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SUMMARY 

 Activated fibroblasts have been implicated as drivers of disease progression in a 

variety of conditions including rheumatoid arthritis (RA), fibrotic diseases, and cancer.  

Cell characteristics such as invasiveness, hyperproliferation, apoptotic resistance, 

excessive contraction, extracellular matrix (ECM) secretion and remodeling, and enhanced 

inflammatory cytokine secretion are some of the main factors underlying disease 

exacerbating capabilities in these cells.  Attempts to prevent, cure, or otherwise modulate 

the pathophysiology of these diseases to date has in part been hindered by a lack of 

understanding as to how fibroblasts become activated and are able to maintain their 

activated states, in some cases, even in the absence of immune or inflammatory stimuli.   

 The central hypothesis of this work is that an inflammation-mediated provisional 

extracellular matrix (pECM) modification called citrullination may be responsible in whole 

or in part for activated fibroblast phenotypes.  Citrullination is a post-translational protein 

modification that is known to occur extensively and at very early stages within inflamed 

RA, fibrotic, and cancer tissues. To explore whether co-localization of activated fibroblasts 

with citrullinated pECM is merely a phenomenon or is sufficient to drive activated 

phenotypes, this research aimed to understand how citrullination of pECM alters cellular 

interactions and signaling at the molecular scale as well as to explore whether exposure to 

citrullinated pECM is a sufficient stimulus to bring about changes in a variety of fibroblast 

behaviors.  

 To investigate the influence of citrullinated pECM at a molecular level, mass 

spectrometry (MS) analysis was performed on citrullinated fibronectin (Cit Fn); integrin 
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interactions were studied via bio-layer interferometry (BLI), co-immunoprecipitation (Co-

IP), and immunocytochemistry (ICC) assays; and finally, downstream signaling and 

protein products were explored via both Co-IP and ICC assays.  MS identified 24 unique 

citrullination sites, five of which reside in the cell-binding domain of fibronectin (Fn), and 

result in a preference for α5β1 integrins over αvβ3 integrins on Cit Fn compared to Fn.  

The consequence of this α5β1 to αvβ3 integrin switch is initiation of mechanotransduction 

signaling including elevated levels of phospho-focal adhesion kinase (pFAK), phospho-

Src (pSRC), phospho-integrin-linked kinase (pILK), vinculin, F-actin, and glycogen 

synthase kinase (GSK), all of which are integral components of focal adhesions and 

signaling networks critical in cytoskeletal remodeling and cell motility.   

 To investigate the ability of Cit-pECM to modulate fibroblast behavior, adhesion, 

proliferation, metabolic, apoptotic, gel contraction, and migration assays were performed 

in addition to atomic force microscopy (AFM) to probe cell stiffness and α-actinin and 

confocal video analysis to probe focal adhesion (FA) turnover. Cit Fn was chosen as the 

representative pECM protein for these studies due to its prevalence within inflammatory 

environments as well as known dominance in fibroblast preferential binding among pECM 

proteins. Fibroblasts were determined to possess decreased adhesion and spreading, 

increased stiffness, increased FA turnover, and enhanced migration on Cit Fn compared to 

Fn.  No differences in proliferation or metabolism were observed.  Apoptotic resistance to 

oxidative stress was shown to be enhanced in the presence citrullinated fibrin but not on 

Cit Fn compared to Fn. 

 Altogether, the findings from these studies indicate that while citrullination of 

pECM cannot bring about every phenotype associated with fibroblast activation, it is 



xv 

 

sufficient to change several different fibroblast behaviors relevant to disease progression, 

especially that of enhanced migration which can contribute to cell invasiveness.  Further, 

the fundamental nature of the α5β1 to αvβ3 integrin switch implies that citrullination has 

the potential to impact the interaction of many different cells with their ECM leading to 

potentially diverse phenotypes. Taken together, these results indicate that citrullination 

within the pECM is has significant consequences on cell function, and it may therefore 

constitute a viable therapeutic target in helping to prevent or ameliorate inflammation-

mediated disease.      
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CHAPTER 1. INTRODUCTION AND SPECIFIC AIMS 

Activated fibroblasts are a prominent feature in a variety of conditions, including 

rheumatoid arthritis (RA), fibrotic diseases, and cancer, and to varying degrees they have 

been shown to both drive and exacerbate the pathophysiology of these conditions. Some of 

the principal features associated with activated fibroblasts, compared to their senescent 

counterparts, are enhanced invasiveness, apoptotic resistance, extracellular matrix (ECM) 

remodeling, increased contractile ability, and excessive cytokine and protease secretion.  

Our current understanding of both how fibroblasts initially become activated and how they 

are able to maintain those activated phenotypes is incomplete, however, and filling this 

knowledge gap will provide essential information to develop newer and more effective 

therapeutics for these diseases.    

The purpose of this current work was to explore one promising potential fibroblast 

activating factor: citrullination.  Citrullination is an enzyme-mediated post-translational 

modification that occurs extensively in chronic inflammatory environments.  Importantly, 

it is a very early event in disease development, occurring up to about ten years prior to 

disease onset in the case of RA. While many proteins are capable of being citrullinated, 

those associated with and upregulated in chronic inflammatory conditions—and therefore 

become more permanent structures of the cell microenvironment—are of particular interest 

here.  Therefore, the central question of this research is as follows:  

How does citrullination of the provisional extra-cellular matrix (pECM) influence 

fibroblast function? 
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This question was addressed through two specific aims: 

Aim #1:  Understand how citrullination of the pECM protein fibronectin (Fn) alters 

fibroblast integrin engagement and downstream signaling.   

The hypothesis was that integrin engagement would be detrimentally impacted in an RGD-

mediated manner, and that this would result in an alteration in outside-in signaling 

impacting such molecules as focal adhesion kinase (FAK), integrin linked kinase (ILK), and 

Rac and Rho.  Experiments for Aim # 1 began with a MS analysis of Cit Fn to identify 

specific sites of modification.  Bio-Layer Interferometry (BLI), adhesion assays using cells 

possessing only one type of integrin, as well as direct immunocytochemical (ICC) staining 

and immunoprecipitation (IP) assays were implemented to explore functional changes to 

integrin binding of Cit Fn.  ICC and force-inducible IP assays were utilized in the 

exploration of downstream signaling resulting from alterations in integrin binding.   

Aim 2: Investigate how Cit Fn as a stand-alone stimulus influences healthy fibroblast 

phenotypes. 

The hypothesis was that changes in several of the phenotypes associated with fibroblast 

activation, including that of migration, apoptotic resistance, contraction, and proliferation 

would become altered as a result of exposure to Cit Fn.  A variety of adhesion, 

Bromodeoxyuridine (BrDU), 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT), caspase 3/7, and wound healing assays were utilized to investigate cell 

spreading, proliferation, metabolism, apoptotic resistance, and migration, respectively.  

Additionally, atomic force microscopy (AFM) was employed to evaluate cell stiffness, gel 
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contraction assays were used to analyze cell contractility, and both α-actinin staining and 

confocal videos were used to determine differences in focal adhesion (FA) turnover.   

Significance: 

 Cancer is one of the greatest causes of death worldwide, RA affects about one 

percent of the world population, and about 50 thousand new cases of pulmonary fibrosis are 

diagnosed each year.  Altogether, the World Health Organization (WHO) estimates that 

40% of all deaths can be attributed to a fibrotic response—either idiopathic or resulting from 

an underlying primary pathology—so together, these diseases and other chronic 

inflammatory conditions have a wide reach of harmful impact.  To varying degrees for each, 

there currently exists a substantial unmet clinical need for therapeutic interventions that can 

cure or ameliorate disease symptoms in a wider range of patients. For instance, 40% of RA 

patients currently fail to completely respond to available treatments, and in the case of 

idiopathic pulmonary fibrosis, even the leading pharmaceutical interventions succeed only 

in slowing down disease progression. Activated fibroblasts are known to play a substantial 

role in driving disease progression in all of these conditions, yet few interventions, 

depending on the disease type, currently target their capabilities specifically, due in large 

part to a lack of understanding of their mechanisms of activation. Therefore, possessing a 

comprehensive understanding of activated fibroblasts and the factors that contribute to their 

activation is essential for developing therapeutics with maximal benefit for patients 

currently suffering from a panoply of inflammatory conditions.  
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CHAPTER 2. BACKGROUND INFORMATION 

2.1 Citrullination in Human Health and Disease 

2.1.1 What is Citrullination? 

Citrullination is a post-translational protein modification that results in an arginine 

residue being converted to a citrulline residue through the primary ketimine group being 

replaced by a ketone group[1]. The immediate consequence is a slight mass increase of 

0.984 daltons, the loss of a positive charge, and the alteration of the iso-electric point from 

11.41 to 5.91 for every modification site [2].  At the molecular level, this modification can 

negate the ability of the former arginine to participate in ionic interactions with negatively-

charged substrates and co-factors[3]. It can also influence the hydrogen bond forming ability 

of the protein [2, 3].  Through these mechanisms and others, citrullination may also result 

in an alteration of protein secondary or tertiary structure [4].  As a result of any of these 

changes, independently or combined, the overall function of citrullinated proteins and their 

ability to interact with other biomolecules and/or cells may be fundamentally altered.   

2.1.2 Anti-Citrullinated Peptide Antibodies 

While the phenomenon of citrullination was first identified in 1948 [5] it didn’t 

become an object of serious scientific inquiry until its occurrence became associated with 

rheumatoid arthritis (RA), and even this realization took about three decades.  It started 

when a mysterious new class of “anti-filaggrin” antibodies was discovered in the 1960’s [6] 

that turned out to be a better diagnostic indicator for the development of RA than even 
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Rheumatoid Factor (RF), the gold standard at the time.  RF is a self-antibody, first identified 

in the 1940’s that is detected at an elevated frequency in the sera of 70-90% of RA patients.  

It is what allowed RA to be defined as one of the first autoimmune diseases [7, 8].  RF, 

however, is not a sufficiently RA-specific indicator since it is also found in several other 

chronic diseases as well as in a high percentage of healthy persons, especially the elderly, 

and it is currently thought to be a general consequence of immune activation [7, 9].  These 

“anti-filaggrin” antibodies on the other hand were found to be present in 60-76% of RA 

patients, but in less than 2% healthy individuals or patients with other diseases [2, 10, 11], 

and importantly, they were also present in patients with RF-negative RA [5].  A landmark 

1998 paper eventually identified citrulline as the essential component being recognized by 

these “anti-keratin” antibodies, and this class of antibodies, re-labeled anti-citrullinated 

peptide antibodies (ACPAs) have been a standard component of RA diagnostics ever since 

[7]. 

 Enhancing the diagnostic potential of ACPAs is the fact that they can be detected 

more than 10 years before the onset of RA, prior to occurrence of synovitis, a hallmark of 

the disease [7, 12].  Blood samples taken at these early stages indicate that ACPAs initially 

react to only a single citrullinated epitope [13], though with time, ACPA reactivity expands 

to a wider array of proteins, often cross-reacting with multiple different types of citrullinated 

proteins [2].  The overall specificity and sensitivity of ACPA and RA is 95% and 75%, 

respectively [14].  A second-generation citrullination diagnostic test, called the CCP2 test 

has since been developed, and this has a specificity and sensitivity of 98% and 80%, 

respectively [2, 15].  The CCP2 was developed by selecting a large panel of randomly-

generated citrulline-containing peptides and testing these against both RA and control serum 
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obtained from numerous persons.  The combination of sequences with the greatest 

sensitivity and specificity were eventually adopted for clinical use [9], and this is now the 

gold-standard in RA diagnostics [14].  It should be noted though, that since the CCP2 test 

does not correspond to citrullinated proteins generated in vivo for a particular patient, the 

test is not of much use for investigating disease etiology and pathogenesis [9].  

ACPAs may even play a direct role in RA disease onset and progression.  To start, 

the overall presence and titer level of ACPAs correlate to RA activity and severity, as 

determined through presence of other clinical RA indicators like presence of rheumatoid 

nodules, radiological destruction scores, and bone erosion [16].  ACPA-positive RA is also 

associated with denser lymphocyte infiltrations in the synovium, and more generally, a 

higher rate of joint destruction and erosion [2, 17].  ACPAs binding to citrullinated vimentin 

on the surface of osteoclasts has even been shown to activate these cells in a manner to 

promote bone resorption [7].  Nevertheless, the ACPAs themselves do not cause RA, as 

determined in a study whereby ACPAs administered to mice did not elicit an arthritic 

response.  In a collagen-induced arthritis (CIA) mouse model, however, administration of 

ACPA resulted in a more severe course of arthritis [9, 18]. 

2.1.3 HOW does Citrullination Occur: An Introduction to Peptidyl Arginine Deiminase 

Enzymes and their Function 

A class of intracellular enzymes called peptidyl arginine deiminases (PADs) 

represent the only way citrulline can be introduced into a protein [19].  There exist five PAD 

isoforms, all encoded by a single gene cluster on chromosome 1p35-36 [9], and with a 

single-species inter-isozyme conservation rate at about 50 percent [5].  The conservation of 
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each isotype among mammals is 70-95% [15].  The primary difference among PAD isotypes 

is their respective tissue expression locations.  PAD1 is primarily expressed in the epidermis 

and uterus [2, 20].  PAD2 is the most widely expressed, being found in muscle cells, brain 

tissue, mammary glands, and haematopoeitic cells [20].  Its expression is, in part, regulated 

by hormones, with estrogen-changes correlating to expression levels in the pituitary glands 

and uteri in fetal rats [15].  PAD3 is mostly localized to hair follicles and the upper epidermal 

layer [2, 9].  PAD4 is predominantly expressed in immune cells as well as in the spleen, 

secretory glands, and several cancer cell lines [5, 21, 22].  It is the only PAD possessing a 

nuclear localization signal [23, 24].  PAD4 was formerly called PAD5 since it was the 

human homolog of rodent PAD4 and owing to its different reaction kinetics, believed to be 

a novel PAD [15].  Subsequent sequencing and expression data has since indicated that 

PAD4 and 5 are identical.  Finally, PAD6 is expressed in eggs, ovaries, testes, the small 

intestine, spleen, lung, liver, skeletal muscle cells, and early embryos [2].  Nevertheless, it 

is missing a conserved cysteine residue found at the active centers of all the other PAD 

isotypes [20], and it is therefore believed to be a pseudoenzyme [24].   

The citrullination reaction requires a supraphysiological concentration of calcium 

divalent ions in order to occur.  PADs 1,3, and 4 bind directly to five calcium ions, and 

PAD2 binds to six calcium ions, all at distinct sites.  The residues involved in these calcium 

interactions are conserved across the PAD family, and while the calcium may not be directly 

involved in catalysis, it can induce a series of protein conformational changes that are 

necessary for the formation of a functional catalytic site [24].  Binding of calcium to allow 

this bioactive conformation increases PAD activity 10,000-fold [21].  The calcium 

concentration required to achieve maximal PAD activation is about 100-times higher than 
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cytosolic calcium levels [19], with half-maximal activity occurring at 40-60uM [15].  This 

requisite calcium concentration may be achieved through any event that causes the 

mobilization of free intracellular calcium, including cellular differentiation, chemokine 

receptor ligation, apoptosis, and necrosis [9].   

The apoptosis and necrosis of various immune cells, especially macrophages, is 

thought to be the primary source of calcium during citrullination reactions and helps explain 

why this post-translational modification (PTM) is predominantly associated with and 

localized to sites of inflammation [19, 25].  While all PADs are normally found 

intracellularly  [26], the high-incidence of cell apoptosis and necrosis during inflammation 

also explains how such a wide array of extracellular proteins can come to be citrullinated.  

In fact, within synovial joints of arthritic rats it has been noted that extracellular proteins 

appear to be the predominant site of citrullination staining, though the local cells do stain 

positively as well [6].  To date, a pathway for cellular secretion of PAD has yet to be 

discovered.  It should also be noted that autoantibodies developed to PAD enzymes 

themselves possess the ability to further activate PAD enzymes to augment citrullination 

[7].   

2.1.4 WHERE Does Citrullination Occur 

In theory, any accessible arginine moiety is susceptible to citrullination.  

Accessibility, of course, may be influenced by both the structure of protein substrates, steric 

hindrance of nearby accessory proteins, as well as pre-existing PTMs.  In fact, methylation 

and deimination are generally thought to be mutually antagonistic PTMs [24].   PADs do 

also contain, however, several residues that are capable of specifically recognizing the 
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sequence of a peptide backbone and preferentially catalyzing citrullination at some locations 

over others.  Both arginines located nearby to proline as well as those located within alpha 

helices are rarely citrullinated. NRRC, a sequence frequently found in beta turns, is the most 

likely sequence to be citrullinated [19, 24]. Assohou et. al. set out to explore the substrate 

specificity of PADs 2 and 4, investigating 320 and 178 citrullination sites, respectively, for 

the two enzymes [27].  PAD4 was found to be the more specific of the two enzymes, which 

means it tends to modify fewer sites compared to PAD2.  For both PAD 2 and 4, a glycine 

or tyrosine located in the +1 or +3 position, respectively, relative to arginine resulted in a 

high likelihood of citrullination [27].   

The particular class of proteins that can be citrullinated seems to be only limited by 

the location and accessibility of PAD enzymes.  At least 53 distinct citrullinated proteins 

have been identified within the sera and synovial fluid of RA patients [2]. Currently, the 

only known method for elimination of citrullination marks is proteolysis of the affected 

protein. Even citrullinated histones can undergo proteolysis as a part of chromatin 

remodeling.  Nevertheless, the dynamic presence of citrullination modifications on 

histones—at a rate faster than would be expected from histone proteolysis—seems to imply 

that there may also exist a class of enzymes capable of reversing citrullination, though as of 

yet, no such enzyme has been discovered [24, 28].   

2.1.4.1 Citrullination of Fibrin(ogen) 

Fibrin(ogen) is one of the most common targets for protein citrullination, with 75% 

of ACPA-positive patients possessing antibodies specific for citrullinated fibrinogen (Cit 

Fib)[29] .  Fifty four out of its 81 arginines, or 66%,  are susceptible to modification by 
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PADs 2 and 4, the type most commonly associated with RA and lung disease [30].  Among 

the modification sites are both RGD motifs, both thrombin cleavage sites, three locations 

involved in αvβ3 binding, and multiple sites within both the heparin and fibronectin binding 

domains.    The majority of these sites (32) are found in the alpha chain, the cumulative 

effect of which is sufficient to produce an electrophoretic shift in just this chain when run 

on a denaturing gel [31].  The 17 or five modification sites in the beta or gamma chains, 

respectively, are insufficient to elicit a similar band shift.   Further, since plasmin—the 

major protease responsible for fibrin clot degradation—cleaves its targets at basic amino 

acids like lysine and arginine, it is likely that citrullination of fibrin impairs normal 

degradation processes [19, 32].  Meanwhile, citrullination at thrombin cleavage sites has 

been shown to prevent the formation of fibrin knobs A and B; therefore fully citrullinated 

fibrinogen cannot be converted into fibrin [31].   

The functional consequences of this modification are several. Citrullinated 

fibrin(ogen) is capable of binding to toll-like receptor-4 (TLR4) in a way that enhances 

macrophage stimulation beyond that capable with its unmodified counterpart [9, 33].  The 

result of this enhanced stimulation is an increased production of TNF-α, IL-1, IL-8, and Il-

13 in macrophages [19, 33].   

2.1.4.2 Citrullination of Fibronectin 

While not as much is known about specific citrullination sites within fibronectin 

(Fn), thus far, nine distinct regions of Fn containing ten distinct citrullinated residues have 

been identified via mass spectrometry across two separate studies [25, 34].  These include 

the amino acids located at positions 234, 241, 1035, 1036, 1131, 1162, 1542, 2325, and 
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2356, none of which correspond to the RGD or PHSRN synergy sites.  It should be noted 

however, that one MS study only analyzed Fn samples from two different RA patients, with 

coverage of only 53 or 28% respectively.  This study identified the double-citrullination at 

residues 1035/36 as the most commonly targeted among Fn residues, being recognized by 

ACPA in 50% of established RA patients as well as in 45% of ACPA-positive early RA 

patients [25].   

Not only is citrullination of Fn specific to inflammatory diseases, but its mere 

presence within the synovial fluid is specific to RA, as extracellular Fn accumulation does 

not occur in osteoarthritis patients [3].  In fact, the amount of Fn deposited on the surface of 

articular cartilage and found within synovial fluid is positively correlated to joint destruction 

in RA patients [3, 4].   

