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SUMMARY

From precision agriculture to autonomous-transportation systems, robotic systems have

been proposed to accomplish a number of tasks. However, these systems typically require

satisfaction of multiple constraints, such as safety or connectivity maintenance, while com-

pleting their primary objectives. The objective of this thesis is to endow robotic systems

with a Boolean-composition and controller-synthesis framework for specifications of ob-

jectives and constraints. Barrier functions represent one method to enforce such constraints

via forward set invariance, and Lyapunov functions offer a similar guarantee for set stabil-

ity. This thesis focuses on building a system of Boolean logic for barrier and Lyapunov

functions by using min and max operators. As these objects inherently introduce nons-

moothness, this thesis extends the theory on barrier functions to nonsmooth barrier func-

tions and, subsequently, to controlled systems via control nonsmooth barrier functions.

However, synthesizing controllers with respect to a nonsmooth function may create dis-

continuities; as such, this thesis develops a controller-synthesis framework that, despite

creating discontinuities, still produces valid controllers (i.e., ones that satisfy the objectives

and constraints). These developments have been successfully applied to a variety of robotic

systems, including remotely accessible testbeds, autonomous-transportation scenarios, and

leader-follower systems.

xiii



CHAPTER 1

INTRODUCTION

From precision agriculture to autonomous transportation, the usage of robots continuous

to proliferate; and in domains such as precision agriculture, autonomous transportation,

and factory floors, robots are changing how humans interact with the world. In each of

these areas, robots must interact with the world around them and cooperate with humans

toward the accomplishment of some task, which can typically be decomposed into a series

of objectives and constraints that the system must satisfy. For example, an autonomous

vehicle must successfully deliver its passenger to the required destination while obeying

the speed limit and avoiding collisions.

Increasing the complexity of the situation, most of these applications require robots

to execute a variety of tasks that may change over time. For instance, a robot involved

in precision agriculture may have to visit a different series of crop patches each day, and

an autonomous vehicle may encounter different, unexpected obstacles while in transit to a

number of locations. As such, a need exists for frameworks and algorithms through which

robots can accept high-level directives (e.g., from an engineer or planner) but, to address

the potential variability, the robot must ultimately be capable of determining the best course

of action for its current specification, even if it changes.

When dealing with controlled dynamical systems (e.g., a quadrotor or a vehicle), this

process is often referred to as controller synthesis, and the goal of controller synthesis

is usually an algorithm that allows robots to produce a controller automatically from a

series of objectives and constraints. Consider an autonomous vehicle that must deliver

a passenger while obeying the speed limit. In this case, the objective is to deliver the

passenger, and the constraint is to obey the speed limit. A controller-synthesis algorithm

would determine an input (e.g., linear and angular velocity) for the vehicle such that these
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high-level specifications are satisfied.

One canonical trade-off that exists when designing these frameworks relates to the par-

ticular responsibilities of the robot. In the previously discussed example, the autonomous

vehicle is responsible for determining an appropriate direction in which to move such that

it can deliver a passenger and obey the speed limit. However, one may also argue that the

robot should determine which passenger it delivers and to what location. This argument

forces the question: at what level should the controller-synthesis framework operate? This

thesis makes the assumption that robots must determine the inputs to the system (e.g., ve-

locity, acceleration), and the high-level specifications (i.e., objectives and constraints) are

determined by some exterior method, like a human operator or a planner.

In turn, this assumption creates two areas of research. The first is at the specification

level. In particular, how should specifications be provided to the system, and what capabil-

ities should be available for manipulating them? The second is at the controller level: how

should the robot synthesize controllers? These two questions capture the ideas behind this

thesis, and the work herein is dedicated to providing an answer to these statements.

The remainder of this introduction indicates the theoretical context of this work and

makes some comparisons to pre-existing methods. Later chapters discuss, in detail, the

technical aspects of this work. The following sections are organized as follows: Section 1.1

denotes this thesis’ philosophy and approach for encoding and manipulating specifications.

Section 1.2 discusses the chosen controller-synthesis approach. Section 1.3 outlines the

contributions of this thesis. Finally, Section 1.4 notes the organization for the chapters.

1.1 Encoding and Manipulating Specifications

A major aspect of this work relates to specifying objectives and constraints for robotic

systems, and this section discusses the chosen methodology of this thesis to encode and

manipulate specifications. Specifically, this thesis seeks to provide an encoding that is gen-

eral enough to apply to most robotic systems while being flexible enough for controller
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synthesis. Accordingly, this work focuses on a specification that is system agnostic, mean-

ing that it does not change based on the considered system; provably correct, in that the

specification relates to theoretically rigorous concepts; and composable, implying that the

specification must eventually be combined with potentially pre-existing controllers or other

components of the system.

1.1.1 Encoding Constraints

In many of the aforementioned examples, the associated constraints may be formulated in

a set-based fashion (e.g., obeying a speed limit, avoiding collisions), and since this work

considers dynamical systems, forward set invariance represents a provable method for guar-

anteeing constraint satisfaction. Mathematically, forward set invariance requires that every

trajectory of the system that starts in a particular set stays in that set for all time. In the

case of autonomous vehicles, forward set invariance for collision avoidance means that, as

long as the vehicles begin collision free, they stay collision free for all time. Importantly,

forward set invariance provides a provable guarantee on trajectories for the system.

This thesis encodes constraints with barrier functions. Barrier functions have recently

reemerged as a provably correct method for guaranteeing forward set invariance in dynami-

cal systems [1, 2, 3, 4, 5, 6, 7] and have been utilized in various practical applications, from

quadrotors to remotely accessible robotics testbeds [8]. Moreover, they exhibit a number

of robustness properties that make them convenient in practice, leading to their utilization

in real-time scenarios. For example, the work in [8] utilizes barrier functions to prevent

collisions for an 80-dimensional swarm of differential-drive robots at 100 Hz.

Theoretically speaking, barrier functions ensure forward invariance by showing positiv-

ity along trajectories, meaning that the super-zero level set of the function becomes forward

invariant. Validating a particular barrier function requires examining the derivative of the

barrier function along trajectories and ensuring that it satisfies a certain rate function, in a

very similar fashion to Lyapunov functions (e.g., see [9, 10]).
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Barrier functions exhibit a number of desirable properties, leading to their usage in

this thesis. They are: system agnostic, composable, implicit, and provably correct. Barrier

functions are not formulated with respect to a specific dynamical system, so the robotic sys-

tem in question does not theoretically limit them. Moreover, because barrier functions are

fundamentally based on satisfying a particular differential inequality, they are composable.

For example, this inequality can be included as a constraint in an optimization program

to combine it with other components in the control hierarchy. This differential inequality

also implies that barrier functions are implicit, much like Lyapunov functions, because sat-

isfying the inequality point-wise across the state space produces a global result. For this

reason, they do not require a look-ahead (e.g., as in model-predictive control), benefiting

controller-synthesis algorithms from a computational perspective. Finally, as noted before,

barrier functions are provably correct, because they provide guarantees based on forward

set invariance.

There are many methods for guaranteeing forward set invariance, including potential

functions and PDE-based methods, and later sections explicitly cover related methods. The

prior statements do not mean to insinuate that barrier functions are superior to all other

forward-invariance methods in the literature. However, barrier functions do offer a number

of advantages over other methods with respect to the main applications of this thesis. Two

properties that prove to be critically useful are the implicitness and composability of bar-

rier functions, a quality that later chapters demonstrate. Later chapters also compare and

contrast barrier functions with other methods in a technical context.

1.1.2 Encoding Objectives

In similar fashion to constraints (see Section 1.1.1), many objectives may be encoded us-

ing sets. For example, if an autonomous vehicle must reach a particular location, then the

objective may be encoded as reaching a set that denotes the desired location. Formally,

this property is set reachability or, more strongly, set stability. Throughout the controls
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and robotics literature, Lyapunov functions have been a go-to method for encoding sta-

bility [11, 9, 10]; as such, this thesis utilizes Lyapunov functions to encode set-based ob-

jectives. Furthermore, Lyapunov functions exhibit many desirable analogous qualities to

barrier functions (see Section 1.1.1). Though, multiple philosophies exist with respect to

satisfying objectives.

In contrast to constraints, objectives, in the context of this thesis, admit two approaches.

Fundamentally, constraints are rigid. If taken to be set-based, then to satisfy the constraint,

the system must remain in the set for all time (forward invariance). In contrast, objec-

tives maintain fewer restrictions. That is, to complete an objective, the system only has to

eventually enter the set. This line of thinking results in set stability as a method to encode

objectives, and this method is particularly useful if the objective’s specification may be

manipulated (e.g., by a planner or human operator). Additionally, encoding objectives via

set stability becomes useful when formal statements must be made regarding the objective

(i.e., all trajectories eventually reach the desired set).

However, in some cases, the system may not have sufficient access to the objective, or

the objective may be treated as a secondary goal. That is, the system must, at all costs,

satisfy the constraints and, if possible, complete an objective. This philosophy treats the

objective as nominal input, one that does not necessarily have to be applied. The Rob-

otarium, a remotely accessible swarm-robotics testbed [8], represents an application that

utilizes such a formulation. In particular, the safety constraints in this system, such as

avoiding inter-robot collisions and collisions with walls, must be satisfied at all costs. The

objective for the system is supplied from a remote user’s code that generates a series of

control inputs for the system. As such, the robot does not have direct access to the ob-

jective. However, for the testbed to be successful, the system must be able to execute the

user’s algorithm faithfully. The Robotarium represents a major concentration of this thesis,

and later chapters discuss the developments of this system in detail (see Section 1.3). Both

objective-based philosophies discussed in this section have merits, and this thesis addresses
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both strategies.

1.1.3 Manipulating Specifications

Having introduced the encoding method for specifications in Section 1.1.1 and Section 1.1.2,

the question remains on how these specifications may be manipulated. In this thesis, meth-

ods are sought that apply to objectives and constraints generally. To accomplish this goal,

this thesis utilizes Boolean composition, a well-used method. Boolean composition is ubiq-

uitous throughout robotics and allows complex specifications to be built from simple atomic

propositions, lending some much-needed flexibility. For example, a robot engaged in pre-

cision agriculture may have to visit a different series of crop patches over time. If the set

of atomic propositions corresponds to various crop patches, then Boolean composition can

capture the variability in the objective.

In terms of the theoretical content of this work, for Lyapunov and barrier functions, a

system of Boolean logic may be encoded via −, max, and min operators, which has been

demonstrated in [12, 13]. However, min and max inevitably introduce nonsmoothness into

the Boolean expression; as such, this thesis utilizes nonsmooth analysis, as in [14, 15, 16] to

develop an appropriate theory. Yet, to address this nonsmoothness, generalized derivatives

must be utilized, which inevitably capture discontinuities in the usual derivative. In turn,

when used in controller synthesis, these generalized derivatives may produce discontinuous

controllers. Consequently, the theory of discontinuous dynamical systems (e.g., see [17])

may be applied to analyze these discontinuous control laws. Section 1.2 contains a high-

level introduction to the controller-synthesis method considered by this work.

1.2 Controller Synthesis

As noted in Section 1.1.3, discontinuous control laws may result from the controller synthe-

sis. This property stems from the fact that the considered barrier and Lyapunov functions

are nonsmooth. Discontinuous dynamical systems have a significant body of literature de-
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voted to them; however, this prior work does not typically pertain to controller synthesis.

As such, discontinuous controller synthesis represents the second main consideration for

this thesis, allowing robots to produce controllers automatically from a high-level specifi-

cation encoded by a Boolean expression.

As noted in Chapter 1.1, barrier functions can represent constraints and objectives may

be encoded via Lyapunov functions or a pre-existing nominal input. Accordingly, this

thesis seeks a framework that can synthesize controllers with respect to Lyapunov and

barrier functions but also with respect to a pre-existing nominal controller.

Lyapunov functions and barrier functions represent two cornerstones of robotics: stabil-

ity and invariance, and both of these objects fundamentally rely on satisfying a particular

differential inequality. If a controller can be found that simultaneously satisfies both in-

equalities, then the system accomplishes its objective while maintaining the constraints.

The question becomes: how can one produce such a controller? One method is for the

designer to hand-craft a closed-form controller that satisfies these inequalities. However,

if the specification changes, then this controller must change accordingly. This variability

creates a need for a controller-synthesis method that does not depend on human interven-

tion in the face of changes to the specification.

The work in [1] showed that such a controller may be realized through an optimization

program. In particular, one may include the inequalities that result from a barrier or Lya-

punov function into an optimization program, where the resulting controller satisfies both

inequalities. Since this optimization program is solved online, the computational complex-

ity of finding a solution must be considered. Fortunately, control-affine systems generate a

control-affine inequality, allowing a validating controller to be synthesized via a Quadratic

Program (QP). Typically, most solvers can find a solution to a QP in real time, even on

resource-limited systems. Moreover, an optimization-based approach can synthesize con-

trollers if the objectives are represented with Lyapunov functions or a nominal controller.

For example, consider a QP whose cost function minimizes the squared distance between
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the synthesized controller and the nominal controller. This approach has been utilized ex-

tensively in the barrier function literature (e.g., [13, 18, 3, 2, 1, 7]) and in the Robotarium,

which critically relies on this strategy [8].

1.3 Contributions

This section denotes the contributions of this thesis and their relevant chapters. These con-

tributions correspond to three areas of research. Addressing Section 1.1, the first contribu-

tion corresponds to encoding and manipulating constraints and determining when systems

can satisfy these constraints. Chapter 2 formulates an initial system of Boolean logic for

barrier functions. Moreover, this chapter provides some sufficient conditions under which

trajectories of discontinuous dynamical systems satisfy these specifications. In accordance

with Section 1.2, the second contribution pertains to controller synthesis. Chapter 3 for-

mulates nonsmooth barrier functions with respect to controlled systems and provides some

preliminary controller-synthesis results that show when synthesizing a discontinuous con-

trol law still ensures that the system satisfies a specification containing constraints, and

Chapter 4 extends this formulation to a class of hybrid systems. Chapter 5 generalizes the

results of Chapters 2,3 to general Boolean expressions of Lyapunov and barrier functions.

Chapter 6 strengthens the results of prior work and chapters by proving some regularity

properties of the solution to a QP. Finally, Chapter 7 discusses the Robotarium, the third

contribution, in which the theoretical results of this work are applied to a large-scale sys-

tem.

1.4 Organization

Following the structure of Section 1.3, the major theoretical topics of this work are: Boolean

composition of barrier (Lyapunov) functions and controller synthesis. Each chapter intro-

duces the theoretical content therein, the contributed publication (if applicable) from which

the chapter stems, and relates the chapter to relevant prior work. Then, the chapter provides
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the main theoretical results and, potentially, a robotics experiment that applies the theoret-

ical results to a physical system. Finally, each chapter contains a conclusion. Appendix A

discusses the notation for this thesis; Appendix B provides some background on discon-

tinuous dynamical systems; and Appendix C notes some relevant results from nonsmooth

analysis in the context of this thesis: the generalized gradient and its associated calculus.
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CHAPTER 2

NONSMOOTH BARRIER FUNTIONS

This chapter contains the initial formulation of Nonsmoooth Barrier Functions (NBFs), and

the content herein stems from the contributed publication [12]. Specifically, this chapter

covers the theoretical formulation of NBFs with respect to closed-loop differential inclu-

sions, provides some results on verifying NBFs in practice, notes a preliminary system of

Boolean logic, and contains some experimental results showcasing these theoretical de-

velopments. In effect, this chapter lays the groundwork for encoding and manipulating

specifications and also provides sufficient conditions for when a discontinuous system can

satisfy the specification.

Some related work in the literature is as follows. Recently, [1] utilized barrier functions

for constraint satisfaction by ensuring forward invariance of a set that encodes such safety

requirements, and, subsequently, barrier functions have been used to encode a variety of

system constraints across different domains, such as adaptive cruise control [1, 7], colli-

sion avoidance for ground vehicles [2], unmanned aerial vehicles [5], and remote-access

robotics testbeds [8].

The above-referenced literature on barrier functions addresses a single, sufficiently

smooth barrier function that operates on a continuous dynamical system. Recently, [3]

achieves a form of Boolean composition through products and sums of barrier functions.

However, the construction in [3] forgoes the robustness qualities of the zeroing barrier

functions in [7] and restricts the system to lie strictly in the interior of the invariant set. In

this chapter, we retain the robustness properties associated with zeroing barrier functions

(see [7]) while supporting Boolean composition of barrier functions by utilizing max and

min operators of multiple component barrier functions. However, the use of max and min

operators introduces points of nondifferentiablity into the composite barrier functions, pre-
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venting the existing results from applying. Though not considered with regard to barrier

functions, nonsmooth Lyapunov functions have been extensively studied (e.g., [19, 20, 15,

16]). The tools developed for nonsmooth Lyapunov functions will also prove highly useful

for Nonsmooth Barrier Functions (NBFs), and in this chapter, we show how to extend the

previously established concepts within the smooth barrier function literature to a rich class

of NBFs.

It should be noted that NBFs are not the only possible tools for composition of system-

level constraints in multi-agent systems. For example, potential functions and Lyapunov-

like barrier functions represent an approach that also permits some degree of composition

[21, 22, 23]. The major difference between this work and these other approaches lies in

the fact that the work in this chapter explicitly allows for guaranteed Boolean composi-

tion of these objects (i.e., composition with Boolean ∧, ∨, ¬ operators). Additionally, the

above-mentioned prior methods are often formulated with respect to a particular task (e.g.,

obstacle avoidance) or a particular dynamical system (e.g., differential drive robots). An-

other strength of this work is that the NBF framework is mathematically agnostic to the

particular task under consideration. For an extended comparison to pre-exisiting methods,

see Chapter 4.

This chapter provides three main results with experimental validation. First, this chapter

presents a framework that permits the application of NBFs to a class of systems described

by differential inclusions. Second, this chapter addresses some computational requirements

imposed by the nonsmooth nature of the NBF framework, demonstrating that validation of

NBFs can be feasibly performed under certain assumptions. Third, a preliminary system

of Boolean logic for NBFs is achieved via max and min operators. Using these theoretical

results, this chapter presents an experiment in which a group of robots must avoid inter-

robot collisions and collisions with spherical obstacles in the workspace.

This chapter is organized as follows. Section 2.1 introduces the system of interest.

Section 2.2 formulates candidate and valid NBFs, indicating how forward invariance can
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be guaranteed via NBFs. Next, Section 2.3 provides sufficient conditions to guarantee that

an NBF is valid with respect to a differential inclusion. Section 2.4 notes a preliminary

system of Boolean logic for NBFs and provides a controller-synthesis result for continuous

systems, and Section 2.5 utilizes the theoretical results of this chapter in an experiment on

the Robotarium. Finally, Section 2.6 concludes the chapter.

2.1 System of Interest

This section introduces the system of interest for this chapter. In this case, the system of

interest is a closed-loop differential inclusion. Though, this chapter eventually provides

some preliminary results on controlled systems.

Differential inclusions have emerged as a tool to analyze certain types of dynamical

systems. For example, differential equations with discontinuous right-hand sides have been

extensively studied (e.g., in [24]) by transforming the discontinuous differential equation

into a differential inclusion.

When formulating NBFs, we allow for applications to differential inclusions, poten-

tially facilitating forward-set-invariance analysis of such systems; though, these results

also apply to systems modeled by continuous differential equations. Given a set-valued

map F : Rn → 2Rn , consider the differential inclusion represented by

ẋ(t) ∈ F (x(t)), x(0) = x0. (2.1)

We assume that F is upper semi-continuous (see Appendix B) and takes nonempty, com-

pact, convex values. These properties ensure the existence (but not uniqueness) of solutions

to (2.1) (see Appendix B). In general, this chapter focuses on guaranteeing that a set is for-

ward invariant with respect to a differential inclusion, meaning that every solution that

starts in the set stays in the set (see Appendix B). This notion of forward invariance has

been called strong forward invariance in other work (cf. [17]). This chapter simply refers
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to this property as forward invariance.

2.2 Candidate and Valid Nonsmooth Barrier Functions

Here, we define the concepts of candidate and valid NBFs. Note that, in Definition 1, the

function h is not necessarily continuously differentiable. Importantly, if a candidate NBF

is a valid NBF, then the set C, as in Definition 1, is forward invariant. Valid and candidate

NBFs are defined as follows.

Definition 1. A locally Lipschitz function h : Rn → R is a candidate Nonsmooth Barrier

Function (NBF) if and only if the set

C = {x′ ∈ Rn | h(x′) ≥ 0}

is nonempty.

Remark 2.1. Because the desired result is forward invariance, the assumption that C is

nonempty is technically unnecessary, as C = is forward invariant vacuously. However,

enforcing that C is nonempty is an important practical consideration.

Definition 2. A candidate NBF h : D ⊂ Rn → R is a valid Nonsmooth Barrier Function

(NBF) for (2.1) if and only if x(0) ∈ C implies that there exists a class-KL function β :

R≥0 × R≥0 → R≥0 such that

h(x(t)) ≥ β(h(x(0)), t), ∀ t ∈ [0, t1],

for all Carathéodory solutions x : [0, t1]→ Rn of (2.1).

2.3 Sufficient Conditions for Valid Nonsmooth Barrier Functions

This section provides sufficient conditions that allow us to determine whether a candidate

NBF is in fact a valid NBF. Toward this end, the following result will be useful.
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Lemma 2.1. Let α : R → R be a locally Lipschitz extended class-K function and h :

[0, t1] → R be an absolutely continuous function. If ḣ(t) ≥ −α(h(t)), for almost every

t ∈ [0, t1], and h(0) ≥ 0, then there exists a class-KL function β : R≥0×R≥0 → R≥0 such

that h(t) ≥ β(h(0), t), and h(t) ≥ 0, ∀ t ∈ [0, t1].

Proof. To prove this result, we utilize a differential inequality. Toward this end, let

ż(t) = −α(z(t)), z(0) = h(0).

Because α is locally Lipschitz, solutions z(t) exist and are unique, and since z(0) ≥ 0 and

the restriction of an extended class-K function to R≥0 is a class-K function, the solution

z(t) is a class-KL function β such that

z(t) = β(z(0), t).

Therefore, the solution z(t) is valid over [0, t1]. Then, because

ḣ(t) ≥ −α(h(t)), a.e. t ∈ [0, t1],

h(t) ≥ z(t), ∀t ∈ [0, t1], by [25, Theorem 1.10.2]. Thus,

h(t) ≥ β(h(0), t), ∀ t ∈ [0, t1],

proving the first claim. Because β is a class-KL function, β(h(0), t) ≥ 0, ∀ t ∈ [0, t1];

thus, h(t) ≥ 0, ∀t ∈ [0, t1].

The following result states a sufficient condition for a candidate NBF to be valid in

terms of its set-valued Lie derivative when evaluated along solutions to (2.1).

Theorem 2.1. Let h : Rn → R be a candidate NBF. If there exists a locally Lipschitz
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extended class-K function α : R→ R such that

min ∂ch(x′)>F (x′) ≥ −α(h(x′)),∀x′ ∈ Rn,

then h is a valid NBF for (2.1).

Proof. Let x(0) ∈ C. By Theorem C.3, each Carathéodory solution of (2.1) satisfies

ḣ(x(t)) ∈ ∂ch(x′)>F (x′), a.e. t ∈ [0, t1].

Thus, at a.e. t ∈ [0, t1]

ḣ(x(t)) ≥ min ∂ch(x(t))>F (x(t)) ≥ −α(h(x(t))).

This condition implies that at a.e. t ∈ [0, t1]

d

dt
(h ◦ x)(t) ≥ −α((h ◦ x)(t)),

when h ◦ x is viewed as a function of t. Since x(0) ∈ C, (h ◦ x)(0) ≥ 0. Directly applying

Lemma 2.1 yields that h is a valid NBF, as defined in Definition 2.

Remark 2.2. By a similar argument, if x(0) /∈ C (i.e., h(0) < 0) and the solution exists

for all t ∈ [0,∞), then we may show that −h(x(t)) ≤ β(−h(x(0)), t) (i.e., that x(t)

asymptotically returns to C). In this case, h would effectively be treated like a Lyapunov

function, and some additional assumptions on h may be needed (e.g., see [9]) to ensure

stability.

The experiment result of this chapter applies NBFs to a group of mobile robots. As

such, the computational requirements of verifying the NBF inequality conditions become a

concern. Toward this end, the following property of the usual inner product on two convex

15



hulls becomes of use. In the interest of space efficiency, we omit this proof and note that it

follows from Carathéodory’s theorem for convex hulls.

Lemma 2.2. Let Ā ⊂ coA ⊂ Rn, B̄ ⊂ coB ⊂ Rn. If for every a ∈ A, b ∈ B,

〈a , b〉 ≥ c, c ∈ R,

then for every ā ∈ Ā, b̄ ∈ B̄,

〈ā , b̄〉 ≥ c.

Next, we present the second of this chapter’s main results. We omit the proof and note

that it follows from Lemma 2.2 and Theorem 2.1.

Theorem 2.2. Let h : Rn → R be a candidate NBF. Let ΦF , Φh : Rn → 2Rn be set-valued

maps such that

F (x′) ⊂ co ΦF (x′), ∂ch(x′) ⊂ co Φh(x
′),

for all x′ ∈ Rn. If there exists a locally Lipschitz extended class-K function α : R → R

such that for every x′ ∈ Rn, z ∈ Φh(x
′), and v ∈ ΦF (x′),

〈ξ , v〉 ≥ −α(h(x′)),

then h is a valid NBF for (2.1).

In Chapter 2.4, Theorem 2.2 facilitates the validation of candidate NBFs that are defined

by max or min operations of smooth functions by expressing these sufficient conditions in

terms of the component functions.

16



2.4 A Preliminary System of Boolean Logic

This section covers applications of max and min functions to the Boolean composition

of barrier functions. In particular, this section demonstrates that these operators encode

a system of Boolean logic falling into the NBF framework in Sec. 2.2. We also cover a

QP-based formulation of these Boolean NBFs with respect to a class of continuous control-

affine systems.

