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SUMMARY

Optimal control of large-scale multi-agent networked systems which describe social

networks, macro-economies, traffic and robot swarms is a topic of interest in engineer-

ing, biophysics and economics. A central issue is constructing scalable control-theoretic

frameworks when the number of agents is infinite.

In this work, we exploit PDE representations of the optimality laws in order to provide

a tractable approach to ensemble (open loop) and closed loop control of such systems. A

centralized open loop optimal control problem of an ensemble of agents driven by jump

noise is solved by a sampling algorithm based on the infinite dimensional minimum prin-

ciple to solve it. The relationship between the infinite dimensional minimum principle and

dynamic programming principles is established for this problem.

Mean field game (MFG) models expressed as PDE systems are used to describe emer-

gent phenomenon in decentralized feedback optimal control models of a continuum of

interacting agents with stochastic dynamics. However, stability analysis of MFG models

remains a challenging problem, since they exhibit non-unique solutions in the absence of a

monotonicity assumption on the cost function. This thesis addresses the key issue of sta-

bility and control design in MFGs. Specifically, we present detailed results on a models for

flocking and population evolution.

An interesting connection between MFG models and the imaginary-time Schrödinger

equation is used to obtain explicit stability constraints on the control design in the case

of non-interacting agents. Compared to prior works on this topic which apply only to

agents obeying very simple integrator dynamics, we treat nonlinear agent dynamics and

also provide analytical design constraints.

xii



CHAPTER 1

INTRODUCTION

1.1 Motivation and Prior Work

Control of continuous time nonlinear stochastic differential equations (SDEs) is at the core

of nonlinear stochastic optimal control (SOC) theory. Stochastic systems obeying SDEs

with Gaussian and non-Gaussian noise appear in several areas of research including eco-

nomics, autonomous and biological systems and population modeling [1],[2, 3, 4, 5]. In

most applications, the noise is used to model model or environmental uncertainty. Applica-

tions of stochastic control include robotics and autonomous systems such as in the control

of ground and aerial vehicles, articulated mechanisms and manipulators, and humanoid

robots [108110, 123, 127, 131], for modeling the control of movement in computational

neuroscience [130, 132] and stock option pricing in financial engineering [102, 121]. Cer-

tain systems involve large number of more or less identical subsystems which may be ma-

nipulated by individual or identical input signals. If the number of subsystems is as large as

103 − 106, it becomes difficult to conceive of a control framework treating each individual

separately. Examples of such systems are schools of fish and neurons in bio-physics, agents

in a wireless network and swarms of aerial drones.

In this thesis we study the optimal control problems and models related to non-cooperative

multi-agent and possibly networked systems, in the case that the number of agents is very

large. Individual agents in such systems maybe controlled by individual state feedback

or an identical broadcast input signal. The overarching goals are to provide (1) scalable

control-theoretic frameworks for such systems (2) control design constraints to guarantee

stability and (3) numerical schemes to solve the control problem.

The contents of this thesis are expressed in two parts. The first part is devoted to de-
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velopment of an ensemble control algorithm for the stochastic control of jump diffusion

processes and understanding the relationship between various optimality principles in en-

semble control. The second part considers synthesis and stability analysis of large scale,

individual feedback, non-cooperative and possibly networked multi-agent systems, also

known as mean-field games, for applications in modeling flocks and control design.

1.1.1 Ensemble Control

The term ensemble control applies to systems consisting of of a system consisting of a

large number of identical stochastic subsystems being manipulated by a single source of

command signals. In this context, the collection of subsystems is called the system and

an individual subsystem is called an elemental system. Examples of ensembles appear in

classical thermodynamics which models collections of identical particles, weakly interact-

ing particles appearing in quantum systems such as in nuclear magnetic resonance problem

and dynamical models of neurons. Prior works on optimal open-loop or ensemble (broad-

cast) control consider several copies of a particular deterministic [6] or stochastic ([7], [8]

system and have applications in quantum control [9] and neuroscience [10].

These applications have the common goal of controlling large-scale weakly interacting

individual systems using a single or perhaps a small number of control inputs. This means

that the control applied to each elemental system is identical, that is, lacks local feedback,

but depends on the overall distribution of the system at each instant of time. Considering

infinite copies of the finite stochastic state models of the elemental systems clearly cannot

provide a scalable mathematical framework in this case. Treating the collective ensemble

dynamics modeled by the Liouville or Fokker Planck (FP) PDE governing the distribution

of states of elemental systems provides is a more tenable approach. The infinite dimen-

sional minimum principle (MP) has been applied previously to solve such optimal control

problems when the individual subsystems are driven by Gaussian noise. The connection be-

tween the MP and dynamic programming for ensemble control was qualitatively explored,
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in the case of diffusions [20] and jump diffusions [21]. On the other hand the dynamic pro-

gramming principle obeyed by the value function corresponding to the infinite dimensional

problems has been theoretically explored [22], [23]. The motivation of this thesis on the

topic of of ensemble control is to present a complete exposition of the optimality principles

applied to ensemble control by explaining the relationship between the MP and dynamic

programming and to devise an algorithm for this control problem when the elemental sub-

systems with jump diffusion dynamics.

1.1.2 Mean Field Games

A standard idea in engineering, economics and biology is regulation using local feedback

information and is used to model decision making in large-size populations of rational

agents, for example in economics. Therefore dynamics and control of multi-agent popula-

tions consisting of a large number of identical and non-cooperative agents are of interest in

various applications including social networks, telecommunications, electrical micro-grids,

renewable energy systems, vehicle formations, competing or cooperating mobile robots,

micro-economics, finance and bio-physics such as in flocks or swarms. Optimal feedback

control applications of large-size populations of small robots with individual state-feedback

controllers have been proposed for inspection of industrial machinery [11], centralized con-

trol of hybrid automata [12] and decentralized control of robotic bee swarms for pollinating

crops [13].

There has therefore been an interest in modeling, control and optimization of large-scale

multi-agent stochastic dynamical systems in the mathematics and controls community. The

sources of complexity in such systems are the uncertainty in individual agent dynamics or

communication between agents, interaction among agents and the large number ( 103 to

106) of agents. Due to the large number of agents it is more prudent to develop decentral-

ized solutions to such control problems so that individual agents take actions based on their

local information and certain statistical information about the population. Consequently
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providing tractable control-theoretic frameworks for modeling and control of large-scale

systems is a critical topic shared by several areas of research.

A viable approach which provides scalable mathematical models for such systems ap-

plies the notion of the ’mean-field’, which is inspired from particle physics which focuses

on quantifying the interaction among particles. Traditional physics approaches which study

interactions between couples or triples of particles cannot be used in case of particle physics

due to their very large numbers. The mean-field approach is the statistical idea that it is suf-

ficient to study interactions between particles and the collection of all other particles con-

tained in a media, which is referred to as the mean-field. An example of such behavior is

air pressure which is created by microscopic motions of particles but impacts each particle

in a macroscopic way. This micro-macro interaction is a salient feature of the mean-field

approach. The interactions between individual agents is therefore replaced by the interac-

tion between a single particle and the mean-field. This is the key idea which makes the

mathematically tractable frameworks possible for large-scale systems. Finally, the optimal

control framework allows us to model explicit interaction between agents and the mean-

field by using state dependent costs which depend on the statistics of the population.

One of the earliest applications of mean field theory to large-scale systems using op-

timal control is seen in [14], which presents a Nash equilibrium interpretation of non-

cooperative behavior of a continuum of agents. Several works on game-theoretic models

of large population models have appeared in the economics literature following this paper.

The idea of the general equilibrium lies at the core of modern economics. The earliest

work formally applying the mean-field approach in combination with a optimal control

game-theoretic interpretation of large population dynamics [14] approximates a Markov

perfect equilibrium (MPE) of a dynamic game involving several firms using the idea of the

oblivious equilibrium. Oblivious equilibrium describes a model in which each individual

agent takes decisions based on its own state variable and the mean-field but is oblivious to

the state of the overall system.
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Large scale non-cooperative multi-agent systems involving coupled costs were intro-

duced independently by Huang et. al [15] and as as mean field games (MFG) by Lasry et. al

[16] in 2007. The key ideas of MFG theory are assuming an infinite number of anonymous

agents with rational expectations and that individual decisions are based on statistical in-

formation about the collection of agents. This theory has therefore become a viable tool by

providing a tractable framework to model self-organizing large-scale networked-systems

due to its game-theoretic optimal control interpretation of emergent behavior observed in

bio-physical systems [8], financial [6], traffic [5] and energy [7].

Figure 1.1: Flocking of birds (left) and (right) flow of city traffic in a multi-way intersec-
tion.

In the continuum approach, the simplest MFG models prescribe interaction between the

agent and mean-field through density dependent state cost functions and are synthesized as

standard stochastic optimal control problems (OCP). Quadratic MFGs refer to systems with

quadratic control cost and control affine agent dynamics constitute. If the state cost func-

tion has only local density dependence and is strictly increasing, steady state solutions to

the MF system can be shown to be unique [9] in many cases. In the continuum case, MFG

models are synthesized as standard [3] stochastic optimal control problems (OCP). Fokker

Planck (FP) and Hamilton Jacobi Bellman (HJB) equations form a fully coupled mean

field (MF) optimality system governing agent density and value functions. Assumptions of

quadratic control cost and control affine agent dynamics constitute quadratic MFG models

[4]. However, in the absence of monotonicity of the state cost function, MFGs may exhibit

non-unique solutions and related phase transitions ( [4], [8], [10]). Real-world large-scale
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networked systems often have several operating regimes so that non-monotonicity in the

corresponding MFG models is expected to be the norm, rather than an exception. The

closed-loop stability analysis of MFG models that do not satisfy this monotonicity condi-

tion usually has to be treated on a case-by-case basis. We say that a given fixed point of the

MFG is called (linearly) closed-loop stable if any perturbation to the fixed-point density

decays to zero under the action of the control, where both the density and control evolution

are computed using the (linearized) coupled forward-backward system of FP-HJB PDEs.

Figure 1.2: Stability of MFGs models

Stability of a MFGs was first studied by Guant [11] for a reference model with a nega-

tive log density cost. Other works on this topic include a Kuramoto oscillator model with

nonlocal cost coupling by Yin et. al [10] and a mean consensus cost by Nourian et. al (

[12], [13]). These prior works are limited by the fact that they exclusively treat the case

where the agents obey very simple integrator systems. On the other hand, the MF approach

to large-scale networked systems with nonlinear agent dynamics have proved to be useful

in modeling flocks [15], neural networks [16], crowds [14] and robotic control [17]. This

motivates our work on synthesis and linear stability analysis of MFG models for applica-

tions to modeling flocks and nonlinear stability analysis, specifically in the case that agents

have nonlinear mobilities.
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Multi-agent populations consisting of a large number of identical and non-cooperative

agents are of interest in several applications including macro-economics, robotic swarms,

traffic and neuroscience. Optimal open-loop or closed-loop ensemble (broadcast) control

has been used in prior works which consider several copies of a particular deterministic

[6] or stochastic ([7], [8], [17]) system and have applications in quantum control [9] and

neuroscience [10]. Optimal control models of collective behavior typically treat agents

which are driven by individual noise and state-feedback control, and interact with each

other through the coupling of their passive dynamics or utility with the overall statistics

of the population. The mean-field approach provides a tractable framework for describing

collective behavior of a continuum of agents, by approximating their individual actions

[14] as the oblivious control [18] of a single representative agent and was formalized by

the Mean field games (MFGs) ([16], [15]) framework.

Most works on MFGs consider explicit interactions between agents through the de-

pendence of their dynamics or cost function on the population density. The correspond-

ing optimality system consists of a backward-in-time semilinear Hamilton-Jacobi-Bellman

(HJB) equation governing the value function and a forward-in-time Fokker-Planck (FP)

equation governing the density, wherein the HJB equation depends on the density and the

FP equation depends on the value function. However, even if the individual dynamics or

cost functions are independent of the density, the agents implicitly interact with each other

since their controls optimize the utility which depends on the population density. In this

case, the HJB equation is independent of the density but the FP equation depends on the

value function. Agents which lack explicit interaction have been studied using the mean-

field approach in macro-economics [14]. In certain physical systems such as robot swarms

([12],[13]), if the dimensions of individual agents are small compared to their region of

operation, then it can be assumed that the agents do not locally interact with each other.

Designing optimal decentralized controllers for such systems, which guarantee closed-loop

stability of the stationary density of agents under the action of their individual steady state
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controls is therefore a challenging problem in control theory.

The final topic of interest in this thesis related to MFGs is the connection between

stochastic control and quantum mechanics. This connection is well known and is rooted

in the deep relationship between PDE theory and SDEs. More recently, the related the-

oretical facts, in particular the path integral representation of the log transformed value

function has been popular in applications. The knowledge of this log transform dates back

to Schrödinger and was formalized in 1950 in the context of the heat and fluid PDEs by

Cole and Hopf independently. This transform proved to be of fundamental significance in

showing the relationship between noisy Newtonian systems and quantum mechanics. In

2017, the same change of variable was used along with a hermit transform to show the

equivalence of the coupled FP-HJB system comprising the MFG optimality system and the

Schrödinger equation pair [19], when agents obey simple integrator dynamics and interact

locally. Since the Schrödinger equations are linear, leveraging this transformation is a pow-

erful technique to analyze stability and obtain numerical schemes to solve the optimality

system. Thus the theory of solitons in quantum mechanics was fashioned for understand-

ing the mechanics of a MFG model in ([20]). However the present literature is limited to

treating the simplest possible integrator agent dynamics for specific costs. We introduce a

closely related but novel transformation which enables us to make the MFG-Schrödinger

equation connection and present general control design constraints for stability and syn-

thesize a computationally advantageous sampling based method to solve the optimality

system.

1.2 Structure of the Thesis and Contributions

• Chapter 3 Ensemble control of Jump Diffusions: In chapter 3 we solve the prob-

lem of the control of a density an ensemble of stochastic ensembles driven by marked

jump diffusions. We assume the input to be a broadcast controller, which is identi-

cal for each agent and uses only the macro density as the feedback. We derive the
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optimality system using the MP which gives the necessary conditions for the opti-

mal control. A sampling control algorithm is derived by solving a nonlinear HJB

PIDE using only forward sampling of the open loop individual element dynamics.

We explain the infinite dimensional MP-DPP relationship for this problem by ex-

plicitly showing the relationship between the costate and infinite dimensional value

functions.

In relation to prior work on control of jump diffusion processes, the proposed al-

gorithm applies to the most general class of marked jump diffusions. Compared

to the restricted linear-quadratic problems which can be solved by modifications of

linear-quadratic-regulators, our theoretic and algorithmic framework admits nonlin-

ear passive dynamics. A closely related sampling approach was used in [8], [12] but

applies only to simple jump diffusions. Additionally, we introduce state parameteri-

zation of the controls to incorporate implicit feedback to enhance the performance of

our algorithm which appears first in our work [17].

The relationship between the MP and DPP is a well explored topic in control theory

for finite dimensional systems. The explanation hinges on showing the relation be-

tween the Lagrangian multiplier or costate and the value function or optimal cost-to-

go. In the context of infinite dimensional systems, this topic was first broached in [],

wherein the authors allude to the fact that the relationship in the finite dimensional

case can be viewed as a special case of the infinite dimensional case. We explic-

itly show the relationship in the infinite dimensional setting when elemental systems

obey marked jump diffusion dynamics by directly showing the relation between the

infinite dimensional value function and the costate function.

• Chapter 4 Mean Field Games for Agents with Langevin Dynamics: In this chap-

ter we analyze the linear stability of MFG models in the case that the passive agent

dynamics obey nonlinear Langevin dynamics. We explain how this result can be
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extended to the more general case when agents obey a class of nonlinear dynamics

called reversible diffusions. Explicit control design constraints required to guarantee

stability are obtained for two specific models with local and non-local density depen-

dent cost functions. Further, it is observed and verified numerically, that the fixed

point static controller is also stabilizing under small density perturbations.

Our main contribution on this topic is to generalize the functional-analytic method

used to analyze linear stability of MFGs for agents with integrator dynamics to the

class of MFGs in which agents obey Langevin dynamics. Linear stability was in-

troduced for a specific MFG by Guéant [21] in 2009. This was followed by works

on models for a Kuramoto synchronization model [18] and a mean consensus model

[22]. In [23] we show that the detailed balance property of reversible diffusions al-

lows us to generalize the linear systems based method introduced in [21] to show

stability of MFG models in which agents obey this broad class of nonlinear diffusion

dynamics. Explicit stability constraints on the control design are obtained using this

method for two models which have local and non-local interactions between agents.

• Chapter 5 Modeling Flocks using Mean Field Games: A control system mimicking

homogeneous flocking is presented in chapter 5 by constructing a MFG with non-

cooperative agents possessing nonlinear mobilities.

With respect to prior works we show stability results for the flocking MFG model in

which agents possess nonlinear mobilities. Prior works based on consensus models

[22], [24], [18] apply exclusively to the case in which agents obey integrator dynam-

ics. Phase transitions observed in an earlier proposed uncontrolled model [25], [26]

are recovered numerically from the proposed controlled flocking model, along with

some new ones, by tuning the control parameter. A contraction mapping argument

is used to show stability of the proposed model. The low-rank perturbative nature

of the nonlocal term in the forward-backward optimality system governing the state
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and control distributions is exploited to provide a closed-loop linear stability analy-

sis demonstrating that our model exhibits bifurcations similar to those found in the

empirical model.

• Chapter 6 Schrödinger Approach to Large Scale Control: In this chapter we con-

sider the problem of designing state-feedback controllers which guarantee closed-

loop stability and computation of the control for large-size populations of identi-

cal, non-cooperative and non-interacting stochastic agents. A novel Cole-Hopf type

transform is introduced to represent the optimality system constituted by coupled

forward-backward PDEs in terms of decoupled Schrödinger equations. We propose

a quadrature based sampling algorithm to compute the control in the finite time hori-

zon case.

Prior works on change of variables to treat the HJB PDEs [27], [28], [29] use the

logarithmic transform of the value function to linearize the HJB PDE. This transform

was first formalized by Cole and Hopf independently. In [19] this transform was used

to express the coupled FP-HJB system for certain MFG models with integrator agent

dynamics, as the Schrödinger PDE pair. In this chapter we explain a closely related

but novel transform introduced by us in [23] which makes it possible to obtain the

same result in case agents obey nonlinear Langevin dynamics. In the context of

algorithms to solve the optimality system, the sampling based algorithms proposed

based on the introduced transform was introduced first by us in [23].

• Chapter 7 Conclusions: In this chapter we state our conclusions and give some

future research directions.
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CHAPTER 2

TECHNICAL BACKGROUND

In this chapter, we explain the notation used in this thesis and provide a brief introduction

to the required technical background for this work. In section 2.1, we describe the basic

building blocks of stochastic systems including probability spaces, stochastic processes and

the Brownian motion. In section 2.2 we review basic results on SDEs and related existence

and uniqueness results and state the standard formulation of the stochastic optimal control

problem. Finally, in section 2.4 we state the stochastic control problems we study in this

thesis and also state the principle of dynamic programming and corresponding optimality

systems.

Note that the scope of this thesis extends beyond the fundamental literature on stochas-

tic control elucidated this chapter. For instance, chapter 3 is concerned with control of

densities affiliated with stochastic systems driven by non-Brownian noise and chapters 4,

5 and 6 consider interacting and non-interacting multi-agent control problems. The back-

ground material specific to these topics is not commonly contained in standard texts on

stochastic control and will be discussed in detail in those chapters.

2.1 Notation

The following list summarizes frequently used notation and abbreviations.
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Rd d dimensional Euclidean space

AT transpose of matrix A

tr(A) the trace of matrix A

Cn the space of functions f : A→ R which is n times

continuously differentiable on the set A

Cn,m(A×B) the space of functions f : A×B → R which are Cn

on the set A and Cm on set B

∇(·), (·)x the gradient operator

∇ · (·) the divergence operator

(·)xx the Hessian operator

∆(·) the Laplacian operator

:= defined as

≈ approximately equal to

Fs the filtration at time s

E the expectation operator

N (µ, σ2) Gaussian (normal) distribution with mean µ and variance σ2

wt the standard Brownian motion

Lp([0, T ];Rn) set of {Ft}0≤t adapted, p integrable, Rn valued processes

DPP Dynamic Programming Principle

MP Minimum Principle

HJB Hamilton Jacobi Bellman equation

FP Fokker Planck equation

2.2 Stochastic Processes

In this section we provide a brief summary of the mathematical background required for

this thesis. Please see references [30], [31], [28] for further details.

The basic building block for constructing a probability space is the σ algebra which is
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defined below.

Definition 2.2.1. (σ algebra) Let Ω be nonempty. A nonempty class F ⊆ 2Ω (2Ω) being the

set of all subsets in Ω is called a σ algebra if Ω ∈ F , B \ A ∈ F for every A,B ∈ F and

∪∞i=1Ai ∈ F if Ai ∈ F for every i = 1, 2, 3... We call (Ω,F) as the measurable space.

Definition 2.2.2. (Probability space) Let Ω be a nonempty set and F be a σ field on Ω

so that (σ,F) is a measurable space. We call en element ω ∈ Ω a sample. Further, any

A ∈ F is called an event. A map P : F → [0, 1] is called a probability measure if P(φ) = 0,

P(Ω) = 1 and P(∪∞i=1Ai) =
∑∞

i=1 P(Ai) if Ai ∈ F and Ai∩Aj = φ for all i, j = 1, 2, 3...,

i 6= j. We call the triple (Ω,F ,P) the probability space. We call (Ω,F ,P) a complete

probability space if A ∈ F for every A ⊆ Ω with the outer measure of P being zero.

Definition 2.2.3. (Independence of events) let (Ω,F ,P) be a probability space. Two events

A,B ∈ F are called independent if P(A ∩B) = P(A)P(B).

Random variables are functions from the event space to the set of real numbers.

Definition 2.2.4. (Random variable) Let (Ω,F ,P) be a probability space. A function

x : Ω → Rd is called F measurable if x−1(A) = {ω ∈ Ω|x(ω) ∈ A} ∈ F . A F

measurable function x : Ω → Rd is called a random variable. We denote by Px the in-

duced probability measure of the random variable x defined as Px(A) := P(x−1(A)). We

define the mathematical expectation of x is defined as

E[x] :=

∫
Ω

x(ω)dP(ω) =

∫
Rd
y dPx(y).

Further, if f : Rd → Rn is measurable, then we define

E[f(x)] :=

∫
Ω

f(x(ω))dP(ω) =

∫
Rd
f(y) dPx(y).

The definition of independent random variables follows from that of independence of

events. If two random variables x, y on Ω then E[xy] = E[x]E[y].
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Definition 2.2.5. (Stochastic processes) We define a stochastic process as being a set of

parameterized random variables {xt}t∈A on the probability space (Ω,F ,P).

In this thesis we exclusively use the sets of positive numbers A = [0,+∞] or the

interval A = [0, T ] where T > 0 as the parameter space. The notation xs(ω) is used

to denote the stochastic process consisting of random variables x : Ω → Rd, with the

shorthand notation xs.

Definition 2.2.6. (Filtration and adapted process) Let (Ω,F ,P) be a probability space. A

filtration on (Ω,F ,P) is defined as the set of σ algebras Ft, denoted by {Ft}t≥0, such that

Fs ⊂ Ft for every 0 ≤ s < t. The stochastic process {xs}s≥0 on (Ω,F ,P) is called Ft

adapted if xs : Ω→ Rd is Ft measurable for every t ≥ 0.

In this work, when we say that a process is adapted to a filtration, we also mean that it

is progressively measurable with respect to that process.

Definition 2.2.7. (Usual Condition) We say that (Ω,F , {Ft}0≤t,P) satisfies the usual con-

dition if (Ω,F ,P) is complete, F0 contains all the P null sets in F and {Ft}0≤t is right

continuous.

Definition 2.2.8. (Square integrable stochastic process) We say that a stochastic process

xs is square integrable if E[
∫ T
t
x2
sds] < +∞ for every T > t.

Most stochastic systems in the literature typically use a specific type of model for the

stochastic process governing the noise, namely, the Brownian motion. However In this the-

sis we work on stochastic systems which are driven by Brownian as well as non-Brownian

noise, specifically the Poisson process. However we will elaborate on the class of Poisson

processes we consider in detail only in chapter 3. Below we define the standard Brownian

process which is widely used to model noise in control and estimation.

Definition 2.2.9. (Standard Brownian Motion) Standard Brownian motion is a stochastic

process denoted as {wt}t≥0 is a stochastic process on the probability space (Ω,F ,P) which

satisfies the following rules:
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(i) zero initial condition: w0 = 0

(ii) independence of increments: the random variables wk+1−wk are mutually indepen-

dent for k = 0, 1, 2...

(iii) Gaussian increments with variance increasing linearly with time: wt−ws ∼ N (0, s)

(iv) continuous paths: wt(ω) is everywhere continuous for almost every ω ∈ Ω.

This definition can be extended easily to the case of multi-dimensional Brownian mo-

tions. Note the following properties in the one dimensional case: E[wt − ws] = 0 and

E[(wt − ws)2] = (t − s) from the Gaussian increments assumption. Further, note that the

ratio dwt/dt ∼ N (0, 1/dt) referred to as white noise in engineering applications, techni-

cally has infinite variance as dt→ +∞.

We do note discuss in details the stochastic integration rule called Itô’s rule and the

related itô stochastic calculus for the Brownian motion. Let wt be a standard Brownian

motion and xt be a measurable, square integrable, Ft adapted process. The Itô integral of

xt over wt to time T is the stochastic process denoted by

It =

∫ t

0

xsdws. (2.1)

We refer the reader to the book [28] for a detailed explanation of the Itô calculus. In this

work, we exclusively use Itô integration when we refer to a stochastic integral.

2.3 Stochastic Differential Equations

Consider the difference equation

dxt = f(t, xt) + σ(t, xt)dwt
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with x0 = ξ P − a.s, which governs a stochastic process xt on the probability space

(Ω,F ,P). In this equation we would like to obtain the random variable xt, which can be

obtained by the Itô integration

xt = ξ +

∫ t

0

f(s, xs)ds+

∫ t

0

σ(s, xs)dws.

We utilize this model of stochastic processes in this work and assume that f : [0,+∞) ×

Rd → Rd, σ : [0,+∞) × Rd → Rd×m and ws is a standard m dimensional Brownian

motion. We assume here that the initial state is known deterministically P a.s. The functions

above are required to have certain continuity properties in order to ensure that the assumed

model has a solution and that it is unique. Namely, we require Lipschitz continuity and

almost linear growth conditions on the passive dynamics f and noise matrix σ, that is there

exist C,D > 0 such that for all t ∈ [0,+∞), x, y ∈ Rd such that

(E1) |f(t, x)− f(t, y)|+ |σ(t, x)− σ(t, y)| ≤ C|x− y|

(E2) |f(t, x)|+ |σ(t, x)| ≤ D(1 + |x|)

Theorem 2.3.1. If T > 0, f and σ are uniformly continuous, measurable functions and

assumptions (E1), (E2) are true, then the SDE (2.3) has a unique, square integrable and

adapted solution for all 0 ≤ t < T .

Consider the controlled SDE

dxt = f(t, xt, u(t)) + σ(t, xt, u(t))dwt

with x0 = ξ P − a.s, which governs a stochastic process xt on the probability space

(Ω,F ,P). We utilize this model of controlled stochastic processes in this work and assume

that f : [0,+∞)×Rd ×U → Rd, σ : [0,+∞)×Rd ×U → Rd×m and ws is a standard m

dimensional Brownian motion. We assume that U is a separable metric space and T > 0 is

a fixed number.
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The function u(t) is referred to as the control, action, decision or policy of the decision

maker or controller. We assume that the control sequence u(·) ∈ U [0, T ] := {u : [0, T ]→

U |u(·) is measurable} which is the class of feasible controls. The control is explicitly

parameterized by the time, but at any instant of time possesses knowledge about the state

of the system as specified by the information field given by the filtration {Ft}0≤t. In this

thesis, we assume that the controls are not anticipative or u(·) is {Ft}0≤t adapted, that

is it cannot foretell the future of the system, as a result of the inherent uncertainty in the

stochastic model. A simple consequence of this pertinent assumption the controller cannot

execute her/his decision meant for a particular time, before that time arrives. Therefore, the

control u(·) ∈ U [0, T ] := {u : [0, T ] × Ω → U |u(·) is measurable and {Ft}0≤t adapted}.

Notice that the domain U specifies a time invariant control constraint. However, in most

cases we will choose to apply control constraints implicitly through the cost function, for

various problems encountered in this thesis.

In lieu with theorem 2.3.1, we introduce the following assumptions to ensure that the

controlled SDE (2.3) has unique solutions given an admissible control. There exist C,D >

0 such that for all t ∈ [0,+∞), x, y ∈ Rd such that

(E3) |f(t, x, u)− f(t, x̂, û)|+ |σ(t, x, u)− σ(t, x̂, û)| ≤ C(|x− x̂|+ |u− û|)

(E4) |σ(t, x, u)− σ(t, x̂, û)|+ |σ(t, x, u)− σ(t, x̂, û)| ≤ C(|x− x̂|+ |u− û|)

(E5) |f(t, x, u)|+ |σ(t, x, u)| ≤ D(1 + |x|+ |u|).