 More importantly, the citrullination of Fn is known to alter its interaction with bio-

molecules and cells in a variety of ways.  Cit Fn has demonstrated an enhanced affinity for 

vascular endothelial growth factor (VEGF) as well as a decreased affinity for both αv and 

β1 integrins, though it should be noted that in the case of β1 affinity, the tests were 

conducted as solid-phase binding experiments rather than with cells [35].  The study 

showing decreased αv affinity attributed it to citrullination at R234 in the DGR sequence 

that exists and can bind αv after it’s been converted from NGR in an age-related chemical 

modification (see location in Figure 1) [34, 36]. The overall adhesion and spreading of 

fibroblasts, from both heathy and RA patients, on Cit Fn is reduced compared to that on 

unmodified Fn by about as much as 60% at early timepoints; this decrease of cell adhesion 

on Cit Fn appears to persist through to about 70 minutes following initial cell contact[4].  

While as of yet, no direct link to RGD modifications have been found, it has been noted that 
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phosphorylation of FAK and paxillin within fibroblasts on Cit Fn is decreased compared to 

those on unmodified Fn [1, 4]. 

Figure 1: Fibronectin Functional Domains 
This diagram depicts the various functional domains of the fibronectin (Fn) molecule with 

Type I domains shown as blue ovals, Type II Domains as orange diamonds, Type III 

Domains as grey rectangles, and the type III connecting segment as a yellow pentagon.  On 

the underside of the Fn molecule are black arrows indicating the location of amino acid 

motifs relevant to integrin binding.  Above the Fn molecule are colored lines indicating 

regions responsible for interactions with other ECM molecules.   

Through altered β1 and αv attachment, citrullinated influences several 

characteristics of synovial fibroblasts. To start, Cit Fn promotes the secretion of 

proinflammatory cytokines, including TNF-α (in RA fibroblasts) , and IL-1 (in both RA and 

OA fibroblasts). [3].  No differences in IL-17 secretion were observed upon Cit Fn 

stimulation. Furthermore, Cit Fn possesses a protective effect with regards to apoptosis.  For 

these experiments, RA or OA synovial fibroblasts were incubated with 2ug/mL Fn in 

solution, which served as a pro-apoptotic stimulus.  Incubation with Cit Fn, in lieu of Fn, 

reduced cell apoptosis levels to those seen in fibroblasts incubated with the negative controls 

of BSA or citrullinated BSA, though it should be noted that differences between Fn and Cit 

Fn were only observed with activated RA cells and not those of OA patients.  Apoptosis in 
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these cells was detected via Annexin V and Terminal deoxynucleotidyl transferase (TdT) 

dUTP Nick-End Labeling (TUNEL), in addition to changes in survivin, caspase-3, Bcl2, 

and cyclin-B1 transcriptional expression levels [3].  Similar apoptotic protective effects 

were observed with Cit Fn and a leukemia HL-60 cell line using both plasma and cellular 

Fn [35]. 

2.1.4.3 Citrullination of Collagen 

Collagen II is one of the major targets of autoimmunity in both RA and lung disease 

[11, 29].  The GFOGER sequence can be modified by citrullination (Cit-GFOGER), and 

there also exist several additional sites that represent likely targets for citrullination [37].  

These include both the repeating G-X-R-G-hydrophobic residue motif of collagen II (CII), 

and the RGD sites in collagen-integrin bridging molecules (COLINBRIs) [1, 11].   The 

ultimate result of this modification is a reduction of both cell adhesion and spreading on 

both Cit-CII and Cit-GFOGER in comparison to their unmodified counterparts.  These 

results held true for a variety of cell types including osteosarcoma cells, synovial fibroblasts, 

and mesenchymal stem cells (MSCs), where reduction in adhesion was 20%, 50%, and 40% 

respectively.  MSCs became completely detached from citrullinated surfaces within 48 

hours, implying that citrullination of CII compromises the survival of this cell type [34, 37].   

 The underlying integrins responsible for this Cit-CII sensitivity were investigated 

through an exploration of CHO cells transfected with α1β1, α2β1, α10β1, or α11β1 binding 

to Cit-CII or Cit GFOGER.  It was found that α10β1 and α11β1 integrins are very sensitive 

to collagen citrullination, since the PTM disrupts a crucial electrostatic sandwich that would 

normally be formed between GFOGER and either α10 or α11.  On the other hand, α2β1 
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integrins are only minimally sensitive to collagen citrullination while α1β1 integrin binding 

is not affected by CII citrullination [37].  

  Somewhat surprisingly, α2β1 binding to citrullinated collagen IX (CIX), primarily 

associated with cartilage, was also detrimentally affected.  This finding is important because 

while α2β1 binding to CIX is known to be arginine-dependent, CIX does not contain any 

GFOGER motifs.  This therefore implies that citrullination sites outside of GFOGER, across 

the various collagen types, may also likely have impacts on cell function [37]. 

2.1.5 The Role of Citrullination in Disease 

The influence of citrullination in human health and disease can most clearly be seen 

through its ability to elicit an immune response, as detected, in part, through the production 

of ACPAs.  It has since been determined that this immune reactivity originates largely from 

the structure of MHC class II molecules carried on the surface of antigen-presenting cells.  

These MHC II molecules possess a highly conserved region responsible for antigen binding, 

and one of the pockets, termed P4, within this conserved region is positively charged and 

therefore prefers to interact with either polar or uncharged amino acids [5, 38].  Therefore, 

when proteins become citrullinated, and the positive charge of arginine is removed, they 

become much more readily able to interact with these P4 pockets, thus activating antigen-

presenting cells and eliciting an immune response [38].   

 Substantiating this mechanism of immune activation are the several animal studies 

that have demonstrated the ability of citrullinated proteins to elicit immune responses in 

rodents. Lundberg et. al. investigated the immunogenicity of citrullination in one of the most 

common immune-compromised rodent arthritis models, “collagen-induced arthritis” or CIA 
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[6, 39].  In this study, while administration of both collagen II (cII) and citrullinated collagen 

II (Cit-cII) were sufficient to generate immune responses in rats, the Cit-cII was associated 

with an earlier onset and overall higher incidence of arthritis symptoms than its native 

counterpart.  In the case of rat serum albumin (RSA), neither the native or citrullinated 

counterparts were sufficient to induce clinical arthritis, but citrullinated RSA did result in 

an antibody response [6]. These differential impacts of Cit-cII and Cit –RSA imply that the 

development of autoimmune responses to citrullinated proteins versus that of RA joint 

damage likely occur through separate mechanisms. That is, the presence of citrulline alone 

seems sufficient to activate autoimmunity, but protein-specific citrullination underlies other 

changes in cell responses.          

There is also substantial evidence directly linking Cit Fib with immunogenicity.  

Hida et. al. demonstrated that immunization of healthy Balb/c mice with Cit Fib plus one of 

two different adjuvants was sufficient to generate an antibody response even though this 

was not accompanied with any clinical symptoms of arthritis or inflammation [40].  Hill et. 

al. immunized both an immune-compromised mouse line, along with wild type B6 mice 

with citrullinated or unmodified fibrinogen.  In the immune-compromised mice, 35% of 

those immunized with Cit Fib developed progressive arthritis, versus 0% of mice given 

unmodified fibrinogen.  While none of the B6 mice developed clinical arthritis, those 

immunized with Cit Fib did demonstrate some antibody reactivity along with T cell 

proliferation and increased IFN-γ production [38]. Yet another study demonstrated the 

ability of monoclonal IgM or IgG antibodies reactive with Cit Fib to exacerbate arthritis 

symptoms in a CIA model [11].  It should also be noted that fibrinogen-deficient mice are 

incapable of developing arthritis in the CIA model [33].  
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Citrullination has been associated with and is thought to play at least a contributory 

role in the development and exacerbation of a variety of diseases.  Some of the more 

prominent of these diseases include multiple sclerosis [16, 32], lupus [24, 41], psoriasis 

[15], and most importantly, rheumatoid arthritis (RA)[35], interstitial lung disease 

(ILD)[13], and cancer [22].  The latter three of these diseases are of interest in part because 

evidence, in the form of serum ACPA titers and histological staining, is the most robust, but 

also because they share certain fundamental characteristics.  Namely, each RA, lung disease, 

and cancer, is associated with excessively aberrant ECM deposition co-incident with 

abnormal fibroblast behaviors including hyperplasia and invasiveness; importantly, these 

abnormal cell behaviors are considered drivers of disease progression.  Therefore, 

understanding the basic link between citrullinated provisional ECM and fibroblast function 

may produce important insights for each of these diseases.     

2.1.5.1 Citrullination in Rheumatoid Arthritis 

Rheumatoid arthritis is the single disease with the clearest connection to 

citrullination, with 76% of RA patients possessing ACPA in their sera compared to about 

2-5% of non-RA patients[7].  ACPA titre level has also been shown to positively correlate 

with both RA activity and severity, including such factors as bone erosion, density of 

lymphocyte infiltrations, and the rate of joint destruction, [2, 16, 17].  ACPAs can be 

detected up to ten years before development of clinical RA symptoms, thus implying that 

the modification may possess a causative role in disease progression.  Importantly, protein 

citrullination can also occur independent of an ACPA presence, since citrullinated fibrin has 

been found in synovial tissue of CIA mice whose serum did not contain ACPA [16].  Within 

an inflamed RA joint, extracellular protein deposits constitute the primary source of positive 
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citrullination staining, although cells and cartilage within this milieu do stain positively as 

well [6].  

 The enhanced immunogenicity to citrullinated proteins in RA patients may be 

explained by various immune mutations commonly found in these patient populations.  The 

MHC class II HLA-DRB1 allele or shared epitope is the primary and best understood risk 

factor for RA [9, 42, 43] accounting for approximately one third of its heritability [17].  

Expression of this allele can influence T-cell selection, antigen presentation, and peptide 

affinity, all of which can influence the development and progression of an autoimmune 

response [43].  The PTPN22 gene, related to T and B cell receptor signaling and which has 

been shown to allow autoantigen-specific T cells to avoid clonal deletion, has also been 

linked to RA [5, 9, 17].   

 There also exist more direct links to citrullination and risk for RA development.  

Polymorphisms of the PADI4 gene, which encodes the PAD4 enzyme, is associated with 

RA development in Korean, Japanese, and other Asian cohorts.  This link is more 

controversial among Caucasian populations [9].  Also, P. gingivalis, the bacteria that causes 

periodontal disease (PD), are capable of producing and secreting their own distinct type of 

PAD enzyme, PPAD, that can effectively citrullinate mammalian proteins [9].  PPADs are 

unique in that they can deiminate free arginines as well as C-terminal arginines, unlike 

mammalian PADs.  Further, at sufficiently high pH PPAD can remain active even without 

calcium [42].   PD is therefore considered a risk factor for RA and may constitute the event 

that breaks immune-tolerance for these patients [1, 44].  Importantly, ACPA titres are higher 

in RA patients with PD compared to their non-PD counterparts [42].   
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2.1.5.2 Citrullination in Lung Disease and Fibrosis 

There exists such an extensive amount of overlap between citrullination in RA and 

lung disease that it can be difficult to separate the two; in fact, some scholars are of the 

opinion that they should not be separated at all, having defined a sub-class of interstitial 

lung disease (ILD) termed “RA-ILD” [45, 46].  These connections stem from the fact that 

10-30% of RA patients also present with clinical ILD [47], and an additional 30% of RA 

patients have sub-clinical indications of ILD, such as bronchial wall thickening (specific to 

respiratory bronchiolitis ILD), that can be visualized on a CT scan. Monitoring of these sub-

clinical cases shows that 34-57% will demonstrate radiographic disease progression over 

the following two years [48]. Pulmonary complications ultimately account for mortality in 

10-20 percent of RA patients [47].  To look at this connection from the converse perspective, 

about 15% of ILD cases are also associated with connective tissue disease [49].   

 Further, there is direct evidence for citrullination occurring in the lungs.  Lung 

samples from both RA-ILD and idiopathic pulmonary fibrosis (IPF) patients have been 

shown to stain positively for citrulline in 44 or 46% of cases, respectively [47, 50]; this is 

compared to positive staining in only 20% of healthy controls [50].  Further, both PAD2 

and PAD4 protein and mRNA expression is upregulated in the lungs of IPF and RA-ILD 

patients above that seen in controls [51, 52].  While not all patients with positive citrulline 

lung staining necessarily develop an ACPA response, RA patients with clinically diagnosed 

ILD possessed an ACPA titer 46-273% higher than RA patients without ILD, and notably, 

high ACPA titer correlates with more severe ILD [45, 48].  Of course, as has already been 

mentioned, ACPA titer level is also positively correlated to a more severe course of RA [2, 

17]. 
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 Smoking has independently been cited as the greatest environmental risk factor for 

both RA and ILD [17, 42, 53].  With the thousands of toxic compounds found in cigarette 

smoke, many of which can directly activate immune cells, cause tissue damage, and spur 

inflammation, this link with ILD may not seem surprising [9], but assuredly, the evidence 

for its deleterious effects in RA are just as strong.  Available data demonstrates that smoking 

contributes a 21-fold increased risk for developing RA in ACPA-positive HLA-positive 

patients compared to HLA-negative patients [17, 46], and that overall, its contribution to 

developing an ACPA response is larger than that of genetics alone.  This increased risk of 

ACPA-positive RA persists even in cases where smoking was discontinued up to 19 years 

before disease onset [13].  Finally, the Arthritis and Rheumatism Council’s Twin study 

analyzed 13 pairs of monozygotic twins, all discordant for RA and smoking.  Strikingly, in 

12 out of these 13 cases, the RA patient was also identified as the smoker [9, 54]. 

 Importantly, enhancement of citrullination has been cited as one of multitudinous 

effects of smoking.  A study by Makrygiannakis showed that cigarette smoke has the ability 

to directly increase the expression of PAD2 in bronchoalveolar cells [55].  Notably, this also 

translated into positive citrulline staining in lung biopsies of 56% or 17% of smokers using 

two different antibodies, compared to 7% or 0% in non-smokers using those same respective 

antibodies.  It’s also been shown that PAD4 mRNA expression is higher in smokers [51], 

PAD2 expression is higher in the bronchial mucosa of smokers, and PAD4 protein 

concentrations are higher in the serum of lung cancer patients who smoke compared to those 

who do not [10].  

 Of course, smoking may also simply be a means for introducing inflammation into 

the lungs, which in turn, leads to citrullination.  Bronchiectasis, a structural lung abnormality 
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associated with lung infections, is a significant risk factor of ACPA-positive RA, regardless 

of a patient’s smoking status [56].  Further, a study by Lugli et. al. attempted to isolate the 

link between smoking and citrullination by studying the lungs of 40 human lung cancer 

patients who either had a concurrent diagnosis of chronic obstructive pulmonary disease 

(COPD) , or no COPD   [12].  It’s important to note that COPD is associated with pulmonary 

inflammation, capable of persisting even after a patient has long-since stopped smoking. 

This study found that in addition to PAD2 and PAD4, citrullinated proteins were found in 

lung samples from all 40 patients, though the overall amount of citrullination was 

significantly increased in patients presenting with COPD.  The difference in citrullination 

was minimal between smokers and non-smokers, though the amount of PAD2 was larger in 

the lungs of smokers.  Further, while across all patients signs of citrullination were found in 

multiple different organs, a comparative and substantially larger amount was consistently 

found in the lungs, indicating that this organ may possess an innate proclivity towards 

citrullination.   

 Taken together, a leading model for this evidence posits that citrullination, an 

inflammation-mediated modification, occurs first in the lungs, becomes exacerbated by an 

immune response, and then independently or concurrently builds in the lungs and/or the 

joint space. Factors like smoking serve to enhance inflammation, and certain genetic 

susceptibilities can worsen the immune response.  Substantiating this theory is the fact that 

in the case of RA, when serum ACPAs are first detected, often up to 10 years in advance of 

symptoms, direct evidence of citrullination of synovial proteins typically cannot be found, 

implying that immune reactions must start in some location other than the joint [7, 13].  

Further, blood samples taken in the earliest stages of ACPA presence (well before RA onset) 
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produce ACPAs that tend to only react against a single specific epitope [13].  Yet there 

ultimately ends up being a substantial overlap in citrullinated targets in both the lungs and 

joints of RA patients, indicating that there might be a common initiating site for this 

immune-intolerance [57].  Essentially, the lungs may represent a primary site of extra-

articular RA manifestation, and through the chronic inflammation and immune responses 

associated with RA and ILD, they serve to create a mutually destructive disease course.       

2.1.5.3 Citrullination in Cancer 

As complex and as multi-faceted a disease like cancer is, one cannot argue that 

citrullination is the single root cause; nevertheless, there is substantial evidence to suggest 

that it acts as a crucial contributory factor in both its cause and exacerbation.  As in all other 

instances of citrullination, the route for introduction in cancer would seem to be through 

chronic inflammation that allows for subsequent PAD enzyme activation.  Cancer is 

associated with extreme amounts of fibrin generation, as observed in patient plasma, which 

is an indirect indicator of inflammation [58]. Further, there is a direct link between high 

levels of inflammation-associated proteins three years after cancer treatment and risk of 

both cancer returning and mortality [22].   

 The immunohistological evidence for presence of PAD4 in cancerous tissues is 

staggering.  PAD4 is overexpressed in the majority of cancers to varying degrees [20], and 

while it is normally an intracellular enzyme, it can be detected in the plasma of patients with 

malignant tumors in abundance [28].  Interestingly, the strongest PAD4 staining is found in 

highly invasive tumors, including all adenocarcinomas, as well as cancers of the lung, 

breast, bone, colon, bladder, ovaries, and more [19, 22, 58, 59].  Meanwhile, there is no 
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PAD4 found in benign or non-tumorous tissues [23], and minimal to no PAD4 staining in 

hyperplastic conditions such as cervical polyps, teratomas, neurofibromas, and others [22].  

While tumor ECM can stain positively for citrullination, the most intense staining is 

typically found within the cytoplasm or nuclei of the tumor cells as well as the monocytes 

and macrophages surrounding the tumors [10, 22].  Further, compared to healthy tissue, 

many more fibroblast-like cells within the tumor stroma region of adenocarcinomas show 

elevated expression of PAD4 [58].  This distribution of PAD4–predominantly 

intracellularly—may distinguish the role citrullination plays in a disease like cancer 

compared to RA and ILD, both of which are associated with significantly more extracellular 

staining.    

 The mechanisms through which PAD4 is thought to play a role in cancer progression 

are several.  It has been shown to act as a co-factor for epithelial growth factor (EGF) activity 

as well as to activate transforming growth factor (TGF-β) signaling through citrullination 

of glycogen synthase kinase (GSK3β) [22, 60].  Of course, its primary means is that of a 

transcriptional regulator.  PAD4 is known to have control over the genes ING4, p300, 

HDAC2, and OKL38/BDGI, as well genes regulated by the estrogen and thyroid receptors 

[59, 61, 62].  It is also known to decrease tumor suppression miRNAs like microRNA-16, 

which plays a key role in cell cycle regulation and proliferation [61].  Most strikingly, PAD4 

is able to repress expression of p53 and all its associated genes, including p21, and pro-

apoptosis genes like BAX, AIP1, and NOXA [62].  

 PAD4 citrullination of cytokeratin and antithrombin can also have deleterious 

consequences. In the case of cytokeratin, citrullination confers a resistance to degradation 

through caspases.  Cytokeratin cleavage plays a role in membrane blebbing, cytoplasmic 
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shrinkage, cytoskeletal disassembly, and nuclear fragmentation in apoptotic cells, and thus 

by inhibiting these functions, PAD4 can interfere with normal cell death mechanisms [58].  

Further, malignant cancers are associated with elevated serum levels of citrullinated 

antithrombin; modification of this enzyme renders it incapable of inhibiting thrombin [59].  

Importantly, thrombin stimulates cell proliferation and inflammation. Thrombin also 

enhances formation of fibrin from fibrinogen, induces expression of β3 integrins, and 

increases the transcription of VEGF, all of which can promote angiogenesis [58, 59].   

 Finally, the proven effectiveness of PAD inhibitors in a variety of cancer cell lines 

and in animal cancer models gives incontrovertible credence behind PAD4’s considerable 

role in cancer progression. One particular PAD inhibitor, Cl-amidine, has been 

demonstrated to possess dose-dependent cytotoxic effects in human promyelocytic 

leukemia HL-60 cells, breast cancer MCF-7 cells, osteosarcoma U2OS cells, and colon 

adenocarcinoma HT-29 cells, at concentrations as low as 500nM [59, 62].  Cl-amidine also 

possesses the ability to differentiate colon cancer HT-29 and leukemic HL-60 cells towards 

less cancerous phenotypes with expression of p21 [59].  Further, Cl-amidine was able to 

significantly reduce tumor multiplicity in a mouse model of colitis-associated colorectal 

cancer [61].    Importantly, Cl-amidine, has not shown cytotoxic effects towards non-

cancerous cells like NIH-3T3s or HL-60 granulocytes [59].  Depletion of PAD4 through 

siRNA had similarly cytotoxic effects in U2OS cells, implying that inhibition of PAD4 is 

indeed the mechanism of Cl-amidine’s effectiveness [62].   

Cancer is a family of diseases that arise through a variety of often-combinatorial 

genetic mutations and which can impact a variety of different tissues and organs.  

