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SUMMARY 

The goal of this dissertation is to evaluate the impact of distributed solar on utilities 

and their customers. It reconciles an analysis of the effect of increasing DPV penetration 

at the system scale, with an understanding of how installing DPV alters behavior at the 

household level. To provide such a comprehensive view on the role of DPV in the evolving 

utility, I construct a utility financial model and populate that with customer load and solar 

data. I compliment that analysis with utility customer data to gain insights on the interaction 

between solar installation, rate design, and electricity consumption. By incorporating 

insights from the macro and micro levels, I demonstrate that proper policy incentives and 

rate design can generate incentives for DPV installers which promote system level 

efficiencies. This dissertation bridges utility modeling literature with empirical work to 

better understand prosumer behavior and shed light on the future of utility operations.  

The introduction describes the changing technical and policy landscape in response 

to growth of DERs, highlighting the operational and financial challenges created for 

utilities. For context, initial sections describe the techno-political nexus of grid operation. 

I explain the historical utility business model and demonstrate why DERs are perceived as 

a threat. This provides background on the unique attributes of distributed solar including 

siting, operational, and ownership characteristics that distinguish it from traditional 

generation. From there, the first chapter introduces the costs DPV imposes on the system 

and the benefits it creates to frame the debate on DPV and set the stage for the analysis.  

In chapter 2, I investigate the utility revenue, rate, and bill impacts of solar 

penetration resulting from an exogenous policy mandate. The utility is constrained to 

operate under the same cost-recovery mechanism and rates allowed to fluctuate to recover 
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costs as solar growth changes electricity market prices and utility sales. Chapter 2 uses 

PJM market data, demand profiles from a PJM utility, and solar data from New Jersey PV. 

The results indicate that significant solar can be incorporated with only a 2% increase in 

non-participant bills. This should assuage fears of a “utility death spiral” among regulators. 

However, at higher levels of penetration, DPV alters system peak hour, which directly 

affects the allocation of costs between rate-classes.  These distributional impacts warrant 

careful consideration from policymakers. Expanding the model to include consumers with 

heterogeneous load shapes illustrates that benefits for adopters, and penalties for non-

adopters, are dependent on aggregate use, time-of-use, and kurtosis of the load curve. The 

design of rates and the implementation of demand charges can result in very different sets 

of winners and losers. This has important equity implications, particularly if DPV adoption 

and load shape are correlated with demographic characteristics or business sector.  

An increase in the system-wide penetration of distributed solar has important 

consequences for utility cost-recovery and consumer equity, but analysis at the system level 

can mask some of the challenges introduced by distributed resources.  In chapter 3 I 

investigate the spatial distribution of solar installations and construct a model which 

predicts solar adoption at a more granular level. To do so, I leverage solar installation data 

and customer billing data from more than 300,000 premises in a PJM utility.  The results 

of the modelling show that substantial spatial clustering exists and is likely to be 

exacerbated as penetrations grow. The value of projects is thus dependent on their location 

in the system, a fact that is not reflected in RFP processes or policy incentives. This likely 

contributes to the wide range of “value of solar” estimates in the literature. In the 

discussion, I underscore the importance of including DER forecasting in the IRP process 



 xii 

and explore the potential of community solar and virtual net metering to overcome the 

challenges of spatial clustering of rooftop PV with appropriate policy design.  

In chapter 4, I study a yet undeveloped aspect of the literature: what happens to 

household electricity consumption once a consumer has installed residential PV in a net-

metering scheme.  On one hand, the installation of residential PV reduces the average bill 

for consumers.  Although the marginal costs don’t change, consumers may respond to 

lower bills by increasing consumption, an effect similar to, but distinct from, the rebound 

effect studied in the energy efficiency literature. On the other hand, the installation of 

microgeneration allows consumers to become more informed about their energy use and 

its impacts. As the salience of energy use and environmental impacts increases, theory 

suggests consumption should decline. Using the same customer billing data from Chapter 

3, I conduct a set of analyses that investigate post-adoption consumption changes. I show 

that although solar installers in a net-metering scheme use less electricity from the grid, 

their aggregate consumption increases following adoption.  

Finally, Chapter 5 discusses some of the policies and rates that have been proposed 

to address the concerns generated by increasing penetrations of distributed energy. In 

particular, I examine the desire for “cost-causal” rates and the feasibility of implementing 

dynamic pricing. I identify barriers and using evidence from my analysis discuss whether 

such a policy is likely to be successful in addressing the vicissitudes presented by DPV. To 

conclude, I lay out a research agenda describing the need for additional study of the 

political and institutional factors at play in utility regulation. 
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CHAPTER 1. INTRODUCTION 

Solar energy represents a small but growing share of the national electricity 

generation profile. Distributed Photovoltaics (DPV), defined here as smaller installations 

incorporated on the distribution as opposed to transmission network, represent a fraction 

of the overall solar market. Considering this nascent status and as of yet diminutive 

contributions, it has received a disproportionate share of attention in Public Service 

Commissions, regulatory and legislative hearings, utility board rooms, and the media. This 

reflects two factors. First, is the potential of the solar resource. With the looming reality of 

climate change and increasing scrutiny of emissions from the electric sector, solar energy 

represents a carbon-free generation source. Costs have fallen quickly with the levelized 

cost of electricity from solar already reaching grid parity in some regions (Ondraczek et 

al., 2015). Distributed photovoltaics can generate electricity near load centers in dense 

urban and suburban environments where traditional power plants cannot be cited (Freitas 

et al., 2015). It has enabled capacity to be added and electricity generated outside the 

traditional bounds of utility control. Distributed solar has also been used, and will continue 

to be deployed, to electrify portions of the world that have not received grid access to date 

(Aklin et al., 2018). DPV in conjunction with emerging information technologies, can 

simultaneously address the needs of the 1.3 billion people without electricity and drive 

action towards a sustainable, decarbonized energy system (Alstone et al., 2015). 

Second, the rise of solar energy has been in conjunction with other disruptions in 

the energy industry. Solar, and the policies which supported the developing industry, have 

often been the scapegoat for those looking to protect the traditional order and power 

structure. The reality is much more complicated. For example, lower natural gas prices 



 2 

from shale gas unlocked through fracking have driven coal shutdowns far more than 

renewables (Fell and Kaffine, 2018). Advances in computing, information technology, and 

telecommunications have facilitated two-way power flows, and alternative tariff designs 

that may have been “caused” by solar in the eyes of disgruntled actors. Stagnant load 

growth, driven by more efficient end uses, has contributed significantly to utility cost 

recovery concerns (Morgan and Crandall, 2017). Parsing out the impacts of distributed 

solar in this era of unprecedented change within the industry is challenging. That said, 

understanding said impacts from the system level to the effect on individual consumers 

will be critical as the solar industry continues to grow. Distributed solar changes the cost 

causality of electricity generation, transmission, and distribution service and in doing so 

engenders legitimate concerns about equity. As distributed solar emerges as a legitimate 

contributor to meet electricity demand and other distributed technologies such as battery 

storage begin to enter the marketplace, ensuring equity will fall to policymakers.  They 

must structure future planning processes, regulations, markets and tariffs, to reduce the 

misalignments among technical, social, and economic dimensions that are developing from 

legacy rulemaking.  

Understanding the impacts of distributed solar and properly allocating costs will 

allow higher penetrations of distributed resources, contributing to the overall goal of 

addressing climate change. The focus of this dissertation is on U.S. institutions, and in 

particular on the PJM RTO. The justification is two-fold. First, the data required to conduct 

this research is not readily shared by utilities. Access to utility financial data, solar output 

data, and customer use data represent a unique combination of datasets. While there has 

been some academic research done on the impacts of solar PV and the value of the resource 
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in the U.S. nearly all of it has been based on California. This makes sense given California 

is the leading adopter of solar capacity and DPV specifically. However, California’s 

electricity markets, pricing structures, politics, and solar resource do not necessarily 

translate to the rest of the country. Results from the Northeast contribute new insights and 

are more representative of the solar markets which are growing most quickly (Association, 

2018). As shown in Figure 1, the PJM territory also has a much larger share of distributed 

to grid scale solar installations, making it an optimal location to study the effects of 

distributed PV (Donahue, 2018). 

 

Figure 1: Map of U.S. solar installations1 

Second, although the U.S. is not the largest global installer of solar capacity it does 

have the largest number of distributed solar installations. The relative wealth of American 

consumers has allowed them to purchase and install rooftop PV.  Creating a robust market 

                                                 
1 Reprinted from The State(s) of Distributed Solar – 2018 Update, by Institute for Local Self-Reliance, 

November 15, 2018 retrieved from https://ilsr.org/the-states-of-distributed-solar/ 
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for smaller systems helps provide efficiency of scale in manufacturing, refine process, and 

improve technology efficiencies, all of which reduce costs globally. As this process 

continues distributed solar becomes more accessible to consumers in emerging economies. 

However, as the U.S. distributed solar market has grown it has faced resistance, and 

currently finds itself at a crossroads where policy support is being challenged and new 

tariffs developed (Carley and Davies, 2016). This dissertation can shed light on the impact 

of distributed photovoltaics and help inform the next generation of policy frameworks.  

In Section 1.1 I present a brief snapshot of the U.S. electricity sector couching the 

growth of solar in global and historical context. I then offer a brief overview of the unique 

technical aspects of grid operation that bound policy. The following section, 1.2, describes 

the policy landscape, including an illustration of the different techno-political zones and 

the institutions that regulate them. It describes the multitude of actors involved in the rate 

case, and an example of the IRP process which governs rate designs in most states. Finally, 

it introduces net-metering and renewable portfolio standards, two primary policy 

mechanisms which have buoyed distributed solar. Section 1.3 describes the unique 

characteristics of distributed solar and explains the disruptions that this technology present 

to the status quo. Section 1.4 frames the analysis to follow and describes how the remaining 

chapters of the dissertation seek to contribute to the ongoing debate about the value of 

distributed solar and its impacts on utilities and their customers.  

1.1 Energy Landscape and Technical Dimension 

Globally, in 2017, cumulative solar PV capacity reached 398 GW and generated 

over 460 TWh, representing around 2% of global power output. Utility-scale projects 
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account for just over 60% of total PV installed capacity, with the rest in distributed 

applications (residential, commercial and off-grid). Over the next five years, solar PV is 

expected to lead renewable electricity capacity growth, expanding by almost 580 GW 

(Birol, 2018). Domestically, solar capacity has reached 60 GW with an average annual 

growth rate of 59% over the last 10 years. Solar now generates more than 1.5% of the 

nation’s electricity annually, enough to power more than 11.3 million homes. This 

generation offsets more than 75 million metric tons of CO2 emissions annually, the 

equivalent to removing 16.2 million vehicles from the road (Association, 2018). These 

numbers provide a sense of scale for the resource, but to give context for the challenges of 

incorporating additional solar, a brief overview of the U.S. electric grid is required.  

The U.S. electric grid is considered the largest machine in the world. It is a network 

of power plants and wires which deliver electricity to end users. Traditionally, it has been 

comprised of four major components: generators, transformers, transmission, and 

distribution. Generators historically constitute large power plants such as coal, natural gas, 

hydroelectric, or nuclear which spin turbines to generate electricity. While their output can 

be directly controlled, adjusting output takes long periods of time and reduces efficiency.2 

Generators are measured in terms of capacity (GW) (the amount of electricity that they can 

produce at any one time) in units of power, and energy (GWh) (the amount of power 

delivered over a period of time). Transformers are used to step up the voltage of the 

electricity so that it may be sent over long distances via transmission lines. High voltages 

reduce the loss of electricity through resistance to heat. Transformers then step the voltage 

                                                 
2 Natural gas plants are now the leading source of electricity generation and are typically more flexible in 

following load than coal or nuclear.  
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back down to the distribution network where it is delivered to end users. This entire chain 

is summarized in Figure 2. 

 

Figure 2: Structure of the electric grid3  

Electricity follows the path of least resistance, meaning it cannot be directly sent 

down a desired path without altering electrical components though capacitors, inductors, 

and load manipulation. Before the introduction of distributed resources electricity always 

flowed from left to right in Figure 2. This was referred to as the hub and spoke model as 

the generator formed the hub and the network carried electricity away in all directions to 

end users. As will be discussed in Section 1.3, distributed resources generate electricity on 

the distribution network and can induce electricity flows in both directions.  

Because the entire system is interconnected, an issue in one part of the grid can 

ripple through and affect large territories. On the other hand, since the grid is an enormous 

network, electricity can be deployed to the right places across large regions of the country 

                                                 
3 Image credit United States Department of Energy, retrieved January 2019 from: 

https://www.webpages.uidaho.edu/sustainability/chapters/ch06/ch06-p3a.asp 
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with resource constraints in one location being compensated for in another. Electricity 

cannot currently be cost-effectively stored on a large scale, so a large transmission network 

allows grid operators to deal with anticipated and unanticipated losses, while still meeting 

local electricity demand. Another implication of no energy storage is that electricity supply 

must match electricity demand at every instance to ensure reliability. The U.S. grid is 

subdivided into 3 interconnections, shown in Figure 3, which each have their own 

frequency and voltage monitoring. The North American Reliability Corporation (NERC) 

further subdivides into regions to monitor grid reliability and security.  

 

Figure 3: NERC regions4 

The actual operation of the electric system is managed by entities called balancing 

authorities. Most, but not all, balancing authorities are electric utilities that have taken on 

                                                 
4 Image credit North American Electric Reliability Corporation, retrieved Jan 2019 from: 

https://www.nerc.com/AboutNERC/keyplayers/pages/default.aspx 
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the balancing responsibilities for a specific portion of the power system. In some cases, 

regional transmission organizations (RTOs), in including PJM, also function as balancing 

authorities. RTOs are independent, membership-based, non-profit organizations that 

optimize supply and demand bids for deregulated wholesale electric power and will be 

discussed in the context of asset ownership in Section 1.2. Figure 4 shows the balancing 

areas with circle size indicating the relative amount of electricity handled.  

 

Figure 4: U.S. balancing areas5 

This extensive system and complex network of actors must all be operating 

correctly and in sync to ensure a customer receives power when they flip the switch. 

Similarly, such a complex and infrastructure intensive system must be paid for by the users 

of electricity. Distributing these costs to users is challenging and distributed resources are 

upsetting the conventional order.   

                                                 
5 Image credit U.S. Energy Information Administration, retrieved Jan 2019 from: 

https://www.eia.gov/todayinenergy/detail.php?id=27152 
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1.2 Electricity Policy and Economics 

Paying for electricity involves more than just the electrons that are consumed, it 

must cover all other aspects of the system. Traditionally all pieces of the electric sector 

were owned by a utility who was regulated and received a rate of return on their capital 

investments. However, starting in the 1990s the electric power industry went through a 

period of deregulation and restructuring in which generation, transmission, and distribution 

were divided into separate components in some states. If the generation segment of the 

electricity supply chain has been deregulated, utilities were forced to divest their electricity 

producing assets. Power plants then compete with one another to provide service. Electric 

transmission has been restructured throughout the U.S. with transmission regulation 

shifting from a local to regional scale, and from state to federal authorities. The PJM 

territory is both deregulated and restructured as shown in Figure 5.  

 

Figure 5: Map of utility deregulation by state 

Electric distribution has, with few exceptions, retained the same regulated structure 

and remains a textbook example of a natural monopoly, where one firm can provide a good 
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or service at lower cost due to economies of scale. Economies of scale enable lower long 

run average costs with increasing quantity (Weimer and Vining, 2015). In order to prevent 

distribution utilities from exercising market power, these utilities have been regulated by 

state public service commissions or locally-owned cooperatives. In firms with substantial 

fixed costs, such as utilities, setting price equal to marginal cost fails to cover total costs, 

and firms would fail to make necessary investments. To enable such investments, 

regulators set prices equal to average variable costs and allow utilities to earn a fixed rate 

of return on their assets.  

Another economic challenge in electricity pricing is that the generation and 

distribution of electricity produce negative externalities. To price electricity at the social 

marginal cost, these externalities should be internalized. Without a price for carbon in most 

of the United States, and an amalgamation of other pollution regulations that are not 

directly tied to social damages, prices fail to provide a price signal equal to the social 

marginal cost. Borenstein (2016) has noted that utilities seldom have to pay for the negative 

externalities they create. Solar advocates argue that this makes it harder for solar to 

compete and should in part give license for them to receive higher costs than traditional 

wholesale generation markets.  

Another set of market failures unique to electricity follow from the need to meet 

specific physical criteria to maintain proper network frequency. Grid voltage and stability 

have public good attributes, as do grid security and reliability. Joskow and Tirole (2007) 

note that the possibility of network collapse makes operating reserves a public good and, 

without regulatory mandates on operating reserves, there would be underinvestment in 

such reserves resulting in lower overall levels of reliability.  
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Thus, while some aspects of electricity are readily translated into marginal costs, 

many others are not. In the nearly sixty years since Bonbright laid out the principles for 

public utility rates, policy makers are still struggling to construct rates that reflect these 

ideals. The latest ratemaking guidance from the National Association of Regulated Utility 

Commissioners (2016) underscores the persistent challenges of functionalization and 

allocation of costs. As a result of these challenges, questions of who pays for the fixed costs 

of the grid, and how much they contribute, are unsettled. The prospect of distributed 

generation and prosumers6 only complicates the equation. As a result, electricity tariffs are 

truly a policy outcome, dictated as much by political and equity consideration as by 

economics.  

The main policy process for most distribution utilities is the Integrated Resource 

Plan (IRP), an outline for meeting the company's objective of providing reliable and least-

cost electric service to all customers. These typically occur on 3-5 year time horizons, with 

minor adjustments in between. Any substantive changes in the interim are subject to rate 

cases or other hearings.  The IRP is developed with considerable public involvement from 

state utility commission staff, state agencies, customer and industry advocacy groups, 

project developers, and other stakeholders. The key elements of the IRP include: a finding 

of resource need, determining the preferred portfolio of supply-side and demand-side 

resources to meet this need, determining how these resources will be paid for, and an action 

plan.  A traditional flow chart illustrating the components is shown in Figure 6. 

                                                 
6 An electricity user who both purchases electricity from the grid and has the capacity to supply energy to the 

grid.  

http://www.pacificorp.com/es/irp/pip.html
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Figure 6: Flow chart for Integrated Resource Planning 

The goal is to build the system to meet national regulations on security, reliability, 

and grid access at the least cost to customers.  These national requirements come primarily 

from two agencies: FERC and NERC. The Federal Energy Regulatory Commission 

oversees the interstate transmission and sale of electricity. It is involved in ensuring fair 

sales practices when electricity moves across state boundaries and manages the 

development of infrastructure that extends across state lines. The North American Electric 

Reliability Corporation develops and enforces reliability standards and monitors grid 

security. State governments, through their public utility commissions or equivalent bodies, 

regulate retail electric service and oversee facility planning and siting. 

State utility commissions are responsible for assuring utility service is fair, 

reasonable, and nondiscriminatory. These organizations are represented in federal issues 

and share best practices through the National Association of Regulatory Utility 
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Commissioners, but otherwise operate largely independently. As such, rates and policies 

differ across state lines. Most state commissioners are appointed to their positions by their 

governor or legislature, while commissioners in 14 states are elected.  

As discussed further in the conclusion, a better understanding of utility service 

commission politics and policy processes is warranted, given the rapid technological 

changes taking place and pressure on current rate structures. The existing work on the 

politics and policy of PUCs suggests that utilities, interest groups, and the public influence 

decision making by affecting personnel and providing information. That said, there remain 

several competing theories that attempt to explain the operation of public utility 

commissioners. An economic theory of regulation suggests that public service 

commissioners are captured by organized interests (Peltzman, 1976; Stigler, 1971). In 

contrast, Berry’s study of commissions found that commissioners operate with two 

objectives: a “nonpecuniary” principle of rates and a goal of survival (Berry, 1984). 

Gormley’s study on public utility commissions focuses on the role of grass roots advocates 

and finds that they can be effective in PUC decision-making processes when issues are low 

in technical complexity (Gormley Jr, 1983). More recently, Ka and Teske (2002) found 

that legislative ideology is a central driver of redistributive decisions such as rate making. 

Understanding the policy process in this domain is critical to promoting progress but 

remains unclear. Further, the primary work on these issues pre-date the disruption of 

distributed energy technologies and the opportunities of the smart grid. Additional study 

of the politics of regulatory rate-making is warranted in light of the significant impacts 

these decisions have.  
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State PUCs manage grid access requirements for solar energy, dictate how installers 

will be compensated, set electricity tariff levels that implicitly dictate investment payback 

periods, and oversee the construction process for larger installations. However, they are 

not responsible for directly setting policy incentives which promote solar energy. This is 

the responsibility of state legislators who can write legislation providing subsidies or 

mandating requirements for the PUCs to enforce. Because efforts to address climate change 

have largely stalled at the federal level, the onus has shifted to the state and local levels 

(Rutland and Aylett, 2008).7  To date there are two primary incentives which promote 

distributed solar at the state level: net-metering and renewable portfolio standards.8 

Renewable portfolio standards require utilities to ensure a stated percentage of electricity 

sales come from renewable sources. This policy diffused through the states based on 

citizen’s demands (Matisoff, 2008) and now 29 states have some form of RPS as shown in 

Figure 7. More recently, some states have added solar carveouts which require a certain 

percentage of electricity come from solar or give bonus credit to distributed solar sources.  

                                                 
7 The federal government does directly subsidize the purchase of renewable energy capital. The federal solar 

tax credit, also known as the investment tax credit (ITC), allows the deduction of 30 percent of the cost of 

installing a solar energy system from federal taxes. This is a significant driver of solar growth, but given that 

its value is fixed, and for the installation as opposed to operation I chose not to discuss it in depth. This policy 

does not affect the “value of solar” i.e. the compensation for the electricity produced or the avoided costs of 

electricity which has a much larger effect on the payback period.  
8 That is not say that these are the only state policy incentives. RPS and net metering are simply the most 

widespread. For a discussion of the over 400 state and utility incentives that promote the installation of 

residential PV see: Matisoff, D.C., Johnson, E.P., 2017. The comparative effectiveness of residential solar 

incentives. Energy Policy 108, 44-54. 
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Figure 7: Renewable portfolio standards by state9 

RPSs are an external mandate which require utilities to procure renewable resources 

or install them themselves. This encourages utilities to provide customer incentives, but 

does not directly change the compensation for solar installers. Net metering on the other 

hand provides an implicit subsidy to customers. Net metering is a billing mechanism that 

credits solar energy customers for the electricity that they send back to the grid at the same 

rate as retail electricity prices. The meter runs forward when the home or business is 

drawing energy from the grid and backward when exporting electricity.  Figure 8 illustrates 

this process. The fact that customers receive a retail price (the same rate they pay) for their 

excess generation is an important distinction because this price includes much more than 

                                                 
9 Reprinted from Detailed Summary Maps, by Database of State Incentives for Renewables and Efficiency, 

January 2019 retrieved from http://www.dsireusa.org/resources/detailed-summary-maps/ 
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the wholesale electricity price. In most service territories the wholesale price of electricity 

is around a third of the final retail price.  

 

Figure 8: Net metering example10 

The retail vs. wholesale price discrepancy sets up a debate about which price more 

accurately reflects the true value of solar. This is currently a point of contention in PUCs 

across the country, including in the PJM territory, and has significant consequences for the 

continued spread of DPV. In the following section I further discuss how distributed solar, 

and in particular DPV with net-metering, are impacting electricity policy.  

1.3 Impact of Distributed Solar 

It is in the complicated technical and policy network described above that 

distributed solar is attempting to gain a foothold. Spurred on by cost reductions, policy 

                                                 
10 Image credit Florida Solar One, retrieved Jan 2019 from: http://floridasolarone.com/solar-home-net-

metering/ 
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incentives, new financing options and changing consumer preferences, distributed solar 

energy has seen exponential growth in the U.S. over the last decade. This expansion of 

distributed solar has changed the traditional utility/customer relationship and invigorated 

policy discussion about how to efficiently and equitably encourage continued growth of 

DPV while maintaining grid reliability. Electricity sector stakeholders across the country 

are recognizing the need to properly evaluate DPV, and acknowledging the current 

ambiguity surrounding the costs and benefits that drive DPV’s value. Under today’s 

regulatory and pricing structures, misalignments along economic, social, and technical 

dimensions have emerged, leading to inefficient policy incentives and price signals. 

Current pricing mechanisms based on kilowatt-hour (kWh) energy sales do not have the 

capacity to appropriately charge PV customers for the services they both use and provide. 

As solar penetrations grow utilities have pushed back on DPV and forced regulators 

to re-evaluate incentives.  From a financial perspective, utilities are concerned about 

revenue erosion as customers self-generate, and argue that they pay too high a premium 

for energy they are required to purchase from customers under net-metering schemes. 

Because retail rates are in excess of wholesale rates, they also pay costs associated with 

operation and maintenance of the grid and electricity delivery, services not provided by 

DPV installers. Previous studies have noted that the magnitude of utility lost revenues due 

to net metering is non-trivial and to compensate for lost sales, utilities may be forced to 

raise rates (Cardwell, 2013; Kind, 2013). These financial vicissitudes are challenging a 

utility business model that has remained largely unchanged since the 1930s, with the 

passage of the Public Utility Holding Company Act. Previously, decades of predictable 

electric load growth brought reliable returns for utilities and load was met primarily 
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through fossil fuel capacity expansions. Guaranteed rates of return were collected through 

kilowatt-hour charges on ever increasing demand. More recently, however, stagnant load 

growth, DPV, energy efficiency and other disruptive technologies have begun to threaten 

standard business practices.  

In addition to the financial concerns, DPV systems have several unique attributes 

including siting, operational, and ownership characteristics which differ from more 

conventional resources such as coal or natural gas power plants.  Since these PV systems 

are smaller, more modular, and have lower capital costs than traditional generation they 

can be added to the grid by actors outside the bounds of a utilities’ central planning. The 

electrical output of DPV resources is variable and uncertain, which means installers 

typically retain access to the grid. However, central resource planners do not have an ability 

to dispatch or shutoff the resource.  This can make the real-time balance of supply and 

demand for electricity more challenging. The intermittency of solar has real social costs 

and requires system planners to re-optimize grid operations and retool capacity 

investments. Unforecastable intermittency accounts for a portion of the social costs 

(Gowrisankaran et al., 2016) as load peaks occur in the evening, just as solar output is in 

decline. The steep ramp rate needed from conventional generators have been captured in 

the infamous “duck curve” (Denholm et al., 2015). Add in the need to accommodate must-

run plants, institutional constraints such as long-term contracts, transmissions congestion, 

and the result is a need for increased system flexibility to maintain reliability and 

accommodate solar. At the local level, increasing concentrations on individual feeders have 

led to concerns with harmonic distortion, voltage spikes, and reverse flows (Agnew and 

Dargusch, 2015).  Allocated optimally, solar can delay or offset the need for infrastructure 
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investment, but it can also necessitate additional spending on protections and control 

equipment to handle two-way flows.  