We now introduce the cost functional

J(u(·)) := E[

∫ T

0

`(s, xs, u(s)) ds+ Φ(T, xT )] (2.2)

Definition 2.3.1. (admissible controls) Let (Ω,F , {Ft}0 ≤ t,P) satisfy the usual condi-

tion. A control u(·) for the system (2.3) is called admissible and (x·, u(·)) is called an

admissible pair if
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(i) u(·) ∈ U [0, T ]

(ii) x· is the unique solution to the SDE

(iii) ` ∈ L1
F [0, T ], Φ ∈ L1

FT ([0, T ]).

The set of all admissible controls is denoted by Uad[0, T ].

The following type of stochastic optimal control problem for a single agent is dealt with

in this work: find u(·) ∈ Uad[0, T ], if it exists, such that J(u∗(·)) = J(u(·))
u(·)∈Uad

. We will abuse

our own notation for convenience and write Uad[0, T ] simply as U [0, T ] in the following

part of this text.

2.4 Dynamic Programming Principle

A standard tool in optimal control is to create a look up table of the optimal cost-to-go map

from which the control maybe inferred by a form of gradient descent on the map, which

is also called the value function v(t, x) := min
u∈U

E[
∫ T
t
`(s, xs, u(s)) ds + Φ(T, xT )] under

the dynamics (2.3) with xt
P−a.s.

= x. We restate the stochastic version of Bellman’s [32]

principle of optimality for the standard stochastic control problem above.

Theorem 2.4.1. If ` : [0, T ] × Rd × U → R and Φ : Rd → R are uniformly continuous

and there exists D > 0 such that

(D1) |`(t, x, u)− `(t, x̂, û)| ≤ D(|x− x̂|

(D2) |Φ(t, x)− Φ(t, x̂)| ≤ D(|x− x̂|)

(D3) |`(t, 0, u)| ≤ D

(D4) |Φ(T, x)| ≤ D
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for every t ∈ [0, T ], x, x̂ ∈ Rd and u, û ∈ U then for every (t, x) ∈ [0, T ] × Rd and

0 ≤ t ≤ t′ ≤ T the value function satisfies

v(t, x) = min
u:[t,t′]∈U

E

[∫ t′

t

`(s, xs, u(s)) + v(t′, xt′)

]
. (2.3)

It is well known that under certain smoothness conditions of the value function, the

DPP may be applied to obtain a PDE representation of the value function. This backward-

in-time nonlinear PDE is called the HJB equation. We state the standard result on the

HJB equation related to control affine systems with state multiplicative Brownian noise

and quadratic control cost. We denote |u|2R = uTRu and assume that Rm×m 3 R > 0.

Theorem 2.4.2. Let f, σ be uniformly continuous mappings and let assumptions (E3), (E4),

(E5) hold. let `,Φ be uniformly continuous and let there exist a constant D > 0 such

that assumptions (D1), (D2), (D3), (D4) hold. Further, let f(t, x, u) = b(x) + g(x)u,

σ(t, x, u) = σ(x) and ` = q(x) + 1
2
|u2|R. Let us denote the Hamiltonian by H := ` +

vxT(b+gu)+ 1
2
tr(vxxσσ

T). If the value function v ∈ C1,2([0, T ]×Rd),H(t, x, ·) ∈ C1(U)

and there exists u∗ ∈ U [t, T ] such that H
u∈U

= H(t, x, u∗) for every (t, x) ∈ [0, T ] × Rd,

then the value function satisfies

−∂tv = q(x) + vT
x f −

1

2
vT
x gR

−1gTvx +
1

2
tr(vxxσσ

T) (2.4)

for every (t, x) ∈ [0, T ]×Rd with the terminal time boundary condition v(T, x) = Φ(T, x)

and the optimal control is given by

u∗(t, x) = −R−1gTvx(t, x). (2.5)

The benefit of using a DPP based approach is that we treat the uncertainty in the sys-

tem explicitly. However, the major disadvantage is issue of scalability in computing the

value function, referred to as the curse of dimensionality in the literature. In this thesis
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we will employ sampling based methods which use the Feynman Kac lemma discussed

here, to mitigate this problem to a certain extent. The sampling based approach was intro-

duced in [33] which linearizes the HJB equation by using the logarithmic variable transform

ψ(t, x) = exp(−v) along with the ad-hoc constraint gR−1gT = σσT, which results in the

following representation:

−∂tψ = −qψ + ψT
x f +

1

2
tr(ψxxσσ

T) (2.6)

with the boundary condition ψ(T, x) = exp(−Φ(T, x)). This equation can be computed

using the path integral representation:

ψ(t, x) = E
[
exp(−

∫ T

t

q(xs)ds)ψ(T, x)

]
(2.7)

with the expectation corresponding to the uncontrolled dynamics (2.3) with u(·) = 0 and

xt
P−a.s.

= x. Finally the optimal control is given by

u∗(t, x) = −R−1gTψx
Ψ

(t, x). (2.8)

This representation allows parallelizable algorithms to approximate the control at a given

position by forward sampling from the stochastic passive dynamics over the time horizon.

Therefore, although the related sampling based algorithms do not address the problem of

the curse of dimensionality directly, they offer a scalable alternative to compute the con-

trol for high dimensional systems. A final comment on the constraint gR−1gT = σσT

is that although ad-hoc, it was shown in [33] that the behavior of systems controlled by

such a sampling algorithm exhibit symmetry breaking, owing to this constraint. Addition-

ally, it clearly elucidates the adversarial relationship between control authority and noise

which is required to use the path integral representation of the control. However there are

recent works [34] which avoid the use of this constraint by using a nonlinear Feynman
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Kac representation of the value function through the theory of forward-backward SDEs.

This approach was also used to deal with systems with control multiplicative noise [35], in

which case the constraint above cannot be applied.

In the following chapters we will develop sampling based algorithms related to two

different problems. In chapter 3 we utilize the Feynman Kac lemma to solve an ensemble

control problem wherein the underlying subsystems obey jump diffusion dynamics. In

chapter 6 we will introduce a key modification of the logarithmic transform above in order

to fashion a sampling algorithm which does not require sampling from nonlinear passive

dynamics, the idea being that the numerical error resulting from propagating nonlinear

dynamics can be mitigated, especially when the model is uncertain.
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CHAPTER 3

ENSEMBLE CONTROL OF JUMP DIFFUSIONS

In this chapter we discuss the control of an ensemble of stochastic systems which have

continuous dynamics driven by Gaussian and non-Gaussian noise and do not interact with

each other. Since the number of agents is very large, the ensemble dynamics corresponds to

the evolution of the probability density function (PDF). The control problem is framed as

control of the forward Chapman-Kolmogorov partial integro differential equation (PIDE)

governing the PDF evolution. Necessary conditions corresponding to the infinite dimen-

sional MP for the optimal control of the forward Chapman-Kolmogorov PIDE are derived.

The relationship between infinite dimensional MP and DPP is investigated for this con-

trol problem. The relationship between infinite dimensional MP and stochastic dynamic

programming (SDP) is also shown. A value function corresponding to PIDE control prob-

lem is defined and is shown to obey a DPP. We prove the precise relationship between

the value function and optimal costate function satisfying the DPP optimality system and

infinite dimensional MP optimality system respectively. A sampling linear Feynman-Kac

formula based scheme, applicable to control of such SDEs with control dependent nonlin-

ear drift and noise terms, is derived and demonstrated.

3.1 Introduction

In this chapter we discuss the stochastic control of Q-marked Markov jump diffusion

(QMJD) or doubly stochastic jump diffusions processes. Such processes represented by

stochastic differential equations (SDEs) are used to model ecological population, finan-

cial and manufacturing processes [36, 37]. The motivation for this problem is to present

a complete exposition of the optimality principles applied to ensemble control of QMJD

processes, the relationship between the optimality principles and devise an algorithm for

the control problem. Considering our objectives to interpret the optimality principles as
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well as devise an algorithm, we will take a more pragmatic view in this work and consider

QMJD processes for which a smooth probability density function (PDF) exists.

The problem of ensemble control in the case of deterministic systems with initial state

uncertainty or diffusion SDEs is in general a parabolic partial differential equation (PDE)

control problem [38], [39]. Mathematical formulation of the stochastic optimal control

(SOC) problem in these settings is inherently infinite dimensional since the PDF dynamics

have partial differential character. For the case of QMJD processes, time evolution of

the corresponding PDF is described by a partial integro-differential equation (PIDE). As

a result, SOC problem of QMJD processes may be formulated as deterministic control of

the corresponding Chapman-Kolmogorov PIDE. To solve this infinite dimensional optimal

control problem, we apply the infinite dimensional MP. The infinite dimensional MP has

been studied [40], [41] and previously applied [42], [43] in stochastic problems for PDF

control of diffusions. Given this prior work on infinite dimensional MP for stochastic

control, the work in this chapter has the following main contributions:

• Detailed proofs of the necessary conditions for optimal control of the Chapman-

Kolmogorov PIDE dynamics for the case of Q-Marked Jump Diffusions processes

using the infinite dimensional MP.

• A generalized Bellman type equation satisfied by the optimal costate in order to show

the relationship of the infinite dimensional MP with stochastic Dynamic Program-

ming (SDP) applicable to a single stochastic agent.

• Proof of a Dynamic Programming Principle (DPP) obeyed by the infinite dimensional

value function for the PIDE control of QMJD processes.

• Exposition of the relationship between the infinite dimensional MP and DPP for dy-

namical systems with PIDE dynamics. We do this by showing the explicit relation-

ship between the optimal costate function and infinite dimensional value function.
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• An algorithm to compute the infinite dimensional MP optimal control using the SDE

representation of ensembles

The fundamental relationship between minimum principle (MP) and DPP in control of

deterministic differential dynamics has been a topic of great interest in the control theory

literature [31], [44], [45], [46]. In the control of SDE dynamics, the connection between the

stochastic minimum principle (SMP) and SDP was studied by Zhou [47] for the diffusion

processes. These studies were in the context of Forward Backward SDEs (FBSDEs) theory

for quasilinear [48] as well as fully nonlinear backward PDEs [49]. More recently this con-

nection was established in case of jump diffusions and marked jump diffusions [50], [51],

[52] and [53]. In all these works the MP and DPP are related through the equality of MP

costate function and derivatives of the value function and their corresponding derivatives.

The connection between the infinite dimensional MP and SDP was qualitatively ex-

plored recently, in the case of diffusions [54] and jump diffusions [17]. On the other hand

the DPP obeyed by the value function corresponding to the infinite dimensional problems

has been theoretically explored [55], [56]. However these works are not enlightening on a

few aspects of the infinite dimensional MP-DPP relationship. These prior works do not ex-

plain clearly how one may compute the infinite dimensional value function defined therein.

Understanding this is essential in order to compute the control. Further, they do not ex-

plain the precise relationship between the value function satisfying the DPP and the costate

function satisfying infinite dimensional MP optimality, when used for the same SOC prob-

lem. There is no material on this topic, to the knowledge of the authors, in the area of

control of PIDEs corresponding to QMJD processes. In this chapter, we present a general-

ized connection between infinite dimensional MP and DPP by explaining this relationship.

We define the value function for the PIDE control problem considered and prove the DPP

satisfied by it. Using the infinite dimensional MP optimality system derived in this chapter,

we prove a Bellman type equation for the optimal costate and PDF. This property enables

us to explain precisely the relationship between the infinite dimensional value function and
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infinite dimensional MP optimal costate function.

The optimality system derived in this chapter leads to forward sampling based algo-

rithms for solving nonlinear SOC problems. It is applicable for control of SDEs with

control multiplicative Gaussian [57] and marked Poisson noise and non degenerate ini-

tial distribution. Thus it expands applicability of sampling algorithms for problems which

cannot be solved by the linearly solvable control framework [58, 27, 59] and the forward

backward SDEs (FBSDEs) schemes [60, 61, 34] that permit semilinear PDEs. The results

presented in this section were published in [17].

This chapter is structured as follows. Section 3.2 contains preliminaries and statement

of the SOC problem addressed. In section 3.3 we prove necessary conditions for infinite

dimensional MP applied to QMJD processes. Section 3.4 contains complete exposition of

infinite dimensional MP-SDP and infinite dimensional MP-DPP relationships. A sampling

based PDF control framework for QMJD processes is presented in section 3.5 along with

illustrations. Finally we state our conclusions and future research directions in section 3.6.

3.2 Problem Formulation

In this section we provide assumptions and conditions related to existence and uniqueness

of solutions to a general class of controlled QMJD processes. Two theorems describing

the forward and backward Chapman-Kolmogorov PIDEs corresponding to evolution of the

PDF representing QMJD processes are stated. The proofs of these theorems are given in

the appendices.

3.2.1 Definitions

Let (Ω,B, {Bt}t≥0,P) be a filtered probability space and (xt)t≥0 a process which is pro-

gressively measurable with respect to it. We follow [62] and define this process over Rnx
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described by

dxt =F (t, xt, u(t))dt+B(t, xt, u(t))dwt +H(t, xt, Q)dP (t, xt; t, Q)

=F (t, xt, u(t))dt+B(t, xt, u(t))dwt +

∫
DQ

H(t, xt, q)P(t, xt; dt, dq), (3.1)

where xt ∈ Rnx , u(t) ∈ Du ⊆ Rnu , wt ∈ Rnw , Q ∈ DQ ⊂ Rnp , P ∈ Rnp , F : [0, T ] ×

Rnx ×Rnu → Rnx , B : [0, T ]×Rnx ×Rnu → Rnx×nw , H : [0, T ]×Rnx ×DQ → Rnx×np .

The process wt is the standard Brownian motion. We denote by H(t, xt, q) = H(t, xt− , q)

in the above expressions so that Π(t, xt) = H(t, xt, Q)dP (t, xt; t, Q) =
t∫

0

∫
DQ

H(t, xt, q)P(t, xt; dt, dq) under the zero-one law, is the doubly stochastic Poisson

process [63]. Processes xt, wt, Pt and functions on these processes are adapted to the con-

sidered filtration such that there exists a unique solution to this SDE given x0 = z ∈ Rnx .

The conditions for the existence and uniqueness of the solutions are provided in this subsec-

tion. Writing in matrix notation, vectors P = [Pj] and P = [Pj] are such that {Pj}1≤j≤np

are independent Poisson random measures andQ is the mark vector with marks {Qj}1≤j≤np

such that Qj ∈ DQj ⊂ R, are independently distributed random variables independent

of Pj . In this notation realizations of the mark random vector Q in the Poisson ran-

dom measure formulation are denoted by q. The advantage of this notation is that the

mark vector has a deterministic representation. We notice that the processes Pj condi-

tioned on xt = x are Poisson distributed. We now assume that there exists the mark

density function pQj corresponding to the mean measure νj of the Poisson random mea-

sure Pj so that E[Pjω(t, xt; dt, dqj)|xt = x] = νj(dqj) = pQj(t, qj; t, x)λj(t, qj; t, x)dqjdt

where λj ∈ R is called the jump rate for the doubly stochastic Poisson process Pj . Since∫
DQj

pQj(t, qj; t, x)dqj = 1 it is observed, writing in matrix vector notation, that

E[dP (t, Q; t, xt)|xt = x] = [E[dPj(t, Qj ; t, xt)]|xt = x] =

[E[

∫
DQj

Pj(dt,dqj ; t, xt)|xt = x]] = [EpQj
[λj(t, Qj ; t, x)dt]].
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Consequently for the case of mark independent jump rates λj we would have

E[dP (t, xt; t, Q)|xt = x] = [λj(t, x)dt] = λ(t, x)dt which recovers the same result as in

the simple Markov jump diffusions process. We denote by hj : [0, T ]×Rnx ×DQj → Rnx

the jth column vector of the matrix H(t, xt, Q) = [hi,j(t, xt, Qj)] as well as Σ = BBT and

assume hi,j(t, xt, Q) = hi,j(t, xt, Qj). The process xt is referred to as the state variable and

V [t, T ] 3 u : [t, T ] → Rnu as the control variable where V [t, T ] := {u(s) ∈ Du|t ≤ s}

fora ll t ∈ [0, T ] is the class of optimal controls.We comment on this class of controls later

in section 3.2.3.

Let us make the following assumptions for the above defined controlled stochastic pro-

cess:

(S1) there exists a constant C1 <∞ such that for all t ∈ [0, T ], for all x ∈ Rnx , u ∈ Du

||B(t, x, u)||2 + |F (t, x, u)|2 +

np∑
k=1

∫
DQj

|hj(t, x)|2νj(dqj) ≤ C1(1 + |x|2 + |u|2)

(S2) there exists a constantC2 <∞ such that for all t ∈ [0, T ], for all x, x̂ ∈ Rnx and u, û ∈

Rnu

||B(t, x, u)−B(t, x̂, û)||2 + |F (t, x, u)− F (t, x̂, û)|2

+

np∑
j=1

∫
DQj

|hj(t, x, qj)− hj(t, x̂, qj)|2νj(dqj) ≤ C2(|x− x̂|2 + |u− û|2)

(S3) Fi(t, x, u) is once continuously differentiable w.r.t. x for all i

(S4) Σij(t, x, u) is twice continuously differentiable w.r.t. x for all i, j

(S5) hj : [0, T ]× Rnx ×DQj → Rnx is a bijection from Rnx to Rnx , for all t ∈ [0, T ], for

all qj ∈ DQj and hj(t, x, qj) = ηj(t, xij, qj), I − ηjxij(t, xij, qj) 6= 0 for all (t, xij)

where xij = x+ hj(t, x, qj)

(S6) Fi(t, x, u), Σij(t, x, u) is once continuously differentiable w.r.t. u ∈ Du for all i
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Under the assumptions (S1), (S2), it is well known (pp 10, theorem 1.19) [62] that (3.1)

admits a unique cádlág adapted integrable solution xt for all ∈ [0, T ] given x0 = z ∈ Rnx .

The controlled stochastic process represented by the SDE (3.1) is variously called as the

marked, compound or doubly stochastic jump diffusion process. Assumptions (S3) through

(S5) are typical differentiability assumptions for the existence of the forward and backward

Chapman-Kolmogorov operators and corresponding PIDEs.

Definition 3.2.1. Assuming (S5) we define the forward Chapman-Kolmogorov operator

that corresponds to QMJD process (3.1), denoted by FuMJD(·) acting on a function (·) :

[0, T ]× Rnx → R, given the control u, when it exists, as

FuMJD (·)(t, x)

=
nx∑
i=1

− ∂

∂xi
((·)(t, x)Fi(t, x, u)) +

1

2

nx∑
i,j=1

∂2

∂xi∂xj
(Σij(t, x, u)(·)(t, x))

+

np∑
j=1

∫
DQj

(
(·)(t, x− ηj(t, x, qj))|I − ηjx(t, x, qj)| − (·)(t, x)

)
pQjλj(t, x; t, qj)dqj.

(3.2)

Definition 3.2.2. We define the backward Chapman-Kolmogorov operator that corresponds

to QMJD process (3.1), denoted by F † uQMJD(·) acting on a function (·) : [0, T ] × Rnx → R,

given the control u, when it exists, as

F † uMJD(·)(t, x) =
nx∑
i=1

Fi(t, x, u)
∂(·)
∂xi

+
1

2

nx∑
i,j=1

[Σ(t, x, u)]ij
∂2(·)
∂xi∂xj

+ djump(·), (3.3)

where Jumpj(·)(t, x, qj) := (·)(t, x+ hi,j(t, x, qj))− (·)(t, x) and

djump(·)(t, x) :=

np∑
j=1

∫
DQj

Jumpj(·)(t, x, qj)pQjλj(t, qj; t, x)dqj.
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3.2.2 Forward and Backward Chapman-Komogorov PIDEs

We do not discuss the existence and uniqueness of solutions to the forward Chapman-

Kolmogorov PIDE here. Instead we refer the interested reader to [64] for properties of

continuous solutions to the forward Chapman-Kolmogorov PIDEs. Instead we follow the

approach of [65] which only derives the forward PIDE that the PDF should satisfy given

that the PDF exists and has certain smoothness. Derivations of the forward Chapman-

Kolmogorov PIDE is a well explored topic for the case of spontaneous and forced jumps

[65], [66], [67]. An explicit derivation in case of simple jump diffusions, called the differ-

ential Chapman-Kolmogorov PIDE can be seen in (pp 51, equation 3.4.22) [66].

In this work we follow the approach of Hanson [37]. Here we give complete proof of

the second part of the result stated (pp 203-204, Theorem 7.7) [37] in theorem 3.2.1 below.

This is the multidimensional version of the more detailed one dimensional result (pp 199-

202, Theorem 7.5) [37]. Theorem 3.2.1 states the additional smoothness conditions for the

PDF besides (S1), (S2), (S3), (S4), (S5) under which the forward Chapman-Kolmogorov

equation is satisfied by the PDF of multidimensional QMJD processes (3.1). Theorem

3.2.2 shows how the backward and forward Chapman-Kolmogorov operators are formal

adjoints of each other under certain conditions. Proofs are presented in the appendix 3.7

for completeness. Define L2 inner product of functions f1, f2

〈
f1, f2

〉
=

∫
f1(x)f2(x)dx. (3.4)

Theorem 3.2.1. Consider the QMJD process in (3.1) such that assumptions (S1), (S2), (S3)

and (S4) in section 3.2.1 are true. Let there exist p(t, x|τ,yτ ), the transition probability

density of the state xt for all t ∈ [0, T ] written in short as p(t, x). If (S5) is true,

(T1) there exists v : Rnx → R a bounded arbitrary test function which is twice differen-
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tiable w.r.t. x such that for u ∈ Du the conjunct below vanishes

nx∑
i,j=1

∫
Rnx

∂

∂xi

(
Fi(t, x, u)p(t, x)v(x)− 1

2

∂

∂xj

(
Σij(t, x, u)p(t, x)

)
v(x)

+
1

2
Σij(t, x, u)p(t, x)

∂

∂xj
v(x)

)
dx = 0,

(3.5)

(T2) p(t, x) is once continuously differentiable w.r.t. t, (pFi)(t, x, u) is once continuously

differentiable w.r.t. x for all i, (Σijp)(t, x, u) is twice continuously differentiable

w.r.t. x for all i, j, u ∈ Du,

then p(t, x) satisfies the forward Chapman-Kolmogorov PIDE

∂p(t, x)

∂t
= FuMJD p(t, x). (3.6)

in the weak sense. Further, given xt0 = x0, the PDF p(t0, x) satisfies the delta function

initial condition

lim
t↓t0

p(t, x) = δ(x− x0). (3.7)

Theorem 3.2.2. Consider the QMJD process in (3.1) such that assumptions (S1) through

(S5) in subsection 3.2.1 are true. We assume that conditions (T1) and (T2) stated in theorem

3.2.1 are true. If

(T3) π : [0, T ]×Rnx → R is a bounded function which is twice differentiable w.r.t. x and
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once continuously differentiable w.r.t. t such that ∀u ∈ Du

nx∑
i,j=1

∫
Rnx

∂

∂xi

(
Fi(t, x, u)p(t, x)π(t, x)− 1

2

∂

∂xj

(
Σij(t, x, u)p(t, x)

)
π(t, x)

+
1

2
Σij(t, x, u)p(t, x)

∂

∂xj
π(t, x)

)
dx = 0,

(3.8)

(T4) the left and right hand sides of equation (3.9) are bounded,

then for all u ∈ Du π(t, x) satisfies the Green’s identity [68] for all u ∈ Du

〈
π(t, x),FuMJDp(t, x)

〉
=

〈
p(t, x),F † uMJDπ(t, x)

〉
. (3.9)

We then call π the adjoint function to the PDF p so that F † uMJD(·) is the adjoint operator of

FuMJD(·).

3.2.3 Problem Statement

Using the inner product definition (3.4), we may define the cost functional, when it exists,

as

J (t; p, u) = Φ(T ; p(T, x)) +

T∫
t

L(s, u(s); p(s, x)) dt, (3.10)

where Φ(T ; p(T, x)) is called the expected terminal cost functional, L(t, u(t); p(t, x)) is

called the expected running cost functional and t ∈ [0, T ). Define

Φ(T ; p(T, x)) =

〈
φ(T, x), p(T, x)

〉
and L(s, u(s); p(s, x)) =

〈
`(s, x, u(s)), p(s, x)

〉
,

(3.11)
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wherein φ : [0, T ] × Rnx → R is called the terminal cost function and ` : [0, T ] × Rnx ×

Rnu → R the running cost function. The choice of these functions as well as the class of

admissible control functions V [t, T ] is restricted such that the φ and ` are integrable at all

times t ∈ [0, T ]. The infinite dimensional optimal control problem for the QMJD processes

(3.1) is then stated as

min
u∈V[t,T ]

J (t; p, u) , (3.12)

subject to the dynamics

∂p(s, x)

∂s
= Fu(s)

MJD p(s, x), p(t, x) = p0(x). (3.13)

Henceforth the stochastic control problem (3.12) subject to the dynamics (3.13), is referred

to simply as problem (3.12). Put in words, the problem undertaken is to find a deterministic

open loop optimal control for all s ∈ [t, T ] to minimize the cost (3.10) over [t, T ] given the

PDE dynamics for p(s, x). The solution is a broadcast controller for all the stochastic

ensembles governed by (3.1) which solves the problem (3.12).

3.3 Infinite Dimensional Minimum Principle for Q-marked Jump Diffusions

This section contains a detailed application of the infinite dimensional MP as applied to the

SOC problem 3.12. First a Hamiltonian functional for the infinite dimensional MP is de-

fined. We then derive the Euler-Lagrange equations representing the necessary optimality

conditions for the formulated problem. We conclude by defining an infinite dimensional

optimal control for PIDE control of QMJD processes.

Definition 3.3.1. We define the Hamiltonian functional for the infinite dimensional MP

given the control u, when it exists, by

H
(
s, u; p(s, x), π(s, x)

)
=

〈
`(s, x, u), p(s, x)

〉
+

〈
F † uMJDπ(s, x), p(s, x)

〉
, (3.14)
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where π : [0, T ] × Rnx → R is called the infinite dimensional MP costate function, ` is

the running cost function and p is the probability density function representing the MJD

process (3.1).

Theorem 3.3.1. (Infinite Dimensional Minimum Principle) Consider the Markov Jump

Diffusion Process in (3.1) such that assumptions (S1), (S2), (S3), (S4), (S5), (S6) in sec-

tion 3.2.1 are true. We assume that conditions (T1) and (T2) stated in the theorem 3.2.1

hold true. and that the running cost ` is once continuously differentiable w.r.t. u. Fur-

thermore we assume that there exists a function π called the infinite dimensional MP

costate function such that the Hamiltonian functional for the infinite dimensional MP,

H
(
s;u(s), p(s, x), π(s, x)

)
, exists for this choice and is Frechet differentiable w.r.t. u.

If the infinite dimensional MP costate function π satisfies conditions (T3) and (T4) stated

in theorem 3.2.2 then the necessary conditions for optimality on the domain [t, T ] for the

infinite dimensional optimal control problem (3.12) subject to the dynamics of the forward

Chapman-Kolmogorov PIDE (3.13), are the Euler-Lagrange equations and terminal con-

dition:

Hu(s, u(s); p(s, x), π(s, x)) = 0 (3.15)

− ∂π(s, x)

∂s
= `(s, x, u(s)) + F † u(s)

MJD π(s, x) (3.16)

π(T, x) = φ(T, x). (3.17)

Further the Frechet derivative of the Hamiltonian functionalH w.r.t. u can be specified as

Hu(s, u; p(s, x), π(s, x)) =〈
`u(s, x, u) +

nx∑
i=1

∂

∂u
Fi(s, x, u)

∂π(s, x)

∂xi
+

1

2

nx∑
i,j=1

∂

∂u

(
∂2

∂xixj

(
Σ(s, x, u)ijπ(s, x)

)
, p(s, x)

)〉
.