2.4.1 Composition by Boolean Logic

Throughout this section, we assume that a finite set of functions hi : D ⊂ Rn → R, i ∈ [k],

are candidate NBFs. Within this framework, max represents a Boolean ∨ operation: that

is, if hmax : Rn → R defined by

hmax(x′) = max
i∈[k]
{hi(x′)}, (2.2)

for x′ ∈ Rn, is a candidate and valid NBF for (2.1), then at each x′ ∈ Rn, there exists at

least one i ∈ [k] such that hi(x′) ≥ 0. Similarly, we note that min represents a Boolean ∧

operation: that is, if hmin : Rn → R defined by

hmin
[k] (x′) = min

i∈[k]
{hi(x′)}, (2.3)

for x′ ∈ Rn, is a candidate and valid NBF for (2.1), then at each x′ ∈ Rn, hi(x′) ≥ 0, ∀ i ∈

[k]. Furthermore, −h represents ¬h. These expressions allow for the application of De

Morgan’s laws in that h1 ∨ h2 = ¬(¬h1 ∧ ¬h2), permitting full Boolean composition.

Having noted the utility of min and max as Boolean operators, we focus on the criteria

that these Boolean NBFs must satisfy to be covered under the results of Section 2.3. In the

interest of space efficiency, we omit the proof of this result and note that it follows from

Proposition C.1 and Theorem 2.2. Proposition 2.1 holds for the min operator as well.
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Proposition 2.1. Let hi : Rn → R, i ∈ [k], be a finite set of locally Lipschitz functions

which are candidate NBFs, and let hmax : Rn → R be defined as in (2.2). For each x′ ∈ Rn,

let

Iah(x′) = {i ∈ [k] : hi(x
′) = hmax(x′)}},

and consider the set-valued map Φh : Rn → 2Rn defined by

Φh(x
′) =

⋃
i∈Iah(x′)

∂chi(x
′).

If hmax is a candidate NBF and there exists a locally Lipschitz extended class-K function

α : R→ R such that for every x′ ∈ Rn, z ∈ Φh(x
′), and v ∈ F (x′),

〈z , v〉 ≥ −α(hmax
[k] (x′)),

then hmax is a valid NBF for (2.1).

2.4.2 Quadratic-Program-Based Controllers

The formulation of a smooth barrier function with respect to control-affine systems pro-

duces an affine constraint on the system, and coupling this affine constraint with the mini-

mization of a quadratic cost, at each point in time, results in a quadratic program (e.g., [1,

3]). This section provides similar results for NBFs with respect to a class of control-affine

systems. In the nonsmooth case, the component functions generate a series of constraints,

rather than a single constraint, that must be enforced point-wise in time. In the interest of

space, we omit the proof and note that it follows from [26, Theorem 1] and Prop. 2.1.

Proposition 2.2. Let f : Rn → Rn, G : Rn → Rn×m, and u : Rn → Rm be locally

Lipschitz, and consider the control-affine system ẋ(t) = f(x(t)) + G(x(t))u(x(t)). Let

hmin : Rn → R be defined as in (2.3), where each hi : Rn → R is a continuously

differentiable candidate NBF with a locally Lipschitz derivative. Consider the functions
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Figure 2.1: A group of 8 differential-drive robots in the Robotarium successfully navigate
through a pair of obstacles (circles) to their desired destination (crosses) and avoid inter-
robot collisions. This task is accomplished by solving online for a QP-based controller
with respect to the NBF in (2.4) that encodes and enforces safety requirements.
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w∗ : Rn → R and u∗ : Rn → Rm defined by

w∗(x′) = min
(u,w)∈Rm+1

w

s.t. ∇hi(x′)T (f(x′)+G(x′)u)+α(hi(x
′))−w≥0, ∀ i ∈ [k]

and

u∗(x′) = arg min
u∈Rm

uTH(x′)u+ b(x′)Tu

s.t. ∇hi(x′)T (f(x′) +G(x′)u)+α(hi(x
′)) ≥ 0, ∀ i ∈ [k],

where H : Rn → Rm×m is locally Lipschitz, symmetric, positive definite and b : Rn →

Rm is locally Lipschitz. If hmin is a candidate NBF and w∗(x′) > 0, for all x′ ∈ Rn,

then u∗ is locally Lipschitz; and hmin is a valid NBF for the closed-loop system under the

controller u∗.

Remark 2.3. In this result, local Lipschitz continuity is obtained via application of [26,

Theorem 1]; however, only continuity of the controller u∗ is technically required to obtain

this result.

Intuitively, w∗ in the above result gives some notion of the width of the feasible set

of solutions. If the feasible set has non-zero width at all points, then a locally Lipschitz

solution may be selected from the feasible set. In general, the computational complexity

of a QP depends on the decision variables, the constraints, and the utilized solver. For an

excellent survey of these methods for multi-agent systems, we refer the reader to [5].

2.5 Experimental Results

This section features a group of robots in the Robotarium (see [8]), which is a remote-

access, multi-agent robotics test bed. The agents attempt to achieve a navigation objective
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by utilizing a given controller that accomplishes the desired goal but disregards safety mea-

sures: inter-agent collisions and static obstacles. In this experiment, a QP wraps the ex-

isting controller in an NBF framework such that it simultaneously satisfies multiple safety

requirements and fulfills the intent behind the original controller. Note that, throughout this

section, an explicit time dependence is dropped for clarity.

Consider a team of 8 planar, single-integrator agents each with state xi ∈ R2, i ∈ [8],

and dynamics ẋi = ui(x). To solve the ensemble problem via QP, we stack the states and

inputs into vectors x =
[
xT1 . . . xT8

]T
,where x ∈ R16 and x 7→ u(x) is defined in the same

fashion. The agents’ objective is to drive from their initial condition to some pre-specified

goal points xg ∈ R16, which is accomplished by use of a locally Lipschitz proportional

controller

uobj(x) = xg − x.

To avoid collisions with other agents, the following Boolean NBF applies to each pair

of agents

hc(x) =
8∧
i=1

8∧
j=i+1

‖xi − xj‖2 − (δc)2,

where δc > 0. Similarly, each agent avoids collisions with two circular obstacles in the

plane via the NBF

ho(x) =
8∧
i=1

2∧
j=1

‖xi − oj‖2 − (δo)2,

where oj ∈ R2 indicates the static position of an obstacle and δo > 0. The final Boolean

NBF is given by

hmin(x) = hc(x) ∧ ho(x). (2.4)

Now, we examine the derivatives of the component barrier functions of hc and ho. Taking
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a component barrier function in hc with agents i and j yields

d

dt

(
‖xi − xj‖2 − (δc)2

)
= Aij(x)u.

Here, the superscript Aij indicates that this vector describes the derivative for agents i and

j. Aij maps to a row vector whose indices satisfy

Aiji (x′) = 2(x′i − x′j)T , A
ij
j (x′) = −Aiji (x′), Aijk (x′) = 0,

where k 6= i, j and the subscript indicates a particular two-dimensional element of Aij(x′).

Importantly, Aij is locally Lipschitz.

Similarly, each component function of ho will have a derivative for agent i and obstacle

j

d

dt

(
‖xi − oj‖2 − (δo)2

)
= Bij(x)u,

where the superscript Bij indicates that this function is between agent i and obstacle j. Bij

maps to a row vector whose indices satisfy

Bij
i (x′) = 2(x′i − oj)T , B

ij
k (x′) = 0, k 6= i,

where the subscript indicates a particular two-dimensional element in Bij(x′). In this case,

Bij is also locally Lipschitz.

Now, we utilize the QP formulation noted in Proposition 2.2 with the objective function

uTu−2uobj(x)Tu, which is equivalent to minimizing the squared norm ‖u−uobj(x)‖2. This

cost attempts, at each point in time, to minimally modify the existing controller uobj(x) such

that the modified controller achieves the safety objectives. In this experiment, we assume

that the selection α(hmin(x)) = γhmin(x)3, γ > 0 makes w∗, as defined in Prop. 2.2, satisfy
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the condition w∗(x′) > 0 for all x ∈ R16.

The QP is formulated as in Proposition 2.2 with the parameters γ = 1000, δc =

0.04, δo = 0.1; and we deploy the resulting controller onto the Robotarium’s team of

unicycle-modeled robots using the method in [27, Section 5].

Figure 2.1 displays the mobile robots during this experiment, and Figure 2.2 shows

the NBF of (2.4) during the course of the experiment. The Boolean NBF in (2.4) starts

positive and remains positive over the course of the experiment; thus, all component barrier

functions are simultaneously satisfied. Furthermore, as a result of the minimally invasive

modification, the robots also arrive at the desired goal position, satisfying their original

navigation objective and the NBF. Additionally, we note that the width of the feasible set

remains strictly greater than zero, validating the application of Proposition 2.2.

2.6 Conclusion

In this chapter, we have introduced a class of Nonsmooth Barrier Functions (NBFs), show-

ing that existing results for smooth barrier functions apply to NBFs and allowing prelimi-

nary formulation of Boolean NBFs via max, min, and − operators. Furthermore, we have

provided results that illustrate some computational methods for these conditions, allow-

ing one to validate a class of NBFs with quadratic programs. To validate these results, a

Boolean NBF was deployed onto a team of mobile robots in the Robotarium. Following the

theoretical developments in this chapter, two improvements are possible: extending NBFs

to be explicitly controlled and expanding the Boolean composition framework. These top-

ics are covered in Chapters 3-5.
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Figure 2.2: Value of Boolean NBF in (2.4) over the course of the experiment. Because the
NBF remains positive over time, all safety objectives are simultaneously satisfied.
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CHAPTER 3

CONTROL NONSMOOTH BARRIER FUNCTIONS

Following the formulation of NBFs in Chapter 2, this chapter, related to contributed work

[13], formulates NBFs with respect to controlled systems, resulting in Control NBFs (CNBFs).

This section also focuses some attention on a preliminary controller-synthesis strategy for

CNBFs. In Chapter 2, the theoretical results mainly apply to closed-loop differential inclu-

sions, but it provided some results on NBFs for continuous controlled dynamical systems

in the experimental results. However, due to the nondifferentiable properties of NBFs it

is not always possible to synthesize a continuous controller. That is, the assumptions in

Chapter 2 are overly restrictive and cannot be guaranteed in general by this chapter. As

such, this chapter dedicates some attention toward resolving this issue.

Chapter 2 extends the theory of barrier functions to include nonsmooth functions, stem-

ming from the contributed work in [12]. Tools from nonsmooth analysis, as in [14, 15, 16],

enable a Boolean logic system for these NBFs via max and min operators, which encap-

sulate set unions and intersections, respectively. However, this previous chapter does not

explicitly consider controlled systems, a necessary condition for controller synthesis.

A related body of prior work has shown that controller synthesis via Quadratic Pro-

grams (QPs) can be used to minimally modify an existing controller such that a barrier

function remains valid [1, 4, 5, 2, 3], and such methods have seen success on large-scale

multi-robot systems but have yet to be extended to Boolean composition of NBFs [8]. In

particular, this technique involves taking a derivative along trajectories, considering a suf-

ficient rate function, and generating an inequality constraint for a QP. If this constraint is

satisfied at all points, then the forward-set-invariance property holds. However, the nons-

mooth case correspondingly requires a generalized derivative, which results in a discontin-

uous constraint; as such, a discontinuous control inputs may result from this process and
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must be considered.

By combining and extending the previous work on Boolean composition of NBFs and

controller synthesis via QPs, this chapter develops a constraint-satisfaction and controller-

synthesis framework that can be deployed onto multi-robot systems. As in [2, 8, 3], this

framework can operate in real time and can be combined with existing controllers. For

validation, the proposed framework solves a leader-follower problem, a classic problem

for multi-agent systems.

To enable the above-mentioned framework, this chapter provides the following theo-

retical results. Considering a class of control-affine systems and allowing discontinuities

in the control input, this chapter formulates NBFs with respect to this system, resulting in

CNBFs, and extends the results on NBFs to CNBFs using the techniques from [14, 16, 28,

12].

Next, we focus on providing a system of Boolean logic with Boolean NBFs (BNBFs),

which are Boolean combinations of NBFs. This framework leverages the work in Chapter 2

and extends it by explicitly considering discontinuous control inputs. This formulation

supports the main result of this chapter: the development of an almost-active gradient for

BNBFs that is suited for control synthesis via a QP. The main result proves that this object,

when used as a constraint to a QP, provides a validating, though potentially discontinuous,

controller.

The chapter is organized as follows. Section 3.1 introduces the problem statement and

notes the system of interest. Section 3.2 develops CNBFs, notes some Boolean compos-

ability requirements, formulates the almost-active gradient, and constructs a controller-

synthesis algorithm via a QP, providing the main results of this chapter. Accordingly, Sec-

tion 3.3 shows the deployment of a BNBF onto a multi-robot system with leader-follower

constraints, and Section 3.4 concludes the chapter.
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3.1 Problem Statement and System of Interest

This section presents the particular application that this chapter seeks to solve (i.e., the

leader-follower problem) and discusses the system of interest. For background on NBFs,

see Chapter 2.

3.1.1 Problem Statement

As a motivating example for this chapter, consider a leader-follower team of N robots with

planar states xi ∈ R2, i ∈ [N ], where the leaders must perform a task; but, at the same

time, all robots must satisfy a collection of constraints. For example, the robots must not

collide. Pairwise, the inequality

‖xi − xj‖ ≥ δcol

encodes this constraint, for some δcol > 0. Furthermore, the function

hij(xi, xj, δcol) = ‖xi − xj‖2 − δ2
col, i, j ∈ [N ],

captures this inequality (i.e., consider hij(xi, xj, δcol) ≥ 0).

The robots must also avoid collisions with a fixed number, O, of obstacles, which can

be captured by the function

hij(xi, oj, δobs), i ∈ [N ], j ∈ [O], (3.1)

where the fixed value oj ∈ R2 represents the known location of the obstacle and δobs > 0

indicates the size of the obstacle.

The subset of leader robots, denoted by NL ⊂ [N ], must travel to pre-specified goal

points xi,g ∈ R2, i ∈ NL. The rest of the robots, the followers, denoted by NF ⊂ [N ], must
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remain close to one of the leaders. Pairwise, the inequality

‖xi − xj‖ ≤ δcon, i ∈ NL, j ∈ NF ,

represents this criterion. In terms of (3.1), the function

−hij(xi, xj, δcon)

encapsulates this connectivity constraints. This symbol represents a Boolean ¬ (NOT)

operation.

Using these pairwise constraints and a system of Boolean logic, the above barrier func-

tions may be composed to satisfy the system-wide constraints. In particular, the Boolean

compositions

hcol =
N−1∧
i=1

N∧
j=i+1

hij(·, ·, δcol), hobs =
N∧
i=1

∧
j∈O

hij(·, oj, δcol)

encapsulate all of the collision constraints, where the large ∧ symbol refers to Boolean ∧

(AND) and the large ∨ symbol refers to Boolean ∨ (OR). Similarly, the Boolean composi-

tion

hcon =
∧
i∈NF

∨
j∈NL

¬hij(·, ·, δcon)

captures the followers’ connectivity constraint to the leaders, and taking

h = hcol ∧ hobs ∧ hcon (3.2)

yields the all-encompassing constraint.

The resulting function begs the question: how does one enforce the Boolean composi-

tions encoded by (3.2)? As such, the main contribution of this chapter, which is contained

in the publication [13], shows how to synthesize an appropriate controller from (3.2) for a
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team of mobile robots by considering it as an CNBF.

3.1.2 System of Interest

In this chapter, the differential inclusion

ẋ(t) ∈ F (x(t)), x(0) = x0 (3.3)

becomes of interest, where F : Rn → 2Rn is an upper semi-continuous, nomempty, com-

pact, convex set-valued map (see Appendix B). These conditions ensure that Cartahéodory

solutions to the differential inclusion exist [17]. For a comprehensive survey of set-valued

maps and discontinuous differential equations, see [17].

More specifically, we consider control-affine systems of the form

ẋ(t) = f(x(t)) + g(x(t))u(x(t)), (3.4)

where f : Rn → Rn, g : Rn × Rm → Rn are continuous. The controller u : Rn → Rm is

assumed to be a feedback control; however, this treatment only requires u to be measurable

and locally bounded. Note that these properties indeed capture discontinuities.

To create a system for which solutions exist, a discontinuous dynamical system, such

as in (3.4), can be turned into a differential inclusion via Filippov’s operator

ẋ(t) ∈ K[f + gu](x(t)) = coL[f + gu](x(t)) (3.5)

= co{ lim
i→∞

f(xi) + g(xi)u(xi) : xi → x(t), xi /∈ Sf , S},

where Sf is a particular zero-measure set that depends on the system and S is any zero-

measure set. The resulting set-valued map, K[f + gu] : Rn → 2Rn satisfies the aforemen-

tioned sufficient conditions to permit existence of solutions to (3.3) with F = K[f + gu].

See Appendix B for more details.

29



3.2 Control Nonsmooth Barrier Functions

This section contains the main results of this chapter: formulating Control NBFs (CNBFs);

providing a Boolean logic system for them, resulting in Boolean NBFs (BNBFs); and ad-

dressing controller synthesis. As such, we identify some requirements for CNBFs, which

make them amenable to controller synthesis via a QP. Using these requirements, the almost-

active gradient is formulated. This object, when used as a constraint to a QP, ensures that

the resulting controller, which is possibly discontinuous, validates the BCNBF.

3.2.1 Boolean and Control Nonsmooth Barrier Functions

This section defines CNBFs and BNBFs. In particular, the definition of CNBFs ensures

validation via Theorem. 2.1, guaranteeing the desired forward invariance property with

respect to a particular differential inclusion.

Definition 3. A candidate NBF h : Rn → R is a valid Control Nonsmooth Barrier Function

(CNBF) for (3.5) if and only if there exists a locally Lipschitz extended class-K function

α : R→ R and a measurable, locally bounded function u : Rn → Rm such that

min ∂ch(x′)>K[f + gu](x′) ≥ −α(h(x′)), ∀x′ ∈ Rn.

Remark 3.1. If a candidate NBF is a valid CNBF for (3.5), then C is forward invariant

with respect to the differential inclusion

ẋ(t) ∈ K[f + gu](x(t)), x(0) = x0.

Chapter 2 provides a system of Boolean logic for NBFs to create BNBFs. However, it

did not address controller synthesis for general NBFs. As such, this chapter now focuses

on some relevant regularity assumptions for BNBFs, toward controller synthesis in Sec-

tion 3.2.2. Recall that, for a pair of candidate NBFs, h1, h2 : Rn → R, a Boolean NBF
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(BNBF) is given by

h(x′) = min{h1(x′), h2(x′)} := h1 ∧ h2

h(x′) = max{h1(x′), h2(x′)} := h1 ∨ h2

h(x′) = −h1(x′) := ¬h1,

at each x′ ∈ Rn (cf. Chapter 2).

In general, a BNBF h : Rn → R can be comprised of a finite number of component

functions with the above-noted Boolean operators. In this case, h is denoted

h = B[h1, . . . , hk],

whereB represents a Boolean logic expression containing the operators in Definition 3.2.1.

An important class of BNBFs are those composed of smooth functions.

Definition 4. A candidate BNBF h : Rn → R defined by h = B(h1, . . . , hk) is smoothly

composed if each component candidate NBF hi : Rn → R is continuously differentiable. •

Definition 4 implies, from Proposition C.1, that, at a point x′ ∈ Rn,

∂ch(x′) ⊂ co{∇hi(x′) : i ∈ I ⊂ [k]} ∪ {−∇hi(x′) : i ∈ I ⊂ [k]},

for some appropriate index set I , where ∇ denotes the usual gradient. This encapsulat-

ing set becomes particularly important when synthesizing controllers with a QP in Sec-

tion 3.2.2.

3.2.2 Controller Synthesis via Quadratic Programs

To enable controller synthesis via a QP, this section defines some useful objects. These tools

capture the composability requirements outlined in Section 3.2 and ensure that synthesized
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Figure 3.1: A group of 5 differential-drive robots in the Robotarium execute the experiment
detailed in Section 3.3. In particular, all robots avoid inter-agent collisions and obstacle
collisions; each of the three follower robots maintain connectivity to one of the leader
robots; and the leader robots successfully achieve their pre-specified goal position. These
results show that the synthesized controller satisfies the constraints and completes the pre-
existing objective.
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controllers validate the requisite BNBF. To motive the following discussion, consider the

following argument. When validating CNBFs, the inequality

∂ch(x′)>K[f + gu](x′) ≥ −α(h(x′)) (3.6)

must be satisfied for every x′ ∈ Rn for some extended class-K α : R → R. As such, the

behavior of the controller around the point x′ becomes crucial, because

∂ch(x′)>(f(x′) + g(x′)u(x′)) ≥ −α(h(x′))

does not imply that (3.6) does not hold.

Moreover, (3.6) combines all possible directions between the dynamics and the gen-

eralized gradient. As such, any active function in ∂ch(x′), where h is a BNBF, must be

included in a neighborhood of x′. As such, the generalized gradient does not effectively

capture this locality, and it must be extended to provide enough regularty to satisfy (3.6).

This criterion motivates the following developments.

Definition 5. Let ε > 0 and two candidate NBFs h1, h2 : Rn → R, the almost-active set of

functions for a candidate BNBF given by h = h1 ∧ h2 or h = h1 ∨ h2 is defined at each

x′ ∈ Rn as

Iε(x
′) = {i : |hi(x′)− h(x′)| ≤ ε}.

The almost-active gradient of a BNBF, denoted by ∂εh : D ⊂ Rn → 2Rn , at a point

x′ ∈ Rn is

∂εh(x′) = co
⋃

i∈Iε(x′)

∂hi(x
′).

•

The following results shows that QPs with an almost-active-gradient constraint generate

validating controllers for smoothly composed BNBFs. To do so, the behavior of the almost-

active gradient becomes relevant.
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Lemma 3.1. Let h : Rn → R be a candidate BNBF as in Definition 5, and let ε > 0. At

every x′ ∈ Rn, if hi(x′) = h(x′), then there exists δ > 0 such that the almost-active set of

functions satisfies i ∈ Iε(y), for all y ∈ B(x′, δ).

Proof. Let x′ ∈ Rn, and let i be such that hi(x′) = h(x). By continuity of hi, h there exists

δ > 0 such that

|hi(y)− hi(x′)| ≤ ε/2, |h(y)− h(x′)| ≤ ε/2,

for all y ∈ B(x′, δ). Then,

|hi(x′)− h(y)| = |hi(y)− h(y)− hi(x′) + h(x′)|

≤ |hi(y)− hi(x′)|+ |h(x′)− h(y)| ≤ ε.

Therefore, i ∈ Iε(y), for all y ∈ B(x′, δ).

Applying Lemma 3.1 on a smoothly composed BNBF yields the main result on con-

trollers resulting from QPs with the almost-active gradient as a constraint. The next theo-

rem provides a controller-synthesis result for a restricted class of BNBFs. Later chapters

extend this procedure to general BNBFs.

Theorem 3.1. Let h : Rn → R be a smoothly composed candidate BNBF, as in Defini-

tion 5. If there exists ε > 0 and a locally Lipschitz extended class-K function α : R → R

such that the Quadratic Program (QP)

u∗(x′) ∈ arg min
u∈Rm

u>A(x′)u+ b(x′)>u

s.t. 〈∂εh(x′) , f(x′) + g(x′)u〉 ≥ −α(h(x′)),

with A : Rn → Rm×m, b : Rn → Rm continuous, has a solution for every x′ ∈ Rn and u∗

is measurable and locally bounded, then h is a valid CNBF for (3.5).
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Proof. Let x′ ∈ Rn. Since h is smoothly composed,

∂h(x′) ⊂ co{∇hi(x′) : i ∈ I(x′)},

by Proposition C.1. By Theorem 2.2, showing that

〈∇hi(x′) , L[f + gu]〉 ≥ −α(h(x′))

for each i ∈ I(x′) suffices to achieve the desired result. Take i ∈ I(x′). By definition,

h(x′) = hi(x
′), so applying Lemma 3.1 implies that there exists δ > 0 such that i ∈ Iε(y),

for all y ∈ B(x′, δ). As such, u∗ satisfies

〈∇hi(y) , f(y) + g(y)u∗(y)〉 ≥ −α(h(y)),

for all y ∈ B(x′, δ).

Let v ∈ L[f+gu]. Then, there exists a sequence xj → x′ such that f(xj)+g(xj)u
∗(xj)→

v. Moreover, the existence of the limit implies that the same limit holds for any subse-

quence. Since xj → x′, there exists a k such that ‖xj − x′‖ ≤ δ for all j ≥ k so, reusing

notation, consider a subsequence xj → x′ with j ≥ k.

Because∇hi, α, and 〈· , ·〉 are continuous

〈∇hi(x′) , v〉+ α(h(x′)) =

〈 lim
j→∞
∇hi(xj) , lim

j→∞
(f(xj) + g(xj)u

∗(xj))〉+ lim
j→∞

α(h(xj))

= lim
j→∞
〈∇hi(xj) , f(xj) + g(xj)u

∗(xj)〉+ lim
j→∞

α(h(xj))

= lim
j→∞

(〈∇hi(xj) , f(xj) + g(xj)u
∗(xj)〉+ α(h(xj)))

= lim
j→∞

aj,
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where aj = 〈∇hi(xj) , f(xj) + g(xj)u
∗(xj)〉+ α(h(xj)). By assumption, aj ≥ 0 for all j,

since ‖xj − x′‖ ≤ δ; therefore,

lim
j→∞

aj ≥ 0,

implying that

〈∇hi(x′) , v〉 ≥ −α(h(x′))

and completing the proof.

The experimental results in Section 3.3 rely on a slightly generalized version of Theo-

rem 3.1, which is not given in this chapter. The exact proof of this result would involve a

generalization of the almost-active set of functions and Lemma 3.1 to BNBFs with nested

component functions. In fact, Chapter 5 contains this generalized version of Theorem 3.1.

3.3 Experimental Results

This experiment solves the problem posed in Section 3.1.1, utilizing the same notation.

Consider N = 5 robots with planar states and dynamics

ẋi = ui.