On the other hand, advocates note that DPVs provide some distinctive advantages 

in that they require no fuel, produce no emissions in generating electricity, and reduce line 

losses by generating at or near the point of consumption. In some jurisdictions solar costs 

are competitive with avoided cost estimates, and consumers have proven willing to pay a 

premium for “green electricity” (Roe et al., 2001).  Additionally, distributed solar has been 

suggested as a means of improving grid resiliency. At least in theory, PV can contribute to 

reducing outages by increasing the diversity of the system generation portfolio, dispersing 

generation assets to avoid dependence on electricity corridors, and providing backup power 

and black start capabilities when paired with control technologies, inverters, and storage. 

These factors interact in complex and often non-intuitive ways to produce a variety of costs 

and benefits for DPV owners, utilities, and society. Further complicating matters is the fact 

that the value of DPV is temporally, operationally, and geographically specific down to the 

individual feeder. This makes it very difficult to generalize from cost-benefit studies 

conducted on DPV or to compare any values across regions and will be discussed in more 

detail in Chapter 3. 

The growth of DPV has interacted with increased scrutiny of the contributions of 

fossil generation to climate change, a digital economy increasingly dependent on electric 

reliability, and aging transmission and distribution infrastructure, to propel the electric 

industry into a period of unprecedented change. Utilities, policymakers, and grid operators 

are now adapting to a market in which agents operate in a more decentralized grid, and in 

capacities that blur the lines between producer and consumer. These rapidly evolving 
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changes require, more than ever, that policymakers structure markets and tariffs in a 

manner that maximizes social benefits and minimizes welfare loss (Parag and Sovacool, 

2016). In order to do so, policy makers must be informed about the impacts distributed 

solar has on system operation, cost-recovery, the value of solar, and how solar installation 

changes patterns of customer use. The following section describes how this dissertation 

attempts to address that need.  

1.4 Framing the Analysis  

Having presented an overview of the technical and policy landscape, and the 

challenges introduced by distributed solar, the remaining task is to outline the importance 

of this analysis for the public and the policy audience. Electricity is involved in everything 

we do. Its reliability is central to national security, nearly every economic sector in today’s 

digital economy, and our general health and comfort. Nearly all citizens are consumers of 

electricity and as such are impacted by electricity rates. Distributed solar may affect both 

reliability and costs. While customers are very attuned to electricity outages they are 

notoriously insalient when it comes to energy costs (Sexton, 2015) and regulatory 

processes (Berry, 1979). That said, increasing penetration of distributed solar will require 

substantial changes to rates and rate structures and consumers will want to know why these 

changes are occurring and how it will affect them.  

Even in territories where low penetrations of DPV will mask the underlying issues 

for consumers, their tax dollars are being used for subsidies for renewable energy and their 

utility rates have built in costs associated with meeting the climate and energy policy goals 

that have been established by state legislatures. The continued development and 
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deployment of solar is in the best interests of all, as it helps decarbonize the sector with the 

largest emissions footprint. In order to achieve international climate goals distributed solar 

will have to play a larger role, particularly in electrifying the developing world (Rogelj et 

al., 2018). 

From a policy perspective this analysis is at the core of discussions on equity and 

efficiency.  To date the high cost of panels even with policy incentives has restricted their 

adoption primarily to high income consumers (Barbose et al., 2018). This is not unusual of 

new technology adoption, but what is concerning is that low-income users may be the ones 

subsidizing their spread. This occurs both directly as they contribute to the incentives, and 

more substantially, indirectly as their electricity rates rise to cover the fixed costs of the 

grid. According to the EIA’s 2015 Residential Energy Consumption Survey Energy, one 

in three American households face a challenge meeting their energy needs (EIA, 2015). As 

such, even a small change in their rates and bills can have a substantial impact.  This is 

particularly concerning in light of evidence suggesting that African American & Latino 

households have energy burdens three times higher than average (Drehobl and Ross, 2016). 

This is a domain in which policies truly affect outcomes and interact often in 

unintended ways. For example, in California a steeply tiered tariff structure was intended 

to discourage consumption above a threshold and recover more costs from large users. In 

practice it drove the heaviest electricity-consuming households to adopt solar because the 

tariff structure increased the private value of solar to such customers while reducing the 

incentive for consumers below median consumption. The implicit financial incentive for 

those who adopted solar due to California’s tiered tariff structure was nearly as large as the 

30% federal tax credit. The California experience suggests that rate design can greatly 
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influence the economic incentives for residential solar adoption and which customers 

receive those benefits (Borenstein, 2017). 

Finally, electricity rates are developed through a policy process that is understudied 

and poorly explained. This analysis sets the stage for further study on how policy change 

occurs in the electric sector. In chapter 2, I investigate the utility revenue, rate, and bill 

impacts of large-scale solar penetration resulting from an exogenous policy mandate. In 

chapter 3 I investigate the spatial distribution of solar installations, construct a model which 

predicts solar adoption at a more granular level, and demonstrate the importance of 

including distributed resource plans in IRP processes. In chapter 4, I study consider what 

happens to household electricity consumption once a consumer has installed residential 

PV. This yields important insight for load forecasting and equity discussions.  To conclude, 

I discuss some of the policies and rates that have been proposed to address the concerns 

generated by increasing penetrations of distributed energy. In particular, I examine the 

desire for “cost-causal” rates and the feasibility of implementing dynamic pricing. 
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CHAPTER 2. THE IMPACTS OF SOLAR PV ON ELECTRICITY 

COSTS 

2.1 Introduction  

Chapter 1 established that solar energy has been a rapidly growing source of 

electricity in the United States over the last decade, with 40 GW installed through 2018.11 

In recent years, the proliferation of solar rooftop systems has taken off at the residential 

and commercial level, and utility-scale solar installations have grown as well. Recent 

evidence suggests residential photovoltaic (PV) systems were the fastest growing sector in 

the U.S. solar market in 2015 (Solar Energy Industries Association, 2016).  This trend in 

residential PV installations has been accelerated by the combination of declining 

manufacturing costs for PV modules and attractive local, state, and federal financial 

incentives. As a consequence, several states in the U.S., particularly California, New 

Jersey, Colorado, and Texas, have seen substantial deployment of solar resources in recent 

years (Rai and McAndrews, 2012b). However, even current levels of deployment represent 

only about 1% of electricity generation in 2015 (EIA, 2016) and is a small portion of the 

market potential in the U.S. (Paidipati et al., 2008), indicating the possibility of future 

market expansion. This expansion of distributed solar changes the traditional utility-

customer relationship and demands additional research into how solar growth will affect 

both sets of stakeholders.  

Previous studies have noted that the magnitude of utility lost revenues due to 

eroding sales is non-trivial, especially if there are no mechanisms in place to adjust for lost 

                                                 
11 Solar Energy Industry Association: http://www.seia.org/news/us-solar-market-set-grow-119-2016-

installations-reach-16-gw 



 24 

sales.  To compensate for lost sales, utilities may be forced to raise rates, which further 

incentivizes customers to invest in energy efficiency and distributed generation, leading to 

an additional decline in revenues for the utility. This cycle has been coined the “death 

spiral” (Cardwell, 2013; Kind, 2013); as a result, utilities may be forced to explore different 

business models and rate options (Brown et al., 2015; Costello and Hemphill, 2014).  When 

utilities raise retail prices for all customers, this rate adjustment process leads to  an implicit  

subsidization because net metered customers are, in effect, permitted to sell excess 

generation back to the utility at the retail rate (Borlick and Wood, 2014; Brown and Lund, 

2013; Rose et al., 2008). Prior literature establishes that bills will be reduced for distributed 

solar adopters but will increase for nonparticipants (Eid et al., 2014). The implicit 

subsidization between non-adopters and adopters of solar technology may have important 

distributional effects within a given rate-class because residential solar adopters are 

typically households with higher incomes (California Public Utilities Commission, 

2013).12  While other studies have focused on the subsidy between net energy metering 

(NEM) participants and non-participants (henceforth simply participants and non-

participants), I examine how solar penetration can also impact the distribution of costs 

across rate classes, causing one or more rate classes to subsidize others.  

The purpose of this paper is to investigate and highlight the channels through which 

subsidization across and within rate classes can arise in practice.  This effect has not been 

widely studied in the literature because most research focuses only on impacts to residential 

consumers. Importantly, there are substantial differences between residential and non-

                                                 
12 Not all NEM participants are residential consumers as both small and large commercial customers are also 

eligible to participate in NEM. 
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residential rates and rate structures. By simulating the effects of combining a solar 

renewable portfolio standard (RPS) carve-out with a utility-level NEM program, I am able 

to investigate and detail the consequences of different solar installation patterns on the rates 

and bills of customers of electric utilities operating in wholesale markets. The simulation 

combines data from the PJM wholesale market, solar production data from installations in 

New Jersey, and publicly available demand profiles from a New Jersey electric utility. My 

methodology explicitly focuses on two metrics that are likely impacted by solar penetration 

and quantifies the extent of cross-subsidization between rate-classes: (1) retail electricity 

rates (cost per unit) and (2) electricity bills (total monthly cost). On one hand, rate impacts 

provide an indication of the extent to which overall electricity rates might increase. On the 

other hand, bill changes reflect the ceteris paribus effect of solar installations between 

NEM participants and non-participants.  

This analysis contributes to the existing literature in three important dimensions. 

First, nearly all of the research on net metering focuses only on the impacts on residential 

or commercial customers.13 By only modeling the impact on a single class of customers, 

these studies do not permit analysis of cross-subsidization between rate classes. This 

analysis considers multiple rate classes and thus permits explicit analysis of cross-

subsidization patterns. Second, past studies primarily focus on the adoption decision and 

rate design. In comparison, this study (1) employs a constant rate design, (2) treats solar 

adoption as exogenously driven through predetermined RPS requirements, and (3) 

incorporates effects of solar penetration on the timing of system-wide peak demand. This 

                                                 
13 The limited exceptions to this include an analysis by the California Public Utilities Commission (2013) 

and Brown et al. (2016). 
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allows me to clearly isolate the effects of solar generation from these other factors. Third, 

most related studies in the U.S. focus only on changes in one state, California. Given 

California’s unique rate structures and high electricity prices, the results of these studies 

may not be representative of how solar carve-outs and NEM programs may impact 

electricity rates or customer’s bills in other regions across the U.S. In contrast, I model 

these impacts using rate structures and electricity prices derived from representative 

wholesale electricity markets and electricity distribution companies in the northeastern 

U.S. 

The results of this study indicate that the fear of a utility “death spiral” may be 

exaggerated. I find that solar can provide significant electricity generation in 2030 with 

only a modest increase in bills for non-participants. Even in an extremely aggressive 

scenario, bill increases for non-participants would not be cost prohibitive. The findings 

acknowledge the subsidy of participants by non-participants but also highlight the cross-

subsidization between rate-classes. In particular, I find impacts on customer rates and bills 

depend on the installation pattern. High levels of distributed solar can alter the system peak 

hour, which affects the allocation of costs.  

The article is organized as follows. Section 2 provides a brief summary of the 

current literature on NEM impacts for customer rates and bills and describes how this study 

contributes to this literature. In Section 3, I describe the model used to analyze the impacts 

of NEM at various levels of PV penetration. This includes discussion of the underlying 

data and methodology used to simulate these effects. Section 4 presents the results, 

demonstrates the multiple facets of cross-subsidization issues, and illustrates how the 

distribution of savings varies across the counterfactual installation scenarios. Finally, 
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Section 5 concludes with a summary, addresses the policy implications of the results from 

the analysis, and sets the stage for future contributions. 

2.2 Background and Literature Review 

Along with other complementary financial incentives, two common programs for 

incentivizing solar adoption in the U.S. are renewable portfolio standards and net energy 

metering.  RPS statutes require a certain percentage of electricity generation or retail sales 

to come from renewable sources. Associated solar carve-outs, where a fraction of the RPS 

requirement must be accounted for by generation from solar resources, are now 

commonplace and create additional incentives for adoption of distributed PV systems. As 

of 2015, 29 states have implemented RPS statutes, and 22 of these states have specific 

provisions for solar or distributed generation (DSIRE, 2016). In nearly all these states, RPS 

requirements interact with the NEM programs offered by some or all utilities.14 

A large portion of the literature on NEM is focused on California. A combination 

of excellent solar resource, high electricity rates, and aggressive policy support has made 

the state a leader in solar installations. This, in turn, has made the consequences more 

pressing and relevant for California, but other locales are reaching significant penetration 

levels. Borenstein (2007) provided the early work on calculating bill savings for residential 

NEM customers of two utilities by analyzing the impact of 2 kW systems. The same data 

set was later used for an analysis of how rate design affects bill savings (Darghouth et al., 

2011). Related studies include Borenstein (2005b, 2008) and Darghouth (2016), which 

                                                 
14 As of 2015, 44 states required some or all utilities to offer some form of NEM programs Database of State 

Incentives for Renewable Energy (DSIRE), 2015. Map of Net Metering Policies North Carolina State 

University, Raleigh, NC. 
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investigate the impact of time-of-use or real-time pricing structures on PV adoption. Cai et 

al. (2013) have also studied the impact of PV on retail electricity rates using a modelling 

approach and including a model of the rate case proceeding. The grey literature is rich in 

this subject area, including a thorough ratepayer impact analysis conducted by the 

California Public Utility Commission (2013). 

Additional studies for other U.S. states are sparse. The literature on the east coast 

impacts of solar is quite dated (Cook and Cross, 1999). The most similar study to my own 

analysis is that of net-metering impacts among low-voltage network users in Spain (Eid et 

al., 2014). Eid et al. (2014) examine cross subsidies, revenue requirements, and cost 

causality; however, scenarios are focused on variations in program definitions, examining 

how different net metering timeframes can impact utility cost recovery. Furthermore, Eid 

et. al. (2014) make use of hypothetical solar production; in contrast, this study employs 

observed solar production data from NEM program participants.  

Central to the results are questions concerning cross-subsidies both within and 

between rate classes. Cross-subsidies have taken on multiple meanings in the literature. In 

some cases, they refer to subsidization of grid services to solar adopters by other grid users 

(see Eid et al. (2014) and Picciariello (2015b)). In other cases, cross-subsidies may refer to 

subsidization across rate classes and voltage levels (see Rodriguez Ortega (2008), 

Picciariello (2015a)). In this study, I examine both cross-subsidization patterns, namely 

within-rate class and across-rate class subsidization.  
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2.3 Model, data, and methodology 

In this section, I describe the construction of the model, the assumptions it 

incorporates, and the sources of the data used for simulating electricity rates and customers’ 

bills.  Given my assumptions and calibrations, I model the impact that varying penetrations 

of solar electricity has on system costs, as well as impacts on household, commercial, and 

industrial consumer electricity bills. The model uses data from wholesale electricity 

markets, distribution costs, customer hourly demand curves, and solar generation profiles 

in order to compile the total revenue that customers need to pay. After revenue 

requirements are calibrated, the model allocates the utility’s revenue requirements across 

different rate classes to simulate a typical set of customer rate structures.15 The flexible 

construction of the model allows me to demonstrate impacts of solar electricity generation 

requirements under a wide range of counterfactual scenarios.  

This simulation model is relevant for a representative utility that divides its business 

into an electricity supply system (that buys and sells power and manages high-voltage 

transmission lines along with associated transformers) and an electricity delivery system 

(that manages distribution substations, transformers, poles, and service lines that deliver 

electricity to customers) that is located in a region with a competitive wholesale electricity 

market. The model assumes the utility’s customer base is divided into three separate 

classes: residential, small commercial, and large commercial and industrial (C&I) to align 

                                                 
15 Though I model a distribution utility in an area with a restructured electricity market, I assume that the 

distribution customers are also electricity customers.  Though this may not strictly be true since in many areas 

customers can choose their electricity provider, all providers would be responsible for the same electricity 

and renewable requirements.  Therefore, for simplicity, and without loss of generality, I model the 

distribution utility as also providing electricity to all customers. 
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with many existing rate structures.16 All customers are billed based on a rate structure that 

is composed of charges based on electricity usage while non-residential customers are also 

billed based on their level of peak demand.  

I first begin by detailing the data and methodology I use to generate customer and 

electricity market profiles underlying the simulation.  I then discuss how solar generation 

is incorporated into electricity prices and rate structures, including a Net Energy Metering 

program and how this affects electricity rates and bills in the model. I then present the 

details of the four different counterfactual scenarios I simulate before presenting the results 

in of these simulations in the following section. 

2.3.1 Customer load shape profiles 

I calibrate the model using aggregate customer load profiles from 2011 to 2014 

obtained from a utility operating in the PJM wholesale electricity market. A separate load 

profile was calculated for each of the three rate classes in the model: residential, small 

commercial, and large commercial and industrial. Using monthly averages across the four 

years, a load profile is constructed to simulate representative hourly load for a typical 

weekday, weekend, and a system peak day for each rate class. Based on these calculations, 

a total of nine load profiles were constructed from these underlying data. Additionally, 

these load profiles are unique for each month of the year.  

  

                                                 
16 I use data from a northeastern U.S. utility to serve as a representation of how an average utility’s business 

is divided between these two groups. 
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2.3.2 Hourly solar generation of participants  

In addition to the customer load shapes, I build solar generation profiles based on 

data from solar customers in New Jersey from 2010 to 2013. The customer-level dataset 

includes both the system size (kW) and hourly solar generation (kWh) for customers with 

installed PV systems. I divide the hourly generation by the total system size to calculate a 

capacity factor for every hour of the year. Independent solar profiles are then created for 

each of the rate classes to account for different optimizations (i.e., to maximize peak 

simultaneity or maximize total output). In addition to the average solar profile, a peak solar 

profile was created to represent the solar production on a peak demand day in each month 

for each of the four years.17  

2.3.3 Supply cost data  

In order to simulate how a representative utility customer’s bills will change in 

response to increased solar penetration, I model the effect of solar on the region’s wholesale 

market prices.  Since data in the model are obtained from a utility in the northeastern U.S., 

I model the PJM wholesale electricity market to simulate wholesale electricity price 

changes.  I focus primarily on changes to the electricity markets through both reduced 

demand (from NEM customers) and increased supply from grid-scale solar installations. I 

statistically estimate a market supply curve using historical market data as well as hourly 

demand using historical data from the PJM electricity market averaged over 4 years. 

Specifically, I model the hourly, PJM supply curve as a quadratic function of hourly load 

                                                 
17 I compared the monthly average precipitation and temperature over a 4-year solar production sample period 

to the National Oceanic Atmospheric Administration's “climate normals” and find no statistical difference 

between those normals and the average temperature and precipitation. 
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and a linear function of daily natural gas prices. However, the simulation holds natural gas 

prices constant over the time horizon of the study. This assumption allows me to isolate 

changes in electricity rates to only reflect changes caused by increased solar penetration. 

Nevertheless, due to the size of the wholesale market relative to the utility’s electricity 

demand and the exogenously determined solar requirements, there are limited price 

changes18 in the PJM wholesale market price in response to increased solar penetration.  

In addition to wholesale electricity prices, supply costs typically include the costs 

of electricity transmission, ancillary services that ensure grid reliability, and, in this case, 

the cost of complying with the solar mandate from the RPS.  Firms usually comply with 

solar mandates by purchasing Solar Renewable Energy Credits (SRECs) from owners of 

solar installations.  One SREC certifies that 1 MWh of electricity was produced from a 

solar installation.  Retail electricity providers must purchase enough SRECs each year to 

show that they have met the percentage of solar generation required by the relevant 

legislative statute.  If firms do not purchase enough SRECs to comply with the statute, then 

they must pay an alternative compliance payment (as set forth in the statute) to the regulator 

for each MWh of generation they are short.  This mechanism implicitly puts a price ceiling 

on the price of SRECs. 

Since the market for SRECs tends to be illiquid and volatile,19 I am forced to make 

some assumptions about the future price of SRECs in this simulation.  New Jersey has one 

                                                 
18 These price changes depend on the amount of solar penetration in the model, however, since the PJM 

market is large (hourly load of 80-100 GW) even extremely aggressive assumptions about solar penetration 

does not change load or PJM electricity prices by more than 1%. 
19 For example, during energy year 2014 in New Jersey, SRECs were traded at between 40 and 670 dollars 

per MWh. The number of SRECS traded by month varied from 40,538 to 2,923,695. 

http://www.njcleanenergy.com/srecpricing  

http://www.njcleanenergy.com/srecpricing
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of the most aggressive solar mandates in the country in combination with a transparent 

SREC market, I have chosen to model SREC compliance costs as a function of the 

alternative compliance payment in New Jersey.20  Other industry analysts have used 50% 

of the alternative compliance payment, and historically this has been a reasonable 

estimate.21 This analysis follows suit. It is important to note that while the non-compliance 

price drives the maximum value of an SREC, actual SREC prices are dependent on the 

market supply. After computation of these costs, SREC compliance costs are added to 

electricity, transmission, and ancillary service costs to construct a total supply cost for the 

utility. 

2.3.4 Rate design  

I model a rate design that is relatively common across many electric distribution 

utilities in restructured electricity markets in the U.S. This rate design combines volumetric 

energy charges (cents per kilowatt-hour, ¢/kWh) with peak demand charges (dollars per 

kilowatt, $/kW) to recover the costs of providing electricity to the customer. The bulk of 

the volumetric energy charge is for the cost of electricity generation: the supply rate. The 

supply rate is used to recover costs from electricity generation purchased on the PJM 

wholesale markets and SRECs as discussed above.  

  

                                                 
20 While solar costs do vary somewhat throughout the United States, these differences tend to be somewhat 

small and have begun to converge across locations. 
21 In New Jersey energy year 2014 (referenced above) the weighted average trade price over the year was 

179.23 which is 53% of the alternative compliance price of 339 dollars.  



 34 

2.3.4.1 Supply Rate  

For all customers, supply rates are distinct for summer and winter. Residential and 

small commercial customers have day and night rates while for C&I customers the 

day/night distinction is replaced by on-peak/off-peak rates. These rates are calculated for 

each rate class by dividing the total cost of energy over a period (summer and winter, days 

and nights, and on-peak or off-peak) by the amount of energy used during that period. The 

total cost over a period is simply the hourly price multiplied by the quantity that each 

customer class uses. The supply rate is then the average cost of energy over a period for 

each rate class. 

2.3.4.2 Distribution Rate 

The utility recovers the costs of delivery through a distribution rate that varies by 

customer class.  Residential customers are billed for distribution services using a 

volumetric energy charge to recover costs associated with delivering electricity to the 

customer’s premises. The model also incorporates a simple seasonal variation in the 

residential customer’s rate structure, where summer distribution rates (June through 

September) are higher than winter rates.  

Small commercial customers have a more complicated distribution rate structure. 

They are charged both volumetric energy and demand rates, each accounting for 

approximately 50% of the total small commercial distribution costs. The volumetric energy 

charge ($/kWh) is broken down into summer and winter as well as day and night rates. The 

demand charge has only a summer/winter distinction.  
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Finally, large commercial customers have a distribution rate composed entirely of 

demand charges which again are higher in summer than winter months. The demand charge 

is based on each customer’s maximum hourly demand (kW) in each month. Typically, 

maximum demand is based on usage in any 30 minute or smaller periods, but the 

granularity of this model imposes an hourly restriction.  

2.3.4.3 Rate for miscellaneous expenses  

In addition to supply and distribution rates, the final energy charges include 

volumetric (per kWh), social benefit charges and other miscellaneous fees commonly 

imposed by public utility commissions to finance market transition costs, securitization of 

stranded costs, system control charges, energy-efficiency programs and electricity 

assistance for low-income households. The total value of these fees in the simulation is 

about 2.5 ¢/kWh. These additional charges for each customer class are assumed to be 

constant over the analysis period, although the amount of energy over which they are 

recovered over does vary. This means there are only re-distributional effects within 

customer classes. Because utilities incorporate them into rates in various forms, I chose to 

categorize them separately. Thus, in the results they are not included in supply or 

distribution rates, but they are included in customer bills.  

2.3.5 The NEM program 

Net energy metering can be applied very differently across jurisdictions with 

diverging impacts. In this analysis, NEM enables retail customers who generate electricity 

through their own renewable systems to receive the full retail price for each kWh of 

electricity their system produces up to, but not exceeding, 100% of their electricity usage 
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over the course of the year. Based on this program stipulation, the simulation constrains 

customer electricity bills to be non-negative.  

In practice, to be eligible for net metering, customers must have an interconnection 

agreement in place with their utility, which confirms that the generating capacity of their 

system does not exceed the customer’s annual electric needs. The most common NEM 

program design allows for customers to be credited at 100% of the retail rate for all 

electricity produced less than their consumption in each month.22 Additionally, when 

production exceeds usage the meter spins backwards and customers are provided with 

credits. These credits are “netted” and then paid back on an annual basis. Previous literature 

has shown that yearly rolling credits can exacerbate problems of network cost recovery 

(Eid et al., 2014).  In the simulation, no customers receive annual payments for generated 

electricity, and for all customers, annual consumption of electricity always exceeds annual 

generation of solar electricity. 

2.3.6 Simulation Methodology  

I use the above inputs and assumptions to simulate both rates and bills under various 

solar penetration scenarios.  To understand the impact of solar penetration on electricity 

rates and bills, it is essential to understand the underlying accounting methods used to 

calculate rates in the model. The model construction assumes that rates are calculated so 

that the utility exactly meets its revenue requirement and rate of return. Further, I make 

additional assumptions to isolate the impact of solar penetration on revenue requirements 

                                                 
22 The “value of solar” has been a hotly contested issue between utilities and the solar industry. While some 

jurisdictions have rolled back net metering policies or capped participants, the norm remains a retail rate. 

https://www.technologyreview.com/s/545146/battles-over-net-metering-cloud-the-future-of-rooftop-solar/ 
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and market outcomes. First, I assume that demand in the PJM wholesale market remains 

fixed over the time period of study, except for the new solar installed. Additionally, I 

assume the representative utility demand is constant across all rate-classes during the 

period of study. Second, I hold the number of customers in each rate class fixed throughout 

the simulation period. Holding the ratio of demand and number of customers fixed allows 

me to comment on the shifting costs between rate classes, isolating these effects from 

population dynamics or changing energy use patterns which would also influence cost 

allocation.23 Third, the distribution costs of the utility remain constant in real dollars each 

year. Thus, the utility is not forced to make extraordinary equipment upgrades nor able to 

defer routine maintenance, a reasonable assumption at these relatively low penetrations.  

These assumptions imply that all the changes in supply rates are due to changes in 

demand due to NEM customers, the addition of more grid-connected solar, and changes in 

the costs and quantities of SRECs, rather than other changes in the electricity market.  

Moreover, since distribution costs are held constant in the simulation, changes in these 

rates are a function of the addition of NEM customers and a reallocation of costs across 

customer classes.  