(3.18)

Proof. Slight abuse of notation is employed in this proof by neglecting to write function
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arguments for brevity. In the spirit of applying the infinite dimensional minimum principle

we append the dynamics into the cost by introducing the Lagrange multiplier or infinite

dimensional MP costate. We write the auxiliary cost functional

J? (t; p, u) =

〈
φ(T, x), p(T, x)

〉
+

T∫
t

[〈
`, p

〉
+

〈
π,

(
FuMJDp− ∂p

∂s

)〉]
ds

=

〈
φ(T, x), p(T, x)

〉
+

T∫
t

[ 〈
`, p

〉
+

〈
p,F † uMJDπ

〉
−
〈
π,
∂p

∂s

〉]
ds, (3.19)

since F † uMJD(·) satisfies
〈
π,FuMJDp

〉
=
〈
p,F † uMJDπ

〉
since necessary conditions for theorem

3.2.2 are assumed to be true here. We then have

J? (t; p, u) =

〈
φ(T, x), p(T, x)

〉
+

T∫
t

[〈
`+ F † uMJDπ, p

〉
−
〈
π,
∂p

∂s

〉]
ds

=

〈
φ(T, x), p(T, x)

〉
+

T∫
t

[
H(s, u; p, π)−

〈
π,
∂p

∂s

〉]
ds, (3.20)

from the definition of Hamiltonian for teh infinite dimensional MP (3.14). As the Hamilto-

nian functional is Frechet differentiable,

J? (t; p + δp, u+ δu) =

〈
φ(T, x), p(T, x) + δp(T, x)

〉

+

T∫
t

[〈
`+ F † uMJDπ + (`u + (F † uMJDπ)u)

Tδu, p + δp

〉
−
〈
π,

∂

∂s
(p + δp)

〉]
ds, (3.21)

on neglecting higher order terms of the variations of p and u so that

J? (t; p + δp, u+ δu) = J? (p, u) +

T∫
t

[〈
`+ F † uMJDπ, δp

〉
+

〈(
`+ F † uMJDπ

)T

u

δu, p

〉]
ds,

(3.22)

on neglecting higher order mixed variational terms of p and u. Therefore the first order
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variation of the auxiliary cost functional J? with respect to the functions p(s, x), u(s) is

given by

δJ? (t; p, u) =

〈
φ(T, x), δp(T, x)

〉
+

T∫
t

[ 〈
`+ F † uMJDπ, δp

〉

+

〈(
`u + (F † uMJDπ)u

)T

δu, p

〉
−
〈
π,

∂

∂s
(δp)

〉]
dt. (3.23)

Equations (3.14), (3.19) under assumption of Frechet differentiability of the Hamiltonian

functional imply

〈(
`+ F † uMJDπ

)T

u

δu, p

〉
=

〈(
`+ F † uMJD

)T

u

, p

〉
δu(s) = HT

u (s, u; p, π) δu(s). (3.24)

The last term inside the integral in the RHS of (3.23) can now be integrated by parts over the

time t. Changing the order of integration is permitted since conditions of Fubini’s theorem

[69], namely the relevant continuous differentiability conditions are satisfied. Therefore

T∫
t

∫
Rnx

π(s, x)
∂δp

∂t
(s, x) dx ds =

∫
Rnx

T∫
t

π(s, x)
∂δp

∂s
(s, x) ds dx

=

〈
π(T, x), δp(T, x)

〉
−
〈
π(t, x), δp(t, x)

〉
−

T∫
t

〈
∂π(s, x)

∂s
, δp(s, x)

〉
ds, (3.25)

where we note that δp(t, x), δp(T, x) are the values of the first variation functions of p(s, x)

at the fixed time boundaries namely s = t and s = T . Here δp(t, x) = δp(s, x)
∣∣∣
s=t
−

∂p
∂s

(s, x)
∣∣∣
s=t
δ(t) and δp(T, x) = δp(s, x)

∣∣∣
s=T
− ∂p

∂s
(s, x)

∣∣∣
s=T

δ(T ), where δp(s, x)|s denotes

the variation of p(s, x) at time time s. We also know that the variation of p at s = t is zero

or δp|s=t = 0 since the distribution p at the boundary s = t or at the initial instant of time

is known to be p0(x) and that δT = 0 since we assume a fixed time boundary. Therefore
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equations (3.23), (3.24), (3.25) imply

δJ? (t; p, u) =

〈
(φ(s, x)

∣∣
T
− π(s, x)

∣∣
T

), δp(s, x)|T
〉

+

T∫
t

[〈
`(s, x, u) + F † u(s)

MJD π(s, x) +
∂

∂s
π(s, x), δp(s, x)

〉]
ds

+

T∫
t

HT
u (s, u(s); p(s, x), π(s, x))δu(s) ds, (3.26)

because δp(t, x) = 0 as explained earlier in comments on equation (3.25). The variations

δp(s, x)|T , δu(s) and δp(s, x) which appear in the above equation are arbitrary and are

non zero, so that the three terms above are independent of each other. Therefore, by using

the Fundamental Lemma of the Calculus of Variations, with the usual mild conditions

[70] and equation (3.26), we have that δJ? (t; p, u) = 0 implies equations (3.15) (3.16),

(3.17). These are the conditions for minimizing J
(
t; p, u

)
using u subject to the governing

dynamics of the Kolmogorov Feller PDE. Explicit formulation of Hu can be obtained due

to partial differentiatiability conditions w.r.t. u as given by (3.18). recalling that djumpπ(x, t)

does not have explicit dependence on u.

Definition 3.3.2. Consider the necessary conditions for the solution of the optimal control

problem (3.12). If there exists an admissible control u∗(t) and a corresponding infinite

dimensional MP costate function π∗(t, x), such that the Euler-Lagrange equations (3.15),

(3.16), (3.17) are satisfied at time t, then they are called an infinite dimensional optimal

control policy and the corresponding optimal infinite dimensional MP costate function at

time t. The PDF for p∗(t, x) denotes the the corresponding optimal PDF satisfying the

forward Chapman-Kolmogorov PIDE (3.6) under the optimal control.
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3.4 Relationship with Dynamic Programming Principle

3.4.1 Linear Feynman-Kac lemma and the SDP connection

Under certain conditions, Dynkin’s formula [37] formula for the backward costate PIDE

(3.16) governing the optimal costate function gives

π∗(t, x) = E
[
φ(T, xT ) +

∫ T

t

`(s, xs, u
∗(s))dt|xt = x

]
. (3.27)

Applying the iterated expectations property of conditional expectations (details in Section

3.5) we have

π∗(t, x) = E
[
`(t, x, ut)dt+ π∗(t+ dt, xt+dt)

∣∣xt = x
]
. (3.28)

This expression of the optimal costate indicates a relationship of this function with the SDP

principle [31]. We investigate this relationship in the next subsection. It is well known that

SDP can be applied to the stochastic problem (3.12) only when the initial state is known

with probability one. It is natural to then investigate, the relationship between a version of

the DPP for non degenerate initial distributions and the infinite dimensional MP optimality

system. This is the topic of subsection 3.4.3. For brevity we abuse our notation by curtailing

the expression of dependent variables whenever necessary in this section.

3.4.2 Connection between infinite dimensional MP and SDP

HJB theory for control of Q-marked Jump Diffusion SDEs

We recall the Hailton Jacobi Bellman (HJB) control theory for QMJD processes here. The

optimality system stated will be referred to in the next subsection to see its similarity with

a form of the costate PIDE. Consider the QMJD process in (3.1). The value function is

defined as the optimal cost to go at any point of time. We assume that the running and

terminal cost functions are chosen such that they lead to a cost which is integrable at all
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instants of time. The value function may then be written as

v(t, x) = min
u

E

φ(T, xT ) +

T∫
t

`(t, xt, ut) dt

∣∣∣∣∣xt = x

 . (3.29)

Definition 3.4.1. We define the HJB Hamiltonian operator for the HJB PIDE correspond-

ing to the QMJD process (3.1), when it exists, by

HHJB
(
t, x, u, v(t, x)) := `(t, x, u) + vT

x (t, x)F (t, x, u) +
1

2
tr(Σvxx)(t, x, u) + djumpv(t, x)

(3.30)

where v : [0, T ]× Rnx → R is the value function and ` is the running cost function.

Theorem 6.3 (pp 177) in [37] states that if (A1) the decomposition rules (pp 172, Rules

6.1) [37] hold, (A2) there exists a value function v such that v ∈ C1,2([0, T ] × Rnx), (A3)

there exists an optimal control, called the HJB optimal control, given by

u∗HJB(t, x) = argmin
u∈Du

HHJB(t, x, u, v) for all (t, x) ∈ [0, T ]× Rnx , (3.31)

then v satisfies HJB equation for QMJD processes for all (t, x) ∈ [0, T ]× Rnx

−vt(t, x) =min
u∈Du

HHJB(t, x, u, v(t, x)) (3.32)

v(T, x) =φ(T, x). (3.33)

Generalized Optimal Costate equation and Relationship with HJB PDE

Under the optimal control, Euler-Lagrange equations (3.15), (3.16), can be stated in a con-

cise form (3.34), (3.35). This result provides the time rate of change of the optimal costate

function integrated over the optimal PDF trajectory, assuming that the infinite dimensional

MP optimality conditions are satisfied. We call equation (3.34) with terminal condition

(3.35) as the generalized optimal costate equation. A remark at the end of this section de-
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scribes the similarities and differences in the governing optimality systems obtained using

the infinite dimensional MP and SDP under an additional assumption on problem (3.12).

Lemma 3.4.1. Let u∗ ∈ V [t, T ], π∗, p∗ ∈ C1,2
c ([t, T ]×Rnx) be the infinite dimensional op-

timal control, optimal costate function and the corresponding optimal PDF for the problem

(3.12). If

(L1) there exist unique u∗ ∈ V [t, T ], π∗ ∈ C1,2
c ([t, T ]×Rnx) satisfying the Euler-Lagrange

equations (3.15), (3.16), (3.17) for all s ∈ [t, T ] × Rnx and p∗ ∈ C1,2
c ([t, T ] × Rnx)

satisfies (3.6) under u∗ : [t, T ]

(L2) H(s, u; p, π∗) is convex and continuously differentiable w.r.t. u on [t, T ]×Du

then for all s ∈ [t, T ]

−
〈
∂π∗

∂s
(s), p∗(s)

〉
= min

u∈Du
H(s, u; p∗, π∗) = min

u∈Du

〈
`(s, u) + F † uMJD π

∗(s), p∗(s)
〉
. (3.34)

and
〈
π∗(T ), p∗(T )

〉
=
〈
φ(T ), p∗(T )

〉
. (3.35)

Proof. Let u∗ ∈ Du such that Hu(s, u
∗; p, π∗) = 0 where s ∈ [0, T ]. Conditions (L1) and

(L2) then imply that

u∗(s) = min
u∈Du
H(s, u; p∗, π∗), (3.36)

so that we may write

H(s, u∗; p∗, π∗) = min
u∈Du
H(s, u; p∗, π∗)

= min
u∈Du

〈
`(s, u) + F † uMJD π

∗(s), p(s)
〉

=
〈
`(s, u∗) + F † u∗MJD π∗(s), p∗(s)

〉
. (3.37)
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Therefore the Euler-Lagrange equations (3.16) and (3.37) give us

−
〈
∂π∗

∂s
(s), p∗(s)

〉
=
〈
`(s, u∗) + F † u∗MJD π∗(s), p∗(s)

〉
= min

u∈Du
H(s, u; p∗, π∗) = min

u∈Du

〈
`(s, u) + F † uMJD π

∗(s), p∗(s)
〉
. (3.38)

The terminal condition (3.35) is true because the optimal costate satisfies the terminal con-

dition (3.17).

Remark: It is well known that application of SDP for the SOC problem (3.12), is re-

stricted to the case when the initial distribution is specified p(t, x) = δ(x − y) where

y ∈ Rnx . Applying this condition for the generalized optimal costate equation would de-

rive

−∂π
∗

∂s
(t,y) = min

u∈Du
H(t, u; δ(x− y), π∗(t, x)). (3.39)

From the definitions of the HJB Hamiltonian operator (3.30) and Hamiltonian functional

(3.14), it is observed that if p(t, x) = δ(x−y) then they are related for all u, v at the initial

time instant by

H(t, u; δ(t, x− y), v) = HHJB(t,y, u, v(t,y)). (3.40)

Equations (3.40), (3.32) then imply

−∂v
∂s

(t,y) = min
u∈Du
H(t, u; p(t, x), v). (3.41)

We can therefore see that the optimal costate PIDE and HJB PIDE are idential at the

initial time instant given p(t, x) = δ(x − y). However, in general, the equations sat-

isfied by the optimal costate (3.34) and value function (3.32) are distinct at all other

time instants since Equation (3.40) is true only at the initial time instant. Observe, ad-

ditionally, that the terminal conditions (3.35), (3.33) are not equal because, p(T ) is in

general, not degenerate. The optimal control generated by the infinite dimensional MP,
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u∗(s) = argminu∈DuH(s, u; p∗, π∗), is therefore distinct from the one generated by SDP,

u∗HJB(s,y) = argminu∈Du Hpseudo(s,y, u, v(t,y)), at all time instants including the initial

instant. In addition, we recall that the infinite dimensional MP control is an open loop con-

trol which depends only implicitly on the PDF at any time instant, while the SDP control is

explicitly a closed loop control.

3.4.3 DPP for the Infinite Dimensional Value function and Relationship with infinite

dimensional MP

Based on Lemma 3.4.1 we now quantitatively establish the relationship between the infinite

dimensional MP and a DPP satisfied by the infinite dimensional value function. First we

construct the DPP satisfied by such an infinite dimensional version of the value function

for PIDE control of QMJD processes. Then we show how the infinite dimensional value

function is related to the optimal costate function along the optimal PDF trajectory. A

precise expression of this relationship has not been stated clear way in preexisting works,

as far as known to the authors. Assuming sufficient smoothness of the costate function and

PDF and that infinite dimensional MP optimality conditions are satisfied, the relationship

between infinite dimensional MP and DPP is stated explicitly in what follows.

Definition 3.4.2. We define the infinite dimensional value function at t ∈ [0, T ) for the

problem (3.12) if it exists and is finite, as

V (t; p(t)) = min
u∈V[t,T ]

J(t; p, u) (3.42)

and V (T ; p(T )) =
〈
φ(T ), p(T )

〉
. (3.43)

Theorem 3.4.2. Let there exist a unique finite valued value function defined in (3.42) for
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the problem (3.12) under the dynamics (3.13). Then for all s ≥ t

V (t; p(t)) = min
u∈V[t,T ]

{ s∫
t

〈
`(τ, u), p(τ)

〉
dτ + V (s; p(s))

}
. (3.44)

Proof. We have for all ε > 0 there exists uε ∈ V [t, T ] such that

V (t; p(t)) + ε ≥ J(t; p, uε) =

s∫
t

〈
`(τ, uε), p(τ)

〉
dτ + J(s; p, uε)

≥
s∫
t

〈
`(τ, uε), p(τ)

〉
dτ + V (s; p) (3.45)

so that the following minimum on the right hand side satisfies the inequality

V (t; p(t)) + ε ≥ min
u∈V[t,T ]

{ s∫
t

〈
`(τ, u), p(τ)

〉
dτ + V (s; p)

}
. (3.46)

Now given ε > 0 and uε ∈ V [t, T ], we can choose u(τ) = uε(τ) when τ ∈ [t, s] such that

V (s; p(s)) + ε ≥ J(s; p, uε). From Equation (3.42) of Definition 6 it can be seen that for

all uε ∈ V [t, T ], ε > 0,

V (t; p(t)) + ε ≤ J(t; p, u) =

s∫
t

〈
`(τ, u), p(τ)

〉
dτ + J(s;u, p) ≤

s∫
t

〈
`(τ, uε), p(τ)

〉
dτ + V (s; p(s)) + ε.

(3.47)

Since this inequality is true for all uε ∈ V [t, T ], we may take the minimum over all such uε

V (t; p(t)) ≤J(t;u, p) ≤ min
uε∈V[t,T ]

{ s∫
t

〈
`(τ, uε), p(τ)

〉
dτ + V (s; p)

}

≤ min
u∈V[t,T ]

{ s∫
t

〈
`(τ, u), p(τ)

〉
dτ + V (s; p)

}
+ ε. (3.48)
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where we have replaced the symbol uε with u in the last equality. Combining equations

(3.46), (3.48) implies

V (t; p(t))− ε ≤ min
u∈V[t,T ]

{ s∫
t

〈
`(τ, u), p(τ)

〉
dτ + V (s; p)

}
≤ V (t; p(t)) + ε. (3.49)

for all ε > 0. Under the limit ε→ 0 the desired result is obtained.

The following theorem quantitatively states the relationship between the infinite dimen-

sional value function and the optimal costate function under the assumption that problem

(3.12) has a unique solution.

Theorem 3.4.3. Let u∗ ∈ V [t, T ], π∗, p∗ ∈ C1,2
c ([t, T ]×Rnx) be the unique infinite dimen-

sional optimal control, optimal costate function and corresponding PDF for the problem

(3.12). If (L1) and (L2) are true and

(T5) there exists a unique finite valued value function defined in (3.42) for the problem

(3.12)

then for all s ∈ [t, T ]

V (s; p∗(s)) =
〈
π∗(s), p∗(s)

〉
. (3.50)

Proof. Dynkin’s formula for the jump diffusion process (3.1) can be applied to π∗(s, x) ∈

C1,2
c ([t, T ] × Rnx) which satisfies (3.16), (3.17) by following Theorem 7.1, chapter 7 in

[37] to obtain

π∗(s, x) = E

 T∫
s

`(τ, xτ , u
∗(τ))dτ + φ(T, xT )

∣∣xs = x

 (3.51)

where the expectations are under the optimal PDF governed by (3.13) under the control

u∗(τ) ∈ V [s, T ] is p∗(τ) : [s, T ]. The law of iterated expectations implies for all t ≤ s ≤
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ŝ ≤ T

π∗(s, x) = E
[
E
[ ŝ∫
s

`(τ, xτ , u
∗(τ))dτ +

T∫
ŝ

`(τ, xτ , u
∗(τ))dτ + φ(T, xT )

∣∣∣∣xŝ] ∣∣∣∣xs = x

]

= E
[ ŝ∫
s

`(τ, xτ , u
∗(τ))dτ + E

[ T∫
ŝ

`(τ, xτ , u
∗(τ))dτ + φ(T, xT )

∣∣∣∣xŝ] ∣∣∣∣xs = x

]

= E
[ ŝ∫
s

`(τ, xτ , u
∗(τ))dτ + π∗(ŝ, xŝ)

∣∣∣∣xs = x

]
. (3.52)

Using the law of total expectation we have

〈
π∗(s), p∗(s)

〉
= E

 ŝ∫
s

E
[
`(τ, xτ , u

∗(τ))dτ + π∗(ŝ, xŝ)
∣∣xs = x

]
= E

[ ŝ∫
s

`(τ, xτ , u
∗(τ))dτ

]
+ E

[
π∗(ŝ, xŝ)

]
=

ŝ∫
s

〈
`(τ, u∗(τ)), p(τ))

〉
dτ +

〈
π∗(ŝ), p(ŝ)

〉
.

(3.53)

Due to the fact that the optimal control u∗ ∈ V [t, T ] solving the problem (3.12) is unique

and (T5), we can write the following result from Theorem 3.4.2. Note again that we denote

the optimal PDF p∗(τ) : [s, T ] evolving under the optimal control u∗ ∈ V [s, T ].

V (s; p(s)) = min
u∈V[t,T ]


ŝ∫
s

〈
`(τ, u), p(τ)

〉
dτ + V (ŝ; p(ŝ))


=

ŝ∫
s

〈
`(τ, u∗), p∗(τ)

〉
dτ + V (ŝ; p∗(ŝ)) (3.54)

Recall the terminal conditions for the value function (3.43) and for optimal costate function

(3.17) implies for all p(T ) satisfying the conditions (T1) through (T4)

V (T ; p(T )) =
〈
π∗(T ), p(T )

〉
=
〈
φ(T ), p(T )

〉
(3.55)
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which is true for p∗(T ) as well. Let us choose ŝ = T in equation (3.48), (3.53). Observing

that equations (3.53), (3.54) are identical and the value function is unique due to (T5), we

can prove easily using equation (3.55) that V (s; p∗(s)) =
〈
π∗(s), p∗(s)

〉
along the optimal

PDF trajectory p∗(s) : [s, T ] under the control u∗ ∈ V [s, T ].

Stated in words, we have proved that the infinite dimensional value function is equal to

the L2 product of optimal costate function with the optimal PDF along the optimal trajec-

tory. Note that this relationship was proved using the mechanism of the linear Feynman-

Kac lemma, which motivated our investigation.

3.5 Sampling based algorithm for PDF Control of QMJD processes

Using the Feynman-Kac formula (3.27) directly, to compute the costate or optimal costate

by forward sampling would be computationally prohibitive. Direct application would re-

quire generating samples over the entire time horizon starting from each space time grid

point. Instead, we use an iteratively backpropagated costate (IBC) algorithm [17], the key

ingredient for which is derived below. By Dynkin’s formula, Theorem 7.1, chapter 7 of

[37] for QMJD process (3.1), applied to π(t, x) ∈ C1,2
c ([0, T ]×Rnx) which satisfies (3.16),

(3.17) under arbitrary control u(s) ∈ V [t, T ]

π(t, x) = E

 T∫
t

`(s, xs, u(s))ds+ φ(T, xT )
∣∣xt = x

 . (3.56)

The law of iterated expectations implies

π(t, x) = E
[
E
[
`(t, xt, u(t))dt+

T∫
t+dt

`(s, xs, u(s))ds+ φ(T, xT )

∣∣∣∣xt+dt

] ∣∣∣∣xt = x

]

= E
[
`(t, xt, u(t))

]
dt+ E

[ T∫
t+dt

`(s, xs, u(s))ds+ φ(T, xT )

∣∣∣∣xt+dt

] ∣∣∣∣xt = x

]

= E
[
`(t, xt, u(t))dt+ π∗(t+ dt, xt+dt)

∣∣∣∣xt = x

]
. (3.57)
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We denote the temporal grid indexed as [t0, tN ] = [0, T ]. We have dropped the con-

ditional expectation notation for brevity in the following pseudo code and pick a small

number ε > 0.

Algorithm 2 IBC PDF control of MJD processes

1: Initialize Choose u0
t : [t0, tN ] arbitrarily.

2: repeat

3: Initialize πk(tN , x) = φ(tN , x).

4: while i 6= 0 do

5: πk(ti−1, x) = `(ti−1, x, u
k
ti−1

) + E
[
πk(ti, x+ dxti)].

6: i = i− 1.

7: end while

8: ComputeHk
u(t; pk, ukt , µ

k
Q) on [t0, tN ] by (3.18).

9: Update control: uk+1
t = ukt − εHk

u(t).

10: until Convergence |Hu(t)| < ε.

11: return u∗t : [0, T ].

Example Problem: We demonstrate our algorithm for open loop control of ensembles with

dynamics (3.1) with linear drift term, nonlinear diffusion coefficient and constant jump rate

parameter

dxt = (−αxt + u(t)dt+ ζ

√
(κ− xt)2

2
+ u(t)2dwt + h(xt, Q)dPt, (3.58)

where h(xt, Q) = 0.5 ·Q ·xt with constant jump rate λ = 1 and mark density of unif([0, 1]).

The initial condition is assumed to be a normal distribution. The state space is specified

by the constraints x(t) ∈ [−3, 3] while the control is constrained by u(t) ∈ [−3, 3]. Fur-

ther two obstructions are modeled by the state constraints x(t) ∈ [−2,−1] at t = 1 and

x(t) ∈ [0.5, 2] at t = 2. The process is defined to terminate on reaching any of the above

boundaries. The values of the constants used are κ = 3, α = 0.5, terminal time T = 3 and
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ζ = 0.1. The task is to reach the target xgoal(T ) = 0.

In this example we choose the running and terminal cost functions as `(u) = R
2
u2,

φ(x) = Qf (x − xgoal)2, and a trajectory termination penalty of Ξ − τ where τ ∈ [0, T ] is

the stopping time of a trajectory colliding with a boundary or obstacle. Let R = 2× 10−4,

Qf = 4
9
, ζ = 0.1 and Ξ = 7. The temporal discretization {ti}0≤i≤N is chosen to satisfy

λ · (ti − ti−1) << 1 the zero one law [37] allowing our use of the derived form of the

PIDEs. Since we generate an open loop policy, we adopt the strategy of generating an

implicity feedback policy. We do this by assuming u(t) = u1(t) + xu2(t) and treating

u(t) = [u1(t) u2(t)]T as the control we compute. This state parameterized policy results in

a lower state dependent cost seen in Subfigure (1d). Trajectories are sampled in two steps

in our algorithm. We sample single time step trajectories inside the costate computation

loops at each spatio temporal grid point. We need full time horizon samples to compute the

control gradient of the Hamiltonian at each control update iteration. Let xk(t) be the kth

sample of trajectories at time t for either case and 1k = 1{Ξk<T} which indicates whether

the sample was terminated by collision. Theorem 3.3.1, Eq. (3.28) imply

π(x, t) =
1

K

K∑
k=1

φ(xk(T )) +

T∫
t

`(xk(s), us)ds

 (1− 1k)

+
1

K

K∑
k=1

(Ξk − τ) +

τ∫
t

`(xk(s), us)ds

1k,

Hu(s, u(s); p, π) =

Ru1(t) + πx + ξ2u1(t)πxx

Ru2(t) + πx + ξ2u2(t)πxx

 . (3.59)

Results: Optimal costate function, a set of optimally controlled trajectories and the cost

per iteration depicting convergence for pQ = unif(0, 1) and p0 = N (−1, 1
2
) are illustrated

in Subfigures (1a), (1b, (1c). Converged costs are compared in Subfigure (1c) with different

initial conditions. The cost is lower for initial condition N (−1, 1
2
) since far lower number

of optimally controlled trajectories end up colliding with the first obastacle depicted in the
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Figure 3.1: Costate at last iteration p0 = N (−1, 1
2
) (left) and optimal trajectory samples

for p0 = δ

optimal trajectory sample in Subfigure (1b). We compare converged costs for simple jump

diffusion Q ∼ δ(1) with initial condition p0 = δ(0), when using the state parameterized

policy and non parameterized control in Subfigure (1d). This shows the benefit of the

implicit feedback provided by the state parameterized policy.

Figure 3.2: Cost vs iterations for p0 = N (−1, 1
2
) in blue, and p0 = δ(0) in red (left) and

(right) cost comparison with state parameterized policy in black, for p0 = δ(0), Q ∼ δ(1)

3.6 Conclusions

We present a complete theory for a PDE based optimal open loop control framework for

marked jump diffusions in this chapter. This includes exposition of the fundamental rela-

tionship between infinite dimensional MP and DPP applied to this control framework. A

sampling based algorithm is developed with good results for a nonlinear control problem

with possible modified implicit feedback.
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Connections between MP and DPP, including for stochastic systems, have witnessed a

lot of interest in the control theory literature. The SMP-SDP connection is expressed by

showing equality of the first and second costate processes with the gradient and Hessian

of the value function. However the precise relationship between infinite dimensional MP

and DPP for PIDE control has not been explained previously. Moreover the value function

in the infinite dimensional case is not well understood. To this end we state and prove a

DPP obeyed by the infinite dimensional value function. This DPP is different from the

SDP, because unlike the former, SDP does not allow ensembles with non degenerate initial

distributions. We precisely explain the relationship between infinite dimensional MP and

DPP by showing that the L2 product of the optimal costate and optimal PDF equals the

value function under the optimal control. Thus the infinite dimensional MP-DPP relation-

ship shown is clearly distinct from the SMP-SDP connection, although the SOC problem

considered is similar in both cases.

Appealing to the symmetry of between finite and infinite dimensional versions of the

DPP, the next logical step is to compute explicit feedback control laws for PIDE dynamics

as suggested in [38]. Future works on this topic will be focussed on analyzing control laws

of form u(t; p(t)) given the feedback density p(t, x). Potential applications of this theory

would be in the field of control of elementary particle ensembles, quantum systems [7],

biological systems and swarms.

3.7 Appendix

Proof. of theorem 3.2.1 We permit abuse of notation in this proof by neglecting to write

argument dependencies o functions for brevity when necessary in this proof. Further we

denote partial derivatives as ∂f
∂v

= fv if needed. This proof is a stepwise analogous exten-

sion to the multidimensional case of the proof for the one dimensional case (pp 199-203,

Theorem 7.5) [37]. It follows easily by differentiating the well known multidimensional

Dynkin’s formula (pp 203, Equation 7.32) [37] for the function v and using two integration

by parts steps to move the spatial derivatives operating on v to p. Differentiation of the
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Dynkin’s formula for u(t, x) = E[v(xt)|xt0 = x] yields

∂

∂t
u(t, x) = E

 ∂
∂t

t∫
t0

F † uMJDv(xs)ds|xt0 = x

 =

∫
Rnx

F † uMJDv(x)p(t, x)dx (3.60)

where F † uMJD is the backward operator defined in the previous subsection 3.2.1. Note that

u(t, x) = E[v(xt)|xt0 = x] implies that when using the PDF representation of the expecta-

tion we have
∂

∂t
u(t, x) =

∫
Rnx

v(x)
∂

∂t
p(t, x)dx. (3.61)

The Dynkin formula (3.60) and the definition of the backward operator imply

∂

∂t
u(t, x) =

∫
Rnx

(
nx∑
i=1

Fivxi +
1

2

nx∑
i,j=1

Σijvxjxi + djumpv

)
pdx. (3.62)

Let us at first focus on the diffusion terms without the jump term in the above expression

(3.62). We use integration by parts for integration w.r.t. xi in step one, and xj in step two

for terms from the backward operator in (3.60) to move the spatial derivatives to the PDF

using condition (T2). Using this idea along with Fubini’s theorem [69] we get

∫
Rnx

nx∑
i=1

Fivxi +
1

2

nx∑
j=1

Σijvxjxi

pdx

=

∫
R

...

∫
R︸ ︷︷ ︸

(nx−1)times

[
nx∑
i=1

{∫
R

(
− ∂(Fip)

∂xi
v − 1

2

nx∑
j=1

∂(Σijp)

∂xi
vxj

)
dxi

+

∫
R

∂

∂xi

(
Fipv +

1

2

nx∑
j=1

Σijpvxj

)
dxi

}]
dx1...dxi−1dxi+1...dxnx
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=

∫
Rnx

nx∑
i=1

−∂(Fip)

∂xi
v dx+

∫
Rnx

∂

∂xi

(
Fipv +

1

2

nx∑
j=1

Σijpvxj

)
dx

+

∫
R

...