This experiment also references the ensemble state x ∈ R2N with input u ∈ R2N . More-

over, NL = {1, 2} and NF = {3, 4, 5}.

Robots 1 and 2 travel from a specified initial condition to a pre-specified goal point

xi,g ∈ R2 with the controller

ui,nom(xi) = xi,g − xi,

for i ∈ NL. Meanwhile, robots 3, 4, and 5 must remain close to either the first or the second

robot. While traveling, all robots must avoid collisions with each other and a pair of obsta-

cles with known location. The BNBF in Section 3.1.1 (i.e., h) captures these constraints.
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Figure 3.2: Numerical results from the team of mobile robots. The left image displays the
value of the BNBF over the course of the experiment. Because the value of the BNBF
is always positive, all constraints are satisfied. The middle and right images display the
synthesized linear and angular velocities of the mobile robots. Though discontinuous, these
control inputs ensure that the constraints are met and the objective is completed.

This experiment solves the QP indicated in Theorem 3.1. Since h is smoothly com-

posed, calculating the almost-active gradient involves only the gradient of hi,j , which is

∇xihi,j(xi, xj, ·) = 2(xi − xj) = −∇xjhi,j(xi, xj, ·). (3.7)

As required, these gradients are continuous, and the requisite QP, in the format of Theo-

rem 3.1, is

u∗(x) ∈ arg min
u∈R2N

u>u− 2u>nom(x)u

s.t. 〈∂εh(x) , u〉 ≥ −γh(x)3,

where γ > 0 and h(x) → h(x)3 is the selected extended class-K function. In this case,
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∂εh(x) can be calculated by considering the active expressions and substituting an appropri-

ate gradient in (3.7). Note that the above QP minimizes the objective function ‖u−unom‖2,

ensuring that u∗ respects the leaders’ primary objective. The parameters for this experiment

were chosen as

δcon = 0.35, δobs = 0.1, δcol = 0.08, γ = 1000, ε = 0.007.

For deployment, this experiment utilizes the Robotarium, a remotely accessible swarm

robotics testbed [8]. The differential-drive robots utilized in the Robotarium have nonlinear

unicycle dynamics, which are controlled by linear and angular velocity. However, the

single-integrator model may be mapped onto such a system using a number of techniques,

and this experiment employs the transformation in [27].

Figure 3.1 displays the resulting trajectories of the robots under the controller u∗. Due to

the minimally invasive QP formulation and the results of Section 3.2.2, the team of robots

complete the objective while respecting the desired constraints. In particular, Figure 3.2

indicates that the BNBF, h, remains positive over the course of the experiment, implying

that the synthesized controller respects all of the constraints. Additionally, the leader robots

successfully achieve their pre-specified goal positions.

Figure 3.2 displays the linear and angular velocities of the robots during the experiment.

As expected, the control inputs are discontinuous. However, as predicted by the results

of Section 3.2.2, the synthesized controller still ensures that the BNBF remains positive,

meaning that all constraints are satisfied.

3.4 Conclusion

This chapter proposed and theoretically validated a framework for constraint composition

and controller synthesis using barrier functions. Composition of these constraints was ob-

tained through Boolean operators, and their application resulted in nonsmooth functions.
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As such, this chapter presented CNBFs, which were formulated with respect to controlled

systems. Accordingly, we developed an almost-active gradient for nonsmooth functions,

and, when included as a constraint to a quadratic program, this object permitted the synthe-

sis of discontinuous but valid controllers. Experimental results on a leader-follower team of

mobile robots demonstrated the efficacy of these results. Building on these results, Chap-

ter 4 extends CNBFs to a class of hybrid systems and Chapter 5 extends these results to

general Boolean expressions of NBFs.
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CHAPTER 4

HYBRID NONSMOOTH BARRIER FUNCTIONS

This chapter contains the results from the contributed publication [29], and this chapter

extends the results of Chapter 2 and Chapter 3 to a class of hybrid systems. In particular,

NBFs are extended to be time varying and have a countable number of jump-based dis-

continuities, resulting in Hybrid NBFs (HNBFs) and their analogous controlled versions.

Moreover, this chapter applies the developed HNBF framework to a LIDAR-equipped dif-

ferential drive robot. In particular, we present an algorithm that utilizes HNBFs to formu-

late a composable collision-avoidance algorithm in the local coordinates of the robot.

Prior approaches to set invariance in robotics include [30, 31, 32]; the use of barrier

functions distinguishes this thesis from the existing literature. In addition to provable guar-

antees for forward set invariance, barrier functions offer a number of advantages, namely

their implicit formulation for general dynamical systems and composability. The implicit

nature of barrier functions relates to Lyapunov functions in that satisfying a particular in-

equality point-wise across the state space provides a global set-invariance result, mean-

ing that barrier-function-based controller-synthesis frameworks do not necessarily require

simulation of the system over an interval (e.g., as in model predictive control). The com-

putational significance of this is demonstrated in [8], where such a framework is used to

synthesize controllers for 80-dimensional ensemble systems of differential-drive robots at

100 Hz. Furthermore, barrier functions are composable, which means that arbitrary con-

trollers, such as those generated by the methods of [31, 33], can be easily incorporated

during barrier-function-based controller synthesis. For further advantages of barrier func-

tions, see [1, 7, 34, 3, 12].

Since potential functions (e.g., [32]) represent a related method and are well used in

the literature, this chapter explicitly compares this technique with barrier functions. In
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terms of similarities, both are predicated on guaranteeing the positivity of a function. How-

ever, potential functions are typically formulated for a particular task (i.e., navigation with

obstacle avoidance) and are predicated on the system moving with the negative gradient

of the potential function. Moreover, since navigation and obstacle avoidance are being

combined into a single function, the potential function must be specially tuned to satisfy

a series of requirements [32, Definition 1]. Conversely, barrier functions focus only on

set invariance through weaker conditions (i.e., only a differential inequality), resulting in

some advantages. First, barrier functions can be formulated independently from specific

dynamical systems or applications. Second, barrier functions allow the system to approach

the boundary of the invariant set. This property permits barrier functions to be combined

with pre-existing controllers and makes them amenable to Boolean composition; this fact

also implies that the usage of barrier functions does not preclude that of potential functions.

That is, the pre-existing controller may come from the gradient of a potential function.

For example, consider a mobile robot that utilizes a combined approach: barrier func-

tions for low-level collision avoidance and a potential function for navigation (via a nom-

inal controller). Now, suppose an unexpected obstacle appears. Because the obstacle is

unexpected, the less-strict requirements of barrier functions support immediate incorpora-

tion into the collision-avoidance framework. Then, the robot can avoid collisions while

determining a modified potential function that incorporates the new obstacle. Using both

approaches, the system can capture the flexibility of barrier functions and the guaranteed

navigation of potential functions.

As for this chapters’s contribution, Chapters 2 and 3 do not address time-varying NBFs,

inhibiting their application in robotics scenarios where unexpected events and dynamic en-

vironments may induce changing objectives and constraints (e.g., an autonomous vehicle

avoiding a previously unsensed obstacle). Accordingly, the main contribution of this chap-

ter formulates Hybrid NBFs (HNBFs): time-varying NBFs with jumps. This chapter also

addresses a practically useful class of controlled HNBFs and presents a quadratic-program-
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based controller-synthesis method with the aforementioned advantages. HNBFs are similar

in their hybrid nature to the switching sequences presented in [35, 36] and much other work

on hybrid systems. However, the analysis in this chapter differs by focusing on set invari-

ance rather than stability.

Because of their recent renewed interest, the modern formulation of barrier functions

has not been widely applied to classic robotics problems. Accordingly, to demonstrate

a practical application of HNBFs in robotics, this thesis revisits an established problem:

collision-avoidance for arbitrary primary objectives. Specifically, HNBFs are used to en-

code a collision-avoidance algorithm that composes with the primary controller of a LIDAR-

equipped differential-drive robot.

This chapter is organized as follows. Section 4.1 contains background material, includ-

ing tools from [14, 16, 15, 17, 13, 12]. Using these tools, the main theoretical results in

Section 4.2 extend NBFs to HNBFs and applies HNBFs to controlled systems. For use

in the subsequent experiment, a general measurement model and a composable collision-

avoidance framework for control-affine systems are formulated. To demonstrate the pro-

posed method, Section 4.3 instantiates this framework for a LIDAR-equipped differential-

drive robot in local coordinates, and in Section 4.4, the robot uses the framework to achieve

collision-free navigation. Section 4.5 concludes the chapter.

4.1 Background Material

The proposed HNBFs require tools from nonsmooth analysis and the theory of discon-

tinuous dynamical systems, background material for which is contained in Appendix B

and Appendx C. Because this chapter considers time-varying systems, this section presents

the thoery of discontinuous dynamical systems and NBFs in the context of time-varying

systems, which is not contained in Appendix B. Accordingly, this section introduces back-

ground material including: notation, system of interest, discontinuous dynamical systems,

nonsmooth analysis, Boolean logic for barrier functions, and controller synthesis for NBFs.
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4.1.1 System of Interest

Many robots can be modelled as control-affine systems (e.g., differential-drive robots,

quadrotors) of the form

ẋ(t) = f(x(t)) + g(x(t))u(x(t), t), x(t0) = x0, t0 ∈ R, (4.1)

where f : Rn → Rn, g : Rn → Rm are locally Lipschitz continuous; u : Rn × R→ Rm is

measurable and locally bounded in both arguments. In this case, u is not necessarily con-

tinuous, so these assumptions model discontinuities in the control input, which inevitably

occur during controller synthesis in the context of this chapter. For additional information

and definitions (e.g., locally bounded), see [17, p. 44, p. 49] or Appendix B.

For differential equations, such as (4.1), solutions may not exist. Toward analyzing

discontinuous differential equations, applying Filippov’s operator K[f + gu] : Rn × R→

2Rn yields a particular system to which solutions exist. This operator maps discontinuous

differential equations, as in (4.1), to a solution-bearing differential inclusion. At a point

(x′, t′),

K[f + gu](x′, t′) = (4.2)

co{ lim
i→∞

f(xi) + g(xi)u(xi, t
′) : xi → x′, xi /∈ Nf , N},

where Nf is a particular zero-Lebesgue-measure set and N is an arbitrary zero-Lebesgue-

measure set [16, Theorem 1].

For a general differential inclusion,

ẋ(t) ∈ F (x(t), t), x(t0) = x0, t0 ∈ R, (4.3)

on a set-valued map F : Rn×R→ 2Rn , a Carathéodory solution is an absolutely continuous
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function x : [t0, t1]→ Rn such that ẋ(t) ∈ F (x(t), t) almost everywhere on [t0, t1] 3 t and

x(t0) = x0. Such solutions exist if F is compact-, convex-valued, nonempty, and locally

bounded; for each fixed t′, the function x′ 7→ F (x′, t′) is upper semi-continuous; and for

each fixed x′, the function t′ 7→ F (x′, t′) is measurable [17, p. 44, p. 49]. In terms of

completeness of solutions, this chapter requires that solutions exist but does not require

that they exist for all time.

Combining these results, Filippov’s operator in (4.2) automatically satisfies these prop-

erties. That is, Carathéodory solutions to the differential inclusion

ẋ(t) ∈ K[f + gu](x(t), t), x(t0) = x0, t0 ∈ R, (4.4)

always exist. See [17] for a comprehensive coverage of discontinuous dynamical systems.

Note that the assumptions for the time-varying case are similar to that of the time-invariant

case, which is covered in Appendix B.

This chapter provides results for the general differential inclusion in (4.3) as they apply

to the dynamical system in (4.1) via (4.2). In practice, the explicit computation of Filippov’s

operator is not required; instead, theoretical validation eliminates the need to calculate

(4.4).

4.1.2 Nonsmooth Barrier Functions and Boolean Logic

This section presents the material of Chapter 2 in the context of time-varying systems. Most

of the theory readily extends to this case; however, there are some notable differences in

regard to the generalized gradient and Filippov’s operator.

Barrier functions provably guarantee forward invariance of a set that captures domain-

specific constraints (e.g., an autonomous vehicle staying in a lane or avoiding collisions).

Denote h : Rn × R≥t0 → R as the barrier function. The goal becomes to ensure forward
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invariance of the set

C = {(x′, t′) ∈ Rn × R≥t0 : h(x′, t′) ≥ 0}.

It turns out that forward invariance can be guaranteed when

ḣ(x(t), t) ≥ −α(h(x(t), t), a.e.[t0, t1] 3 t, (4.5)

for every Carathéodory solution, for some locally Lipschitz extended class-K function α :

R→ R (see Chapter 2).

However, if the barrier function is not continuously differentiable but is locally Lips-

chitz, as in this chapter, calculating ḣ can no longer be done via the usual chain rule. For-

tunately, the generalized gradient of [14] can be employed. At a point (x′, t′) ∈ Rn×R>t0 ,

the generalized gradient ∂ch : Rn × R>t0 → 2Rn×R is defined as

∂ch(x′, t′) = (4.6)

co{ lim
i→∞
∇h(xi, ti) : (xi, ti)→ (x′, t′), (xi, ti) /∈ Ω,Ωh},

where Ωh designates the zero-measure set on which h is nondifferentiable, Ω is any zero-

Lebesgue-measure set, and∇h is the usual gradient [14, Theorem 2.5.1].

The generalized gradient in (4.6) is useful because it provides analysis of derivatives

along Carathéodory solutions to a differential inclusion. Specifically, given a Carathéodory

solution to (4.3), the time derivative of the function t 7→ h(x(t), t), satisfies

ḣ(x(t), t) ≥ min ∂ch(x(t), t)> (F (x(t))×1) (4.7)

almost everywhere on [t0, t1] 3 t [19, 15]. Importantly, the inequality in (4.7) circumvents

the calculation of ḣ(x(t), t), which is particularly useful for controller synthesis. Now,
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combining (4.5) with (4.7) yields the desired forward-invariance result in an analogous

fashion to Chapter 2. Note that for sets A,B ⊂ Rn,

A>B = {a>b : a ∈ A, b ∈ B},

such as in (4.7).

NBFs inherently capture Boolean composition. That is, barrier functions composed

with ∧, ∨, and ¬ operators. For example, an autonomous vehicle must stay in the desig-

nated lane and not violate the speed limit. The results of Chapter 2 and Chapter 3 show that

max, min, and negation form a full system of Boolean logic with logical operators defined

as

h1 ∧ h2 := min{h1, h2} (4.8)

h1 ∨ h2 := max{h1, h2}

¬h1 := −h1.

Note that the logical operations are point-wise applied. For example,

(h1 ∧ h2)(·) = min{h1(·), h2(·)}.

This system of logic can generate complex constraints for robotic systems from basic com-

ponent functions. Moreover, the generalized gradient becomes straightforward to estimate,

and the corresponding controller-synthesis framework only requires knowledge of the com-

ponent functions.

The generalized gradient of such an NBF, at (x′, t′) ∈ Rn×R>t0 , satisfies the inclusion

∂ch(x′, t′) ⊂ co
⋃

i∈I(x′,t′)

∂chi(x
′, t′),
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where I(x′, t′) = {i : hi(x
′, t′) = h(x′, t′)} is the active-function map (see Proposition C.1.

That is, the convex hull of the generalized gradients of the active component functions (i.e.,

those currently attaining the max or min) encapsulates the generalized gradient of the NBF.

In Chapter 3, the NBF framework is extended to controller synthesis for Boolean com-

positions. In particular, Chapter 3 develops an almost-active gradient for specific NBFs, as

in (4.8), that yields a validating controller when included as a constraint to a QP. Moreover,

Filippov’s operator on the controller does not have to be explicitly computed, and, despite

the required analysis, the controller-synthesis framework can, effectively, be automatically

applied.

In this case, the continuous differentiability of the component functions becomes a key

property. The almost-active set for a so-called smoothly composed NBF, as in (4.8), is

defined, at (x′, t′) ∈ Rn × R>t0 , as

Iε(x
′, t′) = {i : |hi(x′, t′)− h(x′, t′)| ≤ ε}.

Similarly, the almost-active generalized gradient is

∂εh(x′, t′) = co
⋃

i∈Iε(x′,t′)

∂chi(x
′, t′).

For such smoothly composed NBFs, [12] shows that including the almost-active general-

ized gradient as a constraint in an optimization program produces a potentially discontin-

uous but validating control input, assuming that the resulting controller is measurable and

locally bounded [13, Theorem 3].

4.2 Main Results

This section contains the main results of this chapter: the formulation of HNBFs, Control

HNBFs (CHNBFs), and piece-wise-constant CHNBFs, with Section 4.6 containing proofs
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of the theorems. The piece-wise-constant CHNBFs are particularly useful for applications

with varying constraints. To demonstrate their applicability, this section also formulates

a general-purpose collision-avoidance and controller-synthesis framework for the system

in (4.1) in terms of a piece-wise-constant CHNBF that represents dynamically appearing

obstacles. Despite the breadth of analysis required to prove the theorems, this framework

essentially depends on solving a QP with distance measurements as constraints, and it is

simple to apply, effective, and computationally feasible.

4.2.1 Hybrid Nonsmooth Barrier Functions

To account for the time-varying nature of the problem as well as potential jumps, the formu-

lation of HNBFs first requires a modification to the concept of forward invariance, which

is captured by the following two definitions.

Definition 6. A sequence {τk}∞k=1 is a switching sequence for (4.3) if and only if it is strictly

increasing, unbounded, and τ1 = t0. With respect to {τk}∞k=1, let

Kt1 = inf{K ∈ N : [t0, t1] ⊂
K⋃
k=1

[τk, τk+1).

Definition 7. A set S ⊂ Rn × R is hybrid forward invariant with respect to (4.3) and a

switching sequence {τk}∞k=1 for (4.3) if and only if for every Carathéodory solution starting

from x0 at t0,

(x(τk), τk) ∈ S,∀k ≤ Kt1 =⇒ (x(t), t) ∈ S,

∀t ∈ [t0, t1].

Definition 7 captures the desired behavior of the system. Informally, if the system starts

in the set and every jump remains within the set, then the system cannot leave the set. With

regards to composable collision avoidance as presented in Section 4.2.2, this assumption

implies that no obstacles instantaneously appear too close to the robot. The following two

definitions construct candidate HNBFs as well as the conditions under which they are valid.
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Definition 8. A function h : Rn × R≥t0 → R is a candidate Hybrid Nonsmooth Barrier

Function (HNBF) for (4.3) if and only if there exists a switching sequence {τk}∞k=1 for (4.3)

such that, for every k ∈ N, h is locally Lipschitz continuous on Rn × [τk, τk+1).

Remark 4.1. In the context Definition 8, the generalized gradient of h is only defined on

each open interval (τk, τk+1), as it requires that the function be defined on an open set;

though, local Lipschitz continuity holds on [τk, τk+1).

Definition 9. A candidate HNBF h : Rn × R≥t0 → R for (4.3) by the switching sequence

{τk}∞k=1 is a valid HNBF for (4.3) if and only if the set

C = {(x′, t′) ∈ Rn × R≥t0 : h(x′, t′) ≥ 0}

is hybrid forward invariant via (4.3), {τk}∞k=1.

Definition 9 departs from the formulation of NBFs in Definition 1. Instead, Defini-

tion 9 only requires positivity of the function t 7→ h(x(t), t) and does not require C to be

nonempty, which has been recognized to be superfluous since the forward-invariance state-

ment is an implication. For practical purposes, one could modify Definition 8 to include

the property that

{x′ ∈ Rn : h(x′, τk) ≥ 0}

is nonempty for all k ∈ N.

The robustness properties of asymptotic stability to C are precluded by the potential

jumps in the system, and recovery of this property is left to future work. In this chapter, the

set C still remains attractive; however, the system will not be able to reach C asymptotically

due to potential jumps. Regardless, the following results utilize the above definitions to

guarantee hybrid forward invariance.

Theorem 4.1. Let h : Rn ×R≥t0 → R be a candidate HNBF for (4.3) under the switching

sequence {τk}∞k=1. If for every k ∈ N, there exists a locally Lipschitz extended class-K
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function αk : R→ R such that

min ∂ch(x′, t′)> (F (x′, t′)×1) ≥ −αk(h(x′, t′)),

∀x′∈Rn, t′∈(τk, τk+1), then h is a valid HNBF for (4.3).

Following from Theorem 4.1, the next results concern a class of piece-wise constant

HNBFs for controlled systems, and the subsequent section utilizes them to encode a series

of collision-avoidance constraints that stem from range and bearing measurements. Toward

this end, the following definition and result capture the notion of a CHNBF. By definition,

valid CHNBFs for (4.1) are valid HNBFs for (4.4).

Definition 10. A candidate HNBF h : Rn × R≥t0 → R for (4.1) under the switching

sequence {τk}∞k=1 is a valid Control HNBF (CHNBF) for (4.1) if and only if there exists a

measurable and locally bounded function u : Rn × R → Rm such that for every k ∈ N

there exists a locally Lipschitz extended class-K function αk : R→ R satisfying

min ∂ch(x′, t′)> (K[f + gu](x′, t′)×1) ≥ −αk(h(x′, t′)),

∀x′ ∈ Rn, t′ ∈ [τk, τk+1).

Theorem 4.2. Let hk : Rn → R, k ∈ N, be a collection of valid CNBFs, in the sense of

Definition 3, for (4.1) under the control laws and extended class-K functions, uk : Rn → R,

αk : R→ R, k ∈ N; and let {τk}∞k=1 be a switching sequence for (4.1). Then, the function

h : Rn × R≥t0 → R defined as

h(x′, t′) = hk(x′),∀k ∈ N,∀t′ ∈ [τk, τk+1),∀x′ ∈ Rn

is a candidate HNBF. Moreover, h is a valid CHNBF for (4.1) with the input u : Rn ×
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R≥t0 → Rm defined as

u(x′, t′) = uk(x′),∀k ∈ N,∀t′ ∈ [τk, τk+1),∀x′ ∈ Rn.

Remark 4.2. In this theorem, the choice of the switching interval remains arbitrary. More-

over, the controller u in the proof is only defined on Rn×R≥t0; however, it can be extended

to Rn × R, without affecting measurability and local boundedness, by setting it to zero on

the region Rn × R<t0 .

In Theorem 4.2, the collection of CNBFs is not time varying, as is allowed for by

Theorem 4.1; this choice is made so that Theorem 4.2 resembles the upcoming collision-

avoidance algorithm, and such an extension (i.e., to make each hk : Rn × R≥t0 → R, uk :

Rn × R≥t0 → Rm) would be possible. Regardless, with these results, the next subsection

revisits a classic problem, collision avoidance, where the collision avoidance algorithm is

encoded via an HNBF as in Theorem 4.2.

4.2.2 Composable Collision Avoidance

Using the theoretical developments of Section 4.2.1, this section formulates a CHNBF for

composable collision avoidance. Here, a scenario is modelled in which a sensor (e.g., LI-

DAR, infrared) or a map provides piece-wise-constant relative measurements to points that

a robot must avoid. The system is assumed to evolve according to control-affine dynamics

as in (4.1), and x′ is assumed to be the position of the robot. Formally, the measurement

model takes the form of a piece-wise-constant set-valued mapM : R≥t0 → 2Rn that returns

a finite set of points over intervals indicated by a switching sequence {τk}∞k=1. That is,

M(t′) = M(t′′),∀t′, t′′ ∈ [τk, τk+1).

As such, the shorthand

M(τk) = M(t′), t′ ∈ [τk, τk+1),
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indicates the points over the interval [τk, τk+1). The set-valued mapM takes a finite number

of values in Rn with cardinality satisfying |M(τk)| = Nk. The index i ∈ Nk denotes a

corresponding measurement mi ∈M(τk).

The value Nk represents the number of points to be avoided over the interval [τk, τk+1).

For each of these points on the interval, the barrier function

hki (x
′) = ‖x′ −mi‖2 − d2, mi ∈M(tk), i ∈ Nk, (4.9)

encapsulates the constraint that the robot should remain at least a distance d away from the

point mi on the kth interval. Then, the NBF given by

hk =

Nk∧
i=1

hki

represents the constraint that all of these sampled points must be simultaneously avoided

over a specific interval.

For controller-synthesis purposes, the almost-active gradient must be calculated. For

this case, the almost-active gradient on an interval k at a point x′ is given by

∂εh
k(x′) = co

⋃
i∈Ikε (x′)

∇hki (x′),

where

∇hki (x′) = 2(x′ −mi).

Importantly, this procedure greatly prunes the number of constraints that must be included

for controller synthesis, as only those measurements which are relatively close to the robot

must be utilized.

Splicing the component functions together, the function h : Rn ×R≥t0 → R defined as

h(x′, t′) = hk(x′),∀k ∈ N,∀t′∈ [τk, τk+1),∀x′∈Rn, (4.10)
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Algorithm 1 Collision-Free Controller Synthesis
Input: Nominal controller: unom

k (x(t))
Current measurements: M(τk)

Output: Collision-free controller: u(x(t), t).
hki (x(t))← ‖x(t)−mi‖2 − d2, ∀mi ∈M(τk)
hk(x(t))← mini{hki (x(t))}
Ikε (x(t))← ∅
for i = 1 : Nk do

if |hki (x(t))− hk(x(t))| ≤ ε then
Ikε (x(t)) ∪ {i}

u(x(t), t)← arg minu∈Rm ‖u− unom
k (x(t))‖2

s.t. 2(x(t)−mi)
> (f(x(t))+g(x(t))u)≥−αk(hk(x(t)))

∀i ∈ Ikε (x(t))

is a candidate HNBF by direct application of Theorem 4.2. To synthesize a controller

for the HNBF, it suffices to consider the controller for each set of measurements, as per

Theorem 4.2.