This simulation takes the inputs and assumptions described above and calculates 

counterfactual electricity and distribution rates.  Electricity rates are calculated by using 

the estimated PJM market supply curve and adding zero marginal cost production from the 

solar generation in the scenario to the base of the supply curve.  This effectively shifts the 

                                                 
23 In concert, these assumptions are likely to slightly over-state the effects of high levels of solar penetration 

since growth in electricity demand will mute the effect that solar has on wholesale electricity prices and 

additional customers would allow the distribution utility to have a larger customer base over which to spread 

any decrease in sales due to more net metering customers. 
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supply curve outwards and reduces wholesale electricity prices in hours with solar 

generation.  The electricity rate is then determined by this new wholesale electricity price, 

transmission costs (assumed constant within the simulation), and the cost of SRECs 

associated with meeting the RPS requirement and dividing by the total quantity of 

electricity consumed. 

The distribution rates are calculated by apportioning distribution costs to each rate-

class based on their respective percentage of demand during the peak demand hour of the 

electricity system, termed “coincident peak demand” and converting this into a rate. The 

apportionment of total distribution costs to each rate class is affected by solar in two ways: 

(1) by changing the hour of coincident peak demand, and (2) by reducing demand from a 

particular rate class. Once the share of total costs attributable to a rate class is determined, 

they are further divided into energy/demand, summer/winter or day/night rates based on 

average total and peak monthly usage.   

To calculate bills, the rates for each rate class are multiplied the by the respective 

energy usage and fraction of coincident peak demand of the rate class.  Average bills are 

determined by multiplying demand (net of solar) by the supply and distribution rates. This 

method introduces an implicit constraint on bills, as average bills should also equal the 

utility’s total costs divided by the number of customers. Participant and non-participant 

demands are also broken out separately and multiplied by rates to determine the diverging 

effects on these groups. Using the average system size, the solar generation profile, and the 

required MWh to meet the RPS mandate, I construct an estimate for the number of solar 

participants in each rate-class.  Thus, while all customers face the same rates, NEM 
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customers buy less energy from the utility and thus have smaller bills. Unlike previous 

studies, I hold the rate structure constant throughout the simulations.  

2.3.7 Solar Penetration Scenarios 

Since New Jersey is widely recognized to have one of the most aggressive solar 

generation goals in the country and because New Jersey publicly reports disaggregated data 

on solar installations, I use currently proposed solar mandates in New Jersey as a template 

for the solar penetration scenarios.  New Jersey’s current law requires 4.1% of electricity 

sold in 2028 to come from solar sources with yearly interim goals. I choose my 

counterfactual simulation scenarios to closely match these requirements, with a base case 

requirement of 5% by 2030. Further, the allocation of solar installations that are distributed 

systems (residential, small commercial, and large commercial and industrial participants 

in a NEM program) versus utility-scale systems are also chosen to match the New Jersey 

data.  

Across the different counterfactual scenarios, I vary three parameters and explore 

how variations in these parameters affect both electricity rates and customer bills across 

the three rate classes. These parameters are: (1) the amount of solar generation required in 

each year of the analysis (determined by the solar mandate), (2) the proportion of solar that 

is grid-connected versus distributed and therefore participating in a NEM program, and (3) 

the allocation of distributed solar across three rate classes (residential, small commercial, 

and large C&I).  In each of the scenarios, the current stock and distribution of solar capacity 

is based on 2015 EIA data on solar generation in the mid-Atlantic region. 30% of installed 
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solar is grid-connected. Of distributed systems, 33% has been installed by residential 

consumers, 13% by small commercial, and 54% by large commercial and industrial clients.  

I first model a “base-case” scenario where I approximate existing New Jersey solar 

requirements and recent growth rates in solar installation across customer classes.24 The 

base-case specifies that 5% of electricity sold in New Jersey must be from solar by 2030. 

In the base-case, grid-connected solar accounts for 35% of new, annual installed capacity, 

residential solar accounts for 35% of new additions of NEM solar, small commercial solar 

accounts for 13% of new additions of NEM solar, and C&I accounts for 52% of new 

distributed capacity. 

There have been recent proposals in many states to dramatically increase the solar 

carve-out (and renewable requirements in general) up to twenty or twenty-five percent of 

sales.  Therefore, I compare the base case to three other scenarios where 15% of electricity 

sold is generated by solar by 2030.25 This increased solar requirement also accentuates the 

impacts of solar additions and clarifies the impacts of higher levels of solar penetration. 

Lower levels of solar additions have more muted effects. I vary the distribution of solar 

across customer classes and the fraction of grid-connected solar to examine how solar 

installation patterns affect both rates and bills for customers.  These scenarios are 

summarized in Table 1. 

  

                                                 
24 Growth rates of solar installation only affect the flow of new installations. These are added to the existing 

stock of installations across rate classes. 
25 Since all of the solar adoption in the model is driven by the Renewable Portfolio Standard, changing 

financial incentives for the adoption of solar either on the federal or state level will not affect the results I 

display, though of course they will have important distributional effects outside of the electricity rates and 

bill I discuss here. 
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Table 1: Solar scenario definitions 

 Base Case High Case High – High 

Residential  

High – High 

Grid 

Solar Requirement in 2030 5% 15% 15% 15% 

Proportion of grid-

connected (utility scale) 

solar additions 

30% 30% 30% 70% 

Proportion of NEM solar 

additions in residential 
33% 33% 67% 33% 

Proportion of non-

residential NEM additions 

in small-commercial 

20% 20% 20% 20% 

2.4 Results and discussion  

I examine the impacts of these solar penetration scenarios, over time, across 

customer classes, and between NEM participants and non-participants. The metrics of 

interest include electricity rates (supply and distribution), electricity bills, shifting peak 

hours, and differences in bills for solar participants and non-participants.  All results are 

reported in constant 2010 dollars.  

It is useful to note that despite making a number of modeling assumptions in the 

analysis, such as constant demand and natural gas prices across time, all these assumptions 

are held constant across scenarios detailed in Table 1. Therefore, comparing across 

scenarios allows an accurate assessment despite imprecision caused by making necessary 
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assumptions about the rate-making process and economics of the wholesale electricity 

market. 

2.4.1 Rate impacts by customer class 

I begin by investigating how electricity rates change as solar penetration increases. 

As noted above, the electricity rate is composed of both a supply and distribution 

component (as well as miscellaneous expenses). When measuring the impacts as a 

percentage change in rates in 2030 relative to 2015, it is important to note that on average, 

supply rates (largely electricity, transmission, and SREC costs) are higher than distribution 

rates leading to smaller percentage changes in supply rates than in distribution rates. Also, 

both supply and distribution rates are higher in the summer than the winter. Comparing the 

Base Case and the High Solar scenarios leads to the conclusion that the penetration of solar 

PV systems has disparate effects on supply and distribution rates.  

Figure 9 presents the changes in supply rates across scenarios relative to 2015. 

Across all customer classes, supply rates are forecast to remain relatively constant between 

2015 and 2030 in the Base Case. The de minimis change is due to slight decreases in 

wholesale electricity prices and the cost of SRECs. In contrast, there is a significant 

difference between the base case in 2015 and the high cases in 2030. Supply rates increase 

in the High Cases due to an underlying cost increase of about 5-10% driven by increases 

in SREC and ancillary service costs, which are paid for by all customers, and a larger 

reduction in sales, which spreads the SREC costs over a smaller base. The SREC increase 

accounts for about 1¢/kWh of the increase over the Base Case in 2030; however, this 

estimate is an outcome of input price assumptions for SRECs. No increase in ancillary 
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services is assumed in the Base Case but an increase of 1% of the value of sales is assumed 

in the High Case, reflecting a doubling of these costs above the Base Case. The amount of 

solar installed in the High Case is not enough to significantly alter the PJM supply curve 

to drive down energy costs. This is mainly a consequence of the assumption that changes 

in market supply are limited to the effects of an RPS in one state of the PJM market. In 

reality, the broader addition of solar across the region would have a more substantial effect 

on the PJM supply curve and potentially drive down energy prices throughout the region.  

 

Figure 9: Supply rates 

Since differences in supply rates among the high cases are minimal, I only present 

one of the high solar cases here. The supply rates are primarily impacted by the level of 

solar installation and not by installation patterns across rate-classes, which have a more 

pronounced effect on distribution rates. 

Comparatively, the impacts on distribution rates are more variable across the 

scenarios and customer classes as shown in Figure 10. Results are presented as percentage 
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changes relative to 2015. In the Base Case, distribution rates for residential and small 

commercial customers are forecast to increase between 2015 and 2030, while they are 

forecast to stay relatively constant for commercial and industrial customers. For all three 

rate classes, Base Case changes in distribution rates over the 15-year period increase less 

than 8% relative to rates in 2015.  Similarly, rates for the miscellaneous expenses, described 

in Section 3.4.3, increase by less than 5% in the Base Case.  

 

Figure 10: Changes in distribution rates 

Distribution rates change much more significantly in the high solar penetration 

scenarios. With high solar penetration, distribution rates are higher in the High Case and 

the High Residential (Res) Case than in the High Grid Case for residential customers. In 

contrast, distribution energy rates decline in these cases for small commercial customers. 

The increase for residential customers (as much as 27%) is due to changes in the hour of 

peak system demand, which is caused by changes in solar generation which impacts the 

allocation of distribution costs. When customers are generating their own electricity from 

behind-the-meter solar, this generation translates to a reduction in demand for the utility 
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and not as additional supply of energy. Since solar is generating energy during the 

afternoon when the utility system peak has traditionally occurred, it reduces this system 

peak during those hours. As a result, peak utility system demand shifts and the new peak 

occurs when solar production drops off in the evening.  As the hour of peak demand moves 

later in the day, the proportion of the peak that is attributed to residential customers grows. 

Because of this shift, residential customers move from being responsible for 45% to 53% 

of total system distribution costs, driving up their costs substantially. In the High Grid case, 

this transition is not as drastic since the majority of the RPS mandate is met by supply-side 

installations and, hence, does not differentially affect hourly demand across rate classes. In 

the 2030 High Grid case, residential customers are only responsible for 46.7% of system 

peak. In this case, the increase in the distribution rate is driven by reduced sales to NEM 

customers.  

In the High Case, the majority of NEM solar capacity is in the C&I sector, with 

only 35% of the installation capacity in the residential rate-class. This explains why 

distribution rates for residential customers increase slightly more between 2015 and 2030 

in the High Case compared with the High Res Case. The beneficiary of increasing 

residential rates in the High and High Res cases are small commercial customers. As the 

peak shifts later in the day, from 4:00 p.m. in 2015 to 8:00 p.m. in 2030, small commercial 

customers reduce their percentage of system peak demand. Intuitively, this makes sense 

because they primarily use electricity during daylight business hours, and their usage 

begins to decline after 4:00 p.m.   

In contrast, demand charges for small commercial and C&I customers generally 

increase across all scenarios.  This is mainly due to reductions in peak demand for NEM 
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customers, which causes rates to increase for all customers in order to recover the same 

level of costs. In general, the alternative high penetration scenarios adjust the allocation of 

new solar installations across rate-classes, and the simulations reveal these variations lead 

to non-trivial changes in the distribution costs attributable to each customer class. Overall, 

the rate class that installs solar at the highest rate avoids more distribution costs and pushes 

these charges on other rate classes. Because these scenarios are fit to only approximate 

current (and alternative) policy, I do not make any conclusions about the total value of the 

impacts. Rather, I emphasize that the results of the simulation illustrate that the impact on 

rates for a particular class of customers is highly dependent on the level of solar 

installations in other rate-classes. 

2.4.2 Bill impacts by customer class 

When discussing the impacts of solar, it is important to distinguish between 

electricity rates and bills. Even when rates go up, solar installers buy less electricity and, 

as a result, pay lower bills. This is a primary source of cross subsidies between participants 

and non-participants within the same rate-class that has been documented previously 

(Picciariello et al., 2015b), and I discuss further below. However, unlike existing studies, 

this analysis also allows for the possibility that cross-subsidies can occur between the rate 

classes, a phenomenon not yet documented in the literature. In the presentation of bill 

results, all comparisons are made relative to 2015 non-participant bills.  

As with distribution rates, customer bills are dependent on the distribution of new 

solar installations. In the Base Case, average residential electricity bills are projected to 

decrease by about 1%, small commercial customers experience a 0.1% increase in average 
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bills, and C&I bills show the most significant average savings at 4.4%.26 These savings 

are, as expected, primarily determined by the assumptions regarding how the distribution 

of solar generation is allocated across rate classes. Another reason for significant savings 

for C&I customers is that their bills are driven primarily by demand charges, which are 

influenced more significantly by solar since solar peak and demand peak are typically 

correlated for these customers.  

 

Figure 11: Average percent changes in electricity bills: 2015 – 2030 

Average percent changes in electricity bills can be misleading as they represent a 

weighted average of participant and non-participant bills.  The weighting changes as more 

customers install solar so more information can be gleaned from looking at the 

disaggregated effects, shown in Figure 12 and Figure 13.  

                                                 
26 All percentage changes are reported in real terms.  
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Figure 12: Percent changes in participant bills: 2015-2030  

The magnitude of participant bill savings is driven primarily by the assumption of 

average system size, as expected. The assumptions for solar system sizes were derived 

from the Solar Energy Industries Association statistics on system installations.  

 

Figure 13: Percent changes in non-participant bills: 2015 – 2030  

Non-participant bills are influenced by assumptions about SREC costs. If SREC 

costs are high, then non-participants will be forced to cover those higher costs. The Base 
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Case simulations suggest that a significant amount (5%) of solar capacity can be added 

with only modest (1-2%) increases to non-participant bills. Bill increases in the high 

penetration scenarios (15%) reflect the cross-subsidization between non-participants and 

participants. Depending on the rate-class and scenario, average non-participant bills 

increase between 4% and 14%. When comparing across the high penetration scenarios, I 

find that the High Grid scenario has a different distribution of bills. This results from a 

fundamental difference in distributed vs. grid-scale solar generation. On one hand, grid-

scale solar generation shifts the market supply-curve outward and reduces energy prices. 

Consequently, when demand is sufficiently inelastic, installation patterns at the grid-scale 

do not affect the utility’s demand. On the other hand, distributed (and particularly NEM) 

solar generation influences energy prices by reducing the utility’s demand. As demand is 

reduced, at high levels of penetration, the hour of peak demand shifts. This changes the 

allocation of costs and results in the “kinks” in Figure 14.  As solar generation declines at 

the end of the day, the peak hour shifts to the evening while the demand for electricity 

remains high. This phenomenon has been documented elsewhere in the literature and 

termed the “duck curve” (Lazar, 2014b).  It plays a major role in the emergence of 

subsidization across rate-classes.  

Based on the representative rate-structure, the proportion of costs attributed to each 

rate class is based on their percentage of peak demand. However, the proportion of demand 

attributed to each rate-class varies on an hourly basis and, thereby, is not consistent across 

a typical day. For example, residential customers typically use more electricity in the 

evenings while small commercial customers tend to use considerably less electricity in the 

evening. This explains why, in the higher distributed generation scenarios, small 
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commercial bills do not increase as much.  However, residential customers are penalized 

in these cases because their demand accounts for a larger percentage of peak demand. 

 

Figure 14: Non-participant bills over time 

In the High Case and High Grid scenarios, rates increase for residential customers 

and the vast majority of residential customers still do not have solar, causing an increase 

in average bills. However, when a higher percentage of residential customers install solar, 

the average bills of the rate-class decreases as shown by the High Residential case, although 

they are still higher than in the Base Case.  The forecast in Figure 11 shows residential 

customers experience the largest bill increases in the High Case and High Grid scenarios, 

when supply costs also rise. In addition, residential customers account for an increasing 
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proportion of the utility’s coincident system peak, which shifts by four hours to 8pm, which 

increases the residential rate-class’ share of distribution costs. This can be seen by the 

discontinuities in Figure 14.  

Small commercial customers also experience higher bills in the High Residential 

case (but not in the Base Case). Unlike residential customers, the shift in the utility’s 

coincident system peak leads to a reduction in the small commercial rate-class’ share of 

distribution costs. However, this class has the fewest participants installing solar across the 

scenarios. Furthermore, while their energy rates decrease in only two of the scenarios, their 

demand rates increase across all penetration scenarios.  

C&I customers experience a decrease in bills in three of the four scenarios. Because C&I 

customers account for the largest share of NEM solar generation in the Base Case, High 

Case, and High Grid scenarios, their bills decrease by the largest percentage across the rate 

classes. In the High Residential case, the case in which C&I customers do no account for 

the largest share of distributed solar generation, average bills increase by slightly more than 

1%. Additionally, the peak demand for the C&I customer class shifts away from the 

coincident system peak. The magnitude of these changes is more significant for C&I 

customers because their bills are orders of magnitude larger. 

2.5 Conclusions and policy implications  

While much of the results section was spent discussing the variations among 

impacts in the high penetration scenarios, the most important result from this analysis is 

that a significant amount of solar can be incorporated with little impact on customer bills. 

In the Base Case, which most closely represents current policy, non-participant bills 
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increase by 2% or less, even when solar accounts for 5% of generation.  While the theory 

that increasing solar penetration will cause rates to go up is correct, the impacts do not 

appear to be as large as some utility stakeholders’ expectations. This analysis suggests that 

a utility “death spiral,” where rising rates push more and more customers to distributed 

generation, is not likely to occur with a continued expansion of solar generation.  Future 

research should examine the possible existence of an inflection point past which increasing 

solar has a more significant impact.  

Like many others, this work finds that non-participants subsidize solar adopters.  

Customers who install solar are able to reduce bills substantially and transfer costs to non-

program participants. Solar renewable energy credit costs, ancillary services, transmission 

costs, and social benefits charges are allocated across total electricity sales. Solar-

participants avoid these charges and non-participants experience increases in rates and bills 

as a result. This may have important distributional consequences: if solar non-adopters are 

systematically poorer and therefore spend a higher proportion of discretionary income on 

electricity costs, then expanded solar installation under current rate design is regressive. In 

appendix A I investigate the extent to which this subsidization occurs within rate classes 

by using a sample of hourly customer data. The results support the modeling outputs on 

average impacts and provide further insights into the distribution of outcomes. Examining 

the impacts of changing the rate structure to a more cost-causal model clearly indicates the 

cross-subsidies inherent in the current tariff design. Any move to a more cost causal 

structure will result in a set of winners and losers who have definitive load shape 

characteristics. 
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The modeling provides a unique contribution by highlighting another form of 

subsidization.  It suggests that customer classes that install solar systems fare better than 

customer classes that do not. I call this “rate class cross-subsidization”. This phenomenon 

results from a shift in the hour of system peak demand. Net-metered solar causes a 

reduction in system demand to the utility. Thus, during the current peak hour, 4pm, demand 

is eroded by higher penetrations of distributed solar. This has a direct effect on rates and 

bills because costs are allocated based on the amount each rate class contributes toward 

demand during the peak hour. As the peak shifts to the evening, when solar generation 

diminishes, the residential rate class becomes responsible for a greater percentage of costs. 

There are often different incentives for customers in each of the rate classes to install solar 

and efficiencies to scale in doing so, which means the potential for unequal capacity 

additions is a real possibility.   

Together, these findings suggest the need for increased attention and analysis to 

better understand the potential impacts of alternative rate structures and apportionment of 

fixed and volumetric costs. Current pricing policies are imperfect reflections of economic 

pricing principles, such as aligning charges with cost causation.  Current energy (kWh) 

based pricing schemes do not adequately differentiate the components of the electricity 

price. The cost of energy, or alternatively of generation, is only about half of retail 

electricity cost. Other costs include grid infrastructure and maintenance, reserves, 

administrative costs, and public purpose charges. However, these costs are also recovered 

primarily through energy charges. Breaking down rates to attribute costs to individual 

components has become increasingly important with the further implementation of 

distributed generation, because solar adopters are dramatically reducing their energy 
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purchases from the utility but continue to rely on many of the other services. Nevertheless, 

it is unclear how these individual components of the grid should be charged. The analysis 

suggests that rate design and cost causality may be as much of a political endeavor, 

deciding who ought to pay for energy services, as much of an economic endeavor, 

attempting to determine cost causality. Alternative rate designs have the potential to shift 

the burden of electricity supply, transmission, distribution, and associated services across 

customers and rate classes.  

Utilities across the country are considering a variety of alternative pricing schemes 

to enable them to adequately recover fixed costs under increasing amounts of self-

generation (Lively and Cifuentes, 2014). Alternatives include the use of minimum bills, 

straight fixed variable rates with dynamic pricing, time of use pricing, demand charges for 

residential customers, various net metering rate structures, and differential charges for 

distributed generation participants and non-participants. Pricing options are hampered in 

the short run by the limited penetration of smart metering that is required to measure 

maximum demand and to move to time-of-use pricing to better reflect long-run marginal 

costs (U.S. Energy Information Administration, 2014).27 As distributed resources become 

more prevalent, the tradeoffs and consequences of alternative pricing strategies require 

further analysis. In the likely future of universal smart meters, a new generation of pricing 

options may emerge. These issues will be explored further in the conclusion chapter which 

discusses the barriers to implementing a more cost-causal rate and the need for further 

research to understand the rate-making process. In the following chapter, I move from an 

                                                 
27 In 2014, there were 52 million smart meters installed in the residential sector (U.S. Energy Information 

Administration, 2014). Smart meters range from basic hourly interval meters to real-time meters with built-

in two-way communication. 
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analysis at the system level to one at the substation level to show that assuming an even 

distribution of solar across the service territory as done in this chapter may mask impacts 

that arise from the substantial clustering of solar installations. Like the system wide 

analysis this has impacts on utility costs which will ultimately affect customer rates and 

bills.  
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CHAPTER 3. THE IMPORTANCE OF GRANULAR 

ESTIMATION 

As shown in Chapter 1, an increase in the system wide penetration of distributed 

solar has important consequences for utility cost-recovery and consumer equity. Further, 

analysis at the system level can mask some of the challenges introduced by distributed 

resources.  A system level analysis ignores the spatial distribution of solar installation. In 

this chapter I explain why that is a problem and construct a model which predicts solar 

adoption at a more granular level. To do so I leverage solar installation data from a PJM 

utility along with billing data that allows for the identification of solar adoption at the 

substation level.  I use this data to visualize existing clustering and project future 

penetrations. Unlike previous models of granular solar adoption, this model uses only data 

which utilities already collect, making it feasible for utilities to incorporate into the 

planning process. The purpose is to demonstrate why such a model is critical for 

maintaining reliability under higher solar penetrations. The results of the modelling show 

the substantial spatial clustering and its consequences. In the discussion, I underscore the 

importance of including DER forecasting in the IRP process, explore how this might 

explain the range of value of solar estimates, and consider the potential of community solar 

and virtual net metering to overcome the challenges of spatial clustering of rooftop PV.  

3.1 Introduction  

Much of the work exploring the consequences of PV makes the implicit assumption 

that the distributed resources are added evenly across the service territory (Eid et al., 2014; 

Johnson et al., 2017; Satchwell et al., 2018). In practice, the adoption of distributed solar 

tends to be highly clustered (Graziano and Gillingham, 2015). As a result, there are likely 
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to be individual feeders where solar capacity is a large share of peak load, even when 

system wide penetration remains relatively low. This can introduce grid operational 

challenges but is also important from a policy perspective because the value of distributed 

energy resources is contextual. They depend on the local penetration level, load profiles, 

demand growth, type of equipment, system capacity, distance from substation, and a host 

of other issues (Brown and Bunyan, 2014). Two of the most important factors are system 

configuration and resource location within the network (Smith et al., 2017). 

High concentrations of distributed solar resources can result in power flows that 

oppose the traditional flow direction from feeder head to load, and as a result offset 

upstream power needs directly. This can create value or impose costs. Increasing 

concentrations on individual feeders have led to concerns with harmonic distortion, voltage 

spikes, and reverse flows (Agnew and Dargusch, 2015).  To accommodate these conditions 

utilities may be forced to make equipment and protections and controls upgrades which 

impose costs. Furthermore, any overloads downstream of the distributed resource are 

unlikely to benefit from the installation of PV (Smith et al., 2017).  Finally, without smart 

inverters, solar can change the balance between active and reactive power which can 

require utilities to implement capacitors or spinning loads to maintain proper power factors. 

On the other hand, properly placed resources can provide value to the utility by 

relieving overloading of upstream lines and reducing line losses. This is particularly 

valuable in areas undergoing load growth where equipment may need to be retrofitted or 

upgraded to handle additional power demands. Delaying capacity expansion represents 

value. For example, in the rapidly growing boroughs of New York City, the utility Con 

Edison has estimated the cost to expand the grid there to meet growing electricity demand 
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would be nearly $1 billion using traditional methods. However, in response to the public 

service commission’s reforming the Energy Vision initiative, Con Edison developed a 

strategy including PV and other distributed resources which could meet the same objectives 

at a cost of only $200 million (Coddington et al., 2017). Additionally, solar can help 

manage voltage sagging and load growth on fringe lines. Feeders far from major lines or 

substations are more costly for a utility to build out or upgrade as they require longer lines 

and benefit fewer customers (Levin and Thomas, 2014).   

Depending on contextual circumstances, DPV can be either beneficial or damaging 

from the utility perspective. Either way evaluating and planning for said impacts is critical. 

The coordination of projects is key to the overall success of DPV at higher penetrations 

(Sherick and Yinger, 2017).  Recent analysis from the Electric Power Research Institute 

underscored the need for “advanced forecasting methods capable of characterizing 

customer inclination to adopt various DER technologies” (Smith et al., 2017). By 

developing a model to quantitatively forecast DPV adoptions, electricity stakeholders can 

maximize value from installations, encouraging further growth in the DPV market. 

3.2 Background and Literature Review 

3.2.1 Utility Distribution Planning  

Traditional utility planning processes are not well equipped to handle forecasting 

the growth of DERs at a granular level. While utilities have historically been adept at 

evaluating risks and operating prudently, the expansion of non-controlled generation 

significantly stress their ability to respond effectively (Brown, 2016). DERs have added 

complexity to the distribution system planning process, and increased the stakes of 
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inaccurate forecasting (Gagnon et al., 2018).  The adoption of solar by customers outside 

the planning process, introduces significant uncertainty and creates a challenge for long 

term planning. Current resource planning practices vary widely and the state of the art in 

DPV adoption forecasting is undergoing continuous refinement. Most of the forecasting 

effort to this point has exclusively considered the bulk power system (Gagnon and Sigrin, 

2016). With improved location precision DPV forecasting could also benefit distribution 

system planning (Gagnon et al., 2018). Figure 15 diagrams the elements of a distribution 

planning process to incorporate DPV forecasts in resource planning (Mill et al., 2016) 

 

Figure 15: Distribution planning diagram28 

A growing number of states are beginning to consider regulatory stipulations for 

comprehensive distribution system planning processes. A recent National Lab report 

reviewed state engagement in this process (Homer et al., 2017). Table 2 summarizes the 

findings on states with activities on electric distribution system planning. 