Citrullination, while important, is just one component of the disease.  While the results of 
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the various Cl-amidine cancer studies are certainly promising, it is also important to note 

that while dose-dependent, the in vitro cytotoxic effects of Cl-amidine are limited.  

Essentially, at higher doses, the effectiveness of this treatment starts to exhibit marginal 

changes in cell death, and ultimately it stops short of eliciting complete cell death [59].  

Therefore, any future PAD inhibitory strategies for cancer would also need to focus on 

additional cancer targets.     

2.1.6 Citrullination Inhibition Efforts 

Due to the preponderance of evidence correlating citrullination presence with 

disease, and in some cases directly linking the two, a variety of efforts have been under way 

to develop a therapeutic strategy for inhibiting PAD function and therefore minimizing or 

eliminating citrullination in vivo. The earliest of these attempts focused on an existing 

chemotherapeutic agent, paclitaxel, that normally targets tubulin but at higher doses is also 

capable of inhibiting PAD [44].  Its efficacy for ameliorating RA was first acknowledged 

during its use to treat cancer in two different human patients [63], and it has since 

demonstrated an ability to both regress existing arthritis or altogether prevent its onset when 

administered prophylactically in both CIA rat and mouse arthritis models [44, 64].  It has 

also shown promising results in a phase I clinical trial, although its performance in a phase 

II trial was less conclusive [64].  Of course, paclitaxel is also known to inhibit cell 

proliferation and migration due to its interference of the microtubule cytoskeleton, and thus 

its anti-RA efficacy is likely a result of more than PAD inhibition alone.  There also exist 

serious concerns about its toxicity profile, including severe gastrointestinal symptoms, 

among others [63].   
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 There exist several therapeutics in development that more specifically target the 

PAD enzymes or their substrates with potentially fewer off-target side-effects.  One of these 

is Component 18, which preferentially targets the non-calcium-binding form of PAD4 in a 

reversible manner.  In targeting the inactive form of PAD4, component 18 functions 

predominantly intracellularly, and it arguably inhibits citrullination at its source [24].  4SC 

Discovery in Germany is in an early stage of its PAD inhibitor program.  Also, ModiQuest 

in the Netherlands is developing monoclonal antibodies against specific PAD-modified 

substrates, such as citrullinated histones.  Their hope is that by maximizing the specificity 

of their antibody, it will ultimately be a safer therapy, especially considering that the full 

range of citrullination’s physiological role is still not understood [65].   

 Both GlaxoSmithKline (GSK) and Bristol Myers Squibb have been involved with 

another class of PAD inhibitor called GSK484 in some sources.  This compound non-

covalently binds to a channel in PAD4 that that induces a large conformation change within 

the enzyme’s active site [21, 65].  GSK484’s action is reversible, it possesses negligible off-

target activity, and pre-treatment of either human or mouse stimulated neutrophils at a 

concentration of 10uM was able to significantly reduce citrullination of histone H3 as well 

as NET formation [21].  It appeared that development of GSK484 was suddenly halted after 

about 10 years, possibly because PAD2 is also known to play a significant role in RA, and 

they realized that targeting PAD4 alone was insufficient.  GSK484 was licensed to Padlock 

in 2015 and shortly thereafter acquired by Bristol Myers Squibb for further development 

[65].  

 Finally, there is Cl-amidine, a pan-PAD inhibitor that has been the subject of the 

largest number of animal trials to date, among PAD-specific inhibitors.  It covalently binds 
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to PAD such that a conserved cysteine residue within the active site is modified, resulting 

in irreversible inactivation [61]. Though it is effective against all PAD isozymes at low 

micromolar potencies, Cl-amidine’s efficiency varies such that it is most efficient at 

inhibiting PAD1 and then PAD4, PAD3, and PAD2 [20, 26].  Importantly, it preferably 

targets the calcium-bound form of PAD, and Cl-amidine itself requires calcium for proper 

functioning, facts which together should limit its activity to active sites of inflammation [24, 

44].   

 Cl-amidine has been successfully used in a variety of pre-clinical models.  In one 

mouse model of collagen-induced arthritis (CIA), it inhibited the clinical disease activity 

scores up to 55% without influencing T-cell, B-cell, or monocyte populations [26, 44].  

Reportedly, work by Venables et. al. as demonstrated the ability of a Cl-amidine derived 

drug to completely halt the progression of RA in mice, though this work has not yet been 

published [65].  Cl-amidine has also shown efficacy in reducing the severity of disease in a 

mouse model of ulcerative colitis, though it is possible that its mechanism of action may 

have been different here, since ACPAs are not produced in this disease [66].  In a further 

departure from classic citrullination-associated diseases, Cl-amidine has also shown 

efficacy in diminishing arterial thrombosis and overall atherosclerosis burden in a mouse 

model [67].  Finally, Cl-amidine has shown efficacy against a variety of cancer cell lines as 

well as in pre-clinical cancer models, including two separate studies that investigated breast 

and colorectal cancer [24, 61].   

It has been well-established that Cl-amidine’s bio-availability profile is suboptimal, 

thus limiting its maximal therapeutic potential [20, 24, 41]; thus several optimization efforts 

have been under way.  Cl-amidine’s limited bio-availability—defined as short circulation 
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time and  limited permeability through cell membranes—is tied to the facts that it is polar 

and highly water soluble [20, 24].  YW3-56 was designed circumvent these limitations by 

possessing increased hydrophobicity.  YW3-56 was also given changes to its amino acid 

backbone that improves its PAD4 inhibition ability about 5-fold.  Its cytotoxic effects 

against U2OS cancer cells and mouse sarcoma cells was improved by about 60 and 50-fold 

respectively compared to unmodified Cl-amidine.  Further, it demonstrated an ability to 

reduce the tumor size in a mouse S-180 xenograft model to 51.5% or 27.1% of untreated 

controls when administered alone, or in combination with vorinostat, an FDA-approved 

treatment for this cancer, respectively. No adverse effects were observed with regards to the 

whole body or vital organ weight of nude mice after three months of YW3-56 treatment,  

implying that side-effects of this therapy are low, if at all existent [20].    

BB-Cl-amidine is another more hydrophobic alternative developed by the same 

group that originally developed Cl-amidine.  It is equipotent against PAD4 but 10 times 

more potent towards PAD2 [68].  Its cellular potency against U2OS osteosarcoma cells is 

20-fold higher than Cl-amidine.  Further, its half-life is 1.75 hours compared to just the 15 

of minutes of Cl-amidine in mice.  BB-Cl-amidine’s use in a MRL/lpr mouse model of lupus 

demonstrated an ability to reduce disease severity by reducing splenomegaly, down-

regulating several IFNγ-responsive genes, reducing renal inflammation, decreasing the 

urine albumin/creatinine ratio, and improving muzzle alopecia.  These same improvements 

were also observed with Cl-amidine treatment, thought to a lesser extent [41].  Further, BB-

Cl-amidine has been successfully used to almost completely reverse joint inflammation, 

both histologically and clinically in a pre-clinical RA mouse model at 10mg/kg [68].  This 

compares to the more moderate 50% improvement previously observed in a prophylactic 



 28 

RA mouse model using 50mg/kg of Cl-amidine [26]. Importantly, no adverse effects, such 

as weight loss, have yet to be observed with BB-Cl-amidine administration [68].       

2.1.7 The Physiological Function of PAD Enzymes and Citrullination 

Owing to the therapeutic efficacy of PAD inhibitors thus far in a variety of pre-

clinical disease models, an important question moving forward will be the possible 

deleterious side-effects of PAD inhibition in both a site-specific and off-target manner.  

Citrullination was first discovered in the context of antibody production in RA; before that, 

nothing was known of its normal physiological role, and to date, existing research efforts 

have fallen short of completely uncovering the full role citrullination plays in regulating 

various physiological functions.  Nevertheless, citrullination has been shown to be involved 

in innate immunity, skin protection, gene regulation, and brain plasticity, among other areas, 

and thus additional research will be needed before the safety implications of PAD inhibition 

can be fully understood.   

 Citrullination’s role in innate immunity stems from the ability of PAD enzymes to 

hypercitrullinate histones, resulting in a phenomenon called Neutrophil Extracellular Traps 

or NETosis [1].  Removal of the positive charge on histone tails decreases their ability to 

cling to negatively-charged DNA, thus allowing it to become unraveled.  When this occurs 

to an extreme extent within neutrophils, the unraveled chromatin can be expelled outside of 

the cell forming a complex web-like structure with utility in physically entangling 

pathogens, especially bacteria [24].  Therefore, some fear inhibition of PADs may have 

negative impacts on immunity, although so far PAD4 rodent knockouts have not shown any 

increased risk of developing infections [65]. Importantly, increased amounts of aberrant 
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NETosis have also been observed in the pathogenesis of various autominnune diseases, 

including RA, lupus, and Alzheimer’s disease, and thus it is possible that NETosis is 

involved in more than just innate immunity [24].  

 The ability of PADs to modify histones also allows them to more generally influence 

gene regulation through chromatin decondensation [24].  All four arginines on the tail of 

histone H3 are susceptible to citrullination, as shown through in vitro experiments, and 

importantly, this prevents recognition by methyltransferase.  PADs can go so far as to 

reverse existing single histone methylation [28].  While citrullination has been documented 

to influence a variety of gene clusters, those of note include genes related to estrogen 

receptors, cellular differentiation, inflammatory cytokines, and p53 [19, 24, 65].  It is also 

thought that citrullination may be related to apoptosis and terminal differentiation, since de-

condensation of nucleosomes renders DNA more susceptible to degradation, a phenomenon 

common to both of these processes [15]. 

 Citrullination is also thought to play a role in areas as disparate as brain plasticity 

and skin structuring.  While almost all myelin basic protein (MBP) is citrullinated in 

children under two, this number generally decreases with age to about 18% in healthy adults, 

and generally, the degree of citrullination is thought to be correlated with brain plasticity 

[19].  Further, citrullination up to about 45% is thought to contribute to de-myelination and 

the development of multiple sclerosis [16, 19, 23]. With regards to skin structure, 

citrullination of both keratin and filaggrin can alter both cleavage and cross-linking sites, 

along with protein shape, so that the overall 3D bundling structure of these proteins is altered 

[9, 23].    
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2.2 Activated Fibroblasts 

Fibroblasts are spindle-shaped interstitial cells constituting the most abundant cell 

type within connective tissues.  In homeostatic conditions they are considered to be a static 

population whose main function is the secretion, degradation, and general maintenance of 

healthy ECM [69, 70].  In the instance of wound repair they are known to become 

temporarily activated, a state generally associated with enhancements of proliferation, 

secretory profile, migration, and contraction, after which they return to a senescent state 

[71].  A relatively heterogeneous cell type both within and between tissue types, it is difficult 

to identify a universal fibroblast-specific marker, though staining for fibroblast specific 

protein 1 (FSP1), mesenchymal markers like collagen I and vimentin, or more generally the 

lack of expression of markers associated with other cell lineages has been met with some 

measure of success.  Fibroblasts have also been identified by virtue of their hardiness and 

ability to be relatively easily isolated in culture via several passages on tissue culture plastic 

[69, 70].  

The aberrant activation and/or maintenance of an activated phenotype in fibroblasts 

in diseases such as Rheumatoid Arthritis (RA), fibrosis, and cancer is well documented, and 

in each case it is thought to exacerbate or drive disease progression [72-74].  Understanding 

the underlying causes of aberrant fibroblast activation is therefore essential to our ability to 

treat and possibly prevent each of these conditions.   While there is much overlap in the 

phenotype of activated fibroblasts across diseases, it would be erroneous to claim that they 

are all the same, and thus a detailed explanation of the specific roles activated fibroblasts 

play in RA, fibrosis, and cancer, the three main disease types with which they are commonly 

associated, is provided below.   
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2.2.1 Rheumatoid Arthritis Background 

Rheumatoid arthritis (RA) affects 0.5 to 1 percent of the adult population worldwide, 

and it is traditionally considered to be an autoimmune condition [75, 76], therefore 

distinguishing itself as the most frequent human autoimmune condition [16].  

Symptomatically, it is primarily associated with inflammation and pain in the small joints 

of the hands and feet, but larger joint inflammation is common [75].  Radiographic and 

histologic analysis of RA joints shows that  joint destruction in the form of cartilage 

degeneration, and deformation and destruction of joint tendons, ligaments, bone, and 

cartilage underlie these symptoms [43, 77-79].  In fact, within one year of an RA diagnosis, 

80% of patients are predicted to have experienced some amount of joint bone loss [43]. 

 Unsurprisingly, as a chronic autoimmune condition, the inflammation associated 

with RA is not limited to joints.  Cardiovascular disease constitutes the leading cause of 

death in RA patients owing largely to an increased rate of atherosclerotic artery disease that 

ultimately leads to myocardial infarction and cerebrovascular events [43, 49]. Pulmonary 

complications account for 10-20% of RA mortalities making it the second leading cause of 

death in RA patients [48, 49].  Up to 30% of RA patients are diagnosed with interstitial lung 

disease (ILD) [47, 48].  Furthermore subclinical airway abnormalities can be detected via 

CT scans in 66% of early-stage RA patients [80] leading many to believe that the lungs 

constitute an extra-articular site of RA development.  RA has also been linked to chronic 

fatigue, skin ulcerations, skeletal disorders, lymphoma, and more  [43, 49]. 

 There certainly exists a strong genetic component to RA, half of which can be 

attributed to mutations in the PTPN22 and HLA-DRB1 genes [17], and both of which 
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substantiate the autoimmune basis of RA.  PTPN22 encodes protein tyrosine phosphatases 

that regulate both T and B cell receptor signaling [5, 9]. Importantly, this gain-of-function 

mutation allows autoantigen-specific T cells to escape clonal deletion therefore 

predisposing individuals to autoimmunity [5].  The HLA-DRB1 gene controls major 

histocompatibility complex (MHC) expression and is possibly the greatest genetic risk 

factor for RA [42, 43] accounting for about one third of RA’s heritability [17].  Mutations 

of this gene are associated with altered thymic T cell repertoire selection, decreased 

activation of regulatory T cells, and increased activation of self-reactive T cells [9].  

Notably, this mutation enhances the preference for binding and presenting citrullinated 

peptides to the immune system [5].   

 Of course, genetic linkages do not tell the complete story.  The concordance rate of 

RA among monozygotic twins is only 15% [9, 43], suggesting a strong influence of 

environmental and other factors.  Possibly the largest known environmental factor is that of 

lung irritants including that of silica exposure, textile dust, and smoking [42, 43].  Smoke 

exposure increases the risk of ACPA-positive RA even upon discontinuation 10-19 years 

before disease onset [13].  In fact, a twin study of monozygotic twins discordant for RA and 

smoking found that in 12 of the 13 sibling pairs studied, the sibling that developed RA was 

also the smoker [54]. 

2.2.2 Activated Fibroblasts in Rheumatoid Arthritis 

While autoimmunity and inflammation are certainly prominent and deleterious 

components of RA, environmental and other factors are also very important and help to 

explain why there still exists an unmet clinical need for RA therapies that are fully effective 
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for all patients.  Almost all existing approved RA therapies can be classified as either 

steroidal or immunosuppressant drugs.  Tumor necrosis factor-alpha (TNF-α)-inhibitors, a 

leading choice, are ineffective in a full one third of patients, and the benefits of TNF 

blockers generally fail to last following termination of drug administration [77, 79].  Other 

therapeutic targets include janus kinase (JAK), Fas Ligand, interleukin-6 (IL)-6, IL-1, and 

b-lymphocyte antigen (CD-20) [16, 75, 81-83].  Unfortunately, 40% of RA patients do not 

respond fully to any individual or combination of these existing therapies with many 

experiencing periods of disease remission followed by flare-ups and disease progression 

[81].  Sustained remission is rarely accomplished, and patients usually require lifelong 

pharmaceutical intervention [83]. Furthermore, the benefits felt from existing treatments 

tend to diminish over time [43] , owing likely to a build-up of therapeutic tolerance, but also 

of failing to target the instigating or driving factors of the disease.   

 In particular, activated fibroblasts are largely considered to be the primary drivers 

of RA disease. Within joints, so called fibroblast-like synoviocytes (FLS) are normally 

organized into a thin 1-3 cell-thick layer within the inner synovium, and they serve to 

produce molecules constituting the ECM and lubricant fluid essential for joint health [75, 

76].  Upon activation, however, these cells become hyperproliferative, and along with 

resident macrophages produce a thickened intimal layer ranging from 10-20 cells thick [75].  

Contributing to this thickened intima is FLS development of apoptotic resistance.  In 

particular, activated FLS have been shown to be resistant to FasL-induced apoptosis [84] 

along with displaying increased expression of the anti-apoptotic proteins Bcl-xl, Mcl-1, and 

Bcl-2 [78, 79, 84] (see supplement Table 5 for abbreviations). This enhanced survivability 

even in the presence of chronic inflammatory stimuli—which has been shown to produce 
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abundant DNA breaks in FLS detectable via TUNEL—likely contributes to the many gene 

mutations that have been observed, most notably in the  p53, p21, and PTEN tumor 

suppressor genes, which among other mutations leads to several pathologic phenotypes[75, 

79].    

 Possibly the most striking pathology of activated FLS is their invasiveness, 

specifically into cartilage and bone tissues where they wouldn’t normally be found, but also 

from one joint to another.  Activated FLS have displayed both anchorage-independent 

growth [78] as well as a lack of contact inhibition [79] both of which may contribute to their 

ability to metastasize.  Additionally, activated FLS possess an enhanced ability to adhere to 

collagen type IV, fibronectin, laminin, and tenascin compared to normal FLS [85], which is 

likely connected with their known upregulation of a variety of adhesion molecules [86, 87] 

including that of αv, α5, α6, β1, and β4 integrin subunits [85, 87] as well as I-CAM and V-

CAM, the latter of which is constitutively expressed in active FLS [75].  Blocking studies 

have shown that β1-blocking partly or completely eliminates the ability of activated FLS to 

attach to a variety of ECM proteins and further, that the impact of this blocking was 

enhanced on RA FLS compared to normal FLS [85].  

 Exacerbating the enhanced migration tendency and adhesion molecule expression in 

activated FLS is the fact that inflamed joints are well-known to harbor excessive quantities 

of fibroblast-adhesive proteins—most notably those of the provisional ECM. A fibrin-rich 

pannus along articular surfaces of RA joints is one of the most conspicuous and consistent 

features of both human and experimental animal models of RA [29, 77], and it is thought to 

contribute to both leukocyte and fibroblast invasion into cartilage, a theory supported by the 
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fact that fibrinogen-deficient mice show diminished pathological and clinical RA 

development [33].  

There also exist aberrantly high levels of fibronectin (Fn) within RA joints.  Synovial 

fluid samples contain a 4-fold increase of Fn in RA patients compared to normal patients 

[88].  Histological staining shows prominent quantities of Fn on the cartilage surface as well 

as throughout connective tissue of RA patients compared to both osteoarthritis (OA) and 

heathy patients [74, 89].  Intensifying these differences is the fact that activated FLS are 

capable of producing and secreting excessive amounts of Fn, which can be demonstrated by 

in vitro culture of primary RA-FLS compared to OA-FLS [90].  Furthermore, concentrations 

of Fn detected within RA synovial fluid and joint tissues tends to far exceed the amount 

found within plasma indicating local synthesis [89].  The heavy presence of Fn containing 

extra alternate splice domains A and B (EDA and EDB) within RA joints confirms that the 

protein is being locally produced, since only about 1-2% of plasma Fn would be expected 

to possess these alternate splicing patterns [90].  Finally, it’s important to note that a 

substantial portion of this Fn within RA joints is known to be citrullinated, which has been 

confirmed both from the presence of Cit-Fn specific ACPAs as well as co-localization of 

Fn and peptidyl-citrulline histological staining [35]. 

 Not only do activated FLS migrate into cartilage and bone, but they also possess the 

ability to produce and secrete enzymes that degrade these tissues.  This includes an 

assortment of matrix-metalloproteinases (MMPs) including MMP-1, 3, 8, 9, 13, 14, 15, and 

16 [43, 74], all of which contribute to breakdown of collagen of types II, IX, and X along 

with Fn, aggrecan, and any other leucine rich proteins like fibromodulin [78, 79].  Activated 

FLS are also known to secrete cathepsins B, L, and K along with 
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a disintegrin and metalloproteinase with a thrombospondin type (ADAMTS) 4 and 5, all of 

which further exacerbate soft tissue destruction.  Once activated FLS arrive at bone they are 

able to directly activate osteoclasts to enhance bone erosion and destruction through a 

combination of myostatin expression and production of nuclear factor-kB (RANKL) [78, 

79].   