∫
R︸ ︷︷ ︸

(nx−1)times

[
1

2

nx∑
i,j=1

∫
R

(
∂2

∂xixj
(Σijp)v

)
dxj

− 1

2

nx∑
i,j=1

∫
R

(
∂

∂xj

(
∂(Σijp)

∂xi
v

))
dxj

]
dx1...dxj−1dxj+1...dxnx

=

nx∑
i,j=1

∫
Rnx

− ∂

∂xi
(Fip) v +

1

2

(
∂2(Σijp)

∂xixj
v

)
dx

+

nx∑
i,j=1

∫
Rnx

∂

∂xi

(
Fipv +

1

2
Σijpvxj −

1

2

∂(Σijp)

∂xj
v

)
dx, (3.63)

the last part of which can easily be identified as the conjunct in condition (T1). Let us now

focus on the jump term in the expression (3.62) which is

∫
Rnx

djumpv(x)p(t, x)dx

=

∫
Rnx

np∑
j=1

∫
DQj

([
v(x+ hj(t, x, qj))− v(x)

]
pQjλj(t, qj; t, x)dqj

)
p(t, x)dx. (3.64)

Consider the terms in the first summation on the right hand side of this equation. Change

the variable of integration to ξj using the Change of Variables theorem [71] where ξj =

x + hj(t, x, qj) = x + ηj(t, ξj, qj) in the first step, wherein hj is assumed invertible w.r.t.

ξj . This inverse mapping exists since we assumed hj is a bijection from Rnx to Rnx . We

note that transformed domain of integration is again Rnx . In the second step we change the
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dummy variable of integration back to x. We therefore have for all j, 1 ≤ j ≤ np that

∫
Rnx

∫
DQj

(
v(x+ hj(t, x, qj))(pQjλj)(t, qj; t, x)dqj

)
p(t, x)dx

=

∫
Rnx

∫
DQj

(
v(ξj)(pQjλj)(t, qj; t, ξj − ηj(t, ξj, qj))p(t, ξj − ηj(t, ξj, qj))

)
dqj

· |I − ηjξj(t, ξj, qj)|dξj

=

∫
Rnx

∫
DQj

(
v(x)p(t, x− ηj(t, x, qj))(pQjλj)(t, qj; t, x− ηj(t, x, qj))

)
dqj

· |I − ηjx(t, x, qj)|dx. (3.65)

Equations (3.62), (3.63), (3.64), (3.65) and (T1) then imply

∂

∂t
u(t, x) =

∫
Rnx

( nx∑
i=1

Fivxi +
nx∑
i,j=1

Σijvxjxi + djumpv
)
p dx

=
nx∑
i,j=1

∫
Rnx

[
− ∂

∂xi
(Fip)v +

1

2

∂2

∂xixj
(Σijp)v

]
dx

+

np∑
j=1

∫
Rnx

[ ∫
DQj

(
p(t, x− ηj)|I − ηjx| − p(t, x)

)

· (pQjλj)(t, qj; t, x− ηj(t, x, qj))
)

dqj

]
v(x)dx. (3.66)

Equations (3.61), (3.66) and definition of forward Chapman-Kolmogorov operator in sub-

section 3.2.1 imply

∂

∂t
u(t, x) =

∫
Rnx

[ nx∑
i,j=1

(
− ∂

∂xi
(Fip) +

1

2

∂2

∂xixj
(Σijp)

+

np∑
j=1

∫
DQj

(
p(x− ηj(t, x))|I − ηjx(t, x)| − p(t, x)

)
(pQjλj)(t, qj ; t, x− ηj(t, x, qj))dqj

]
v(x)dx

=

∫
Rnx

FuMJD p(t, x) v(x)dx =

∫
Rnx

∂

∂t
p(t, x)v(x)dx. (3.67)
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Using the calculus of variations argument (pp 201, proof of Theorem 7.5) [37], [72] since

the function v is any arbitrary function with assumed boundedness and smoothness prop-

erties, p(t, x) satisfies equation (3.6) in the weak sense. Notice that the Dynkin formula

(3.60) and equation (3.67) imply

∂

∂t
u(t, x) =

〈
F† uMJDv(x), p(t, x)

〉
=

〈
FuMJD p(t, x), v(x)

〉
(3.68)

which means that the backward operator F † uMJD is the formal adjoint operator of the forward

operator FuMJD.

The delta initial condition to be proved is well known in the case that the jump term is

absent, that is for the diffusion processes. However Poisson process Pt undergoes jumps

which causes xt to have discontinuous paths. However, considering that simple jump pro-

cess has Poisson distribution, we see that a jump is unlikely in a small time interval dt from

P(dPt = 0) = exp−λ(t)dt u 1 as dt→ 0 proving equation (3.7).

Proof. of theorem 3.2.2 We use the process of liberation as in [68] to liberate p and obtain

F † uMJD. More precisely we start with the term π(t, x)FuMJDp(t, x) and manipulate it as follows

π(t, x)FuMJDp(t, x)

=
nx∑
i=1

(
−π(x, t)

∂

∂xi
(Fi(t, x, u)p(t, x))

)
+

1

2

nx∑
i,j=1

π(t, x)
∂2

∂xi∂xj
([Σ(t, x, u)]ijp(x, t))

+ π(t, x)

( np∑
j=1

∫
DQj

(
p(x− ηj(t, x))

· |I − ηjx(t, x)| − p(t, x)
)

(pQjλj)(t, qj; t, x− ηj(t, x, qj))dqj
)

=
nx∑
i=1

[
− ∂

∂xi

(
π(x, t)Fi(t, x, u)p(t, x)

)
+ p(t, x)Fi(t, x, u(t))

∂π(t, x)

∂xi

]
+

1

2

nx∑
i,j=1

[
∂

∂xi

(
π(t, x)

∂

∂xj
([Σ(t, x, u)]ijp(t, x))

)
− ∂

∂xi

(
[Σ(t, x, u)]ijp(t, x)

∂π(t, x)

∂xj

)
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+ p(t, x)[Σ(t, x, u)]ij
∂2π(t, x)

∂xi∂xj

]
−

np∑
j=1

∫
DQj

π(t, x)p(t, x)(pQjλj)(t, qj; t, x− ηj(t, x, qj))dqj

+

np∑
j=1

∫
DQj

π(t, x)p(t, x− ηj)|I − ηjx|(pQjλj)(t, qj; t, x− ηj(t, x, qj))dqj. (3.69)

Integrating equation (3.69) over Rnx and using (T4) gives us

〈
π,FuMJDp

〉
=

∫
Rnx

( nx∑
i=1

p(t, x)Fi(t, x, u)
∂π

∂xi
+

1

2

nx∑
i,j=1

p(t, x)[Σ(t, x, u)]ij
∂2π

∂xi∂xj

+

np∑
j=1

∫
DQj

π

(
(p(t, x− ηj)|I − ηjx| − p(t, x))(pQjλj)(t, qj; t, x− ηj(t, x, qj))dqj

))
dx.

(3.70)

Considering the terms in the last summation of this equation, we change the dummy vari-

able of integration from x to ξj in the first step. Then we choose ξj = x + hj(t, x, qj) =

x+ ηj(t, ξj, qj) in the second step where hj is assumed to be invertible w.r.t. ξj and change

the variable of integration to x using the Change of Variables Theorem [71]. This inverse

mapping exists since we assume hj to be a bijection from Rnx to Rnx . Noting that trans-
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formed domain of integration is again Rnx , we have that for all 1 ≤ j ≤ np

∫
Rnx

∫
DQj

π(t, x)p(t, x− ηj(t, x, qj))

· |I − ηjx(t, x, qj)|(pQjλj)(t, qj; t, x− ηj(t, x, qj))dqjdx

=

∫
Rnx

∫
DQj

π(t, ξj)p(t, ξj − ηj(t, ξj, qj))

· |I − ηjξj(t, ξj, qj)|(pQjλj)(t, qj; t, ξj − ηj(t, ξj, qj))dqjdx

=

∫
Rnx

∫
DQj

p(t, x) π(t, x+ hj(t, x, qj))(pQjλj)(t, qj; t, x)dqjdx. (3.71)

So that equations (3.70), (3.71) complete the proof as follows

〈
π,FuMJDp

〉
=

∫
Rnx

[
nx∑
i=1

Fi(t, x, u)
∂π(t, x)

∂xi
+

1

2

nx∑
i,j=1

[Σ(t, x, u)]ij
∂2π(t, x)

∂xi∂xj

+

np∑
j=1

∫
DQj

(
π(t, x+ hj(t, x, qj))− π(t, x)

)
(pQjλj)(t, qj; t, x)dqj

]
p(t, x) dx

=

〈
p,F † uMJDπ

〉
. (3.72)
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CHAPTER 4

MEAN FIELD GAMES FOR AGENTS WITH LANGEVIN DYNAMICS

The MFG theory emerged as a viable formalism and analytical tool to understand large-

scale self-organizing networked systems. The underlying mean-field approach enables a

tractable framework to describe very large numbers of rational, non-cooperative and in-

teracting agents. MFG theory provides a game-theoretic optimal control interpretation of

emergent behavior of non-cooperative agents. In this chapter discuss MFG models in which

individual agents obey multidimensional nonlinear Langevin dynamics, and analyze the

closed-loop stability of fixed points of the corresponding coupled forward-backward PDE

systems. In such MFG models, the detailed balance property of the reversible diffusions

underlies the perturbation dynamics of the forward-backward system. We use our approach

to analyze closed-loop stability of two specific models. Explicit control design constraints

which guarantee stability are obtained for a population distribution model and a mean con-

sensus model. It is shown that under certain conditions, that static state feedback using the

steady state controller can be employed to locally stabilize a MFG equilibrium. We validate

this fact numerically.

4.1 Introduction

Large scale non-cooperative multi-agent systems involving coupled costs were intro-

duced as mean field games (MFG) by Huang et. al [15] and Lasry et. al [16]. Key ideas

in this theory are the rational expectations hypothesis, infinitely many anonymous agents

and that individual decisions are based on statistical information about the collection of

agents. Subsequently, this theory has become a viable tool in the analysis of large-scale,

self-organizing networked-systems, and provides a game-theoretic optimal control inter-

pretation of the the notion of emergent behaviour in the non-cooperative setting. In the
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continuum approach, MFG models are synthesized as standard [73] stochastic optimal

control problems (OCP). Fully coupled Fokker Planck (FP) and Hamilton Jacobi Bell-

man (HJB) equations governing agent density and value functions constitute the mean field

(MF) optimality system. Assumptions of quadratic control cost and control affine agent

dynamics constitute quadratic MFG models [19]. MFG models have been constructed to

study several naturally occurring and engineered large-scale networked systems, including

traffic [74], financial [75], energy [76], and biological systems [77].

A characteristic feature of MFGs is the ability to model interaction between networked

agents by designing a suitable cost function. If the cost function has only local density

dependence and is strictly increasing, steady state solutions to the MF system are unique

[78] in several cases. In the absence of monotonicity, MFGs exhibit non-unique solutions

and related phase transitions [18],[77], [19]. Since real-world large-scale networked sys-

tems soften possess several ‘operating regimes’, non-monotonicity in the corresponding

MFG models is expected to be the norm, rather than an exception. Closed-loop stability

analysis of MFG models that do not satisfy the monotonicity condition has to be done on a

case-by-case basis. A given fixed point of the MFG is called (linearly) closed-loop stable

if any perturbation to the fixed-point density decays to zero under the action of the control,

where both the density and control evolution are computed using the (linearized) coupled

forward-backward system of FP-HJB PDEs.
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Figure 4.1: Stability of MFGs models

Guéant [21] studied the stability of an MFG model with a negative log density cost.

Stability of MFGs with nonlocal cost coupling was considered for a Kuramoto oscillator

model by Yin et. al [18] and a mean consensus cost by Nourian et. al ([79, 22]). A

common limitation of these prior works is that the agents dynamics are assumed to be

simple integrator systems. MF approach to large-scale networked systems with nonlinear

agent dynamics have proved to be useful in modeling crowds [80], flocks [26], neural

networks [81] and robotic control [12]. nIn our recent work [77], we analytically and

numerically explored phase transitions in MFG models consisting of agents with nonlinear

passive dynamics.

We expand upon the idea introduced in [77], and present rigorous closed-loop linear

stability analysis for quadratic MFG models with dynamics of individual agents lying in

the general class of controlled reversible diffusions. An example of such diffusions are the

overdamped Langevin (simply Langevin for brevity) dynamics given in (4.1), while the

simplest case is that of integrator systems. The key idea is that the detailed balance prop-

erty of the generator of controlled reversible diffusions, and the resulting spectral properties

of the linearized MFG system, allow for generalization of existing stability analysis tech-

niques to this larger class of MFG systems. Furthermore, we demonstrate that static state
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feedback using the steady state controller can be employed to (sub-optimally) locally sta-

bilize a MFG equilibrium.

In section 4.2, we describe the class of MFG models treated in this chapter. In section

4.3, we present the arguments detailing the main ideas for stability analysis for this class

of models. Detailed analysis of closed-loop linear stability of steady states for (i) a popula-

tion model with local cost coupling and (ii) consensus model with nonlocal cost coupling

are presented next, which illustrate the key ideas in our approach. The population model

consists of a general class of nonlinear controlled Langevin agent dynamics with a negative

log density cost [21]. In section 4.4 we present technical conditions required for stability

on the stationary solution and control parameters, and local stability results for this model.

This analysis generalizes the stability analysis for the integrator dynamics case presented in

[21]. The consensus model has flocking cost as in [22]. In section 4.5 we present stationary

solutions, control design parameter constraints and linear stability results for this model in

which agents obey Langevin dynamics with quadratic potential. Our results on this model

generalize those of [22] concerned with integrator agent dynamics. A part of the results

presented in this section will be published in [23].

Finally, in section 4.6, the action of the MF steady state controller on a population of

agents in a MFG with nonlinear Langevin dynamics is considered. We show that a popu-

lation of agents with perturbed (non Gaussian) initial densities will decay to the (closest)

stationary density under the action of static feedback given by the corresponding steady

state controller.

4.2 Mean Field Game Model

In this section, we first introduce some notation and then describe the MFG model treated

in this chapter. L2(g dx;Rd) denotes the class of g-weighted square integrable functions of

Rd. The norm of a function f and inner product of functions f1, f2 in this class is denoted
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by ||f ||L2(g dx;Rd) and
〈
f1, f2

〉
L2(g dx;Rd)

respectively.

Let xs, u(s) ∈ Rd denote the state and control inputs of a representative agent which

obeys controlled Langevin dynamics in the overdamped case, given by

dxs = −∇ν(xs)ds+ u(s)ds+ σdws (4.1)

for every s ≥ 0, driven by standard Rd Brownian motion, with noise intensity 0 < σ on the

filtered probability space {Ω,F , {Ft}t≥0,P}. The smooth function ν : Rd → R is called

the Langevin potential and the control u ∈ U := U [t, T ] where U is the class of admissible

controls [31] containing functions u : [t, T ] × Rd → Rd. The MFG models treated in this

work can be written as the following control problem subject to (4.1)

min
u∈U

J(u) := E
[∫ T

t

e−ρs
(
q(xs, p(s, xs)) +

R

2
u2(s)

)
ds

]
, (4.2)

where we denote the probability density of xs by p(s, x) for every s ≥ 0, with initial

density being xt ∼ p(t, x), q : Rd × L1(Rd)→ R is a known deterministic function which

has at most quadratic growth in (x, p) and R > 0 is the control cost. We assume that the

functions in the class U and ∇ν(x), q(x, p) are measurable. The value function is defined

as v(t, x) := min
u∈U

J(u) given xt = x. It can be seen by standard application of dynamic

programming [82] as in ([73], [16]), that this control problem is equivalent to the following

PDE system

−∂tv =q − ρv − (∇v)2

2R
−∇v · ∇ν +

σ2

2
∆v (4.3)

∂tp =∇ ·
(
(∇ν +

∇v
R

)p
)

+
σ2

2
∆p (4.4)

with the optimal control u∗(t, x) = −∇v/R, the mass conservation constraint
∫

p(s, x)dx =

1 for all s ≥ 0 and boundary constraints lim
|x|→+∞

p(t, x) = 0, lim
s→+∞

e−ρsv(s, xs) = 0. These

fully coupled equations identified as the HJB and FP PDEs comprise the MF optimality
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system. An infinite time horizon, that is T → +∞, leads to the stationary system

0 =q(x, p∞)− ρv∞ − (∇v∞)2

2R
−∇v∞ · ∇ν

+
σ2

2
∆v∞, (4.5)

0 =∇ ·
(
(∇ν +

∇v∞

R
)p∞

)
+
σ2

2
∆p∞, (4.6)

governing the fixed point pair (v∞(x), p∞(x)) of steady state value and density functions,

with constraints
∫

p∞(x)dx = 1, and lim
s→+∞

e−ρsv∞(xs) = 0. The optimal control is

u∞(x) = −∇v∞/R. Interesting examples of such dynamics are noisy potential wells

and Kuramoto oscillator models. Note that Newtonian or second order state space dynam-

ics cannot be modeled by these dynamics. In this case Langevin dynamics [83] are the

appropriate model used. In the overdamped limit the density dynamics are precisely the

Smoluchowski equation. To extend the results in this paper to Langevin dynamics we must

deal with a generator operator which is the sum of an anti symmetric and a symmetric

operator.

Remark 1. If the MFG model has a long-time-average utility [18],

min
u∈U

J(u) := lim
T→+∞

1

T
E
[∫ T

0

q(xs, p(s, xs)) +
R

2
u2(s) ds

]
, (4.7)

instead of the discounted version in (4.2), then the corresponding stationary optimality

system consists of ((4.5), (4.6)), on observing the limit ρv∞ → λ in (4.5) as ρ → 0, where

λ is the optimal cost. Please see [84] and references therein for proof of this connection

between the utilities. In this case, the time dependent, relative value function [85] obeys

(4.3) wherein ρv is replaced by λ. Similarly, the perturbation system is obtained from (4.17)

by setting ρ = 0. Thus, all the results in sections 4.3, 4.4, 4.5, 4.6 can be directly extended

to the LTA utility case.
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4.3 Perturbation System

The FP equation for the density of an overdamped Langevin system is called the Smolu-

chowski PDE. From the form of the FP PDE (4.6), it can be interpreted as the Smolu-

chowski PDE for such a Langevin system with the restoring potential ν + v∞/R. This

interpretation allows us to obtain the analytical solution to the FP PDE as a Gibbs distri-

bution, if the fixed point pair (v∞, p∞) of the MFG (4.5, 4.6) and the Langevin potential ν

satisfy certain conditions. We denote w(x) := ν(x) + v∞(x)
R

henceforth in this chapter.

Lemma 4.3.1. If v∞(x), ν(x) are smooth functions satisfying lim
|x|→+∞

w(x) = +∞ and

exp
(
− 2
σ2w(x)

)
∈ L1(Rd), then the unique stationary solution to the density given by the

Fokker Planck equation (4.6) is

p∞(x) :=
1

Z
exp

(
− 2

σ2

(
w(x)

))
(x), (4.8)

where Z =
∫

exp
(
− 2
σ2w(x)

)
dx.

Proof. We observe that the (4.6) is the Smoluchowski equation for an overdamped Langevin

system given by

dxs = −∇(ν + v∞/R)(xs) ds+ σdws. (4.9)

Under the assumptions above, the proof then follows directly from proposition 4.2, pp 110

in [83].

Decay of an initial density of particles under uncontrolled (or open loop) overdamped

Langevin dynamics to a stationary density is a classical topic [86]. We address the question

of decay of a locally perturbed density of agents in a MFG to a steady state density under

the closed loop time varying as well as steady state MFG optimal controls. The perturbation

analysis then corresponds to a fully coupled forward-backward PDE system. The proposed

approach leads to a general method to obtain stability constraints on the control design

parameters, with explicit analytical results in certain cases.
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To derive the linearization of MFG system (4.5, 4.6) around the pair (v∞, p∞), we write

the perturbed density and value functions as p(t, x) = p∞(x)(1 + εp̃(x, t)), and v(t, x) =

v∞(x) + εṽ(x, t) respectively. The corresponding perturbed cost is q(x; p) = q(x; p∞) +

εq̃(x; p∞, p̃) where ε > 0. We denote q∞(x) := q(x, p∞), and q̃(x) := q̃(x; p∞(x), p̃(t, x))

for brevity.

The generator of a Langevin process is intrinsically linked to the stability properties of

its density dynamics. We denote the generator of the optimally controlled agent dynamics

(4.9) as L(·) := −∇(ν + v∞/R) · ∇(·) + (σ2/2)∆(·) and its L2(R) adjoint L†(·) :=

∇ · (∇(ν + v∞/R)(·)) + (σ2/2)∆(·).

Theorem 4.3.2. If (v∞(x), p∞(x)) are smooth steady state solutions to the MF system (4.5,

4.6) wherein ν is a smooth function such that lim
|x|→+∞

w(x) = +∞ and exp
(
− 2
σ2w(x)

)
∈

L1(Rd), then the linearization of the MF system (4.3, 4.4) around (v∞(x), p∞(x)) for all

(t, x) ∈ [0,+∞)× Rd is

−∂tṽ =q̃ − ρṽ + Lṽ, (4.10)

∂tp̃ =(2/σ2R)Lṽ + Lp̃, (4.11)

where p̃(0, x) is given,
∫
Rd p∞(x)(1+εp̃(t, x))dx = 1 for all t ≥ 0, ε > 0, lim

|x|→+∞
p̃(t, x) =

0 for all t ≥ 0 and lim
t→+∞

e−ρtṽ(t, xt) = 0.

Proof. Substituting the perturbation density p = p∞(1 + εp̃) in (4.4), using the fixed point

equation (4.6) and neglecting higher order ε terms we have

∂t(p
∞ + εp∞p̃)

= ∂x

(
∂x(ν + (v + εṽ)/R)(p∞(1 + εp̃))

)
+
σ2

2
∂xx(p

∞(1 + εp̃))ε∂t(p
∞p̃)

=ε∇ ·
(
∇v
R

p∞ +∇(ν +
v

R
)p∞p̃

)
+ ε

σ2

2
∆(p∞p̃), (4.12)
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so that using the operator L† and the fact that ε > 0,

∂t(p
∞p̃) = ∇ ·

(
∇ṽ p∞/R

)
+ L†(p∞p̃). (4.13)

It can be verified [87] that for a smooth function f(x) the generator and its adjoint operator

satisfy the detailed balance property L†(p∞f) = p∞Lf . Therefore from (4.13) we have

p∞∂tp̃ =
1

R

(
p∞∆ṽ +∇ṽ · ∇p∞

)
+ p∞Lp̃. (4.14)

From the assumed conditions on the potential and value functions, lemma 4.3.1 gives

the stationary density, so that ∇p∞ = − 2
σ2 (∇ν + ∇v∞

R
)p∞. Then the previous equation

simplifies as

p∞∂tp̃ = p∞
(
Lp̃ +

2

σ2R
Lṽ
)
, (4.15)

giving us the density perturbation equation since p∞(x) > 0. Substituting the perturbation

value function v = v∞ + εṽ in (4.3), using the fixed point equation (4.5) and neglecting

higher order ε terms gives

− ∂t(v∞ + εṽ)

=q + εq̃ − ρ(v∞ + εṽ)− 1

2R
(∂x(v

∞ + εṽ))2 − ∂x(v∞ + εṽ)∂xν +
σ2

2
∂xx(v

∞ + εṽ)

=q∞ + ε˜̄q − ρv∞ − ερṽ − (∂xv
∞)2/R− εv∞x ṽx/R− v∞x νx

− εṽxνx +
σ2

2
∂xxv

∞ + ε
σ2

2
∂xxṽ

=− ε∂tṽ = εq̃ − ερṽ − ε∇
(
v∞

R
+ ν

)
· ∇ṽ + ε

σ2

2
∆ṽ. (4.16)

Using the operator definition and since ε > 0 we get the required result. The mass con-

servation and boundary constraints on ṽ, p̃ follow directly from those constraints on (4.3,

4.4).
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In the following two sections we will apply the above result to obtain stability results

for two MFG models. Note that the perturbation system may be written in concatenated

form as

∂t

ṽ
p̃

 =

−L+ ρ 0

2
σ2R
L L


ṽ

p̃

+

−q̃
0

 . (4.17)

4.4 A Population Distribution model

We present the linear stability result for a population distribution MFG model in this sec-

tion. A cost function with local density dependence is used in this model to mimic a popu-

lation of agents with identical dynamics, seeking to minimize their cost functional but with

a preference for imitating their peers. This model agents in an economic network [88]. A

reference case for this model is [21] where the simplest case of integrator agent dynamics

was treated. Note that while a strictly increasing cost function q(p(t, x)) models aversion

among agents, a strictly decreasing one models cohesion [89]. We reiterate that, as stated

in the introduction, there is no general uniqueness result for the stationary solution, in case

of such a monotonically decreasing cost function. We consider a model comprised by the

OCP (4.2) with the negative log density cost and agents following nonlinear Langevin dy-

namics (4.1).

The MF optimality system for this model consists of the coupled system (4.3, 4.4) along

with the cost coupling equation

q(x, p(t, x)) = − ln p(t, x), (4.18)

where p(0, x) = p0(x) is the given initial density of agents,
∫

p(t, x)dx = 1 for all t ≥ 0,

lim
t→+∞

p(t, x) = 0 and lim
t→+∞

e−ρtv(t, xt) = 0.
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4.4.1 Stationary Solution

The stationary MF optimality system is given by (4.5, 4.6) and the cost coupling equation

q∞(x) =− ln p∞(x), (4.19)

where
∫

p∞(x)dx = 1 and lim
t→+∞

e−ρtv∞(xt) = 0.

Calculating analytical solutions to HJB PDEs is a daunting task, examples of which

are rare and mainly related to linear-quadratic regimes. The presented approach aims at

being applicable to the most general class of nonlinear dynamics. We show that under cer-

tain conditions on the (unknown) stationary solution (v∞, p∞), one may obtain sufficiency

conditions required for linear stability of the population model. Conditions on the station-

ary solution required to guarantee stability are stated in the following assumptions. Let

w(x) := ν(x) + v∞(x)
R

.

(A1) There exist (v∞(x), p∞(x)) ∈ (C2(Rd))2 satisfying (4.5,4.6,4.19) such that lim
|x|→+∞

w(x) =

+∞ and exp
(
− 2
σ2w(x)

)
∈ L1(Rd).

Due to this assumption, lemma 4.3.1 implies that the stationary density is uniquely deter-

mined by the analytical expression (4.8).

4.4.2 Linear Stability

Under the assumption (A1), the perturbation PDEs for the value and density functions as

well as the constraints follow directly from theorem 4.3.2. The only term in (4.17) specific

to the cost coupling (4.18) is given by

q̃(x; p̃(t, x)) =− p̃(t, x), (4.20)

using the Taylor series expansion.

We define a Hilbert space and a class perturbations in it, for which we show stability.
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Definition 4.4.1. Let (A1) hold. Denote the density p∞(x) := 1
Z

exp
(
− 2
σ2w(x)

)
(x) with

the normalizing constant Z where (v∞, p∞) is a pair satisfying (A1). Denote by H the

Hilbert space L2(p∞(x)dx;Rd). The class of mass preserving density perturbations is

defined as S0 :=

{
q(x)∈ H

∣∣∣∣〈1, q(x)
〉
H = 0

}
.

Definition 4.4.2. Let us denote the set of initial perturbed densities by S(ε) =

{
p(0, x) =

p∞(x)(1 + εp̃(0, x))

∣∣∣∣p(0, x) ≥ 0, p̃(0, x) ∈ S0

}
. We say the fixed point (v∞(x), p∞(x))

of the MF optimality system (4.3, 4.4) is linearly asymptotically stable with respect to S(ε)

if there exists a solution (ṽ(t, x), p̃(t, x)) to the perturbation system (4.10,4.11) such that

lim
t→+∞

||p̃(t, x)||H = 0.

Since we are concerned with stability of isolated fixed points, we do not assume that

initial perturbations are mean preserving [21].

Lemma 4.4.1. If (A1) is true then L is self adjoint in L2(p∞dx;Rd), negative semidefinite

and its kernel consists of constants.

Proof. Due to (A1) v∞(x) is differentiable and the operator L is well defined. We observe

that it is the generator of an overdamped Langevin system (4.9) under a potential ν+v∞/R

and noise intensity σ. The proof follows from proposition 4.3, pp 111 in [83].

We need an assumption to obtain relevant properties of the generator of the controlled

process.

(A2) lim
|x|→+∞

(
|∇w(x)|2

2
− σ2

2
∆w(x)

)
= +∞

and ν(x) ∈ C2(Rd).

An example of an one dimensional MFG model with integrator dynamics and its corre-

sponding stationary solution v∞(x) satisfying this assumption was explicitly constructed

in [21].
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Lemma 4.4.2. nLet (A1, A2) hold. Then p∞(x) satisfying (A1) and given by (4.8), satisfies

the Poincaré inequality with λ > 0, that is, for all f ∈ C1(Rd) ∩ L2(p∞(x)dx;Rd) such

that
∫
fp∞(x)dx = 0 there exists λ > 0 such that

λ
2

σ2
||f ||2L2(p∞(x)dx;Rd)

≤ ||∇f ||L2(p∞(x);Rd) = −
〈
Lf, f

〉
L2(p∞(x);Rd)

. (4.21)

Proof. nThe assumptions imply that v∞(x) ∈ C2(Rd), and hence, (ν + v∞/R)(·) ∈

C2(Rd). Observe that operator L is the generator of an overdamped Langevin system

under a potential ν + v∞/R and noise intensity σ. The proof then follows from theorem

4.3, pp 112 in [83].

