local network for utility computing, allowing for shared computational power and data 

storage, accompanied by the low latency of communication close to the network’s edge. 

(Bonomi et al. 2012) 

 

The current programming model used to implement fog computing is known as Foglets. This 

model first identifies resources within the network topology, deploying application components 

to the identified resources that meet the latency thresholds of each component. Foglets also 

allows each fog node, or computational resource, in the topology to handle multi-application 

collocation. It provides APIs to allow application components to communicate over the network. 

Finally, Foglets supports situationally aware applications by allowing for latency and workload-

driven resource adaptation, as well as geographic and temporal state migration. (Saurez et al. 

2016) 

 

The Foglets project initially required an efficient way to deploy and migrate applications across 

fog nodes. The simple, but greedy, solution was virtual machines, which would allow for full 

operating systems containing all necessary dependencies to be wrapped around an application 
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and distributed to be run on fog nodes quickly with reliable results. However, virtual machines 

require the transfer of relatively large files, and necessitate a new guest operating system to be 

booted up on top of the node’s existing operating system on each deployment, making it a very 

bulky and suboptimal solution. Containers, on the other hand, are software packages containing 

applications and all of their dependencies, without the added size of a guest operating system. 

These containers are lightweight, fast to deploy, and run reliably on different computing 

environments. In addition, many containers can run simultaneously on a single engine that 

functions on top of the node’s operating system. This made containers the clear solution for the 

scalable deployment and migration of applications in the Foglets project. (Saurez et al. 2016) 

 

The Foglets project currently implements two methods of deploying containers, one through 

system calls and another using the Docker API wrapped in a custom Docker Manager class. In 

the system calls implementation, the Foglets code makes a call to the host’s operating system, 

which spawns a command line process. This process then sends a deployment command to the 

Docker Daemon, which spawns a container. Once this command has been sent, there is no longer 

an open connection between the Foglets project and the Docker Daemon. 

 

The second deployment method is a custom Docker Manager class, which establishes a 

connection directly with the Docker Daemon through the Docker API. The connection 

established by the Docker Manager is kept open, allowing for subsequent API calls to be made 

over the same connection. This research is designed to prove whether or not the properties of the 

Docker API, wrapped by the Docker Manager, affects the latency and throughput of deploying 

containers. The results of this research will determine which implementation is better for the 
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future of Foglets, as well as other Edge Computing projects that utilize mass deployment of 

containers. 

 

Literature Review 

Within the research field of networking and pervasive systems, there has been a notably dramatic 

increase in the number of network-connected devices over the past decade. The expansion of the 

Internet of Things (IoT) has pushed researchers to study new ways of supporting and utilizing 

the computing power of network connected devices in order to create and improve on 

technologies within the field of computer science. (Bonomi et al. 2012) 

 

Currently, the most commonly supported network structure for employing computing power and 

data storage to edge IoT devices is known as cloud computing. Within the cloud computing 

paradigm, edge devices are connected through a series of routers and switches, commonly 

known as the internet, to computers outside the device’s local network. These “cloud computers” 

are often located hundreds of miles away and allocate computing and storage resources to the 

processes of the original device. This model allows for the edge devices to have limited local 

computing power and storage, making it possible for each device to be made cheaper and 

smaller. (Belli 2015) 

 

There has been a wealth of research in the field of cloud computing in order to make it a viable 

backend system for edge devices. There have been significant breakthroughs in the 

implementation of data reduction algorithms on the Cloud’s backend, which alleviates data loads 

on edge devices and allows for the transfer of data to be faster and more robust. (Papageorgiou et 
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al. 2015) A recent advancement in the field of cloud computing is the use of virtual machine-

based Cloudlets for mobile computing. In the Cloudlets model, containers and virtual machines 

are used in the Cloud to create dynamic environments that have transient customization. This 

allows for faster set-up and teardown of environments, as well as a more modular and 

customizable structure within the machines in the Cloud. The end result of the Cloudlets model 

is lower latency cloud computing specifically engineered for supporting a multitude of edge 

devices. (Satyanarayanan et al. 2009) 

 

Even with the abundance of research intended to optimize cloud computing to support the 

Internet of Things, there is an inherent latency associated with data traveling hundreds of miles 

to cloud computing centers. There are certain devices and use cases that cannot function as 

intended with these levels of latency. The next field of research that is meant to support the 

abundant need for low latency computation on edge devices is known as fog computing. The 

concept of fog computing was introduced in 2012 as a form of distributed computation that takes 

place at a network level and would be able to handle the low latency needs of network connected 

devices. (Bonomi et al. 2012) 