 Finally, activated FLS possess the ability to activate and recruit immune cells 

through secretion of a mixture of growth factors and inflammatory cytokines.  CXCL1 and 

vascular endothelial growth factor (VEGF), the latter of which is constitutively expressed 

by activated RA FLS in culture, contribute to angiogenesis [74, 79].  Activated FLS are also 

known to produce IL-6, 8, 7, 15, 16 18, 33, and 32, along with TGF-β, MCP-1, and TNF-α 

[17, 74, 75, 79, 81, 87] (See Table 3 in supplement for abbreviations).  Activated FLS are 

considered the primary producers of Il-6 within RA joints [75], and co-culture of active FLS 

with monocyte –derived macrophages regulates almost one third of TNF-induced genes 

[74].  Activated FLS are also known to directly activate immune cells through direct binding 

of V-CAM-I and ICAM-I [76] as well presentation of auto-antigens via MHC II receptors 

[74].  It’s also important to note that through a combination of enhanced expression of toll-

like receptors 1 through 10 [17, 74] as well as constant exposure to a variety of cytokines 

within the inflammatory milieu, FLS can be stimulated to produce even more excessive 

quantities of both inflammatory cytokines as well as MMPs in a destructive feed-forward 

loop [74, 81]. 

 The fact that cytokines produced by both activated FLS and a variety of immune 

cells are capable of reciprocally activating each other may lead some to question which 

activity comes first and which is the primary driver of disease.  This query currently has no 
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definitive answer, but several pieces of evidence showing the destructive natures of active-

FLS even in the absence of inflammation and immune activation point towards them being 

the drivers of RA disease.  First, in an MRL-lpr/lpr mouse model of RA, the FLS were 

shown to become activated and invade joint structures prior to any inflammatory cells 

reaching the synovium [79, 91].  Second, when cadherin-11, a cell-cell adhesion molecule 

expressed only by FLS in synovial linings, was knocked out in a mouse model of RA, 

inflammation was reduced by 50%, and cartilage erosion was prevented [76]. Third, and 

possibly most convincing is a study be LeFevre et. al. whereby activated human RA FLS 

were implanted along with healthy cartilage into just a single joint each of SCID immune-

compromised mice.  The researchers found that not only were the RA-FLS able to invade 

into and degrade the cartilage where they were implanted, but they were also able to migrate 

to the contralateral joints and invade and degrade the cartilage there as well [86]. 

2.2.3 Activated Fibroblasts in Fibrosis 

Fibrotic activated fibroblasts (FAFs), or myofibroblasts as they are often called, are 

widely considered to be the drivers of fibrotic disease, especially in the case of lung fibrosis 

[92].  Similar to activated RA FLS, they display such characteristics as enhanced migration, 

increased cytokine and growth factor secretion, improved integrin surface expression,  

excessive proliferation, and apoptotic resistance [71, 93-97].  Also like RA FLS, FAFs are 

capable of retaining these activated phenotypes even after being separated from their 

diseased environment [98].  Unlike with RA FLS, however, these altered phenotypes tend 

to have a more localized impact on a single organ or tissue.  For example, in the case of 

idiopathic lung fibrosis (IPF) the enhanced fibroblast migration results only in translocation 

from the interstitial compartment of the lungs into the air spaces [95].  
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Another distinguishing feature of myofibroblasts is their relationship with the 

inflammatory environment.  Fibrosis is commonly thought of as a disease of chronic wound 

healing in which inflammation plays the most prominent role in early stages and less so later 

on, and possibly because of this, treatment of IPF with immunosuppressive therapies has 

had only limited benefits [93, 99].  Activation or myofibroblast differentiation is a normal 

component of wound healing whereby the enhanced migratory capacity allows typically 

stationary fibroblasts to migrate into the wound environment and to secrete copious amounts 

of ECM proteins, in particular Fn, to provide a tissue scaffold for subsequent migration of 

epithelial and immune cells essential for the normal repair processes [97].  In later stages of 

this wound healing response, the ability to contract with enhanced force is imperative for 

bringing the edges of the wound together to minimize the surface area of denuded tissue 

[94].  The final contributions of myofibroblasts in normal wound repair is secretion of 

MMPs and other proteinases to restructure the ECM so that it matches that of normal tissue, 

and finally, to enter into an apoptotic pathway or become senescent since the number of 

fibroblasts required for maintenance of healthy tissue function are much lower than that 

required for active wound healing [53, 97].   

Myofibroblasts become pathologic then when they fail to cease their wound healing 

functions and instead continue proliferating, secreting large amounts of ECM molecules, 

and contracting the environment around them. So while FAFs also secrete MMPs and 

actively restructure their environment similar to RA FLS, rather than degrading the tissue 

around them, FAFs are more infamously known for causing an excessive build-up of matrix 

proteins to the point where the bulk modulus of the tissue increases resulting in stiffer tissue 

that is impaired in function.  In alignment with this phenomenon, the key symptoms of IPF 
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are progressive breathlessness, a decrease in Forced Vital Capacity (FVC), and ultimately 

respiratory failure [71, 97]. This being said, fibrotic tissues tend to be quite heterogeneous 

with regards to stiffness whereby there exist regions of dense fibroblast presence and ECM 

deposition—termed fibroblastic foci—intermixed with soft and seemingly healthy tissue 

[100, 101].  Generally, a greater overall number and area of fibroblastic foci correlates to a 

more severe progression of IPF [71]. 

Myofibroblasts have the ability to enhance the stiffness of their environments 

through a variety of mechanisms, the first of which is aberrant mechanotransduction. An 

abnormally high proportion of fibroblasts in IPF lungs are known to be negative for the thy-

1 receptor (thy1-/-) resulting in the misinterpretation of soft surfaces as being stiff [102].  

All cell types, and in particular fibroblasts, are known for engaging in substrate stiffness 

matching, [103], and so aberrant interpretation of an environment as being stiff can actually 

lead a fibroblast to transform its environment into a stiff one.  This task is primarily 

accomplished through a combination of enhanced protein secretion and contraction. Such 

fibroblasts can mostly be identified via expression of alpha-smooth muscle actin (α-SMA), 

a protein important in the production of strong traction and contraction forces that is not 

normally expressed by senescent fibroblasts [96, 104].  Along with enhanced α-SMA, 

myofibroblast also express unusually high amounts of myosin heavy chain, vinculin, Rho 

and ROCK kinases, and F-actin, all of which are important to cell contraction and 

mechanotransduction [96, 105]. The end result is tissue, which in the case of bleomycin-

induced fibrosis, generates twice the contractile force of normal lung [106].   

Of course, a key driver of tissue stiffening is myofibroblast secretion of excessive 

quantities of matrix proteins.  Myofibroblasts are the primary source of ECM proteins 
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deposited during lung fibrosis [72].  Their deposition of collagen, primarily types I and III, 

but also types IV, V, and VI [107, 108] occurs to such an extent that the majority of IPF 

patients show positive collagen staining within dense fibroblast clusters throughout the lung, 

whereas in normal adults the constitutive rate of collagen synthesis is low enough that 

fibroblasts would normally remain unstained [106]. Myofibroblasts also deposit large 

quantities of glycoproteins and proteoglycans including Fn, laminin, and tenascin [107].  

Importantly, the majority of the Fn secreted by myofibroblasts contains the EDA splice 

segment, which is known to promote both further myofibroblast differentiation and also cell 

migration [92, 96].      

2.2.4 Activated Fibroblasts in Cancer 

According to the World Health Organization, cancer is quickly becoming the largest 

single cause of mortality in the world, surpassing even heart and vascular disease [109].  

Traditionally, cancer treatments have focused on specifically targeting cancer cells, and they 

largely ignored the tumor stroma, defined roughly as the basement membrane, ECM, 

capillaries, immune cells, and fibroblasts that surround cancer cells [98].  Research in the 

past few decades, however, has elucidated the supreme benefit of tumor stroma towards 

tumorigenesis, malignancy, and even therapeutic resistance, thus shifting the perceived 

importance of this tissue compartment and the cells therein [110, 111]. Key characteristics 

of tumor stroma include an abnormally high presence of fibroblasts, enhanced blood vessel 

density, and increased concentrations of primarily collagen type I and fibrin compared to 

normal stroma [98].  
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When the tumor stroma is sufficiently modified by its surrounding cells, it becomes 

desmoplastic, or similar to stroma that may be seen in fibrotic tissues [98].  Indeed, 

desmoplasmic tumor stroma have been described by many in the field as wounds that never 

heal [111].  Desmoplasia can be found in association with both primary tumors and in 

metastatic sites, and they are generally correlated with poor prognosis [73, 112].  Similar to 

fibrotic tissues, tumor desmoplasia are on average stiffer than healthy tissues due to an 

increased deposition of ECM constituents, primarily fibrin, Fn, and collgens types I and III 

[98].  Unlike fibrotic tissues, however, desmoplasia tend to display an increase in degraded 

type IV collagen, and further, whereas organ fibrosis is associated with a reduction in 

microvascular presence, desmoplasia actually tend to be better vascularized than normal 

tissues [98, 112].  

Not only is the presence of fibroblasts enhanced within tumor stroma, but a majority 

of these—over 80 percent in the case of breast cancer—become activated [111].  Cancer 

activated fibroblasts (CAFs) are found in almost all solid tumors though they are particularly 

abundant in the stroma of prostate, breast, and pancreatic tumors [73, 112]. Importantly, the 

current cancer literature identifies CAFs as key mediators in tumor proliferation, invasion, 

and metastasis [73, 98].  Similar to FAFs, CAFs can mostly be identified via α-sma staining, 

and similar to both FAFs and RA FLS, CAFs share several altered phenotypes including 

enhanced proliferation, migration, cytokine secretion, growth factor secretion, integrin 

expression, protease secretion, and apoptotic resistance [98, 113-115].  

The primary difference between CAFs and both RA FLS and FAFs is that whereas 

the latter two are considered primary effectors of disease—i.e. they are each independently 

capable of driving their respective diseases, if not causing them—CAFs mainly serve to 
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facilitate the deleterious capabilities of their associated cancer cells. This influence can be 

quite drastic, as in a study of melanoma cell metastasis it was shown that the only cells able 

to metastasize were the ones influenced by fibroblasts [116]. Further, CAFs have been 

documented potentiate the malignancy of epithelial cells that were otherwise phenotypically 

and morphologically normal as well as to facilitate the progression of tumors of 

immortalized but non-tumorigenic cells [110]. These impacts are possible even in the 

absence of a functional immune system, as CAFs from human breast carcinoma injected 

into imuno-deficient mice along with the cancer cell line MCF-7 resulted in more quickly 

growing carcinoma than in the case where CAFs were co-injected with normal fibroblasts 

[117].   

CAFs mediate these impacts primarily by secreting an impressive quantity and 

variety of cytokines, chemokines, and growth factors.  While this is also a feature of FAFs 

and RA FLS, the secretion profile of CAFs is both more diverse and has an emphasis on 

signaling that promotes angiogenesis.  Angiogenic growth factors secreted by CAFs include 

EGF, FGF-2, IGF-1, bFGF, PDGF, and VEGF [111] (see Table 4 in supplement for 

abbreviation definitions). VEGF in particular is a key stimulator of de novo blood vessel 

growth, and PDGF is important for the stabilization of these vessels.   Angiogenic 

chemokines secreted by CAFs include GDF-15, TGFβ-2, CCL-5, CXL-12, CCL-11, CSF-

1, CSF-2, SDF-1 and IFNγ. SDF-1, in particular, plays an integral role in recruiting 

endothelial progenitor cells [111, 112]. It’s also important to note that the secretion of 

cytokines, like Il-6, and growth factors, like TGF-β, by cancer cells and CAFs alike has a 

reciprocal effect on cell activation [110, 111].  
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Finally, CAFs mediate their effects by secreting and modifying the ECM that makes 

up the tumor stroma.  CAFs secrete enhanced quantities of collagens I, III, IV, and V, 

laminins, Fn, and fibrinogen in addition to a variety of enzymes that allow for enhanced 

cross-linking and bundling of these proteins [98, 109].  Aligned collagen fibers are 

characteristic of tumor stroma, and these have been shown to promote tumorigenesis, early 

dissemination, and metastasis of breast cancer cells [110].  Concurrently, CAFs secrete a 

panoply of proteases, including MMPs 1,2,3,7, 9, 12, 13, and 14, all of which contribute to 

the breakdown of tissue boundaries that ultimately promotes tumor expansion, invasion, and 

metastasis as well as angiogenesis [109, 112].  Additionally, they can contribute to 

cleaving—and thereby activating—growth factors and pro-inflammatory cytokines and 

receptors as well as releasing bound growth factors from matrix molecules.  Protease 

cleavage can also incapacitate cell adhesion molecules which can influence cell motility and 

epithelial to mesenchymal transition (EMT) [109, 111, 112]. Finally, CAFs utilize force-

mediated matrix remodeling dependent on α3 and α5 integrins and rho-signaling to generate 

tracks in this dense ECM through which cancer cells can potentially follow [73, 109].   

2.3 Integrin-Mediated Mechanotransduction     

In beginning to understand how citrullination of the provisional matrix may 

influence fibroblast phenotype, one first needs to understand how fibroblasts interact with 

their physical environment.  Fibroblasts form physical attachments to the ECM 

predominantly using varying combinations of integrin proteins that extend across the cell 

membrane to physically link the ECM to the actomyosin cytoskeleton.  Through these 

attachments, fibroblasts are able to both exert forces on their environment as well as to sense 

the rigidity of their surroundings, a process termed mechanotransduction [118]. Rigidity 
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sensing alone can influence a multitude of cell phenotypes including proliferation, 

migration, and differentiation [118-120].  

 There exists copious evidence that fibroblasts are able to sense and respond to 

changes in substrate stiffness.  The first is a phenomenon called stiffness matching whereby 

fibroblasts possess the ability to adjust their own shear moduli so that they are matched or 

just below that of the surfaces on which they are plated.  Fibroblasts exhibit stiffness 

matching as a linear function on substrates ranging from 0.5 to 4kPa, achieving a maximal 

shear modulus of around 10kPa [103].  Cell stiffness also strongly correlates with cell spread 

area, and starting at around 2-3kpa, fibroblasts begin to produce stress fibers which increase 

in number and become thicker as they get reinforced and bundled on progressively stiff 

surfaces [103, 120, 121].   

 As fibroblasts are exposed to increasingly stiff substrates, they also exhibit 

changes in their focal adhesions (FAs).  FAs are the macromolecular complexes consisting 

of integrins and downstream adaptor and signaling molecules that allow cells to 

biochemically respond to ECM interactions [118].  As fibroblasts are exposed to 

increasingly stiff substrates, their FAs increase in both size and number with a variety of 

integrin subtypes becomes upregulated [103, 121].  Contributing to the increase in FA size 

is the phenomenon of integrin clustering whereby multiple integrins are recruited to a 

single attachment site to help reinforce the strength of attachment up to about 6-fold [121, 

122].  In particular, both α5 and β1 integrin subunits demonstrate enhanced cell surface 

expression in the presence of stiff environments [119].   

2.3.1 Mechanotransduction Signalling  
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Downstream of integrin adhesion and clustering, a plethora of adhesome complex 

proteins—at least 180 in total—can become engaged in scaffolding and/or signal 

transduction [120].  A mechanosensory review by Horton et. al.[118] describes four main 

axes of mechanotransduction signaling as follows: the Kindlin-ILK-Pinch axis, the FAK-

Paxillin axis, the Talin-Vinculin axis, and the α-actinin-VASP axis.  As downstream 

signaling is an inordinately complex process with substantial overlap among pathways, a 

summary of the main signaling events as described by Horton et. al., Windmaier et. al., 

Harburger et. al., Mitra et. al. and Wu et. al is provided in Figures 1 and Figures 2 below 

which divides the signaling into three main pathways [118, 123-126]. Several key players 

are represented in these pathways, though it should be acknowledged that many 

intermediate and terminal steps as well as alternate signaling pathways were omitted for the 

sake of simplicity.  
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Figure 2: The ILK-Kindlin Mechanotransduction Axis  The above diagram depicts the 

particular axis of signaling that can transpire from integrin engagement (depicted in blue).  

Arrows indicate an activating step whereas inverted “T” shapes indicate inhibitory steps.  

Proteins representing the terminal step of a pathway are shown in pink. Shapes placed in 

direct contact with each other (without an arrow in between) are representative of proteins 

that are bound to one another as opposed to engaging in a transient interaction.     

Many of the proteins depicted in figures 2 and 3 are directly involved in actin-

stabilization.  One of these is α-actinin, which is recruited in all three of the pathways 

depicted, binds directly to F-actin, and is required for reinforcement of adhesion sites in 

fibroblasts; its presence generally correlates with stable FAs [118, 124]. Vinculin also 

appears in all three pathways, both as a downstream effector and as an entity that binds 

directly to scaffolding proteins attached to integrin tails.  Its recruitment to talin, in 

particular, is very sensitive to local stress application, responding to just a few pico-newtons 

of force [120, 127].  
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Figure 3: The Paxillin-Talin and VASP-Actinin Machanotransduction Axes  

The above diagram depicts two different axes of signaling that can transpire from integrin 

engagement (depicted in blue).  Arrows indicate an activating interaction. Proteins 

representing the terminal step of a pathway are shown in pink. Shapes placed in direct 

contact with each other (without an arrow in between) are representative of proteins that are 

bound to one another as opposed to engaging in a transient interactions.  Each color change 

represents a molecule that is further downstream of a signaling cascade.   

Also of prime interest is focal adhesion kinase, or FAK.  FAK can only be activated 

in direct association with the integrin β1 [128].  It’s clearly an effector of a variety of 

downstream pathways, though it is generally known as a mediator of FA turnover and cell 

migration. FAs can still form in the absence of FAK, but their disassembly is dependent on 

FAK phosphorylation, as demonstrated in FAK-null fibroblasts that displayed excessive 

formation of focal contacts [124, 129].  Inhibition of FAK in fibroblasts stimulated with 

PDGF resulted in a significant reduction of migration in a dose dependent manner of FAK 
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inhibitor. Such effects play an important role in the pathology of fibrotic and other diseases, 

as highlighted by the ability of a FAK inhibitor to protect against lung fibrosis in mice [128].   

Table 1: Signaling Proteins 

 

 Another key effector protein is Integrin Linked Kinase (ILK), which carries out its 

many functions in a variety of different fashions.  ILK is directly recruited to β1 and β3 

cytoplasmic domains, though it has a strong preference for β1 [125, 130].   Through one set 

of pathways, it acts as a scaffolding protein with various combinations and types of Pinch 

and Parvin molecules which then enact an assortment of downstream signaling [125, 131] 

that can impact cell phenotypes such as survival, proliferation, and migration [123].  ILK 

also possesses direct catalytic function and can activate both ERK (aka MAPK) and PKB 
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(aka Akt), as well as inhibit glycogen synthase kinase (GSK3-β)-related signaling.  Akt has 

been linked to cell survival and proliferation, and unsurprisingly, ILK is therefore known to 

be overexpressed in many forms of cancer [125].  Inhibited GSK actually results in the 

activation of β-catenin signaling as part of the canonical Wnt signaling pathway that targets 

several tumor suppressor genes [132-134] and is known to impact a myriad of cell functions 

including proliferation, migration, apoptotic resistance, differentiation, MMP secretion, and 

more [134-136]. Predictably, inhibition of GSK was shown to exacerbate skin fibrosis in a 

skin scleroderma model [137].   

  



 50 

CHAPTER 3. THE INFLUENCE OF CITRULLINATED 

FIBRONECTIN ON INTEGRIN BINDING AND DOWNSTREAM 

SIGNALING 

3.1 Abstract 

Citrullinated fibronectin (Cit Fn) is abundantly present within tissues of a variety of chronic 

inflammatory diseases, and there is currently a dearth of understanding with regards to how 

Cit Fn interacts with fibroblasts, a cell type of particular interest in the progression of many 

of these diseases. To begin elucidating these interactions, mass spectrometry (MS) was 

performed on Cit Fn and identified 24 unique citrullination sites, five of which reside in the 

Fn cell-binding domain.  Interferometry was used to probe the precise nature of α5β1 and 

αvβ3 integrins with Cit Fn demonstrating minimal change in the former and a decrease in 

the latter.  A variety of fibroblast immunocytochemistry and force-inducible co-

immunoprecipitation assays were employed to evaluate integrin-mediated signaling 

changes and identified not only an αvβ3 to α5β1 integrin shift, but an increase of β1-linked 

mechanotransduction including enhancement of focal adhesion kinase (FAK), integrin 

linked kinase (ILK), glycogen synthase kinase (GSK), F-actin, and other proteins. 