Since each of the individual gradients at each point in time is smooth, the results of

Chapter 3 apply, and utilizing the almost-active gradient as a constraint to an optimization

program yields a collision-avoiding controller. Let a nominal controller unom
k : Rn → Rm

represent the primary objective, then the solution to the QP

uk(x′) = arg min
u∈Rm

‖u− unom
k (x′)‖2 (4.11)

s.t. 2(x′−mi)
>(f(x′)+g(x′)u)≥−αk(hk(x′)),∀i∈Ikε(x′)

is a validating controller on each interval, by the results in Theorem 3.1, assuming that the

controller exists and is measurable and locally bounded. Specifically, each NBF hk is a

valid CNBF under uk and αk. Accordingly, the HNBF in (4.10) is a valid CHNBF for (4.1)

by Theorem 4.2. Note that each αk is, effectively, a design parameter. In practice, by The-

orem 3.1, the almost-active gradient does not have to be included as a constraint directly.

Rather, just the gradients of the component functions must be included, eliminating the

convex-hull operation. In general, the QP in (4.11) is not feasible for every possible sys-
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tem. Rather, if the solution exists and is measurable and locally bounded, then Theorem 4.2

holds.

Algorithm 1 combines these results into a cohesive procedure for calculating collision-

free controllers; a consequence of this formulation is that the synthesized controller tries to

match the nominal controller but will preferably ensure collision avoidance. The QP may

be solved through many software libraries such as the MATLAB optimization toolbox or

the Python library CVXOPT. The complexity of Algorithm 1 depends on determining the

ε-close points to the minimum (linear complexity) and solving a QP. Typically, strongly

convex QPs, a class to which this algorithm belongs, have a runtime that is cubic in the

number of decision variables. Assuming a standard conversion of inequality constraints to

equality constraints, the runtime should be on the order of O((m+Nk)
3) for most solvers.

Finally, note that while the barrier functions, hki , are hand designed, the composition is

automatically computed by Algorithm 1.

4.3 Composable Collision-Avoidance for Differential-Drive Robots

Previous sections detailed the general methods and theoretical constraint-satisfaction guar-

antees afforded by the CHNBF controller-synthesis framework summarized in Algorithm 1.

The purpose of this section is to formulate these methods for a particular choice of dynam-

ics in order to achieve composable collision-avoidance for LIDAR-equipped differential-

drive robots. Moreover, Algorithm 1 is encoded in the local coordinates of the robot, mean-

ing that the robot does not need to estimate its global state; this formulation also makes the

collision-avoidance algorithm independent from the particular objective at hand.
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Figure 4.1: The differential-drive robot, modeled by unicycle dynamics as in (4.12), is
equipped with a LIDAR. The point p is a distance l from s, the center of the robot and the
LIDAR, which returns the vector R(−θ)(m− s).

4.3.1 CHNBF Controller Synthesis in Local Coordinates

The CHNBF controller-synthesis method in Algorithm 11 must be adapted to apply to

LIDAR-equipped differential-drive robots, which are modelled by unicycle dynamics:

ẋ = v cos(θ) ẏ = v sin(θ) θ̇ = ω, (4.12)

where s = [x, y]> is the position; θ is the heading; and v, ω are the linear and angular

velocity control inputs, respectively. The LIDAR is located at s.

Under unicycle dynamics, direct application of Algorithm 1 results in limited control

authority because ω does not appear in the time derivative of the position of the robot. Thus,

Algorithm 1 is instead formulated for a particular output of the state such that satisfying

the collision-avoidance constraints for the output is sufficient to ensure collision-avoidance

for the state; this output is chosen to be a point p orthogonal to the wheel axis of the robot

as in Figure 4.1, which is given by the following expression: p = s + lR(θ)e1, where

1In the following sections, time dependence is suppressed for clarity.
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e1 = [1, 0]> and R(θ) is the counterclockwise rotation matrix given by

R(θ) =

cos θ − sin θ

sin θ cos θ

 ;

note that R(θ) = R>(−θ) and R(−θ) = R(φ− θ)R(−φ).

Underpinning this choice of output is a near-identity diffeomorphism (NID), as pre-

sented in [37], which provides the following invertible mapping

u=

v
ω

=

1 0

0 1/l


 cos(θ) sin(θ)

− sin(θ) cos(θ)

 ṗ=LR(−θ)ṗ.

Denote by r the radius of the robot. Now, observe that

‖p−mi‖ ≤ ‖s−mi‖+ l.

Then, picking d ≥ r + l, ensures that ‖s −mi‖ ≥ r, when ‖p −mi‖ ≥ d. Considering p

as the state variable, the barrier functions in (4.9) become

hki (p) = ‖p−mi‖2 − d2.

Accordingly, it must be that

2(p−mi)
>ṗ ≥ −γ(hki (p))

3,∀i ∈ Ikε (p) (4.13)

to satisfy Algorithm 1, where h(p) 7→ h(p)3 is the selected extended class-K function and
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γ > 0. Applying identity transformations to (4.13) yields the following equations:

2(p−mi)
>ṗ = 2(p−mi)

>R(θ)R(−θ)ṗ

= 2 (R(−θ)(s−mi) + le1)> L−1u;(
‖p−mi‖2 − d2

)3
=
(
‖R(−θ)(s−mi)+le1‖2−d2

)3
.

Thus, the constraint in (4.13) can be written in local coordinates, and yielding the QP

uk(p) = arg min
u∈R2

‖G(u− unom
k )‖2 (4.14)

s.t. 2 (R(−θ)(s−mi) + le1)> L−1u

≥−γ
(
‖R(−θ)(s−mi) + le1‖2− d2

)3
,∀i ∈ Ikε (p),

where G is a positive-definite weight matrix (in Section 4.4, G = L−1) and unom
k is the

nominal control input to the unicycle in local coordinates. The QP in (4.14) selects a

collision-free control input and can be solved onboard the robot without global information

because R(−θ)(s−mi) is in the coordinate frame of the robot. Also, note that R(−θ)(s−

mi) is not the static LIDAR reading at time τk. However, denoting the position and heading

of the robot at the time τk by sτk and θτk , R(−θ)(s−mi) can be written:

R(−θ)(s−mi) = R(−θ)(s− sτk + sτk −mi) (4.15)

= R(−θ)(s− sτk) +R(−θ)(sτk −mi)

= R(θτk− θ)︸ ︷︷ ︸
local change in θ

(
R(−θτk)(s− sτk)︸ ︷︷ ︸

local change in s

−R(−θτk)(mi−sτk)︸ ︷︷ ︸
LIDAR measurement

)
.

Thus, R(−θ)(s − mi) can be obtained using LIDAR measurements and local change in

state (e.g., from encoders).

In summary, Algorithm 2 shows the local formulation of the CHNBF controller-synthesis
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Algorithm 2 Local Collision-Free Controller Synthesis for LIDAR-Equipped Differential-
Drive Robots
Input: Local nominal unicycle control input: unom

k

Current LIDAR measurements: laser scans
Output: Collision-free unicycle control input: uk.

for i = 1 : Nk do
hki←‖− laser scansi + le1‖2− d2

∇hki←2(−laser scansi +le1)

hk ← mini{hki }
Ikε ← ∅
for i = 1 : Nk do

if |hki − hk| ≤ ε then
Ikε ∪ {i}

uk ← arg minu∈R2 ‖G(u− unom
k )‖2

s.t. (∇hki )>L−1u ≥ −γ(hki )
3, ∀i∈Ikε

Figure 4.2: (Left) The primary objective of the robot is to sequentially visit four points in
the obstacle field. (Right) Using the controller-synthesis framework in Algorithm 1 and
Section 4.3, the robot navigates without collision; the numbers above the robot indicate its
progress along the trajectory.

framework for LIDAR-equipped differential-drive robots2, providing onboard composable,

provably safe, and computationally straightforward collision avoidance. Because Algo-

rithm 2 is decoupled from the nominal controller, it can be easily integrated into a ROS

node, providing plug-and-play collision avoidance for arbitrary objectives.

2 For simplicity, Algorithm 2 directly uses the LIDAR measurements under the assumption that the local
changes in θ and s are negligible on the interval; the local state estimation in (4.15) can be used if this
assumption is invalid.
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4.3.2 Parameter Selection

The values of ε and γ are chosen experimentally using the following rationale. Increases

in ε result in a larger almost-active set, generating more constraints and increasing the

runtime of the QP; the increase in the runtime is tempered by the practical benefits to

collision avoidance from accounting for an increased number of nearby measured points.

The choice of γ is informed by its effect on γh(p)3 : if γ is small, then γh(p)3 becomes

small around h(p) = 0, preventing the robot from making progress toward the measured

points; for larger γ, the robot approaches measured points more freely.

4.4 Experimental Results

The theoretical results in Section 4.2 and the application of Algorithm 2 to differential-drive

robots in Section 4.3 are validated using a TurtleBot3, a LIDAR-equipped differential-drive

robot; all computations are performed onboard the embedded computer of the robot using

local information because the methods proposed in Section 4.2 and Section 4.3 are formu-

lated to achieve collision avoidance independent of the primary objective. To demonstrate

this point, a primary objective of sequentially visiting four points Z = {z1, z2, z3, z4} is

chosen, which is shown in Figure 4.2.

Here, the nominal controller representing this primary objective is a proportional con-

troller that switches when the robot is within a threshold of a point, where switches concur

with new measurements.

The local formulation of the CHNBF controller-synthesis method in Algorithm 2 was

implemented on the embedded computer of the TurtleBot3 as a ROS node in Python. The

update rate of the LIDAR is 200 ms; however, given the laser scanner measurements, Al-

gorithm 2 runs in approximately 10 ms, suggesting that the possible performance of Al-

gorithm 2 is approximately 100 Hz using the local estimation detailed in (4.15). In this

implementation of Algorithm 2, raw laser scanner measurements, admissible because of
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the controlled environmental conditions of the laboratory setting, were used. Notably, due

to the form of Algorithm 2, the navigation objective is independent of the ROS node, so

any primary objective (i.e., nominal controller) could be integrated without modification of

the ROS node.

In the experiment captured in Figure 4.2, the TurtleBot3 synthesizes a controller that

minimally modifies the nominal controller while satisfying the CHNBF constraints to avoid

collisions (ε = 0.2, γ = 100, G = L−1, and d = 0.2 m). The leftmost image of Figure 4.2

highlights the obvious collisions that would occur if the robot were to execute the nominal

controller without accounting for obstacles. In the rightmost image of Figure 4.2, the tra-

jectory of the robot is sampled, showing that by executing the synthesized controller, the

TurtleBot3 successfully navigates the obstacle field. To quantify this success, Figure 4.3

shows that mint(h(p(t), t)) ≥ 0 throughout the experiment, implying that the TurtleBot3

maintains a distance at least r from all measured obstacles.

4.5 Conclusion

This chapter presented a hybrid extension of nonsmooth barrier functions and provided

an associated controller-synthesis framework. These objects can encapsulate safety con-

straints for robotic systems and, due to their hybrid nature, represent dynamic changes.

To demonstrate the practical nature of the theoretical results, a LIDAR-equipped mobile

50 100 150 200 250 300 350

Iteration

0
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Minimum

6.36e-04

Figure 4.3: mint(h(p(t), t)) > 0 indicates that the robot maintains a distance greater than
r from all measured obstacles.
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robot utilized the controller-synthesis framework to generate a collision-free controller in

a navigation scenario.

4.6 Proofs of Theorems 4.1 and 4.2

This section contains the proofs of Theorems 4.1 and 4.2.

Proof of Theorem 4.1

Let x : [t0, t1]→ Rn be a Carathéodory solution to (4.3) and assume that

(x(τk), τk) ∈ C, ∀k ≤ Kt1 .

Let t′ ∈ [t0, t1]. It remains to be shown that (x(t′), t′) ∈ C. Since {τk}∞k=1 is a valid

switching sequence, there exists a unique interval such that t′ ∈ [τk, τk+1) for some k.

Consider the interval [τk, t
′]. If t′ = τk, then (x(t′), t′) ∈ C. Otherwise, t′ > τk. Since

h is a candidate HNBF, it is locally Lipschitz on the interval [τk, t
′]; thus, the function

[τk, t
′] 3 t 7→ h(x(t), t) is absolutely continuous. Moreover, since h is a candidate HNBF,

∂ch exists on (τk, t
′), and by assumption (4.7),

ḣ(x(t),t)≥min ∂ch(x(t), t)>(F (x(t), t)×1)

≥−αk(h(x(t), t))

almost everywhere on (τk, t
′) 3 t, which is almost everywhere on [τk, t

′]. Because h(x(τk), τk) ≥

0,

h(x(t), t) ≥ 0,∀t ∈ [τk, t
′],

by Lemma 2.1. Thus, (x(t′), t′) ∈ C.
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Proof of Theorem 4.2

The proof proceeds by showing h is a candidate HNBF, writing ∂ch in terms of each ∂chk,

showing that u is measurable and locally bounded, and writing K[f + gu] in terms of each

K[f + guk]. Then, the desired result follows from the application of Theorem 4.1. In each

of these five cases, notation for the switching sequence is reused.

To show that h is a candidate HNBF, consider the switching interval given by assump-

tion, and let k ∈ N. By assumption,

h(x′, t′) = hk(x′),∀t′ ∈ [τk, τk+1).

Consequently, h is also locally Lipschitz on Rn × [τk, τk+1), since t′ 7→ h(x′, t′) remains

constant on this interval. Thus, h is a candidate HNBF.

Now, consider ∂ch(x′, t′) on the set Rn × (τk, τk+1) 3 (x′, t′). Let Ωhk be the zero-

measure set in Rn where hk is nondifferentiable. Then, Ω = Ωhk × R≥t0 is zero-measure

in Rn × R≥t0 . By (4.6),

∂ch(x′, t′) =

co{lim
i→∞
∇h(xi,ti) : (xi,ti)→(x′, t′),(xi,ti) /∈Ωh,Ω}=coA.

Take z ∈ A. By definition of h, h(xi, ti) = hk(xi), so

z= lim
i→∞
∇h(xi, ti)= lim

i→∞
∇hk(xi)= lim

i→∞

[
∇xh

k(xi)
>, 0
]>

=
[

lim
i→∞
∇xh

k(xi)
>, 0
]
> ∈ ∂chk(x′)×0

This follows from (4.6), because ∂chk(x′) can be taken as

∂ch
k(x′) = co{ lim

i→∞
∇xh

k(xi) : xi → x′, xi /∈ Ωhk}.
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Thus, ∂ch(x′, t′) ⊂ ∂ch
k(x′) × 0, because ∂chk(x′) × 0 is convex and A ⊂ ∂ch

k(x′) × 0

implies that coA ⊂ ∂ch
k(x′)× 0.

Now, consider the proposed control input u. To be a valid input, it must be measurable

and locally bounded. To show that u is locally bounded, take (x′, t′) ∈ Rn × R≥t0 . There

exists a unique interval k such that t′ ∈ [τk, τk+1). Since each uk is locally bounded, there

exists a δ1 > 0 such that ‖uk(y)‖ ≤M , ∀y ∈ B(x′, δ1).

Because the switching sequence is strictly increasing, there exists a δ2 > 0 such that

[t′, t′ + δ2] ⊂ [τk, τk+1). Accordingly, for every y ∈ B(x′, δ1), s ∈ [t′, t′ + δ2] ‖u(y, s)‖ =

‖uk(y)‖ ≤M, showing that u is locally bounded.

It remains to be shown that u is measurable. Let O be an open set in Rn. Then, it must

be shown that u−1(O) = {(x′, t′) ∈ Rn × R≥t0 : u(x′, t′) ∈ O} is measurable. This set is

equivalent to
∞⋃
k=1

{(x′, t′) ∈ Rn × [τk, τk+1) : u(x′, t′) ∈ O}.

Examining any k ∈ N yields that

{(x′, t′) ∈ Rn × [τk, τk+1) : u(x′, t′) ∈ O}

= {x′ ∈ Rn : uk(x′) ∈ O} × [τk, τk+1)

= (uk)−1(O)× [τk, τk+1),

because uk(x′) = u(x′, t′) on Rn × [τk, τk+1). Thus, if x′ is such that uk(x′) ∈ O, then

u(x′, t′) ∈ O for every t′ ∈ [τk, τk+1). Each uk and every [τk, τk+1) is measurable, so the

set u−1(O), is measurable.

Since u is measurable and locally bounded, considerK[f+gu] on any interval [τk, τk+1).

By definition, there exists a zero-measure set N1
f such that for any other zero-measure set
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N1,

K[f + gu](x′, t′) =

co{ lim
i→∞

f(xi) + g(xi)u(xi, t
′) : xi → x′, xi /∈ N1

f , N
1},

for every x′ ∈ Rn, t′ ∈ [τk, τk+1). Now, consider K[f + guk]. By definition, there exists a

zero-measure set N2
f such that for any other zero-measure set N2

K[f + guk](x′) =

co{ lim
i→∞

f(xi) + g(xi)u
k(xi) : xi → x′, xi /∈ N2

f , N
2},

for any x′ ∈ Rn.

In each of these definitions, set N1 = N2
f and N2 = N1

f . Consequently, since

u(x′, t′) = uk(x′) for every x′ ∈ Rn, t′ ∈ [τk, τk+1),

K[f + gu](x′, t′) = K[f + guk](x′),

∀x′ ∈ Rn, t′ ∈ [τk, τk+1) .

It remains to be shown that h is a valid HNBF for (4.4) under the control input u. Take

any k ∈ N; by the above results, examining any x′ ∈ Rn, t′ ∈ (τk, τk+1) yields

min ∂ch(x′, t′)> (K[f + gu](x′, t′)×1)

= min ∂ch
k(x′)>K[f + guk](x′)

≥ −αk(hk(x′)) = −αk(h(x′, t′)),

so h is a valid HNBF for (4.4) by application of Theorem 4.1.
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CHAPTER 5

CONTROLLER SYNTHESIS FOR BOOLEAN SPECIFICATIONS

As noted in Chapter 1, robotic systems typically have a series of objectives and constraints

that must be satisfied. Prior chapters have utilized barrier functions to encode constraints

and utilized optimization programs to synthesize safe controllers with respect to some pre-

existing nominal controller. However, this approach does not allow manipulation of or

formal guarantees on the objectives. As such, this chapter uses barrier and Lyapunov func-

tions to encode constraints and objectives, respectively. Specifically, this chapter extends

the Boolean composition and controller-synthesis framework of Chapter 2 and Chapter 3 to

include Nonsmooth Lyapunov Functions (NLFs) and to apply to general Boolean expres-

sions.

As noted by previous chapters, barrier functions are not the only set-invariance method,

and many other such methods exist, such as in [30, 31, 32, 33], to name a few. These

approaches range from potential functions to PDE-based approaches to compute reachable

sets. The work in [30] formulates a modular obstacle-avoidance framework for general

dynamical systems, yet this framework is limited to this particular application of obstacle

avoidance. The work in [33] relies on the solution of PDEs to guarantee set invariance,

and in practice, these computations can be prohibitively costly. Finally, potential functions

(e.g., [32]) offer a well-used approach, yet they are typically formulated with respect to

a specific system or constraint (i.e., obstacle avoidance) and usually must be tuned for

different objectives. As such, the system’s objective and constraints may not be readily

interchanged.

In general, three facts separate barrier functions from other methods in the context of

this chapter (and prior chapters). The first is that barrier functions are provably correct, as

the constraint satisfaction is based on forward set invariance. Second, barrier functions are
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mathematically agnostic in that they may be formulated independently from a particular

system. Third, barrier functions are implicit. That is, point-wise satisfying a particular

inequality across the state space produces a global invariance result. This quality allows

barrier functions to be included in optimization programs for controller-synthesis purposes

without requiring a look-ahead (e.g., as in model-predictive control), significantly reducing

the computational burden.

From a complementary perspective, Lyapunov functions have long been used as a go-to

method for stability, and the prior work is ubiquitous in the literature. This chapter uses

set-stable NLFs to encode objectives, and the formulation is primarily based on [11, 15,

16, 9].

It is worth noting that prior work considers Boolean logic for real-valued functions [38,

39]. In fact, the authors of [38] formulate R-functions which admit a system of Boolean

logic, and the Boolean logic framework in Chapters 2,3 falls into this category. One no-

table difference is that the literature of R-functions, as in [38], mostly focuses on smooth

functions that capture conjunction and disjunction, rather than the nonsmooth max/min.

Such smooth analogs are possible; however, they come at the expense of becoming signifi-

cantly more difficult to differentiate. Because controller synthesis with respect to Boolean

expressions inevitably involves taking derivatives, this quality complicates the synthesis

process. Conversely, the approach of Chapters 2,3 becomes relatively straightforward from

a synthesis perspective, at the expense of requiring nonsmooth analysis.

However, the results of Chapter 2 do not apply to general Boolean expressions, and

Chapter 3 does not consider NLFs. This chapter resolves the issues posed by Chapters 2,3

by extending the formulated controller-synthesis framework to address inductive Boolean

compositions of NBFs and NLFs. In regard to theory, this chapter utilizes the work in [40],

which considers piece-wise-smooth (PCr) functions, to generalize the main theorem of

Chapter 3. This consideration results in two main contributions.

This chapter’s first main result elucidates the calculation of discontinuous but validat-
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ing controllers for NBFs and NLFs represented by PCr functions. These results involve

discontinuous dynamical systems and utilize nonsmooth analysis, as studied in [17, 14, 16,

15, 19]. Specifically, this result establishes a link between the PCr functions of [40] with

the generalized gradient of [14] to develop a new theory. To analyze PCr functions, one

typically analyzes a set of continuously differentiable function, and certain types of index

sets capture the behavior of the generalized gradient. By extending these index functions to

capture the locality of PCr functions, this chapter derives a general method for synthesiz-

ing discontinuous controllers for PCr functions that represent an NBF or a NLF. Moreover,

this chapter shows that Boolean expressions on NBFs or NLFs fall into the class of PCr

functions and provides some preliminary results on Boolean composition of NLFs.

The second contribution of this chapter formulates a controller-synthesis framework

that permits the combination NBFs and NLFs in an optimization program. The resulting

potentially discontinuous controller guarantees that the objective is accomplished and the

constraints are satisfied. This synthesis procedure relies on using an appropriate index set

for the Boolean expressions, and this chapter provides a system-independent algorithm to

calculate such index sets. To show the practicality of these results, a precision-agriculture-

based experiment showcases that the algorithm may be applied in real time. In the consid-

ered scenario, a swarm of robots must visit a series of crop patches in a simulated farming

environment while avoiding inter-robot collisions. Boolean NLFs and NBFs capture the

objectives and constraints for the experiment, and the aforementioned algorithm produces

an online controller that accomplishes this objective while preserving safety in the swarm.

The organization of this chapter follows. Section 5.1 notes background material re-

quired for this chapter including: the system of interest, NBFs, nonsmooth analysis, PCr

functions, and discontinuous dynamical systems. Section 5.2 begins the main contributions

for this chapter, providing results on a class of index functions for PCr functions and ex-

tending the results of [13]. Next, Section 5.3 formulates Boolean expressions of NBFs and

NLFs and shows that they fall into a specific class of PCr functions. Moreover, this sec-
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tion formulates an optimization-based controller-synthesis framework for NBFs and NLFs.

Combining the prior two sections, Section 5.4 demonstrates some recursive methods for

calculating appropriate index functions, applies these methods to Boolean expressions, and

provides a straightforward algorithm for recursively calculating these index functions. To

demonstrate the efficacy of the theoretical results, Section 5.5 showcases an experiment

that uses the controller-synthesis framework of Section 5.3 and algorithm in Section 5.4 to

produce a safe and effective controller in a precision-agriculture scenario.

5.1 Background Material

This section contains background material for this chapter, introducing the system of in-

terest and some results on piece-wise differentiable (PCr) functions. In particular, this

chapter considers control-affine systems with potentially discontinuous control inputs and

notes some results that unite PCr functions with the generalized gradient.

5.1.1 System of Interest

This chapter considers control-affine systems of the form

ẋ(t) = f(x(t)) + g(x(t))u(x(t)), x(0) = x0, (5.1)

where f : Rn → Rn, g : Rn → Rn×m are continuous and u : Rn → Rm is measurable

and locally bounded. Control-affine systems are amenable to controller synthesis via QPs,

as will be displayed in later sections. An important point is that this chapter avoids the as-

sumption that u is continuous, which becomes relevant for controller synthesis with respect

to NBFs. That is, the synthesized controller may contain discontinuities, which is allowed

for by the measurability and locally bounded assumptions.

Theoretically speaking, f and g may also be discontinuous, in the same sense as u;

however, as this chapter pertains to controller synthesis, it assumes continuity of f and
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g. Because u is potentially discontinuous, solutions to (5.1) may not exist. Fortunately,

Filippov’s operator (see Definition 19) maps (5.1) into a differential inclusion to which

solutions exist.

Remark 5.1. The map of limit points L : Rn → 2Rn defined such that

K[f + gu](x′) = coL[f + gu](x′)

becomes useful later in this chapter.

In particular, when considered as a differential inclusion, K[f + gu] : Rn → 2Rn

satisfies the sufficient conditions for existence of solutions to a differential inclusion. A

general differential inclusion is formulated as

ẋ(t) ∈ F (x(t)), x(0) = x0, (5.2)

where F : Rn → 2Rn is a nonempty, compact-, convex-valued map that is upper semi-

continuous (see Appendix B).

These conditions ensure that Carathéodory solutions to (5.2) exist. A Carathéodory

solution is an absolutely continuous function x : [0, t1]→ Rn such that

ẋ(t) ∈ F (x(t)), x(0) = x0,

almost everywhere on [0, t1] 3 t, and x(0) = x0. In general, Carathéodory solutions

to (5.2) exist, under these regularity conditions, but are not unique. See Appendix B for

more discussion of discontinuous dynamical systems. For this chapter, an important fact

is that Filippov’s operator K[f + gu] satisfies the aforementioned conditions. That is, the

differential inclusion

ẋ(t) ∈ K[f + gu](x(t)), x(0) = x0

69



has Carathéodory solutions. For extensive coverage of discontinuous dynamical systems,

see [17].

If h : Rn → R is a valid NBF, then Definition 2 ensures that h(x(t)) ≥ 0, ∀t ∈ [0, t1].