                                                 
28 Image Credit Planning for a Distributed Disruption: Innovative Practices for Incorporating Distributed 

Solar into Utility Planning retrieved from: https://emp.lbl.gov/publications/planning-distributed-disruption. 
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Table 2: State activities on distribution system planning  
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long-term 

distribution 
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✔   ✔     ✔        

Commission 

requires long-term 

distribution 

planning 

 ✔ ✔  ✔     ✔ ✔      

No requirement 

but proceeding 

underway 

     ✔       ✔  ✔ ✔ 

Voluntary filing of 

grid-mod plans 
       ✔    ✔  ✔   

Non-wires 

alternatives 

analysis 
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✔    ✔          ✔  

Hosting capacity 

analysis 
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✔ ✔  ✔ ✔            

Locational net 

benefits analysis 
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✔    ✔            

Smart grid 

planning 
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            ✔    

Reporting on poor 

performing 

circuits 

      ✔ ✔    ✔  ✔ ✔  

Storm hardening 

requirements 
      ✔   ✔       

Investigation into 

DER markets 
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The states in Table 2 represent those on the leading edge of distribution system 

planning processes, but interest is growing and methods evolving. Some jurisdictions have 

also begun to utilize Geographical Information Systems (GIS) to assess where existing 

distributed solar has been deployed. Unfortunately, low-voltage distribution circuits have 

never been modeled in detail and this information cannot yet be incorporated in forecasts 

(Quiros-Tortos et al., 2017). Part of the concern in mandating DPV adoption forecasting is 

that the methodologies which provide actionable information incur significant costs. They 

often require investing in new software tools, collecting different types of data, training 

staff or hiring outside consultants (Warwick et al., 2016). While initial evidence suggests 

that the costs of misforecasting DPV adoption outweigh the costs of such planning in 

territories with significant growth expected (Gagnon et al., 2018), cost reductions are 

necessary to bring the practice to the mainstream.  

3.2.2 Distributed Resource Forecasting  

Non-utility actors from academia and government have attempted to fill the void in 

forecasting the adoption of distributed solar resources. Some rely on statistically modeling 

adoption trends and future penetration rates based on solar cost projections and national 

growth forecasts (Denholm et al., 2009; Drury et al., 2012; Paidipati et al., 2008). The 

granularity of these estimates is not fine enough to provide substation level estimates and 

are intended for use in the bulk power markets. Reviewing recent utility distribution 

resource plans, the main forecasting approaches include stipulated forecasts, historical 

trend matching, and program-based approaches. These methods rely on few to no 

quantifiable predictive factors and make up about 70% of the current practice (Mill et al., 

2016). In contrast, customer-adoption modeling explicitly uses historical DPV deployment, 
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location specific DPV potential, economic considerations, and/or end-user behavior as 

predictive factors. Because it explicitly captures several predictive factors, customer-

adoption modeling is the most comprehensive forecasting approach. Figure 16 describes 

the basic process of customer-adoption models.  

 

Figure 16: Customer adoption modeling process29 

In this analysis I focus on the diffusion modeling and willingness to adopt aspects 

of the customer adoption models. Diffusion processes in general follow an S curve 

documented in the growth of many natural phenomena (Grübler, 1996). Since the 1960s 

with the introduction of the seminal Bass model (Bass, 1969), diffusion trends have taken 

many mathematical forms and iterations (Meade and Islam, 2006). Their primary 

                                                 
29 Image Credit Planning for a Distributed Disruption: Innovative Practices for Incorporating Distributed 

Solar into Utility Planning retrieved from: https://emp.lbl.gov/publications/planning-distributed-disruption. 
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application has been to the diffusion of innovations such as cars and consumer electronics, 

but they have also been used in the study of health outcomes, disaster modeling, and 

economic cycles. Mahajan and Peterson provide a classification of diffusion models and 

describe the refinements and extensions made to the original specification (Mahajan and 

Peterson, 1985). Diffusion models have also been used more recently to predict the spread 

of renewable energy technologies. Rao and Kishore (2010) and Huh and Lee (2014) 

provide reviews of the applications in this domain. They highlight the role of policy in 

influencing the relative growth rate of these technologies. In the methodology section, I 

dive further into the specifics of the diffusion model utilized herein.  

The primary contribution of this analysis is in pairing a propensity to adopt model 

on top of the diffusion forecast to predict solar adoption at a more granular level. Previous 

studies have investigated solar adoption at finer spatial resolutions while looking at peer 

effects, but these were post installation results explaining why a clustering had occurred 

(Bollinger and Gillingham, 2012; Graziano and Gillingham, 2015; Kwan, 2012).  There is 

also a robust body of literature exploring the relationships between values, lifestyles, 

expected financial return, information provision, and customer attitudes on the adoption of 

solar (Faiers and Neame, 2006; Islam and Meade, 2013; Rai et al., 2016; Schelly, 2014). 

These studies attempt to predict adoption at the household level, but the results have been 

inconsistent (Rundle-Thiele et al., 2008). In addition, almost all work in this area has relied 

on retrospective surveys of DPV adopters or in rare cases non-adopters (Wolske et al., 

2017). All the granular models suffer from the same flaw from a utility planning 

perspective: they rely on data not regularly collected by the utility. 
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To overcome this barrier to granular DER forecasting I build a model which uses 

only data readily available to utilities to estimate customer propensity to adopt solar. Even 

if the individual household predictions don’t capture all the variation in the data, when 

binned at the substation level, forecasts show a high degree of accuracy. Using such a tool, 

utilities can plan for equipment and protections upgrades to handle reverse flows and bus 

voltages that may exceed reliability regulations on peak solar days. With the inclusion of 

meteorological data, it is possible to predict how that future solar would operate. The 

results of this forecasting would enable a prediction of future system flows and could be 

executed as part of the year-ahead load forecasting that utilities already do (Enslin et al., 

2016).  This addresses a direct need identified in a comparative analysis of roughly 30 

recent utility planning studies. The report identified nine areas where even the best current 

practices might be enhanced (Mill et al., 2016), and this study addresses three of those 

areas. First, in forecasting DPV deployment it combines forecasting methods to generate 

location specific estimates of adoption. Second, it acknowledges DPV’s location-specific 

value. The propensity-to-adopt method employs several variables to predict future DPV 

locations which would allow utilities to locate or promote DPV strategically to enhance its 

benefits. Finally, it considers changes in DPV’s value at higher local solar penetrations and 

suggests methods for addressing the clustering to maximize benefits of further PV 

penetration.  
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3.3 Data and Methodology  

3.3.1 Diffusion Model  

Purohit and Kandpal (2005) analyzed diffusion trends of four renewable energy 

technologies including solar PV, and estimated their future dissemination levels using the 

Bass, Gompertz, Logistic, and Pearl models. They showed that technical potential is 

achieved fastest in the case of the Logistic model, whereas the diffusion following the 

Gompertz model is the slowest; the Bass model represents an intermediate diffusion trend 

and was selected as the method of choice for this analysis. 

The Bass model suggests that individual adoption of an innovation in a population 

is driven by three factors. The first is a desire to innovate (the coefficient of innovation is 

p). The second is an imitation of others in the population (the coefficient of imitation is q). 

Finally, the growth is bounded by the market potential (m). The probability that a potential 

installer adopts at time t is driven by (p+qF(t)) where F(t) is the proportion of adopters at 

time t. Comparing innovation diffusion to the spread of an epidemic, imitation is often 

called a contagion or word-of-mouth effect and in a pure imitation scenario (p = 0, q > 0) 

diffusion follows a logistic curve. In the opposite scenario of pure innovation (p>0, q=0), 

diffusion follows a modified exponential. In a bass diffusion model (p+q) controls the scale 

and (q/p) controls the shape. For the curve to produce its traditional S shape (q/p) must be 

greater than one.  

In this paper I use the continuous time formulation of the Bass model as derived by 

Schmittlein and Mahajan (1982) and employed more recently in the study of solar diffusion 
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by Islam (2014). The formulation is presented in equation 1 where A is the cumulative 

adoption and t is the time interval.  

 
𝐴 = 𝑚 [

1 − 𝑒−(𝑝+𝑞)𝑡𝑖

1 +
𝑞
𝑝 𝑒−(𝑝+𝑞)𝑡𝑖

] (1) 

Using a nonlinear least squares estimation on historical data it is possible to 

estimate the coefficients of innovation, imitation, and market size.30 Most diffusion models 

include in their parameterization variables which underly the coefficients of innovation and 

diffusion. These models include factors such as consumer preferences, technology costs, 

socio-economic factors, macro-economic environment, and competing products (or in this 

case energy sources). See Lee and Huh (2017) for a review of the attributes that have been 

investigated to this point. While many of these attributes are useful for explaining product 

adoption their utility for creating ex-ante predictions is limited. For example, forecasting 

adoption using a model dependent on technology costs requires estimates of future 

technology costs. Furthermore, policy has shown to be among the most important drivers 

of renewable energy adoption (Polzin et al., 2015), but predicting policy change is nearly 

impossible. For the purposes of this analysis the modeling is intended to be done in the 

context of distribution system planning. Within planning cycles there are shorter time 

horizons and a relatively consistent policy landscape owing to the fact that policy changes 

are coincident with planning cycles. Given these conditions I forecast adoption in the 

                                                 
30 If there are too many parameters relative to the time series data, it will be difficult to estimate the model 

efficiently due to the small number of degrees of freedom. In the PJM territory under consideration the 

residential and small commercial markets are already fairly robust with ample data for estimation of 

coefficients, however the virtual net-metering installations are a nascent enterprise and their growth was 

modeled differently as discussed in the section on community solar.  
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absence of any policy shocks, allowing the model to generate the coefficients of innovation, 

imitation, and market size31 directly and treat those as constant during the forecasting 

window.  Prior evidence suggests that given sufficient historical data the bass model fits 

well even in the absence of additional decision variables (Bass et al., 1994). I estimate the 

coefficients separately for the residential and non-residential markets under the assumption 

that they have different drivers of adoption.  

Danneels (2004) was among the first to use extant methods of technology diffusion 

to predict the spread of disruptive innovation ex ante. Since, the literature have established 

a number of precedents for applying these insights to the micro level (Liu and Gupta, 2012).  

These methods are employed by Islam in the study of household level diffusion of PV 

using stated preference data, and that study serves as the inspiration for this methodology 

(Islam and Meade, 2013).  In that model, the hypothesis was that technology awareness, 

environmental attitudes, socio demographics, and preferences drive adoption, and data 

were captured through choice experiments. The primary innovation of this methodology is 

to predict household level adoption without needing to conduct surveys or choice 

experiments to explain household behavior. In their stead, I use data already collected by 

the utilities or derived from load data.  

3.3.2 Propensity to adopt 

Solar adoption has been shown to be correlated with income and demographics of 

adopters (Barbose et al., 2018). These same attributes are also correlated with electricity 

                                                 
31 A more sophisticated approach could provide a market potential estimate using information on number of 

customer premises with adequate solar resource. Utilities have the capability to collect this data using Lidar 

measurements, but that technology is expensive and not part of the data that was available during this study. 
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use. For example, the aggregate annual use of electricity is strongly related to household 

income, home square footage, and other unobserved covariates (Yohanis et al., 2008). As 

such, I use characteristics of electricity load, paired with limited categorical variables from 

customer bills, to predict household level propensity to adopt in the place of demographic 

data. While this propensity model will certainly capture less of the variation in the data 

than a model with robust household characteristics, it could be implemented by a utility 

with no additional data collection costs.  

As a proxy for household vintage and type, I use the weather sensitivity of 

electricity load. Older structures have less thermal inertia as do standalone properties. I 

investigated weather sensitivity separately for both hot and cold temperatures using heating 

and cooling degree days. This data was then merged with the kWh usage during the bill 

period to generate a set of correlation coefficients for each customer. Another predictor of 

solar adoption is a customer’s seasonal load pattern. Seasonal load patterns capture 

variance due to lifestyle factors, appliance stock, and electrification of end loads. For 

example, those customers without electric water or space heating may be less likely to 

adopt solar.  To create clusters of usage patterns the data was normalized such that each 

month represented a percentage of annual consumption. A k-means cluster algorithm was 

employed to group accounts into clusters of load shapes.  Categorical variables including 

rate class and zip code supplement the propensity model. The highest percentage of solar 

adopters are from customers in non-default rate classes, perhaps because opting into a non-

default tariff indicates higher awareness of electricity costs. Customers in different 

geographic locations may install at different rates and the inclusion of a zipcode dummy 

captures any variation in demographics that exists at that level.  
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To determine the set of available covariates which best predict solar adoption in the 

population I included all potential variables in a least angle regression model selection 

algorithm (Efron et al., 2004). This modification of the Lasso technique improves the 

prediction accuracy and interpretability of the model by selecting only a subset of the 

provided covariates for use in the final model. Those selected were weather sensitivity, 

annual usage, load profile, and rate code. Because the dependent variable (solar adoption) 

is binary I employ a model which accounts for the restricted range and implied 

nonlinearities.  I use a simple probit model employed previously in this domain 

(Woersdorfer and Kaus, 2011). The probability of adoption is captured in equation 2 where 

Φ is he cumulative distribution function of a normal distribution and Xi is the set of 

covariates.  

 Pr(𝑦 = 1|𝑥) =  𝛷(𝛽′𝑋𝑖) (2) 

The final step in the process is to combine the results of the system level forecast 

with the individual adoption probabilities. Across customers I summed probabilities and 

scaled to 100%. The next forecasted adoption in the system was then assigned to the 

customer with the highest adoption probability. The assumed capacity was based on a ratio 

of capacity to usage at each substation. Finally, I aggregate all the customers with service 

provided by a given substation to reach a substation level forecast.  

3.3.3 Community Solar  

Community Solar is defined as a solar-electric system that provides power and/or 

financial benefit to, or is owned by, multiple members. It can be implemented through 
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several different sponsorship models and is an increasingly popular means of affording 

access to solar for customers who may not have been eligible otherwise. In the utility 

territory at the time of this analysis, there were not yet any community solar projects online, 

but the utility had received applications for over 500 MW worth of projects since the first 

applications were received in 2015. It is evident that community solar will comprise a 

significant portion of distributed solar resources in the future, but with a lack of historical 

installation data the forecasting process was slightly different. This process is detailed 

below. 

In a similar fashion to the residential and non-residential models, a Bass diffusion 

curve was used to estimate future solar projects. However, rather than being based on 

installed projects the curve was modeled on applications. I begin the estimation of the 

curve following an application process change implemented in 2016 that provided a 

standard format for applications and introduced a series of screening tests. The Bass 

diffusion curve produces estimates of future capacity applied for, but to predict installed 

capacity I must estimate the likelihood that an application makes it through the entire 

process. To accomplish this task, I implemented a Markov chain, or transition matrix,  

Monte Carlo simulation (Gilks et al., 1995) which estimates the probability of reaching a 

different state given the presence in the starting state. For my purposes, this was 

interpreted as: given that an application reaches a certain stage in the process, what is the 

likelihood that it reaches the next stage vs. the likelihood that it withdraws from the 

process. The mean survival rate was estimated from historical applications, but to 

generate confidence bands around these estimates a bootstrapping technique was used. At 

each stage, the number of observations was set at the number of applications in that stage 
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and an observation was said to move on if the draw from a uniform distribution from 0 to 

1 was less than the transition matrix survival rate. In each simulation the survival rate was 

the percentage of applications that “move on.” 1,000 simulations were run and the results 

from these simulations provided a distribution of the survival rate for projects. The mean 

approximated the value from the transition matrix, and the 5th and 95th percentile were 

used as the lower and upper bound respectively. 

For each stage of the application, there is data on the date that stage was reached. 

Using this information, I could ascertain how long an average application takes to make it 

through each stage. Because no applications have reached the completion stage, I employed 

a beta distribution with long tails to estimate the days from full payment to construction. 

For the beta distribution, the minimum number of days was set at 450 since there have been 

projects in the final stage of the queue without coming online for that long already. For 

applications already in the queue, the information on which substation they will be installed 

at is included with the application. Thus, for existing applications it is straightforward to 

create a more granular forecast at the substation level. For predicted applications, the 

distribution of forecasted applications to the substation level was made on the basis of the 

percentage of total application capacity. I calculated the percentage of applied for capacity 

at each substation and assumed the same distribution of applications going forward.32 

  

                                                 
32 This was a simplifying assumption used for lack of a better option. This will exacerbate existing clustering 

over the long term, but given the relatively slow growth in applications and the 3.5 year lead time from 

application to installation it will not have a significant impact on the planning horizon relevant for this 

analysis. In the results section I also discuss implications of targeting community solar to locations of value 

for the system which replaces this assumption with an alternative.  
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3.3.4 Data Sources  

The primary data source used in this analysis was a record of historical solar 

interconnections provided by a PJM utility. Customer billing data with corresponding 

account numbers was used to match distributed solar and develop predictors for the 

propensity score model. Weather data was obtained from NOAA’s National Climactic Data 

Center and used to develop additional adoption predictors.   

The PJM utility provided a record of all solar interconnections in their service 

territory. The interconnection data spans from December 2001 through June 2018. I bin 

installations by month to generate a time series of adoption records that can be merged with 

monthly billing data. Because I am interested in forecasting solar adoption under the 

current policy context, I normalize the residential installation data to the start of 2013.  The 

year prior, the service territory began allowing customers to participate in net-metering 

through a lease or power purchase model. This removed a significant capital barrier and 

triggered a much different trajectory for residential solar.   Using the account id, the 

interconnection records could be matched with customer billing data. Billing data includes 

information on customer usage and the substation which customers are served by. 

Summary statistics on variables of interest are shown in Table 3. 
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Table 3: Summary statistics  

Variable Observations Mean Std. Dev. Min Max 

Account id  17,095,449 55,800,000 23,200,000 11,000,000 89,800,000 

Installed kW 376,757 9 21 0 1,584 

Install date 376,757 3/16/2015 905 12/6/2001 7/16/2018 

Service class 376,757 3 1 1 10 

Use (kWh) 17,095,449 1,730 73,121 -72,114 44,000,000 

Rate code 17,095,449 6 9 1 82 

Read date 17,095,449 19,651 1,482 10,959 21,270 

Bill id 17,095,449 11 6 1 47 

Bill period 17,095,449 48 16 1 101 

Zipcode 17,095,449 4 4 1 13 

Substation 17,095,449 43 24 1 82 

Avg temp 17,081,250 51 18 -5 88 

Hdd55 17,095,449 10 10 0 51 

Cdd60 17,095,449 4 5 0 27 

3.4 Results and Discussion 

Through May 2018 there were roughly 8,000 distributed solar installations in the 

utility territory which provided over 75 MW of installed capacity. There is already 

significant variation in penetration by location as evidenced by Figure 17, which shows the 

installed capacity by substation in 2018. This underscores the importance of producing 

granular forecasts. 
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Figure 17: Substation level installed solar capacity 2018 

Given the historical data, the bass diffusion model was used to estimate the 

parameters of market size, innovation, and imitation for the residential and non-residential 

markets. Table 4 presents the results from the residential model, and the non-residential 

results are in Table 5. 

Table 4: Residential solar market diffusion results 

Coefficient Coef. Std. Err. t P>t [95% Conf. Interval] 

/M 7226.795*** 56.16507 128.67 0.000 7115.338 7338.253 

/p 9.65E-05*** 7.23E-06 13.35 0.000 8.21E-05 0.000111 

/q 0.095802*** 0.001472 65.08 0.000 0.09288 0.098723 

The results of the model match expectations given the assumptions. The coefficient 

of innovation is near zero, which is logical given that the model is assuming a constant 

policy context and does not incorporate any reductions in technology cost or changes in 

market conditions. The estimated market potential of 7,227 is for installations post 2012 

since the data was normalized to begin with the current policy environment. Adding 
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installations from before 2012 yields an estimate of the total number of residential 

installations of 8,693. This represents 3.4% of residential accounts in the service territory 

and seems reasonable considering the policy goals referenced in Chapter 2. The estimate 

of 0.096 for the coefficient of imitation is nearly identical to the result found by Islam 

(2014). The residential forecast may seem conservative, as it yields relatively low numbers 

of new installations. I believe this is a reasonable prediction given the innovations in the 

distributed solar market have made community solar a much more appealing option for 

many residences. Participating in community solar does not require the capital liquidity, 

and participation is not constrained by availability of roof space or appropriate solar 

resource. Given that the utility service territory allows remote net-metering, customers can 

receive the same financial incentives even without the panels directly on-site. This will 

serve to limit the adoption of residential solar going forward.  

Table 5: Non-residential solar market diffusion results 

Coefficient Coef. Std. Err. t P>t [95% Conf. Interval] 

/M 573.4198*** 14.27596 40.17 0.000 545.2056 601.634 

/p 0.001571*** 3.23E-05 48.6 0.000 0.001507 0.001635 

/q 0.025348*** 0.000828 30.62 0.000 0.023712 0.026985 

The non-residential market model results are shown in Table 5. The estimated 

market potential for non-residential customers is 573 installations which represents 1.4% 

of non-residential customers in the sample. While the number of installations and percent 

of the population are smaller in the non-residential market, the average size of a non-

residential system is significantly larger yielding installed capacity from the non-residential 
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market roughly two-thirds that of the residential market. The coefficient of innovation is 

again small, though larger than the residential market. The coefficient of imitation is 

smaller, but is in line with the mean values of a diffusion of innovations meta-analysis 

which found a mean of 0.038 (Sultan et al., 1990). The different relationship between these 

two-values in the two different markets explains the difference in curve shape evident from 

the visual depiction of the historical installations by month and the forecasted values shown 

in Figure 18.  

 

Figure 18: Distributed solar account forecasts based on bass diffusion models 

The sector that is likely to see the largest growth in the planning horizon, based on 

the number of applications received by the utility, is community solar. Even without any 

forecasted applications, at the time of data collection there was 150 MW of community 

solar projects in the applications queue. This is double the size of the residential and non-

residential markets combined. As discussed in the methodology section, because no 

community solar has been installed to date, the challenge is determining how many projects 

are likely to make it through the application process and how long it will take them to come 
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online. Figure 19 shows a survival curve for projects in the application process. Less than 

20% of received applications make it to the final stage where full payment is due to the 

utility. Thus far all projects that have survived in the application process for 600 days have 

gone on to full payment. Applications can be dropped at one of six stages in the process 

for failing to complete partial payments, or for technical reasons due to inadequate plans 

or unsuitable proposed system interconnection.  

 

Figure 19: Kaplan-Meier survival curve 

The survival rate at each stage in the application process is shown in the transition 

matrix in Table 6. For each row in the matrix the columns represent the mean survival rate, 

what percent of applications move to the next stage. The process is sequential so it’s a 

question of whether an application proceeds or is withdrawn. 
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Table 6: Markov chain transition matrix 

Stage: Stage 2 Stage 3 Stage 4  Stage 5 Stage 6 Stage 7 Withdrawn 

Stage 1 100 0 0 0 0 0 0 

Stage 2 0 98.8 0 0 0 0 1.2 

Stage 3  0 0 44.93 0 0 0 55.07 

Stage 4 0 0 0 100 0 0 0 

Stage 5 0 0 0 0 88.46 0 11.54 

Stage 6 0 0 0 0 0 97.22 2.78 

Average Duration 

(Days) 
19 82 89 52 172 

Beta 

Distribution 
 

The stages with the largest withdraw rates are stage 3, a preliminary technical 

analysis, and stage 5, a full interconnection review. Table 6 also displays the average 

duration a project remained in a given stage.  Because no applications have reached the 

online stage, I used a beta distribution with long tails to estimate the days from the final 

approval of the application to operation. For the beta distribution, the minimum number of 

days was set at 450 since there have been several projects in the final stage of the queue 

without coming online for that long already. The mean anticipated online time was 2 years.  

In sum, I estimate it takes an application an average of 3.5 years from the date of application 

submission until the project is operational. This will put the first community solar projects 

online at the end of 2018. Applying the results of the transition matrix and the completion 

time analysis to projects currently in the queue and forecasted future applications yields 

the forecast for installed community solar presented in Figure 20. 
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Figure 20: Community solar forecast 

Having generated forecasts for system wide installations I now turn my attention to 

the results of models for estimating adoption at the individual level. In other words, given 

the number of new installations predicted, which customers are those installations most 

likely to come from. This was done through a probit model which estimated for each 

customer their propensity to adopt solar. The final model was selected through a lasso 

technique that determined which potential predictors generated a model with the best 

prediction accuracy. The results of the probit model are shown in Table 7. 
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Table 7: Propensity to adopt solar  

Dep Var = 

Solar 

Adoption Coef. Std. Err. t P>t [95% Conf. Interval] 

Weather 
Sensitivity 

1.456054 0.043552 33.43 0.000 1.370693 1.541415 

Load Percentile 0.025684 0.000606 42.41 0.000 0.024497 0.026871 

Load Shape       

2 1.609543 0.052993 30.37 0.000 1.50568 1.713407 

3 0.663006 0.037675 17.6 0.000 0.589164 0.736847 

4 1.199989 0.042929 27.95 0.000 1.11585 1.284128 

Rate code FE Y      

The variables selected for the final model are all statistically significant and their 

direction matches intuition. Customers who have a load that is more sensitive to weather 

conditions are more likely to adopt. Greater weather sensitivity is likely a result of electric 

heating and cooling. Similarly, customers who have larger aggregate loads are more likely 

to install solar. Aggregate load is correlated with income and building ownership. 

Customers who use more electricity during the summer are more likely to install solar 

which makes sense given this is the period when more load will be offset post-installation. 

Customers on non-default rates also have higher propensity to adopt.  While the model 

only captures approximately 12% of the variation in the data, it does capture well which 

bins of customers are likely to adopt as shown in Figure 21. If anything, the model slightly 

underpredicts probabilities for the most likely adopters.  
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Figure 21: Binned adoption probabilities 

With predicted probabilities at the customer level and a system wide forecast, I 

combine the results and distribute the predicted solar additions to customers based on their 

adoption probability. The size of the system a customer adopts is based on the ratio of 

capacity to usage for previous installers on the same substation. Finally, I combine the 

predictions from each service class: residential, non-residential, and community solar and 

aggregate the estimates from the customer level to the substation level to generate the 

forecast installed capacity by substation shown in Figure 22. 
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Figure 22: Substation level installed solar capacity 2023 

As can be seen by comparing Figure 22 with Figure 17, further penetration of solar 

does not more evenly distribute installations across substations, but rather exacerbates 

existing clustering. This is particularly troubling when considering that community solar 

projects, which represent the bulk of projected growth, are not tied to a specific location 

on the grid by home or business location. This demonstrates clear information asymmetries 

between project developers and the utility itself which could also explain the high attrition 

rate for project applications. There are two potential consequences to this clustering. The 

results of the interconnection analysis may indicate that the substation or feeder cannot 

accommodate additional distributed solar resources without equipment upgrades. The 

project developers are responsible for a portion of these costs and may withdraw their 

application. This may limit, or at least slow the growth of solar and results in needless work 

by both the developer and the utility. Alternatively, the utility may make the upgrades to 

enable equipment to handle further DPV penetration. In this case, those capital costs are 

added to the rate base and paid for by all customers, not just those with solar.  Here the 

value of that resource is diminished because it was put in a suboptimal system location. 
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Figure 23 illustrates how substation level installed capacity would look under a scenario in 

which each successive community solar project was installed on the substation with the 

lowest penetration of solar.  