Altogether, findings indicate that exposure of fibroblasts to Cit Fn is sufficient to elicit 

prominent changes in mechanotransduction signaling that would be expected to have 

fundamental impacts on cell phenotype.   
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3.2 Introduction 

Citrullination is an inflammation-mediated post-translational modification (PTM), 

and therefore, in determining how it is likely to impact fibroblast interactions with the ECM, 

it is logical to focus on the proteins most likely to be present in an inflammatory 

environment, or the so-called provisional matrix.  The two most obvious candidates are 

therefore fibrin, a blood coagulation protein, and fibronectin (Fn), a plasma protein also 

present in inflammatory environments that is not only capable of attaching directly to fibrin, 

but is also considered to be one of the main binding partners of fibroblasts [138]. Fibrin 

interacts with fibroblasts primarily through its RGD site which binds to αv integrins, 

although attachment strength is not particularly strong [139].  Therefore fibroblast 

interactions with the provisional ECM are expected to be dominated by Fn, and thus this 

protein has been the focus of this research.   

 Fibronectin is a large glycoprotein dimer consisting of two identical 250kDa 

subunits each containing several different binding sites for other matrix proteins, growth 

factors, and integrins, and all of which are conformation sensitive.  Fn’s structure can be 

further subdivided into three distinct types of modules termed type I, II, and III, where type 

III repeats in particular can be induced to unfold and reveal new biochemical signatures 

upon mechanical stretching [140, 141]. Several sites throughout Fn have been documented 

to interact directly with integrins.  Fragments of Fn type I repeats 1-9 and type II repeats 1-

2, located within the N-terminal region of Fn have each demonstrated an ability to bind 

α5β1 integrins [138]. The REDV motif within the 8th type III repeat can bind α9β1 integrins 

on fibroblasts [142, 143]. The type III repeat connecting segment acts as a binding site for 

fibroblast α4β1 integrins [97].  Finally, fragments representing the age-related chemical 
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modification of the NGR sequence to DGR in the type I 5th repeat are capable of binding to 

αv integrins [36].   

 The main region for integrin interactions within Fn, however, is the aptly named 

cell-binding domain which constitutes the 9th through the 10th type III repeats. An RGD 

sequence resides within the 10th type III repeat presented in a looped structure that extends 

about 10 angstroms away from the surface of the protein [144]. This represents the most 

important recognition site for about half of all known integrins, though with regards to 

fibroblasts it is capable of binding to integrins αvβ3, αvβ5, αvβ8, α8β1, αvβ1, and α5β1 

[143, 145].  The integrins α5β1 and αvβ3 are probably the best studied and most frequent to 

engage this binding site.  

 Within the cell-binding domain of Fn there also exists a PHSRN or “synergy site” 

situated within the 9th type III repeat about 35 angstroms away from and spatially on the 

same side of Fn as the RGD loop[142, 144, 146].  While PHSRN does not possess any 

intrinsic integrin binding capacity, in combination with RGD, it has the ability to enhance 

α5β1 integrin binding by about 100 fold [146].  Importantly from the perspective of 

citrullination—which again modifies arginine—mutagenesis studies have shown that the R 

of PHSRN is the most important residue for proper PHSRN engagement with α5β1 [142]. 

Importantly from the perspective of stiffened pathologic matrices, conformation of the cell 

binding domain is of supreme importance, as stretching of the 9th and 10th type III repeats 

so that the separation of the RGD and PHSRN sites increases from 3.6 to a mere 4.3 

nanometers apart results in a reduction of α5β1 affinity from 12nM to only about 2.5uM, 

thus causing a shift in fibroblast integrin preference towards αvβ3-dominant binding [141].  
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 Fibroblast adhesion to Fn is therefore anything but a simple matter.  A variety of 

integrin types compete for the same attachment sites, and the particular combination of 

integrins used for attachment even within the same fibroblast can change over time as a 

result of altered Fn conformation [141].  Further, the particular combination of integrin types 

engaged in Fn adhesion is not a trivial matter; the particular ratio of αvβ3 to α5β1 is known 

to have impacts on a variety of signaling pathways with significant pathologic consequences 

in diseases including cancer, RA and fibrosis.  For example, deletion of αv integrin has 

shown protective benefits in mouse models of lung fibrosis [72], and high levels of α5β1 in 

tumors is correlated with poor cancer prognosis [87].  

 Differences resulting from preference for αvβ3 vs α5β1 can even be observed at the 

cellular level.  The capability of αvβ3 integrins to respond to variations in low stiffness is 

greater than α5β1 integrins and is advantageous for allowing αvβ3-dominant cells to more 

effectively reorient their cytoskeleton in the direction of strain in response to high strain 

rates [147].  The rate of attachment for αvβ3 integrins is faster than that of α5β1 integrins, 

and thus αvβ3 integrins tend to dominate especially at early attachment timepoints [120, 

148].  Adhesion strength, however, is predominantly mediated through α5β1 integrins [122, 

147], to such a greater extent that attachment to Fn-coated beats using α5β1 alone was found 

to be greater than when cells were capable of only using αvβ3 integrins or a combination of 

αvβ3 and α5β1 integrins [148]. With regards to fibroblast migration, α5β1 integrins also 

appear to dominate [149], as β1 blocking was effectively shown to reduce fibroblast 

migration by 85% compared to only a 15% reduction due to αv blocking in a wound healing 

assay [128].   
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 Clearly, the particular integrins used to engage with the ECM makes a significant 

difference in the context of molecular signaling, cell function, and disease progression.  

Understanding how Cit Fn, abundantly present in a variety of chronic inflammatory 

diseases, impacts integrin attachment and downstream signaling is therefore imperative for 

understanding the pathologies of these diseases and potentially in developing new 

therapeutic interventions to help prevent or ameliorate their damage.  In the current study 

we began elucidating fibroblast-Cit-Fn interactions by identifying specific sites of 

citrullination within the Fn molecule with particular interest given to the arginines present 

in both the RGD and PHSRN sites, known to differentially impact αvβ3 and α5β1 

attachment. Integrin affinity for Cit Fn was also directly evaluated via interferometry as well 

as through cell binding assays.  Finally, to ascertain the full influence of Cit Fn on fibroblast 

binding and signaling, a combination of immunocytochemistry and force-induced co-

immunoprecipitation studies were carried out to analyze individual integrin subunits as well 

as downstream signaling molecules of interest.   

3.3 Materials and Methods 

3.3.1 Protein Citrullination 

Unless otherwise mentioned, all proteins were citrullinated as follows, in a PAD 

reaction buffer containing final concentrations of 100mM Tris-HCl, 5mM CaCl2, 0.3mg/mL 

protein and at pH 7.4.  Proteins were incubated with 10U/mL PAD4 (Cayman Chemical) 

and 5.6ug/mL PAD2 (SignalChem) at room temperature overnight with shaking at 200 rpm 

after which reactions were quenched with 20mM EDTA.  In all cases, non-citrullined 
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proteins used for experimental comparisons were subjected to identical buffers and 

incubation conditions with the exception of PAD enzyme presence.   

3.3.2 Coating Coverslips with Protein 

Unless mentioned otherwise, 10mm diameter coverslips were first cleaned in 2M 

HCl at 60oC for 4 hours, washed with water, and then coated overnight with 20ug/mL Fn or 

Cit Fn in PBS at 4oC.  All coverslips were blocked with 1% heat-denatured bovine serum 

albumin (hd-BSA) for 1 hour at room temperature prior to plating cells.  Negative control 

coverslips were either coated with 1% hd-BSA or poly-L-lysine (PLL) in lieu of adhesive 

proteins.  PLL-coated coverslips were washed 3X in water prior to being blocked with 1% 

hd-BSA.      

3.3.3 Cell Culture 

Unless otherwise specified, all experiments utilized Human Foreskin Fibroblasts 

(HFFs) from ATCC at or below passage twelve. Cells were cultured in 4.5g/L glucose 

DMEM +pyruvate, + L-Glutamate, supplemented with 15% FBS and 1% pen/strep.  All 

experiments were performed in the above media without serum, designated serum-free 

media, or SFM, unless otherwise specified.  Quenching of trypsin reactions prior to plating 

in SFM was carried out with soybean trypsin inhibitor (Sigma).  For some longer-duration 

experiments, SFM was supplemented with a small amount of FBS from which fibronectin 

(Fn) had previously been depleted via overnight incubation with gelatin-sepharose beads 

with confirmation via SDS-PAGE. Knockdown of β1 integrin was carried out using  β1 

shRNA plasmids (sc-72028-SH) and β1 lentiviral particles sc-72028-V, or control shRNA 

lentiviral particles (sc-108080) from Santa Cruz.     
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3.3.4 COLDER Assay for Citrullination Verification 

A colorimetric assay for in situ detection of citrulline was performed according to 

the methods of Knipp. et. al [150]. Briefly, 10uM or 5uM of soluble Fib along with fibrin 

clots (75uL 0.5mg/mL fibrinogen, 1unit/mL thrombin) were compared to standard curves 

of purified L-Citrulline.  A range of PAD enzyme concentrations (PAD4 = 1-14 units per 

mg protein or PAD2= 0.56- 15.68ug/mg protein) was utilized for overnight citrullination of 

proteins.  Final citrulline content in wells was determined via colorimetric measurements at 

540nm.      

3.3.5 Dot Blot Citrullination Verification 

To verify citrullination of soluble proteins, a dot blot on nitrocellulose membranes 

was performed using protein masses ranging from 0.2ug to 0.025ug in serial dilutions.  

Membranes were blocked in 5% BSA in tris-based buffer (TBS) and stained with anti-

peptidyl citrulline (Millipore MABN328) at 1:4000 followed with anti-mouse 800CW 

infrared secondary (Li-Cor) 

3.3.6 In-Gel Protein Digestion for Mass Spectrometry 

 In-gel protein digestion was conducted as previously described[151], with 

modifications. Briefly, selected protein bands were excised from the Coomassie-stained gel, 

diced into small pieces, and then destained with HPLC-grade water (Avantor) and 1:1 

acetonitrile (ACN)/ammonium bicarbonate (ABC) (Sigma-Aldrich). The de-stained gel 

pieces were then dehydrated with multiple ACN washes until rock hard, followed by air 

drying for ~10 minutes. The gel pieces were rehydrated for 30 minutes with 50mM 
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dithiothreitol (Sigma-Aldrich) to reduce disulfide bonds, followed by replacement with 

100mM iodoacetic acid (Sigma-Aldrich) and 45 minutes shaking at 750 rpm in the dark to 

alkylate the reduced thiols. After reduction/alkylation, the gel pieces were once again 

washed and dehydrated as before, and then chilled on ice for 10 minutes. In-gel digestion 

was achieved by rehydrating the gel pieces with either trypsin (40µg/mL, Promega Cat # 

V511A), gluC (40µg/mL, Calbiochem Cat # 324713), chymotrypsin (50µg/mL, Promega 

Cat # V1062) or a mixture of trypsin and gluC. In each case, 50µL of the sequencing grade 

enzyme solution was added to the gel pieces and incubated on ice for 30 minutes. Excess 

enzyme solution was then removed and replaced with 100µL 50mM ABC and the pieces 

were incubated overnight at 37°C with shaking at 750 rpm. Resultant proteolytic peptides 

were extracted by two rounds of dehydration using 100L ACN and collection of the 

resulting extract into low-retention microfuge tubes, which were frozen solid at -80°C and 

then sublimated by centri-vapping. The dried peptides were reconstituted by sonication in 

5% ACN/0.1% formic acid and stored at -80°C prior to analysis. 

3.3.7 Mass Spectrometry 

 LC-MS analysis of peptides produced by in-gel digestion was carried out with an 

UltiMate™ 3000 RSLCnano System UPLC system (Dionex) with Acclaim PepMap RSLC 

column (75m x 25cm nanoViper C18 2m, 100Å) coupled to a Q-Exactive Plus Orbitrap 

mass spectrometer (Thermo Scientific) run in data-dependent acquisition mode (top-8). 

Resultant RAW files were analyzed using Proteome Discoverer 2.1 with embedded 

SEQUEST search algorithm operating with an allowable 1% false-discovery rate, wherein 

the human fibronectin (P02751) isoforms 1-17 were used as targets for spectral matching. 

Mass deviations for precursor ions and fragment ions were set to 10 ppm and 0.6 Da 
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respectively. Besides citrullination (R), other modifications such as deamidation (N, Q), 

oxidation (M), phosphorylation (S, T, Y), acetylation (protein N-terminus), and 

caramidomethylation (C) were included in the analysis. Additionally, the citrullinated sites 

were checked manually.  

3.3.8 Interferometry 

Binding affinity between recombinant human αvβ3 (3050-AV-050) or α5β1 (3230-

A5-050) integrins purchased from R&D Systems and either Fn or Cit Fn was determined 

via Bio-Layer Interferometry(BLI) on a Pall forteBIO Octet RED96 interferometer.  

Integrins (ligands) were immobilized to amine-reactive ARG2 sensors using standard 

EDC/sulfo-NHS chemistry.  Fn or Cit Fn was diluted in freshly prepared analyte buffers 

containing 1mM MnCl2 (for integrin activation), 150NaCl, 25mM tris-HCl, and 1mg/mL 

BSA (for blocking) at pH 7.4.  For αvβ3 interactions, a 2X analyte buffer containing 0.02% 

tween 20 was utilized to assist in molecular dissociation.  Integrin-ligand interactions were 

measured across five concentrations of Fn/Cit Fn diluted in analyte buffer with serial 

dilutions starting at 80nM or 320nM for α5β1 or αvβ3 integrin interactions, respectively.  

Experiments were performed under constant plate shaking at 1000rpm.  Results were 

analyzed using forteBIO analysis software using a global fit model for 1:1 binding 

interactions. Data processing included subtraction of signal from a reference probe and 

alignment of the y-axes at the start of the association phase.  Each integrin-protein 

interaction was measured via three separate interferometry runs.   

3.3.9 CHO Cell Adhesion Assays 
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To independently measure the physiological interaction of α5β1 or αvβ3 integrins 

with Fn/Cit Fn, two different types of Chinese Hamster Ovary (CHO) cells were utilized.  

CHO-K1 cells endogenously express hamster α5β1, and will henceforth be designated 

CHO- α5β1.  CHO-B2, a clone of CHO-k1 cells chosen for low surface expression of α5 

integrin, were transfected with human αvβ3 integrin—henceforth designated CHO- αvβ3.  

Coverslips were coated overnight with 20ug/mL Fn/Cit Fn, Fib/Cit Fib, or 1% hd-BSA.  All 

coverslips were subsequently blocked with 1% hd-BSA for 1 hour.  

 To evaluate integrin attachment, separately, CHO- α5β1 and CHO- αvβ3 cells were 

plated on Fn- or Cit for 1 hour at a density of 5000cells/cm2.  As a negative control, CHO-

αvβ3 cells were also plated on coverslips coated with hd-BSA, or Fib/Cit Fib, the latter of 

which is only able to engage αvβ3 integrins.  Cells were subsequently washed with PBS++ 

(supplemented with 2mM Ca2+ and 1mM mg2+ for maintenance of integrin activation), fixed 

with 4% paraformaldehyde, and stained with fluorescent phalloidin and hoescht.  

Fluorescent microscopy was utilized to determine the number of cells remaining attached 

post-washing.   

3.3.10 Focal Adhesion Complex Staining 

For immunocytochemical (ICC) analysis of integrin subunits and downstream 

signaling molecules, HFFs were plated on Fn/Cit Fn or PLL-coverslips at 5000 cells/cm2 

for 30 minutes at which point they were washed 1X with PBS++ (2mM CaCl2, 1mM 

MgCl2), fixed with 4% paraformaldehyde, permeablized with 0.2% triton-X, blocked with 

normal goat serum and incubated with primary antibody sets, as appropriate, overnight at 

4oC.  The following primary antibodies were used: anti-β1 (9EG7) at 1:500, anti- αvβ3 
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(LM609)at 1:200, anti- α5 (AB1928) at 1:500, anti-alpha V (272-17E6, abcam16821) rabbit 

anti-paxillin (Y113, ab32084, abcam) at 1:400, mouse anti-paxillin (thermofischer SH11)at 

1:300, anti-GSK (Cell Signaling mAb #9832) at 1:250, anti-phospho-s9 GSK-beta (Abcam, 

ab107166) at 1:400, anti-MLC  at 1:200, anti-phosphor-MLC (Thermo )at 1:300, anti-ILK 

(ER 1592, Abcam 76468 )at 1:800, anti-phospho-ILK (Millipore Ser 246, Ab1076) at 1:500, 

anti-vinculin (SPM22), anti-pFAK (BD pY397, cat#611722) at 1:600,  anti-p-c-src (sc9AC) 

at 1:100.   

Imaging was conducted via PerkinElmer spinning disk confocal microscope using a 

63X objective. Only isolated cells (those lacking contact with any other cells) were included 

in analysis.  Where applicable, paxillin fluorescent signal was utilized to both identify the 

focal plan of imaging for cell adhesion as well as focal adhesion location. For staining of 

total F-actin content as well as total p-ILK and p-GSK content, confocal z-stacks of 10-

slices each spanning the entire cell thickness were acquired.  Cell area, or volume, as 

appropriate, was determined from phalloidin staining (1:40). Nuclear volume was 

determined from hoesct signal.  Image analysis, thresholding, and quantitation was 

performed using Volocity quantitation software.  

3.3.11 Rac and Rho GLISAs 

HFFs were plated at 10K cells/cm2 in 100mm petri dishes pre-coated with Fn or Cit 

Fn and allowed to attach for 30 minutes before being collected, lysed, and analyzed using 

the Rac1 (BK128-S) or Rho (BK124-S) colorimetric GLISA assays from Cytoskeleton, Inc.  

Protein loading was normalized to total protein content determined according to 660nm 



 61 

protein quantification assay.  A total of two plates of cells were prepared per substrate, with 

duplicate wells analyzed per sample.  Each GLISA was performed twice.   

3.3.12 Magnetic Bead Force-Inducible Co-Immunoprecipitation 

Invitrogen M-280 Tosylactivated Dynabeads were covalently bound to Fn or Cit Fn 

and subsequently blocked in hd-BSA using manufacturer recommended protocols.  HFFs 

were plated at a density of 2.5 x 106 cells per 10cm petri dish for six hours after which a cell 

scraper was used to remove cells along dish periphery (which would have been outside the 

subsequent applied magnetic field), and remaining cells were serum-starved 24 hours in 

Opti-MEM media.  Protein-coated beads were allowed to incubate with cells for 1 hour 

(Figure 4) after which a magnetic force was applied, or not, from a distance of 20mm for 

the +force and no force conditions, respectively. Unbound beads were washed away with 

cold PBS solution, after which the remaining beads were collected via cell scraping and 

addition of lysis buffer.  Protein loading for SDS PAGE and subsequent western blotting 

was normalized using Pierce 660nm Protein Assay Reagent.  The following antibodies were 

utilized for western blot analysis: anti-αv H075  integrin from sant cruz (sc-10719), anti- α5 

anti-a5 (AB1928), anti p-ILK ser246 (AB1076), and anti-paxillin Y113 (ab32084)  from 

abcam, anti-p-src D49G4,  anti-src 32G6, and anti-ILK (#3862) from cell signaling, anti-

pFAK 44-624G from thermo fischer, and anti-FAK pY397 from BD Biosciences. 

Appropriate mouse or rabbit horse radish peroxidase (HRP)-conjugated antibodies were 

utilized for secondary staining. Chemiluminescent western blot signals were read and 

interpreted using a GE Amersham Imager 600.  
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Figure 4: Force-Inducible Magnetic Bead Co-Immunoprecipitation Protocol 

3.3.13 Statistical Analysis 

All statistical analysis was performed using GraphPad Prism software with 2-tailed t-

tests or one-way ANOVAs and Tukey post-hoc analysis, as appropriate for the experimental 

set-up.  Alpha was set at 0.05 for all analyses. In the case of larger data-sets, such as with 

fluorescent signal analysis of cell components in microscopy images, outliers were removed 

using the ROUT method with a Q of 1% prior to further statistical analyses. The Shapiro-

Wilk test was utilized to test for normality of data distribution, and in cases where null 

hypothesis was rejected, the Mann-Whitney test was applied to ascertain statistical 

significance.      

3.4 Results 

3.4.1 Protein Citrullination can be Confirmed as a Dose-Dependent Function of PAD 

Concentration 
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Dot blots using anti-peptidyl citrulline antibody shows preferential staining for Cit 

Fn over Fn in a dose-dependent manner of modified proteins (Figure 5C). A similar trend 

of staining was observed for citrullinated FnIII 9-10 Fragments (Cit- 9*10) over unmodified 

9*10, as well as for Cit Fib over Fib. The anti-peptidyl citrulline antibody also non-

specifically stained unmodified proteins, but adequate distinctions in antibody staining 

could be attained by dot blotting sufficiently low concentrations of protein.  Modification 

of Cit Fib could be observed via lack of clottability (i.e. conversion of Cit Fib into a Cit-

Fibrin clot) as previously observed [31], as well as via a band shift in electrophoresis (Figure 

5A).  As Fn is a larger protein than fibrinogen with fewer citrullination sites, a similar band 

shift could not be visualized with Cit Fn, even after proteolytic protein digestion.  The 

COLDER assay, as previously reported [152], produced relatively variable results with low 

signal that was very sensitive to protein type and buffer contents.  Therefore, reproducible 

signal could only be attained using Cit-Fibrin and Cit Fib.  Titration of PAD enzymes 

utilizing the COLDER assay revealed that maximal PAD modification is attained using a 

dose of 10units/mL PAD4 and 5.6ug/mL PAD2 (Figure 5B). Total levels of citrulline 

plateau at greater PAD concentrations.   
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Figure 5: Citrullination is Verified via SDS PAGE, COLDER Assay, and Dot Blot 

(A) Coomasie-stained SDS PAGE gel shows retardation of the fibrinogen alpha chain as a 

consequence of citrullination.  (B) Absorbance readings from three wells per condition are 

plotted for a COLDER assay where fibrin clots were incubated with various concentrations 

of PADs 2 and 4.  (C) Dot blot results for Cit Fn, Cit-9*10, and Cit Fib are shown with four 

different concentrations of each protein, listed on left.  