Thus, x0 ∈ C implies that x(t) ∈ C for all t ∈ [0, t1], for every Carathéodory solution,

meaning that C is forward invariant. In this case, satisfying the differential inequality

ḣ(x(t)) ≥ −α(h(x(t))), a.e. t ∈ [0, t1], (5.3)

for some locally Lipschitz extended class-K α : R → R and for every Carathéodory

solution, ensures that h is a valid NBF (see Theorem 2.1). Toward controller synthesis,

an algorithm must be able to implicitly verify (5.3) without explicitly calculating the time

derivative of h ◦ x for every Carathéodory solution, yet the usual chain rule does not apply

because h is nonsmooth.

The main advantage of the generalized gradient is that it permits analysis of nonsmooth

functions along Carathéodory solutions. In particular, given a locally Lipschitz function

h : Rn → R and a Carathédory solution x : [0, t1] → Rn to (5.2), the set-valued inner

product satisfies the inequality

ḣ(x(t)) ≥ min ∂ch(x(t))>F (x(t)) (5.4)

almost everywhere on [0, t1] 3 t. The strength of (5.4) is that this inequality may be used

for controller-synthesis purposes, allowing the validity of the NBF to be verified spatially

(i.e., over Rn), rather than computing the time derivative explicitly.

A CNBF, as in Definition 3, automatically satisfies the requirements for a valid NBF

via Theorem 2.1, but some difficulty arises in actually finding such a controller, as Filip-

pov’s operator must be applied to it. This situation creates issues for controller synthesis,

because Filippov’s operator, as in Definition 19, cannot feasibly be calculated in real time.
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Moreover, for a controlled system,

min ∂ch(x′)>(f(x′) + g(x′)u) ≥ −α(h(x′))

does not imply that

min ∂ch(x′)>K[f + gu](x′) ≥ −α(h(x′)),

so the generalized gradient cannot be directly used for controller synthesis.

The work in Chapter 3 shows that, for certain well-behaved Boolean CNBFs, controller

synthesis is possible by using an extended version of the generalized gradient called the

almost-active gradient. Specifically, the composition of functions, such as max or min,

with a series of well-behaved component functions bore a significant role in the develop-

ments of the controller-synthesis framework in Chapter 3, and Chapter 3 shows that, for

a particular class of Boolean CNBFs, controller synthesis was possible by including the

almost-active gradient as a constraint. However, this object was limited, as it only applied

to Boolean CNBFs consisting of exclusively ∧ or ∨ operations. As such, this chapter gen-

eralizes this object to provide a controller-synthesis framework with respect to all Boolean

CNBFs of interest. Fortunately, Boolean CNBFs with continuously differential component

functions fall into a class of piece-wise differentiable functions. In particular, the work in

[40] studies such functions and provides a number of helpful results.

5.1.2 Piece-wise-Differentiable Functions

As noted in Section 5.1.1, this chapter extends the results in Chapter 3 by formulating

Boolean NBFs as piece-wise differentiable (PCr) functions as in [40], and one of the main

results of this paper, in Section 5.2, utilizes this theory to formulate controller synthesis for

general Boolean expressions. Accordingly, PCr functions represent an important class of

nonsmooth functions, and this section discusses relevant background material. Formally,
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a PCr function is defined as follows, where the terminology has been modified to fit this

paper.

Definition 11 ([40, p. 91]). A function h : Rn → R is PCr if for every x′ ∈ Rn there exists

an open neighborhood N of x′ and a finite set of Cr functions {hi : i ∈ Kh}, with Kh a

finite-cardinality set, such that h is a continuous selection of the hi on this neighborhood.

That is, h is a continuous function and h(y) ∈ {hi(y) : i ∈ Kh}, ∀y ∈ N .

Note that, in Definition 11, the finite set of component functions may vary based on the

particular point in the domain, but this chapter exclusively considers PCr functions whose

component functions are defined over the entire domain. That is,

h(·) ∈ {hi(·) : i ∈ Kh},

everywhere on Rn, for some finite set of functions denoted by Kh. In the context of this

paper, this assumption is not restrictive and does not inhibit the generality of the proposed

results for controller synthesis. Throughout this chapter, we make the assumption that

r > 0 (i.e., that all the component functions are at least C1. Another important class of

PCr functions is piece-wise linear (PL) functions, which satisfy the following definition.

Definition 12. A function h : Rn → R is Piece-Wise Linear (PL) if for every x′ ∈ Rn there

exists an open neighborhood N of x′ and a finite set of linear functions {a>i x′ : i ∈ Kh},

ai ∈ Rn, such that h is a continuous selection of the ai on N . That is, h is a continuous

function and h(y) ∈ {a>i y : i ∈ Kh}, ∀y ∈ N .

Now, it remains to relate PCr functions to the generalized gradient. In this case, the

active index set, Iah : Rn → 2Kh , for a PCr function h : Rn → R defined as

Iah(x′) = {i ∈ Kh : hi(x
′) = h(x′)}, (5.5)

plays a role, much as in Proposition C.1. However, it may be that the active set captures
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irrelevant functions. As such, the essentially active set, Ieh : Rn → 2Kh , defined by

Ieh(x
′) = {i ∈ Kh : x′ ∈ cl(int({y : hi(y) = h(y)}))} (5.6)

can be alternatively used. The essentially active index function, Ieh, contains only functions

that lie in the closure of the interior of the active set, ignoring lower-dimensional sets. In-

formally, a function must be active on a sequence that converges in the interior of the active

set to be in Ieh. In general, Ieh(·) ⊂ Iah(·) always. However, Ieh may be more difficult to cal-

culate, whereas Iah(·) remains straightforward to calculate in general, under the assumption

that the component functions are known.

Tying these theories together, the following proposition relates the essentially active

set Ieh to the generalized gradient. Note that the terminology of the proposition has been

modified to fit this chapter.

Proposition 5.1 ([40, Proposition 4.3.1]). If U is an open subset of Rn and h : U ⊂ Rn →

R is a PC1-function with C1 selection functions hi : N → R, i ∈ Kh, at x′ ∈ N ⊂ U ,

where N is a neighborhood of x′, then

∂ch(x′) = co{∇hi(x′) : i ∈ Ieh(x′)}.

Proposition 5.1 unites the theory from PCr functions and the generalized gradient, and

this relationship is critical for the forthcoming results.

5.2 Extending the Almost-Active Set

This section begins the main results of this chapter, which relate to extending the work in

Chapter 3. Specifically, the almost-active gradient, described in Chapter 3, is extended

to PCr functions through particular index sets. In turn, this development extends the

controller-synthesis framework for Boolean CNBFs to general Boolean expressions.
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5.2.1 Index Functions

As seen in Proposition 5.1, index functions unite PCr functions with the generalized gradi-

ent. This section presents a class of index functions that generalize the results of Chapter 3

and are eventually useful for validating NBFs and NLFs in the presence of discontinuities

in the control input. The following definition describes the index functions that capture the

generalized gradient.

Definition 13. Let h : Rn → R be a PCr function, and let Ih : Rn → 2Kh be an index

function for h. Then, Ih is an encapsulating index function for h if and only if

∂ch(x′) ⊂ co{∇hi(x′) : i ∈ Ih(x′)}

and

hi(x
′) = h(x′),∀i ∈ Ih(x′), ∀x′ ∈ Rn.

Remark 5.2. For a given function, encapsulating index functions always exist via Propo-

sition 5.1. Moreover, from the perspective of Proposition 5.1, the assumption that hi(·) =

h(·) is nonrestrictive, because the other indices are superfluous.

As these encapsulating index functions always exist, the goal becomes to find index

functions that are relatively easy to calculate and that satisfy these definitions. in In fact,

special care is taken in later sections to ensure that these index functions are readily calcu-

lated. Because this chapter studies these index functions extensively, the following notation

{∇hi(·) : i ∈ I(·)} = {∇hi}
i∈I

(·)

becomes useful for brevity in later results.

Recall the problem discussed in Section 5.1.1 in relation to synthesizing controllers via

the generalized gradient. In this case, encapsulating index functions, as in Definition 13,
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still encounter this fundamental limitation. As such, it becomes necessary to further ex-

tend this object. Resolving this limitation, this section shows that capturing the locality

of encapsulating index functions creates an object that is sufficient for controller-synthesis

purposes. Toward this end, the following definition indicates these locality-capturing index

functions.

Definition 14. Let h : Rn → R be a PCr function, and let Iδh : Rn → 2Kh be an index

function for h. Then, Iδh is a δ-encapsulating index function for h if and only if there exists

an encapsulating index function for h such that for every x′ ∈ Rn there exists a δ′ > 0 with

Ih(x
′) ⊂ Iδh(y),∀y ∈ B(x′, δ′).

In particular, a δ-encapsulating index function, as in Definition 14, maintains the in-

dices of an encapsulating index function in a neighborhood of each point. Later, this sec-

tion shows that this regularity is enough to circumvent troublesome values introduced by

Filippov’s operator.

An important point is that PCr functions always possess an encapsulating index func-

tion via (5.6). Moreover, they also admit an associated δ-encapsulating index function.

As with encapsulating index functions, the primary consideration for picking a specific

δ-encapsulating index function depends on use-specific circumstances (e.g., Ie versus Ia).

Proposition 5.2. If h : Rn → R is a PCr function, then there exists a δ-encapsulating

index function Iδh : Rn → 2Kh for h.

Proof. Consider the index function Iδh : Rn → 2Kh defined by

Iδh(x′) = {i ∈ Kh : |hi(x′)− h(x′)| ≤ ε}, ∀x′ ∈ Rn,

for some fixed ε > 0 independent of x′. Let Ieh : Rn → 2Kh be the essentially active index

function for h as in (5.6).
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Now, take x′ ∈ Rn and assume that i ∈ Ie(x′). Since i ∈ Ieh(x
′), hi(x′) = h(x′).

Moreover, by continuity of hi and h, there exists a δ1 and δ2 such that

‖y − x′‖ ≤ δ1 =⇒ |hi(y)− hi(x′)| ≤ ε/2,∀y ∈ B(x′, δ1)

and

‖y − x′‖ ≤ δ2 =⇒ |h(y)− h(x′)| ≤ ε/2,∀y ∈ B(x′, δ2).

Let δ = min{δ1, δ2}. It remains to be shown that i ∈ Iδh(y) for all y ∈ B(x′, δ). Let

y ∈ B(x′, δ). Then,

|hi(y)− h(y)| = |hi(y)− hi(x′) + h(x′)− h(y)|

≤ |hi(y)− hi(x′)|+ |h(x′)− h(y)|

≤ ε,

implying that i ∈ Iδh(y). Thus, Iδh is a δ-encapsulating index function for h via Ieh.

Remark 5.3. By the proof of this proposition, Iδh is also a δ-encapsulating index function

for h with respect to the active index function Iah as in (5.5).

5.2.2 Extending Prior Results

Now, the task remains to extend the results of [13] by using δ-encapsulating index func-

tions. However, as this chapter also focuses on composition of objectives, the subsequent

results are presented in enough generality to apply to the (forthcoming) results on NLFs as

well. This next theorem represents the first main result of this chapter, demonstrating that

δ-encapsulating index functions, as in Definition 14, are indeed the correct type of index

function to navigate the issues caused by applying Filippov’s operator.

Theorem 5.1. Let h : Rn → R be a PCr function; let f : Rn → Rn be a measurable and

locally bounded function. If there exists a δ-encapsulating index function Iδh : Rn → 2Kh
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for h and a continuous function α : R→ R such that

min {∇hi}
i∈Iδh

(x′)>f(x′) ≥ −α(h(x′)),∀x′ ∈ Rn,

then

min ∂ch(x′)>K[f ](x′) ≥ −α(h(x′)),∀x′ ∈ Rn.

Proof. Let x′ ∈ Rn. Proceeding onward be means of Theorem 2.1, it remains to be shown

that

min ∂ch(x′)>K[f ](x′) ≥ −α(h(x′)),

and by application of Lemma 2.2, it suffices to show that

{∇hi(x′)}
Ih(x′)

>
L[f ](x′) ≥ −α(h(x′)),

for any encapsulating index function Ih. As such, take l ∈ L[f ](x′). Then, there exists

xj → x′ such that l = limj→∞ f(xj).

Since Iδh is a δ-encapsulating index function for h, there exists an encapsulating index

function Ih : Rn → 2Kh for h such that, for x′ ∈ Rn,

Ih(x
′) ⊂ Iδh(y),∀y ∈ B(x′, δ),

for some δ > 0. Moreover, there exists an N such that for all j ≥ N , ‖xj − x′‖ ≤ δ. Thus,

reusing notation and without loss of generality, consider only xj such that j ≥ N .

Now, take i ∈ Ih(x′). It remains to be shown that

∇hi(x′)>l ≥ −α(h(x′)).
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Accordingly,

∇hi(x′)>l − α(h(x′))

= ∇hi(x′)> lim
j→∞

f(xj)− α(h(x′))

= lim
j→∞
∇hi(xj)> lim

j→∞
f(xj)− lim

j→∞
α(h(xj))

= lim
j→∞
∇hi(xj)>f(xj)− lim

j→∞
α(h(xj))

= lim
j→∞

[
∇hi(xj)>f(xj)− α(h(xj))

]

Moreover, ‖xj − x′‖ ≤ δ, ∀j, meaning that i ∈ Iδh(xj), ∀j. Thus,

∇hi(xj)>f(xj)− α(h(xj)) ≥ 0, ∀j,

so

lim
j→∞

[
∇hi(xj)>f(xj)− α(h(xj))

]
≥ 0

as well, implying that

∂ch(x′)K[f ](x′) ≥ −α(h(x′))

and yielding the desired result.

Theorem 5.1 becomes particularly useful in the context of controller synthesis. Specif-

ically, in a similar vein to the work of [13], including a δ-encapsulating index function as

a constraint in an optimization program yields a validating but potentially discontinuous

controller. Note that the proof of Proposition 5.3 is omitted, as it follows directly from

Theorem 5.1.

Proposition 5.3. Let h : Rn → R be a candidate NBF, and let f , g be as in (5.1). If

there exists a δ-encapsulating index function Iδh : Rn → 2Kh for h; a locally Lipschitz
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extended class-K function α : R → R; and a measurable and locally bounded function

u : Rm → Rn such that

min {∇hi}
i∈Iδh

(x′)>(f(x′) + g(x′)u(x′)) ≥ −α(h(x′)),∀x′ ∈ Rn,

then h is a valid CNBF for (5.1).

5.3 Boolean Composition for Lyapunov and Barrier Functions

Having formulated the main result for δ-encapsulating index functions in the prior section,

this section formulates the Boolean composition syntax and the class of Boolean expres-

sions that this chapter considers. The first results pertain to formulating Nonsmooth Lya-

punov Functions (NLFs) in the context of this chapter and some conditions under which

they may be composed with Boolean operators. Then, the syntax and semantics of Boolean

composition for NLFs and NBFs are discussed.

5.3.1 Control Nonsmooth Lyapunov Functions

NLFs have been studied in great detail, including in [15, 16, 11]. However, they have

not been previously extended to the particular case of Boolean composition. There are

many different formulations for Lyapunov functions; in this case, we use the following

formulation, a combination of the definitions in [11, 15, 9], as it is amenable to Boolean

composition, which two later results demonstrate.

Definition 15. A locally Lipschitz function V : Rn → R is a candidate Nonsmooth Lya-

punov Function (NLF) if and only if V satisfies V (x′) > 0,∀x′ /∈ A, where

A = {x′ ∈ Rn : V (x′) = 0};

79



A is nonempty; and

{x′ ∈ Rn : V (x′) ≤ a}

is a bounded set for every a ∈ R≥0.

Remark 5.4. For a candidate NLF V , as above, we always use A to denote the zero level

set. Moreover, note that A is compact, because it is assumed to be bounded and is closed

via continuity of V .

Definition 16. A candidate NLF V : Rn → R is a valid Control Nonsmooth Lyapunov

Function (CNLF) for (5.1) if and only if there exists a continuous, positive-definite function

p : R≥0 → R≥0, and a measurable and locally bounded function u : Rn → Rm such that

max ∂cV (x′)>K[f + gu](x′) ≤ −p(V (x′)), ∀x′ ∈ Rn.

As shown by Definition 15 and Definition 16, this chapter focuses on set stability for

NLFs (as in [9]), and the reasoning for this consideration follows. Boolean composition of

NLFs entails intersections and unions of the zero level set. As such, restricting NLFs to

a point eliminates the generality of Boolean composition, because union and intersection

would only be able to generate NLFs for a point. this chapter omits the proof of Theo-

rem 5.2 for brevity, as it is similar to many prior proofs of similar results; however, we do

provide a discussion of the required tools.

Theorem 5.2. Let V : Rn → R≥0 be a candidate NLF. If V is a valid CNLF for (5.1), then

the set A is uniformly globally asymptotically stable with respect to (5.1).

Remark 5.5. In the case that the boundedness of level sets in Definition 15 does not hold,

then this definition may be modified to require an open set D ⊂ Rn containing A where the

above inequality holds. In this case, a local stability result follows.

Definition 15 and Definition 16 ensure uniform global asymptotic stability to the set A
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in the sense that

‖x(t)‖A ≤ β(‖x0‖A, t), (5.7)

for every Carathéodory solution x : [0, t1]→ Rn, where

‖x′‖A = inf
a∈A
‖x′ − a‖

is the usual point-to-set distance and β : R≥0 × R≥0 → R≥0 is a class-KL function.

This result of asymptotic stability follows from [11, 15, 10, 9], and this chapter does

not reprove these stability results. However, we note that they mainly follow from [15,

Theorem 2.2] and [11, Lemma 2.5]. In particular, one may use [11, Lemma 2.5] or [10,

Lemma 4.3] to obtain class-K∞ functions α1, α2 : R≥0 → R such that

α1(‖x‖A) ≤ V (x) ≤ α2(‖x‖A). (5.8)

From Definition 16, every Carathéodory solution to K[f ](·) satisfies

V (x(t)) ≤ β(V (x0), t),

where β : R≥0×R≥0 → R≥0 is a class-KL function [9, Lemma 4.2]. Then, applying (5.8)

yields (5.7).

Now this chapter provides two results on Boolean composability for NLFs, where the

proof for the second result is omitted for brevity. Note that, for NLFs, max represents an

∧ operation whereas min represents an ∨ operation. Due to the requirements that the zero

level set of V is bounded and V is positive, negation is not currently defined within this

framework; and this chapter leaves this particular result to future efforts.

Proposition 5.4. If V1 and V2 are candidate NLFs, as in Definition 15, and A1 ∩ A2 6= ∅,
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then V : Rn → R≥0 defined as

V (x′) = max{V1(x′), V2(x′)}, ∀x′ ∈ Rn,

is a candidate NLF.

Proof. To show positive definiteness of V , consider x′ ∈ Rn. If x′ ∈ A, then x′ ∈ A1 and

x′ ∈ A2; thus,

V (x′) = max{V1(x′), V2(x′)} = 0.

Conversely, if x′ /∈ A, then x′ /∈ A1 or x′ /∈ A2. In either case, V1(x′) > 0 or V2(x′) > 0,

respectively. Thus, V (x′) > 0 as well. Note that A is nonempty by assumption.

To show boundedness of level sets, let a ∈ R≥0 and consider

L = {x′ ∈ Rn : V (x′) ≤ a}.

Since V is a maximum, V (x′) ≤ a if and only if both V1(x′) ≤ a and V2(x′) ≤ a. As such,

L = {x′ ∈ Rn : V1(x′) ≤ a} ∩ {x′ ∈ Rn : V2(x′) ≤ a}.

Since V1 and V2 are candidate NLFs, L is the intersection of bounded sets, making it

bounded as well.

Proposition 5.5. If V1 and V2 are candidate NLFs, then V : Rn → R≥0 defined as

V (·) = min{V1(·), V2(·)}

is a candidate NLF.

In a similar fashion to Proposition 5.3, Proposition 5.6 utilizes Theorem 5.1 to address

controller synthesis for NLFs via δ-encapsulating index functions.
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Proposition 5.6. Let V : Rn → R be a candidate NLF, and let f , g be as in (5.1). If

there exists a δ-encapsulating index function IδV : Rn → 2KV for V ; a positive-definite,

continuous function p : R≥0 → R≥0; and a measurable and locally bounded function

u : Rm → Rn such that

max {∇Vi}
i∈IδV

(x′)>(f(x′) + g(x′)u(x′)) ≤ −p(V (x′)),∀x′ ∈ Rn,

then V is a valid CNLF for (5.1).

5.3.2 Composition Syntax

This section details the Boolean expressions considered by the work. In particular, the

given expressions are comprised of min, max, and − operators. Formally, a Boolean ex-

pression on a finite number of Cr component NBFs is defined as

h = B[h1, . . . , hk]. (5.9)

For a composition of Cr candidate Lyapunov functions, the notation for a Boolean NLF

becomes

V = B[V1, . . . , Vk]. (5.10)

This chapter considers Boolean NBFs inductively defined with the following syntax.

B := hi | ¬B1 | B1 ∧B2 | B1 ∨B2, (5.11)
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where the logical operators are defined as

¬B1 = −B1

B1 ∧B2 = min{B1, B2}

B1 ∨B2 = max{B1, b2}.

The syntax for NLFs is given as follows.

B := Vi | B1 ∧B2 | B1 ∨B2,

where the logical operators are defined as

B1 ∧B2 = max{B1, B2}

B1 ∨B2 = min{B1, B2}.

For NLFs, note that the above syntax omits the negation operator ¬ and that the roles of

min and max are swapped (with respect to NBFs). For this chapter, we omit this operator

due to the requirements of Definition 15.

For NLFs or NBFs, the component functions disambiguate the Boolean expression. For

a Boolean composition B of NLFs or NBFs, the atomic component functions are denoted

Vi or hi, respectively. The notation Bi refers to the inductive component expressions, as in

(5.11). The following example demonstrates this property.

Example 5.1. An example of a Boolean NBF is as follows. Let h : Rn → R be point-wise

defined as

h(x′) = max{min{h1(x′), h2(x′)}, h3(x′)},

where each hi : Rn → R, i ∈ [3], is locally Lipschitz. Then, h is a Boolean NBF. The above
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expression is equivalent to

h = (h1 ∧ h2) ∨ h3.

Set B1 = h1, B2 = h2, B3 = h3. Now, define B4 = B1 ∧B2, which follows (5.11). Finally,

set

h = B4 ∨B3.

In this example, the component function for h are h1, h2, and h3. For h, the component

expressions are B4 and B3. For B4 the component functions are h1 and h2; the component

expressions are B1 and B2

As expected, the following result shows that Boolean expressions are indeed PCr. Note

that the result may be applied to Boolean NBFs or NLFs, and the subsequent proposition

demonstrates a controller-synthesis method utilizing δ-encapsulating index functions. The

proof of Proposition 5.8 follows directly from application of Propositions 5.3,5.6 and is

omitted for brevity.

Proposition 5.7. If B[f1, . . . , fk] : Rn → R is a Boolean expression with Cr component

functions fi : Rn → R, i ∈ [k], then B[f1, . . . , fk] is a PCr function.

Proof. Since B[f1, . . . , fk] is a Boolean expression, it is an inductive composition of the fi

using min, max or − operators. As such, B[f1, . . . , fk] is continuous, and at any x′ ∈ Rn,

B[f1, . . . , fk](x
′) = fi(x

′) or B[f1, . . . , fk](x
′) = −fi(x′), for some i ∈ [k]. As such,

B[f1, . . . , fk](x
′)

∈ {−fi(x′) : i ∈ [k]} ∪ {fi(x′) : i ∈ [k]},∀x′ ∈ Rn.

Because each fi and −fi is Cr, B[f1, . . . , fk] is a continuous selection of Cr component

functions, making it PCr.

Proposition 5.8. Let h : Rn → R be a locally Lipschitz Boolean NBF and V : Rn → R≥0

be a candidate Boolean NLF. Let Iδh : Rn → 2Kh be a δ-encapsulating index function for
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h, and let IδV : Rn → 2KV be a δ-encapsulating index function for V . Let α : R → R

be a locally Lipschitz extended class-K functions and p : R≥0 → R≥0 be a continuous,

positive-definite function. If u∗ : Rn → Rm defined as

u∗(x′) ∈ arg min
u∈Rm

u>A(x′)u+ u>b(x′)

s.t. min {∇hi}
i∈Iδh

(x′)>(f(x′) + g(x′)u) ≥ −α(h(x′))

max {∇Vi}
i∈IδV

(x′)>(f(x′) + g(x′)u) ≤ −p(V (x′))

with A : Rn → Rm×m continuous, point-wise positive-definite, symmetric and b : Rn →

Rm continuous, exists for every x′ ∈ Rn and is measurable and locally bounded, then h is

a valid CNBF and V is a valid CNLF.

In Proposition 5.8, the optimization program is a Quadratic Program (QP) due to the

control-affine system. As such, assuming standard solvers, the runtime for solving such

a program at a point is typically on the order of O((|Iδh(·)| + |IδV (·)| + m)3) (i.e., cubic

complexity in the number of constraints and decision variables). As such, it can typically

solved in real time, even on computationally limited devices.

Since Boolean NLFs or NBFs fall into the class of PCr functions, controller-synthesis

algorithms for Boolean expressions focus on finding an appropriate δ-encapsulating index

function. However, many such index functions exist for any given PCr function, and not

all such functions are, practically speaking, conducive to synthesis.

For example, given a Boolean NBF, h, Proposition 5.7 shows that h is PCr with com-

ponent functions hi and −hi with i ∈ [k] for some finite k. As such,

h(x′) ∈ {−hi(x′) : i ∈ [k]} ∪ {hi(x′) : i ∈ [k]}.

We temporarily use −i to refer to −hi. Accordingly, by Proposition 5.2, a suitable δ-
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encapsulating index function for Ieh is

Iδh(·) ={i ∈ [k] : |hi(·)− h(·)| ≤ ε}

∪ {−i ∈ [k] : | − hi(·)− h(·)| ≤ ε}.

However, Iδh(·) may capture too many component functions.