 

The first published implementation of a fog computing platform was released in 2013 under the 

name Mobile Fog. This implementation was rudimentary and incomplete, with many systems 

still utilizing greedy algorithms. Although many details such as dynamic scaling and software 

evaluation were addressed in the publication, much of the research into algorithmic efficiency 

and implementation at scale was underdeveloped (Hong et al. 2013) 
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The next significant advancement to the field of distributed systems also took place in 2013 with 

the concept of service-oriented heterogenous resource sharing in the Mobile Cloud. The 

publication of this concept discussed how resource sharing within a mobile cloud could be 

accomplished with optimally low latency. The paper then gave a comparative analysis of the 

process. (Nishio et al. 2013) 

 

Eventually, in 2015, the concept of using containers and clusters was introduced to the fog 

computing paradigm. It was presented as a lightweight solution for deploying programs onto fog 

nodes and allowed for low latency and high customizability. (Pahl, Lee 2015) This idea evolved 

into the implementation of the Foglets project. This program focused on the creation of a more 

advanced fog computing system which would allow developers to incrementally deploy and 

migrate geo-distributed, situationally aware applications in a fog network structure. Foglets also 

supports the deployment of multiple containers to each fog node, and supports monitoring and 

migration of the applications and nodes, creating a constantly shifting optimal fog. (Saurez et al. 

2016) 

 

In 2018, a paper was published on the inefficiencies of Docker container deployment. It detailed 

how the Docker system deploys containers without parallelization, thereby wasting the hardware 

resources of the deploying devices. The researchers then proposed three optimizations: 

sequential image layer downloading, multi-threaded layer decompression, and I/O pipelining. 

This research was focused around fog computing, and the single-board devices that it commonly 

takes place on, such as Raspberry Pis. On such devices, the combination of these three 
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techniques resulted in container deployment times reduced by a factor of up to four. (Ahmed et 

al. 2016) 

 

The intent of this paper is to extend the current research of the Foglets project. The efficiency of 

the deployment and migration of containers in the Fog is fundamental to the competence of 

Foglets. Up to this point, no research has been published comparing the efficiency of system 

calls and the Docker API as used within the Foglets platform. The purpose of this paper is to fill 

this gap and provide an optimal deployment method for the future of Foglets. 

 

Methods and Procedures 

The objective of this study was to test the latency and throughput of the two deployment methods 

implemented in the Foglets project. We constructed the Docker Benchmark program within 

Foglets, which used both system calls and the Docker API to deploy containers, meanwhile 

recording the respective latencies and throughput. 

 

Since the Foglets project was originally implemented in C++, the Docker Benchmark program 

followed this convention. The resulting program was executed on a machine running Ubuntu 

16.04.6 LTS, with the x86-64 architecture and the Linux 4.4.0-112-generic kernel. The machine 

had 24 CPU cores and 50 gigabytes of RAM. 

 

The deployment functionality of the Foglets project is multi-threaded and can potentially serve 

many simultaneous deployments of containers. Therefore, the first objective of the Docker 

Benchmark program was to implement a thread pool service that would allow for multithreading 
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of the container deployments. We wrote the locked queue class, which implemented a mutex 

locked generic queue data structure that we used to store processes that would be run when a 

thread became available. We then wrote a thread pool class, which stored an input number of 

threads, using them to execute tasks automatically as jobs were added to the locked queue. We 

implemented functions to enqueue system calls as well as Docker Manager calls. These functions 

also measured and stored, in a member variable vector, the latencies of each deployment 

executed in order for them to be output and reviewed later. 

 

Next we implemented the functions that measured the execution time of large-scale 

deployments, which made up the main class of the Docker Benchmark program. These functions 

accepted an input number of threads and containers to deploy, and then queued the deployments 

in the thread pool. As the thread pool handled the calculation of individual deployments for 

latency, these functions measured the overall throughput of the simultaneous deployments. They 

also accept the container and command to be run. 