 

Figure 23: Potential installed PV capacity by substation under alternative conditions 

Maximizing the benefits from PV depends on identifying locations where it can 

deliver value by deferring or avoiding infrastructure costs or improve reliability. Figure 23 

was generated using a simple rule of thumb assumption in absence of any data from the 

utility on growth rates or reliability by substation. In practice, utilities have forecasts of 

infrastructure investments associated with load growth which are highly location-specific. 

These growth-related investments may affect only a small portion of a utility’s service 

territory over the course of a 5-year period. Without identifying and targeting those 

locations, the avoided cost potential of distributed resource is unrealized or diluted. The 

implication is that the maximum value of solar is only attained if resources are placed in 

the right locations. For example, if the system-wide avoided investment value is an average 

of $10/kW-year but is concentrated in 5% of the utility service territory, it means that, on 
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average, the value is $200/kW-year at those locations. This example may demonstrate why 

the industry has struggled to determine an appropriate estimate of the value of solar 

(Hansen et al., 2013), the value is extremely contextually dependent.  

I propose an adaptation of the community solar development process to smooth the 

variation and target locations where distributed resources confer the most value. In this 

model a utility determines locations of high grid value for voltage support, congestion 

reduction, or load growth during the distributed resource evaluation planning period. They 

then provide stakeholders with a means of accessing this information and restrict 

applications from developers to high value locations.  In this case, the installers can take 

advantage of efficiency of scale from larger installations, and don’t waste resources on 

projects that will eventually be withdrawn. The key is reducing the information asymmetry 

between utilities and developers through stakeholder engagement in the planning process. 

This information asymmetry is a source of value erosion that could be mitigated through 

improved utility policy. 

An additional opportunity with community solar is the ability to attract customers 

who have previously been unable to adopt.  Community solar has the potential to allow 

low income residents to participate which may serve to address some of the equity concerns 

associated with the spread of distributed resources (Coughlin et al., 2012; Nieto, 2016).  In 

fact a number of states have identified community solar programs as a means for reducing 

the energy burden of their low income households (Cook and Shah, 2018). These programs 

are consistent with reports that utilities are motivated to develop community solar to satisfy 

consumer demand, meet regulatory requirements, and alleviate revenue losses related to 

distributed PV adoption (Funkhouser et al., 2015).  
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3.5 Conclusion  

In this paper I developed a model of granular solar adoption, which makes use of 

only data which utilities already collect. The ability of such a simple model to forecast 

substation level solar growth is important for improving the ability of resource-constrained 

utilities to accurately forecast future loads and infrastructure needs. An NREL report 

concluded that for the vast majority of the 3,000 U.S. utilities, it would not be cost-effective 

to implement detailed probabilistic models of customer adoption because mis-forecasting 

costs would not be high enough, but all utilities should include some DPV projections in 

their integrated resource plans (Gagnon et al., 2018). Using the methods employed here 

would substantially reduce costs and enable utilities to incorporate distributed resource 

forecasts into their integrated resource plans.  

The results of the modelling show substantial spatial clustering exists already and 

is likely to get worse given the status quo. Such clustering will only intensify the problems 

associated with cross subsidies highlighted in chapter 2 because it increases costs and 

reduces the value of solar. That said, the majority of new solar growth in the utility territory 

under investigation is projected to come from large community solar installations. This 

enables a number of new opportunities. First, community solar systems can take advantage 

of more optimal siting conditions to maximize solar resource and take advantage of 

efficiencies of scale. Combined with a remote net-metering policy they can open the solar 

market to populations who have been largely excluded to this point. Finally, community 

solar projects can be specifically targeted at locations in the system where they confer the 

most value. In order to take advantage of these opportunities it is imperative that we remove 

the information asymmetries between system operators and project developers. Because 
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these large capacity projects have long lead times new policies are needed now. Given the 

evidence provided I suggest all public utility commission require include DPV forecasting 

in resource planning.  

This chapter built on Chapter 2 by investigating how the imposed solar additions 

were likely to be distributed across the system. This information is vital for infrastructure 

planning but does not necessarily translate directly to system operation. To understand how 

solar additions will affect loads an understanding of the customer response to solar 

adoption is required. Chapter 4 will investigate one aspect of customer behavior, whether 

adoption leads to a change in overall consumption.  
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CHAPTER 4. THE SOLAR REBOUND 

Chapter 2 demonstrated the subsidization of non-adopters by solar installers. 

Chapter 3 showed that adoption of solar to date has been clustered and that such trends are 

likely to continue, hurting the value of solar and reducing system efficiency. In spite of 

these factors, subsidization of distributed solar has become more pervasive as policy 

makers around the country seek ways to reduce consumers’ reliance on conventional, 

carbon-intensive energy technologies.  

The growth of distributed solar has changed the traditional utility/customer 

relationship. The policy support has invigorated discussion about how to efficiently and 

equitably encourage continued growth of solar while maintaining cost reflective electricity 

prices and grid reliability. A key policy question is whether the reduction in grid electricity 

demand resulting from installation of rooftop PV systems justifies the cost of providing 

policy support for this technology. The behavioral response of households in relation to 

electricity consumption needs to be understood to evaluate whether the adoption of 

distributed solar is contibuting to reducing electricity demand and emissions. The results 

have implications for policy design to achieve environmental goals, and for electric system 

operation in procuring resources to meet peak demand.   

The goal of this paper is to study a yet undeveloped aspect of the literature: what 

happens to household electricity consumption once a consumer has installed rooftop solar. 

In other words, does a “solar rebound” exist? The rebound effect is well documented 

regarding energy efficiency but has yet to receive much empirical study regarding the 

adoption of solar. Furthermore, the adoption of a generation source under a net metering 
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policy differs in important theoretical ways from more traditional energy efficiency 

improvements.  

To answer this question, I define a solar rebound and then use an extensive set of 

solar adoption records and customer electricity bills to empirically test for this 

phenomenon. Section 1 provides background on the rebound effect and reviews the 

literature. Section 2 presents competing theories which generate opposing hypotheses to 

form a critical test. Section 3 describes the data and matching and section 4 the 

methodology. In section 5 I present and discuss the results. Section 6 concludes.  

4.1 Background and Literature Review  

The rebound effect traces its roots to the 19th century when William Stanley Jevons 

noted that efficiency improvements in coal combustion were yielding increased levels of 

coal consumption. The idea that economically justified energy-efficiency improvements 

might increase, rather than reduce, energy consumption became known as Jevon’s paradox.  

A formalization of this concept was dubbed the Khazzoom-Brookes postulate after 

two contemporary economists (Daniel Khazzoom and Len Brookes) instantiated the 

modern study of the rebound effect (Sorrell, 2009). The rebound effect is generally 

understood as a response to improved energy efficiency in which potential energy savings 

from efficiency improvements are partially offset by increased consumption of energy 

services. As the marginal cost of consuming a service declines, a consumer will use more 

of it, the direct rebound effect.  In the classic example, as fuel efficiency improves, 

consumers drive heavier cars and more miles.  
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The direct effect is the most familiar and widely studied component. Beginning 

with Khazzoom (1980), there have been a series of estimates of its magnitude in contexts 

from transportation to lighting, with varying rigor and results. More challenging to estimate 

is the indirect effect, in which energy efficiency improvements in one good or service lead 

to increased consumption of other energy goods and services through increased purchasing 

power (Ghosh and Blackhurst, 2014).   

The least well understood aspect of the rebound effect is a macroeconomic effect 

which may occur if efficiency improvements reduce demand to the point that market 

conditions change. For example, if fuel efficiency leads to lower overall demand for 

gasoline, gas prices may drop. Because solar generation affects whole home electricity 

demand, the unit of measurement in this study, the direct rebound effect will be most 

relevant.33   

There are several studies which have attempted to measure the direct rebound effect 

in the context of household energy services including heating (Milne and Boardman, 2000; 

Davis, 2007), lighting (Nadel, 1993), water heating (Guertin et al., 2003), and cooling 

(Hausman, 1979). Greening et al. (2000) and Sorrel et al. (2009) provide thorough reviews 

and conclude that the direct rebound effect should generally not exceed 30% with most 

reliable estimates between 10% and 30%. More recent studies by Azevedo et al (2013), 

Borenstein (2015), and Chan & Gillingham (2015) fall within these bounds. These direct 

rebound studies measure the increased use of a new product with improved efficiency to 

                                                 
33 That is not to say that the indirect or macro effects are not present, as reduced electricity costs could 

increase natural gas consumption and large volumes of solar generation could reduce wholesale electricity 

prices. However the necessary data to investigate these more complicated relationships is not available.  
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that of an earlier vintage: i.e. a household installs led lights and then leaves them on for 

longer periods of time. The question at hand is does changing the source and cost of 

electricity as a whole produce the same effect?  

There have been limited attempts to this point to study the rebound effect associated 

with distributed solar. Most to date have been done on the basis of survey data and outside 

the United States. Havas et al. (2015) used survey data from Australian households and 

found that the adoption of PV can confound consumer behavior because the installation 

does not necessitate conservation-oriented behavior and electricity savings from adoption 

encourage further use. They estimated a rebound effect of 15%. Other survey-based 

estimates include Caird et al. (2008) and Keirstead (2007), but they suffer from small 

sample sizes and self-reported estimates of electricity savings. An estimate using data 

aggregated at the census block level found that higher solar subsidies encouraged higher 

electricity consumption, thereby failing to alleviate grid demand (Motlagh et al. 2015). A 

similar aggregated approach was undertaken by Oliver et al. (2017) who find that solar 

rebound effects tend to be higher for lower-income adopters. High frequency hourly 

consumption and generation data was used by Spiller et al. (2017) to estimate a rebound 

effect of 11% but the study lacks pre-post adoption data. While they term their effect a 

solar rebound, the research question was whether solar adopters use more energy when the 

sun is shining, not whether they use more than the counterfactual post adoption.  

The most relevant study to date was conducted by Deng and Newton (2017). It 

finds a 20% rebound among 1,951 solar adopters in Australia. However, there are a number 

of important differences that distinguish their study from this analysis. First, results from 

Australia may not generalize to the U.S. context. The primary reason for this assertion is 
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that Australian solar adopters operate under a gross metering scheme in which households 

sell all solar generation to the grid at a subsidized fixed rate and purchase everything they 

use from the utility under a standard tariff. Feed in tariffs of this form are much less 

common in the U.S. This analysis studies households under a net-metering scheme and the 

difference has important consequences for the salience of energy use and prices. Further, 

Deng and Newton rely on a representative sample of households from the utility as opposed 

to the full residential customer population. Finally, their data are quarterly as opposed to 

monthly for the billing data in this study. 

4.2 Model and Theory 

This section presents a model illustrating the demand for electricity across multiple 

solar adoption scenarios and generates a set of hypotheses from evidence in the literature 

about why a rebound may or may not occur.   

4.2.1 Economic Model  

The economic model borrows from Chan & Gillingham’s (2015) general model of 

constrained utility maximization to study the rebound effect, and is adapted from Oliver’s 

(2017) application to the solar rebound. I assume a household’s utility function is of the 

Cobb Douglas form shown in equation 3 where et is total electricity consumption and x is 

a numeraire good. I assume 𝛽 = 1 − 𝛼. 

 𝑈(𝑒, 𝑥) = 𝑒𝑡
𝛼𝑥𝛽 (3) 
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Total electricity consumption is shown in equation 5, simply the sum of the 

electricity consumed from the panels and the electricity from the grid. The source of the 

electricity is indistinguishable to the household at the time of use and thus grid and solar 

electricity are perfect substitutes at the point of consumption.34 I distinguish between the 

amount of solar generated by the panel epv,g and the amount consumed epv,c  in equation 4 

where θ represents the share of electricity generated by the panels that is consumed by the 

household onsite. The electricity generated by the panels is exogenous, the amount 

consumed is chosen by the household.  

 𝑒𝑝𝑣,𝑐 = 𝜃𝑒𝑝𝑣,𝑔  , 0 ≤ 𝜃 ≤ 1 (4) 

 𝑒𝑡 = 𝑒𝑝𝑣,𝑐 + 𝑒𝑔 (5) 

4.2.1.1 No Solar Case 

If the household has not installed solar then epv is zero and total consumption is 

equal to grid consumption.  Assuming the price per unit of electricity is pe, then the 

household budget constraint M is shown in equation 6. 

 𝑀 = 𝑝𝑒𝑔 + 𝑥 (6) 

                                                 
34 Note that while electricity from the grid and generated by panels are perfect substitutes at any instance 

where both are available, over a billing period they are not perfectly substitutable due to the time restrictions 

imposed on PV production. In order for the two to be perfect substitutes over a longer period, either load 

must be perfectly responsive (unlikely) or there must be a way to store electricity at the household (the 

penetration of distributed storage in the service territory during the period of analysis was near zero).  
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In this no PV case, maximizing utility subject to the budget constraint requires a household 

choose just the optimal level of grid electricity and the numeraire good. Solving for the 

Marshallian demand of grid electricity produces the result in 7. 

 
𝑒𝑔

∗ =
𝛼𝑀

𝑝𝑒
 (7) 

4.2.1.2 Solar Without Net Metering 

After the adoption of solar, 𝑒𝑝𝑣,𝑔 > 0. Without a net-metering policy in place, the 

marginal cost of electricity consumed from the panels is zero. If we assume that electricity 

from the panels perfectly offsets the grid electricity (an assumption unlikely to be true and 

discussed in more depth below) then 𝑒𝑝𝑣,𝑔 = 𝑒𝑝𝑣,𝑐 and demand for grid electricity is shown 

in equation 8.  Total electricity consumption is shown in equation 9.  

 
𝑒𝑔

∗ =
𝛼𝑀

𝑝𝑒
− 𝛽𝑒𝑝𝑣 (8) 

 
𝑒𝑡

∗ =
𝛼𝑀

𝑝𝑒
+ 𝛼𝑒𝑝𝑣 (9) 

These results show that after installing solar grid electricity consumption will not 

decrease by an amount equivalent to the production of the panels. The grid consumption 

will be less than the no solar case, but not by the amount epv because 0<β<1. This can also 

be seen in the increase in total electricity consumption over the no solar case. There is an 

increase of αepv. in total electricity consumption post solar adoption with the magnitude of 
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the rebound dependent on the elasticity (α) of electricity consumption. This matches 

intuition that as marginal cost for a good decreases consumption should increase. 

However, the results in equation 8 and equation 9 are dependent on the assumption 

that electricity from the panels perfectly offsets the grid electricity (θ=1). In reality this is 

not the case as generation may exceed consumption during daytime periods and electricity 

from PV production is not available when required at night. This simple model cannot 

capture the intertemporal aspect of electricity production. As such, the results in equation 

8 and 9 both serve as lower bounds.  The results in practice are likely to be significantly 

higher since a household’s ability to shift load is limited. This is reflected in equations 10 

and 11. 

 
𝑒𝑔

∗ ≥
𝛼𝑀

𝑝𝑒
− 𝛽𝑒𝑝𝑣 (10) 

 
𝑒𝑡

∗ ≥
𝛼𝑀

𝑝𝑒
+ 𝛼𝑒𝑝𝑣 (11) 

4.2.1.3 Solar With Net Metering 

Under a net metering policy, solar generation can be sold back to the grid at the 

retail rate. From a household’s perspective, consumption of electricity from the panels now 

has an opportunity cost of pe. Put differently, under net metering, installing solar does not 

change the marginal cost of electricity consumption. Rather, the household can be thought 

of as receiving a fixed subsidy s, where s is equal to the price of electricity times the 

generation from the panels (𝑠 = 𝑝𝑒 ∗ 𝑒𝑝𝑣,𝑔). In this context the consumer chooses the 
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amount of total electricity consumption which is composed of both grid and solar 

electricity. The budget constraint can be rewritten as in equation 12. 

 𝑀 + 𝑠 = 𝑝𝑒(𝑒𝑔 + 𝜃𝑒𝑝𝑣,𝑔) + 𝑥 (12) 

Net-metering is allowing installers to use the grid as a giant battery, in this case 

making grid electricity and solar electricity perfect substitutes regardless of the time of 

production.35 In other words 𝜃 = 1and 𝑒𝑝𝑣,𝑔 = 𝑒𝑝𝑣,𝑐. Because the marginal cost of the 

electricity is the same in either case the household again chooses only their total level of 

electricity consumption, but this time with a larger income. Under a net metering policy, 

the demand for total electricity becomes:  

 
𝑒𝑡

∗ =
𝛼𝑀

𝑝
+ 𝛼𝑒𝑝𝑣 (13) 

Note that this is equal to equation 9, the lower bound of the no net-metering case. This 

makes sense because if solar electricity perfectly offsets grid consumption, as was the 

assumption to produce that result, then net-metering is irrelevant.  

Under net-metering, the marginal cost of electricity consumption does not change, 

thus we would not expect a rational actor to change their consumption ceteris paribus.  

However, net-metering is a subsidy and affects the household income which leads the 

model to predict an increase in total electricity consumption. That said, the size of the 

                                                 
35 Nearly all net-metering policies are designed to prevent customers from generating more electricity than 

they consume. However, during low load months production may exceed consumption. Typically, and in the 

case of the service territory used for this study, that bill credit can be rolled forward for up to a calendar year. 

This preserves the perfect substitutability.  
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income adjustment from net-metered electricity is likely small relative to total income. 

Further, adopters of solar must pay for the panels. Given the sharp increase in adoption 

following the introduction of third party ownership legalization, it is likely that household 

are paying a fee each month for their solar36 which would further mitigate the income 

adjustment. The results suggest that the solar rebound will be smaller under a net-metering 

policy than without. 

4.2.2 Relaxing Assumptions on Rational Behaviour  

The models above were derived on the assumption of perfectly rational consumer 

behavior. Based on Simon’s (1955) ideas on bounded rationality, people do not process all 

the information needed to make rational choices. These ideas have been applied to 

electricity usage in previous studies demonstrating that electricity consumption or prices 

are not salient to the average consumer (Gilbert and Graff Zivin, 2014; Jessoe and Rapson, 

2012).  Rather consumers may be more responsive to non-price signals and framing 

(Asensio and Delmas, 2016; Delmas et al., 2013). There are a number of behavioral 

economic drivers which generate alternative hypothesis about the magnitude and direction 

of the rebound effect.  

While standard economic theory predicts that consumers respond to marginal price, 

evidence has shown that the demand for electricity is much more sensitive to average price.  

Customers tend to react to the total amount on the bill (Ito, 2012). In fact, lagged average 

prices have been shown to be a stronger predictor of consumption than current prices (Ito, 

2014). While the income adjustment from net-metered solar is likely to be small compared 

                                                 
36 This would also be the case if households took out a loan to purchase the PV system themselves.  
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to total income, it represents a significant percentage of the electricity bills. Based on the 

sample averages, customers are likely to see bill reductions in the range of 50% to 75%. 

Consumers may react to these dramatically lower bills by increasing electricity 

consumption in excess of rational economic predictions based on two drivers.  

First, evidence suggests that individuals regularly violate the economic principle of 

fungibility and instead engage in “mental accounting” which assigns costs to specific 

categories (i.e. utilities) to determine budgets (Thaler, 1999). If households practice mental 

accounting they will be more likely to spend their gains in the category they originated in 

(Antonides et al., 2011). This would lead to predictions of a larger solar rebound following 

electricity bill savings. Second, households have demonstrated a tendency to evaluate 

information about their current bills by revisiting previous bills (Buchanan et al., 2015). 

Thus, the previous bill amounts may serve as an anchor which primes consumers to 

previous expenditures and causes an adjustment in consumption levels to align with 

previous information provision and expectations (Tversky and Kahneman, 1974). That the 

new bills represent net as opposed to total electricity consumption may drive up total 

electricity consumption and lead to a solar rebound.  

The psychology literature offers additional justification for a rebound effect in 

conjunction with economic considerations. Moral licensing is an effect in which engaging 

in a good deed can liberate individuals to engage in behaviors that are immoral, anti-social 

welfare, or otherwise problematic which they would ordinarily avoid (Khan and Dhar, 

2006; Merritt et al., 2010; Nisan, 1990). Evidence of moral licensing has been found across 

a wide variety of domains, and recently applied to explain the rebound effect in energy 

consumption (Dütschke et al., 2018). The decision to install solar panels may give people 
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the perception that they can use more electricity since they have completed a good deed 

and are generating green electricity (Peters and Dütschke, 2016). Importantly, moral 

licensing can be prospective. The anticipation of engagement in moral behavior has been 

shown to negatively influence current behavior (Cascio and Plant, 2015). If moral licensing 

is a driver of the rebound effect we might see evidence of increased consumption between 

when the consumer makes the decision to install (the application date) and the panels 

starting to generate electricity (the installation date). 

On the basis of the economic model and additional evidence presented above: 

Hypothesis 1: Consumers who install residential PV will 

increase their aggregate electricity use compared to non-

adopters post-installation.  

 

4.2.3 Double Dividend  

In psychology, the change of an energy product or service constitutes an 

intervention that interrupts previous routines and thereby leads to behavioral change in how 

the relevant product or service is used (Frondel, 2018). If the behavioral change leads to a 

greater use of energy or other resources than expected, it is termed a rebound effect. 

However, there is also a stream of literature that reports opposite findings i.e., an increase 

in conservation behavior (Truelove et al., 2014). If this increase in conservation occurs in 

the same domain, it is termed sufficiency behavior (Seidl et al., 2017). This has led to the 

development of a “double dividend” argument for distributed generation in which adopters 

not only generate energy, but also reduce their own consumption as a result of installation.   
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The installation of solar energy has been shown to increase the salience of 

environmental impacts of energy use (Keirstead, 2007). The role of this information, and 

consumers ability to process it, plays a key role in “conservation chains” (Haas et al., 1999), 

and green cues (Allcott and Rogers, 2014). The visible presence of solar panels may remind 

or encourage people to make other green choices. In a cue-driven, or persuasive advertising 

model (Becker and Murphy, 1993), the intervention of panel installation may serve as an 

exogenous cue which lowers the marginal utility of energy consumption.  While the cue 

remains active consumers form habits and make capital stock changes that cause persistent 

effects (Allcott and Rogers, 2014).  

These results mirror the effects of efficiency correlation (Ghosh and Blackhurst, 

2014) which suggests that household investments in efficiency and conservation are 

positively correlated. Thus, installing solar panels may encourage further energy efficiency 

investment, particularly in a solar leasing model where capital liquidity is not 

compromised. In small sample surveys, both Haas (1999) and Keirstead (2007) found 

evidence to support a similar “conservation chain,” particularly with regard to lighting and 

insulation stocks. Rai and McAndrew’s (2012b) post-installation survey results also 

suggest that PV adoption appears to raise the environmental concern of households. 

Further, installation of solar is routinely accompanied by an in home display or 

mobile application for checking PV output. The use of in home displays has been shown 

to extend conservation behaviors through habit formation and learning (Jessoe and Rapson, 

2012). Hondo and Baba (2010) test this hypothesis by measuring household awareness of 

solar installations and the effects of awareness. Households who more frequently engaged 

in “PV-checking behavior”, which includes both looking at the panels themselves and 
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checking their output, were more likely to increase pro-environmental behavior post-

installation.  

There may also be a financial justification for reducing consumption of electricity 

post-installation. The adoption decision makes electricity use more salient. First, in the 

installation decision customers consider their electricity price and usage in determining 

whether distributed generation is a sound financial investment.  In a Texas survey, 87% of 

the responding PV owners used a payback period approach to calculate the financial 

attractiveness of a PV system. Payback period duration is a significant predictor of 

adoption (Rai and McAndrews, 2012b). Consumers under at net metering scheme discover 

that the payback period for their panels shrinks if they use less electricity.  Again 

referencing the Texas survey, “Over 70% of the sample reports that their awareness as 

regards their electricity use (amount used, bill paid, and purpose of use) is ‘higher or much 

higher’ as a result of installing solar” (Rai and McAndrews, 2012b). 

The information and cue effects of solar installation yield predictions that directly 

oppose Hypothesis 1 and form a critical test: 

Hypothesis 2: Consumers who install residential PV will 

decrease their aggregate electricity use compared to non-

adopters post-installation. 

 

The goal of this paper is then to test for a causal connection between solar 

installation and changes in aggregate electricity use. To do so I examine a population of 

solar adopters with sufficient pre and post installation billing data and compare them to a 

matched control group using a difference in differences analysis.  
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4.3 Data  

4.3.1 Customer Data 

The data for this study was supplied by a PJM utility that provides electricity to 

over 500,000 residential customers. The utility provided both historical billing data and 

records of solar interconnections for all the residential and small commercial accounts in 

their service territory. This is unique from previous studies of the solar rebound which have 

relied on aggregated data or a representative sample of customers.  Weather data was 

extracted from NOAA’s National Climactic Data Center.   

Solar interconnection data spans from December 2010 through June 2018. In 

addition to the date of grid interconnection, it includes an application date at which point 

the account applied to the utility to install solar. Other variables of interest include the 

installed capacity of the system, the type (residential, small commercial, community), and 

the billing structure (net-metered, buy all sell all etc.).  Figure 24 shows the adoption of 

solar in the territory over time. Through June 2018 there were roughly 8,000 distributed 

solar installations in the utility territory which provided 77.6 MW of installed capacity.  
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Figure 24: Cumulative solar installations over time 

Using an eight-digit account number, the interconnection records could be matched 

with customer billing data. Billing data includes information for more than 300,000 unique 

premise locations with over 15,000,000 bills in the sample. Due to data quality concerns 

bills before 2010 were dropped37. Account number was unique to both a premise location 

and customer number: it records information only for the period in which a customer was 

at the same location. This removes concerns about changes in consumption following a 

change in occupancy. Across zip codes in the service territory the ratio of adopters to non-

adopters ranges from 0.4% to 10%. Areas with fewer customers tend to have higher 

penetrations and the system wide average is just under 2%.  

One challenge in using this data is that billing data is not standardized across 

customers: individual customers could have bills that begin and end on different dates and 

differ in number of bill days. This creates a challenge for directly comparing usage.  

                                                 
37 Data from prior to 2010 had a much higher rate of missing bills, estimated readings, and missing customer 

information. 
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Converting from billing data to a standardized format is a common problem in 

analyzing utility data (Abdou et al., 2015). For each customer bill, I generate the number 

of heating and cooling degree days that occur during the billing period. I then allocate usage 

from bill to month on the basis of percentage of heating degree days in winter months, or 

percentage of cooling degree days in summer months. In shoulder months, the allocation 

is done on percentage of bill days that fall in each month.  

For example, if a bill spans November 15th through December 15th and over that 

period there were 100 heating degree days in November and 200 in December two thirds 

of the bill usage would be allocated to December.38 This improves on the more basic 

approach of allocating bill usage across months based on the share of days. Figure 25 

illustrates why, as electricity use is strongly correlated with average monthly temperature. 

Thus, a month with more extreme temperatures should have slightly higher electricity 

usage than a milder month that precedes or follows it.  