Lemma 4.4.1 implies that eigenvalues of L are real, negative semidefinite and its eigen-

functions are orthonormal in L2(p∞(x)dx;Rd) while lemma 4.4.2 implies that the eigen-

values of L are discrete and its eigenfunctions are complete on L2(p∞(x)dx;Rd) [87]. We

denote the eigenvalues {ξn}n≥0 and corresponding eigenfunctions {Ξn}n≥0 of L which

form a complete orthonormal basis of H. Let eigenvalues {ξn}n≥0 be indexed in descend-

ing order of magnitude 0 = ξ0 > ξ1 > ... > ξn > ... and let Ξ0 = 1.

Remark 2. The detailed balance L†(p∞f) = p∞L(f) used in proof of theorem (4.3.2)

is the key property, because of which we have distinct, real and non negative eigenvalues

[87] of the generator L. nThese eigen properties make the presented approach to stability

analysis of MFGs possible, through the result in theorem 4.3.2.

(A3) ρ− 2
σ2R

> ξn for all n ≥ 1.

The assumption above is the explicit control design constraint required to show stability.

Denote the matrix associated with the MF system for the population distribution model

An :=

−ξn + ρ 1

2
σ2R

ξn ξn

.

69



Lemma 4.4.3. If ξn 6= 0 and ρ− 2
σ2R

> ξn then the eigenvalues of An are real, distinct and

ordered λ1
n < 0 < λ2

n.

Proof. The characteristic equation of An is λ2
n − ρλn + (ρ − ξn)λn + 2

σ2R
ξn = 0 has the

eigenvalue roots λ1,2
n = ρ

2
±
√(

ρ
2

)2 − (ρ− ξn)ξn + 2
σ2R

ξn from which the result follows.

The spectral properties of perturbation MFG system derived in this section allow us to

extend the methods in [21] (applied to integrator agent dynamics) to the case of nonlinear

Langevin agent dynamics. Note that the stationary solution as well as the eigenbasis are not

explicitly known here, unlike in previous works which exploit the Hermite basis resulting

from explicitly known quadratic-Gaussian stationary solutions.

Theorem 4.4.4. Let (A1, A2, A3) hold, and (v∞(x), p∞(x)) be a stationary solution to the

MF system (4.3, 4.4, 4.18). If perturbation p̃(0, x) ∈ S0 and {vn, pn}n≥0 is determined by

p0(t) = 0, and for n ≥ 0

v̇n
ṗn

 =An

vn
pn

 , (4.22)

pn(0) = 〈p̃(0, x),Ξn(x)〉H , (4.23)

then {ṽ(t, x) =
∑+∞

n=0 vn(t)Ξn(x), p̃(t, x) =
∑+∞

n=0 pn(t)Ξn(x)} are uniqueH solutions to

the perturbation MF system (4.10,4.11,4.20). p∞(x) is linearly asyptotically stable with

respect to S(ε).

Proof. Finite time solution: We first construct finite time solutions to the perturbation sys-

tem (4.10,4.11,4.20) under initial and terminal time boundary conditions ṽ(T, x) ∈ H,

p̃(0, x) ∈ S0. We have the unique representations ṽ(T, x) =
∑+∞

n=0 vn(T )Ξn(x) and

p̃(0, x) =
∑+∞

n=0 pn(0)Ξn(x), where

vn(T )n≥0 = 〈ṽ(T, x),Ξn(x)〉H , (4.24)
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and pn(0)n≥0 is given by (4.23).

Consider the infinite sums {
∑+∞

n=0 vn(t)Ξn(x),
∑+∞

n=0 pn(t)Ξn(x)}. Using the eigen

property LΞn(x) = ξnΞn(x), and inserting the infinite sums into the perturbation system

(4.10, 4.11, 4.20) yields the ODE system (4.22).

For n = 0, since p̃(0, x) ∈ S0 and Ξ0 = 1, we know that p0(0) = 〈Ξ0, p̃(0, x)〉 = 0.

Since ξ0 = 0, from the matrix An we have ṗ0(t) = 0 implying p0(t) = 0 for all t ∈ [0, T ].

Therefore, v0(t) = v0(T )e−ρ(T−t).

For n ≥ 1, from lemma 4.4.3 we have that the eigenvalues spec(An) = λ1,2
n are distinct,

real and are ordered λ1
n < 0 < λ2

n. We may write

vn(t)

pn(t)

 = Cn,T
1 eλ

1
nt

 1

e1
n

+ Cn,T
2 eλ

2
nt

 1

e2
n

 , (4.25)

with eigenvector components e1,2
n = ξn − ρ + λ1,2

n . Boundary conditions give us vn(T ) =

Cn,T
1 eλ

1
nT + Cn,T

2 eλ
2
nT and pn(0) = Cn,T

1 e1
n + Cn,T

2 e2
n implying

Cn,T
1 =

(e2
n/e

1
n)vn(T )− eλ

2
nT (pn(0)/e1

n)

(e2
n/e

1
n)eλ1nT − eλ2nT

, (4.26)

Cn,T
2 =

(pn(0)/e1
n)− vn(T )

(e2
n/e

1
n)eλ1nT − eλ2nT

. (4.27)

From the eigenvalues given by lemma 4.4.3 and since in the limit ξn → −∞, we observe

that e1
n ∼ −2|ξn| and e2

n ∼
ρ
2

as n → +∞ so that in the limit Cn,T
1 ∼ pn(0)

e1n
and Cn,T

2 ∼
vn(T )

eλ
2
nT

. We can therefore say that vn(t) = O
(
−pn(0)

2|ξn| e
−λ1nt

)
+ O

(
vn(T )e−λ

2
n(T−t)

)
and

pn(t) = O
(
pn(0)eλ

1
nt
)

+ O
(
vn(T )e−λ

2
n(T−t)

)
. From these estimates we can say that∑+∞

n=0 vn(t)Ξn(x),
∑+∞

n=0 pn(t)Ξn(x) given by the ODE system (4.22, 4.24, 4.23) are in

C∞([0, T ]× Rd) andH.

Since {Ξn}n≥0 is a complete basis to H, any solution in H to the system (4.10, 4.11,

4.20) must have the form {ṽ(t, x) =
∑+∞

n=0 vn(t)Ξn(x), p̃(t, x) =
∑+∞

n=0 pn(t)Ξn(x)}

where {vn, pn}n≥0 are finite for all t ∈ [0, T ]. This concludes the proof that such a
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{ṽ(t, x), p̃(t, x)} governed by the ODE system (4.22, 4.23, 4.24) is a unique H solution

to the perturbation system (4.10, 4.11, 4.20).

Asymptotic stability: Now, we construct infinite time solutions by considering the limit

T → +∞ of the solutions in the finite time case. As explained in the finite time solutions

case, it can be shown that p0(t) = 0 at all times.

The pair {ṽ(t, x) =
∑+∞

n=0 vn(t)Ξn(x), p̃(t, x) =
∑+∞

n=0 pn(t)Ξn(x)} is a unique so-

lution specified by (4.25) given the initial and terminal coefficients pn(0) and vn(T ) for

all n ≥ 0. Now, if ṽ(t, x) ∈ H then lim
t→+∞

|vn(t)| < +∞ for all n ≥ 0. It is also

known that |pn(0)| < +∞. Therefore, for n = 0, this means that p0(t) = 0 and v0(t) =

v0(T )e−ρ(T−t) T→+∞−−−−→ 0.

From lemma 4.4.3, the eigenvalues of An are ordered λ1
n < 0 < λ2

n for all n ≥ 1 due

to (A3). Therefore, for all n ≥ 1, we observe from the finite time solutions (4.26, 4.27) to

the ODE system (4.22), that Cn,T
1 → pn(0)

e1n
and Cn,T

2 → vn(T )e−λ
2
nT as T → +∞. Since

λ1
n < 0 < λ2

n, for any α ∈ (0, 1
2
) and as T → +∞, it can be obtained from (4.25) that

sup
t∈[αT,(1−αT )]

|vn(t)| ≤ |Cn,T
1 |eλ

1
nαT + |Cn,T

2 |eλ
2
n(1−α)T

≤
∣∣∣∣pn(0)

e1
n

∣∣∣∣ eλ1nαT + |vn(T )|e−λ2nαT , (4.28)

sup
t∈[αT,(1−αT )]

|pn(t)| ≤ |Cn,T
1 ||e1

1|eλ
1
nαT + |Cn,T

2 ||e2
1|eλ

2
n(1−α)T

≤ |pn(0)|eλ11αT + |vn(T )|e−λ21αT , (4.29)

the right sides of which vanish in the limit since |vn(T )| < +∞ and |pn(0)| < +∞.

We have shown that the unique solution in H to the MF perturbation system has the

properties v0(t) = p0(t) = 0, lim
t→+∞

vn(t) = 0 and lim
t→+∞

pn(t) = 0 for all n ≥ 1. Therefore

using Parseval’s theorem ||ṽ(t, x)||L2(p∞(x);Rd) =
(∑+∞

n=1 vn(t)
) 1

2 , ||p̃(t, x)||L2(p∞(x);Rd) =(∑+∞
n=1 p

2
n(t)

) 1
2 and the Lebesgue dominated convergence theorem, we have that p∞(x) is
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linearly asymptotically stable with respect to perturbing densities in S(ε).

4.5 A Mean Consensus Model

In this section we obtain stability results for a mean consensus MFG model using theorem

(4.3.2). The model consists of the problem statement (4.2) with the nonlocal consensus cost

q(x, p(t, x)) = 1
2

(∫
(x− x′)p(t, x′) dx′

)2 and agents following controlled one dimensional

Langevin dynamics (4.1) with quadratic restoring potential ν = 1
2
ax2, a 6= 0. A MFG

model with consensus cost has been previously studied in [22] wherein it is assumed that

all agents follow integrator dynamics, that is, the case a = 0. Although a more general

potential ν(x) can be treated using the result (4.3.2) to obtain stability results, we choose to

present the generalization only to the quadratic potential. This choice allows us to obtain

analytical fixed point solutions for the stationary MF system, inspired by related work in

[90] where fixed points solutions were found for a different class of MFGs. The linearity in

passive agent dynamics also allows for mean consensus, as discussed later in this section.

The MF optimality system for this model consists of the coupled system (4.3, 4.4)

wherein ν = 1
2
ax2, along with the cost coupling equation

q(x, p(t, x)) =
1

2

(∫
(x− x′)p(t, x′) dx′

)2

(4.30)

where p(0, x) = p0(x) is the given initial density of agents,
∫

p(t, x)dx = 1 for all t ≥ 0,

lim
|x|→+∞

p(t, x) = 0 and lim
t→+∞

e−ρtv(t, xt) = 0.

4.5.1 Gaussian Stationary Solution

The stationary MF optimality system for this model consists of (4.5, 4.6) wherein ν =

1
2
ax2, along with the cost coupling equation

q∞(x) =
1

2

(∫
(x− x′)p∞(x′)dx′

)2

(4.31)
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where
∫

p∞(x)dx = 1 and lim
t→+∞

e−ρtv∞(xt) = 0. We denote µ∗ :=
∫
R x
′p∞(x′)dx′. In

this subsection we will obtain solutions of the form

v∞(x) =
η

2
x2 + βx+ ω, (4.32)

p∞(x) =
1√

2πs2
e−

(x−µ∗)2

2s2 , (4.33)

to the value and density functions in the coupled optimality system (4.5, 4.6, 4.31). Param-

eters η, β and ω can be obtained by substituting (4.32) into (4.5), using (4.31) and equating

coefficients of powers of x:

ω =
1

ρ

(
1

2
(µ∗)2 − β2

2R
+
σ2

2
η

)
, (4.34)

β =
−µ∗

ρ+ η
R

+ a
, (4.35)

η2 + 2R(ρ/2 + a)η −R = 0. (4.36)

These parameters must satisfy additional conditions related to the validity of the solution

ansatz, namely, s2 > 0 and v∞(x) > 0 for all x ∈ R. The unique positive solution to the

Algebraic Riccati Equation (ARE) (4.36) which permits v∞(x) > 0 for all x ∈ R is

η = −R
(ρ

2
+ a
)

+

√
R2
(ρ

2
+ a
)2

+R. (4.37)

Choosing this solution, it is easily verified that ρ + η
R

+ a > 0. Equating our stationary

density ansatz (4.33) with the unique Gibbs distribution solution (4.8) from lemma 4.3.1

implies

µ∗ =
−β

(aR + η)
, (4.38)

s2 =
σ2

2(a+ η
R

)
. (4.39)
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Equations (4.35) and (4.38) are compatible only if µ∗ = 0 or 1
ρ+ η

R
+a

= aR + η. Using the

ARE (4.36) it can be verified that the latter condition is equivalent to a = −ρ. We conclude

that the Gaussian stationary solutions can be categorized into two distinct cases depending

upon problem parameters: (1) if a 6= −ρ, there exists a unique solution with µ∗ = 0 and

(2) if a = −ρ, there exist a continuum of solutions, since µ∗ ∈ R can be chosen arbitrarily.

The following assumption is needed to ensure s2 > 0.

(B1) a+ η
R
> 0 for all a 6= 0.

nGiven a value of a, we provide the range of control design parameters for which (B1) is

true in the following lemma, which can be verified by substitution in equation (4.37).

Lemma 4.5.1. Let al,u := −ρ
2
±
√(

ρ
2

)2 − 1
R

. Then (B1) holds if either

• ρ < 2√
R

or

• ρ > 2√
R

and a ∈ (−∞, au) ∪ (al,+∞).

Remark 3. MFG models with either no quadratic-Gaussian stationary solutions or a con-

tinuum of such solutions were studied in [21] and linear-quadratic models [90] in the case

of an long-time-average cost functional. Our consensus model has a continuum of such

solutions in the case a = −ρ. Since the stability analysis for restrictive case is similar to

that in [22], we analyze the case a 6= −ρ in what follows.

We summarize the obtained quadratic-Gaussian solution to the stationary MF system

below.

Lemma 4.5.2. Let (B1) hold. 1) Case a 6= −ρ : The unique quadratic-Gaussian solution

to the stationary MF optimality system (4.5, 4.6) (with ν(x) = 1
2
ax2, a 6= 0) is the pair

(v∞(x) = η
2
x2 + σ2η

2ρ
, p∞(x) = 1√

2πs2
e−

x2

2s2 ) where (η, s) are defined by (4.37, 4.39). Fur-

thermore, q∞(x) = 1
2
x2.

75



2) Case a = −ρ : For each µ∗ ∈ R, there exists a pair (v∞(x), p∞(x)) given by equa-

tions (4.32, 4.33) that is a solution to the stationary MF optimality system (4.5, 4.6) (with

ν(x) = 1
2
ax2, a 6= 0). The parameters (ω, β, η, s) are given by equations (4.34, 4.35, 4.37,

4.39). Furthermore, q∞(x) = 1
2
(x− µ∗)2.

Proof. In both cases, q∞(x) = 1
2
(x − µ∗)2 follows from equation (4.31) and assumption

(B1) ensures that s2 > 0 in the unique Gaussian Gibbs distribution (4.33) corresponding to

the quadratic value function (4.32).

In case 1, the solution to the stationary value function is obtained by substituting µ∗ = 0

in equations (4.34), (4.35). This completes the first part of the proof. In case 2, for a given

value of µ∗ ∈ R, the solution to the value function maybe obtained similarly to the previous

case.

From the expression for the Gibbs distribution (4.8) and equation (4.33) we have 2
σ2v
∞(x) =

(x−µ∗)2
s2

≥ 0, which concludes the proof.

4.5.2 Linear Stability

We define a Hilbert space and a class perturbations in it, for which we show stability.

Definition 4.5.1. Denote Gaussian density p∞G (x) := 1√
2πs2

e−
(x−µ∗)2

2s2 with µ∗ ∈ R, s2 >

0. Denote by HG the Hilbert space L2(p∞G (x)dx;R). The class of mass preserving

density perturbations is defined as S0 :=

{
q(x)∈ H

∣∣∣∣〈1, q(x)
〉
HG

= 0

}
. The class of

mass and mean preserving density perturbations is defined as S1 :=

{
q(x)

∣∣∣∣〈1, q(x)
〉
HG

=

0,
〈
x, q(x)

〉
HG

= 0

}
.

The class of initial perturbed densities and linear asymptotic stability can be defined

analogously from the previous section by replacing p∞(x) by p∞G (x) in definition 4.4.2.

The lemma below follows from theorem 4.3.2 and Taylor expansion of q in (4.30)

around the fixed point.

76



Lemma 4.5.3. Let ν(x) = 1
2
ax2, a 6= 0. If (B1) holds, and (v∞(x), p∞(x), q∞(x)) given

by lemma 4.5.2 is a stationary solution to the nonlinear MF system (4.5, 4.6, 4.31) then the

linearization of the system around this solution for all (t, x) ∈ [0,+∞) × R is given by

(4.10,4.11) and

q̃(x; p̃(t, x)) =− (x− µ∗)
(∫

R
x′p∞(x′)p̃(t, x′)dx′

)
, (4.40)

where p̃(0, x) is given,
∫
R p∞(x)(1 + εp̃(t, x))dx = 1 for all t ≥ 0, ε > 0, lim

|x|→+∞
p̃(t, x) =

0 for all t ≥ 0 and lim
t→+∞

e−ρtṽ(t, xt) = 0.

We now state eigen properties of the generator ([91, 83]) of the controlled process

for the consensus model. We define normalized Hermite polynomials {Hn(x)}n∈W for

the space L2(p∞G dx;R) as Hn(x) = sn 1√
n!

(−1)ne
(x−µ∗)2

2s2
dn

dxn
e−

(x−µ∗)2

2s2 . These polynomi-

als with n ≥ 0, form a countable orthonormal basis of the space HG. {Hn(x)}n∈W

are eigenfunctions of the operator L wherein ν(x) = 1
2
ax2, with the [22] eigenproperty

LHn = − σ2

2s2
nHn = −(a+ η

R
)nHn. The following condition is needed for stability of the

consensus model.

(B2) a(a+ ρ) ≥ 0.

Note that this assumption is true if and only if a ∈ (−∞,−ρ] ∪ (0,+∞), recalling that

a 6= 0. Denote the matrix associated with the MF system for the consensus model Bn := σ2n
2s2

+ ρ s2δ(n− 1)

−n
s2R

−σ2n
2s2

.

Lemma 4.5.4. Let (B1, B2) hold. Then, for all n ≥ 2 the eigenvalues of Bn, λ1,2
n =

ρ
2
±
√(

ρ
2

)2
+ σ2n

2s2

(
σ2n
2s2

+ ρ
)

= {−σ2n
2s2
, σ

2n
2s2

+ρ} = {−
(
a+ η

R

)
n,
(
a+ η

R

)
n+ρ} are real,

distinct and ordered λ1
n < 0 < λ2

n. Furthermore, the eigenvalues of B1 denoted λ1,2
1 are

real, distinct and ordered λ1
1 < 0 < λ2

1 if a ∈ (−∞,−ρ) ∪ (0,+∞) and λ1,2
1 = {0, ρ} if

a = −ρ.
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On applying the ARE (4.36), we see that the eigenvalues

λ1,2
1 = ρ

2
±
√(

ρ
2

)2
+ σ2

2s2

(
σ2

2s2
+ ρ− 2s2

σ2R

)
= {−a, a + ρ}. Choosing to denote the lower

of the eigenvalues by λ1
1, we see that λ1

1 = −a if a ∈ (0,+∞) and λ1
1 = a + ρ if a ∈

(−∞,−ρ).

Spectral properties of the perturbation MFG system obtained in this section allow us

to generalize the methods in [22] (applied to integrator agent dynamics) to prove stability

of fixed points for MFG with linear Langevin agent passive dynamics. In the following

theorem, we show linear stability of unique zero mean stationary density (µ∗ = 0, corre-

sponding to a 6= −ρ) with respect to mass preserving density perturbations (p̃(0, x) ∈ S0).

Theorem 4.5.5. n Let ν(x) = 1
2
ax2, a 6∈ {{0}, {−ρ}}. Let (B1, B2) hold. Let (v∞(x), p∞(x), q∞(x))

given by lemma 4.5.2 be a stationary solution to the MF system (4.5, 4.6, 4.31). If pertur-

bation p̃(0, x) ∈ S0, and {vn, pn}n≥0 are determined by

v̇n
ṗn

 =Bn

vn
pn

 , n ≥ 0, (4.41)

then ṽ(t, x) =
∑+∞

n=0 vn(t)Hn(x), p̃(t, x) =
∑+∞

n=0 pn(t)Hn(x) are unique HG solutions

to the perturbation MF system (4.10, 4.11, 4.40). Moreover, the steady state density

p∞(x)= p∞G (x) is linearly asyptotically stable with respect to S(ε). Furthermore, p̃(t, x) =

p1(0)eλ
1
1tH1(x) +

∑+∞
n=2 pn(0)e−

−σ2n
2s2

tHn(x), q̃(x; p̃(t, x)) = −s2p1(0)H1(x) = 0, and

ṽ(t, x) = s2p1(0)
σ2

2s2
+ρ−λ11

eλ
1
1tH1(x) where λ1

1 is defined in lemma 4.5.4.

Proof. We constructHG solutions of form ṽ(t, x) =
∑+∞

n=0 vn(t)Hn(x), p̃(t, x) =
∑+∞

n=0 pn(t)Hn(x)

to the perturbation MF system (4.10, 4.11, 4.40) and show that they are unique. Since

p̃(0, x) ∈ HG we have the unique representation p̃(0, x) =
∑+∞

n=0 pn(0)Hn(x).

SinceH1(x) = x−µ∗
s

, from (4.40) we note that q̃(x; p̃(t, x)) =−sH1(x)
∑+∞

n=0 pn(t)
〈
p̃(t, x), x

〉
=

−s2p1(t)H1(x). Substituting the selected form of the solutions into the perturbation system

(4.10, 4.11, 4.40) and using the eigen property of the operator yields the ODEs (4.41).
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(i) Case n = 0: Since H0(x) = 1, and p̃(0, x) ∈ S0, we have p0(0) =
〈
p̃(0, x), 1

〉
HG

= 0.

Therefore, from the ODE system (4.41) and matrix Bn, we have ṗ0 = 0 and v̇0 = ρv0

implying p0(t) = 0 and v0(t) = v0(0)eρt for all t > 0. So, the only solution allowing

ṽ(t, x) ∈ HG is v0(t) = 0.

(ii) Case n = 1: In this case, from (4.39),

B1 =

 (a+ η
R

+ ρ
)

s2

− 1
s2R

−
(
a+ η

R

)
 . (4.42)

The assumptions imply a ∈ (−∞,−ρ) ∪ (0,+∞). Hence, from lemma 4.5.4, the eigen-

values spec(B1) = λ1,2
1 are ordered λ1

1 < 0 < λ2
1. Consider the finite time boundary

conditions p1(0), v1(T ) to ODE system in this case. We may write

v1(t)

p1(t)

 = C1,T
1 eλ

1
1t

 1

e1
1

+ C1,T
2 eλ

2
1t

 1

e2
1

 (4.43)

with the eigenvector components e1,2
1 = 1

s2

(
σ2

2s2
+ ρ− λ1,2

1

)
. Boundary conditions give

us C1,T
1 =

(e21/e
1
1)v1(T )e−λ

2
1T−p1(0)/e11

(e21/e
1
1)e(λ

1
1−λ

2
1)T−1

, and C1,T
2 =

−e(λ
1
1−λ

2
1)T p1(0)/e11−e−λ

2
1T v1(T )

(e21/e
1
1)e(λ

1
1−λ

2
1)T−1

. Note that if

ṽ(t, x) ∈ H then lim
t→+∞

|vn(t)| < +∞ for all n ≥ 0. It is also known that |pn(0)| <

+∞. Since λ1
1 < 0 < λ2

1 we observe that e(λ11−λ21)T , e−λ
2
1T → 0 as T → +∞ so that

in the limit, C1,T
1 → p1(0)/e1

1 and C1,T
2 → 0. Therefore we have the unique solutions

v1(t) = (p1(0)/e1
1)eλ

1
1t and p1(t) = p1(0)eλ

1
1t. Therefore, if p̃(0, x) ∈ S1 so that p1(0) =

〈p̃(0, x), H1(x)〉 = 0 then v1(t) = 0, p1(t) = 0 for all t ≥ 0.

(iii) Case n ≥ 2: In this case, from the ODE system we have

v̇n
ṗn

 =

 σ2n
2s2

+ ρ 0

− n
s2R

− σ2n
2s2

 . (4.44)

Therefore vn(t) = vn(0)e(σ
2n

2s2
+ρ)t, for which the unique solution allowing ṽ(t, x) ∈ HG for
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all t ≥ 0 is vn(t) = 0. Therefore pn(t) = pn(0)e−
nt
s2R is the unique solution to the ODE on

pn.

In the preceeding discussion we have shown that the unique HG solution to the per-

turbation system has the properties {v0(t) = 0, v1(t) = s2p1(0)
σ2

2s2
+ρ−λ11

eλ
1
1t, vn(t) = 0 for all

n ≥ 2,}, and { p0(t) = 0, p1(t) = p1(0)eλ
1
1t and pn(t) = pn(0)e

−nt
s2R for all n ≥ 2}. There-

fore using Parseval’s theorem ||p̃(t, x)||L2(p∞(x)dx;R) =
(
p2

1(0)e2λ11t +
∑+∞

n=2 p
2
n(0)e−

2nt
s2R

) 1
2

where λ1
1 < 0, and the Lebesgue dominated convergence theorem, we have that p∞G (x) is

linearly asymptotically stable with respect to perturbing densities in S(ε).

Remark 4. For the case a = −ρ, there exists a continuum of stationary solutions, similar

to the models considered in ([21], [22]). Stability of the mean consensus model for a = −ρ

with mass and mean preserving perturbations (p̃(0, x) ∈ S1) can be proved by following

the approach in [22], or using contraction mapping arguments ([15], [18], [77]).

We state a theorem regarding the mean consensus property [22] of the steady state

MFG control law. Let us denote a finite set of agents A := {xi}1≤i≤N , identified by

their individual states xi with individual dynamics given by equation (4.1). The set of

agents A is said to have the mean consensus property if lim
t→+∞

|E[xit − x
j
t ]| = 0 for any two

agents xi, xj ∈ A. Let us denote a finite set of agentsA = {xit}1≤i≤N , identified by their

individual states xit with individual dynamics given by equation (4.1), ν = 1
2
ax2, a 6= 0.

We say thatA has the initial mean consensus property if lim
t→+∞

|E[xit− x
j
t ]| = 0 for any two

agents xit, x
j
t ∈ A under the action of the MF control law given by the MFG (4.2) with the

consensus cost (4.30). The assumption below is required to prove mean consensus for a set

of agents in our consensus model.

(B3) sup
1≤i≤N

E[|xi0|2] < +∞ for the set A.

Theorem 4.5.6. Let (B1, B2, B3) hold. Let (v∞, p∞) be the steady state solutions to

the optimality system (4.5, 4.6) given in lemma (4.5.2). The steady state MF control law

u∞(x) = − 1
R
∂xv

∞(x) applied to a set of agents A, in the MFG model given by equations
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(4.1,4.2,) with ν(x) = 1
2
ax2 and consensus cost (4.30) results in a mean consensus with

individual asymptotic variance s2 = σ2

2(a+ η
R

)2
.

Proof. Since ∂v∞(x)/R = ηx/R + β/R and from the properties of the solution given in

lemma (4.5.2), the controlled individual dynamics for agent xi ∈ A can be obtained from

equation (4.1) as dxit = d(xit−µ∗) = −(a+ η
R

)(xit−µ∗)dt+σdwt. This gives the stochastic

integral solution xit = µ∗ + e−(a+ η
R

)t(xi0 − µ∗) + σ
t∫

0

e−(a+ η
R

)(t−s)dws.

xit = µ∗ + e−(a+ η
R

)t(xi0 − µ∗) + σ

t∫
0

e−(a+ η
R

)(t−s)dws. (4.45)

Using assumption (B4) and Jensen’s inequality we have,

sup1≤i≤N(E[|xi0 − µ∗|]) ≤ sup1≤i≤N(E[|xi0| − µ∗])
Jensen′s
≤

√
k − µ∗ < +∞. Taking

expectation along with applying assumption (B2) and using the Itó isometry [82] to get

the individual asymptotic variance we have lim
t→+∞

E[xit] = µ∗ and lim
t→+∞

E[(xit − µ∗)2] =

lim
t→+∞

σ2
t∫

0

e−2(a+ η
R

)(t−s)ds = σ2

2(a+ η
R

)
.

lim
t→+∞

E[xit] =µ∗ (4.46)

lim
t→+∞

E[(xit − µ∗)2] = lim
t→+∞

σ2

t∫
0

e−2(a+ η
R

)(t−s)ds =
σ2

2(a+ η
R

)
. (4.47)

A consequence of the continuum of solutions (remark 3) to the MF system for our con-

sensus model is that the mean of the stationary density, µ∗, is selected uniquely as the mean

of the initial density of agents. This can be observed using the fact that p0(t) = p1(t) = 0

and x = µ∗H0(x)+sH1(x) as
∫
xp∞(x)(1+p̃(0, x))dx = µ∗+

+∞∑
n=0

pn(t)
〈
Hn(x), x

〉
HG

=

µ∗ +
+∞∑
n=2

pn(t)
〈
Hn(x), µH0(x) + sH1(x)

〉
HG

= µ∗.
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We simulate an example of the mean consensus of agents with linear passive drift in the

dynamics. The agents attain mean consensus asymtotically with good agreement between

theoretical and numerical values of the asymptotic variance.