Consider the following example. Let h = (h1 ∧ h2) ∨ h3, where for a particular

x′, h1(x′) is within ε of h3 but h2(x′) is much smaller than h3. Then, (h1 ∧ h2)(x′) =

min{h1(x′), h2(x′)} is also much smaller than h3. Thus, intuitively, only 3 should be in-

cluded in Iδh(x′). However, using the previously noted Iδh, both 1 and 3 would be included

in Iδh(x′). As such, choosing Iδh in this manner may be too conservative. Accordingly,

recursive methods to calculate an appropriate δ-encapsulating index function for h are the

focus of Section 5.4.

5.4 Computing δ-Encapsulating Index Functions

Given the results in Sections 5.2-5.3, the goal becomes to calculate efficient and manage-

able δ-encapsulating index functions. As such, this section presents a method for recur-

sively calculating a δ-encapsulating index function for an arbitrary composition of PCr

functions. Then, the method is specialized to the case of a Boolean NBF or NLF. To pro-

vide these results, composition of PCr functions must first be considered.

5.4.1 Recursively Calculating δ-Encapsulating Index Functions

If g : Rn → Rm and f : Rm → R are PCr functions and h = f ◦ g, then h is also a PCr

function. This result follows from the fact that h is a continuous selection of the functions

hi = fj ◦ gk, where i ∈ Kf × Kg. In this case, the component functions of h may be

denoted by i or, equivalently, by the tuple (j, k) corresponding to fj ◦ gk. Moreover, the

gradients of each hi at x′ ∈ Rn are given by∇gk(x′)∇fj(gk(x′)).

87



One additional notational issue remains. In the case of Proposition 5.1, the PCr func-

tion in question maps from Rn to R; and, here, g : Rn → Rm. As such, g is considered to

be a continuous selection of PCr functions gjij : Rn → R such that

g(x′) ∈ {
[
g1
i1

(x′) . . . gmim(x′)

]>
: ij ∈ Kgj ,∀j ∈ [m]}.

For a given gjij , the subscript ij represents a particular choice of a function for that

component, and the superscript j represents the component of the vector-valued function

g. The distinction is necessary because each component j could have a different set of

selection functions. From this perspective, a particular vector-valued component function

gi : Rn → Rm may be viewed as i ∈ Kg1 × . . . × Kgm = Kg. As such, gjij refers to a

selection of the jth component function gj whereas gi refers to a selection of a vector-valued

component function for g.

Since h is a PCr function, it always has an encapsulating index function; however, in

the case that the component functions are known, it may be more desirable to compute this

index function for h in terms of f and g. The next proof of the next lemma is omitted

for brevity, and the following theorem provides one of the main results for this paper,

demonstrating a recursive method for calculating encapsulating index functions.

Lemma 5.1. Let Ai ⊂ Rn, i ∈ [m], and B ⊂ Rm, then

co

(
m×
i=1

coAi

)
(coB) = co

(
m×
i=1

Ai

)
B

Theorem 5.3. Let g : Rn → Rm, f : Rm → R be PCr functions, with g = [g1, . . . , gm]
>,

and let h : Rn → R be defined as h = f ◦ g. If If : Rm → 2Kf , Igk : Rn → 2Kgk are

encapsulating index functions for f and each gk, k ∈ [m], then Ih : Rn → 2Kf×Kg defined

as

Ih(x
′) = If (g(x′))×

m×
k=1

Igk(x
′),∀x′ ∈ Rn,
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is an encapsulating index function for h.

Proof. Let If , Igk , k ∈ [m], be encapsulating index functions for f and each gk, k ∈ [m];

and let Ih : Rn → 2Kf×Kg be defined as the point-wise Cartesian product

Ih(·) = If (g(·))×
m×
k=1

Igk(·).

The above index function Ih is an acceptable index function for h, since

h(·) ∈ {fi(gj(·)) : i ∈ Kf , j ∈ Kg},

where by prior discussion, Kg =×m

k=1
Kgk .

It remains to be shown that Ih is an encapsulating index function for h. Let x′ ∈ Rn.

Then,

∂ch(x′) ⊂ co

(
m×
k=1

∂cg
k(x′)

)
∂cf(g(x′))

⊂ co

 m×
k=1

co
{
∇gkjk

}
jk∈Igk

(x′)

(co {∇fi}
i∈If

(g(x′))

)

= co

co
m×
k=1

{
∇gkjk

}
jk∈Igk

(x′)

(co {∇fi}
i∈If

(g(x′))

)

= co

 m×
k=1

{
∇gkjk

}
jk∈Igk

(x′)

 {∇fi}
i∈If

(g(x′))

= co{

(
m×
k=1

∇gkjk(x
′)

)
∇fi(g(x′)) : i ∈ If (g(x′)), jk ∈ Igk(x′)}

= co{∇gj(x′)∇fi(gj(x′)) : (i, j) ∈ If (g(x′))×
m×
k=1

Igk(x
′)},

since, for every j ∈×m

k=1
Igk(x

′), gj(x′) = g(x′) by Definition 13. Thus, Ih is an encapsu-

lating index function for h.

To separate the index sets in Theorem 5.3, the fact that g(·) = gj(·) must be utilized.
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When formulating such a theorem for δ-encapsulating index functions, special assumptions

must be made to ensure that this decomposition is possible: namely, that the outermost

function in the composition is PL. The next theorem provides the main result in this

chapter for calculating δ-encapsulating index functions.

Theorem 5.4. Let f : Rm → R be a PL function, g : Rn → Rm be a PCr function, with

g = [g1, . . . , gm]>. If Iδf : Rm → 2Kf , Iδ
gk

: Rn → 2Kg , k ∈ [m], are δ-encapsulating index

functions for f and each gk, k ∈ [m], then there exists a δ-encapsulating index function

Iδh : Rn → 2Kf×Kg for h such that, for all x′ ∈ Rn,

{∇hi}
i∈Iδh

(x′) =

 m×
k=1

{
∇gkjk

}
jk∈Iδ

gk

(x′)

 {ai}
i∈Iδf

(g(x′)).

Proof. Let x′ ∈ Rn. Because Iδf is a δ-encapsulating index function for f , there exists an

encapsulating index function If : Rm → 2Kf for f such that at g(x′) there exists δ1 > 0

satisfying

If (g(x′)) ⊂ Iδf (y),∀y ∈ B(g(x′), δ1).

By continuity of g, let δ2 be such that

y ∈ B(x′, δ2) =⇒ ‖g(y)− g(x′)‖ ≤ δ1.

Similarly, let δk3 be such that

Igk(x
′) ⊂ Iδgk(y),∀y ∈ B(x′, δk3),

for each k ∈ [m]. Then, define δ3 = mink∈[m] δ
k
3 , and set

δ = min{δ1, δ2, δ3}.
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By Theorem 5.3, Ih : Rn → 2Kf×Kg defined as

Ih(·) = If (g(·))× Ig(·)

is an encapsulating index function for h, where Kg =×m

k=1
Kgk and Ig(·) =×m

k=1
Igk(·),

and by the particular selection of δ, for every y ∈ B(x′, δ),

If (g(x′)) ⊂ Iδf (g(y)), Igk(x
′) ⊂ Iδgk(y),∀k ∈ [m].

As such,

Ih(x
′) = If (g(x′))× Ig(x′)

⊂ Iδf (g(y))× Iδg (y),∀y ∈ B(x′, δ),

so Iδf ◦ g × Iδg is a δ-encapsulating index function for Ih. Moreover,

{∇gj(x′)∇fi(gj(x′))) : (i, j) ∈ Iδf (g(x′))× Iδg (x′)}

= {∇gj(x′)ai : (i, j) ∈ Iδf (g(x′))× Iδg (x′)}

= {∇gj}
j∈Iδg

(x′){ai}
i∈Iδf

(g(x′))

=

 m×
k=1

{
∇gkjk

}
jk∈Iδ

gk

(x′)

 {ai}
i∈Iδf

(g(x′)),

showing the desired relation.

5.4.2 δ-Encapsulating Index Functions for Boolean Expressions

To apply Theorem 5.4 to Boolean composition, this section addresses the particular case

of min and max operations. In fact, the next proposition shows that calculating a δ-

encapsulating index set for a Boolean expression admits a convenient format. The sub-
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sequent proposition provides an result in the case of negation, and for brevity, the proof is

omitted, as it follows directly from Proposition C.2.

Proposition 5.9. Let g : Rn → Rm be a PCr function, with each component gi : Rn → R,

i ∈ [m], and let f : Rm → R be a PL function with component functions ei, i ∈ [m], where

each ei is the ith standard basis vector. Let h : Rn → R be a PCr function satisfying

h(x′) ∈ {e>i g(x′) : i ∈ [m]},∀x′ ∈ Rn.

If Iδgi , i ∈ [m], are δ-encapsulating index functions for each gi and Iδf is a δ-encapsulating

index function for f . Then, there exists a δ-encapsulating index function Iδh : Rn → 2Kf×Kg

for h such that

{∇hi}
i∈Iδh

(x′) =

{∇giji}
ji∈Iδ

gi

(x′) : i ∈ Iδf (g(x′))

 .

Proof. Let x′ ∈ Rn, and let each Iδgj and Iδf be as assumed.

Consequently, by application of Theorem 5.4, there exists a δ-encapsulating index func-

tion Iδh such that

{∇hi}
i∈Iδh

(x′) =

 m×
k=1

{
∇gkjk

}
jk∈Iδ

gk

(x′)

 {ei}
i∈Iδf

(g(x′))

=

{∇giji}
ji∈Iδ

gi

(x′) : i ∈ Iδf (g(x′))

 ,

which follows because multiplication by any ei leaves only the ith component function.

Remark 5.6. This proposition applies to Boolean expressions including ∨ and ∧, as in

(5.11), because max or min may be written as a multiplication with a standard basis vector

ei. For example, the function max is a PL function, with component functions ei, where ei
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is the ith standard basis vector. Because at any x′ ∈ Rn, max may be written as

max
i∈[m]
{Bi(x

′)} = e>i [B1(x′), . . . , Bm(x′)]
>
,

for some i ∈ [m].

Proposition 5.10. Let h : Rn → R be a PCr function. If Iδh : Rn → 2Kh is a δ-

encapsulating index function for h, then, for any scalar s, Iδh is a δ-encapsulating index

function for h̄ : Rn → R defined as

h̄(x′) = sh(x′),∀x′ ∈ Rn.

Remark 5.7. Proposition 5.10 may be used to calculate the negation of Boolean expres-

sions B as in (5.11) by calculating a δ-encapsulating index function for the negated ex-

pression. That is, if B = ¬B1, then IδB1
is also a δ-encapsulating index function for B.

However, each index i ∈ IδB1
now refers to a negated component function. For convenience,

the notation −IδB1
refers to negated component functions but only for Boolean expressions.

Using Proposition 5.10 and Theorem 5.4, Algorithm 3 calculates a δ-encapsulating in-

dex function for a Boolean composition as in (5.9) or (5.10). Importantly, Algorithm 3

does not change based on the particular Boolean expression or system under consideration.

Note that, due to Remark 5.6, for Boolean expressions only, the index calculation can be

significantly simplified. In particular, given a Boolean expression B[f1, . . . , fk] with com-

ponent expressions B1[f1, . . . , fk], B2[f1, . . . , fk], B, B1, and B2 are PCr functions which

all have component functions fi, i ∈ [k]. As such, the intermediate indices do not have

to be preserved when calculating a δ-encapsulating index function for B, because all of

the Boolean expressions have the same component functions. Another noteworthy point is

that Algorithm 3 requires a δ-encapsulating index function for ∧/∨ functions. For instance,

the proposed δ-encapsulating index function from Proposition 5.2 is such a function. The
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following explicitly shows this calculation.

Example 5.2. This example demonstrates a calculation of Iδ∧/∨(B(x′)) as in Algorithm 3.

Let B : Rn → R be a Boolean expression with component expressions Bi : Rn → R,

i ∈ [k], be defined as

B =
k∧
i=1

Bi = min
i∈[k]

Bi

or

B =
k∨
i=1

Bi = max
i∈[k]

Bi

Then, with a slight abuse of notation, a δ-encapsulating index function Iδ∧/∨ : Rn → 2KB

for the ∧ or ∨ operation, according to Proposition 5.2, evaluated at B(x′) is

Iδ∧/∨(B(x′)) = {i ∈ [k] : ‖Bi(x
′)−B(x′)‖ ≤ ε}, ∀x′ ∈ Rn,

for any fixed ε > 0.

Algorithm 3 δ ENCAPSULATING
Input: Boolean expression: B[f1, . . . , fk]

δ-encapsulating index function for ∧/∨: Iδ∧/∨
Argument: x′ ∈ Rn

Output: Evaluated δ-encapsulating index function for B: IδB(x′)

IδB(x′)← ∅
if B is fi, for i ∈ [k] then

IδB(x′) ∪ {i}
return IδB(x′)

if B is ¬B1 then
IδB(x′) ∪ −δ ENCAPSULATING(B1, x

′)
return IδB(x′)

for i ∈ Iδ∧/∨(B(x′)) do
IδB ∪ δ ENCAPSULATING(Bi, x

′)
return IδB(x′)
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Figure 5.1: This figure shows the completion of the precision-agriculture experiment de-
scribed in Section 5.5. Each pair of robots (e.g., 1 and 2) must visit a pair of crop patches,
which are labeled accordingly, while avoiding collisions. This figure shows that the robots
successfully visit each crop patch and avoid collisions, completing the objectives and sat-
isfying the constraints.

5.5 Experimental Results

This section contains the experimental results of the paper. In particular, the experiment

imitates a precision-agriculture scenario wherein a team of robots must visit a series of crop

patches in a field while avoiding collisions with neighboring agents. The objectives and

constraints are encoded using the methods discussed in Section 5.3, and the optimization

program noted in Section 5.3 synthesizes a controller that satisfies the objectives and the

constraints, where the δ-encapsulating index function is provided via Algorithm 3. In this

section, an explicit dependence on time has been dropped for clarity.

5.5.1 Experiment Formulation and Results

The formulation of this experiment is as follows. Consider an even numberN of differential-

drive robots in R2, which represents the field. For simplicity, assume that the robots have
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Figure 5.2: Value of objective-encoding NLF in Section 5.5. The value of the NLF goes to
zero as time increases, indicating that the objective has been completed for all robots. That
is, all crop patches have been visited.

state xi ∈ R2, i ∈ [N ], and dynamics ẋi = ui. The ensemble state and input is written

as x ∈ R2N , u ∈ R2N . Later, this chapter utilizes the method in [27] to map the single-

integrator input onto the full nonlinear differential-drive dynamics. In this section, the time

dependence has been dropped for brevity.

This experiment requires that all robots avoid collisions, and this constraint may be

encoded via the C1 pair-wise collision-avoidance constraint

hij(xi, xj) = ‖xi − xj‖2 − d2,

where d > 0 indicates the diameter of the robot. As such, the ensemble collision-avoidance

constraint is given by the Boolean NBF

h =
N∧
i=1

N∧
j=1+1

hij,
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where the large ∧ symbol represents conjunction. Note that

∇xihij(xi, xj) = 2(xi − xj), ∇xjhij(xi, xj) = 2(xj − xi),

and∇xhij may be calculated by substituting∇xihij and∇xjhij into the ith and jth indices.

The objectives for the robots are as follows. A pre-existing planner has determined that

robots i and i + 1 must visit crop patches pi ∈ R2 and pi+1 ∈ R2, for i = 1, 3, . . . , N − 1,

where the specific robot-to-patch assignment is unspecified for each pair. As such, this

specification holds for each consecutive pair of robots. For example, robots 1 and 2 must

visit patches p1 and p2 while robots 3 and 4 must visit p3 and p4.

Now, we formulate the corresponding objectives. Note that the parameterized function

Vi,p(xi) = (xi − p)>(xi − p),

yields a candidate NLF for robot i for the patch p ∈ R2. Then,

∇xiVi,p(xi) = 2(xi − p),

and ∇xVi,p may be calculated by substituting ∇xiVi,p into the ith component. For robots i

and i+ 1 the objective that the robots visit pi and pi+1 may be captured as

(Vi,pi ∧ Vi+1,pi+1
) ∨ (Vi,pi+1

∧ Vi+1,pi). (5.12)

The above expression captures the specification that the robots must be at both points, but

the order does not matter. The above expression is a candidate NLF; however, Propo-

sition 5.5 cannot be directly applied as Vi,pi is not a candidate NLF for the subsystem

containing xi and xi+1 (Vi,pi does not have bounded level sets with respect to xi+1). That
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is,

{(xi, xi+1) : Vi,pi(xi) ≤ a} = Ai,pi × R2

is unbounded. However, the conjunction operation resolves this issue. Thus,

(Vi,pi ∧ Vi+1,pi+1
) (5.13)

is a candidate NLF, and by Proposition 5.5, (5.12) is a candidate NLF.

As such, the overall objective for the system may be encoded as the candidate NLF

V =

N/2∧
i=1

(V2i−1,p2i−1
∧ V2i,p2i) ∨ (V2i−1,p2i ∧ V2i,p2i−1

),

and for the same reason as (5.13), V is also a candidate NLF.

Now that the system’s constraint and objective has been formulated, the δ-encapsulating

index functions for use with Algorithm 3 must be provided. This experiment utilizes the

index function discussed in Proposition 5.2. That is,

Iδ∧/∨ = {i ∈ KB : |Bi(·)−B(·)| ≤ ε},

for some fixed ε > 0. The function Iδ∧/∨ is used as a δ-encapsulating for every Boolean

expression in this experiment.

In the spirit of Proposition 5.8, the QP for this experiment is given by

u∗(x) ∈ arg min
u∈Rm

u>u (5.14)

s.t. ∇hi(x)>(f(x) + g(x)u) ≥ −γh(x)3, ∀i ∈ Iδh(x)

∇Vi(x)>(f(x) + g(x)u) ≤ −min{c, V (x)},∀i ∈ IδV (x),

where γ, c > 0. Note that V (x) 7→ min{c, V (x)} is the selected positive-definite function,
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as in Definition 16, and h(x) 7→ γh(x)3 is the selected extended class-K function, as in

Definition 3.

For the experiment, we utilize Algorithm 3 to calculate a δ-encapsulating index set for h

and V . Then, combining h and V with these index functions into a QP, as in Proposition 5.8

yields a controller that ensures the robots visit the required locations and avoid collisions.

For this experiment, we assume that the remaining assumptions of Proposition 5.8 hold.

Namely, that u? exists and is measurable and locally bounded. At each point, applications

of Algorithm 3 calculate Iδh and IδV , and MATLAB’s optimization toolbox is utilized to

solve the QP.

It is by no means guaranteed that, for any objective and constraint, h and V may be

simultaneously solved in the QP. In this case, the compatibility is shown experimentally. In

general, some techniques exist to ensure that this solution exists, such as the inclusion of

slack variables (e.g., as in [1, 7]).
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Figure 5.3: Value of the NBF that encodes the collision-avoidance constraints for the exper-
iment described in Section 5.5. The value of the NBF remains positive over the course of
the experiment, showing that all of the constraints are satisfied. That is, no robots collide.

To show the efficacy of these results on a real system, the controller u? from (5.14) is

deployed onto N = 12 differential drive robots in the Robotarium, a remotely accessible
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swarm-robotics testbed [8]. Figure 5.1 shows the robots over the course of the experiment.

The projected pictures of corn and numbers on the testbed mark the assigned crop patches

for each pair of robots as well as the robots’ identifiers. Figure 5.1 shows that all robots

reach their designated locations while avoiding collisions. Specifically, Figure 5.3 shows

the value of h over the course of the experiment. The Boolean NBF h remains positive,

indicating that all constraints are satisfied. Figure 5.2 shows the value of V during the

experiment. The value of V decreases to 0, ensuring that each location is visited, which

completes the objective.

5.5.2 Discussion of Parameters

For the experiment in Section 5.5.1, the parameters are

d = 0.15, γ = 10000, c = 0.3, ε = 0.05,

and a discussion of these selections follows. The number d denotes the diameter of the

Robotarium’s differential-drive robots. The parameter γ controls the flatness (around the

origin) of the extended class-K function h(x) 7→ γh(x)3. This function is flat around 0,

attentuating the rate at which the system can approach the boundary of the safe set. The

parameter γ adjusts this rate: the larger γ is, the quicker robots can approach each other.

For V , c controls how quickly the system must reduce the NLF. As such, c is chosen to

ensure that the magnitude of u? remains within the physical limits of the robots.

The parameter ε pertains to the δ-encapsulating index function and controls how many

indices are included at each point. For example, for h, the δ-encapsulating index function

is

Iδh(x) = {i : |hi(x)− h(x)| ≤ ε},

where each i corresponds to a collision constraint between a pair of robots. In effect, h

represents the pair(s) of robots which are the closest, and ε controls how close other robots

100



must be before being included in the QP (see (5.14)). Intuitively, making ε smaller reduces

the number of constraints that must be included in the QP. Conversely, larger values of

ε increase the number of constraints (i.e., nearby robots) that are included in the QP. A

similar line of reasoning holds for V and IδV .

Theoretically speaking, as long as ε > 0, Iδh is indeed a δ-encapsulating index function.

Though, practically speaking, since this implementation is inherently digital, increasing

the value of ε can increase the robustness of the actual implementation by ensuring the

constraints are included in the QP early enough. Again, a similar line of reasoning holds

for V and IδV .

5.6 Conclusion

Barrier functions and Lyapunov functions may be used to represent constraints and stability

objectives for dynamical systems, respectively, and this chapter presented a new class of

nonsmooth barrier functions and nonsmooth Lyapunov functions using the theory of piece-

wise smooth (PCr) functions. Moreover, this chapter showed that Boolean combinations

of barrier and Lyapunov functions fell into this class of PCr functions. PCr functions

depend heavily on their corresponding index functions, and by utilizing a particular class

of index functions, this chapter proved that one may synthesize controllers that are discon-

tinuous yet, nonetheless, theoretically guarantee the validity of the barrier and Lyapunov

functions. The experimental results utilized the theoretical contributions of this chapter to

generate safe controllers that also accomplish an objective for a swarm of physical robots

in a precision-agriculture scenario.
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CHAPTER 6

REGULARITY OF CONTROLLER SYNTHESIS

This chapter discusses some results on controller synthesis in the context of Chapters 2-5.

These chapters develop the theory of Nonsmooth Barrier Functions (NBFs) and associated

controller-synthesis strategies that are based on an optimization program. Specifically, the

sufficient conditions to ensure a valid NBF (see Theorem 2.1) involve satisfying an inequal-

ity that includes a set-valued product between the generalized gradient and the dynamics

of the system of interest. If the system is control-affine, then the optimization program

becomes a Quadratic Program (QP). The results of these chapters have assumed that the

controller resulting from this QP is measurable and locally bounded. However, since these

controllers are produced online and not in closed form, verifying these properties for a par-

ticular application becomes difficult. To strengthen the results in this thesis, this chapter

investigates guaranteeing that the QP-based controller is measurable and locally bounded

with an upper-semi continuous set-valued map as a constraint.

Previous work has focused on synthesizing continuous controllers to optimization pro-

grams, and most of these results come with some restrictive assumptions [26]. These as-

sumptions typically relate to differentiability assumptions on the objective function and

constraints. In the case of controller synthesis with respect to nonsmooth functions, this

thesis utilizes the generalized gradient. As this object inherently represents a discontinu-

ous object, these differentiability assumptions do not hold, so the results of this prior work

cannot be utilized.

This chapter focuses on the regularity properties of solutions to a QP when a set-valued

map is included as a constraint. In particular, this chapter shows that the assumptions on

the constraints and objective function can be significantly relaxed, and the measurability

and local boundedness of the solution to the QP can still be shown.
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Set-valued analysis has been extensively utilized to analyze properties of the solution

to an optimization program, and this paper takes advantage of these prior results. Specif-

ically, the results herein utilize set-valued analysis stemming from [41]. Because the de-

sired regularity properties relate to measurability, the theory of measurable set-valued maps

is utilized, which, in turn, greatly relaxes the necessary assumptions on the optimization

program.

The organization of this chapter is as follows. Section 6.1 notes some preliminary

results useful in the main result of this chapter. Section 6.2 formulates the problem statment

for the chapter. Section 6.3 contains the proofs for the regularity properties of synthesized

controllers, constituting the main results of this chapter. Finally, Section 6.5 concludes the

chapter and notes some potential future directions of work.

6.1 Preliminary Results

This section contains some relevant background material on set-valued maps, a more thor-

ough coverage of which can be found in [41]. The most relevant topics to this chapter

are covered including: measurable set-valued maps, measurable selections of set-valued

maps, and Carathéodory functions. This thesis does not cover measure theory, as the the-

ory behind the Lebesgue measure is not particularly relevant for the results herein. For

background on Lebesgue measure, see [41, Chapter 8].

A set-valued map F : Rn → 2R takes values in Rn and maps them to subset of Rn.

Measurability always refers to Lebesgue measurability, and measurability of set-valued

maps is defined as follows.

Definition 17. A set-valued map F : Rn → 2R is measurable if the pre-image of every

open set is measurable. That is,

F−(O)

is measurable for every open set O ⊂ Rn.
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A set-valued map has closed images if F (x′) is closed for every x′ ∈ Rn. Carathédory

functions are of particular interest to this chapter. Functions of this type are relevant in

analysis of Carathéodory solutions to differential equations; however, they are also useful

in this context.

Definition 18. A function f : Rn × Rm → R is Carath’eodory if and only if for each

fixed u ∈ Rm x′ 7→ f(x′, u) is measurable and, for each fixed x′ ∈ Rn, u 7→ f(x′, u) is

continuous.

The next lemma provides a preliminary results that plays a role in showing measurabil-

ity of the solution to a QP in Section 6.3.

Lemma 6.1. Let I : Rn → 2K be a nonempty upper semi-continuous set-valued map,

where K is a finite-cardinality index set; and let ai : Rn → Rm, bi : Rn → R, i ∈ K, be

measurable functions. Then, the set-valued map C : Rn → 2Rm defined as

C(x′) = {u ∈ Rm : ai(x
′)>u+ bi(x

′) ≥ 0,∀i ∈ I(x′)}

is closed-valued and measurable.