                                                 
38 This example is deliberately extreme. In practice, the allocation was much more representative of the 

number of billing days than the example.  
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Figure 25: Relationship between electricity use and temperature 

With a consistent timescale for measuring each customer’s electricity consumption 

it is possible to directly compare across households. With a full set of electricity consumers, 

it is not necessary to use only a representative sample. Previous studies have relied on 

comparing solar adopters to a representative sample of all electricity consumers (Deng and 

Newton, 2017). However, it is well documented that solar adopters differ from the general 

population in manners correlated with electricity consumption including home square-

footage and income (Barbose et al., 2017). Figure 26 shows the distribution of pre-adoption 

average annual use in the population of eventual solar adopters (treated) against the 

population as a whole (untreated).  
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Figure 26: Pre-matching average annual use comparison 

Solar adopters on average use considerably more electricity than non-adopters 

before installation. Thus, using a representative sample drawn from the whole population 

as a counterfactual may bias estimates of the rebound effect due to a lack of sampling 

density in the region of common support, a common problem with finite samples 

(Heckman et al., 1996), and discrete differences in pre-treatment outcomes. To avoid these 

problems, I employ a matching technique to pair each solar adopter with a non-adopter 

whose pre-treatment observables are similar.  

4.3.2 Matching 

In this study, I employ matching procedures to control for the fact that the treatment 

and control groups differ in ways that matter for the outcome under study. One limitation 

of the study is that the variables for potential matching are restricted to data fields used in 

customer billing by the utility and do not contain information related to the household (e.g. 



 106 

size, income, number of occupants, etc.) or dwelling (e.g. age, type).39 Instead, I employ a 

series of measures obtainable from billing data and described below. 

4.3.2.1 Weather Sensitivity 

One potential predictor of solar adoption is the degree to which a customer’s load 

is correlated with temperature. This can be thought of as a proxy for household vintage and 

type as older homes have less thermal inertia. I investigated this weather sensitivity 

separately for both hot and cold temperatures using heating and cooling degree days. This 

data was then merged with the kWh usage during the bill period to generate a set of 

correlation coefficients for each customer.  

4.3.2.2 Seasonal Load Shape 

Another predictor of solar adoption is a customer’s seasonal load pattern. Seasonal 

load patterns capture variance due to lifestyle factors and appliance stock. For example, 

those customers with natural gas service use less electricity, particularly during the winter 

and their lower electricity bills may make them less likely to adopt solar.  To create clusters 

of usage patterns, the data was normalized such that each month represented a percentage 

of annual consumption. A k-means cluster algorithm was employed to group accounts into 

clusters of load shapes.  Figure 27 shows an example of the resulting seasonal load profiles 

across clusters.   

                                                 
39 As a result even after matching there may be some remaining bias. Electricity usage patterns cannot capture 

environmental attitudes or provide insight into whether a household’s current electricity consumption is 

utility maximizing. For example two residences with the same usage may respond differently to treatment if 

one is currently setting their thermostat to a sub-optimal level to conserve electricity while the other has their 

thermostat set at their ideal temperature.  
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Figure 27: Seasonal load shapes by cluster 

4.3.2.3 Annual Usage 

In addition to the pattern of use, the aggregate annual use of electricity is strongly 

correlated with solar adoption. This metric is also correlated with household income, home 

square footage and other unobserved covariates (Yohanis et al., 2008).  

4.3.2.4 Customer Type and Location 

Additional categorical variables such as rate class and zip code were included in 

the matching procedure. The highest percentage of solar adopters are from customers in 

non-default rate classes, perhaps because opting into a non-default tariff indicates higher 

salience of electricity costs and use.  

Before matching, the population was trimmed to remove outliers which had average 

annual use more than the 99th percentile or less than the 1st percentile. I also removed any 

accounts in which there were months with near zero usage which might indicate only part 

time occupancy. To ensure that there were sufficient pre-treatment observations I dropped 
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solar adopters who applied for installation before 2014 and removed those without at least 

6 months of data. Finally, I removed non-residential accounts as commercial accounts may 

have different use drivers.  

Using a propensity score model, the available variables capture little of the total 

variation, and the model poorly predicts expected adoption. In other words, an individual 

customer’s adoption is not particularly well explained, as can be seen in Figure 28. There 

were many untreated observations which had a higher adoption probability than the actual 

solar installers. It is worth noting however that there was common support for the entire 

range of the treated population among the non-adopters.  

 

Figure 28: Propensity score comparison 

I explored a number of variations of matching (1:1, k-nearest neighbor, kernel, 

cluster, etc.) but those methods failed to provide a matched set which sufficiently 

eliminated the pre-treatment difference of means in electricity consumption between the 
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treatment and control group. Due to the relatively low percentage of solar adopters in the 

overall population (there are roughly 50x more non-adopters in the sample), there are 

enough untreated observations to employ coarsened exact matching (CEM) as described in 

Blackwell et al. (2009). This method ensures that matches share the categorical covariates 

of zipcode, seasonal load cluster, and rate class and are within a binned range on continuous 

variables such as average annual load and weather sensitivity. Benefits of CEM include 

bounding the imbalance between the treated and control groups, ensuring the congruence 

principle, and restricting the data to areas of common support (Iacus et al., 2012). Thus, for 

each treatment observation I created a pool of matches from the same zip code, seasonal 

load shape cluster, rate classification, and binned values of annual usage and weather 

sensitivity. The final selection was for the nearest neighbor based on average annual use. 

To capture the most appropriate counterfactual, I construct a control group for each 

cohort of solar installers as employed by Gill and Lang (2018) in their study on the effects 

of energy education programs on home electricity consumption. The results are a set of 

matches which exactly share the available covariates and align much better on pre-

treatment use than the population at large as shown in Figure 29. Following the matching 

procedure, a paired sample t-test (t = -1.09, p = 0.278) fails to reject the null hypothesis 

that the two groups have the same pre-treatment means.  
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Figure 29: Post-matching average annual use comparison 

4.3.3 Solar Data 

By definition, customers with net metered solar installations do not get separate 

readings of solar production and energy consumed. Only the net amount used from the grid 

is reported in the billing information, so solar output must be estimated. This is a limitation 

of working with net-metered data.  

In this study, I improve on the methodology of previous studies such as Eid et. al. 

(2014) which make use of hypothetical solar production from tools such as NREL’s 

PVWatts calculator. I employ solar data from a sample of distributed solar installations in 

the same market territory. The solar dataset includes both the system size (kW) and hourly 

solar generation (kWh) for the PV systems. I divide the hourly generation by the total 

system size to calculate a capacity factor for every hour of the year. Averaging across 

systems and aggregating to the monthly level provides a yearly profile of solar data for a 1 

kW system. I can then multiply this output by the installed system size for each customer 
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to estimate their PV production.40  Figure 30 shows that while the profile generated from 

my sample follows the curve of the hypothetical data it is a more conservative estimate in 

every month, particularly in winter months. This likely reflects the fact that my sample 

from installed panels incorporates the effects of suboptimal tilt angle, shading, and 

snowfall accumulation beyond just precipitation days.    

 

Figure 30: Solar output  

4.4 Methodology  

4.4.1 Difference in Differences 

To perform a critical test of the hypotheses I employ a difference in differences 

(DND) model to compare the treatment group (households that install solar) to the control 

group (households who do not obtain solar) to examine whether there is differential energy 

                                                 
40 I compared the monthly average precipitation and temperature over a 4-year solar production sample period 

to the National Oceanic Atmospheric Administration's “climate normals” and find no statistical difference 

between those normals and the average temperature and precipitation in the solar data years. 
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use after the installation relative to the pre-treatment period. Difference-in-differences is 

among the most common and perhaps the oldest quasi-experimental research designs.41 

The method is described in all econometrics texts (Angrist and Pischke, 2008; Cameron 

and Trivedi, 2010; Wooldridge, 2015) and has been used frequently and recently in the 

study of electricity consumption (Allcott, 2011; Fowlie et al., 2017; Gill and Lang, 2018; 

Jessoe and Rapson, 2014a). The coefficient of interest is β, the difference between the 

change in outcomes pre and post treatment for a treatment group as compared to the control 

group. The basic empirical model is: 

 𝑦𝑖𝑡 = 𝛾 + 𝛾𝑖𝑇𝑅𝐸𝐴𝑇𝑖 +  𝛾𝑡𝑃𝑂𝑆𝑇𝑡 +  𝛽 𝑇𝑅𝐸𝐴𝑇𝑖 × 𝑃𝑂𝑆𝑇𝑡 + 𝑢𝑖𝑡 (14) 

where yit is the dependent variable, TREATi is a binary indicator which is one for all the 

treatment group and zero otherwise, POSTt a binary indicator which is one in post treatment 

periods, TREATi×POSTt is an interaction of the two which is one for the treatment group 

in post treatment periods, and uit is the error term.  

In my application of the DND model I have two periods of interest. The first is the 

application period during which the household has completed the application to the utility 

for the ability to install solar, but before the panels are operational. This will allow me to 

test for anticipation effects and prospective moral licensing. The second is the post-

installation period when the panels are generating electricity.  My standard model thus 

becomes: 

                                                 
41 The method dates to the investigation of the London cholera outbreak: Snow, J., 1855. On the mode of 

communication of cholera. John Churchill. 
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 𝑙𝑜𝑎𝑑𝑖𝑡 = 𝛾𝑖𝑆𝑂𝐿𝐴𝑅𝑖 + 𝛼𝐴𝑃𝑃𝑡 + 𝜆𝑡𝐼𝑁𝑆𝑇𝐴𝐿𝐿𝑡 + 𝛽1𝑆𝑂𝐿𝐴𝑅𝑖 × 𝐴𝑃𝑃𝑡

+  𝛽2𝑆𝑂𝐿𝐴𝑅𝑖 × 𝐼𝑁𝑆𝑇𝐴𝐿𝐿𝑡 + 𝑢𝑖𝑡 

(15) 

where the unit of observation is household-month, the dependent variable loadit is 

electricity consumption in kWh for household i in month t, SOLARi is a binary variable 

equal to one if the household is an eventual solar adopter, APPt is a binary variable equal 

to one if the application for solar has been filed but solar not installed at month t and zero 

otherwise, INSTALLt is a binary variable equal to one if installation has occurred at month 

t and zero otherwise, SOLARi×APPt is the interaction of SOLAR and APP equal to one for 

adopters during the application period, and SOLARi×INSTALLt is the interaction of SOLAR 

and INSTALL equal to one for households who have solar installed in that month. The 

coefficients of interest are the interaction terms β1 and β2 which measure the change in load 

from pre- to post-treatment for the treated group, relative to the change in load for the 

control group. The coefficient β1 measures any anticipation effect association with applying 

for solar. A positive, significant coefficient indicates an increase in electricity consumption 

for households who have applied for solar but not yet installed it. For the average household 

there is a two and a half month gap between the application period and the installation. β2 

measures the change in consumption once the panels have been installed and are 

operational. The error term uit is clustered at the household level to allow for correlation in 

electricity use within a residence.  

4.4.2 Event Study 

In this study, the treatment timing is not homogeneous across cohorts, allowing me 

to exploit variation across groups of units that receive treatment at different times. This is 
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often referred to as an “event study” and allows for the estimation of a general DND 

estimator that is comprised of a weighted average of all the possible two-group/two-period 

DND estimators in the data (Goodman-Bacon, 2018). For each cohort, I define relative 

time as the time relative to the initial treatment. It is then possible to identify causal 

treatment effects for a given cohort at many different relative times to form cohort-specific 

average effects on the treated (CATT) and obtain a weighted average of CATTs from a 

linear two-way fixed effects regression model with household and time fixed effects 

(Abraham and Sun, 2018). Equation 16 presents the specification of the fixed effects model 

for this study. 

 𝑙𝑜𝑎𝑑𝑖𝑡 = 𝛽1𝑆𝑂𝐿𝐴𝑅𝑖 × 𝐴𝑃𝑃𝑡 +  𝛽2𝑆𝑂𝐿𝐴𝑅𝑖 × 𝐼𝑁𝑆𝑇𝐴𝐿𝐿𝑡 + 𝛼𝑖 +  𝜃𝑡 + 𝑢𝑖𝑡 (16) 

The household fixed effect, αi, allows me to control for unobservable household 

specific fixed effects. This controls for time-invariant factors which might include 

demographics, house characteristics, appliance stock, space heating and cooling 

preferences, etc. The time fixed effect, θt, accounts for determinants of electricity use that 

affect all households and vary over time including weather and general trends in electricity 

consumption. The benefit of a time fixed effect is being able to control for complex 

determinants such as temperature and humidity without imposing an assumption about the 

functional form of those relationships (Gill and Lang, 2018).  

Working from the model presented in equation 16, I make a number of 

modifications to test for robustness and explore variations of the research question. First, I 

include the summation of coefficients on the three months prior to the application for solar, 

the first term in equation 17. This specification tests the assumption of parallel trends 
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between treatment and control. Finding an insignificant result for these coefficients would 

enhance confidence that the solar adopters have an appropriate counterfactual. 

 

𝑙𝑜𝑎𝑑𝑖𝑡 = ∑ 𝛿𝑘𝑃𝑟𝑒𝐴𝑝𝑝𝑖 × 𝑆𝑜𝑙𝑎𝑟𝑡 +

3

𝑘=1

∑ 𝜂𝑘𝑃𝑜𝑠𝑡𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑖 × 𝑆𝑜𝑙𝑎𝑟𝑡

6

𝑘=1

+  𝛽1𝑆𝑂𝐿𝐴𝑅𝑖 × 𝐴𝑃𝑃𝑡 +  𝛼𝑖 +  𝜃𝑡 + 𝑢𝑖𝑡 

(17) 

Equation 17 introduces summation terms where δ in ∑ 𝛿𝑘𝑃𝑟𝑒𝐴𝑝𝑝𝑖 × 𝑆𝑜𝑙𝑎𝑟𝑡
3
𝑘=1  

provides a separate estimate of the DND coefficient in each of the three months prior to 

the solar application and η in ∑ 𝜂𝑘𝑃𝑜𝑠𝑡𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑖 × 𝑆𝑜𝑙𝑎𝑟𝑡
6
𝑘=1  provides separate estimate of 

the treatment effect in each of the six months following installation. This tests for variation 

in the treatment effect over the periods following the installation. In other words, does the 

affect grow or attenuate as residences become accustomed to the new normal of solar 

panels? The coefficient of interest is η equal to one in each period following installation. 

Coefficients that are significantly distinguishable from zero would indicate the persistence 

of treatment effect and comparison between coefficients will shed light on the changes in 

the treatment effect over time.  

I am also interested in the extent to which the treatment may vary across different 

types of customers. While I have limited customer characteristics interacting the treatment 

effect with the rate code will allow me to see if the response to solar adoption differs for 

customers who were on non-default rates. Interacting the treatment effect with zipcode may 

show geographic diversity in the impact of solar adoption. For example, households from 

richer zip codes may exhibit a larger treatment effect. 
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Finally, I include an interaction term with heating degree days and cooling degree 

days. While the time fixed effects should capture the weather variations, it is possible that 

residences with solar are especially peak sensitive. In other words, because they have solar, 

they do not feel guilty about maintaining more comfortable temperature setpoints in the 

home even when outside temperatures are more extreme. This full model is depicted in 

equation 18 and represents a robust test of the hypotheses presented above.42  

 𝑙𝑜𝑎𝑑𝑖𝑡 =  𝛽1𝑆𝑂𝐿𝐴𝑅𝑖 × 𝐴𝑃𝑃𝑡 +  𝛽2𝑆𝑂𝐿𝐴𝑅𝑖 × 𝐼𝑁𝑆𝑇𝐴𝐿𝐿𝑡

+ (𝛽2𝑆𝑂𝐿𝐴𝑅𝑖 × 𝐼𝑁𝑆𝑇𝐴𝐿𝐿𝑡)  ×  𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑥 + 𝛼𝑖

+  𝜃𝑡 + 𝑢𝑖𝑡 

(18) 

4.5 Results and Discussion 

Before presenting the results of any formal modeling it is useful to inspect the 

impact of solar adoption visually. Figure 31 shows a time series comparing average 

monthly usage. 

                                                 
42 Some previous work on the solar rebound also makes use of a lagged dependent variable (Deng and 

Newton, 2017). The difference between the two models is a source of debate in panel data analysis as 

described by Achen (2000): Adding a lagged dependent variable will typically provide strongly significant 

coefficients and improved fit even when the lagged dependent variable has no causal interpretation. The 

authors suggest that the decision to include the lagged dependent variable is a theoretical as opposed to 

methodological one. Does the lagged variable have explanatory power? On one hand Deng and Newton 

suggest that household electricity demand typically exhibits significant inertia as household size, appliance 

stock, and financial situation do not tend to change suddenly. This makes more sense for their seasonal time 

scale. In this study there is significant fluctuation in usage between months, and there is nothing about the 

previous month’s usage which constrains or encourages usage in the current month. I argue most consumers’ 

relationship with electricity is one of comfort and convenience. A lagged model is presented in the appendix. 



 117 

 

Figure 31: Timeseries comparison of average monthly use 

Two points are worth highlighting. First, in the year prior to 2014 nobody in the 

sample has adopted solar and the profiles are closely overlapping, further evidence that the 

control group provides a valid counterfactual. Second, the adopters appear to use more 

electricity post-adoption. The adopter average line includes the average for all eventual 

solar adopters in the sample regardless of which month they install. As a result, the effect 

size appears to grow over time as more and more users adopt solar. Figure 31 is useful for 

examining the periodicity of electricity use but cannot present a visualization of the effect 

size since the installers adopt solar in cohorts binned by month starting in January 2014.  

A more useful figure for examining adoption impacts shows average usage for the 

two groups in relative time, with respect to a common reference point. Figure 32 show the 

average use of the adopters and their matched non-adopters one-year pre and post adoption.  



 118 

 

Figure 32: Comparison of average monthly use from adoption reference point 

The periodicity of electricity use is no longer evident since different months are 

being averaged but the trend and level of pre-adoption usage is nearly identical between 

the two groups. In Figure 32 a discrete change in use by the adopters is clear following 

adoption. The red line indicates the total electricity consumption, the gray line their use 

from the grid, and the difference between those line the amount of PV generation. The 

result is a model difference in differences graph, showing a treatment effect.  

I present the first set of regression results in Table 8. The dependent variable is 

monthly load for each household, with the coefficients of interest on the 𝑆𝑂𝐿𝐴𝑅𝑖 ×

𝐴𝑃𝑃𝑡 and 𝑆𝑂𝐿𝐴𝑅𝑖 × 𝐼𝑁𝑆𝑇𝐴𝐿𝐿𝑡 variables interpreted as a kWh increase in electricity use 

in the periods after applying for solar and installing it, respectively.  
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Table 8: Treatment effect of solar adoption 

 (1)  (2) 

DV= Monthly Load  

(kWh) Estimate P-value  Estimate P-value 

Solar Adopter 27.456 0.356  - - 

Application Period 65.198** 0.011  - - 

Installation Complete 134.752*** 0.000  - - 

Solar × App 38.064 0.326  7.313 0.714 

Solar × Install 146.592*** 0.000  157.832*** 0.000 

Household Fixed Effects N   Y  

Time Fixed Effects N   Y  

Notes: Column 1 uses a difference-in-differences model while Column 2 adds household 

and time fixed effects. Errors are clustered at the household level. *, **, and *** indicated 

significance at the 10%, 5% and 1% levels respectively.  

 

Specification 1 interacts binary variables for months prior to and after the 

installation with a binary variable indicating treatment status. Results indicate that even 

after matching the eventual solar adopters use slightly more electricity than non-adopters 

on average, but the results are not significant. Positive significant coefficients on the 

application period and installation period variables likely reflect that average load in the 

service territory is increasing over time. This is due to further penetration of households 

with electric space heating and central air-conditioning, as well as the further electrification 

of end use loads.  

The interaction of the treatment and the application period indicate a small increase 

in electricity consumption following application for solar, but prior to installation. This 

could represent an anticipation effect (Frondel and Schmidt, 2005) in which customers 

anticipate the lower bills with solar and begin to use more. This would lend support to the 
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prospective nature of moral licensing in which the decision to install solar panels gives 

people the perception that they can use more energy (Peters and Dütschke, 2016). However 

the results are not significant. 

In this model specification, without time fixed effects, it is also possible that the 

greater usage during the interaction of application period and treatment reflects the fact 

that most adopters install during the summer when electricity loads are higher. Finally, the 

interaction of solar and installation period shows a statistically significant increase of 147 

kWh per month on average following adoption. This seems to support the hypothesis that 

there is a positive solar rebound and reject the hypothesis that solar installation results in a 

double dividend.  

Specification 2 includes household and day fixed effects and is the preferred model 

specification as it allows for the incorporation of all possible DND estimators by taking 

advantage of the variation in treatment time. The results are consistent with the simple 

DND model with the installation effect being slightly larger, and the application effect 

slightly smaller. The significance of those results was unchanged between models. 

Investigating the coefficients on the time fixed effects provides further evidence that 

electricity consumption is slowly increasing during the study period, although it is highly 

cyclical.  

For further visual evidence of the treatment effect, I employ the technique of Deng 

and Newton (2017), to investigate what would happen if the impact of solar adoption were 

ignored. Specifically, the equation was estimated with the interaction terms removed. 

Figure 33 shows the regression residuals (obtained by subtracting the fitted values from 
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the actual consumption data) averaged for the treatment and control group and separated 

into pre- and post-solar periods.  

 

Figure 33: Regression residuals 

Before the installation of PV residuals from both groups exhibit very similar 

behavior fluctuating above and below zero, which matches expectations. There is a small 

increase in the adopter use in the months leading up to adoption which again may be an 

anticipation effect. Post adoption of solar, however, while the control group maintains a 

similar pattern, the treatment group has residuals well above zero in all post installation 

periods. A positive residual indicates that the total actual electricity consumption exceeded 

the predicted amount. Thus, the differences in the residuals appear to be correlated with 

the presence/absence of the solar adoption term.  
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4.5.1 Treatment Effect Over Time 

Having established from the base model that solar installers use more electricity 

following adoption, I now seek to understand whether the treatment effect changes over 

time. The regression results in Table 9 examine time differentiated treatment effects and 

stem from the model specified in equation 12.  

Table 9: Time differentiated treatment effect 

 (3) 

DV= Monthly Load  

(kWh) Estimate P-value 

1 month prior × application 0.444 0.973 

2 month prior × application -1.777 0.91 

3 month prior × application 3.946 0.826 

1 month post × treatment 57.338*** 0.000 

2 month post × treatment 104.108*** 0.000 

3 month post × treatment 104.271*** 0.000 

4 month post × treatment 72.416*** 0.001 

5 month post × treatment 86.922*** 0.000 

6 month post × treatment 85.304*** 0.001 

Household Fixed Effects Y  

Time Fixed Effects Y  

Errors are clustered at the household level. *, **, and 

*** indicated significance at the 10%, 5% and 1% 

levels respectively 

The results indicate treatment effects by month that are consistent with models 1 

and 2. The coefficients of interest post-installation are all positive and significant with the 

estimate of the rebound in any given period between 57 and 108 kWh.  Furthermore, this 

model specification provides additional evidence that the parallel trends assumption holds.  
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As described in Angrist and Pischke (2008), if the interaction between the treatment 

variable and a time variable in leading periods is statistically indistinguishable from zero 

one can reasonably expect the parallel trends assumption to hold.  Figure 34 presents the 

results displayed in Table 12 in graphical form. 

 

Figure 34: Time differentiated treatment effects 

There does not appear to be a clear pattern in the rebound effect over time, results 

remained reasonably consistent even when additional post-periods were added. The 

exception is the first month post installation which has a noticeably smaller rebound effect. 

This may be evidence that customers are responding to lagged average price rather than 

marginal price. In the second month post-installation customers have received their lower 

electricity bill from the first month. Seeing that the bill is lower they respond by increasing 

use in subsequent periods. When their bill increases to a level they were primed by previous 

bills to expect, the effect stabilizes. Alternatively, the smaller rebound in the first month 
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may be an artifact of the billing period to month conversion. For example, if a solar adopter 

installed in June, but their bill extended from June to July, the distribution of kWhs between 

those months would include some period before the installation began and thus bias the 

estimate downward.  

4.5.2 Treatment Effect Across Customer Types   

Next, I explore heterogeneity in the treatment effect across several characteristics. 

Table 11 presents results from alternative model specifications. In model 4, I investigate 

differences in treatment effect across rate classes. For reference, Table 10 describes the 

rate class characteristics. Nearly 65% of customers in the sample are on a default full 

service rate, meaning the distribution utility also supplies them electricity. Retail choice 

rates indicate that customers have opted for another supplier in the deregulated PJM 

market. The remaining distinctions are on the basis of electrification of end loads. 

Table 10: Breakdown of rate codes 

Rate Description 
% of 

sample 

Default 
Single phase residential full 

service 
64.85 

1 
Residential full service with 

water heater 
6.87 

2 Retail choice 19.33 

3 
Retail choice with electric space 

heating 
1.46 

4 
Apartment full service with 

electric space heating 
0.33 

5 
Residential full service with 

electric water and space heating 
7.16 
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Looking at the coefficients of interest on the interaction of treatment effect and rate 

code two trends are immediately clear. First, further electrification of loads leads to a larger 

rebound. This makes intuitive sense as those customers with space and water heating are 

likely to have a higher upper bound on potential use. The effect is stronger for electric 

space heating than water heating which makes sense since it represents a larger load. 

Second, retail choice appears to mitigate the effect of the treatment in producing a solar 

rebound. I hypothesize that customers who have opted out of the default provider are likely 

to be more aware of their electricity use and have greater price salience. As a result, they 

do not react to changes in bills and continue using electricity as before given that the 

marginal price has not changed. The coefficients on the interaction of installation and rate 

3 indicate that the effects of retail choice and electrification of loads appear to offset. These 

customers have an increase in the rebound effect over the default, but it is not statistically 

significant.  

In model 5, I investigate the extent to which the treatment effect may differ by zip 

code. The zip codes in the data represent mostly urban and suburban environments. 

Investigating census data uncovered that there is some heterogeneity in median income by 

zipcode in the service territory. Neither of these factors appear to be correlated with the 

size of the solar rebound. None of the coefficients on zip codes are statistically significant.  

The base model does not include any temperature variables even though 

temperature is known to be a strong correlate of electricity use. These effects are captured 

by the year-month time fixed effects and allow me to avoid specifying a functional form 

for the weather data (Gill and Lang, 2018). Having said that, it is reasonable to assume that 

the rebound effect may be stronger in months when temperatures are more extreme, as 
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adopters feel less inclined to be conservative with indoor temperature setpoints. Model 6 

investigates heterogeneity in the treatment effect based on the number of heating and 

cooling degree days in a month. Even with the inclusion of time fixed effects the 

coefficients on heating and cooling degree days are statistically significant and positive. 

The effect of hot temperatures (CDD) are twice as large as cold temperatures as expected 

because only a portion of customers have electric heat. The interaction of treatment effect 

and degree day variables shows that the rebound is smaller in cold months. The coefficient 

on cooling degree days is of the opposite sign but is not significant.  