 

Our first series of tests evaluated whether or not the size of the container and the command 

executed affects the latency and throughput of the deployment on the system call and Docker 

API implementations. For these tests, we used a constant 24 threads and 24 deployments to 

match the number of cores on the machine we were testing on. For each deployment, we 

recorded latency and throughput. 
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We ran the following commands: 

• ls 

• ping localhost -c 100 

• watch -n 1 ls 

 

We ran these commands on the following container images: 

• CentOS – 193 MB 

• Debian – 125MB 

• Ubuntu – 118 MB 

• Alpine – 4 MB 

 

Next, after finding that image size and command had a negligible effect on the latency and 

throughput of the system, as shown in the Results section of this paper, we tested the latency of 

deploying the Alpine image with the “ls” command. Once again, this was run with both the 

system call and Docker API implementations. For this test, we used a variable number of 

threads, with the number of containers staying constant. Starting at one thread and twenty-four 

containers, we incremented the number of threads until we’d reached twenty-four threads with 

twenty-four containers deployed, measuring the latency of each deployment. 

 

Finally, we tested the throughput of both the system call and Docker API implementations. We 

chose the lowest latency number of threads and deployments, as found in the latency tests above. 
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We then ran this combination thirty times, recording the throughput of each implementation over 

each iteration. For this test we used the Alpine image with the “ls” command once again. 

 

Results 

As explained in the Methods and Procedures section, our first evaluations tested the effect of 

container size and commands on latency and throughput. For this experiment, we used four 

container images of different sizes, and three different commands to be executed on those 

containers. We deployed twenty-four containers on twenty-four threads for each combination of 

container image and command. This was repeated using the system calls implementation and the 

Docker API. The results are recorded in the tables below. The top number in each white cell is 

the average latency of each container deployed, and the bottom number is the overall throughput 

after deploying the 24 containers. 

 

System Calls Alpine 
4 MB 

Ubuntu 
118 MB 

Debian 
125MB 

CentOS 
193 MB 

ls 13.832 sec 
1.015 containers/sec 

13.043 sec 
1.041 containers/sec 

13.517 sec 
1.005 containers/sec 

13.010 sec 
1.038 containers/sec 

ping localhost -c 100 13.480 sec 
1.035 containers/sec 

13.587 sec 
1.056 containers/sec 

13.190 sec 
1.021 containers/sec 

13.182 sec 
1.047 containers/sec 

watch -n 1 ls 13.813 sec 
1.024 containers/sec 

13.587 sec 
1.028 containers/sec 

13.422 sec 
1.015 containers/sec 

13.458 sec 
1.026 containers/sec 

 

Docker API Alpine 
4 MB 

Ubuntu 
118 MB 

Debian 
125MB 

CentOS 
193 MB 

ls 12.474 sec 
1.049 containers/sec 

12.873 sec 
1.051 containers/sec 

12.218 sec 
0.980 containers/sec 

12.73 sec 
1.040 containers/sec 

ping localhost -c 100 12.621 sec 
1.046 containers/sec 

12.891 sec 
1.030 containers/sec 

13.137 sec 
1.023 containers/sec 

12.764 sec 
1.053 containers/sec 

watch -n 1 ls 12.635 sec 
1.034 containers/sec 

12.574 sec 
1.066 containers/sec 

12.367 sec 
1.066 containers/sec 

12.828 sec 
1.060 containers/sec 
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Next, we tested latency by deploying twenty-four containers on a variable number of threads, 

and tracking the latencies of the system call and Docker API implementations. The values in the 

white boxes of the table below are latency measurements, and therefore represent the number of 

seconds it took to deploy each container. 

 

Threads 1 2 3 4 5 6 7 8 9 10 11 12 

System 
Calls 1.598 2.582 3.147 3.850 4.917  5.619 6.149 6.749 7.935 8.521 9.220 10.241 

Docker API 1.523 2.571 3.165 3.859 4.899 5.729 6.374 7.065 7.702 8.832 8.375 9.746 

  

Threads 13 14 15 16 17 18 19 20 21 22 23 24 

System 
Calls 10.261 10.867 11.173 11.422 12.102  12.276 12.016 12.956 12.657 12.733 13.217 13.796 

Docker API 9.941 10.377 10.142 11.503 11.281 11.688 12.157 12.143 12.315 12.452 12.409 12.594 

 

We repeated this process to ensure accurate data, and the second dataset matched the first. Line 

graphs of both trials are presented below. 
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During these trials, we also collected data on the throughput of both the system calls and Docker 

API deployment implementations. In the graphs below, we can see how the addition of threads 

affects the two deployment methods over the course of the two trials. 