Figure 4.2: Stochastic trajectories and correspoding means of 500 agents starting from an
initial uniform distribution. At large time theoretical and numerical values of variance are
in close agreement

Theorems (4.4.4,4.5.5) show that in the population model (with nonlinear agent dynam-

ics) as well as the consensus model (with linear agent dynamics , a 6= −ρ), the optimal MF

control law u∗(t, x) = u∞(x)−∂xṽ(t, x)/R is in general time-varying, and hence different

from the static steady controller u∞(x) = −∂xv∞(x)/R. In the next section we study the

local stabilizing property of the static steady MF controller with respect to small S0 per-

turbations in the steady state density, for both MFG models with nonlinear Langevin agent

dynamics and general cost functions.

As indicated in remark 3, a consequence of the continuum of solutions to the MF sys-

tem for our consensus model is that the mean of the stationary density, µ∗, is selected

uniquely as the mean of the initial density of agents. This can be observed using the fact

that p0(t) = p1(t) = 0 and x = µ∗H0(x) + sH1(x) as
∫
xp∞(x)(1 + p̃(0, x))dx =

µ∗ +
+∞∑
n=2

pn(t)
〈
Hn(x), µH0(x) + sH1(x)

〉
HG

= µ∗. The previous theorem shows that

the value function and hence the optimal control does not change under small S1 density

perturbations. Further it stabilizing with respect to small S1 perturbations in the density.

That is, since ṽ(t, x) = 0 under small S1 perturbations, the MF control law in this case is
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u∗(t, x) = u∞(x) = −∂xv∞(x)/R.

4.6 Steady Controller: Static State Feedback

We consider the stability of a population of agents in a MFG, under the action of static

state feedback provided by the steady state MFG solution. Let (v∞, p∞) be a fixed point for

the MF system (4.5, 4.6). Consider a perturbed density of agents p∞(1+εp̃) as before. The

static feedback MF control law u∞(t, x) = −∂x(v∞(x))/R for agents governed by (4.1)

is said to be locally stabilizing for a steady state density p∞(x), if the density perturbation

p̃(t, x) governed by (4.11) with ṽ(t, x) ≡ 0, decays to zero.

From equation (4.17), the perturbation dynamics under the static feedback are given by

∂tp̃ = Lp̃. Local stability therefore depends only on the eigen properties of the generator

L. Assuming (A1, A2) hold, theorems 4.4.1 and 4.4.2 imply non-negativity of spectrum of

L, which in turn yields stability w.r.t. density perturbations in S0. Notice that this result is

independent of the cost function q(x, p). Therefore, the static feedback under the steady

controller is locally stabilizing.

We demonstrate local linear stability property under decentralized static state feedback

in two 1D numerical examples. We consider the example of a bistable Langevin potential,

ν(x) = α(x
4

4
− x2

2
), α > 0, for both models. Open loop dynamics (4.1) under this potential

would cause agents to fall into either one of the wells and exhibit a bimodal distribution at

infinite time.

We use Chebfun [92] to solve for nsteady states of the MF system (4.5, 4.6) [77]. Monte

Carlo simulations are performed for Langevin dynamics (4.1) using the nonlinear static

feedback controller. Trajectories for N = 500 agents are simulated with 100 stochastic

realizations each. We observe an initial distribution of agents decay to the steady state

density over the total simulation time T , in both cases.

In the population model, a combined quadratic state and log density cost q(t, x) =

1
2
Q(x− 1)2− ln p(t, x) is designed. This models a population of agents with a tendency to
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(a) (b) (c)

Figure 4.3: (a) Bistable potential (black), v∞(x) for population model (blue) and the consensus cost case
(red). Population model, α = 0.5, σ = 1, ρ = 5, Q = 10 and R = 0.5: (b) Stochastic paths for ten agents
(c) Evolution of density at various times, t = 0 (black), t = T/5 (blue), t = 2T/5 (pink), t = T (red) to the
PDE solution (green)

imitate each other while moving towards the preferred state x = 1. Initial states of agents

are sampled from a uniform density over [−2, 2]. We observe that for the log density cost,

in Fig. 4.3b that some agents which are initially stuck in the potential well centered at

x = −1 are able to escape it, to the preferential well centered at x = 1, given sufficient

time. In figure 4.3c, we see that at t = T/5 the dynamics are dominated by the bistable

potential but as time increases t = 2T/5, t = T , the density becomes unimodal with a mean

close to the preferred state x = 1. Finally the stationary density from the PDE computation

is achieved by the agents at t = T .

In the consensus model case, the cost (4.30) is used in conjunction with the long-time-

average utility (4.7). Analytical stability results in the consensus cost case with the bistable

potential, were presented by the authors in [77]. However, those results pertain to local

(a) (b) (c)

Figure 4.4: Consensus cost model with long-time-average utility, α = 1.5, σ = 0.5, and R = 235: (a)
Stochastic paths for ten agents (b) Evolution of density at various times, t = 0 (black), t = T/5 (blue),
t = 2T/5 (pink), t = T (red) to the PDE solution (green) (c) Stochastic means of all agents
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stability of the optimal (time-varying) MFG control, in contrast with the decentralized static

MF control considered here. Note that there are two steady state densities, with means

µ∗ = ±1. We use the control law corresponding to the right well (µ∗ = 1). Initial states

of agents are sampled from a uniform density over [−3, 1]. Since the initial density has a

negative mean, at t = T/5 we notice that there are more agents in the left well. However

as time increases, we see that more agents migrate into the right well under the control. At

t = T the PDE solution to the stationary density which is slightly bimodal, is recovered by

the Monte Carlo simulation. Although we are using the consensus cost, a high control cost

causes some agents to be in the well centered at x = −1. Most agents are seen to escape

from the left well and move into the right well in figure 4.4a. However, due to the high

noise intensity combined with low control authority, some agents are seen to move in the

opposite direction as well. Finally, from stochastic means in Fig. 4.4c we see that unlike

the linear case where mean consensus is guaranteed (theorem 4.5.6), mean consensus is not

achieved in the case with nonlinear passive dynamics.

4.7 Conclusions

In this chapter, we have studied MFGs for agents with multidimensional nonlinear Langevin

dynamics, and provided a framework for closed-loop stability analysis of fixed points in

such systems. The key idea is to use the detailed balanced property of the generator to

characterize the eigenvalue spectrum of perturbation forward-backward system, hence ex-

tending existing methods that deal with integrator agent dynamics. While we demonstrate

this approach in the discounted cost case, it is also applicable to MFGs using the long-

time-average cost functional. Using the presented approach, conditions on the stationary

solutions and explicit control design constraints have been obtained for guaranteeing sta-

bility in a population distribution and a mean consensus model. We also provide a mean

consensus result for the case where the Langevin potential is quadratic, with individual

asymptotic variance depending on the linear drift.
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It is also shown that under certain conditions on the stationary solution, the steady

MF controller providing decentralized static feedback is locally stabilizing. We illustrate

this fact by Monte Carlo simulations for population and consensus cost models with non-

Gaussian steady state behaviour.

The most general class of (uncontrolled) diffusions which possess the detailed balance

property are reversible diffusions with possibly multiplicative noise. Hence, the approach

presented here can be extended to provide stability results for the corresponding MFG

models. Generalizing our results to second order Langevin systems will be a topic of

future work. Such MFG systems must be treated separately, since the concerned closed

loop generator in that case is a combination of a Liouville operator and generator L in this

chapter.
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CHAPTER 5

MODELING FLOCKS USING MEAN FIELD GAMES

The analysis of emergent behavior in a large population of dynamic agents is a classical

topic. However the design of desired macroscopic behavior in such systems, including in

bio-physics, remains a challenge. Such systems are often studied using continuum mod-

els, involving empirically derived systems of nonlinear partial differential equations that

govern the distribution of agents in the phase space. The various terms in these equations

represent intrinsic dynamics of the agents, mutual attraction and/or repulsion, and noise.

An important class of such models concern flocking, both in nature, and engineering appli-

cations such as bio-inspired control of multi-agent robotics, traffic modeling, power-grid

synchronization etc. We take a mean-field game approach to derive a control system that

mimics the behavior of one such class of models in the setting of non-cooperative agents.

A mean-field game is a coupled system of partial differential equations that govern the state

and optimal control distributions of a representative agent in a Nash equilibrium with the

population. Using a linear stability analysis, in this section, we recover phase transitions

that have been observed in the corresponding empirical model, as well as find some new

ones, as the control penalty is changed.

5.1 Introduction

Continuum models of large populations of interacting dynamic agents are popular in math-

ematical biology[93], and also have been employed in numerous applications such as multi-

agent robotics [94], finance [95] and traffic modeling [96]. The aim of such models is to

accurately represent the macroscopic dynamics of the population, and its dependence on

parameters. Typically, such models are derived by starting with an empirical dynamical

system for a representative agent. This system typically involves the intrinsic dynamics of
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the agent, a coupling function[97] describing its interaction with the population, and noise.

From this single agent dynamical system, a continuum description is obtained by deriving

a macroscopic equation for the distribution of agents in the phase space. We call this class

of models uncontrolled.

An alternative way of deriving continuum models of collective behavior is via a corre-

sponding variational principle. In this approach, the dynamical system for a representative

agent includes its intrinsic dynamics, a control term and noise. The unknown control term is

obtained as a solution to an optimization problem. Within this variational (or optimization)

framework for large populations, there are multiple classes of modeling strategies [98]. If

one takes a centralized global optimization viewpoint, the corresponding problem is that

of mean-field control, i.e. it is assumed that each agent is being controlled by a central

entity whose goal is to optimize a macroscopic cost function[99] that includes interaction

among the population. In a distributed setting, there is no central entity, and the agents can

either be cooperative or non-cooperative. In the former case, each agent choses its control

to optimize a global sum of cost functions of the population.

On the other hand, in the non-cooperative mean field setting that we are interested in,

each agent optimizes only its individual cost function. This cost function involves coupling

with the population solely via a mean-field term. This is the setting of mean-field games

(MFG)[100, 16, 15]. In this setting, a Hamilton-Jacobi-Bellman (HJB) equation (posed

backward in time) characterizes the optimal feedback control for a representative agent

under the assumption that the (cost) coupling function depends only on its own state, and

possibly time. A Fokker-Planck (FP) equation governs the evolution of agent density in

phase space. A consistency principle [15] requires that the coupling function used in the

agent HJB equation is reproduced as its own average over the continuum of agents. Under

fairly general conditions, solutions to MFG model can be shown to possess ε-Nash property,

i.e., unilateral benefit of any deviation from the computed control policy by a single agent

vanishes rapidly as the population becomes large.
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Figure 5.1: The MFG framework

The classical (uncontrolled) Cucker-Smale (CS) flocking model[101] describes a sys-

tem of finite population of coupled agents with trivial intrinsic dynamics, moving solely

under the influence of an alignment force, and noise. This was followed by several con-

tinuum descriptions[102, 103], and was recently generalized to a continuum model with

self-propulsion effects in the homogeneous case [104] (i.e., assuming spatial homogene-

ity). This latter generalization results in existence of non-zero mean velocity distribution

resulting from symmetry breaking, a wide range of ‘disordered’ states consisting of multi-

ple flocks, and other phase transitions.

A MFG model for a continuum of coupled Kuramoto oscillators[105] was described

in a seminal work [106] that influences the development in the current chapter. Building

upon this work, a MFG model for the classical inhomogeneous CS was then proposed[24];

the stability analysis was partially addressed. This was followed by a homogeneous flock-

ing MFG model for coupled agents with trivial intrinsic dynamics, along with linear and

nonlinear stability analysis[22]. Also of interest is an approach [25] where agents apply a

gradient descent rather than solve an HJB equation, since the Nash equilibria of the MFG

are recovered under certain conditions using this approach.

The contributions of this chapter are as follows. We formulate a MFG model for homo-

geneous flocking of agents driven by self-propulsion and noise. In contrast to the earlier

work on homogeneous MFG model with trivial intrinsic dynamics [22], this model exhibits
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phase transitions (bifurcations) that mimic those present in the corresponding uncontrolled

model [104]. We generalize the stability analysis developed in previous MFG models [18,

22, 15, 21] to agents with gradient nonlinear dynamics, and employ a method used to

study reaction-diffusion equations[107] to derive a semi-analytical stability criterion. Be-

sides qualitatively explaining the phase transition phenomena, quantitative results useful

in control design are obtained from the numerical analysis. Decreasing the control control

penalty below a threshold causes the zero mean velocity steady state of the MFG model to

lose stability via pitchfork bifurcation [108]. This results in a pair of stable steady states

with non-zero mean velocity. If the control is made even cheaper, a new stable regime

(nonexistent in the uncontrolled model) emerges for zero mean velocity steady states in

the small noise case via a subcritical pitchfork bifurcation. Results of this section were

published in [77].

5.2 Uncontrolled formulation

We briefly review here the uncontrolled formulation from Ref. [104] which provides a

homogeneous model for CS flocking with self-propulsion. Consider a population of N

agents moving in phase space ((q, p) ∈ R2), where each agent is acted upon by a gradient

self-propulsion term, a CS coupling force with localization kernel K in position space that

aligns the agents’ velocity with the neighbors, and noise. The dynamics for ith agent are

dqi = pidt,

dpi = a(pi)dt+ F (qi, pi, q−i, p−i)dt+ σdωi,

where a(pi) = −∂pU(pi), U(pi) = α(
p4i
4
−p2i

2
), F (qi, pi, q−i, p−i) =

1

N

∑N
j=1K(qi, qj)(pj − pi)∑N

j=1K(qi, qj)
,

σ > 0 is the noise intensity, α > 0 defines the strength of the self-propulsion term,

K(q, q′) = K(q′, q) ≥ 0, andK(q, q) = 1, q−i = {q1, .., qi−1, qi+1..}, p−i = {p1, .., pi−1, pi+1..}.

In the continuum limit (N →∞), the agent density f(q, p, t) in phase space is governed

90



by

∂tf + ∂q(pf) + ∂p(a(p)f + F [f ]f) =
σ2

2
∂ppf,

where F [f ](q, p, t) = (p̄− p) and,

p̄(q, t) =

∫ ∫
K(q, q′) p f(q′, p, t)dq′dp∫ ∫
K(q, q′)f(q′, p, t)dq′dp

.

We denote the action of the operator F on a function f by F [f ](.).

F [f ](q, p, t) = (p̄− p), p̄(q, t) =

∫ ∫
K(q, q′) p f(q′, p, t)dq′dp∫ ∫
K(q, q′)f(q′, p, t)dq′dp

.

Hence the explicit form of kinetic equation is

∂tf + q∂pf = ∂q(α(q2 − 1)qf + (q − qf )f) +
σ2

2
∂qqf (5.1)

From here onwards, we consider the homogeneous case by dropping dependence on q, and

use x to denote the velocity p. The uncontrolled dynamics for the velocity of agent i are

dxi = a(xi)dt+
1

N

N∑
j=1

(xj − xi)dt+ σdωi, (5.2)

with corresponding density evolution

∂tf = ∂x(α(x2 − 1)xf + (x− x̄)f) +
σ2

2
∂xxf, (5.3)

where x̄(t) =

∫
xf(x, t)dx∫
f(x, t)dx

.

The gradient structure of Eq. 5.3 can be made explicit by rewriting it as

∂tf = ∂x(f∂xξ), (5.4)
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As the fixed points f satisfy ∂xξ = 0.

5.2.1 Fixed Points and Stability Analysis

It is known [109, 104] that fixed points of Eq. (5.3) are given by

f∞(x;µ) =
1

Z
exp

(
−2

σ2

[
α
x4

4
+ (1− α)

x2

2
− µx

])
, (5.5)

where µ ∈ R is the mean of the distribution, and Z is the normalization factor. For all

positive values of parameters (σ, α), the zero mean velocity solution f∞(·, 0) always ex-

ists. For a range of parameters, two additional stable non-zero mean velocity solutions are

created via a supercritical bifurcation, resulting in loss of stability of the zero mean solu-

tion. In Ref. [104], these stability properties were inferred numerically by a Monte-Carlo

approach.

We take a different approach, and consider the spectral stability of steady state solutions

of Eq. (5.3). In addition to gaining additional insight into the properties of the uncontrolled

system, this also sets the stage for stability analysis of the MFG system in the next sec-

tion. We consider perturbations of the form f(x, t) = f∞(x)(1 + εf̃(x, t)). Then, the

linearization of Eq. (5.3) is

∂tf̃(x, t) = L[f̃ ](x, t) = Lloc[f̃ ](x, t) + Lnonloc[f̃ ](x, t),

where, Û(x) = U(x) + x2/2− µx,

Lloc[f̃ ](x, t) = −∂xÛ(x)∂xf̃(x, t) + (σ2/2)∂xxf̃(x, t)

is a local linear operator, and

Lnonloc[f̃ ](x, t) =
2

σ2
∂xÛ(x)

∫
yf̃(y, t)f∞(y)dy
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is a nonlocal linear operator. An operatorO is called nonlocal ifO[f ](x1) depends on f(x2)

(or the derivatives ∂xf(x2), ∂xxf(x2)) for some x2 6= x1, and local otherwise. Let q(x) ≡
2
σ2∂xÛ(x). Then, ∂xf∞(x) = −q(x)f∞(x). We define a Hilbert space H = L2(R, f∞dx)

, i.e., the f∞-weighted inner-product space of square-integrable functions on the real line.

Then we can write a general form of the full linearized operator as

L[f̃ ](x, t) = Lloc[f̃ ](x, t) + s1(x)〈g1(·), f̃(·, t)〉, (5.6)

where s1(x) = q(x), g1(x) = x for our case, and the inner product is understood to be

〈·, ·〉H. We note that Lloc is a self-adjoint operator[83] on H which has a non-positive

discrete real spectrum of the form 0 = λ1 > λ2 > λ3 . . . . It has a complete set of

orthogonal eigenfunctions {ξi(x)}i∈N. The first eigenfunction ξ1, spanning the kernel of

Lloc, is a constant function. Following the approach presented in Refs. [107, 110] for

nonlocal eigenvalue problems in reaction-diffusion equations (also see Ref. [111]), we

consider the following eigenvalue problem

λw = Llocw + s1(x)〈g1, w〉 =⇒

0 = (Lloc − λI)w + s1(x)〈g1, w〉. (5.7)

Note that an eigenfunction w of L satisfying 〈w, g1〉 = 0 is also an eigenfunction of Lloc,

i.e. w = vi for some i with eigenvalue λ = λi. We search for eigenfunctions such that

〈w, g1〉 is nonzero. The corresponding eigenvalues are called ‘moving’ eigenvalues in Ref.

[110]. Multiplying both sides of Eq. (5.7) with the resolvent Rλ = (Lloc − λI)−1,

0 = w +Rλs1(x)〈g1, w〉.
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Taking the inner product of the above equation with g1,

0 = 〈g1, w〉+ 〈Rλs1(x), g1〉〈g1, w〉. (5.8)

For an arbitrary function z(x), Rλz =
∑∞

i=1

〈ξi, z〉
λi − λ

ξi. Evaluating the inner product in

Eqs. 5.8,

〈Rλs1(x), g1〉 = 〈Rλq(x), x〉 =
∞∑
i=2

〈ξi, q(x)〉
λi − λ

〈ξi, x〉. (5.9)

Using this result in Eq. (5.8),

〈w, x〉(1 +
∞∑
i=2

〈ξi, q(x)〉
λi − λ

〈ξi, x〉) = 0.

Hence, either 〈w, x〉 = 0, or 1+
∑∞

i=2

〈ξi, q(x)〉
λi − λ

〈ξi, x〉 = 0. But we are looking for moving

eigenvalues, i.e. w s.t. 〈w, x〉 6= 0, hence the eigenvalue equation reduces to:

h(λ) ≡ 1 +
∞∑
i=2

〈ξi, q(x)〉
λi − λ

〈ξi, x〉 = 0. (5.10)

(0,0)
xxxx

Figure 5.2: Uncontrolled system. (left) Stable (solid) and unstable (dashed) zero mean steady state solu-
tions for α = 0.5 (uni-modal, top) and α = 1.5 (bi-modal, bottom). (middle) Eigenvalues of Lloc (o) and L
(×) for a typical zero mean case. The first eigenvalue (= 0) is omitted. Notice that alternating eigenvalues
are same for both operators. The arrows indicate the direction of motion of the other (‘moving’) eigenvalues
of L as σ is reduced. The rightmost eigenvalue of L reaches 0 at σ = σc(α) with non-zero speed. (right)
Non-zero mean solutions.

A sufficient condition for Eq. (5.10) to have only real roots is that the function h(λ)
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is Herglotz, or equivalently, the product 〈ξi, q(x)〉〈ξi, x〉 has the same sign for all i. Us-

ing integration by parts on eigenvalue equation for Lloc, one can show that 〈ξi, x〉 =

− σ2

2λi
〈ξi, q(x)〉. Thus the Herglotz condition is satisfied since λi < 0 for all i > 1.

Figure 5.3: The µ > 0 branch (solid) bifurcating from µ = 0 solution (dashed) via a
supercritical pitchfork bifurcation as σ occurs is reduced below σc(α)

Numerical Results: We use Chebfun [112] to perform all computations. The non-zero

mean steady state solutions to Eq. (5.3) are computed using a simple fixed point iteration

for µ. The solutions are shown in Figure 5.2. The supercritical pitchfork bifurcation that

occurs as σ is reduced below critical value σc(α), is shown for a range of α values. To

evaluate h(λ) in Eq. (5.10), we compute the spectrum of Lloc for µ = 0. The odd-numbered

eigenfunctions are even functions of x, and hence 〈ξ2k+1, g1〉 = 0. Therefore, eigenvalues

λ2k+1 of Lloc are also eigenvalues of L, and the eigenvalues λ2k are moving eigenvalues.

We find that at σ = σc(α), h(0) = 0. Hence, as σ is decreased below σc(α), the least stable

eigenvalue λ2 of Lloc moves to the positive real axis due to the effect of the nonlocal term,

resulting in instability of the zero mean solution.

Lemma 5.2.1. The function h defined in Eq. 5.10 is Herglotz, and hence all its roots are

real for all parameter values of (α, σ).

Proof. We will show that 〈ξi(x;α, σ), x〉 = − σ2

2λi
〈ξi(x;α, σ), q(x)〉, from which the re-

sult follows since λi < 0 for all i > 1. Now, consider the eigenvalue equation for Lloc
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corresponding to λi.

λiξi = −∂xŨ∂xξi +
σ2

2
∂xxξi

= −σ
2

2
q∂xξi +

σ2

2
∂xxξi. (5.11)

Computing the inner product of Eq. 5.11 with x, we get

λi〈ξi, x〉 =
σ2

2
(−
∫
xq∂xξif∞dx+

∫
x∂xxξif∞dx)

=
σ2

2
(

∫
x∂xξi∂xf∞dx−

∫
x∂xξi∂xf∞dx−

∫
∂xξif∞dx),

where we have integrated by parts. Then

λi〈ξi, x〉 =
σ2

2
(−
∫
∂xξif∞dx)

=
σ2

2

∫
ξi∂xf∞dx = −σ

2

2

∫
ξiqf∞dx

= −σ
2

2
〈ξi, q〉.

Asymptotics: Eq. 5.10 can now be written as

h(λ) ≡ 1− 2

σ2

∞∑
i=2

λi(α, σ)
〈ξi(x;α, σ), x〉2

λi(α, σ)− λ
= 0 (5.12)

In the limit α → 0, (λi, ξi)’s are Hermite eigenvalues and eigenfunctions. Then the

above equation be evaluated analytically.
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h(λ) = σ2/2 +
∞∑
i=2

α
〈vi(x;α, σ), (x3 − x)〉

λi(α, σ)− λ
〈vi, x〉+

∞∑
i=2

〈vi(x;α, σ), x〉2

λi(α, σ)− λ
= 0 (5.13)

We note that for α = 0, vi are the Hermite functions. In the limit α → 0, h(λ) ≈

σ2/2 +
∑∞

i=2

〈vi(x;α, σ), x〉2

λi(α, σ)− λ
, and hence it is clear it is Herglotz.

5.3 MFG Formulation

In this section we describe a MFG formulation for homogeneous equation Eq. (5.3). The

velocity of ith agent evolves via the following equation (compare with Eq (5.2))

dxi(t) = a(xi)dt+ ui(t)dt+ σdωi(t), (5.14)

where ui is the optimal control. Let F [xi, x−i](t) ≡ (xi−
1

N − 1

∑
j 6=i xj)

2, and β =
1

rσ2
,

where r > 0 is the control cost or penalty. Here x−i ≡ {x1, x2, . . . , xi−1, xi+1, . . . }. Then

the ith agent is minimizing the following long time average cost

J = lim sup
T→∞

1

T

[∫ T

0

βF [xi, x−i](t) +
1

2σ2
ui(t)

2

]
dt,

that depends on states of all other agents.

To derive the MFG equations (recall Fig. 5.1), we rewrite the single-agent cost in terms

of F̂ (xi, t), the unknown coupling function with dependence on xi only

J = lim sup
T→∞

1

T

[∫ T

0

βF̂ (xi, t) +
1

2σ2
ui(t)

2

]
dt.
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The resulting single agent HJB equation [85] is

∂tvi(x, t) =c− βF̂ (x, t)− a(x)∂xvi(x, t)

+
σ2

2
(∂xvi(x, t))

2 − σ2

2
∂xxvi(x, t), (5.15)

where vi(x, t) is the single-agent relative value function, c is the minimum average cost,

and ui(x, t) = −σ2∂xvi(xi, t) given in feedback form. Note that the HJB equation is well-

posed backward in time. The self-consistency principle yields the expression for F̂ in terms

of agent density f(x, t) (in the limit N →∞):

F̂ [f ](x, t) =

[∫
(x− y)f(y, t)dy

]2

. (5.16)

Hence, the following set of FP-HJB MFG equations govern the density and value func-

tion evolution:

∂tf(x, t)+∂x
[(
a(x)− σ2∂xv(x, t)

)
f(x, t)

]
=
σ2

2
∂xxf(x, t), (5.17)

∂tv(x, t) = c− βF̂ [f ](x, t)− a(x)∂xv(x, t)

+
σ2

2
(∂xv(x, t))2 − σ2

2
∂xxv(x, t). (5.18)

The unique invariant density satisfying Eq. (5.17) is

f∞(x) =
1

Z
exp(− 2

σ2
(U(x) + σ2v∞(x))). (5.19)

Inserting this expression into Eq. (5.18), and using the Cole-Hopf transformation [113]

φ(x) = exp(−v∞(x)), results in the following nonlinear nonlocal eigenvalue problem for
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φ(x):

cφ(x) = β{x−
∫
y exp(

−2

σ2
U(y))φ2(y)dy}2φ(x)

− a(x)φ(x)− σ2

2
∂xxφ(x), (5.20)

with the constraint
∫

exp(−2
σ2 U(y))φ2(y)dy = 1 to ensure normalization of f∞. The ground

state of this problem yields the desired steady state solutions, with corresponding eigen-

value being the minimum cost c.

5.3.1 Stability Analysis

In this section we extend the resolvent based analysis from section 5.2.1 to the MFG system,

and find conditions for closed-loop stability of an arbitrary steady state (f∞(x), v∞(x)) to

an initial perturbation in density. We consider mass preserving perturbations in density of

the form f(x, t) = f∞(x)(1+εf̃(x, t)), i.e., the initial conditions satisfy
∫
f∞(x)f̃(x, 0)dx =

0. The perturbed value function is taken to be of the form v(x, t) = v∞(x) + εṽ(x, t). A

given steady state is called linearly stable if any perturbation to the density decays to zero

under the action of the control, where both the density and control evolution are computed

using linearized MFG equations.

Linearization of MFG equations (5.17,5.18) yields the nonlocal system∂tf̃(x, t)

∂tṽ(x, t)

 = LFBloc

f̃(x, t)

ṽ(x, t)

 , (5.21)

where LFB = LFBloc + LFBnonloc,

LFBloc =

Lloc 2Lloc

0 −Lloc

 , LFBnonloc =

 0 0

2βs1〈g1, .〉 0

 ,

s1(x) = x − µ, g1(x) = x, Lloc = −∂x(Û)∂x +
σ2

2
∂xx, with eigenvalue/eigenfunction
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pairs denoted by {λi, ξi}, and Û(x) = U(x) + σ2v∞(x) in analogy with the definition of

Lloc in Section 5.2. In addition to the Hilbert space H = L2(R, f∞dx) and Rλ as defined

earlier, we also consider a subspace H̄ = {f ∈ H|〈f, 1〉 = 0}.

Eigenspectrum of the linearized forward-backward operator

We start off by noting that the characteristic equation of LFBloc is (Lloc−λI)(Lloc+λI) = 0.

Hence, its eigenvalues are ∪i∈N{±λi}. Now consider the eigenvalue problem for LFB with

eigenvalue λ and eigenfunction [wf (x) wv(x)]T :

λ

wf
wv

 =

 Llocwf + 2Llocwv

2βs1〈g1, wf〉 − Llocwv

 . (5.22)

Assuming λ 6∈ ∪i∈N{±λi}, Rλ and R−λ are well defined. The second equation of Eq.