3.4.2 Mass Spectrometry Identifies 24 Unique Sites of Fn Citrullination 

Mass spectrometry analysis of Cit Fn modified by PAD 2 alone, PAD4 alone, or 

PADs 2 and 4 together identified a total of 24 unique citrullination sites (Figure 6), with an 

aggregate protein coverage of 80 percent.   
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Figure 6: Analysis of PAD Isotype-Specific Fibronectin Citrullination Sites 

  The above diagram symbolically depicts the full Fn molecule and the accurate layout of 

type I, II, and III domain repeats.  Confirmed citrullination sites are overlaid on the Fn 

diagram, and with each site, the specific arginine residue as well as the PAD isotypes 

capable of bringing about the modification are specified.   

 

The majority of these, or 18 out of the total 24, were found to reside within type III Fn 

repeats, and of these, five were found to reside specifically within the cell binding domain.  

The RGD motif was not modified by any combination of PAD treatments, although R1410 

within the PHSRN synergy site was found to be modified.  There does appear to be some 

enzyme specificity with regards to Fn citrullination, as only 10, or less than one half of all 

modified sites, were determined to be targets of both enzymes.  Of the remaining sites, seven 
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were determined to be modified by only PAD4 and another 7 were found to be modified by 

PAD2 only; among this latter group of PAD2-specific modifications was the PHSRN 

synergy site.  A majority of citrullination sites identified reside within regions of known 

function relating to fibrin binding, heparin binding, collagen binding, or cell attachment 

(Figure 7).   

 

 
Figure 7: Attribution of Possible Biological Function for Identified Fn Citrullination 

Sites 

The pie chart above shows which percentages of identified Fn citrullination sites lie within 

regions of known biological function, and further breaks defines those functions and how 

many citrullination sites can possibly be attributed to each.  

3.4.3 Citrullination of Fn Decreases αvβ3 Adhesion and Has Minor Impacts on α5β1 

Attachment 

Bio-Layer Interferometry (BLI) with α5β1integrins (Figures 9, 10, and 11) resulted 

in very strong affinity in association with both citrullinated and unmodified fibronectin, 

although citrullination appears to produce a slight improvement in attachment.  The average 

KD over three runs was 0.741nM and 0.3016nM for Fn and Cit Fn, respectively (Figure 8B), 

where KD is defined as koff/kon, and a lower molarity represents a generally improved 
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tendency for association vs disassociation. These values are very close to that of the R&D 

Systems’ (the vendor for these integrins) predicted KD value of 0.5nM for α5β1and full-

length human Fn. The r2 for all global curve fits for both α5β1 and αvβ3 analyses was > 0.9.    

koff rates for both proteins were very low such that it is difficult to visually detect a decrease 

in BLI signal during the dissociation phase, and thus the kon rates appear to be more 

informative.  The average kon rates were 1.24866 x 105 and 1.776 x 105 M-1s-1 for Fn and 

Cit Fn, respectively (Figure 8A), where the higher number here for Cit Fn indicates an 

improved ability to associate with immobilized α5β1 integrins.   

 

Figure 8: Bio-Layer Interferometry Average Kon and KD values 

Graphs above represent the average kon (A) and KD (B) values for three separate BLI runs 

for each combination of integrin and protein.  KD is defined as koff/kon . 

BLI with αvβ3 produced almost no dissociation (supplement, Figures 33, 34), such 

that predicted KD values were in the pM range, which is definitely not accurate for this 

integrin interaction with Fn; expected KD values should if anything be higher than those 

obtained for α5β1 integrins. This result is most likely due to experimental parameters rather 

than representative of actual KD values. Nevertheless, association curves did appear 
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approximately as expected (i.e. properly shaped and with a dose-dependent separation in 

signal) with average Kon values of 2.724 x104 and 2.540 x104 for Fn and Cit Fn respectively 

being predictably lower, by about 10-fold, than those produced by  α5β1-Fn 

interactions(Figure 8A).  Of note, the Kon values for Cit Fn are lower than those for Fn (p 

=0.0908).   

 

 

 

 

 

 

 

 

Figure 9: Alpha 5 Beta 1 Interferometry Curves with Fn: 

Colored lines represent the processed data, and black lines represent the global 1:1 curve fits.  

The calculated Kon and KD for this particular data set are 1.004 x 105 M-1S-1 and 1.197nM 

respectively.    
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Figure 10: Alpha 5 Beta 1 Interferometry Curves with Cit Fn: 

Colored and black lines represent processed data and global 1:1 curve fits, respectively.  

The calculated Kon and KD for this data set are 1.774x 105 M-1S-1 and 0.363nM respectively.    

 

Figure 11: Overlay of Fn and Cit Fn Alpha 5 Beta 1 Interferometry Results 

The physical overlay of Fn (orange) and Cit Fn (green) plots allows for direct comparisons 

of their interactions with α5β1 integrins, and in particular, the heighted signal achieved in 

the association phase of Cit Fn in comparison to Fn.    



 70 

           To investigate whether changes in integrin affinity as shown via interferometry 

resulted in functional differences in cell attachment to Cit Fn, adhesion assays using CHO 

cells specific for either αvβ3 or α5β1integrins were performed. Adhesion assays with CHO- 

αvβ3 cells resulted in a significant decrease in attachment to Cit Fn in comparison to Fn 

(Figure 12A), implying that αvβ3 attachment is detrimentally impacted by citrullination of 

Fn. CHO-αvβ3 attachment to fibrinogen, a negative control because its only integrin 

attachment site is through αvβ3 integrins showed a complete elimination of cell attachment, 

implying that citrullination’s detrimental impacts may specifically involve the RGD site 

responsible for αvβ3 attachment.  No significant differences were observed between CHO- 

α5β1 attachments on Fn vs Cit Fn (Figure 12B).  

 

Figure 12: Adhesion Assays with Integrin-Specific Binding 

CHO cells only expressing αvβ3 integrins (A) were challenged with adhesion to Fn/Cit Fn 

or Fibrin/Cit-Fibrin and CHO cells only expressing α5β1 integrins were challenged with 

adhesion on Fn/Cit Fn.  The brown-colored bars representing CHO- αvβ3 are difficult to 

visualize as they are very near to zero. Results represent seven coverslips per condition.     

  

 



 71 

3.4.4 Citrullination of Fn Results in a αvβ3 to α5β1 Integrin Switch 

ICC staining for each of the integrin subunits αv, α5, β1, and αvβ3 revealed that the 

absolute quantity of both α5 and β1 integrin subunits within any given FA was enhanced 

within HFFs plated on Cit Fn compared to Fn (Figure 13A), with no such differences being 

observed with regards to either αv or αvβ3 integrins.  When the ratio of total β1 signal to 

αvβ3 signal or α5 to αvβ3 signal per cell is measured, the result is significantly higher on 

Cit Fn for the former, and elevated but not statistically significant for the latter (Figure 13B). 

Analysis of co-localization via Pearson’s correlation coefficient (r) for each pairwise 

combination of α5, β1, and αvβ3 shows that in all cases co-localization is significantly 

enhanced on Cit Fn in comparison to Fn indicating improved clustering on Cit Fn (Figure 

13C). Magnetic bead force-inducible co-immunoprecipitation experiments show similar 

trends of integrin expression where there is no difference of baseline αv but an elevation of 
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α5 on Cit Fn compared to Fn (Figure 13D, E). The main integrin-related revelation here is     

that αv integrins exhibit an increased force-inducible increase on Cit Fn compared to Fn.  

Figure 13: Integrin ICC Staining and Force-Inducible Co-Immunoprecipitation 

Assays Display a Preference for Alpha5 and Beta1 on Cit Fn 

Quantification of integrin fluorescent signal in confocal ICC images is plotted to show (A) 

average signal per integrin subtype within FAs, (B) the ratio of total α5 or β1 signal per 

total αvβ3 cellular signal, and (C) the overall co-localization of integrin subtypes within 

the cellular area.  Each data point represents the average for a single cell where n = 40 cells 

per condition.  Western blot data from a total of seven different biological replicates (D) 

shows the relative quantities of integrin subunits pulled down with Fn or Cit Fn in the 

presence (brown shading) or absence of force. (E) Representative western blots for αv and 

α5 signal. 
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Taken together these results point towards the existence of an overall greater quantity of 

both α5 and β1 integrins within FAs of HFFs on Cit Fn, and when compared to the amount 

of αvβ3 integrins, there appears to be a relatively greater quantity of α5 and especially β1 

integrins on Cit Fn compared to Fn. 

 Identical ICC FA experiments on CCL210 human lung fibroblasts revealed a similar 

trend of both α5 and β1 upregulation on Cit Fn in comparison to Fn.  Measurements of 

average integrin subunit staining within FAs show an increase of β1, a significant increase 

of α5, and no difference of αvβ3 signal on these cells plated on Cit Fn compared to Fn 

(Figure 14).  Co-localization measurements again showed enhanced integrin clustering on 

Cit Fn with each pairwise comparison of integrin subunits, though to a somewhat lesser 

extent than with HFFs, since none of the differences were significant. P values were 0.0796, 

0.1, and 0.2 for α5+αvβ3, β1+αvβ3, and α5+β1 co-localization, respectively.   

 

Figure 14: Integrin Expression in Human Lung Fibroblasts 
The average fluorescent integrin signal for α5 and β1, but not for αvβ3, is enhanced within 

FAs of human lung fibroblast (CCL210) cells plated on Cit Fn in comparison to Fn. At least 

70 cells per substrate were analysed across 4 coverslips.    

 

It does appear that β1 integrins are at least in part responsible for the observation of 

enhanced integrin clustering, since within β1-KD HFFs, the average amount of both α5 and 
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αvβ3 integrin within FAs decreased on Cit Fn but not on Fn (Figure 15A, B). When β1 was 

knocked down from HFFs, there was a also reduction in average FA size in HFFs plated on 

both Fn and Cit Fn, but to a greater extent on Cit Fn (Figure 15C).    

 

Figure 15: ICC Integrin Staining of Beta1-Knockdown Fibroblasts 
Quantification of fluorescent signal for (A) αvβ3 integrins within FAs, (B) α5 integrins 

within FAs, and (C) average FA size based on paxillin represent a minimum of 75 cells each 

per substrate and condition.   

3.4.5 Citrullination of Fn Causes Force-Sensitive Upregulation of FAK-SRC-ILK-GSK 

Signalling 

 Co-immunoprecipitation analysis of phosphorylated signaling proteins showed an 

enhancement in the baseline (no-force) levels of pFAK, pSRC, and pILK within cells plated 

on Cit Fn compared to Fn with this enhancement being most prominent on pILK (Figure 

16A, B).  Further, each of these proteins exhibited a greater amount of force-induced 

enhancement on Cit Fn in comparison to Fn, with the increase on pILK being particularly 

striking.  For all phosphorylation western blot data, phosphorylated protein signal was 

normalized to total levels of the respective protein.    
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Figure 16: Downstream p-FAK, p-SRC, and p-ILK Signaling 

Western blot data (A) represents average of at least six biological replicates each for pFAK 

and pSRC and four biological replications for pILK in force-inducible co-

immuoprecipitation assays where Fn or Cit Fn were used to pull integrins and signaling 

complexes out with (brown background) or without force, with representative western blots 

shown in (B).  Quantification of ICC of fibroblasts plated on Fn/Cit Fn-coated glass show 

the total pFAK or pSRC signal within FAs (C), the co-localization of pFAK and pSRC 

signal with FAs (D), and the total pILK signal per cell (E). For ICC data n = 75 cells per 

condition across 4 coverslips.   

 Force-induced co-immunoprecipitation assays represent FA adhesome formation in 

response to a localized external force, whereas fibroblasts plated on a stiff surface are 

capable of internally generating force via actin-myosin contraction; thus 

immunocytochemical (ICC) staining of cultured cells also reveals signaling as a function of 

strained cell state.  ICC staining revealed an overall greater amount and co-localization of 

pFAK and pSRC within FAs of HFFs plated on Cit Fn in comparison to Fn (Figure 16C, 
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D).  FA area was identified via paxillin stain.  Likewise, total pILK (Figure 16E) and 

pGSK/GSK cellular signal was enhanced on Cit Fn-plated cells compared to on Fn (Figure 

17A).  In the case of pGSK, cells plated on Cit Fn also exhibited enhanced nuclear 

localization of pGSK (normalized to total cellular GSK signal) compared to on Fn (Figure 

17B,C).     

 

Figure 17: Glycogen Synthase Kinase (GSK) Analysis 

Quantification of total cellular pGSK signal normalized to total cellular GSK signal is 

shown in (A), with nuclear pGSK signal normalized to cellular GSK signal shown in (B).  

Representative confocal maximum projection images of cells on Fn and Cit Fn (C) display 

p-GSK signal in yellow with the cell edge outlined in white and the cell nuclear region 

outlined in red. Results represent a minimum of 70 cells per condition across 4 coverslips.    

3.4.6 Citrullination of Fn Results in Increases of Mechano-responsive proteins F-actin 

and Vinculin, but not Rac or Rho   

Stress fiber or fibrillar actin (F-actin) assembly within cells is a force-sensitive event 

starting at around 2kpa and resulting in progressively increased fiber number and thickness 

on greater stiffnesses.  F-actin content can therefore serve as a proxy for cell 

mechanotransduction.  In a 3D confocal z-stack analysis of total F-actin content in cells 

plated on Fn/Cit-Fn coated polyacrylamide gels of varying stiffness, it was shown that total 
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F-actin content was significantly enhanced on Cit Fn compared to Fn on 25kpa gels and 

only modestly increased on 8kpa gels (Figure 18). No differences in F-actin content were  

 

Figure 18: Mechano-sensitive Protein Products F-Actin and Vinculin are Upregulated 

on Cit Fn 

The plots above depict quantification of phalloidin signal for F-actin detected within 

confocal z-stack images (left) of fibroblasts plated on protein-coated polyacrylamide gels 

of three different stiffnesses, and co-localization of vinculin  signal (right) with paxillin, a 

proxy non-force sensitive marker of FA location. Results represent a minimum of 20 cells 

per condition.  

observed between Cit Fn and Fn on 2kpa gels. ICC analysis of vinculin, a force-sensitive 

protein, demonstrated an increase in absolute quantity as well as co-localization with FAs 

(Figure 18).  FA area was identified via paxillin stain.  Finally, GLISA assays for Rac and 

Rho proteins, key mediators of several mechanotransduction pathways did not demonstrate 

any differences in the amounts of either of these proteins between HFFs plated on Fn vs Cit 

Fn (Figure 19).    
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Figure 19: Rac and Rho Signaling 

The above graphs depict quantification of GLISA assays for Rac1 and Rho protein 

activation after 30 minutes of fibroblast exposure to Fn or Cit Fn.  No significant differences 

between experimental groups were observed. Results represent two biological replicates 

with n=2 per condition.   

3.5 Discussion 

3.5.1 Interpretation of Mass Spectrometry Results 

Mass spectrometry of Cit Fn identified 24 unique citrullination sites modified as a 

result of PAD2 alone, PAD4 alone, or the combination of PAD2 and 4 together.  These 

findings appear to be more comprehensive than the two previous MS analyses of Fn 

conducted by VanBeers et. al. [25] and Sipila et. al. [34] which identified just four or five 

citrullination sites, respectively.  The VanBeers study which used Fn samples modified in 

vivo from human RA patients, was unfortunately limited by a low coverage of just 53 or 28 

percent from two different patient samples, though two of the sites they identified, a double 

modification at residues R1035,1036, were also identified in the current study.  Importantly 

these modification sites appear to possess potent immunogenicity, as 50% of established 

RA patients studied by VanBeers appeared to possess ACPA specific for this site.  
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None of the modification sites identified in the Sipila study matched the ones found 

here.  Similar to our study, the Sipila group performed in vitro citrullination modifications, 

although it should be noted that they used a rabbit PAD2 enzyme, and PAD4 of unspecified 

species origin whereas our study utilized a mouse PAD2 enzyme and a human recombinant 

PAD4 enzyme.  Inter-species sequence conservation for the various PAD isotypes ranges 

from 70-95%, so it’s possible that the different sources of PAD enzymes may underlie the 

variation in findings.  It’s also of interest to note that three of the citrullination sites 

identified in the present study (R67, R1207, and R1802) were found to be modified both 

after in vitro PAD incubation, but also, in Fn samples that were not exposed to PAD 

enzymes.  Since our Fn is purified in-house directly from patient plasma, it is possible that 

these samples were previously modified in vivo due to inflammatory processes in the 

patients through whom the plasma samples were sourced.    

Seven identified sites of modifications reside within Fn regions of known biological 

function unrelated to cell-binding (R67, 107, 515, 1802, 1891, 1910, and 2223). As 

citrullination results in the loss of a positive charge it could be expected to influence Fn 

electrostatic interactions with fibrin and collagen to modify both the strength of attachment 

and also how these proteins pack together; changes in these protein-protein interactions may 

have larger implications for overall conformation and stiffness of in vivo cell-derived 

matrices.  Elimination of positive charge would also be expected to negatively impact 

interactions with growth factors, most of which are negatively charged, as well as heparin, 

which is known to possess a very dense concentration of negative charges. A lesser ability 

to bind and therefore sequester growth factors could potentially make them more bio-

available to local cells, thus providing an indirect mechanism for citrullination’s modulation 
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of cell function.  Somewhat counter-intuitively, however Cit Fn has previously been 

demonstrated to possess an enhanced affinity for VEGF [35], implying that citrullination’s 

impacts may be mediated through means other than charge alone.  

Table 2: Citrullination Sites and their locations within Fn Regions of Known Biologic 

Function 

 

Of prime interest, of course, are the five citrullination sites found within the cell 

binding domain, spanning across the 9th and 10th type III repeats, which were fully covered 

in MS analysis of Cit Fn (Figure 20).  Similar to the studies of both Sipila and VanBeers, 

we were unable to detect a modification of the RGD site (R1524), which is surprising in 

part because one would expect this site, which exists as part of a loop extending 10 

angstroms from the face of Fn, to be readily accessible to PAD enzymes.  However, its lack 

of detectable modification does align with the biochemical prediction of PAD preferred 

binding originally described by Assohou et. al. [27]. Also, there exist three other verified 

citrullination sites within the 10th type repeat relatively nearby to the RGD at R1452, R1476, 
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and R1479, and further, molecular modeling shows that both R1476 and R1479 extend in 

the same direction as the RGD loop therefore making them likely to impact RGD 

interactions due to both proximity and protein conformation. 

 

Figure 20: Molecular Model Citrullination Sites Within the FnIII 9-10 Cell Binding 

Domain 

The molecular model of Fn cell binding domain depicts the relative three-dimensional 

positions the R1452, R1476, and R1479 citrullination sites within the Fn10th type III repeat  

with respect to the RGD site.  Also shown is the citrullinated synergy site, PHSRN and the 

additional citrullination site at R1434 within the Fn 9th type III repeat.   

Interestingly, we did find the PHSRN synergy sequence (R1410) to be citrullinated, 

which could have a direct impact on α5β1 integrin interactions, especially considering that 

previous mutagenesis studies have identified the R of PHSRN to be the most important 

residue in modulating α5β1 attachment [146].  A second citrullination site within the 9th 

type III repeat, R1434 may also impact α5β1integrin engagement due to both its proximity 

to as well as the fact that molecular modeling shows its placement with PHSRN on the same 

face of Fn.  Of course, ability to detect citrullination at R1410 and R1434 does not guarantee 

that these locations are always citrullinated, and the stoichiometry of these modifications in 
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vivo may determine the ultimate impact of these modification sites on integrin and cell 

interactions. 