 

 

 

 

 

 

 

 

Next, we ran a new experiment to measure latency and throughput, keeping the number of 

threads and containers both constant at twenty-four each. We ran this test ten times, recording 

the latency and throughput of both the system calls and Docker API implementations. The data 

recorded from these trials is in the tables and plots below. The measures of throughput are in 

containers per second, and the measures of latency are in seconds. 
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Throughput (containers/sec) 

Trial System 
Calls 

Docker 
API 

1 1.055 1.112 

2 0.972 1.038 

3 1.042 1.06 

4 1.06 1.073 

5 0.991 1.023 

6 0.983 1.08 

7 1.014 1.045 

8 0.992 1.039 

9 0.97 1.074 

10 0.987 1.027 
 
 

Latency (sec) 

Trial 
System 
Calls 

Docker 
API 

1 13.055 11.581 

2 14.219 12.603 

3 13.102 12.446 

4 12.937 12.324 

5 14.082 12.537 

6 14.279 12.289 

7 13.349 12.419 

8 13.898 13.042 

9 14.340 12.225 

10 14.075 13.060 
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Discussion 

Our first series of evaluations sought to test whether or not the size of the container and the 

command run on the container has an impact on the deployment latency and throughput. From 

the results, we can clearly see that these variables have no effect on either metric. First, we can 

see that the command run has no effect on latency or throughput. For Alpine and Debian, when 

deployed by system calls, the “ls” command took slightly longer than “ping localhost -c 100” 

and “watch -n 1 ls,” while on Ubuntu and CentOS “ls” was slightly faster than the alternatives. 

In every case, using either system calls or the Docker API, the latency was within 1 second 

between all commands on the same container, and the throughput was within 0.07 

containers/second of all other commands run with the same container image. There is no 

discernable trend between the command deployed and latency or throughput of the deployment. 

 

Next, we found that the size of the container also has a negligible impact on deployment speeds. 

Using system calls, Alpine, the smallest container, had higher latency deployments than any 

other container, while Debian, the second largest container, had the lowest throughput. Ubuntu, 

another mid-sized container had the highest throughput. When deployed through the Docker 

API, Ubuntu now has the highest latency deployments, while Alpine and Debian has the lowest. 

CentOS, the largest container, is neither the highest nor lowest for both latency and throughput. 

All latencies were once again within one second of each other across deployments of different 

container images, and throughputs were within 0.06 containers per second. There are no 

discernable trend between container size and deployment efficiency. 
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Next, we tested the effect of multithreading on the system calls and Docker API deployment 

implementations. As the number of threads was increased and the number of containers deployed 

remained constant, we observed an increase in latency. This was expected when multithreading. 

The computer’s resources are divided among multiple processes, so each process takes longer. 

However, the work is being done synchronously, so the total deployment time of all containers 

decreased, resulting in an increasing throughput. This throughput rose sharply at first as more 

threads were added, but seemed to plateau at around six threads, with only small improvements 

when more threads were added. 

 

These trends were present across both the system calls and Docker API deployment 

implementations. The system calls has a slightly higher latency and lower throughput across any 

number of threads. This would suggest that the Docker API was performing slightly more 

efficient deployments. 

 

Our final series of tests were designed to hold the number of threads and containers constant, 

both at twenty-four, to get a direct comparison of the System Calls and Docker API 

implementations using the metrics of latency and throughput. Here we observed the largest 

differences across the study. The throughput of deployments using system calls was significantly 

lower than the deployments using the Docker API. Following a similar trend, the latency of 

deployments was much higher using system calls than the Docker API. 
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Conclusions and Future Work 

 

The results of these evaluations suggest that the Docker API is a more efficient deployment 

implementation for multithreaded container deployments. The lower latency measurements in 

conjunction with higher throughput shows that the Docker API deploys individual containers 

faster during large-scale deployments, as well as finishing more deployments per second on 

average. The Docker API should be used in the Foglets system to synchronously deploy 

containers to fog nodes. 

 

There is room for future work studying the monitoring implementations of each of these 

deployment methods. The Docker API maintains an established connection between the 

deployment machine and the Docker Daemon, which should allow for faster and easier 

monitoring of containers. However, the Foglets system allows for continuous migration of 

containers. Each time a container migrates to a new fog node, this connection must be 

reestablished. In environments with high migration rates, this added complexity could result in 

higher latency and less efficient monitoring. 
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