Proof. Note that, at each x′ ∈ Rn,

C(x′) =
⋂

i∈I(x′)

{u ∈ Rm : ai(x
′)>u+ bi(x

′) ≥ 0}.

Because u 7→ ai(x
′)>u+ bi(x

′) is continuous, for each fixed x′, each preimage

{u ∈ Rm : ai(x
′)>u+ bi(x

′) ≥ 0}

is closed. Since C(x′) is the intersection of closed sets, C(x′) is also closed.

Now, it remains to show measurability of C. For each i ∈ K, define the set-valued map
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Ci : Rn → 2Rm be defined as

Ci(x
′) = {u ∈ Rm : ai(x

′)>u+ bi(x
′) ≥ 0}.

By [41, Theorem 8.2.9], Ci is measurable and closed-valued. Let, for each i ∈ K, Ai ⊂ Rn

be defined as

Ai = {x′ ∈ Rn : I(x′) ∩ {i} 6= ∅}.

Because I is upper semi-continuous, Ai is measurable, since it is the lower pre-image of a

closed set (see [41, Proposition 1.4.4] or [41, Proposition 8.2.1]). As such, Rn/Ai is also

measurable. Now, for each i ∈ K, define the set-valued map C̄i : Rn → 2Rm as

C̄i(x
′) =


Ci(x

′) x′ ∈ Ai

Rm x′ /∈ Ai.

Note that C̄i is a measurable set-valued map, since for any nonempty open set Y ⊂ Rm

{x′ ∈ Rn : C̄i(x
′) ∩ Y 6= ∅} = {x′ ∈ Rn/Ai : C̄i(x

′) ∩ Y 6= ∅} ∪ {x′ ∈ Ai : Ci(x
′) ∩ Y 6= ∅}

= Rn/Ai ∪
(
C−i (Y ) ∩ Ai

)
,

which is measurable, since Ci is a measurable set-valued map and Ai is a measurable set.

Note that if Y is empty, then F−1(Y ) = ∅, which is measurable.

Combining the C̄i yields that

C(x′) =
⋂
i∈K

C̄i(x
′),

because, at any x′ ∈ Rn, i ∈ I(x′) implies that C̄i(x′) = Ci(x
′), otherwise C̄i(x′) =

Rm. By [41, Theorem 8.2.4], C is the intersection of measurable, closed-valued set-valued
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maps; as such, C is also measurable and closed-valued.

6.2 Problem Formulation

This section formulates the Quadratic Program (QP) which this chapter addresses. In par-

ticular, this chapter considers the QP

u∗(x′) = arg min
u∈Rm

u>P (x′)u+ q(x′)>u (6.1)

s.t. ai(x′)>u+ bi(x
′) ≥ 0, ∀i ∈ I(x′)

‖u‖∞ ≤ umax,

where P : Rn → Rm×m, q : Rn → Rm are measurable and locally bounded and P is

positive-definite and symmetric at each x′ ∈ Rn. We moreover assume that each ai(x′) :

Rn → Rm, bi : Rn → R is continuous and that I : Rn → 2K is upper semi-continuous,

where K is a finite-cardinality index set.

The condition that G is positive-definite and symmetric at each x′ ∈ Rn ensures that

(6.1) has a unique solution at every x′ ∈ Rn. This property is important with for the

regularity of u?. These assumptions can be weakened, along with correspondingly weaker

guarantees. See Section 6.3 for more information on this topic.

6.3 Regularity Properties of the Solution

This section contains the main results of this chapter: showing that the solution to (6.1)

is measurable and locally bounded. The result on measurability follows from Lemma 6.1

and the results of [41]. The property of local boundedness essentially results from the

formulation of the QP in Section 6.2.

Theorem 6.1. Let u∗ : Rn → Rn be the solution to (6.1), then u∗ is measurable and locally

bounded.
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Proof. The function u∗ is clearly locally bounded, since the solution to (6.1) is bounded as

a result of the constraint ‖u‖∞ ≤ umax. It remains to show measurability.

By Lemma 6.1, the set-valued map C : Rn × Rm → 2Rm given by

C(x′, u) =
⋂

i∈I(x′)

{u ∈ Rm : ai(x
′)>u+ bi(x

′) ≥ 0}

is measurable and closed-valued. Consider the objective function o : Rn×Rm → R defined

as

o(x′, u) = u>P (x′)u+ q(x′)>u.

For each fixed x′, u 7→ o(x′, u) is continuous. Moreover, for each fixed u, the function

x′ 7→ o(x′, u) is measurable and locally bounded. As such, o(x′, u) is Carathéodory.

Note that u∗ may be written as

u∗ = {u ∈ C(x′) : o(x′, u) = min
ū∈C(x′)

o(x′, ū),

where the box constraints may be readily incorporated into the constraint map C(x′). By

[41, Theorem 8.2.11], u∗ is a measurable set-valued map. Moreover, it is closed-valued,

since u 7→ o(x′, u) is continuous for each fixed x and C(x′) is closed-valued.

Because u∗ is a measurable, closed-valued set-valued map, [41, Theorem 8.1.3] applies,

and u∗ has a measurable selection. Because the solution to the QP is unique, u∗ is single-

valued, and, thus, u∗ must be measurable.

Remark 6.1. Theorem 6.1 assumes that G is positive-definite and symmetric at each x′ ∈

Rn. These assumptions guarantee uniqueness of the solution u∗(x′), and the proof of the

theorem critically relies on this property. However, this property can be weakened, and the

statement of the theorem changes to that a measurable solution exists (i.e., rather than is

guaranteed).
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6.4 Relation to Previous Work

The results in Section 6.3 show that the solution to the QP in (6.1) is measurable and lo-

cally bounded. This result, contained in Theorem 6.1, effectively strengthens Chapters 2-5,

because these regularity properties of the solution do not have to be assumed (e.g., in Theo-

rem 3.1). Moreover, Theorem 6.1 is of practical use, because online synthesized controllers

cannot typically be easily validated. Thus, it is important that these regularity properties be

guaranteed.

The QP in (6.1) also relates to work outside of this thesis, and such QPs appear in

a variety of fields that depend on performing controller synthesis. For example, robust

controller synthesis often assumes that a disturbance (potentially set-valued) is added to

the constraints. In this case, the QP in (6.1) could be modified to contain the addition of

a set-valued map, so the results in this chapter apply to areas beyond those considered by

this thesis.

6.5 Conclusion

This chapter presented results on the regularity of a solution to a constrained optimization

program. In particular, for quadratic programs with very light regularity assumptions, this

chapter showed that the resulting solutions is measurable and locally bounded. This re-

sult has applications in the rest of the thesis, from a theoretical and practical perspective.

Moreover, these results also related to other fields, such as robust control. Future efforts

could focus on extended the results of this chapter to these alternative areas, such as robust

control.
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CHAPTER 7

THE ROBOTARIUM

This chapter contains a discussion of the Robotarium, a remotely accessible swarm-robotics

testbed. While the theory developed in this thesis may apply to robotics at large, much of

it has been inspired by solving problems pertaining to this testbed. This chapter contains

results from the contributed publication [8] as well as recent efforts.

Interest in robotics research has grown in recent times, and increasing effort and funds

are being correspondingly allocated toward this pursuit. However, a number of problems

lie in the wake of this growing interest. The cost of starting a robotics lab can be pro-

hibitively expensive, effort is often duplicated between similar robotics labs, and hardware

differences can obfuscate research-based contributions.

First, the cost of starting a robotics lab, in terms of personnel and equipment, can be

prohibitively expensive for researchers, from a new professor to a high-school student.

Second, effort is often duplicated between robotics labs. For example, to start a swarm-

robotics lab, a large number of differential-drive robots are typically required, and most of

these systems incur a significant cost, in terms of both time and money, to establish a soft-

ware pipeline. Moreover, this software setup remains relatively static between these labs,

so this effort, which can potentially take years, greatly overlaps with similar labs. Third,

hardware differences can obfuscate the contributions of research. Many contributions in

robotics rely on demonstrating the efficacy of the chosen approach on a physical systems.

Often, as should be the case, these experiments are compared with past efforts. However,

hardware improvement can disrupt this comparison. For example, a recent paper may have

access to better, more advanced hardware that, on a physical level, outperforms older hard-

ware, making the newer contribution seem more effective than it really is. As such, an

important goal in robotics research should be to normalize these testbeds to allow research
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to be compared properly.

The Robotarium solves these growing problems by offering free, remote access to a

swarm of robots located at Georgia Tech. The Robotarium eliminates the cost of starting

a robotics lab, eliminates duplicated effort by providing a software pipeline, and allows

research to be tested on an equivalent testbed, ensuring that comparisons between research

efforts utilize similar hardware. Users interact with the system by prototyping their algo-

rithm in the MATLAB or Python programming languages and submitting their code via

an online submission process. After their experiment is executed, users receive a video of

their experiment as well as any data they chose to save.

The rest of this chapter is organized as follows. Section 7.1 details the interaction pro-

cess for users. Section 7.2 discusses how safety of the physical devices in the Robotarium

is ensured in the context of remote submissions from users as well as potentially malicious

experiments. Next, Section 7.4 describes the software backend of the Robotarium. This

structure is of relevance to this thesis because the Robotarium critically relies on composi-

tion of barrier functions with a stream of user inputs. Section 7.5 contains some examples

of real user submissions for the platform. Finally, Section 7.6 concludes the chapter.

7.1 Interacting with the System

This section details the users’ interaction process with the Robotarium. The Robotarium

provides two primary interaction methods: MATLAB and Python simulators. Specifically,

users utilize the MATLAB and Python simulators to encode their algorithm. After the

algorithm has been encoded into the simulator, the user may submit their MATLAB or

Python code via an online interface.

The Python and MATLAB simulators allow users to control a group of differential-

drive robots that the Robotarium abstracts with the well-used unicycle model. In particular,
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each robot obeys the dynamics

ẋ =


cos(θ) 0

sin(θ) 0

0 1


v
ω

 ,

where v and ω are the linear and angular velocities, respectively. Though this model is

a faithful representation of the robots’ actual dynamics, it is an under-actuated, nonlinear

model. As such, not all users may be experienced with using this nonlinear model (e.g.,

high-school students). Even in technical research areas, many papers assume simplified

dynamics, such as single- or double-integrator dynamics. With this idea in mind, the Rob-

otarium provides a host of utilities to control groups of differential drive robots, including

single-integrator-to-unicycle mappings, go-to-goal controllers, and plotting utilities.

7.1.1 Abstractions

Oftentimes, algorithms abstract dynamics to simplify analysis, particularly in swarm robotics.

The level at which the abstraction takes place differs among applications. For example, a

swarm-robotics algorithm may make a dynamical abstraction and assume that each of the

robots obeys single-integrator dynamics, making the algorithm simpler to analyze mathe-

matically. On the other hand, a planning algorithm may abstract the motion of the robot

itself, assuming that the system has a built-in go-to-goal behavior. That is, given a supplied

point (or pose) the system automatically regulates to this value. To facilitate these sce-

narios, the Robotarium provides a number of utilities, from single-integrator-to-unicycle

mappings to pose controllers.

It is important to note that the provision of these utilities is critical to the operation of

the Robotarium. Usually, the significant amount of required knowledge to control a group

of robots limits potential users. To control a swarm of robots, one must typically posses an

expertise in software, networked communications (e.g., TCP, UDP), and a knowledge of
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nonlinear control techniques to map the controller onto the system. This required knowl-

edge can pose an issue to new roboticists, as acquiring this information can be a daunting

task; moreover, it may not be particularly related to the research at hand. To truly lower

this barrier, it is critical that the Robotarium provide tools for mapping abstracted algo-

rithms onto nonlinear systems. In fact, usage of the Robotarium by non-traditional robotics

groups, such as biologists, suggests that the provision of these utilities has enabled these

users.

With regard to dynamical abstractions, the Robotarium provides implementations of the

techniques discussed in [27, 37]. Each of these papers provides a different technique for

mapping single-integrator algorithms to unicycle-modeled (or differential-drive) systems.

These techniques are widely used and have been validated in practice by the Robotarium.

Moreover, the Robotarium provides some go-to-point and go-to-pose controllers. These

controllers represent another common type of abstraction. In this case, the robots’ veloci-

ties are not directly controlled; rather, they track a point (or pose) supplied by the user.

7.2 Ensuring Safety

A major area of research in the Robotarium is hardware safety. The maximum velocity of

the robots is roughly 0.4 m/s, which means that a full-speed collision could easily damage

the arena or, more likely, the robots’ hardware, so preventing collisions is a priority. More-

over, as automation represents a major goal for this system, this method must not require

human intervention. However, a third objective remains. Since this collision-avoidance al-

gorithm is always enabled, it may modify users submissions, but users submissions should

still complete successfully if possible. As such, the collision-avoidance algorithm must be

minimally invasive.

To create such an algorithm, the Robotarium utilizes barrier functions, which feature

heavily in this thesis. Barrier functions are a natural fit for the Robotarium, because they

can be formulated independently from a user’s experiment. That is, safe controllers can be
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synthesized for effectively arbitrary submissions. There are many formulations of barrier

functions, with various advantages and disadvantages, and this section presents two formu-

lations utilized by the Robotarium. In practice, the choice between them varies based on

the submission’s details.

7.2.1 A Centralized Approach

As noted in Section 7.1.1, the Robotarium allows interaction at a number of levels of ab-

straction. For example, the robots can be modeled as single integrators with dynamics

ẋi = ui,

where i ∈ [N ], for a group of N robots; then, this abstracted model may be mapped onto

the full nonlinear unicycle dynamics using any of the techniques discussed in Section 7.1.

In this case, a pair-wise collision-avoidance constraint may be encoded as

hij(xi, xj) = ‖xi − xj‖2 − r2,

where r denotes the diameter of the robot. Note that

∇xihij(xi, xj) = 2(xi − xj);

∇xjhij(xi, xj) = 2(xj − xi);

and

∇xkhij(xi, xj) = 0, k 6= i, j.

As such,∇xhij(xi, xj) can be written as

∇xhij(xi, xj) =
[
∇x1hij(xi, xj)

> . . .∇xNhij(xi, xj)
>]> .
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That is,

∇xkhij(xi, xj) =


2(xi − xj) k = i

2(xj − xi) k = j

0 o.w. .

Guaranteeing that

∇xhij(xi, xj)
>u ≥ −γh(xi, xj)

3,

for every i ∈ [N − 1], j ∈ {i + 1, . . . , N}, guarantees that robots i and j avoid collisions

(e.g., see Chapter 2). As such, the following Quadratic Program (QP) produces a controller

that guarantees that all robots remain collision-free

u∗(x) = arg min
u∈Rm

‖u− uuser‖2 (7.1)

s.t. ∇xhij(xi, xj)
>u ≥ −γh(xi, xj)

3, ∀i ∈ [N − 1], j ∈ {i+ 1, . . . , N},

where u∗ is the collision-free controller. Note that, in the above program, uuser represents

the controller provided by a user’s algorithm, so u∗ represents the controller that avoids

collisions while remaining as close as possible to the user’s intent.

The program in (7.1) represents a critical component in the Robotarium’s infrastructure.

Not only does the resulting controller prevent collisions, but it is also minimally invasive,

meaning that it alters the user’s controller as infrequently as possible. This property means

that the Robotarium’s hardware is protected while also ensuring that the user’s algorithm

runs effectively.

From a control perspective, an important aspect of the strategy in (7.1) is that it is

a fully centralized controller. The QP requires information from all pairs of robots and

coordinates the controllers accordingly. In a real-world setting, such information may not

be available to all agents; however, Robotarium can take advantage of the laboratory setting

to solve such programs. In fact, this centralization has some nice practical effects. Namely,
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it ensures maximum coordination, allowing the user’s algorithm to be executed faithfully.

Figure 7.1 shows an example of an experiment being executed on the prototype version

of the Robotarium with barrier-function-based collision avoidance. In this hypothetical

submission, the robots, arranged on an ellipse, attempt to swap positions. Without bar-

rier functions enabled, this algorithm clearly causes collisions. With barrier functions, the

robots avoid collisions and successfully complete the algorithm.

Figure 7.1: A group of differential-drive robots attempt to switch places on an ellipse. The
Robotarium utilizes barrier-function-based collision avoidance, as in (7.1), to protect the
robots and to ensure completion of the experiment.

7.2.2 A Decentralized Approach

From a computational perspective, the QP in (7.1) has been solved at 100 Hz for 40 robots

with substantially under-optimized code. For larger numbers of robots, the runtime may

be improved by decentralizing (7.1), allowing the program to be solved in parallel. The

authors of [8] show that a decentralized version of the QP in (7.1) may be solved at 200 Hz
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for over 100 robots. Moreover, this parallelization decreases the effects of adding more

robots.

The decentralized QP is formulated as follows. Note that (7.1) depends on satisfying

the inequality

∇xhij(xi, xj)
>u ≥ −γh(xi, xj)

3,

for each i ∈ [N − 1], j ∈ {i + 1, . . . , N}. If every constraint is included in the QP , then

this QP becomes centralized. However, note that

∇xhij(xi, xj)
>u = ∇xihij(xi, xj)ui +∇xjhij(xi, xj)uj.

The centralized QP simultaneously chooses ui and uj to satisfy the barrier-function

constraint. However, the following alternate formulation separates the selection of ui and

uj . Consider the QP

u∗i (x) = arg min
u∈R2

‖u− uuseri‖2 (7.2)

s.t. 2(xi − xj)>ui ≥ −
1

2
γhij(xi, xj)

3,∀j ∈ [N ]/{i}.

If every agent solves (7.2), then

∇xhij(xi, xj)
>u = ∇xihij(xi, xj)ui +∇xjhij(xi, xj)uj

≥ −1

2
γhij(xi, xj)

3 − 1

2
γhij(xi, xj)

3

≥ −γhij(xi, xj)3.

Accordingly, all robots remain collision-free. Note that this formulation still requires that

all robots have information about all other robots, yet the QP in (7.1) may be solved in

parallel (i.e., each agent may solve the QP individually).
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7.2.3 Centralized versus Decentralized

The Robotarium typically utilizes the centralized approach in (7.1), because it can be solved

quickly enough for most submissions; additionally, the centralization affords an increased

degree of coordination, allowing the users’ code to execute more freely. However, if truly

large numbers of robots are required (e.g., over 50), then the decentralized approach may

be selected. It is worth noting that the vast majority of submissions require less than 50

robots.

The decentralized formulation, while quickly solved, is prone to a form of deadlock,

where no progress in the submitted algorithm can be made (i.e., the robots simply stop mov-

ing). The increased coordination induced by the centralized formulation can help mitigate

this condition in practice. As such, most submissions utilize the centralized formulation in

(7.1).

7.3 Code Submission Process

The software infrastructure represents a major component of the Robotarium. To handle

remote submissions, this infrastructure must handle the usual tasks, like fetching submis-

sions from a database, but must also enable control of mobile robots. Accordingly, the

software infrastructure can be broken into two equally important halves: the backend code

for fetching, validating, and running submissions; and the communication infrastructure

for the robots.

The first half, containing more mundane components, is mainly centered around the

submission of the actual code from users. The main tasks for the backend code involve

fetching submissions from a database, validating submissions through simulation, and de-

ploying the algorithms onto the robots. In particular, when a user submits an experiment

using the online submissions process, the submission, or job, is placed into a database.

When the Robotarium is active, it fetches the most recently submitted experiment and be-
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gins the validation process. Figure 7.2 displays this pipeline.

User submits 
MATLAB or Python

code

Robotarium
validates 

submission in
simulation

Robotarium deploys
code onto 
GRITSbots

Database stores
submission

User receives video
and saved data

Figure 7.2: A flow chart of a user’s interaction with the Robotarium.

Because the Robotarium is openly accessible and aims to be automated, the system

validates submitted experiments. This process ensures that the user-provided simulations

meet some safety criteria before deploying it onto the system, such as number of collisions,

time outside the boundaries, and surpassing of actuator limits. If too many of these errors

are encountered in the simulation, then the submission fails the validation test, and the

system does not execute the code on the physical robots. This validation step helps preserve

the integrity of the physical hardware but also ensures that the user’s submission has a

higher likelihood of executing correctly.

Underpinning this portion of the software is Docker1. Docker is a containerization plat-

form, allowing small, isolated, light-weight components to run in a cross-platform manner.

Much like a virtual machine, Docker allows one to encapsulate build requirements into

1https://www.docker.com/
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a portable container, which can be run on any docker-supported machine with the same

processing architecture. In the case of differing processor architectures, the container can

often be readily cross-compiled for a specific architecture (e.g., AMD64 to ARM).

In the context of the Robotarium, Docker has two crucial benefits. The first is that it

allows the software to be portable. Since the Robotarium relies on many different types

of systems, from embedded Linux-based computers to enterprise servers, this portability

allows code to be developed independently from the platform under consideration.

Secondly, docker provides isolation of the software components, which is critical for

an openly accessible platform. Since users may submit (almost) arbitrary code, written in

Python or MATLAB, it becomes dangerous to execute this code directly on the Robotar-

ium’s servers. Docker allows this execution to be encapsulated by a container, meaning

that any malicious or poorly written code only affects the local state of the container and

cannot harm the host machine. This container-based isolation provides another benefit:

users’ submissions are all run in a fresh container, so all submissions begin with the same

environment, settings, and capabilities. As such, containerization ensures fair execution by

guaranteeing that all submissions have the same computing platform.

7.4 Communication Infrastructure

The second critical component of the Robotarium’s software is the communication infras-

tructure. In the Robotarium, many pieces of hardware must communicate, from charging

hubs to robots. As such, the method by which the various systems communicate becomes

critical. The goal of the communication infrastructure is to accommodate point-to-point

communications and remain accessible from a variety of programming languages.

7.4.1 Communication Method

Standard WiFi is a ubiquitous communication mechanism, and the Robotarium’s devices

all utilize WiFi to communicate. This decision allows the system to utilize many pre-built
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libraries and software packages. Moreover, this decision does not limit the system, as even

small microcontrollers, such as the ESP8266 or ESP32, can be WiFi enabled with modern

technology. Moreover, the controlled laboratory setting of the Robotarium provides a stable

WiFi connection.

Applications, in practice, may require different communication mechanisms, such as

long-distance RF signals. However, the Robotarium remains focused on the testing of

robotics algorithms, which may include communication topologies; however, the means by

which the agents communicate, while important, is not a focus area of the Robotarium.

Given the communication mechanism of WiFi, at an OS level, the available socket-

based communication mechanisms are essentially TCP and UDP. However, these protocols

may be too basic. For example, using exclusively UDP typically requires one to enrich the

UDP-based communications with extra capabilities (e.g., a keep-alive). Additionally, TCP

connections efficiently handle many desirable properties (e.g., establishing a connection,

re-transmitting data); however, TCP is not effective in terms of data separation. For exam-

ple, if three robots are communications over TCP connections, then each robot must either

maintain a connection to the other two robots, or the transmitted packets must be modified

to include a device identifier.

7.4.2 Publish-Subscribe Architecture

Publish-subscribe frameworks, such as in ROS [42], continue to grow in popularity, as they

provide a convenient abstraction to connection-based communication. Specifically, they

allow data to be conveniently multiplexed over a single socket according to string-based

identifier. For example, the topic "robots/1/battery_data" may designate that

this topic contains battery data for robot 1. Typically, topics are hierarchically structured.

In a publish-subscribe framework, each client can subscribe to a number of topics, receiv-

ing data for all of these topics over a single socket-based connection. This architecture

allows data to be sorted appropriately and solves the problem of communicating to many
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different devices over a single socket. However, this scheme causes an increase in com-

plexity, as a central server must handle all subscriptions, message sorting, and message

passing. However, the utility of the publish-subscribe architecture outweighs the cost for

the Robotarium’s requirements.

The Robotarium uses MQTT2, which is an established publish-subscribe protocol that

is implemented across many languages. The fact that most major languages implement

an MQTT client benefits the Robotarium, because it requires many different components,

including the individual robots, charging stations, pose-estimation software, and the Docker

contains running the users’ code. During the submission process (see Section 7.1), all of

these components must communicate to ensure that the experiment executes successfully.

In the Robotarium, a central server runs an MQTT broker on a local WiFi network.

All communicating systems connect to this broker, allowing them to pass messages to the

rest of the system. All messages are encoded with JSON (Java Script Object Notation), a

platform-independent message specification. Though potentially verbose, JSON is easily

extensible and most major languages have a native JSON encoder and decoder, making it a

portable message format. Moreover, encoded JSON is human readable, making debugging

and monitoring of the message streams convenient.

Once a submission has been validated with the process in Section 7.1, a Docker con-

tainer executes the experiment, sending control commands to the robots over MQTT. Fig-

ure 7.3 displays the communication between the relevant components during experiment

execution. During an experiment, a container that runs tracking software sends the robots’

poses to the execution container. Depending on the type of submission, this container ei-

ther executes MATLAB or Python code. In either case, the container generates control

commands for the robots and sends them over each robot’s designated topic. Moreover, the

executor container also retrieves the state of the robots (e.g., battery voltage) to ensure that

the robots operate correctly.

2https://www.mqtt.org
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Figure 7.3: Communication architecture of the Robotarium during experiment execution.
The various components communicate using MQTT and JSON-encoded messages. In the
Robotarium, the tracker container sends pose information to an executor container that
runs MATLAB or Python code. In turn, the executor container sends velocity informa-
tion, which is generated by the user’s algorithm, to the robots. This container also gathers
information from the robots to ensure that they are operating correctly.

7.5 User Submissions

This section presents a selection of external user experiments that have been developed

using a Robotarium-provided simulator and executed on the Robotarium using the software

infrastructure shown in Figure 7.2. These examples were chosen as representative samples

since they highlight the breadth of algorithms that can be executed on the Robotarium but

also validate the remote access aspect of the Robotarium.

Distributed Formation Control of Cyclic Formations from the University of Texas, Dallas

This experiment instantiated a distributed formation control algorithm for regular polygonal

formations, originally presented in [43]. The controller uses relative position measurements

in local coordinate frames and prohibits any inter-agent communication. Note that [43]

assumes agents to be points in the plane and does not consider collision avoidance. The
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Figure 7.4: Distributed formation control
of six GRITSBots assembling a regular
hexagon starting at random initial positions.