(5.22) gives

wv = 2βR−λs1〈g1, wf〉.

Substituting this expression in the first equation of Eq. (5.22), and re-arranging,

wf = −4βRλLlocR−λs1〈g1, wf〉. (5.23)

Taking the inner product of the above equation with g1,

〈g1, wf〉(1 + 4β〈g1, RλLlocR−λs1〉) = 0.

The eigenvalue equation for the 〈g1, wf〉 6= 0 case for moving eigenvalues (as in Section

5.2.1) is

h(λ) ≡ 1 + 4β〈g1, RλLlocR−λs1〉 = 0. (5.24)
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Using the definition of resolvent in Eq. (5.24),

h(λ) = 1 + 4β
∞∑
i=2

λi
〈g1, ξi〉〈s1, ξi〉
λ2
i − λ2

, (5.25)

and hence,

h(λ) = 1 + 4β
∞∑
i=2

λi
〈x, ξi〉2

λ2
i − λ2

. (5.26)

Since Eq. (5.26) is Herglotz in λ2, this implies that the eigenvalues come in pairs, either

real or purely imaginary. Let ω ≡ h(0) = 1 + 4β
∑∞

i=2

〈x, ξi〉2

λi
.

Lemma 5.3.1. Consider the eigenvalue equation h(λ) = 0 for moving eigenvalues.

(i) If 〈x, ξi〉 6= 0 for all i ≥ 2, then there exists a pair of real roots ±δi for each i ≥ 2,

such that λi+1 < δi < λi.

(ii) Recall that λ1 = 0. If 〈x, ξ2〉 6= 0 and ω > 0, there exists a pair of real roots ±δ1,

such that λ2 < δ1 < 0.

(iii) If 〈x, ξ2〉 6= 0 and ω < 0, there exists a pair of purely imaginary roots ±iγ.

Proof. (i) Consider the interval Ii = (λi+1, λi). As λ → λ−i , h(λ) → ∞, and as

λ → λ+
i+1, h(λ) → −∞. It is easy to check that h(λ) is monotonic in Ii. By

intermediate value theorem, a root δi exists in Ii, and by the monotonicity property,

it is unique. The result for −δi follows by symmetry.

(ii) Consider the interval I1 = (λ2, 0). Note that as λ → λ+
2 , h(λ) → −∞, and as

λ→ 0−, h(λ)→ ω. Hence, if w > 0, arguments similar to those in part (i) yield the

existence of a real root δ1 between λ2 and 0.

(iii) Consider the function h(iγ) for real γ > 0. Clearly, h is monotonic in this interval.

Furthermore, as γ → ∞, h(iγ) → 0, and as γ → 0+, h(iγ) → ω. By arguments

similar to those in part (i), ω < 0 implies that there is a unique root iγ of h.
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Contraction analysis of the linearized forward-backward operator

Since the MFG system has a forward-backward nature, spectral information alone is in-

sufficient to derive conclusions about the stability of steady state solutions. A contraction

analysis is therefore adopted following Refs. [18, 15]. Consider the linear dynamical sys-

tem given by Eq. (5.21), with initial perturbation in density f(x, 0) = f∞(1 + εf̃(x, 0)).

Assuming that ṽ(x, T ) → 0 as T → ∞, the conditions for existence of a unique solution

satisfying this assumption are derived. These conditions also provide a stability criterion.

Integrating the ṽ equation in Eq. (5.21) from t to T ,

ṽ(x, T ) = e−Lloc(T−t)ṽ(x, t)

+ 2β

∫ T

t

e−Lloc(T−s)s1(x)〈g1, f̃(., s)〉ds.

Taking the limit T →∞,

ṽ(x, t) = −2βe−Lloct
∫ ∞
t

eLlocss1(x)〈g1(.), f̃(., s)〉ds. (5.27)

Substituting above equation in the f̃ equation,

∂tf̃(x, t) = Llocf̃(x, t)

− 4βLloce
−Lloct

∫ ∞
t

eLlocss1(x)〈g1(.), f̃(., s)〉ds. (5.28)

Integrating from 0 to t yields the fixed point equation,

f̃(x, t) = eLloctf̃(x, 0) +Mf̃(x, t), (5.29)
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xxx x x x x x(0,0)

Figure 5.4: The MFG system with σ = 0.5. (left): Zero mean MFG steady state densities for α = 0.5 (top)
and α = 1.5 (bottom) for various control penalty values. (right): (Top) Eigenvalues of LFB

loc (o) and LFB

(×) for a typical zero mean case. The twin zero eigenvalues of LFB are omitted. The arrows indicate the
direction of motion of the ‘moving’ eigenvalues of LFB as r is reduced starting from r > rsup(α, σ). Note
that the assumption in Lemma 5.3.1(i) is violated in this particular case due to the symmetric nature of the
self-propulsion term, and hence, only alternating eigenvalues are actually ‘moving’. The pair of eigenvalues
of LFB closest to imaginary axis, ±δ1, reaches 0 at r = rsup, and moves up/down the imaginary axis for
r < rsup. (Bottom) The µ > 0 branch (solid) bifurcating from µ = 0 solution (dashed) via a supercritical
pitchfork bifurcation as r is reduced below rsup.

where the operator M acting on f̃(x, t) is defined as

Mf̃(x, t) = −4βeLloct
∫ r=t

r=0

e−LlocrLloce
−Llocr

∫ s=∞

s=r

eLlocss1(x)〈g1(.), f̃(., s)〉dsdr.

(5.30)

Applying the Laplace transform in time to Eq. (5.30),

M̂(λ) = −4βRλLlocR−λs1〈g1, .〉. (5.31)

The operator norm ‖M‖ is given by

‖M‖ = sup
λ∈I

sup
‖f̃‖=1

‖M̂(λ)f̃‖, (5.32)

=4β sup
λ∈I

sup
‖f̃‖=1

‖
∞∑
i=2

λi〈s1, ξi〉〈g1, f̃〉
λ2
i − λ2

ξi‖,
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Figure 5.5: Non-zero mean MFG steady state densities on the supercritical branch.

=4β sup
λ∈I

sup
‖f̃‖=1

√√√√ ∞∑
i=2

[
λi〈s1, ξi〉〈g1, f̃〉

λ2
i − λ2

]2

,

=4β‖g1‖

√√√√ ∞∑
i=2

〈s1, ξi〉2

λ2
i

= 4β‖x‖

√√√√ ∞∑
i=2

〈x, ξi〉2

λ2
i

. (5.33)

Lemma 5.3.2 proved next implies that ‖M‖ < 1 is a sufficient condition for a steady

state (f∞(x), v∞(x)) of the nonlinear MFG system Eqs. (5.17,5.18) to be linearly stable to

density perturbations.

Lemma 5.3.2. Consider the initial value problem for the linearized system in Eqs. 5.21,

with mass-preserving initial condition f̃(x, 0) i.e.,
∫
f∞(x)f̃(x, 0)dx = 0. If the operator

M is a contraction (i.e., ‖M‖ < 1), then the perturbation in density, f̃(., t), decays to 0 as

t→∞. Moreover, ṽ(., t) also decays to 0 as t→∞.

Proof. If M is a contraction, then we can (formally) invert the Eq. (5.29), and write the

unique solution

f̃(x, t) = (I−M)−1eLloctf̃(x, 0)

= (I +M +M2 + . . . )eLloctf̃(x, 0). (5.34)

We note that mass conservation property is equivalent to 〈f̃(x, 0), 1〉 = 0, i.e. f̃(x, 0) ∈ H̄.

Recall that Lloc restricted to H̄ is a self-adjoint operator with negative eigenvalues λi, i =
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Figure 5.6: The MFG system with σ = 0.5. (left): The norm of operator M for zero mean steady state as
control penalty is varied, for various α. (right): The bifurcation diagram for α = 1.5, showing supercritical
and subcritical (inset) bifurcations . Only the µ > 0 non-zero mean branches are shown. (bottom): Non-zero
mean MFG steady state densities on the subcritical branch for α = 1.5.

2, 3, . . . . Then, limt→∞ ‖eLloct‖H̄ = limt→∞ e
λ2t = 0. This proves the decay of f̃(., t). The

corresponding result for ṽ(., t) is obtained by inserting the expression for f̃(., t) into Eq.

(5.27).

Now consider a case where eigenvalue equation in Eq. (5.23) has a pair of purely

imaginary roots ±iγ( 6= 0). Then there is a eigenfunction zf s.t.

zf = −4βRiγLlocR−iγs1〈g1, zf〉

= M̂(iγ)zf ,

by noting Eq. (5.31). But this implies that norm of M̂ is at least 1, hence it is not a

contraction. This implies that a necessary condition forM to be a contraction is the absence

of non-zero spectra of LFB on the imaginary axis.

5.3.2 Numerical Results

Recall that in the MFG problem described by Eqs. (5.17,5.18), the representative agent is

minimizing a weighted sum of two costs: one penalizes deviation of its velocity from the

mean velocity of the agent population, and the other penalizes the control action. In this
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section, we compute fixed points, and identify phase transitions of this system of equations

as the problem parameters are varied. Rather than solving the resulting constrained nonlin-

ear eigenvalue problem 5.20 directly, we use an iterative algorithm to compute steady state

solutions of the MFG system.

We note that the coupling term F̂ [f ](x, t) evaluated at any steady state density f∞ is

F̂ [f∞](x) = (x − µ)2, where µ =
∫
yf∞(y)dy. Again using Cole-Hopf transformation

φ(x) = exp(−v(x)) on the HJB equation leads to a linear eigenvalue problem in φ:

cφ(x) = L[φ](x), (5.35)

where L[φ] = β(x− µ)2φ(x)− a(x)∂xφ(x)− σ2

2
∂xxφ(x). We solve Eq. (5.35) iteratively

along with Eq. (5.19) to find zero mean MFG steady states (f∞, v∞) for a range of r,

keeping σ and α fixed (See Fig. 5.4).These solutions are stable (i.e., ‖M‖ < 1) for large

r, implying that when control is expensive, the agents use minimal control action. The

resulting steady state distribution is bi-modal due to dominance of the self-propulsion force,

and dispersion via noise.

These zero mean solutions lose stability (i.e., ‖M‖ > 1) via a supercritical bifurca-

tion as r is reduced below a critical value rsup. The Eq. (5.26) for moving eigenvalues

of LFB has a double zero root at r = rsup, and a pair of purely imaginary roots emerges

as r is reduced below rsup. This implies that the pair of symmetric eigenvalues of LFB

closest to the imaginary axis reaches 0 at the critical parameter, and then moves up/down

the imaginary axis. The stable non-zero mean MFG steady state solutions on the super-

critical branch are computed by combining fixed point iteration in µ with a continuation

step. This bifurcation provides a MFG interpretation to the pitchfork bifurcation observed

in the uncontrolled system, i.e., cheaper control makes it economical to compensate for

noise. Hence, the agents apply larger control action to flock together (and reduce the cost

of deviation from the population mean), resulting in symmetry breaking non-zero mean
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solutions.

When noise strength σ is fixed below a critical value, the zero mean solution branch

undergoes a subcritical bifurcation as control penalty r is further reduced, i.e, at r = rsub <

rsup (See Fig. 5.6). The corresponding non-zero mean solutions were computed using

bisection method. This bifurcation is not seen in the uncontrolled system. For instance,

when (σ = 0.5, α = 1.5), it results in creation of uni-modal stable zero mean solutions in

the case of cheap control, r < rsub, as compared to the bi-modal stable zero mean solution

that exist for expensive control, r > rsup. Hence, we conclude that for r < rsub, the

control is cheap enough to counteract the intrinsic dynamics, and make zero mean uni-

modal solution stable.

5.4 Conclusions

We have presented a MFG formulation for homogeneous flocking of agents with gradient

nonlinearity in their intrinsic dynamics. We have employed tools from theory of reaction-

diffusion equations, and exploited the low rank nature of the nonlocal coupling term to

study the linear stability of the MFG equations. The explicit formulae for verifying the

stability of steady state solutions of the nonlocal forward-backward MFG system require

relatively simple numerical computation of spectra of the local self-adjoint Fokker-Planck

operators. The MFG system shows rich nonlinear behavior, such as supercritical and sub-

critical pitchfork bifurcations that result in wide range of collective behaviors, some of

which are not present in the uncontrolled model.

Much of the analysis in the current work can be generalized to higher dimensional

state space for homogeneous flocking with self-propulsion, similar in spirit to the gen-

eralization[104] of one-dimensional uncontrolled flocking model. Furthermore, the ab-

stract results presented in this work apply to models other than homogeneous flocking, e.g.

nonlocally coupled agents with arbitrary first order gradient dynamics. Extension to non-

homogeneous flocking would be a natural next step; the resulting second-order dynamics
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could require more sophisticated tools [114] for stability analysis. Implementation of the

MFG control laws in an engineered large population system requires the control to be pro-

vided in a causal form. Algorithms that can learn the MFG laws can be used to convert the

control laws obtained by solving the FP-HJB equations into an implementable form [115].

The use of bifurcation and singularity theory to develop bio-inspired control and de-

cision making algorithms for multi-agent systems has been explored recently[116, 117,

118]. Our work adds to the toolbox for systematic analysis of collective behavior of non-

cooperative dynamic agents via an inverse modeling approach. The qualitative and quanti-

tative insight provided by the stability analysis can be exploited in mechanism design, i.e.,

design of penalties or incentives to drive the population to asymptotic states with desirable

characteristics. We believe that a systematic study of bifurcations in MFG models can lead

to progress in tackling the grand challenge of designing or manipulating collective behavior

of a large population of non-cooperative dynamic agents.
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CHAPTER 6

SCHRÖDINGER APPROACH TO LARGE SCALE CONTROL

Large-size populations consisting of a continuum of identical, non-cooperative and non-

interacting agents with stochastic dynamics are useful in modeling various biological and

engineered systems. This work addresses the problem of designing optimal state-feedback

controllers for such systems which guarantee closed-loop stability of the stationary den-

sity of agents, in the case that individual agents have Langevin type passive dynamics.

We represent the corresponding optimality system, which consists of coupled forward-

backward PDEs as decoupled Schrödinger equations, by introducing a novel variable trans-

form. Spectral properties of the Schrödinger operator which underlie the stability analysis

are used to obtain explicit control design constraints. We show the deep connection be-

tween the nonlinear Schrödinger equation and mean field games for agents with nonlinear

Langevin dynamics. Our interpretation of the Schrödinger potential as the cost function

of a closely related optimal control problem motivates a quadrature based algorithm to

compute the control.

6.1 Introduction

Dynamics and control of multi-agent populations consisting of a large number of identical

and non-cooperative agents are of interest in various applications including robotic swarms,

macro-economics, traffic and neuroscience. Prior works on optimal open-loop or closed-

loop ensemble (broadcast) control consider several copies of a particular deterministic [6]

or stochastic ([7], [8], [17]) system and have applications in quantum control [9] and neu-

roscience [10]. A standard idea in engineering, economics and biology is regulation using

local feedback information, and is used to model decision making in large-size popula-

tions of rational agents with limited information. Optimal feedback control applications
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of large-size populations of small robots with individual state-feedback controllers have

been proposed for inspection of industrial machinery [11], centralized control of hybrid

automata [12] and decentralized control of robotic bee swarms for pollinating crops [13].

Optimal control models of collective behavior typically treat agents which are driven

by individual noise and state-feedback control, and interact with each other through the

coupling of their passive dynamics or utility with the overall statistics of the population.

The mean-field approach provides a tractable framework for describing collective behavior

of a continuum of agents, by approximating their individual actions [14] as the oblivious

control [18] of a single representative agent. Mean field games (MFGs) ([16], [15]) utilize

PDE optimality systems to model such continuum systems and are used to obtain a game-

theoretic interpretation of emergent behaviour in self-organized systems.

Most works on MFGs consider explicit interactions between agents through the de-

pendence of their dynamics or cost function on the population density. The correspond-

ing optimality system consists of a backward-in-time semilinear Hamilton-Jacobi-Bellman

(HJB) equation governing the value function and a forward-in-time linear Fokker-Planck

(FP) equation governing the density, wherein the HJB equation depends on the density and

the FP equation depends on the value function. However, even if the individual dynamics or

cost functions are independent of the density, the agents implicitly interact with each other

since their controls optimize the utility which depends on the population density. In this

case, the HJB equation is independent of the density but the FP equation depends on the

value function. Agents which lack explicit interaction have been studied using the mean-

field approach in macro-economics [14]. In certain physical systems such as robot swarms

([12],[13]), if the dimensions of individual agents are small compared to their region of

operation, then it can be assumed that the agents do not locally interact with each other.

In this work we consider the finite and infinite time optimal control problem (OCP)

of a density of identical and non-cooperative agents which have individual state-feedback

controllers with no explicit dependence of the agent dynamics or cost functions on the pop-
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ulation density. An important question is whether the steady state controls can be used

to stabilize an initial (perturbed) density of agents to the corresponding steady state den-

sity. In this work, we address this question for large-size populations wherein agents obey

Langevin dynamics and provide explicit control design constraints required for stability.

For the finite time case, we present a quadrature based control algorithm and demonstrate

it for a population of agents with nonlinear dynamics.

Stability of fixed points of MFG models, which involves analysis of the forward-backward

HJB and FP equations has been analyzed previously ([21], [106], [22]). A common lim-

itation of prior works on this topic is that individual agent dynamics are assumed to be

simple integrator systems. In the recent work [77] by some of the authors, linear (local)

stability results were presented for certain MFGs wherein agents obey nonlinear Langevin

dynamics. The approach in these works was based on exploiting spectral properties of the

closed-loop generator of the agent dynamics, which governed the linear perturbation PDEs.

In this work we take a different approach. Since we assume that agent dynamics and

cost functions have no explicit density dependence, the stability analysis corresponds to

the forward-time FP equation which depends on the steady state controls. However, we

present more general nonlinear stability results which do not rely on linearization of the

HJB-FP equations. In section 6.3.1, we introduce a novel Cole-Hopf type transform in

order to obtain a decoupled representation of the coupled HJB-FP equations consisting

of linear imaginary-time Schrödinger equations. Spectral properties of the corresponding

Schrödinger operator underlie the stability properties of the fixed point density. In sec-

tion 6.3.3 the Schrödinger potential of this operator is interpreted as the cost function of a

closely related optimal control problem subject to simple integrator dynamics. This moti-

vates a quadrature based scheme to compute the time varying control, which is explained

in section 6.5. We observe that given an (uncontrolled) Langevin system there exists a cor-

responding control problem with simple integrator dynamics, such that the optimal control

recovers the given passive dynamics. In section 6.4 we provide explicit stability constraints
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on the control design which guarantee closed-loop stability of the steady state density.

The connection between the imaginary-time Schrödinger equation and optimal control

has been explored previously in the context of OMT [119], Schrödinger bridges [120] and

in [20] which showed an interesting connection between a specific class of MFG models

and the nonlinear Schrödinger (NLS) equation. However, this connection was shown only

for MFGs wherein agents have very simple integrator dynamics in [20]. In section 6.3.2 we

show that this connection is true for the broader class of MFGs in which agents obey non-

linear Langevin dynamics. Our conclusions and directions for future research are presented

in section 6.6.

6.2 Control of Large-Size Populations

We first introduce some notation and then describe the large scale stochastic control prob-

lem considered in this work. L2(Rd) denotes the class of square integrable functions of Rd.

The norm of a function f and inner product of functions f1, f2 in this class is denoted by

||f ||L2(Rd) and
〈
f1, f2

〉
L2(Rd)

respectively.

Consider a set of 1 ≤ N agents indexed 1 ≤ i ≤ N with model for the ith agent:

dxis = −∇ν(xis)ds+ ui(s)ds+ σdwis (6.1)

where xis, u
i(s) ∈ Rd are the state and control inputs and wis is a standard Rd Brownian

motion. Suppose that the ith agent minimizes its individual performance objective given

by

J i(u) := lim
T→+∞

1

T
E
[∫ T

0

q(xis)ds+
R

2
(ui)2 ds

]
, (6.2)

then under certain standard conditions, the equivalent stationary HJB PDE problem is

0 = q − ci − (∇vi)2

2R
−∇vi · ∇ν +

σ2

2
∆vi (6.3)
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with the optimal control ui,∞(x) = −∇vi(x)/R. Since the noise driving each agent is

mutually independent and Brownian, the states of each agent xis are i.i.d. random vari-

ables independent of wis. The set of the states {xis}1≤<i<N represents the population of

agents. Next, we assume that the number of agents is infinite, N → +∞. We take use

the mean-field approach to represent the problem as a standard OCP [73] of a represen-

tative agent with state xs ∼ p(s, ·) obeying dynamics (6.4) and the distribution of the

continuum of agents’ states being modeled by the density p(s, ·). Assuming that there

exists a constant k such that sup
1≤i≤N

E[(xi0)2] < k < +∞, the initial distribution is approxi-

mated by the emperical density pN(0, x) =
∑N

i=1 δ(x − E[xi0]) where δ is the Dirac delta

function. We assume that pN(0, x) converges weakly to p(0, x) ∈ C1,2(0 × Rd), that is

lim
N→+∞

∫
γ(x)pN(0, x) = p(0, x) for any bounded continuous function γ(x) on Rd.

6.2.1 Control Problem

Let xs, u(s) ∈ Rd denote the state and control inputs of a representative agent which obeys

the controlled first order dynamics:

dxs = −∇ν(xs)ds+ u(s)ds+ σdws (6.4)

for every s ≥ 0, driven by standard Rd Brownian motion, with noise intensity 0 < σ on the

filtered probability space {Ω,F , {Ft}t≥0,P}. These dynamics are the controlled version

of a Langevin system in the overdamped case. The smooth function ν : Rd → R is called

the Langevin potential and the control u ∈ U := U [t, T ] where U is the class of admissible

controls [31] containing functions u : [t, T ] × Rd → Rd. Consider the following optimal

control problem (OCP)

min
u∈U

J(u) := lim
T→+∞

1

T
E
[∫ T

0

q(xs)ds+
R

2
u2 ds

]
(6.5)
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subject to (6.4), where we denote the probability density of xs by p(s, x) for every s ≥ 0

which represents the density of all agents, with initial density being x0 ∼ p(0, x), q : Rd →

R is a known deterministic function which has at most quadratic growth and R > 0 is the

control cost. We assume that ∇ν(x), q(x, p) and functions in the class U are measurable.

We refer to the OCP (6.5) subject to dynamics (6.4) as problem (P1).

6.2.2 PDE Optimality System

Standard application of dynamic programming [82] as in ([73], [16]), implies that under

certain regularity conditions [106], problem (P1) is equivalent to the following HJB-FP

PDE optimality system governing the value and density functions respectively:

q − c− (v∞x )2

2R
−∇v∞ · ∇ν +

σ2

2
∆v∞ =0 (6.6)

∇((∇ν +
∇v∞

R
)p∞) +

σ2

2
∆p =0 (6.7)

with the constraint
∫
p∞dx = 1, where c is the optimal cost. The optimal control is given

by u∞(x) = −∇v∞/R. Under certain regularity conditions [106] which we assume to be

true, the time-varying relative value [85] function and density corresponding to problem

(P1) are governed by the optimality system:

−∂tv =q − c− (∇v)2

2R
−∇v · ∇ν +

σ2

2
∆v (6.8)

∂tp =∇ · ((∇ν +
∇v
R

)p) +
σ2

2
∆p (6.9)

with the constraint
∫
p(t, x)dx = 1 for all t ≥ 0. In this work, we assume to be true,

the additional conditions [31] which are required to show that the HJB PDEs (6.6) and

(6.8) have unique solutions. Note that steady state and time varying HJB PDEs are both

semilinear.
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Remark 5. The finite time OCP analogous to the infinite time OCP (P1) given by:

min
u∈U

J(u) := E
[∫ T

0

q(xs)ds+
R

2
u2 ds

]
. (6.10)

subject to the dynamics (6.4) has the optimality system given by equations (6.8), (6.9) with

c = 0, initial density given by p(0, x) and constraint
∫
p(t, x)dx = 1.

6.2.3 Stationary Solution

The FP equation governing the density of an overdamped Langevin system is called the

Smoluchowski PDE. The FP PDE (6.7), can be interpreted as the Smoluchowski PDE for

such a Langevin system with the restoring potential ν + v∞/R. The analytical solution to

the FP PDE can be obtained as a Gibbs distribution using this interpretation, under certain

conditions on the fixed point pair (v∞, p∞) of the optimality system (6.6, 6.7) and the

Langevin potential ν. We denote w(x) := ν(x) + v∞(x)
R

.

(A0) There exist (v∞(x), p∞(x)) ∈ (C2(Rd))2 satisfying (6.6,6.7) such that lim
|x|→+∞

w(x) =

+∞ and exp
(
− 2
σ2w(x)

)
∈ L1(Rd).

Lemma 6.2.1. Let (A0) be true. If ν(x) is a smooth functions satisfying (A0), then the

unique stationary solution to the density given by the Fokker Planck equation (6.7) is

p∞(x) :=
1

Z
exp

(
− 2

σ2

(
w(x)

))
(x), (6.11)

where Z =
∫

exp
(
− 2
σ2w(x)

)
dx.

Proof. We observe that the (6.7) is the Smoluchowski equation for an overdamped Langevin

system given by

dxs = −∇(ν + v∞/R)(xs) ds+ σdws. (6.12)

Under the assumptions above, the proof then follows directly from proposition 4.2, pp 110

in [83].
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6.3 Schrödinger Approach

The HJB PDEs above have a linear representation in the time-varying and steady state case.

In the time varying case this representation is obtained using a Cole-Hopf [121] transform

φ := exp(−v/σ2R) (6.13)

which was applied in stochastic control theory by Kappen [122]:

−φt = − qφ

σ2R
− φxνx +

σ2

2
φxx. (6.14)

The advection-diffusion equation above has a path integral solution [123] which is useful

in computing the control [122, 33, 29]. In what follows we will introduce two transforms

providing a diffusion PDE representation of the semilinear HJB and linear FP equations.

This transform facilitates a stability analysis of the fixed point of the optimality system (6.8,

6.9) based on the spectral properties of a Schrödinger operator in section 6.4. Further, in

this section we interpret the corresponding Schrödinger potential as the cost function of a

fictitious but intimately related OCP with integrator dynamics. This motivates a quadrature

based algorithm to solve the transformed HJB equation and thus compute the control in the

section 6.5.

6.3.1 Cole-Hopf Type transform

We introduce a Cole-Hopf type transform:

f(t, x) := exp(−(v(t, x) +Rν(x))/σ2R), (6.15)

which leads to the following representation of equation (6.8):

−ft =
cf

σ2R
− V f

σ2R
+
σ2

2
∆f =

cf

σ2R
−Hf, (6.16)
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where we denote the modified cost function V := q + (R/2)(∇ν)2 − (σ2R/2)∆ν and the

operator H := V
σ2R
− σ2

2
∆ is a Schrödinger operator with potential V (x)

σ2R
. The transformed

PDE can be verified by using the calculations ∂tv = −σ2R∂tf
f

, ∇f = − f
σ2R
∇(v + Rν),

∆f = − ∇f
σ2R
· ∇(v + Rν) − f

σ2R
∆(v + Rν) and (∇v)2

2R
=

(
σ4R

2

(
∇f
f

)2

+ σ2R∇f
f
· ∇ν +

R
2

((∇ν)2

)
in equation (6.8) and and recovering equation (6.16). Similarly, it can be shown

that if v(t, x) is a solution of equation (6.8) then f(t, x) given by (6.15) is a solution to

equation (6.16).

Hermitizing [19] the density as:

g :=
p

f
, (6.17)

then gives the following representation of equation (6.9):

−gt = − cg

σ2R
+

V g

σ2R
− σ2

2
gxx = − cg

σ2R
+Hg, (6.18)

with the initial time boundary condition g(0, x) = p
f
(0, x) and normalizing constraint∫

f(t, x)g(t, x)dx = 1 for all t ≥ 0. This can be verified by using the derivatives ∂tp =

∂tgf+g∂tf ,∇p = f∇g+g∇f , ∆p = f∆g+2∇g ·∇f+g∆f ,∇(σ2 ln f)p = σ2gf ∇f
f

=

σ2g∇f and equation (6.16) in equation (6.9), thus recovering the equation above. Simi-

larly, it can be shown that if p(t, x) is a solution of equation (6.9) then g(t, x) = p
f

, with

f(t, x) given by (6.15), is a solution to equation (6.18). We summarize this fact in the

following theorem.

Theorem 6.3.1. (f(t, x), g(t, x)) is a solution to the linear PDE system (6.16, 6.18) such

that
∫
f(t, x)g(t, x)dx = 1 for all t ≥ 0 if and only if

v(t, x) =− σ2R ln(f)(t, x)−Rν(x) (6.19)

p(t, x) =f(t, x)g(t, x) (6.20)

is a solution to the nonlinear optimality system (6.8, 6.9). Further, the optimal control is
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given by u∗ = −∇v/R = σ2∇f/f .

The introduced Cole-Hopf transform combined with hermitization of the density corre-

sponds to a diagonalization of the coupled optimality system (6.8), (6.9) as follows:

∂t

f
g

 =

 H − c
σ2R

0

0 −H + c
σ2R


f
g

 . (6.21)

The diagonalization provides a linear representation of the FP PDE (6.9) which is not cou-

pled with the HJB equation (6.8).