Finally, in the last model I investigate whether the size of the rebound is conditional 

on the pre-treatment average annual usage. I find that as pre-treatment usage increases the 

size of the rebound effect goes down. While this may seem counter-intuitive, prior work 

suggests that the rebound effect is stronger for lower income customers (Oliver and 

Moreno-Cruz, 2017). Those customers with large pre-treatment annual usage may already 

be maximizing utility with their current level of electricity consumption and thus do not 

seek to consume more post installation. Another hypothesis generated from the correlation 

of income and electricity use is that larger customers may have more capital liquidity and 

co-adopt solar with home improvements or technologies that mask the size of the rebound 

(Rai and McAndrews, 2012a). 

4.5.3 Discussion and Limitations  

The results of the analysis presented above indicate a robust rebound effect. Taking 

the coefficient estimate from the base model, average total electricity consumption 

increases by roughly 150 kWh a month following solar adoption. Given that the pre-
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installation average monthly consumption for eventual solar installers was 975 kWh the 

rebound effect is on the order of 15.4%. This is between the estimates derived from other 

studies of the solar rebound (Deng and Newton, 2017; Spiller et al., 2017), and generally 

in line with estimates of the direct rebound effect broadly (Gillingham et al., 2016; Sorrell 

et al., 2009). The rebound effect did not show signs of decreasing over time.  

This evidence rejects the hypothesis that there is a double dividend effect of solar 

adoption with adopters conserving following installation. Rather this analysis lends support 

to the presence of a solar rebound. It is tempting based on the presentation of the economic 

model to attribute this effect to lower bills. I stop short of this conclusion for two reasons. 

The reduction in bills represents an income effect not a change in the marginal price of 

electricity when solar is installed with net-metering. Adopters have made a substantial 

investment to install panels, so the idea that they then respond to lower electricity bills by 

using more seems unintuitive. Second, the behavioral economics and psychology literature 

offer other justifications. Moral licensing may give people the perception that they can use 

more electricity since they have completed a good deed. The coefficient on the application 

period was positive, though not significant, indicating the potential for a moral licensing 

effect. Anchoring, priming, and mental accounting may contribute to the rebound effect.  

Distinguishing between these drivers is important because a rebound derived from 

rational economic behavior or psychological drivers have very different policy 

implications (Dutshke et al., 2018).  If the observed rebound is in fact triggered by the 

moral licensing, then traditional policy mechanisms such as pricing signals or information 

programs to mitigate the rebound are unlikely to work. This motivates future research in 

this and other domains to distinguish between economic rebound and moral licensing. 
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This study has some limitations. A lack of customer demographic data inhibits the 

ability to predict solar adoption in the matching process and limits the investigation of how 

the rebound effect may vary based on household characteristics. An alternative model 

specification using an unmatched control group is presented in the appendix and shows 

consistent results. With only utility sourced data, it is also impossible to determine if 

customers were co-adopting solar with other technologies. While most evidence indicates 

that co-adoption occurs with measures that would reduce electricity loads (new roofing, 

insulation, energy efficient windows, etc.) (Rai and McAndrews, 2012a), it is possible that 

solar adoption occurring at the same time as electric vehicle purchases, or other 

electrification of end loads that could bias estimates of the rebound effect upward. Finally, 

in dealing with net-metered data only grid consumption is truly known. I made every 

attempt to be conservative in my estimation of household PV generation, but the results 

would be sensitive to an overestimation of panel output.  

These limitations provide several opportunities for additional research. Pairing 

utility data with customer demographics could yield important insights about the decision 

to adopt solar and the response to adoption. Higher frequency electricity data would be 

useful to investigate whether loads are shifting in response to solar adoption. This may 

have even more important implications for system operation than the magnitude of the 

solar rebound, as most costs are peak driven.  

I am also curious about how the rebound effect may differ between early adopters 

and later adopters. Unfortunately, the data quality from the period of initial solar 

installations was not sufficient for me to investigate. By the time the first adopters in the 

sample install solar they fall squarely in the period of rapid solar deployment.  
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While this study focused on residential customers, the implications for larger non-

residential customers may have bigger implications for system operation. It is worth 

investigating the same research question in utility territories that do not offer full net-

metering. If utilities instead offer a partial credit or value of solar rebate does the policy 

structure influence the size of the treatment effect.  

Finally, given the anticipated shift toward community solar and remote net 

metering indicated in Chapter 3 it would be worthwhile to explore whether a rebound exists 

for customers participating in a remote net-metering program. Given the initial penetrations 

of solar plus storage and rapid cost decline, the implications of these combined systems on 

household consumption will be a topic of particular interest in the years to come.  

4.6 Conclusion 

This chapter proves that a rebound effect related to installation of residential 

distributed PV under a net-metering scheme exists. Installation of PV, while reducing grid 

consumption for the average household by around 400 kWh a month, leads to an increase 

in total electricity consumption of nearly 150 kWh. This equates to a 15% rebound and has 

important implications for both system planning and policy design.  

A rebound erodes the benefit of renewable energy generation in contributing to 

climate goals. More clearly, it affirms that human behavior will be central in any transition 

to a low carbon future (Gram-Hanssen, 2013). That said, significant net energy and carbon 

savings still accrue, and in my opinion a rebound effect of this scale and in the context of 

net-metering (a significant implicit subsidy) is not sufficient to warrant removing policy 

support for the growth of distributed solar.  
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This study does not provide a clear picture of the behavior pathway associated with 

future rebound effects or what the effect will look like in a policy environment post net-

metering. It is worth noting that a rebound effect is not in and of itself a bad thing. If 

adopters achieve greater utility by using more electricity post adoption that is a net benefit. 

This will be especially relevant concerning the growth of solar in the developing world.  

The presence of a rebound signals the need for an examination of what constitutes 

an appropriate incentive, and how those incentives can be structured to signal adopters to 

further conserve.  To derive maximum value from distributed solar rates and market 

structures must signal to households and investors the true value of the resource. This 

considers the benefits of green electricity and generation close to load, while not shifting 

the costs of grid maintenance and system operation onto those who could not afford to 

adopt even if so inclined. It also warrants the investigation of the behavioral response of 

households in relation to electricity consumption for other technologies on the horizon 

including electric vehicles and battery storage. In the concluding chapter I look more 

closely at the role of dynamic pricing as a means of providing signals which incent socially 

optimal individual behavior.  

 

Table 11 
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CHAPTER 5. CONCLUSTION 

In Chapter 2 I demonstrated that solar adopters are being-subsidized by non-

adopters. Chapter 3 showed that solar deployment is clustered and the value of solar to the 

grid is dependent on its location within the network. The evidence from Chapter 4 suggests 

solar adopters increase electricity use post adoption, and clearly continue to rely on grid 

services. Putting together these insights in the current policy context, with volumetric rates 

and net-metering, the regulatory structures are not promoting system efficiencies. Adopters 

do not see price signals to indicate where optimal locations for installation are, and no 

customer currently faces price signals that indicate when supply is constrained. Solar 

adopters will receive full net-metered prices even when generating at locations of little 

value and at times when supply is being curtailed. This harms system efficiency and the 

resulting transfer of wealth impedes equity. All this evidence has reinvigorated a 

fundamental question about how to finance the electric grid.  

5.1 The Need for New Rates 

In the academic literature, these developments have spawned renewed calls for 

cost-causal rate design (Convery et al., 2017), charging customers for the costs they incur 

through the services they use. The cost-causal model argues that efficiency, equity, and 

environmental goals are simultaneously achievable if rate design properly passes through 

energy and delivery service costs to customers. For example, dynamic price signals for 

electricity services might provide customers information that results in more responsive 

consumer demand patterns. Currently, the traditional rates bundle the costs of many energy 
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services in the sale of kilowatt-hours and does not reflect the source of costs or current 

market conditions.  

There are reasons why preexisting rate designs do not reflect dynamic and accurate 

prices. James Bonbright’s (1961) seminal work on public utility rates advocated for rates 

that are simple, understandable, acceptable to the public, and feasible to apply and interpret. 

Additional factors to consider are effectiveness in meeting revenue requirements, stability 

of rates and revenues, equity, and efficiency. Historically, in an environment with relatively 

homogeneous customer classes, steadily growing demand, natural monopoly retail 

providers, and no ability to determine individual customer load patterns, flat volumetric 

rates43 achieved many of these goals and were easy to calculate: simply divide the revenue 

requirement by the forecasted kWh sales.  

Unfortunately, a flat volumetric rate no longer reflects the principles of cost-

causation. Recovering disparate fixed costs through equivalent marginal rates leads to 

cross-subsidization within and across consumer classes and masks the temporal variation 

in the cost of electricity as shown in Chapter 2. Such rates can also lead to over-

consumption during peak times and under-consumption during off-peak hours. Over-

consumption during peak hours is especially costly, since utilities must purchase expensive 

capital equipment or energy services to serve critical peak loads, even though this capacity 

is only used about 60 to 100 hours a year (Faruqui et al., 2009). 

                                                 
43 Volumetric refers to the practice of recovering costs by charging per unit of electricity 

consumed (kWh). Flat indicates that the per unit price is constant and unresponsive to 

changes in supply and demand.  



 134 

Although distributed solar growth is a primary driver, the U.S. electricity industry 

has experienced additional changes that make flat volumetric rates outdated. For example, 

climate change concerns have increased scrutiny of the electric sector’s contribution of 

greenhouse gas emissions and lead to new regulations, the proliferation of renewable 

portfolio standards, and further spending on energy efficiency. A digital economy has 

become increasingly dependent on electric reliability and has made the economic costs of 

power outages larger and consumer expectations greater. Aging transmission and 

distribution infrastructure and new threats, both natural and malicious, have increased the 

stakes for grid resilience and security. In addition to these market and regulatory changes, 

technology developments in advanced metering infrastructure (AMI) and the smart grid 

are removing constraints that previously necessitated flat volumetric rates.  

Adoption of distributed solar and other DERs has increased the heterogeneity of 

customer loads, which makes applying the same rates outdated. Users now rely to various 

degrees on different components of the grid, but this wide range of energy services bundled 

into volumetric prices have very different economic characteristics. The distribution 

system has large fixed costs that create natural monopolies. Grid services such as 

reliability, security, and resiliency exhibit properties of public goods. Finally, even 

perfectly efficient prices may not reflect societies’ equity goals. These various factors lead 

to a rate-making process that it as much art as economic science, bounded by political and 

institutional constraints, and subject to substantial path dependency.  

Utilities have begun to experiment with alternative rate designs and pilot programs. 

Academics too have modeled the consequences of alternative tariff structures (Azarova et 

al., 2018).  In fact, most jurisdictions have incrementally adopted rates that move beyond 
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a flat volumetric structure. These rates incorporate elements such as fixed charges, block 

rates, demand charges, peak/off-peak variation, or time-of-use charges. These rate options 

exist across a spectrum from flat volumetric rates to real-time distribution locational 

marginal pricing illustrated in Figure 35. 

 

Figure 35: Illustration of Alternative Rates 

It is evident that the electricity industry is slowly moving along this spectrum, away 

from flat volumetric rates and toward more dynamic rates. Yet, before a complete transition 

toward the latter is possible, there are several factors that must be reconciled. I argue not 
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all proposed rates move towards cost-causality, and even fully dynamic pricing does not 

inherently address the problem of fixed cost allocation. Ultimately the decisions to allocate 

these costs across heterogeneous customers are not strictly economic but involve political 

choices. I examine the theoretical justification for more dynamic pricing and how it may 

help address some of the concerns generated by DPV adoption. I then describe how 

widespread deployment is still constrained by a number of technology, financial, 

economic, political, and institutional barriers.  

I begin with background information on the flat volumetric approach historically 

employed, recent incremental departures from flat volumetric pricing, and a discussion of 

the efficiency improvements of temporal and locational price variation. I then discuss the 

barriers that remain if jurisdictions pursue dynamic pricing. I acknowledge that real-time 

price variation may not fully achieve cost-causal rates and consider whether the benefits of 

dynamic pricing justify the costs of transitioning to a new tariff structure. Before 

concluding I suggest the need to consider the economic characteristics of disparate energy 

services to achieve a more efficient and equitable pricing model.  By synthesizing literature 

across multiple fields and components of the energy provision chain I hope to provide a 

common lexicon and stimulate further research and discussion. The final component is to 

lay out a research agenda for myself and other scholars in the electricity policy domain that 

seeks to further understand the policy process behind ratemaking. 

5.2 Rate Design: Past, Present, and Future 

A cost-causal rate is one in which prices charged for energy services reflect the 

underlying system costs of providing electricity. This is a straightforward goal, but difficult 
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to implement in practice. To understand the challenges associated with a cost-causal rate it 

is helpful to understand the traditional rate-making process. Most jurisdictions employ an 

embedded cost (i.e., average cost) of service methodology. The total revenue requirement 

(the cost of providing electricity) is calculated using utility data and then that total cost is 

divided across rate classes using historical load characteristics. This process is composed 

of three steps: functionalization, classification, and allocation. Functionalization is the 

purpose of a cost, which is typically categorized as generation, transmission, distribution, 

or other. These costs are then classified into categories including demand (fixed costs based 

on kW), energy (costs that vary by kWh), and customer (investments to establish basic 

service, metering, and other customer service). Finally, costs are allocated to determine 

how much each customer class should pay.  

In a simple case, such costs could be directly attributed to the customer or class that 

incurred the expense. In practice both functionalization and allocation are much more 

contentious. For instance, determining whose usage necessitated investment in a new 

generating facility or an upgrade of the distribution system is nearly an impossible task. A 

number of methods have been developed, but a “range of reasonableness” leaves room for 

considerable interpretation (National Association of Regulated Utiltity Commissioners 

Staff Subcommittee on Rate Design, 2016). This underscores the point that rate design is 

not a purely economic exercise, and in fact may be better characterized as a political 

process.  

In a marginal cost approach, the goal is to set rates equal to the cost of serving the 

next additional unit, which may have little relation to average costs and varies temporally 

and by location. Determining the marginal cost and who is responsible for incurring it in a 
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system with many users introduces similar challenges; and the role of politics and 

institutions remains.  

Ideally, a program that embodies marginal pricing principles could adapt to reflect 

cost changes for energy services in near real-time, in response to system conditions. I refer 

to prices that can vary temporally and spatially in real-time and reflect current market 

conditions as dynamic. I distinguish this from time-of-use prices, which are prices that are 

predetermined based on historical supply and demand information. Time of use rates 

provide more certainty than dynamic prices because customers know well ahead of time 

how they will be charged. They are increasingly common, but even their penetration 

remains low as shown in Figure 36. 

 

Figure 36: Percent of Residential Customers on Time Varying Rates 

 



 139 

A few utility pricing strategies attempt to move closer to dynamic pricing. Critical-

peak pricing, where customers are charged a higher rate during peak hours is closer to a 

dynamic rate, but its limited use (typically restricted to a maximum duration and number 

of events per period) and pre-set prices fall short of dynamic pricing. Real-time pricing 

programs are temporally (but not spatially) variant, and are typically only used for large 

customers in the commercial and industrial classes.44 One notable exception is Illinois, 

where Ameren Illinois and ComEd offer variations of real-time pricing to their residential 

customers.45 Further, while real-time pricing is able to pass through temporally variant 

generation costs, it does not avoid controversy in deriving marginal rates for network costs, 

nor does it incorporate spatial variation in pricing. 

To be truly dynamic, prices must be allowed to vary not only with time, but also by 

location within a network. This will help address the spatial clustering of DPV. In 

wholesale markets, such variation is captured in nodal, or locational marginal pricing, 

which is widely used across the US. At the distribution level, there is similar opportunity 

for distributional locational marginal pricing. As DER penetration has increased over time, 

distribution networks have become more active and taken on many of the same 

characteristics of transmission systems (Sotkiewicz and Vignolo, 2006). A wider use of 

distribution locational marginal pricing would reward distributed generation for its role in 

reducing losses (Shaloudegi et al., 2012) and account for congestion that might occur in a 

distribution network with high penetration of flexible supply and demand (Huang et al., 

                                                 
44 For example, Georgia Power implemented one of the first and most widely used real time power 

programs which offers customers a number of implementation options: 

https://www.georgiapower.com/business/prices-rates/business-rates/marginally-priced.cshtml 
45 https://www.pluginillinois.org/realtime.aspx 
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2015). Location-variant pricing could also properly incent DPV placement to reduce line 

losses and congestion; and these price signals would reward optimal allocation of 

distributed resources on the network (Sotkiewicz and Vignolo, 2007). Research suggests 

that a distribution locational marginal pricing method would be especially important in 

systems with significant electric vehicle loads (Li et al., 2014).  

While utility commissions to this point have been unable, unwilling, or uninterested 

in fundamentally redesigning rate structures, they have recently made incremental changes 

in response to the expansion of DPV. At least 25 states have conducted benefit-cost 

analysis on solar resources in response to concerns that the value of the resource may be 

greater (or less) than the compensation received by adopters (Carley and Davies, 2016). 

This debate about equitable allocation of grid costs has spawned a host of alternative rate 

designs that claim to be more cost-causal, but without employing a dynamic price.  

In some states, residential demand charges46 have been promoted as an attractive 

option for recovering fixed costs more equitably. Demand charges are not new—several 

states already employ them, especially for large customers, and other states offer these rates 

on an opt-in basis (Hledik, 2014). While a demand charge may move rates incrementally 

closer to a cost-causal model, it is not dynamic or necessarily efficient. Charging customers 

based on their peak usage during a billing cycle does not capture the customer’s use of 

generation, transmission, or distribution capacity. Furthermore, empirical evidence 

                                                 
46 Demand charges here denote those charges based on peak consumption in a billing cycle, not charges that 

may be based on coincident usage during system peak. 
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suggests demand charges do not reflect customers’ contribution to network peaks (Passey 

et al., 2017).  

Another common proposal designed to deal with DERs (and in particular, 

customers who install solar) is minimum bills. A minimum bill guarantees the utility an 

annual revenue from each customer, even if their usage is below the threshold. Since the 

vast majority of customers have usage that exceeds those low thresholds, a minimum bill 

“disappears” when the usage passes that level, and the customer effectively pays a 

volumetric rate to cover both power supply and distribution costs (Lazar, 2014a). Some 

have argued that minimum bills more accurately satisfy utility revenue requirements 

without disincentivizing efficiency or disproportionately harming low-income customers 

(McLaren et al., 2015); but others contend minimum bills are inferior from both an 

efficiency and equity perspective to a fixed charge and a volumetric rate at the social 

marginal cost (Borenstein, 2016).  

A number of designs including time-of-use pricing and critical-peak pricing 

approach, but fall short of, fully dynamic pricing. These approaches begin to introduce 

temporal variation but fail to capture the full benefits of real-time pricing (Borenstein, 

2005a). However, because these designs utilize pre-set or limited numbers of price 

fluctuations, they have been easier to implement and have demonstrated the capacity of 

residential consumers to respond to price signals (Herter et al., 2007; Herter and Wayland, 

2010). To the extent that these rate designs are more dynamic, they represent an 

improvement over volumetric charges.  
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This brief discussion does not constitute an exhaustive list of alternative rate 

proposals. In addition to new electric tariffs other responses to increasing penetrations of 

DPV include specific fees (Tian et al., 2016), new rate classes as customers become 

increasingly heterogeneous (Woo and Zarnikau, 2017), and alternative business models 

(Augustine and McGavisk, 2016; Barbose et al., 2016; Rai et al., 2016)  

Dynamic prices which vary based on system conditions help address the impacts of 

DPV penetration in three ways. First, they send signals about where in the network the 

value of distributed solar installations will be greatest. Higher prices are likely to occur in 

areas with significant downstream load and voltage sags. Thus, the installation of solar 

would yield more benefits further up distribution lines and in areas that do not currently 

have DPV on the feeder. As penetrations rise, and prices fall to reflect that, the incentives 

for installation wane. Second, dynamic prices in a net metering scheme will provide 

incentives that reflect seasonal and temporal grid conditions. Installers will receive much 

lower rates for production during sunny fall months when load is low and the system does 

not need their excess generation. This will help minimize the extent of cross subsidies. In 

contrast in late afternoon summers when demand is high, solar installers will receive a 

premium for returning electricity to the grid to reflect its value. This will incentivize 

customers to shift load accordingly. Finally, dynamic rates for supply charges are more 

equitable because they would require unbundling supply charges based on electricity 

generation from the fixed costs associated with distribution, customer charges, and other 

fixed cost grid services.  Moving to a dynamic rate is not a panacea. As is discussed below, 

dynamic pricing does not fix the problems associated with fixed cost attribution. That said, 
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allowing prices to fluctuate to reflect system conditions would move rates along the 

spectrum toward a more cost-causal model.  

5.3 Barriers to Dynamic Rates 

Having established that dynamic prices which vary with time and location are more 

likely to reflect both the short- and long-run marginal costs of electricity supply and 

provide more accurate price signals for usage and investment I now examine the path to 

realizing them. Achieving such a rate design would require addressing a host of barriers 

discussed below.  

5.3.1 Technology 

Advanced metering infrastructure (AMI) is a prerequisite to dynamic rates 

(Convery et al., 2017). AMI or “smart-meters” required to implement a dynamic pricing 

scheme need to be able to determine usage, send, and receive data in near real time. While 

the penetration of AMI has increased dramatically in the last decade, as facilitated by a 

variety of policies, only 65 million smart meters were installed through 2016, leaving 

penetration at 50% (U.S. EIA, 2017). Additionally, not all new meters are equally “smart.” 

AMI installations range from real-time meters with built-in two-way communication, 

capable of recording and transmitting instantaneous data, to basic hourly interval meters. 

As the time interval of measurement shrinks, the communications requirement increases.  

Smart meters are composed of several sensors and control devices that must be 

supported by dedicated communication infrastructure (Zheng et al., 2013). All components 

of the network need specific identification numbers, and as such the integration of new 
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devices becomes more complicated as the number of customers with smart meters grows 

(Depuru et al., 2011). Furthermore, with additional data generation comes the need for 

supplementary memory and data management for the utility, which in turn increases 

deployment costs (Erol-Kantarci and Mouftah, 2013). 

Smart meters installed at the customer location may be the most salient aspect of a 

transition to a smart grid, but they depend on an information and communication 

infrastructure that is in many ways still under development. To manage the data flow from 

smart meters to data centers will require an integrated, flexible, interoperable, reliable, and 

scalable two-way communication platform (Gungor et al., 2011; Gungor et al., 2013). 

Meeting the needs of smart grid components requires optimized latency, frequency range, 

date rate, and throughput specifications (Ancillotti et al., 2013). A primary goal of the 

industry must be standard setting. To date, a number of communication platforms have 

emerged (e.g., power line or radio frequency communications, or internet based networks) 

that have various advantages and obstacles (Colak et al., 2016). Regardless of which 

technology eventually “wins”, significant investment is needed in the distribution grid, 

where limited information technologies have been deployed.  As new flow patterns 

develop, changes to protections and control systems, enhanced distribution automation, 

and voltage and var management will be required (Ipakchi and Albuyeh, 2009). 

Additional data and communications networks produce increased data security 

concerns (McDaniel and McLaughlin, 2009). Smart grids are at risk from a number of 

deliberate threats including industrial espionage, terrorist attacks, and cyber warfare, as 

well as more inadvertent failures such as user-error or equipment failure. A security risk in 

any one component can threaten the entire system.  While there are a number of protocols, 
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cryptographic algorithms, and encryption schemes and controls proposed by industry and 

academia to secure smart devices (Metke and Ekl, 2010), the security is ultimately 

dependent on device manufacturers and users (Knapp and Samani, 2013).  

Consumers may also fear breaches in personal privacy. Smart metering data could 

reveal occupancy and activity within the home (Krishnamurti et al., 2012). Consumers may 

worry about the use of such data for targeted nefarious activities (e.g., thieves finding 

unoccupied homes), commercial uses (e.g., targeted advertising), law enforcement use 

(e.g., detection of illicit activities), or for legal purposes in disputes (McKenna et al., 2012). 

These consumer anxieties contribute to the political resistance towards the implementation 

of smart meters (Zhou et al., 2016).  

Despite declines in cost, smart meters retain a non-trivial price and in some regions, 

the scale of upgrades needed requires hundreds of billions of dollars in capital investment 

(Gellings, 2011). The recovery of these fixed capital costs provides a political dilemma 

similar to fixed cost recovery for other energy services. Opponents of smart meters have 

pushed back against investment costs (Smith, 2009). Proponents of smart meters and 

dynamic pricing insist that the benefits exceed costs, but significant doubt still exists and 

measuring incremental costs and benefits associated with these investments is difficult and 

fraught with uncertainty (Joskow, 2012). One difficulty in calculating benefits of smart 

grid investment is that benefits are largely dependent on consumer behavioral response, 

which varies substantially across studies (Faruqui and Sergici, 2010). Even if smart meters 

are beneficial on aggregate, benefits do not accrue to all customers, as has been 

demonstrated with commercial and industrial customers (Borenstein, 2007). The prospect 

of winners and losers can further delay the rollout of smart metering technology.  
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5.3.2 Economic  

Economic barriers capture both theoretical and practical concerns of efficient rate 

design. While social economic efficiency is maximized by setting prices equal to social 

marginal costs, the reality is much more complicated. Distribution utilities are a textbook 

example of natural monopolies, where one firm can provide a good or service more cheaply 

due to high fixed costs, and economies of scale that enable low marginal costs with 

increasing quantity (Weimer and Vining, 2015). In order to prevent distribution utilities 

from exercising market power, these utilities have been regulated by state public service 

commissions or locally-owned cooperatives. In firms with substantial fixed costs, such as 

utilities, setting price equal to marginal cost fails to cover total costs, and firms would fail 

to make necessary investments. To enable such investments, regulators set prices equal to 

average variable costs and allow utilities to earn a fixed rate of return on their assets. The 

under-recovery of fixed costs is not solved by dynamic pricing, and the infrastructure 

upgrades needed to achieve that objective may exacerbate this problem. Efficient time-

invariant pricing, (i.e. charging average price) yields the same revenues as a real-time 

pricing scenario. Thus, dynamic pricing does not address the fundamental issue of how to 

recover fixed costs (Borenstein and Holland, 2003).  

Another economic challenge in electricity pricing is that the generation and 

distribution of electricity produces negative externalities. To price electricity at the social 

marginal cost, these externalities should be internalized. Without a price for carbon in most 

of the United States and an amalgamation of other pollution regulations that are not directly 

tied to social damages, a dynamic price would fail to provide an accurate price signal equal 

to the social marginal cost, since the externalities associated with power plant emissions 
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are, by definition, excluded. Borenstein (2016) has noted that utilities seldom have to pay 

for the negative externalities they create. Including these social costs could generate 

additional revenue, while properly incentivizing customers to reduce consumption47. In 

short, to truly achieve cost-reflective pricing, the externalities associated with electricity 

must be internalized and dynamic prices do not directly address this issue.   

Another set of market failures unique to electricity follow from the need to meet 

specific physical criteria to maintain proper network frequency. Grid voltage and stability 

have public good attributes, as do grid security and reliability. Joskow and Tirole (2007) 

note that the possibility of network collapse makes operating reserves a public good and, 

without regulatory mandates on operating reserves, there would be underinvestment in 

such reserves and lower overall levels of reliability.  