Figure 7.5: Fault-tolerant consensus with
five collaborating robots (shown in blue)
and one malicious robot (shown in red).
Consensus is achieved despite the mali-
cious robot’s efforts to prevent rendezvous.

Figure 7.6: Passivity-based attitude syn-
chronization implemented on a team of nine
GRITSBots.

Figure 7.7: Experimental data from external user experiments rendered onto an image of
the Robotarium testbed setup. The square markers and curves are initial positions and
trajectories of the GRITSBots, respectively.

123



successful execution on the Robotarium therefore depended on the use of Robotarium-

provided barrier certificates shown in Section 7.2 and a mapping from single-integrator

dynamics to the unicycle dynamics of the robots. Figure 7.4 shows the results of this

experiment with six robots.

7.5.1 Fault-tolerant Rendezvous from the University of Illinois Urbana-Champaign

A second experiment instantiated a fault-tolerant version of the rendezvous algorithm, orig-

inally presented in [44]. In this work, agents achieve consensus by moving towards points

within a safe set, while maintaining connectivity through extendable sensing capabilities

[44]. Because this algorithm models agents as points in the plane and contains no native

collision avoidance, the successful execution utilize the single-integrator-to-unicycle map-

ping and barrier certificates provided by the Robotarium. Figure 7.5 shows the results of

this experiment with six robots.

7.5.2 Passivity-based Attitude Synchronization from the Tokyo Institute of Technology

A passivity-based attitude synchronization algorithm, originally presented in [45], was im-

plemented on the Robotarium. Utilizing the passivity property of general rigid-body motion

in SE(3), this algorithm was designed to achieve attitude synchronization for a group of

rigid bodies with only local information exchanges, i.e., vi = vj, limt→∞ θi(t) − θj(t) =

0,∀i 6= j. The successfully execution of this algorithm relies on the following capabilities

provided by the Robotarium: 1) specification of a local information exchange graph (i.e.,

a cycle graph CN ); 2) a mapping from single-integrator to unicyle dynamics. Figure 7.6

shows the results of this experiment with eight robots.

7.6 Conclusion

This chapter discussed the Robotarium, a remotely accessible swarm-robotics testbed,

which has been a major application for the theoretical developments of this thesis. The
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Robotarium provides an openly accessible robotics testbed to those without the resources

to maintain a cutting-edge robotics lab and also levels the playing field for robotics algo-

rithms. The software infrastructure and use of barrier functions are critical to the Robotar-

ium, and this chapter contained information on these topics, particularly, in illustrating how

barrier functions can be used in a practical application that preserves the robots’ hardware

while also ensuring that users’ algorithms complete successfully.
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APPENDIX A

NOTATION

The symbol × stands for the Cartesian product. We denote by R≥0 the set of nonnegative

real numbers. For an integer k > 0, we use the shorthand notation [k] to denote the set

{1, . . . , k}. The symbol ◦ denotes function composition. The abbreviation a.e. stands for

almost everywhere in the sense of Lebesgue measure. The expression 〈· , ·〉 represents the

inner product of two vectors. The abbreviation co stands for the convex hull of a set. A

function α : R → R belongs to extended class-K if α is continuous, strictly increasing,

and α(0) = 0. The function α is a class-K function when restricted to R≥0. A function

β : R≥0 × R≥0 → R≥0 is class-KL if it is class-K in its first argument and, for each fixed

r, β(r, ·) is continuous, strictly decreasing, and lims→∞ β(r, s) = 0.
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APPENDIX B

DISCONTINUOUS DYNAMICAL SYSTEMS

This appendix discusses discontinuous dynamical systems in relation to the controller-

synthesis results of this work. Controller synthesis, with respect to nonsmooth Lyapunov

or barrier functions intevitably produces a discontinuous controller. As such, the theory of

discontinuous dynamical systems is required to analyze discontinuous controller synthesis.

Section B.1 introduces the systems of interest for this thesis. However, ODEs with dis-

continuities in the state variable typically lack solutions. As such, Section B.2 discusses

differential inclusions, which have solutions under lighter regularity conditions than ODEs.

This section also discusses how discontinuous ODEs may be mapped into differential in-

clusions for which solutions exist. Differential inclusions require some set-valued analysis,

so Section B.3 notes some relevant results in this area. Finally, Section B.4 discusses some

related work to discontinuous systems (e.g., hybrid, switched systems).

B.1 System of Interest

This thesis considers control-affine system of the form

ẋ(t) = f(x(t)) + g(x(t))u(x(t)), x(0) = x0, (B.1)

where f : Rn → Rn and g : Rn → Rm are continuous and u : Rn → Rm is measurable

and locally bounded. The value x0 denotes the initial condition for the system. Most me-

chanical systems fall into this category of systems (e.g., quadcopters and differential-drive

robots). Note that in (B.1) f and g are assumed to be continuous, but u is only assumed to

be measurable and locally bounded, which very generally captures discontinuities. Theo-

retically speaking, f and g may be assumed to also be measurable and locally bounded, but
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as this work typically discusses (B.1) with respect to controller synthesis, the continuity

assumption is maintained for brevity.

One may argue whether the assumption, namely that u is measurable and locally bounded,

is an appropriate way to analyze discontinuous dynamical systems. Indeed, other methods

exist in the literature two of which are switched systems and hybrid systems. See Sec-

tion B.4 for a comparison among these methods.

For some parts of this work, the time-varying ODE

ẋ(t) = f(x(t)) + g(x(t))u(x(t), t), x(t0) = x0, t0 ∈ R. (B.2)

may also be referenced when relevant. In general, the theory developed for (B.1) also holds

for systems described by (B.2) by including time as a state.

One side effect of assuming a discontinuous model is that solutions to such a system

may not exist. Indeed, even for simple systems, the systems in (B.1) and (B.2) may not

have solutions. Consider the following example.

Example B.1. Let

ẋ(t) = f(x(t)),

where f : R→ R. Define f as the function


f(x′) = 0 x′ 6= 0

f(x′) = 1 x′ = 0.

Figure B.1 displays this function. Then, solutions do not exist for every initial condition.

For example, consider x0 = 0.

With the above example in mind, the question arises of which type of solution to use.

In the case that f , g, and u are locally Lipschitz continuous, solutions may assumed to be

continuously differentiable. Indeed, under these assumptions, solutions always exists (over
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Figure B.1: A function for which the corresponding differential equation does not have a
solution for every initial condition.

some interval) and are unique. However, in the case of (B.1), u is discontinuous. Thus,

solutions cannot be continuously differentiable. Accordingly, the idea of a solution to an

ODE must be expanded in order to apply to discontinuous systems.

This line of thought introduces the question: what are the essential qualities of a solu-

tion? In this case, we seek a continuous function whose derivative exists and is integrable.

Moreover, the integration results in the function itself (i.e., the fundamental theorem of cal-

culus applies). As such, the right notion of continuity is absolute continuity. In particular,

a function x : [a, b] → R is absolutely continuous on the interval [a, b] if for every ε > 0

there exists a δ > 0 such that whenever

∞∑
i=1

(bi − ai) ≤ δ,

for any finite number of disjoint subsets of [a, b], then

∞∑
i=1

‖x(bi)− x(ai)‖ ≤ ε.

It turns out that a function is absolutely continuous if any only if the derivative ẋ exists

almost everywhere, in the sense of Lebesgue measure, is a Lebesgue integrable function,
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and

x(c) = x(a) +

∫ c

a

ẋ(s)ds,

for all c ∈ [a, b]. As such, if one seeks a continuous solution to an ODE, an absolutely

continuous functions is, mathematically, the weakest possible kind of solution. In the dif-

ferential equations literature, this type of solution is called a Carathéodory solution. Indeed,

the following statement may be made. Consider the ODE,

ẋ(t) = f(x(t), t), x0 = x(0),

if f : Rn × R → Rn is locally bounded in both arguments, t′ 7→ f(x′, t′) is measurable

for each fixed x′ ∈ Rn, x′ 7→ f(x′, t′) is continuous for each fixed t′ ∈ R, then there exist

Carathéodory solutions for every initial condition. A function f is locally bounded if for

every (x′, t′) ∈ Rn × R there exists a δ1 > 0 and an integrable function m : [t′, t′ + δ2] →

R≥0 such that

‖f(y, s)‖ ≤ m(s),∀y ∈ B(x′, δ1), s ∈ [s, s+ δ2].

In this case, uniqueness is forsaken; however, no results of this thesis require uniqueness of

solutions.

However, this situation does not capture the ODEs in (B.1) and (B.2), because the

discontinuities occur in the state variable. Thus, discontinuous ODEs may not appropriate

from an analysis perspective. As such, the subsequent section discusses how to map a

discontinuous ODE to a differential inclusion for which solutions exist.

B.2 Differential Inclusions

This section covers some results on differential inclusions. As previously noted, some

difficulty arises when an ODE is discontinuous in the state variable (see (B.1)). Again

considering Example B.1 shows that the presented ODE also has no Carathéodory solutions
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for certain initial conditions (i.e., x0 = 0). Indeed, this situation arises because the function

f in Example B.1 is discontinuous in the state variable; thus, it does not meet the sufficient

conditions for existence of solutions. To address systems, as in (B.1). It turns out that

existence of solutions may be guaranteed upon a further relaxation of the concept of a

solution.

Indirectly, the theory of differential inclusions is utilized. A differential inclusion, in

contrast to a differential equation, is given by

ẋ(t) ∈ F (x(t)), x(0) = x0, (B.3)

where F : Rn → 2Rn is a set-valued map. To introduce this theory, Section B.3 contains

some notes on set-valued analysis, which holds some value for understanding differential

inclusions. Indeed, the conditions for existence to solution for (B.3) are weaker than that of

(B.1). In particular, Carathéodory solutions can be guaranteed when the set-valued map F

is nonempty, convex-, compact-valued and upper semi-continuous. The set-valued map is

nonempty, convex-, compact-valued if at each x′ ∈ Rn, F (x′) is nonempty, compact, and

convex. A set-valued map is upper semi-continuous if for every ε > 0, at every x′ ∈ Rn,

there exists a δ > 0 such that

‖y − x′‖ ≤ δ =⇒ F (y) ⊂ F (x′) +B(0, ε),

where F (x′) +B(0, ε) is meant to be understood as a set-valued addition. A Carathéodory

solution to a differential equation is an absolutely continuous function x : [0, t1]→ Rn such

that ẋ(t) ∈ F (x(t)) almost everywhere on [0, t1]. Just as in (B.2), differential inclusions

may also be formulated for time-dependent systems. In particular,

ẋ(t) ∈ F (x(t), t), x(t0) = x0, t0 ∈ R.
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The question remains: how can the discontinuous ODE in (B.1) be related to the differen-

tial inclusion in (B.3)? This question has been studied in [24] and, subsequently, applied

to controlled systems in [15, 16], which develops nonsmooth Lyapunov theory for discon-

tinuous dynamical systems. The work in [24] formulates Filippov’s operator, which maps

discontinuous differential equations to differential inclusions for which solutions exist.

Definition 19 ([16, Theorem 1]). Given a measurable and locally bounded function f :

Rn → Rn, Filippov’s operator K[f ] : Rn → 2Rn is defined at a point x′ ∈ Rn as

K[f ](x′) = co{ lim
i→∞

f(xi) : xi → x′, xi /∈ N,Nf ,

where Nf is a particular zero-measure set and N is an arbitrary zero-measure set.

As such, one may consider the differential inclusion resulting from Filippov’s operator

as

ẋ(t) ∈ K[f ](x(t)), x(0) = x0. (B.4)

Moreover,K[f ] automatically satisfies the sufficient conditions for existence of Carathéodory

solutions. That is, there exist Carathéodory solutions to the differential inclusions described

by (B.4). In the literature, these solutions are called Filippov solutions to (B.1).

For an example, return to Example B.1. In this case, Caratheéodory solutions to the

differential equation do not exist; however, Carathéodory solutions to the corresponding

differential inclusions via Filippov’s operator do exist. Intuitively, Filippov’s operator is

independent of the vector field at a particular point; as such, it can remove pathological

points in the vector field, ensuring that solutions always exist. For an example of this

phenomenon, consider the following example, which builds on Example B.1.

Example B.2. Let f : R→ R be as in Example B.1. Then, K[f ] : Rn → 2Rn is given by

K[f ](x′) = {0}, ∀x′ ∈ R.
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Thus, for any initial condition x0 the solution is the constant solution x(t) = x0. In fact,

K[f ] is single-valued everywhere, which, in this case, may be interpreted as the zero func-

tion.

For robotics applications, differential equations, as in (B.1), stem from a physical inter-

pretation of the system. As such, one may inquire if substituting the differential inclusion

in (B.4) for (B.1) represents a physically meaningful operation. This theorem posits in the

affirmative. In fact, one may argue that truly discontinuous systems, as in (B.1), are not

physically meaningful, particularly in robotic systems. Filippov’s operator regularizes dis-

continuous dynamical systems by eliminating points that have no physical interpretation

(e.g., Example B.2). For a comprehensive survey of discontinuous dynamical systems, see

[17].

A major topic of this thesis is forward set invariance via barrier functions. There are

different formulations of this concept in the literature, stemming from nonuniqueness of

solutions. However, this thesis uses the so-called strong version of forward set invariance

noted next.

Definition 20. A set C ⊂ Rn is forward invariant, with respect to (B.3), if x0 ∈ C implies

that x(t) ∈ C, for every t ∈ [0, t1], for every Carathéodory solution of (B.3) starting from

x0.

B.3 A Primer on Set-Valued Analysis

This section contains a very brief primer on set-valued analysis, pertaining to the work in

this thesis. This thesis concentrates on both discontinuous dynamical systems and non-

smooth analysis, whih both require set-valued analysis. Set-valued analysis deals with

objects that map points to sets. In this thesis, set-valued maps are denoted F : Rn → 2Rn ,

where 2Rn denotes the set of subsets (i.e., the power set) of Rn. That is, F maps points in

Rn to subsets of Rn.

134



In many senses, set-valued maps are analogous to functions; however, some extra con-

ditions typically apply. One important property of set-valued functions is upper semi-

continuity.

Definition 21. A set-valued map F : Rn → 2Rn is upper semi continuous if for every ε > 0

and for every x′ ∈ Rn, there exists δ > 0 such that

‖y − x′‖ ≤ δ =⇒ F (y) ⊂ F (x′) +B(0, ε).

The set-valued addition

F (x′) +B(0, ε)

is interpreted as

{z + e : z ∈ F (x′), e ∈ B(0, ε)}.

This work does not distinguish the symbols for usual addition and set-based addition.

Rather, we allow context to define these operations, following the notation in [41]. The

same philosophy applies to multiplication as well.

Pre-images of function play a critical role in analysis of functions, and continuity can

be formulated in terms of the pre-image of a function. For set-valued analysis, two pre-

images play a role: the upper and lower pre-image, which are defined as follows. Inter-

estingly, these pre-images coincide when F is a function (i.e., single-valued and nonempty

everywhere), yet they endow F with distinctly different properties.

Definition 22. Let F : Rn → 2Rn be a set-valued map, and let A ⊂ Rn. Then, the upper

pre-image F+(A) is defined as

F+(A) = {x′ ∈ Rn : F (x′) ⊂ A}.

Definition 23. Let F : Rn → 2Rn be a set-valued map, and let A ⊂ Rn. Then, the lower
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pre-image F+(A) is defined as

F−(A) = {x′ ∈ Rn : F (x′) ∩ A 6= ∅}.

The notion of upper semi-continuity, as in Definition 21, can be formulated in terms of

the upper pre-image, with certain extra assumptions on F . See [41] for a significantly more

thorough coverage of set-valued analysis.

B.4 Related Work

This appendix presents one potential approach to analyze discontinuous dynamical sys-

tems, and several other approaches have received considerable attention. Two that have

received significant attention are hybrid systems and switched systems. Hybrid systems

have been considered extensively in the literature (e.g., as in [35]). Hybrid systems com-

bine discrete and continuous elements into a single system. In particular, part of the state is

governed by a differential equation, and part of the state is controlled by a state automaton.

This formulation is similar to the formulation that this thesis utilizes, but there are some

noticeable differences. In particular, hybrid systems may consider solutions that are dis-

continuous (i.e., that have jumps). Hybrid systems without jumps bear a resemblance to the

differential inclusions considered in this thesis. For example, consider so-called dwell-time

systems with no jumps, which enforce the constraint that the system must spend a certain

amount of time in each state or mode. Such systems may be considered as differential

equations that are measurable in the time variable. As such, dwell-time systems may fall

into the class of systems that this paper considers.

Indeed, dwell-time systems with no jumps are related to switched systems, and switched

systems represent another class of discontinuous system [36, 46]. This theory specifies that

the dynamical system is controlled by a collection of differential equations, called modes,

between which the system switches. The switches are controlled by the so-called switching
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signal. Typically, switching signals are constrained to contain countably many switches,

meaning that this class of systems also falls into the discontinuous differential equations of

this thesis.
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APPENDIX C

NONSMOOTH ANALYSIS

This appendix discusses some tools from nonsmooth analysis as required for the theoretical

developments of this thesis. Nonsmooth analysis represents an important tool in this thesis,

because Boolean composition of barrier and Lyapunov functions, as formulated herein,

introduces points of nondifferentiability. Luckily, nonsmooth analysis has been a well-

studied topic, particularly with respect to controlled systems, and many mathematical tools

have been developed to analyze nonsmooth functions along trajectories of a dynamical

system.

A primary tool of nonsmooth analysis is the generalized gradient [11]. The general-

ized gradient is a set-valued map that captures all possible gradients around a point in an

analogous fashion to Filippov’s operator in Appendix B. The generalized gradient applies

to locally Lipschitz functions and always exists under these regularity conditions. Due to

Rademacher’s theorem, the usual derivative of a locally Lipschitz functions exists almost

everywhere, and the generalized gradient combines these possible derivatives into a set. It

turns out that the generalized gradient posses enough regularity to capture derivatives along

trajectories, making it suitable for analysis of nonsmooth Lyapunov and barrier functions.

This appendix discusses the generalized gradient of [11] and its applications to this work.

Specifically, Section C.1 discusses the rational behind the selection of the generalized gra-

dient as the primary nonsmooth-analysis tool of this paper, and Section C.2 presents the

generalized gradient and its corresponding calculus.

C.1 Choosing a Generalized Derivative

This section notes some rationale for the selection of a generalized derivative, as more

than one exist in the literature. With respect to controlled systems, prior work on stability
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and invariance (e.g., Lyapunov functions) usually makes smoothness assumptions to ease

analysis and ensure existence of solutions to the differential equation of interest. This thesis

utilizes nonsmooth functions, which correspondingly require nonsmooth analysis. In this

case, the particular branch of nonsmooth analysis corresponds to generalized derivatives

because, just as in the smooth case, analyzing nonsmooth functions along trajectories to

dynamical systems is a useful tool to assess qualities of the system over time.

In the case of nonsmooth functions, the usual derivative does not apply, and there are

a plethora of modifications to the usual derivative which all exist under particular assump-

tions. In fact, in this case, the regularity assumptions determine the appropriate object that

should be used. As noted in Appendix B, the integrability of derivatives of the functions

remains paramount. To see this, consider a function h : Rn → R, which may capture

some desirable property (e.g., invariance, stability). Let x : [0, t1]→ Rn be a Carathéodory

solution (see Appendix B) to a system (e.g., the differential inclusion in (B.3)). Now, one

wishes to analyze the composition t 7→ h(x(t)).

Ideally, the relationship

h(x(t)) = h(x0) +

∫ t

0

ḣ(x(s))ds

holds so that properties of ḣ(x(t)) are readily passed to t 7→ h(x(t)). Because x is a

Carathéodory solution, continuously differentiability is impossible. Moreover, the desired

integrability property requires that the composition t 7→ h(x(t)) is absolutely continuous.

By definition, Carathéodory solutions x are absolutely continuous, but absolutely continu-

ous functions are not closed under composition. As such, assuming h is absolutely contin-

uous is not sufficient. One method of guaranteeing absolute continuity of the composition

is to assume that h is locally Lipschitz continuous. The goal now is to select a generalized

derivative for locally Lipschitz functions that captures the usual derivative when applicable.

Capturing the usual derivative means the following. Theories such as Lyapunov are
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critically based on analyzing a function along trajectories, as previously noted. In the

smooth case, the usual chain rule may be used to spatially verify that the derivative satisfies

the desired property. That is, given a smooth function h and a continuously differentiable

trajectory x, one may analyze the product

∇h(x′)>f(x′),

where f(·) represents the dynamics for x, over a the domain Rn 3 x′. To appropriately

analyze the nonsmooth case, the selected generalized derivative must provide a means to

spatially analyze the system.

C.2 The Generalized Gradient

One such object that has an extensive calculus is the generalized gradient of [14]. Moreover,

this object applies to locally Lipschitz functions. As such, it is a natural fit for this class

of nonsmooth functions. Moreover, the calculus of [14] is particularly applicable to the

case of Boolean composition, which is discussed below. Toward introducing this theory,

the generalized directional derivative is defined below.

Definition 24 ([14]). The generalized directional derivative of a function f : Rn → R at a

point x′ ∈ Rn in the direction v is given by

f ◦(x′; v) = lim sup
y→x′
h↓0

f(y + hv)− f(y)

h

.

The generalized directional derivative, as in Definition 24, always exists due to the

lim sup operation. However, some regularity assumptions on f are required to make it

usable for analysis purposes. In particular, when f is locally Lipschitz, f ◦ obtains desirable

properties, and, in finite dimensions, permits the definition of the generalized gradient as
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follows.

Definition 25 ([14, Chapter 2, p. 27]). Let f : Rn → R be locally Lipschitz. The general-

ized gradient at a point x′ ∈ Rn of f is defined as

∂f(x′) = {z ∈ Rn : 〈z , v〉 ≤ f ◦(x′, v),∀v ∈ Rn}.

The locally Lipschitz assumption on the function, within Definition 25, ensures that

the set ∂h(x′) is nonempty, convex, and compact (in finite dimensions). Moreover, as a

set-valued map ∂f : Rn → 2Rn is upper semi-continuous [14, Proposition 2.1.5], and the

following relationship between h◦ and ∂ch holds

h◦(x′; v) = max
z∈∂ch

z>v, (C.1)

for every x′, v ∈ Rn [14, Proposition 2.1.2].

As an aside, one may pick a relaxed derivative to represent ḣ(x(t)), such as a one-sided

derivative or a Dini derivative. However, since this thesis has already noted a need for h to

be locally Lipschitz continuous, using a weaker derivative becomes unnecessary. Moreover,

in the finite-dimensional case, the generalized gradient admits a simpler definition than in

Definition 25.

Theorem C.1 ([14, Theorem 2.5.1]). Let h : Rn → R be Lipschitz near x′, and suppose S

is any set of Lebesgue-measure zero in Rn. Then, the generalized gradient of the function

∂ch(x′) is

∂ch(x′) = co{ lim
i→∞
∇h(xi) : xi → x′, xi /∈ Ωh, S},

where Ωh is the Lebesgue-zero-measure set where h is nondifferentiable.

The generalized gradient also has a developed calculus that becomes invaluable in this

work. This authors of [14] cover this system extensively, but a few of the most relevant
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properties are included here. These propositions have been modified slightly to fit the

terminology of this work.

Proposition C.1 ([14, Proposition 2.3.12]). Let {hi} be a finite collection of functions

(i = 1, 2, . . . , k) Lipschitz near x′. Then, the function h defined by

h(x′) = max
i∈[k]
{hi(x′)}

is Lipschitz near x′ as well. Let I(x′) denote the set of indices i for which hi(x′) = h(x′).

Then,

∂ch(x′) ⊂ co{∂chi(x′) : i ∈ I(x′)}.

Theorem C.2 ([14, Theorem 2.3.9]). Let h = f ◦ g, where g : Rn → Rm and f : Rm → R

are locally Lipschitz functions, and let x′ ∈ Rn. Then

∂h(x′) ⊂ co

(
m×
k=1

∂cg
k(x′)

)
∂cf(g(x′)),

where gk denotes the kth component function of g.

Proposition C.2 ([14, Proposition 2.3.1]). Let h : Rn → R be a locally Lipschitz function.

For any scalar s one has

∂c(sh)(x′) = s∂ch(x′), ∀x′ ∈ Rn.

Recapping the above thoughts, nonsmooth functions must be analyzed along Carathéodory

solutions to differential inclusions. Given a locally Lipschitz function, the composition

with a trajectory remains absolutely continuous. However, the derivative will not exist at

every point in time. Fortunately, the generalized gradient spatially captures the derivative,

much like the usual chain rule in the smooth case.
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Theorem C.3. Let h : Rn → R be a locally Lipschitz function, and let x : [0, t1]→ Rn be

a Carathéodory solution to (B.3). Then,

ḣ(x(t)) ∈ ∂ch(x(t))>F (x(t)),

almost everywhere on [0, t1] 3 t.

Proof. From the proof of [19, Lemma 1] and (C.1), the derivative of t 7→ h(x(t)) satisfies

ḣ(x(t)) ≤ max ∂ch(x(t))>F (x(t))

ḣ(x(t)) ≥ min ∂ch(x(t))>F (x(t))

almost everywhere on [0, t1] 3 t. Moreover, since the usual inner product on Rn is contin-

uous and ∂ch and F (x(t)) are convex valued, the set ∂ch(x(t))>F (x(t)) is connected for

every t ∈ [0, t1]. Moreover, since it is a subset of the real line, it must be that

ḣ(x(t)) ∈ ∂ch(x(t))>F (x(t)),

almost everywhere on [0, t1] 3 t.

The reuslts of this work critically rely on Theorem C.3, because it allows properties

of a system to be spatially verified with respect to nonsmooth functions. That is, rather

than calculating ḣ(x(t)) explicitly, the algorithm or theorem may verify qualities of the

set-valued product

∂ch(x′)>F (x′)

over the domain Rn 3 x′ and then apply Theorem C.3.
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