Analogously, it can be shown that the stationary value and density functions satisfying

the stationary nonlinear optimality system (6.6, 6.7) can be represented by the transforma-

tion variables f∞ := exp(−(v∞ + Rν)/σ2R) and g∞ := p∞/f∞, which both satisfy the

following eigenvalue problem

He(x) =
c

σ2R
e(x) (6.22)

subject to the normalizing constraint
∫
f∞(x)g∞(x)dx = 1.

Theorem 6.3.2. (f∞(x), g∞(x)) are both solutions to the eigenvalue problem (6.22) such

that
∫
f∞(x)g∞(x)dx = 1 if and only if

v∞(x) =− σ2R ln(f∞)(x)−Rν(x) (6.23)

p∞(x) =f∞(x)g∞(x) (6.24)

is a solution to the nonlinear optimality system (6.6, 6.7). Further, the optimal control is

given by u∞ = −∇v∞/R = σ2∇f∞/f∞.

Given a solution pair (v∞, p∞) to the optimality system (6.6, 6.7) it is possible to obtain

explicit solutions to functions (f∞, g∞) satisfying equation (6.22) such that
∫
f∞g∞dx =
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1. The result in theorem 6.2.1 and the introduced Cole-Hopf transform can be used to verify

the following corollary to theorem 6.3.2.

Corollary 6.3.2.1. Let p∞ := 1
Z

exp

(
− 2
σ2

(
w(x)

))
(x) with w(x) := ν(x) + v∞(x)

R
and

Z the normalizing constant where (v∞, p∞) is a pair satisfying (A0). Then f∞ :=
√
Zp∞

and g∞ := f∞/Z both satisfy equation (6.22) such that
∫
f∞g∞dx = 1.

6.3.2 Nonlinear Schrödinger Equation and Mean Field Games for agents with Nonlinear

Langevin Dynamics

MFGs model large-scale stochastic systems which permit interaction among agents. In the

continuum case, the simplest version of such a MFG for agents with nonlinear Langevin

dynamics can be expressed as the OCP (P1) with a density dependent cost function q =

q̄[p] := q(s, p(s, x)). The mean-field time-varying optimality system [73] for this MFG is

given by equations (6.8, 6.9) and q = q̄.

In [19] by Ullmo et. al, it was shown that there is a deep connection between the

imaginary time nonlinear Schrödinger (NLS) equation a specific class of MFGs. A major

limitation of the work [20], is that this connection was shown only MFG models in which

agent dynamics are restricted to be simple integrator systems. We apply the results pre-

sented in this section to extend the class of MFGs exhibiting the connection with the NLS

equation.

From the preceeding discussion, it can be easily verified that using the transforms (6.15,

6.17), the corresponding MFG model constituted by the time-varying optimality system

(6.8, 6.9) and q = q̄ has the following NLS representation:

−ft =
cf

σ2R
− V̄ [fg]f

σ2R
+
σ2

2
∆f (6.25)

−gt = − cg

σ2R
+
V̄ [fg]g

σ2R
− σ2

2
gxx (6.26)

where V̄ [fg] := q̄[fg] + (R/2)(∇ν)2 − (σ2R/2)∆ν. Thus, we have generalized the con-

119



nection between MFGs and the imaginary time NLS equation introduced in [19], to MFG

models in which agent dynamics lie in the general class of nonlinear Langevin dynamics.

6.3.3 Interpretation

The Schrödinger potential V (x)
σ2R

defined earlier can be interpreted in terms of the cost

function of the following fictitious OCP with simple integrator dynamics which has an

intimate connection with the original OCP in section 6.2.1:

min
û∈U

J(u) := lim
T→+∞

1

T
E
[∫ T

0

V (x̂s)ds+
R

2
û2 ds

]
(6.27)

subject to the simple integrator dynamics

dx̂s = û(s)ds+ σdws. (6.28)

We refer to the OCP (6.27) subject to (6.28) as problem (P2). The time-varying optimality

system associated with problem (P2) is given by:

−∂tv̂ =V − ĉ− (∇v̂)2

2R
+
σ2

2
∆v̂ (6.29)

∂tp̂ =∇ · (∇v̂
R
p) +

σ2

2
∆p̂ (6.30)

where ĉ is the optimal cost.

It is easily observed that if v is the solution to the HJB equation (6.8), then v̂ = v+Rν

is a solution to the HJB equation (6.29). Therefore, the time-varying optimal controls: u∗

of the OCP (P1) and û∗ of the OCP (P2), are related as û∗ = u∗ − ∇ν. Similarly, by

substituting ∇v̂ = ∇v + R∇ν into equation (6.30), we can see that the PDEs (6.9), (6.30)

satisfied by the densities p(s, x), p̂(s, x) respectively, are identical. Therefore, given iden-

tical initial conditions p̂(0, x) = p(0, x), lemma 6.2.1 implies that p̂(s, x) = p(s, x) for all

s ≥ 0 where p(s, x) is the density of optimally controlled agents associated with the OCP
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(P1). To summarize, solving the optimality system (6.8), (6.9) corresponding to the OCP

(P1) (subject to nonlinear passive dynamics) is equivalent to solving the optimality system

(6.29), (6.30) corresponding to the OCP (P2) (subject to simple integrator dynamics).

The steady state optimality system corresponding to problem (P2) given by:

V − (∇v̂∞)2

2R
+
σ2

2
∆v̂∞ =0 (6.31)

∇ · (∇v̂
∞

R
p∞) +

σ2

2
∆p̂∞ =0, (6.32)

can be similarly shown to be connected to the solutions of the optimality system (6.6),

(6.7) by ∇v̂∞ = ∇v∞ +R∇ν and p̂∞(s, x) = p∞(s, x) for all s ≥ 0, given that the initial

densities are equal p̂∞(0, x) = p∞(0, x). The steady state control u∞ of OCP (6.5), (6.4)

and û∞ of OCP (6.27), (6.28) are related as û∞ = u∞ −∇ν.

Further, setting q(x) = 0 in the cost function V (x) of the OCP (P2) results in an optimal

control û∞(s) which recovers the passive Langevin dynamics (6.4) with u(s) = 0. It can

be proved that if q(x) = 0, then û∞ = −∇v̂∞/R = −∇ν by verifying that Rν(x) is a

solution to the stationary HJB equation (6.31). This can also be proved by observing that

if q(x) = 0 in the OCP (P1), then the steady state optimal control is u∞ = 0, so that

from the relationship in the previous paragraph û∞ = u∞ − ∇ν = −∇ν. In conclusion,

given certain uncontrolled Langevin dynamics (6.4) with smooth Langevin potential ν(x),

the steady state optimal control corresponding to the OCP (P2) with cost function V :=

(R/2)(∇ν)2 − (σ2R/2)∆ν, recovers the uncontrolled dynamics as û∞(x) = −∇ν(x).

6.4 Control Design

The decay of an initial density of particles under open loop (or uncontrolled) overdamped

Langevin dynamics to a stationary density is a classic topic in statistical physics [86]. In

this section we analyze the decay of a perturbed density of agents under the action of the

steady state controller to the corresponding steady state density. Since the HJB-FP (6.8,
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6.9) optimality system is coupled one-way, the perturbation analysis corresponds to that of

the FP equation. Evolution of a perturbed density governed by the FP PDE (6.9) is ana-

lyzed through evolution of the hermitized density (6.17) governed by equation (6.18). Di-

agonalization of the coupled PDEs constituting the optimality system as in equation (6.21)

facilitates stability analysis based on the spectral properties of the Schrödinger operator.

Based on the analysis we obtain explicit analytical design constraints on the cost function

q(x) and control parameter R which guarantee stability of the fixed point density.

6.4.1 Perturbation System

Consider a controlled large-size non-interacting population expressed by problem (P1),

which is controlled by the optimal steady state control u∞ = −∇v∞/R corresponding to

the optimality system (6.6, 6.7) with a unique fixed point (v∞, p∞) satisfying assumption

(A0). Theorem 6.3.2 implies that in this case the steady state value and density functions

can be written as (6.23), (6.24), in terms of a pair of functions (f∞, g∞) both satisfying

equation (6.22) and
∫
f∞g∞dx = 1. Corollary 6.3.2.1 gives formulae for the function pair

(f∞(x), g∞(x)) in terms of the steady state solution (v∞, p∞).Time varying value and den-

sity functions can be written as (6.19), (6.20) in terms of the corresponding transformation

variables (f(t, x), g(t, x)).

Time varying densities, perturbed from the steady state density of agents can there-

fore be written using the hermitization transform (6.17) as p(t, x) = p∞(x) + p̃(t, x) =

f∞(x)g∞(t, x)+f∞(x)g̃(t, x). Since we are studying stability of the steady state controller,

there are no perturbations in the value function v∞ nor consequently, in the transformation

variable f∞. Here, the function g̃(t, x) corresponds to a perturbation in the hermitized den-

sity given as g(t, x) = g∞(x) + g̃(t, x), which obeys the time-varying PDE (6.18). In this

section we study the decay of a perturbed density p∞+ p̃ to its steady state density p∞. We

state the following corollary to theorem 6.3.1 which provides the perturbation equation for

the hermitized density g(t, x).
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Corollary 6.4.0.1. If g∞(x) is a solution to the stationary PDE (6.22) and g(t, x) =

g∞(x) + g̃(t, x) is a solution to the PDE (6.18) where g̃(t, x) ∈ C1,2([0,+∞),Rd), then

g̃(t, x) is governed by the linear PDE

g̃t = −Hg̃. (6.33)

6.4.2 Stability

We define the following Hilbert space and class of density perturbations for which we

study stability.

Definition 6.4.1. Let (A0) hold. Denote p∞ := 1
Z

exp

(
− 2
σ2

(
w(x)

))
(x) with w(x) :=

ν(x) + v∞(x)
R

and Z the normalizing constant where (v∞, p∞) is the unique pair satisfying

(A0). We denote by f∞ :=
√
Zp∞ and g∞ := f∞/Z two solutions to equation (6.22)

such that
∫
f∞g∞dx = 1. We denote the Hilbert space of L2(R) by H. The class of mass

preserving density perturbations is defined as S0 :=

{
π(x) ∈ H

∣∣∣∣ 〈π, f∞〉H = 0

}
.

Definition 6.4.2. We define the class of initial perturbed densities as S :=

{
p(0, x) = f∞(g∞(x) + g̃(0, x))

∣∣∣∣g̃(0, x) ≥ 0, g̃(0, x) ∈ S0

}
.

We say that the fixed point p∞(x) = f∞(x)g∞(x) of the nonlinear optimality system (6.6,

6.7) is asymptotically stable with respect to S if there exists a solution g̃(t, x) to the pertur-

bation equation (6.33) such that lim
t→+∞

||g̃(t, x)||H = 0.

Lemma 6.4.1. If there exists a positive, even, continuous function Q(x) on R which is non-

decreasing for all x ≥ 0 such that V (x)
σ2R
≥ −Q(x) for all x ∈ R and

∫
dx√
Q(2x)

dx = +∞

then the closure of H is self adjoint.

We omit the proof since it follows directly from theorem 1.1, pp 50 in [124]. In par-

ticular, if V (x)
σ2R
≥ k ∈ R then it follows that H is self adjoint. The following assumption

implies discreteness of the spectrum of H .

(A1) lim
|x|→+∞

V (x) = +∞.
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Lemma 6.4.2. If (A1) is true then the closure of H has a discrete spectrum.

The proof of this theorem follows from in theorem 3.1, pp 57 of [124]. This theorem

implies that under assumption (A1), the spectrum of H denoted by {λn}0≤n≤+∞ has the

property that λn → +∞ as n → +∞ and the corresponding eigenfunctions denoted as

{en(x)}0≤n≤+∞ form a complete orthonormal system on L2(R). The eigenproperty is

explicitly written as Hen(x) = λnen(x). Further from proposition 3.2, pp 65 in [124]

the eigenvalues have the property λ0 < λ1 < · · · < λn < · · · . We state the following

assumption on the Schrödinger potential required to prove MF stability.

(A2) V (x) ≥ 0.

Theorem 6.4.3. Let (A0, A1, A2) be true true. Let (v∞(x), p∞(x)) be the unique stationary

solution to the optimality system (6.6, 6.7) and denote by (f∞, g∞) the two solutions to

problem (6.22) given in corollary 6.3.2.1. If g̃(0, x) ∈ S0 and {gn}0≤n≤+∞ are determined

by

ġn(t) = −λnt. (6.34)

then g̃(t, x) =
∑+∞

n=1 gn(t)en(t) is the unique H solution to the perturbation equation

(6.33). p∞(x) is asymptotically stable with respect to S(ε).

Proof. Since g̃(0, x) ∈ H we have the unique representation g̃(t, x) =
∑+∞

n=0 gn(0)en(x)

where gn(0) = 〈g̃(0, x), en(x)〉H < +∞ for all n. Since {en}0≤n<+∞ is a complete basis

on H, any solution in H to the PDE (6.33) must have the form
∑+∞

n=0 gn(t)en(x) where

{gn}0≤n≤+∞ are finite for all t ∈ [0,+∞). Substituting the selected form of the solution

in the perturbation equation (6.33) and using the eigenproperty Hen = λnen, we obtain

the ODEs (6.34). Due to assumption (A1) the eigenproperties of the Schrödinger operator

given in lemmas 6.4.1, 6.4.2 hold. Using the eigenproperty yields the ODEs (6.34) with

the unique solutions gn(t) = gn(0)e−λnt. Therefore g̃(t, x) =
∑+∞

n=0 gn(t)en(x) wherein

gn(t) = gn(0)e−λnt, is the unique H solution to the perturbation equation (6.33). From

the Krein-Rutman theorem [113] under the assumption that V (x) ≥ 0 given by (A2), the
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first eigenvalue is c
σ2R

= λ0 and the first eigenfunction is 0 < f∞(x) = e0(x) corre-

sponding to the eigenvalue problem (6.22). Further, g̃(0, x) ∈ S0 implies that g0(0) =

〈g̃(0, x), e0(x)〉H = 〈g̃(0, x), f∞(x)〉H = 0 implying g0(t) = 0 for all t ≥ 0. This com-

pletes the first part of the proof.

Using integration by parts we have that 〈He0, e0〉L2(R) = λ0 =
〈

V
σ2R

e0, e0

〉
L2(R)

+

σ2

2
||∂xe0||2. Since V (x) ≥ 0 from assumption (A2) and λ0 < λ1 < · · · due to assumption

(A1), we conclude that λn > 0 for all n > 1. Using Parseval’s identity ||g̃(t, x)||L2(R) =(∑+∞
n=0 gn(t)2

) 1
2 , noting that g0(t) = 0, gn(t)2 = gn(0)2e−2λnt where λn > 0 for all n > 1

and using the Lebesgue dominated convergence theorem for the limit t → +∞, we have

that p∞(x) is nonlinearly asymptotically stable with respect to S(ε).

From the theorem above, we note that assumptions (A1,A2) provide the explicit design

constraints on the cost function q(x) and control parameter R, which guarantee stability

of an initially perturbed density of agents to the corresponding steady state density, under

the action of the steady state controller. In figure 6.1 we show stabilization of an initially

(perturbed) uniform density of agents to the stationary density corresponding to the steady

state controls. The agent dynamics are unstable with the Langevin potential ν(x) = −x3/3

and the system is stabilized using a cost function q(x) = (5/2) · x2 such that conditions

(A1,A2) are satisfied. Equation (6.22) is solved using a spectral solver [112] for the param-

eters σ = R = 1/2 and the steady state density is obtained using equation (6.12). Initial

states of agents are sampled from a uniform density over the interval [2, 2]. Trajectories

for N = 500 agents are simulated with 100 stochastic realizations each, using the steady

state control. In the left panel we observe the density evolve over time steps t = 0 (black),

t = T/5 (blue), t = T/2 (pink) to the final time t = T (red) at which the density from the

PDE computation is recovered.
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Figure 6.1: Stabilization of a density of agents with unstable passive dynamics to a fixed
point density. (left) Density evolution of agents with closed loop dynamics over increasing
times t = 0 (black), t = T/5 (blue), t = T/2 (pink), t = T (red) to the steady state density
(green) and (right) corresponding paths of ten agents.

6.5 Control Algorithm

For practical applications of the control of large-scale systems, it will be advantageous to

precompute a finite time, feedback control law whose domain spans the region of state

space that we are interested in. The optimal control is obtained can be obtained by solving

the corresponding HJB PDE by various methods using finite difference, finite element or

spectral approaches. In this work, we apply a path integral approach to solve this PDE in

the finite time case and introduce an efficient quadrature method for evaluating the path

integrals. Although our quadrature method could be applied to either (P1) or (P2), the

implementation becomes simpler in the case of (P2) due to the underlying integrator dy-

namics. The result is an efficient method for computing the feedback control law.

We consider the finite horizon OCP (6.10) with the HJB equation is given by (6.8),

c = 0 as explained in remark 5. The optimal control can then be solved by treating the

equivalent problem (P2) with HJB equation (6.16). The path integral representation of this
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PDE (via Feynman-Kac) is as follows:

f(t, x̄) = Eτ

[
exp

(∫ T

t

− V

σ2R
(xs)ds

)
f(T, xT )

]
(6.35)

with the expectation over trajectories τ of brownian motions over the finite time horizon

[t, T ], that is

dxs = σdωs, xt = x̄ (6.36)

First we approximate everything in discrete time with N timesteps of duration δt, with

δt = (T − t)/N , so that

f(t, x̄) ≈ Eτ

[
exp

(N−1∑
n=0

− V

σ2R
(xn)δt

)
f(T, xN)

]
(6.37)

with xn governed by the discrete dynamical system:

xn+1 = xn + σ
√
δtε, x0 = x̄, ε ∼N (0, I) (6.38)

with the associated transition probability p(xn+1|xn) ∼N (xn, σ
2δtI). Letting

wn(xn) := exp
(
− V

σ2R
(xn)δt

)
n = 0, · · · , N − 1 (6.39)

wN(xN) := f(T, xN) (6.40)

w :=
N∏
n=0

wn(xn) (6.41)
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from equation (6.37) we have

f(t, x̄) = Eτ

[
N∏
n=0

wn(xn)

]

=

∫
· · ·
∫
wN(xN)

[
N−1∏
n=2

wn(xn)p(xn+1|xn)

]
×[∫

w0(x̄)p(x1|x0 = x̄)w1(x1)p(x2|x1)dx1

]
dx2 · · · dxN .

(6.42)

The second integral above is approximated by Gaussian quadrature with M grid points

{ξi1}Mi=1 and weights αi1 as

∫
w0(x̄)p(x1|x0 = x̄)w1(x1)p(x2|x1)dx1 ≈

M∑
i=1

p(x2|x1 = ξi1)︸ ︷︷ ︸
φi1(x2)

αi1w1(x1 = ξi1)︸ ︷︷ ︸
γi1

w0(x̄)p(x1 = ξi1|x0 = x̄)︸ ︷︷ ︸
φi0(x̄)

. (6.43)

Defining the M dimensional vectors Φ1(x2), γ1, and Φ0(x̄) to have elements φi1(x2), γi1,

φi0(x̄), respectively and define Γ1 = diag(γ1), (6.43) can be written as a set of vector

products:

∫
w0(x̄)p(x1|x0 = x̄)w1(x1)p(x2|x1)dx1 = Φ1(x2)ᵀΓ1Φ0(x̄). (6.44)

Recall that p(x1 = ξi1|x0 = x̄) is a Gaussian PDF, so each element of Φ0(x̄) is Gaussian

weighted by w0(x̄). Plugging this back into (6.42) yields:

=

∫
· · ·
∫
wN(xN)

[
N−1∏
n=3

wn(xn)p(xn+1|xn)

]
[∫

w2(x2)p(x3|x2)Φ1(x2)ᵀΓ1Φ0(x̄)dx2

]
dx3 · · · dxN .

(6.45)

Take the integral within the brackets and perform another quadrature, this time at points
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{ξi2}Mi=1 and weights αi2. We have:

∫
w2(x2)p(x3|x2)Φ1(x2)ᵀΓ1Φ0(x̄)dx2

≈
M∑
i=1

p(x3|x2 = ξi2)︸ ︷︷ ︸
φi(x3)

αi2w2(x2 = ξi2)︸ ︷︷ ︸
γi2

Φ1(x2 = ξi2)ᵀΓ1Φ0(x̄) (6.46)

Let Φ̃n be an M ×M transition matrix with elements {Φ̃}ij = p(xn+1 = ξin+1|xn = ξjn).

Then we can write (6.46) as:

Φ2(x3)ᵀΓ2Φ̃1Γ1Φ0(x̄) (6.47)

Plugging this back into (6.45), we can perform the nested integrals recursively. At each

timestep xn we use a different quadrature grid, with points {ξin}Mi=1 and weights αin. The

entire integral will therefore be:

f(t, x̄) ≈ γᵀN

[
N−1∏
n=1

(Φ̃nΓn)

]
Φ0(x̄) (6.48)

where we have used the definitions:

γn =
[
{αiwn(ξin)}Mi=1

]ᵀ
(6.49)

Γn = diag(γn) (6.50)

{Φ̃n}ij = p(xn+1 = ξin+1|xn = ξjn) (6.51)

φi0(x̄) = w0(x̄)p(x1 = ξi1|x0 = x̄) (6.52)

Φ0(x̄) =
[
{φi0(x̄)}Mi=1

]ᵀ
(6.53)

Since V (x) is time invariant and one chooses the same quadrature grid points at each

timestep, γn and Φ̃n are the same for all n = 1, · · · , N − 1. So (6.48) can be simplified to:
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f(t, x̄) ≈ γᵀN(Φ̃Γ)N−1Φ0(x̄). (6.54)

We demonstrate the resulting algorithm on a two dimensional problem where individu-

als obey dynamics (6.1) with ν(x) = 1/2 cos(x1x2)2 − 1/24(x4
1 + x4

2) where x = [x1x2]T.

In figure 6.2 we plot the potential ν along with several uncontrolled trajectories of agents

initialized at random locations. The agents collect into 4 stable and attracting equilibria.

We design a cost function q(x) = 1
2
Q((x1 − 1)2 + (x2 − 1)2)((x1 + 1)2 + (x2 + 1)2)

to encourage the agents to move into two locations at (−1,−1) and (1, 1). We let R =

1, Q = 0.1, σ = 0.2 and T = 4.0s, with a time discretization step size of dt = 0.1. We

solve for f(t, x) at each timestep using our quadrature method with a fixed 2-d Gauss-

Hermite grid spanning [−2, 2] in both x1 and x2. We found 20 grid points in each dimen-

sion to yield good results (for a total of 400 grid points). We then plot the modified value

v̂(x, t) = −σ2/2 log(f(x, t)). With this method we are able to find an optimal feedback

control law for the entire domain of integration. We simulate 40 agents under this feedback

control which have been initialized randomly (see Figure 6.3). Note that we are also able

to solve the problem by calculating controls for each agent locally and independently us-

ing our quadrature method, modified to use a smaller grid (with width 4σ(T − t)/
√
dt in

each dimension), centered at the agent’s current position. Unlike with PDE solver-based

solutions, we are able to find optimal controls for each agent locally. This is advantageous

when the size of the state space is large and the number of agents is small. (We observed

no difference between the optimal controls calculated with the global fixed grid quadra-

ture method and those calculated locally.) The results of the simulation show that early on

(t = 1.0s), the agents are pushed towards the center of the space. As time progresses, the

agents are controlled towards the goal position at (1, 1) and (−1,−1) for (t = 2.0s, 3.0s).

At the final time, the agents are mainly concentrated around the goal regions (t = 4.0s).

The modified value v̂ is smallest at the goal state but also has valleys around the four stable

equilibria.
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Figure 6.2: Plot of Langevin potential ν for 2 dimensional problem. x and y axes span
[−2, 2], and represent the state. Trajectories of 40 agents under no control (black lines)
along with their final position after T = 4.0 seconds (white dots) are plotted. Note that the
agents move into one of four potential wells.
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Figure 6.3: Plot of optimally controlled agents and value for 2 dimensional finite-horizon
problem (T=4.0s). x and y axes span [−2, 2], and represent the state. Color denotes plot
of v̂(x, t) = −σ2/2 log(f(x, t)). 4 snapshots in time are shown. Trajectories of 40 agents
under the optimal control (black lines) along with their current positions (white dots) are
plotted. Note that the agents move towards the regions of lowest cost at (−1,−1) and
(1, 1) but are affected by the other potential wells at (±1,±1). f(x, t) is computed with
our quadrature method on a fixed grid spanning the space.
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6.6 Conclusions

In this chapter, we provide a framework for closed-loop stability analysis of the fixed

point density of large-size populations in which agents obey multidimensional nonlinear

Langevin dynamics. We utilize an imaginary time Schrödinger equation representation of

the original optimality system to facilitate the stability analysis. It is observed that spectral

properties of the Schrödinger operator underlie the stability of fixed point density of the

optimality system. We provide explicit control design constraints which guarantee closed-

loop stability of the steady state density using these spectral properties.

The corresponding Schrödinger potential is interpreted as the cost function of a related

optimal control problem subject to simple integrator dynamics. This motivates a quadra-

ture based algorithm to compute the time-varying control. It is observed that given an

(uncontrolled) Langevin system there exists a corresponding control problem with simple

integrator dynamics, such that the optimal control recovers the given passive dynamics.

In [20], the concept of solitons was used to study MFGs. The soliton theory in [20]

for MFGs was based on this connection between NLS and MFGs for agents with simple

integrator dynamics [20]. In section 6.3.2, this connection was generalized to include MFG

models in which agent dynamics lie in the general class of nonlinear Langevin dynamics.

A topic of future work is therefore to extend and apply the theory of solitons to create a

reduced order computational tool for this broader class of MFGs. Generalization of the

presented approach to the case of second order Langevin systems is a natural extension,

which we intend to work on in the future.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The primary objective of this work is to develop methods and theoretical results aimed

at constructing scalable control-theoretic frameworks for large-scale multi-agent systems

and their control. There are several key challenges identified in the state-of-the-art con-

trols literature related to this topic. Dynamics of individual agents can be uncertain or

external disturbances, including non-Gaussian jump noise. The number of agents might be

very large, to the order of 103 − 106 agents, which render existing theoretical frameworks

intractable. In the absence of a strong monotonicity assumption on the cost function, ex-

isting models exhibit non-unique solutions. Since agents are spread over a region of the

state space and control algorithms must be capable of evaluating feedback controls over

the entire region, this corresponds to a grid-based approach which leads to the curse of

dimensionality. Finally, in an ensemble control setting, the relationship between the two

fundamental principles of optimal control is not well understood.

We propose a PDE based approach to develop an ensemble control scheme for agents

obeying a general class of marked jump diffusion dynamics. In chapter 3, a broadcast

control algorithm is presented which uses a sampling scheme to compute the optimal cost-

to-go on a grid. Since the control computation is computationally expensive, an iterative

time-stepping strategy is used to reduce the computation time. Finally, the relationship be-

tween the dynamic programming principle and the infinite dimensional minimum principle

is explained quantitatively.

In order to treat large-scale systems which use local feedback information, we take the

a multi-agent systems approach in which we control a density of agents. This corresponds

to the mean-field approach which is well known in the physics literature and enables us to

synthesize and analyze several large-scale models using a non-cooperative, game-theoretic
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approach also referred to as mean field games (MFGs) models. The most alluring benefit

of these models is that they can be used to represent large networks of rational agents. A

topic of recent interest in the MFG literature is therefore, the stability properties of models

which permit interaction among agents, specifically in cases with non-unique solutions.

Most prior work on this topic consider agent dynamics which are very simple integrator

systems. In chapter 4 we address the challenging problem of stability analysis and control

design for MFG models in which agents obey nonlinear dynamics. Explicit control design

constraints which guarantee stability are obtained for a consensus model and a population

model. We also investigate the constraints for stability of the steady state controller, which

is more pertinent to controls applications. In chapter 5 we present a MFG model for ho-

mogeneous flocking, in which agent interactions are non-local. This work recovers earlier

known results on uncontrolled models of flocking as a special case. However, we observe

interesting phase transitions in the synthesized controlled model which were not known

previously.

A deep relationship between MFG models for agents with nonlinear Langevin dynam-

ics and the Schrödinger equation is established in chapter 6. A novel Cole-Hopf transform

is presented in order to make this connection and facilitate a sampling algorithm. When

the agents do not interact explicitly through their dynamics or cost functions, a quadra-

ture based sampling algorithm is proposed for computing the controls on a grid. Although

this does not directly address the associated curse of dimensionality, it suggests a plausible

approach to the challenging problem of large-scale control algorithms.

Synthesis and analysis of MFG models is presently a topic of great interest in control

theory. Despite successful applications in some areas, the theory, modeling strategies and

computation are far from being mature. Open problems include creation of fast, robust,

and scalable numerical schemes for control computation, stability theory for models with

general nonlinear and under-actuated agent dynamics, inverse MFG problems in connection

with optimal transport and experimental validation. In the applied arena, data collection
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for accurate modeling opinion formation in social networks, finite dimensional or discrete

action strategies for controlling socio-economical dynamics, say in energy consumption

and election modeling, and mathematical modeling of irrational agents remain topics for

future research.
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