 There were also two citrullination sites at R1274 and R1284 within the 8th type III 

repeat that may also have the ability to influence α5β1 integrin binding.  While the 8th type 

III repeat does not possess any cell binding functions on its own, its proper conformation 

along with the 9th and 10th type III has the capability of replacing the function of the PHSRN 

site.  This fact was highlighted in a study by Altroff et al. where FnIII 8-10 fragments with 

mutated PHSRN sites were shown to possess the same affinity as unmodified FnIII 9-10 

fragments for α5β1integrins, and both of these affinities were far greater than that of FnIII 

10 fragments alone or FnIII 9-10 fragments with mutated synergy sites [142].   

It’s also important to note that the PHSRN synergy site, along with cell binding 

domain sites R1434 and R1452, was shown to only be modified by PAD2.  This finding is 

potentially of vital significance due to the ongoing debate in the pharmaceutical industry 

and research labs worldwide as to whether citrullination inhibition efforts should be directed 

at just one PAD isotype, or all of them.  To date, all PAD inhibitors of just a single isotype 

have been designed to target PAD4, possibly because it is the only isotype with a nuclear 

localization sequence, and thus it would be expected to have the greatest impact on gene 

regulation and NETosis via histone modifications [1, 24].  Alternately, BB-Cl-amidine is 

the most potent pan-PAD inhibitor currently in existence and has shown the ability to 

completely reverse disease or nearly so in mouse models of lupus [41] and collagen-induced 

arthritis (CIA) [68].  
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When it comes to efficacy of PAD inhibitors outside of BB-Cl-amidine, results are 

more mixed.  BB-Cl-amidine’s predecessor, Cl-amidine not only has lower bioavailability, 

but it possesses a PAD2 affinity a full ten times lower than that of BB-Cl-amidine, and it 

was shown to have no effect on the collagen antibody-induced arthritis (CAIA) model [26, 

68].  These results, along with a PAD4-knockout study that did not prove efficacious in a 

KBxN model of arthritis [153], led Willis et. al. to argue that citrullination may not play a 

role in the effector phase of arthritis [152].  Of course, PAD4-specific inhibition has shown 

efficacy in two different CIA arthritis models [152, 154], a TNF-α model [155], and in a 

glucose-6-phosphate isomerase (GPI) arthritis model [156], although it should be noted that 

in the GPI, TNFα, and the Suzuki et. al. CIA models, only partial disease improvement was 

observed.  The Suzuki study, in particular, documented an increased compensatory 

expression of PAD2 which may have contributed to their inhibitor’s partial efficacy [154]. 

There certainly exists a significant amount of variation in pathology from one disease to 

another and also among the various animal models of individual diseases, so it would be 

impossible, at this point, to attribute the success, partial success, or failure of citrullination 

inhibition efforts to a particular PAD isotype.  Nevertheless, these variations in results 

among studies strongly suggest that close attention should be paid to the extent of 

contribution of the various PAD isotypes.   

A final observation of the MS results concerns the fact that there appears to be some 

inconsistency with regards to sites modified by a single PAD isotype compared to both.  

Theoretically, one would expect any site that can be modified by PAD2 or PAD4 alone to 

also be modified by the combination of PAD2 and PAD4 enzymes.  Yet eight of our 

citrullination sites display a pattern of modification by PAD2 alone, PAD4 alone, or both 
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PADs 2 and 4 when they are individually applied, but not in the case where PADs 2 and 4 

are administered together.  It should be noted that our four groups of modified protein 

(PAD2 only, PAD4 only, PADs 2+4, or no PADs) were processed completely separately 

with regards to initial modification, protein degradation, and MS processing, and therefore 

the intrinsic variability of any one of these steps may account for this inconsistency. Indeed, 

these inconsistencies cannot be attributed to MS protein coverage, since all of these sites 

were covered in all four of the analyses.  The sites R751, R953, R1410 and R2223, were 

definitely not citrullinated in the condition of PAD 2+4.  The sites R67, R515 and R1910 

were found to be citrullinated in the PAD 2+4 condition, but they were later eliminated from 

consideration due to low-quality MS2 spectra.  Another hypothesis to explain these results 

is that the PAD2 and 4 enzymes are citrullinating themselves and/or one other leading to 

enhanced levels of inactivation at especially high levels of total PAD concentration.  PAD4, 

in particular, has a documented ability for autodeimination [66] which leads to its 

inactivation, so it may not be surprising if it could also target PAD2 and visa versa.   

3.5.2 Evidence for a αvβ3 to α5β1 Integrin Switch and its Potential Implications 

Interferometry results indicate that the impact of citrullination of Fn with regards to 

α5β1 integrin affinity is a slight increase in affinity from 0.741nM to 0.3016nM. 

Nevertheless, even unmodified Fn’s affinity of 0.741nM is in the range of monoclonal 

antibody affinity, and one would not expect this small difference to have a large biological 

impact.  Indeed, CHO-α5β1adhesion results did not produce any significant changes in cell 

attachment on Cit Fn compared to Fn.  The more interesting interferometry result is the 

decrease of αvβ3 Kon rate on Cit Fn in comparison to Fn from 27240 down to 25400 M-1s-

1.  CHO-αvβ3 binding assays hold up the biological impact of such a change in affinity, as 
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attachment to Cit-Fn was significantly reduced, and attachment to fibrin, which already 

possesses a relatively low level of cell adhesiveness mediated entirely through αvβ3 

integrins, was completely eliminated.  These results strongly suggest that citrullination of 

provisional ECM proteins is likely to have a functional cellular impact.   

Even more interesting were the ICC results demonstrating an increase of both α5 and 

β1 integrin subunits within FAs on Cit Fn in comparison to Fn within both HFFs that express 

both αvβ3 and α5β1 integrins, along with several others that must all compete for the same 

binding sites.  Since neither interferometry nor CHO-α5β1 adhesion data indicated a drastic 

change in α5β1 affinity for Fn due to citrullination, it would be difficult to argue that affinity 

underlies this increase of α5 and β1 presence.  One explanation, based on the much more 

substantial reduction of αvβ3 adhesion on Fn due to citrullination, is that α5 and β1 subunits 

increase their attachment in compensation for loss of adhesion via αvβ3.  Confounding this 

explanation, however, is the fact that there did not appear to be any difference in absolute 

quantities of αvβ3 integrins within FAs of HFFs on Fn or Cit Fn.   

A more likely explanation for the increase of α5β1 integrins may therefore be a result 

of integrin binding kinetics.  It is well established that αvβ3 integrins are able to both attach 

and detach from Fn more quickly than α5β1 integrins [120, 148], and thus at early 

attachment timepoints one would expect cells to use a relatively greater proportion of αvβ3 

integrins in comparison to α5β1 on Fn substrates. Integrins possess an impressive clustering 

ability such that whichever subtype binds first and is able to link with talin can then recruit 

additional integrins of the same or different subtypes to existing adhesion sites [148, 157].  

Thus on normal Fn, αvβ3 would tend to bind first and subsequently recruit additional αvβ3 

as well as α5β1 integrins.  Since it normally exhibits slower binding kinetics, the integrin 
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α5β1 only tends to dominate as a proportion of total integrin presence in the case where 

additional force is required for adhesion such as on stiff substrates or in the presence of 

externally applied forces, and this is a direct consequence of its noted ability to form strong 

catch-bond like adhesions that increase in strength as additional force is applied [119, 121, 

158].  

A logical explanation for the enhanced for altered integrin proportions on Cit Fn is 

that since αvβ3 affinity on Cit Fn is reduced, there is an abnormal increase of α5β1 integrin 

attachments at early timepoints, and these are subsequently able to recruit both additional 

α5β1 integrins as well as αvβ3 such that the final result is an overall integrin ratio that favors 

both α5 and β1 subunits compared to αvβ3 integrins, or an integrin switch from αvβ3 

towards α5β1. Indeed, since each pairwise comparison of co-localized integrins (αvβ3+β1, 

αvβ3+ α5, and α5+β1) shows enhanced co-localization on Cit Fn compared to Fn, these 

results may further imply that α5β1 integrins are intrinsically better at clustering than are 

αvβ3 integrins.    

The force-induced co-immunoprecipitation results certainly bear out the integrin 

switch theory. In the absence of force, again, there is no distinguishable difference in αvβ3 

presence on Fn or Cit Fn, though baseline levels of α5 are greater on Cit Fn compared to 

Fn.  The fact that α5 presence increases due to force on Fn but not on Cit Fn, where it stays 

constant, may be explained by α5 integrins having already maxed out their adhesion in the 

baseline state, so it was not possible for them to increase any further as force was applied.  

The increase of α5 on Fn due to force application can be explained by the necessity for the 

recruitment of stronger α5β1 integrins to resist the applied force.  With regards to αv 

integrins, there does not appear to be a force-induced increase on Fn, which is as expected 
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since these integrins are not best suited to high-force regimes.  The force-induced increase 

of αv on Cit Fn, however is a bit surprising, and could imply that the already enhanced α5β1 

baseline presence was able to not only retain clustered αvβ3 integrins but recruit additional 

αvβ3 integrins due to the application of force.   

With regards to downstream signal protein phosphorylation, co-immunoprecipitation 

assays showed an enhancement of both baseline and force-induced phosphorylation of FAK, 

SRC, and ILK on Cit Fn compared to Fn.  Similar increases were also observed in ICC 

assays of HFFs plated on Cit Fn.  FAK phosphorylation, specifically at Y397, which is what 

was stained for in this study, is known to be enhanced in tensioned cell adhesion states, 

specifically in association with β1 integrins [158], and since there is an increase of α5β1 on 

Cit Fn, it seems logical that there would therefore also be an increase of phospho-FAK 

Y397.  Phosphorylation of FAK Y397 is also directly associated with activation of src and 

binding of the Grb2 adaptor protein [124], both of which, in complex with pFAK are capable 

of enacting a variety of further downstream signaling as depicted in Figure 2.   

One of the more prominent mechanotransduction pathways activated by pFAK/pSRC 

signaling is that of Rac/Rho where differences between Fn and Cit Fn could not be observed 

via GLISA assay.  This may very well be because Rac and Rho are not actually upregulated 

as a function of Cit Fn binding.  However, the GLISA assays were only performed at the 

single timepoint of 30 minutes, since most signaling events occur relatively quickly, but it 

is also possible that these molecules were being observed through the wrong window of 

time and that differences do exist in a different window.  It should also be acknowledged 

that the GLISA is a fairly low-throughput assay and the sample size of four per substrate 
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(two separate experiments using two separate groups of cells per substrate each) may have 

been too small for statistical significance.     

Altogether, the enhancement of vinculin, pFAK, pSRC, and α5β1 integrins strongly 

indicate altered activation of meahanotransduction on Cit Fn compared to Fn; in this 

context, it’s aberrant because it occurs in the absence of changes to substrate stiffness or 

external force application.  To explore changes in stress fiber content, a proxy for perceived 

cell stiffness, HFFs were plated on Fn- or Cit Fn- coated polyacrylamide gels of 2kpa, 8kpa, 

or 25kpa stiffness.  Differences stress fibers were observed only on 8kpa and 25kpa gels, 

and only significantly so on 25kpa gels, indicating that while citrullination of Fn may 

aberrantly enhance mechanotransduction signaling, it’s not to such an extent that these 

events also play out in very soft environments where they would be supremely abnormal.  

It’s also worth mentioning that both 8kpa and 25kpa represent relatively stiff surfaces in a 

biological context, well beyond what would be experienced in lung tissues, though well 

below that of cartilage and bone [159]. 

The lack of F-actin enhancement on 2kpa gels on Cit Fn compared to Fn by no means 

undermines the significance of aberrant mechanotransduction as a consequence of Cit Fn. 

A study by Friedland et. al. defined two different states of  α5β1 binding: relaxed when it 

only binds to RGD, and tensioned with it binds to both RGD and PHSRN.  Importantly, 

α5β1can be induced into a tensioned state either from application of external forces or those 

generated internally from the actin-myosin machinery, and indeed, the ratio of tensioned to 

relaxed α5β1 integrins increases on progressively stiff substrates.  Since specific pathways 

of downstream signaling, and in particular phosphorylation of FAK Y397, become activated 

through tensioned versus relaxed α5β1binding, the authors propose that this divergent α5β1-
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mediated signaling may constitute an intrinsic evolutionarily derived means of cellular 

mechanotransduction.  Based on the results of the present study, it would appear that 

through enhancement of tensioned α5β1, citrullination of Fn effectively initiates this 

mechanotransduction mechanism.  An important question that remains, however, is whether 

the mechanotransduction signaling is being activated on a purely artificial basis, or whether 

fibroblasts on Cit Fn also experience an enhancement of internally generated forces as a 

result of interactions with Cit Fn. 

The final piece to the signaling puzzle is the striking elevation of phospho-ILK on Cit 

Fn compared to Fn.  ILK can certainly be considered a mechanotransduction protein as it 

plays an integral role in cardiac stretch [160] and though it will bind to both  β3 and β1 

cytoplasmic tails, it possesses a strong preference for β1 [125, 130], the subunit most 

commonly associated with tensioned environments. Nevertheless, through ILK’s many 

functions as both a scaffolding protein in conjunction with Pinch and Parvin, and as an 

independent kinase, it has the ability to precipitate several signaling pathways, including 

Akt, JNK, and MAPK/ERK, that are most commonly associated with cancer, and possess 

functions outside traditional mechanotransduction axes.  In particular, Akt is associated with 

cell survival and growth [161], JNK is a regulator of apoptotic and cell death pathways, and 

MAP/ERK largely regulates the cell cycle and cell proliferation.  At least in theory then, 

fibroblast interactions with Cit Fn have the potential to alter cell functions relating to 

survival, growth, and proliferation.   

Phospho-ILK also has the ability to phosphorylate GSK3-β, leading to its inhibition, 

and indeed we also observed an enhancement of phospho- GSK3-β.  Since active GSK3-β 

normally sequesters β-catenin, when it’s inhibited, β-catenin is able to translocate into the 



 90 

nucleus to carry out canonical Wnt pathway signaling, known to influence almost every cell 

phenotype in existence, including differentiation, apoptotic resistance, cell invasiveness, 

proliferation, growth factor secretion, ECM secretion, and more [134-136].  GSK3-β has 

been directly linked to cell migration through several disparate mechanisms including 

lamellipodial formation and decreased FA turnover through FAK phosphorylation at S722; 

therefore inhibitory GSK3-β phosphorylation would actually be expected to enhance FA 

turnover [162].  Pointedly, we noticed a clear preference of nuclear localization of phospho-

GSK on Cit Fn compared to Fn, and while the literature is not clear what this means for 

phospho-GSK, nuclear localization of active GSK3-β is correlated with cell proliferation 

and NF-kB anti-apoptotic activity [163].               

3.6 Conclusion 

Fibronectin can be citrullinated at 24 unique sites through the enzymatic activity of 

PAD2 and PAD4 enzymes; five of these modifications occur within the cell-binding 

domain and have been shown to have a detrimental impact on αvβ3 integrin attachment. 

This diminished αvβ3 attachment results in an integrin switch whereby fibroblasts adopt a 

α5β1-dominant adhesion phenotype that we hypothesize is mediated through changes in 

early integrin binding kinetics.  The α5β1-dominant adhesion aberrantly activates 

mechanotransduction signaling involving up-regulation of pFAK, pSRC, pILK, and 

vinculin that ultimately lead to increased GSK3-β phosphorylation and stress fiber 

formation. Upregulation of mechanotransduction signaling has several implications for 

cell phenotype including cell migration, proliferation, survivability, and contraction, all of 

which point towards citrullination being a contributing factor in the activation of 

fibroblasts.  More generally, both αvβ3 and α5β1 integrins are present in a variety of cell 
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types, which therefore implies that Fn citrullination may have even more wide-reaching 

impacts.    
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CHAPTER 4. THE INFLUENCE OF CITRULLINATED 

PROVISIONAL EXTRACELLULAR MATRIX ON FIBROBLAST 

PHENOTYPE 

4.1 Abstract 

 Activated fibroblasts have been identified as a premier exacerbating element of a 

variety of chronic inflammatory conditions including rheumatoid arthritis (RA), fibrotic 

diseases, and cancer. Characteristics underlying their damaging impacts specifically include 

invasiveness, hyperproliferation, apoptotic resistance, enhanced contraction, excessive 

matrix remodeling, and unwarranted cytokine secretion.  To investigate whether 

citrullinated fibronectin (Cit Fn), a protein strongly correlated to a severe course of these 

diseases, is sufficient to elicit changes in fibroblast behavior several different assays were 

performed. These included adhesion, BrDU, MTT, gel contraction, and wound healing 

assays which were respectively implemented to analyze cell spreading, proliferation, 

metabolism, cell contraction, and directional migration. Additionally, atomic force 

microscopy (AFM) was employed to evaluate cell stiffness, and α-actinin staining along 

with confocal videography was applied to investigate focal adhesion (FA) turnover. Results 

indicate that in the absence of any other stimuli, Cit Fn is sufficient to influence healthy 

fibroblasts to reduce spread area, increase stiffness, and increase both random and 

directional migration; this latter phenomenon can largely be explained Cit Fn’s ability to 

also produce enhanced FA turnover.  No differences were observed in proliferation, 

metabolism, or apoptotic resistance, though for the latter citrullinated fibrin did produce a 

protective effect.  Altogether, results indicate that Cit Fn does contribute to fibroblast 

activation and it may therefore constitute a promising therapeutic target.   

4.2 Introduction 
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Fibroblasts are interstitial cells best known for secreting extracellular matrix (ECM) 

proteins and generally helping to maintain healthy tissue structure [69, 70]. While normally 

found in a senescent state, during instances of wound repair they are known for becoming 

activated and taking on several special functions that are temporarily beneficial to the wound 

healing process.  These include hyperproliferation, migration into the wound area, enhanced 

secretion of ECM molecules to provide a scaffold for cell infiltration, cytokine secretion to 

recruit necessary immune and other cells to the wound, apoptotic resistance as protection 

from oxidative stress of the inflammatory environment, and enhanced contraction to help 

minimize the exposed wound area [71, 97].  At the conclusion of wound healing, these 

fibroblasts typically revert back to a senescent state or engage an apoptotic pathway so that 

their overall numbers return to normal. In some instances, however, fibroblasts maintain 

their activated state to the point that their presence and activities become pathological.   

In the cases of fibrotic diseases and cancer both, the disease environment is widely 

considered to be one of perpetual and excessive wound healing [53, 98].  At a macroscale, 

this results in tissues that are burdened with copious amounts of ECM proteins and an 

overall elastic modulus much higher than would be seen in healthy tissue, such that normal 

tissue function becomes impaired [109].  Importantly, fibroblasts are capable of sensing and 

responding in kind to stiff surfaces, and they tend to initiate mechanotransduction pathways 

that exacerbate existing tissue abnormalities [103]. 

In the case of RA, ECM abnormalities exist in two distinct phases.  The first involves 

excessive ECM protein secretion, which along with an enhanced migration phenotype, 

allows activated RA fibroblast-like synoviocytes (RA FLS) to invade into both cartilage and 

bone, compartments in which they would not normally be present [75, 79].  The second 
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involves excessive breakdown of ECM tissues; while this is a phenomenon that also occurs 

in fibrotic diseases and cancer, it’s generally not to the extreme seen in RA. RA FLS secrete 

profuse quantities of matrix metalloproteinases (MMPs) and other proteases that drive the 

breakdown of cartilage and bone.  Importantly, once activated, RA FLS are capable of 

executing these disease exacerbating activities in the absence of continued inflammation or 

immune activation [86]. 

 While inflammation and immune stimulation are both certainly capable of 

aggravating activated fibroblast phenotypes, the question as to how fibroblasts initially 

become activated and maintain their activated states have stymied researchers for decades.  

There is certainly a genetic component, as fibrosis-associated fibroblasts (FAFs), cancer 

associated fibroblasts (CAFs) and RA FLS, are all known to acquire epigenetic and 

permanent genetic changers that accelerate aberrant behaviors [43, 73, 79]. Nevertheless 

it’s difficult to ignore the fact that due to the chronic inflammation, excessive ECM 

deposition, and perpetual remodeling that is known to occur in all these diseases, the 

fibroblasts are constantly exposed to a very abnormal micro-environmental architecture that 

pointedly possesses a disproportionately high quantity of the provisional matrix proteins 

fibrin(ogen) and fibronectin [108, 164].   

Importantly, a significant amount of the provisional ECM (pECM) in cancer, fibrosis, 

and RA is known to be citrullinated since antibodies can be detected that react to the 

citrullinated proteins and imunohistochemical staining has directly proven its existence 

within inflamed tissues of these diseases [22, 35, 80, 165]. Further, these matrices are known 

to become citrullinated at very early stages of disease progression [7], begging the question 

as to whether their intimate physical proximity to activated fibroblasts is more a correlative, 
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or causative factor in these diseases.  In the current aim, the goal is to gain and understanding 

of how citrullinated fibronectin (Cit Fn), in the absence of any other stimuli influences 

fibroblast behavior so that we may better elucidate the contribution of citrullination in the 

pathophysiology of these diseases.   