Thus, while some aspects of electricity are readily translated into marginal costs, 

many others are not. In the nearly sixty years since Bonbright laid out the principles for 

public utility rates, policy makers are still struggling to construct rates that reflect these 

principles. The latest ratemaking guidance from the National Association of Regulated 

Utility Commissioners (2016) underscores the persistent challenges of functionalization 

and allocation of costs. As a result of these challenges, questions of who pays for the fixed 

prices of the grid, and how much they contribute, is a problem unsolved by dynamic 

pricing, and by the literature at large.  

                                                 
47 There is no economic justification that the net effect of fixed costs and pricing-in externalities would 

generate necessary revenue for the utility. Calculations suggest that even incorporating externalities in 

volumetric rates would lead to a revenue shortfall Borenstein, S., Bushnell, J., 2015. The US electricity 

industry after 20 years of restructuring. Annu. Rev. Econ. 7, 437-463.. 
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5.3.3 Behavioural 

As noted above, the benefit-cost success of a dynamic pricing program depends on 

whether consumers are able and willing to respond to more frequent fluctuations in prices. 

Home energy management systems and devices connected through the Internet of Things 

will eventually allow many energy uses to be automated or even subject to direct utility 

intervention. Yet consumers will likely want to maintain some control. Thus, 

understanding consumer behavior will be crucial to successful implementation of dynamic 

pricing programs.  

While a dynamic rate might send better price signals to consumers, it is not clear 

whether consumers—particularly at the residential and small commercial level—have the 

understanding or capacity to respond to marginal prices (Ito, 2014). While standard 

economic theory predicts that consumers respond to marginal prices, evidence has shown 

that the demand for electricity is particularly inelastic (Reiss and White, 2005). In the 

presence of uncertainty about consumption and supply, rational consumers may respond to 

an expected marginal price (Borenstein, 2009). When the costs of understanding marginal 

price are substantial, as they are likely to be in a real-time pricing scheme, customers may 

use average price as a heuristic device (Liebman and Zeckhauser, 2004). At present, many 

customers, even those with AMI, may only become aware of their usage when they receive 

their bill at the end of the month.  

A dynamic pricing system needs to be accompanied by information provision that 

makes consumers more responsive to prices (Jessoe and Rapson, 2014b). The literature 

provides little information about the effectiveness of information when moving from time-
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of-use or critical-peak pricing to fully dynamic rates. In a randomized control trial on peak 

demand reduction, Ito and his colleagues (2015) found that economic incentives produced 

large and persistent behavioral changes, while Asensio and Delmas (2015) found the 

effects of real-time pricing to fade over time. In a real-time pricing system, however, such 

information on critical peaks might be muddled by frequent fluctuations in price. 

Customers may find the pricing information overwhelming and resort to rational 

inattention (Sallee, 2014). 

As a result of this behavior, scholars are increasingly turning to non-price incentives 

(Asensio and Delmas, 2015) and behavioral interventions (Allcott and Rogers, 2014). If 

ordinary consumers have struggled to respond to existing price signals, it is unclear why 

we would expect consumers to respond more rationally when facing more dynamic prices. 

Rather, evidence suggests that most people are not eager to dedicate resources to thinking 

about energy and fuel, and view the costs of altering their consumption behavior as higher 

than the benefits (Parag and Sovacool, 2016). 

To fully capture benefits of real-time pricing, it might be necessary to avoid the 

need for repeated human response and to instead rely on automation (Harding and 

Lamarche, 2016). Of course, automation technologies such as home energy management 

systems, smart appliances or thermostats, and other technology solutions are capital-

intensive, and could increase consumer costs and generate further equity concerns.  

5.3.4 Political 

Even if dynamic pricing is feasible from a technical standpoint, there remain 

substantial political hurdles to overcome. This is typical of an issue marked by technical 
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complexity and significant advocacy group conflict (Gormley Jr, 1983). As mentioned 

above, aspects of rate design are an inherently political exercise due to the allocation of the 

large fixed costs and public goods nature of grid reliability. Rate design decisions are 

typically made at state Public Utility Commissions (PUCs). Legislative acts and judicial 

precedent do not specify methodologies for calculating rate structures. As a New Mexico 

commissioner commented, “[there is] a zone of reasonableness between confiscation [of 

utility assets] and extortion [of customers] in which the Commission has great discretion 

in setting just and reasonable rates” (Fremeth et al., 2014). 

Current regulatory policy in the utilities sector is determined by periodic rate 

reviews conducted by the PUCs. In most jurisdictions, commissioners are required to 

provide an evidentiary basis for their decisions. Marginal changes can be easily justified; 

but obtaining supportive evidence to overcome “burden of proof” requirements can be 

costly for regulators wishing to initiate new policies such as dynamic rates. Information 

asymmetries further raise costs and tend to insulate current practice against regulator 

induced change. The need to provide evidence creates a bias toward the status quo as the 

benefits of new policy are outweighed by the costs of affecting the change. These factors 

have contributed to the documented elements of path dependency in regulating electric 

utilities and rate setting procedures (Parag and Sovacool, 2016).  

Changing rates will undoubtedly face resistance as any new rate proposals will 

result in a set of winners and losers. Utilities have responded to disruptive innovation in 

their markets by using campaign contributions to influence PUC races and other state-level 

elections (Rule, 2017). Groups representing the solar industry and solar adopters (Warrick, 

2015), environmental organizations (Doblinger and Soppe, 2013), and vulnerable 
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populations have demonstrated recent interest in rate proceedings due to the implications 

for DERs and equity. The residential customers who will ultimately be impacted by a move 

to dynamic prices are a relatively disorganized group. The establishment of state-funded 

consumer advocates are one way states have sought to represent the interests of residential 

consumers. Ceteris paribus, the consumer advocates lead PUC commissioners to maintain 

lower rates and authorize fewer utility expenditures (Holburn and Bergh, 2006). As 

stakeholder participation in regulatory agency hearings increases, utilities are investing 

more in developing support from elected politicians who oversee regulators (Fremeth et 

al., 2016). 

In the case of dynamic rates, discussion of changing existing tariff structures will 

draw the interest of coalitions with divergent interests. Although consumers typically give 

little thought to electricity rates and markets, these elements draw attention when prices 

rise to cover new investment—and consumers become incensed if reliability is affected 

(Staff, 2017). Dynamic pricing can lead to more volatile and unpredictable bills. 

Consumers tend to value certainty as evidenced by the popularity of budget billing 

programs in which consumers pay a premium for a consistent bill each month. 

Commissions will need to expend greater effort to evaluate the competitive impacts of rate 

changes to ensure a productive sector, while minimizing liability (Wara, 2016). Many of 

the political challenges of rate re-design were illustrated by the turmoil states faced in 

trying to restructure their electricity sectors. The political justification and bargaining does 

not always align with the economic reality, with all consumers expecting and being 

promised lower prices (Spence, 2005). 
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Moving towards more dynamic rates will also have to compete for attention with 

other proposals to address cost-causality and the fixed cost attribution problem. For 

example, Woo and Zarnikau have suggested increasing the number of rate classes as 

customers become increasingly heterogeneous (2017). Others proposals include 

decoupling, performance metrics, and specific fees for types of utility services  (Tian et al., 

2016). More comprehensive reform that addresses utility business models provides another 

approach (Augustine and McGavisk, 2016; Barbose et al., 2016; Rai et al., 2016). Finally, 

there remain numerous rate alternatives with advocates fighting for their adoption.  In 

addition to peak pricing and dynamic pricing these include minimum bills, consumer 

demand charges, and various levels of flat charges to allocate the fixed costs and public 

goods services of the grid. An improved understanding of these approaches and their 

distributional effects is warranted, as these effects impact the political feasibility of all 

potential options, and proposals are not mutually exclusive.  

5.4 Going Forward  

The growth of DPV has demonstrated that the modern U.S. electricity sector 

requires rate designs that are more sophisticated and efficient than the flat, volumetric rates 

which have historically dominated. As the sector evolves—and confronts new challenges 

and opportunities such as the integration of utility- and residential-scale solar, the 

expansion of smart technologies, and regional wholesale market competition—so too must 

rate designs. Over the past decade, we have witnessed a proliferation of new rate structures. 

Yet, the incremental changes that are being made on a state-by-state basis do not 

necessarily move rates toward more dynamic, more efficient, or more cost-causal 

outcomes. They are more reactive than proactive. Incorporating higher penetrations of 
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distributed solar is dependent on allocating costs correctly and providing equitable and 

efficient signals. Otherwise rising electricity costs will draw the ire of non-adopting 

consumers and utilities will push back on the basis of revenue requirements. Considering 

the potential contributions of distributed solar towards societal goals, suppressing their 

growth is not in the collective interest.  

To begin to address the outlined barriers, I suggest a number of research areas that 

can inform policy approaches to address nascent challenges with dynamic pricing and 

related technological challenges. An increased deployment of smart meters needs to be 

coupled with standards that harmonize communication and security protocols. A better 

understanding of the costs and benefits of smart meters may lead to increased customer 

support for these measures.  

Network costs, including the security and reliability of the electricity grid will 

require a different approach than energy rates. An improved understanding the role of 

DERs in changing distribution network costs and their allocation is required. The impact 

of DGs on network costs depends on DG penetration, location, concentration, size and 

generation technology. These additional costs or benefits can be allocated to the DG 

owners through network tariffs (Picciariello et al., 2015a). To do so requires an improved 

understanding of electricity consumer behavior, and the barriers associated with consumer 

understanding of complex pricing schemes. The behavioral patterns of customers 

interacting with higher penetration of DPVs, was broached in Chapter 4, but this is only 

one type of DER and at a monthly scale. Hourly data to examine intra-day load changes 

and information on the behavior of battery installers represent avenues for further research. 

Exploring alternative pricing approaches through modeling of rates and profiles of other 
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smart grid technologies (automated smart appliances) are important research areas that can 

help policy-makers understand the consequences of technological and policy changes of 

smart grid deployment.  

Finally, an updated understanding of rate-making politics and policies is warranted, 

given the rapid technological changes taking place and pressure on current rate structures. 

The work on the politics and policy of ratemaking suggests that utilities, interest groups, 

and the public influence decision making by affecting personnel and providing 

information. That said, there remain a few competing theories which attempt to explain the 

behavior of public utility commissioners. An economic theory of regulation suggests that 

public service commissioners are captured by organized interests (Peltzman, 1976; Stigler, 

1971). In contrast, Berry’s study of commissions found that commissioners operate with 

two objectives: a “nonpecuniary” principle of rates and a goal of survival (Berry, 1984). 

Gormley’s study on public utility commissions focuses on the role of grass roots advocates 

and finds that they can be effective in PUC decision-making processes when issues are low 

in technical complexity (Gormley Jr, 1983). More recently, Ka and Teske (2002) found 

that legislative ideology is a central driver of redistributive decisions such as rate making. 

Understanding the policy process in this domain is critical to promoting progress but 

remains unclear. Further, the primary work on these issues pre-date the disruption of 

distributed energy technologies and the opportunities of the smart grid. Additional study 

of the politics of regulatory rate-making is warranted considering the significant impacts 

these decisions have. Given recent developments in the policy process literature, there is 

an opportunity to apply the competing policy process models to this policy domain. 
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This conclusion offered dynamic rates as one piece of the solution to ensure the 

efficient and equitable inclusion of DPV and other DERs going forward. I presented some 

of the challenges the new paradigm has created and offered evidence of the need to 

understand how much, where, and why DPV is being deployed so that shifting loads and 

shifting costs can be managed. In most parts of the country the effects of significant DPV 

penetration are still several years away. However, rather than reacting to the challenges as 

they arise, I encourage regulators and policy makers to be proactive in designing tariff 

structures that reflect market conditions and are coupled with information provision to 

provide salient signals to consumers. Even if the merits of a smart grid for the sake of 

dynamic pricing are far from certain, many U.S. distribution systems are aging, and utilities 

are embarking on large distribution network replacement programs. Because these 

investments are long-lived, utilities should be forward-looking in their investment strategy. 

Deploying automation and communication technologies is prudent even if the deployment 

of distributed generation, electric vehicles, and alternative rate structures is expected to be 

slow (Joskow, 2012).  Distributed solar may not be the ultimate solution that decarbonizes 

the electric grid and addresses climate change, but its presence now can help us prepare the 

system for whatever that eventual solution (or combination of measures) may be. 

Convincing customers now to bear the costs of technology upgrades which will have long 

term benefits will not be easy, and my hope is that this dissertation can play a role in 

providing evidence and disseminating information.  
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APPENDIX A. INTRA-RATE CLASS HETEROGENEITY 

Chapter 2 presents a new application of current practice in the electricity modeling 

literature. The results are reported on rate class averages, the model uses an average load 

profile for each rate class, and I assume solar adopters install systems of average size. This 

is useful for modeling system level impacts, and determining changes in cost allocations, 

but with such few rate classes, there is significant disparity of outcomes within each rate 

class. In this appendix, I examine this multiplicity of impacts and quantify the extent to 

which results for individual customers are likely to vary from the rate class average effects 

presented earlier.  Using hourly load and solar generation data from a sample of 248 

commercial customers in PJM territory, I present the impacts of the anticipated rate 

changes to customers that have a wide spectrum of use patterns and installation sizes. By 

applying the forecasted rates under alternative solar penetration scenarios developed in 

Chapter 2, I demonstrate that while average bill changes for commercial customers did not 

vary drastically across scenarios there is substantial variation for individual customers. 

Given these results I discuss the implications of intra rate class subsidies and suggest the 

need for demand charges to reflect co-incident peak demand as opposed to simply peak 

demand or a move toward dynamic rates to achieve more cost-causal rates.  In the absence 

of such rate-reform I argue that winners and losers of increasing solar penetration will be 

dictated by load pattern, price-elasticity, and technology adoption, which may be inherent 

in the type of business for many commercial customers. 
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A.1  Background 

Prior to the rise of distributed energy resources, the energy economics literature 

investigated the presence of internal subsidization in utility rates through the study of price 

discrimination and deviations from marginal cost pricing principles (Primeaux and Nelson, 

1980). Several different theories emerged to explain why some rate classes might receive 

preferential treatment at the hands of regulatory bodies. First, the "benefit" theory of 

regulation suggests that actors look to dictate or control the regulatory process to their 

advantage. For example regulated firms may lobby to obtain or maintain monopoly status, 

special interest groups seek to capture benefits from regulation, or politicians and 

regulators use the rate structure of public utilities to increase political support (Peltzman, 

1971, 1976).48 Alternatively, the wealth redistribution theory states that regulation will 

inevitably result in wealth redistribution between customer classes (Posner, 1971). The 

variation of costs to serve under a single policy prescription will cause a firm to provide a 

service below its real cost, and the deficit is made up by (usually) other customers of the 

firm who pay higher prices than they would otherwise. Regardless, it has been well 

established that rate-class subsidization exists, and it is generally considered unfavorable 

on both equity and efficiency grounds (Eckel, 1987).  

Following the introduction of disruptive distributed energy resources, Johnson et 

al. (2017) renewed discussion of rate class cross-subsidies noting that the changing utility 

load profiles as a result of increasing distributed solar penetration implicitly shift a greater 

                                                 
48 The literature reached different conclusions on which customer group would be the favored class. The 

topic was studied in depth by Peltzman, who argues that the amount and distribution of regulatory benefits 

depends primarily upon the per capita rewards resulting from regulation and the costs of organizing political 

coalitions of differing sizes. 
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share of costs to the residential rate class. Recent discussion of subsidization in the 

literature has focused on either the subsidization of grid services to solar adopters by non-

adopters (Eid et al., 2014; Picciariello et al., 2015b) or subsidization across voltage levels 

(Picciariello et al., 2015a; Rodríguez Ortega et al., 2008). Neither of these topics address 

the existence or potential for intra-rate class subsidization that is becoming increasingly 

prevalent.  

As described by Convery (2017), the traditional approach to rate setting divided 

customers into broad classes which were all charged a uniform rate partly due to lack of 

advanced metering infrastructure and partly for reasons of simplicity and perceived 

fairness. At that time customer classes were relatively homogenous, but as loads have been 

further electrified and new technologies have become available for managing load or self-

generating, these customer classes include increasingly diverse customers. This 

fundamentally challenges the idea that a uniform rate is equitable. With the growing 

deployment of AMI, it is now possible to identify individual customer load patterns and/or 

employ more sophisticated rates which better reflect marginal costs. Such rates could 

reduce the existing and potential cross-subsidies between peak times and off-peak 

consumption and between customers who have installed a DER and those who have not 

(Convery et al., 2017). 

To my knowledge there has yet to be an analysis of intra-class heterogeneity or the 

resulting subsidization. However, the literature has called for further discussion by 

stakeholders on the appropriate use of aggregated class loads (i.e., the degree to which total 

class load shapes reflects individual customer loads for the purposes of designing rates and 

providing appropriate price signals) (Gilliam, 2017). In this appendix I quantify the 
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variation in customer costs and show how if current rate structures are maintained these 

intraclass subsidies are likely to persist or increase.   

A.2  Data and methodology 

To demonstrate the heterogeneity of commercial loads, I will use load data from a 

sample of 248 customers of a utility in the PJM territory. Half these customers have adopted 

distributed solar systems with system sizes ranging from 5 kW to 2.5 MW. Of these 

commercial customers, 110 are classified as General Lighting and Power with 138 

categorized as Large Power and Lighting service. A balanced panel of hourly observations 

for calendar year 2015 provides 2,172,480 observations. Summary statistics are shown in 

Table 12. 

Table 12: Commercial customer summary statistics  

Variable Observations Mean Std. Dev. Min Max 

Customer id  2,172,480 730,307.7 22,036.61 702,120 756,811 

Date 2,172,480 19,541 105.36 19,359 19,723 

Hour 2,172,480 12.5 6.92 1 24 

Load (kWh) 2,172,480 208.7 598.48 0 10,086 

Solar 2,172,480 0.5 0.5 0 1 

Type 2,172,480 2.6 1.43 1 4 

System Size 

(kW) 
1,086,240 331 455.65 5 2,497 

In the analysis I demeaned the load patterns and used a k-means clustering 

algorithm to assess the extent to which the anticipated variation in load pattern existed, and 

whether those patterns were consistent across rate classifications. In other words, I wanted 



 160 

to ensure that existing rate designations weren’t capturing the variation. Figure 37 

demonstrates that usage patterns can be drastically different for commercial customers. 

 

Figure 37: Commercial use patterns 

The choice of 8 clusters was driven by the fact that the non-solar loads grouped 

relatively evenly into 4 clusters whereas 5 had one small cluster and 3 resulted in one 

dominant cluster. In Table 13, it is obvious that existing rate classes do not capture the 

variation in use pattern as each cluster is composed of customers from multiple rate classes. 

This makes sense given the rate class divisions are made based on aggregate use.  
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Table 13: Cluster assignment by rate class 

Rate class Cluster Total 

 1 2 3 4 5 6 7 8  

GLP 13 17 3 21 13 20 17 6 110 

LPL-P 3 0 8 1 0 1 5 0 18 

LPL-S 19 24 12 12 2 21 24 6 120 

Total 35 41 23 34 15 42 46 12 248 

I then conducted robustness checks to ensure that the load patterns for the clusters 

were consistent across time by allowing each customer to have a distinct pattern for each 

month. I also ensured that an individual customer was consistently appearing in the same 

cluster through time. 69% of customers appeared in a maximum of two clusters and no 

customer’s load was ever classified into more than 4. A closer analysis of those customers 

appearing in more than two clusters seems to indicate that they are solar customers who 

change clusters on days of low solar output.  

Having established sufficient variation among customers I show how this 

heterogeneity of load pattern will affect the conclusions drawn in Chapter 2. Using the 

output rates from that model, I apply the forecasted rates to the loads of these customers. I 

can then for each customer generate a percentage change in bill that results from moving 

from the current rate to the rate predicted in each of those scenarios. Further, I illustrate the 

significant bill differences that occur between the scenarios. Finally, I illustrate how simply 

changing from a peak demand-based rate to a co-incident peak demand-based rate would 

drastically alter the distribution of costs. Given that utility costs are largely driven by 

system peak, I conclude that there are likely to be significant intraclass subsidizations if 

the current rate structures are maintained in a more aggressive DER adoption scenario. 
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These intraclass subsidizations will not just be from non-adopters to adopters, but also from 

traditional off-peak users to peak users. 

A.3  Results and Discussion 

Investigating the base case scenario, the results validate the outputs found in 

Chapter 2 with customers seeing a roughly 2% increase in their bill.  Even given the 

diversity of load profiles the impacts are consistent in part because such a large percentage 

of costs are recovered through volumetric charges, and because the existing inequities in 

the current structure are preserved. Notably the solar customers do not fare better than non-

solar customers49.  

 

Figure 38: Base case change in bill histogram 

However, the consistency of bill impacts just further exacerbates the problems of 

cost misattribution. System costs are largely determined by system peak, not an 

                                                 
49 That is to say the changes in rates associated with increased adoption do not inherently benefit existing 

solar customers over non-adopters. Of course, adopting during the forecast period would significantly reduce 

the customer bill as shown in Chapter 1.  
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individual’s peak. Thus, shifting to a revenue neutral rate whose demand charge is based 

on coincident peak yields a much larger spread of outcomes as shown in Figure 39.  

 

Figure 39: Revenue neutral rate change in bill histogram 

Here it is clear that the current rate structure produces inequities and adopting a 

new rate structure would result in more significant winners and losers. Examining the load 

profiles of users with large savings in the histogram demonstrates the extent to which the 

current rates are subsidizing on peak users. The winners are users whose use during the 

system peak is very low.50 

                                                 
50 As noted in Chapter 2, the peak hour of the system may change with higher penetrations of solar. In this 

case the winners and losers may represent a different subset of consumers. However, the primary intuition, 

that off-peak users subsidize on-peak users, remains the same.  
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Figure 40: Load profiles of systematic winners 

The effects are even starker for scenarios which have higher solar penetrations 

thereby shifting the system peak hour. They also result in a very different subset of winners 

and losers. For example, the customers shown in Figure 40 would all have substantially 

higher demand charges if the peak hour was hour 20. Further, the results are more extreme 

for large commercial users for whom the demand charge represents a larger share of the 

bill.  

These preliminary results support the findings of Passey et al (2017) which suggest 

that demand charges based on individual use are not cost reflective and may result in a 

further disconnect between network costs and customer bills. The question remains how to 

address the issue. Using a coincident peak charge is one potential solution, but this may 

unduly punish customers whose business practice dictates time of use. Another proposal 

has been the creation of additional rate classes based on time-of-use as opposed to only 
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quantity. That said, pulling out subgroups of customers based on load profiles or behind 

the meter technologies is a slippery slope. For example, a study of El Paso Electric found 

that the load factor differed more for customers who had evaporative vs. refrigerated 

cooling than for solar adopters vs. non-adopters. Separate rate classes were proposed for 

the solar customers, but not based on refrigeration technology (Gilliam, 2017). The ideal 

solution is a dynamic rate in which the cost of electricity reflects the temporal variation in 

system costs. This idea was explored more fully in the conclusion and the analysis proposed 

herein underscores both the need and difficulty of implementing such a policy solution.   
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APPENDIX B. ADDITIONAL REBOUND MODEL 

SPECIFICATIONS  

In Chapter 3 I found evidence for a rebound effect following the installation of 

solar. To lend additional support to that conclusion in this appendix I present additional 

model specifications to demonstrate the robustness of those estimates. The primary model 

was run on a sample developed through coarsened exact matching to account for the 

difference in pre-treatment differences between eventual adopters and non-adopters. The 

empirical concern was that the untreated group may not be an adequate counterfactual. A 

two-sample t-test on unmatched data rejected the null hypothesis of group equivalence 

(t= -6.34, p = 0.00) and estimates a difference in means of 117.26 kWh in average 

monthly consumption. As such a control group was developed for each treatment cohort. 

However, as a robustness check Table 14 presents the results of the base model using the 

entire set of non-adopters available in the data provided.  

Table 14: Regression results from unmatched sample 

  

DV= Monthly Load  

(kWh) Estimate P-value 

Solar × App 62.509*** 0.000 

Solar × Install 204.149*** 0.000 

Household Fixed Effects Y  

Time Fixed Effects Y  

 

The estimate of the treatment effect is larger in the unmatched sample and in this 

iteration the interaction of the application period and treatment is positive and statistically 

significant as well. I believe these inflated results are a result of the fact that solar 
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adopters electricity consumption was growing faster over time than that of the non-

adopters in the pre-treatment period, violating the parallel trends assumption. This 

represents further evidence for using a matched sample. However, even in the unmatched 

example the conclusions regarding size and direction of the effect are unchanged. 

I also present the results from a model similar to the one employed by Deng & 

Newton (2017) in their study of the solar rebound effect. The model maintains the treatment 

variables and the fixed effects, but they include the temperature variables of min and max 

temp as well as their squared values. They also include a lag term on the dependent 

variable. The full model specification is below and results in  

 𝑘𝑊ℎ𝑖,𝑡 = 𝛼𝑖 + 𝜌𝑘𝑊ℎ𝑖,𝑡−1 + + 𝛽1𝑚𝑖𝑛𝑇𝑡 + 𝛽2𝑚𝑖𝑛𝑇𝑡
2 + 𝛽3𝑚𝑎𝑥𝑇𝑡

+ 𝛽4𝑚𝑎𝑥𝑇𝑡
2 + 𝜏𝐴𝑝𝑝𝑡 +  𝛾𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑡 + 𝜃𝑡 + 𝑢𝑖𝑡 

(19) 

Table 15: Lagged dependent variable model  

  

DV= Monthly Load  

(kWh) Estimate P-value 

L.tot_kwh 0.455*** 0.000 

Solar × App 24.505* 0.066 

Solar × Install 145.108*** 0.000 

min_temp 417.692*** 0.000 

min_temp2 -11.290*** 0.000 

max_temp -458.79*** 0.000 

max_temp2 6.283*** 0.000 

Household Fixed Effects Y  

Time Fixed Effects Y  
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The results mirror the base model estimate with slightly muted effect sizes. The difference 

between the two models is a in panel data analysis is described by Achen (2000): 

“In the first model a dependent variable is regressed on a set of exogenous 

explanatory factors. The fit may be reasonably successful and the 

substantive interpretations satisfactory. Thus, all seems well. Yet when one 

or more lagged values of the dependent variable are added ‘as a control’ 

and the regression recomputed, in many instances the autoregressive terms 

are strongly significant and the fit improves sharply, but the original 

sensible substantive effects of other variables are muted. This pattern 

frequently occurs even when the lagged variables have no plausible causal 

interpretation.”   

Does the lagged variable have explanatory power in this case? On the hand the literature 

would suggest that household electricity demand typically exhibits significant inertia as 

household size, appliance stock, and financial situation do not tend to change suddenly 

(Deng and Newton, 2017). On the other hand, there is nothing about the previous 

month’s usage which constrains or encourages usage in the current month. Regardless the 

results are robust to the model specification providing further evidence that the treatment 

effect is not a result of data manipulation.  
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