4.3 Materials and Methods 

4.3.1 Adhesion and Cell Morphology Assays 

To evaluate fibroblast adhesion and spreading, HFFs were plated in SFM for 15, 30, 

45, or 60min on Cit Fn or Fn-coated coverslips, subsequently washed with PBS++ 

(supplemented with 2mM CaCl2 and 1mM MgCl2 for integrin activation), fixed with 

paraformaldeahyde, permeablized, and then stained with phalloidin and Hoescht.  Large 

10X magnification tile-scan images were taken of 0.5cm by 0.5cm regions of each coverslip 

using a Nikkon-Ti fluorescent scope and the absolute number of adherent cells was gauged 

by a count of distinct nuclei.  Cell area, perimeter, and circularity (C = 4*pi*area/perimeter2) 

were calculated from phalloidin stain using Nikkon elements software on a minimum of 100 

unique cells imaged with a 20X objective.  Only isolated cells (not touching any other cells) 

were included for analysis.  For evaluation of cell adhesion on substrates of variable 

stiffness, HFFs were plated within wells of Matrigen SoftWell Easy Coat plate with defined 

gel stiffnesses of 2kpa, 8kpa or 25kpa for 45minutes, after which they were fixed, stained, 

and imaged as above.    

4.3.2 9*10 Cell Adhesion 
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10mm diameter coverslips were coated overnight with 20ug/mL 9*10 fragments in 

PBS and subsequently blocked for 1 hour in 1% hd-BSA solution.  HFFs were seeded at 

4000cells/cm2 for 45 minutes, after which they were washed 1X in PBS++, fixed with 

paraformaldehyde, and stained for phalloidin.  Imaging and subsequent cell area analysis 

was conducted using a Nikon Eclipse Ti scope and associated Elements software.   

4.3.3 AFM analysis of Cell Stiffness 

HFFs were plated on CitFn/Fn-coated glass coverslips for 1 hour in SFM at which 

point beaded AFM tips were used to indent two unique locations per cell for a total of 50 

cells per substrate over two dishes each.  A subset of cells were subsequently fixed with 

paraformadahyde and re-assayed as a positive stiffness control.  Cell plating was staggered 

such that all cells were assayed within two hours of initial plating.  For evaluation of cell 

bulk modulus when plated on variable stiffness substrates, an identical procedures were 

followed using Matrigen EasyCoat gel-coated coverslips of defined 1kpa, 8kpa, or 25kpa 

stiffnesses.  Gel stiffness was confirmed by directly indenting a 1mm region of the gel.    

4.3.4 Apoptosis 

Individual 35mm TC petri dishes were prepared for covalent linkage to thin fibrin 

clots by first being incubated with 2.5% glutaraldehyde solution in water for 1.5 hours at 

37oC, after which they were washed 2X with dH2O.  Clots were prepared to a final volume 

of 125uL with 1.5mg/mL fibrinogen, 0.5U/mL thrombin, and HEPES/5mM CaCl2 solution.  

Upon thrombin addition, clots were spread using mini-cell scrapers to cover the entire 

surface area of petri dishes, after which they were allowed to dry at room temperature.  Clots 

were washed once in 4X Citrullination buffer (400mM tris, 20mM CaCl2) to quench 
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unreacted aldehyde groups.  Citrullination buffer was subsequently replaced with 1X 

citrullination buffer with or without PAD2/4 enzymes for modified/un-modified substrates 

at concentrations of 10units PAD4/mg fibrinogen + 11.2 ug PAD2/mg fibrinogen.  

Citrullination reactions were allowed to proceed at room temperature with gentle shaking 

for 24 hours after which they were quenched with 20mM EDGA.  Fibrin gels were washed 

1X with PBS and then blocked with 1% hd-BSA. In the preparation of Fn/Cit Fn-coated 

dishes, the Fn/Cit Fn was passively absorbed overnight at 20ug/mL, with 1mL of total 

solution per 35mm dish.  

 Cells were plated at 12.2K cells/cm2 (2 dishes per substrate per apoptotic treatment 

condition) for two hours in SFM before having media replaced with SFM containing 200, 

100, 50, or 0uM (untreated controls) freshly opened and freshly mixed hydrogen peroxide.  

All hydrogen peroxide solutions were replaced with freshly prepared solutions after the first 

eight hours, after which cells were given an additional 6 hours of hydrogen peroxide 

exposure for a total of 14 hours, at which point cells were washed with PBS, trypsinized, 

and stained for caspase 3/7 and 7AAD (CellEvent kit, thermos) using standard protocols.  A 

minimum of 10K cells per substrate per treatment condition was measured via Calibur flow 

cytometry with analysis in FCS express.  Data represents an amalgamation of three replicate 

experiments.  For single-stain live/dead controls, HFFs were plated in full-serum media for 

the duration of the experiment and then either stressed via heating at 65oC for 5 minutes, 

followed by 3 minutes on ice, or left at room temperature.   

4.3.5 Cell Proliferation Assays 
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HFFs were plated on Fib, Cit-Fib, Fn, Cit Fn, or hd-BSA-coated coverslips in SFM 

supplemented with 0.2% Fn-depleted serum for 2 hours after which they were fixed and 

analyzed using standard BrdU protocols for percent proliferating cells with a minimum of 

10 coverslips per experimental substrate and 5 coverslips for negative controls.   

4.3.6 Cell Metabolism Assays 

HFFs were serum-starved in 0.2% Fn-depleted serum media for 48 hours before 

being plated in 0.2% Fn-depleted serum or SFM on top of either Fn, Cit-Fn, or BSA at cell 

densities of 20K, 10K, or 5K cells per well (96-well plate), with 6 wells prepared per 

substrate and cell density, for 2hours, after which MTT solution was allowed to incubate 

for an additional 4 hours. MTT metabolism and quantity was analyzed according to 

manufacturer’s recommended protocols.  For analysis on fibrin/cit-fibrin, 100uL clots of 

0.1mg/mL fibrinogen and 1U/mL thrombin were polymerized in glutaraldehyde-treated 

wells and allowed to dry overnight.  Clots were washed prior to plating of cells.   

4.3.7 Strained Gel Contraction Assay 

Gels were prepared in non-TC 24 well plates pre-blocked in 2% hd-BSA and washed 

with PBS, and air-dried.  Fn-infused clots were 250uL and consisted of 2.5mg/mL 

fibrinogen, 200ug/mL fibronectin, and 1U/mL thrombin in HEPES/5mM CaCl2 solution.  

Clots were allowed to polymerize for 30minutes at 37oC, after which 500uL 1X 

citrullination buffer (with/without 10U/mg protein PAD4 + 11.2ug/mg protein PAD) was 

added for a 24hr incubation culminated with quenching in 20mM EDTA.  Clots were 

washed 2X with PBS before seeding HFFs at 30,000 cells/well in 1mL SFM supplemented 

with 0.2% Fn-depleted serum + 2uL stock aprotinin per well.  Media was replaced after first 
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24 hours.  At the 48-hour timepoint, clots were released from well bottoms using a 30G 

needle around the gel edge and allowed to contract for 15minutes at which point they were 

photographed.  They were then fixed in 4% PFA for 15minutes, washed 3X in PBS, stained 

with Pierce 660nm Assay Reagent for 15minutes (for contrast), washed again in PBS, and 

finally imaged via flash photography.  Image J was utilized to make measurements of final 

clot areas in photos both before and after fixation/staining.  Twelve clots each were analyzed 

with or without citrullination.  For no-contraction controls, un-citrullinated gels (n=5 each) 

were either exposed to media without cells or dosed with 12uM latrucuin B added 3 hours 

following initial cell seeding and replaced after the initial 24 hours.   

4.3.8 Floating Gel Contraction Assay 

Gels were prepared in non-TC 24 well plates pre-blocked in 2% hd-BSA, 

subsequently washed with PBS, and air-dried.  Fn-infused clots of 250uL volume were 

prepared with 2.5mg/mL fibrinogen, 200ug/mL Fn, 1U/mL thrombin in HEPES/5mM 

CaCl2 solution.  Clots were allowed to polymerize for 30 minutes at 37oC, after which 500uL 

1X citrullination buffer (with/without 10U/mg protein PAD4 + 11.2ug/mg protein PAD) 

was added for a 24hr incubation culminated with quenching in 20mM EDTA. N=12 each 

Fn/Cit Fn gels.  

 HFFs were plated at 40,000 cells per well in 1mL SFM supplemented with 0.2% 

Fn-depleted serum and 2uL stock aprotinin. Cells in latrunculin wells were allowed to attach 

for 1 hour before the addition of 12uM latrunculin.  All cells were allowed a total of 4 hours 

for gel attachment before gels were detached from well walls using 30 gauge needles.  Wells 

were imaged at 24 hours post gel detachment from walls, both before and after fixation with 
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paraformaldehyde.  Fixed gels were subsequently washed 3X in PBS, stained in Ponceau 

solution for 30 minutes (for enhanced contrast).  They were subsequently washed with 

water.   

4.3.9 α-actinin Analysis 

HFFs were plated in SFM for 2 hours on coverslips pre-coated with Fn or Cit Fn.  

For negative controls of FA turnover, cells were plated on Fn in the presence of 10uM PF-

28, a FAK-inhibitor for the full 2 hours, or 2uM of cytochalasin D for the last 30 minutes 

of cell plating.  After 2 hours, cells were washed, fixed in paraformaldehyde, and stained 

with anti-α-actinin (ab18061, abcam) at 1:400, anti- rabbit paxillin (ab32084, abcam), and 

phalloidin.  Only individual cells determined not to be in contact with any neighboring cells 

were imaged via PerkinElmer spinning disk confocal microscope using a 63X objective.  A 

total of 75 over 4 coverslips were imaged per condition.  Three biological replicates were 

performed, only one of which included sh-RNA β1 knockdown cells on Fn or Cit Fn as 

additional groups.   

4.3.10 Real-time Paxillin Turnover Analysis  

Low passage HFFs were transfected with RFP-paxillin (a kind gift from the 

Cassanova Lab at UVA), using 6ug per 200K cells along with 24uL of X-tremeGene 

Transfection Reagent (Sigma-Aldrich).   Cells were allowed 14 hours for transfection, after 

which they were washed multiple times and provided fresh media.  Cells were allowed to 

rest 24-hours in full-serum media before being plated on Fn/Cit-Fn coated coverslip-bottom 

petri dishes (FluoroDish) in serum-free media supplemented with 25mM HEPEEs.  Cells 

were allowed to adhere for two hours, at which point they were washed, given fresh SFM+ 
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25mM HEPES, and imaged via TIRF confocal microscopy within a temperature-controlled 

environmental chamber.  FA turnover videos consisted of images taken once every 10 

seconds for a total duration of 10 minutes per cell.  Cell plating was staggered such that all 

cells were imaged within four hours of initial plating.  A total of 14 cells were imaged per 

substrate across four separate dishes representing two biological replicates of unique RFP-

paxillin transfection.  Only isolated cells (those not touching any others) were imaged. FA 

turnover was quantified using Volocity quantitation software.   

4.3.11 Random Migration Assays 

Cell culture dishes were divided in half using thin PDMS inserts adhered to the 

bottom utilizing silicone glue and allowed to dry 24 hours.  Dishes were sterilized via UV 

radiation prior to coating the two halves with 20ug/mL Fn or Cit Fn protein in PBS overnight 

at 4oC, after which plates were blocked with 1% hd-BSA.  HFFs were plated at 4000 

cells/cm2 and given two hours to adhere before exchanging media for fresh SFM 

supplemented with 1% BSA.  The divided 35mm dishes were placed within the 37oC, CO2-

supplemented cell culture chamber of a Nikon Biostation imaging apparatus, and cell 

migration was monitored for the next 20 hours with 10x phase contrast images captured 

once every 10 minutes of nine unique fields of view on each substrate.   Cell movements 

were quantitated using the cell tracker plugin of Image J.  Persistence distance is defined as 

the cumulative distance travelled by a single cell without a change of direction greater than 

or equal to 90 degrees.  Only cells for which the entire nucleus was visible for a minimum 

of 20 frames were included in analysis for a total of at least 35 cells per condition. 

4.3.12 Wound Healing Assays 



 102 

Wound healing assays were conducted utilizing the CytoSelect 24-well Wound 

Healing Assay (Cell BioLabs, Inc.). Individual wells (n=4 per substrate) were coated with 

50ug/mL Fib/Cit Fib or 20ug/mL Fn/Cit Fn overnight at 4oC, and subsequently blocked 

with hd-BSA for 1 hour.  HFFs were seeded at 200Kcells/cm2 around 0.9mm plastic inserts 

for 4 hours in SFM supplemented with 0.2% Fn-depleted serum, after which inserts were 

removed, wells gently washed 2X with PBS, and fresh media was added.  Following the (13 

or 15) hour migration period (trials 2 and 1, respectively), cells were fixed in 4% PF, stained 

with cresyl violet solution, and imaged via brightfield microscopy.  Thresholding, contrast 

enhancement, and subsequent calculations of percent wound coverage were performed in 

ImageJ and Matlab.     

4.3.13 Statistical Analysis 

All statistical analysis was performed using GraphPad Prism software with 2-tailed t-

tests or one-way ANOVAs and Tukey post-hoc analysis, as appropriate for the experimental 

set-up.  Alpha was set at 0.05 for all analyses. In the case of larger data-sets, such as with 

fluorescent signal analysis of cell components in microscopy images, outliers were removed 

using the ROUT method with a Q of 1% prior to further statistical analyses. The Shapiro-

Wilk test was utilized to test for normality of data distribution, and in cases where null 

hypothesis was rejected, the Mann-Whitney test was applied to ascertain statistical 

significance.      

4.4 Results 

4.4.1 Fibroblast Adhesion and Spreading is Reduced on Cit Fn 
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While modest, citrullination of Fn results in a significant reduction in both the total 

number of adhered HFFs and also their total spread area (Figure 21A, B, E). Adhesion and 

spreading was significantly and much more obviously enhanced compared to that observed 

on the negative control of heat denatured BSA. These differences can be reproducibly 

observed as early as 30 minutes and extending through at least one hour with the greatest 

differences being observed at around 45 minutes (Figure 21D).  HFF circularity, on a scale 

of 0 to 1 where 1 represents a perfect circle, was very low on both Fn (average = 0.2635) 

and Cit Fn (average = 0.2798) and although these measurements indicate that HFFs on Cit 

Fn are slightly more rounded this finding was not significant. Results from HFF adhesion 

on Cit 9*10 vs unmodified 9*10 show that a similar reduction in cell adhesion is observed 

on the citrullinated protein (Figure 21C).  Since 9*10 contains only the portion of Fn 

representing the cell-binding domain, it is apparent that modifications within this region of 

Fn alone are capable of mediating changes in fibroblast adhesion.   
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4.4.2 Fibroblast Proliferation, Metabolism, and Apoptotic Resistance are Not Impacted 

by Cit Fn 

Results of HFF proliferation, metabolism, and apoptosis assays, as evaluated through BrDU, 

MTT, and caspase 3/7 plus 7AAD signal, respectively, failed to show any differences in 

fibroblast performance on Cit Fn compared to Fn surfaces (Figure 22A, B and Figure 23A).  

In all cases, negative control cells, plated on hd-BSA in the case of proliferation or metabolic 

assays, or not subjected to oxidative stress in the case of apoptotic assays, performed as 

expected, showing diminished levels of proliferation, metabolism, and cell death compared 

Figure 21: Fibroblast Adhesion and Spreading on Fn and Cit Fn   

Graphs depict the relative numbers (A) and spread areas (B) of HFFs adhered to Fn or Cit Fn.  

Additionally, HFF spread area on citrullinated Fn cell binding domain fragments (Cit-9*10) 

or unmodified fragments (9*10) are shown in (C) along with a comparison of spread areas on 

Fn vs Cit Fn at timepoints ranging from 15 minutes through 1 hour (D).  Representative images 

of phalloidin-stained cells are shown in (E) where white scale bar indicates 12um. Analyses 

across all experiments represent a minimum of 100 cells per substrate at each timepoint.    
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to cells in experimental groups.  It should also be noted that for each of these assays, 

identical versions were performed on citrullinated vs unmodified fibrin clots, and similar to 

Fn, no differences were observed in proliferation or metabolic assays.   There did exist, 

however, elevated resistance to H2O2 in a dose-dependent manner within HFFs exposed to 

Cit-Fibrin compared to unmodified fibrin (Figure 23B).  Statistical significance was only 

observed at the highest concentration of H2O2, but at every H2O2 dose, both caspase 3/7 and 

7AAD was consistently observed at lower frequencies in cells on Cit Fibrin over all three 

trials of the experiment.      

 

Figure 22: Fibroblast Metabolism and Proliferation 

Quantification of MTT (A), and BrDU (B) signals are shown above.  Conditions involving 

unmodified Fn are shown in orange, citrullinated Fn (Cit Fn) in green, and bovine serum 

albumin (BSA) in grey. Results represent n= 6 wells per substrate and cell density for MTT 

assay and n = 10 coverslips per experimental substrate and n = 5 coverslips for BSA.     
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Figure 23: Apoptotic Resistance to Oxidative Stress 

Combined results of three biological replicates in oxidative stress assays for apoptotic 

resistance on Cit Fn (A) or Cit Fibrin (B) compared to non-modified substrates are shown 

above. Each apoptotic trial measured a minimum of 10,000 cells per condition.  Results are 

broken down according to detectable apoptotic/death markers including caspase 3/7 stain 

only (early apoptosis), 7AAD only (necrotic death), and caspase 3/7 + 7AAD (late 

apoptosis)  

    

4.4.3 Fibroblast Stiffness is Enhanced on Cit Fn 

AFM analysis of cell stiffness shows that HFFs plated on Cit Fn possess a median 

stiffness of 3.225 and a mean modulus of 5.773kPa compared to median and mean moduli 
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2.17 and 4.536, respectively on Fn (Figure 24).  While modest, these results indicate that 

fibroblasts display a significant enhancement of overall stiffness on Cit Fn compared to Fn.  

When repeated on Fn or Cit-Fn coated polyacrylamide gels of 2kPa, 8kPa, or 25kPa 

stiffness, (results not shown) differences in stiffness were only observed on the stiffest of 

the gels tested mimicking the original results obtained on Fn or Cit Fn-coated glass.     

 

Figure 24: AFM to Probe Cell Stiffness: 

AFM was used to probe at least 50 fibroblasts each plated on Fn or Cit Fn for 45 minutes at 

two different locations two cell, with the average force reading per cell being graphically 

depicted on the left.  On the right are representative images of fibroblasts on Fn and Cit Fn 

with a top-down view of the beaded AFM tip as it’s probing cell stiffness.   

4.4.4 Fibroblasts Possess a Diminished Capacity to Contract Citrullinated Bulk Matrix 

In both floating and strained versions of the gel contraction assay, HFFs possessed 

dramatically reduced capacity to contract the gels (Figure 25A, B). Minimal to no gel 

contraction was observed in gels without any cells seeded or where cells were treated with 

latrunculin B (lat B).  In the floating version of this assay, a 48-hour timepoint was also 

separately observed (results not shown), but cells were overcrowd, and gels actually re-
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expanded in comparison to their 24-hour areas.  Nevertheless at both 24 and 48-hours the 

overall areas of un-modified gels were reduced compared to those that were citrullinated.  

In the case of strained assays, photos of the gels were taken pre-fixation, and pre-staining 

in case either of these treatments impacted gel area.  While data for only the final stained 

gels is shown, gel areas were measured in all images.  Fixation did appear to slightly reduce 

gel areas, although the same significant enhanced gel contraction on unmodified constructs 

compared to citrullinated was observed in each case.   

 

Figure 25: Gel Contraction Assays 

Quantification of final Fibrin/Fn gel areas after 24 hours for those in the free-floating assay 

(A) and 15 minutes after release from well walls in the strained assay (B) is shown on top.  

Representative images of gels at their respective final timepoints are shown below well 

edges identified in black and gels stained with ponceau red for free-floating gels and 660 

protein quantification reagent (dark blue) for strained gels. N = 12 gels each for Fibrin/Fn 

or Cit-Fibrin/Fn conditions and n=5 each for No Cells and Latrunculin B conditions.    
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4.4.5 Fibroblasts Display Increased Focal Adhesion Turnover on Cit Fn 

Staining for α-actinin as a proxy for stable FAs showed that HFFs on Cit Fn possess 

a lower percentage of stable FAs compared to those plated on Fn.  This was determined by 

quantification of the total amount of α-actinin fluorescent signal present within FAs, whose 

area was demarcated by paxillin stain, for each of 75 cells imaged per surface, whereby 

HFFs on Cit possessed lower absolute quantities of α-actinin signal within FAs (Figure 26A, 

B).  The mander’s coefficient, indicating the percentage of paxillin stain covered by α-

actinin stain was also lower for HFFs plated on Cit Fn compared to Fn (Figure 26C).  

Positive control HFFs for stable FA complex that were treated with either the FAK-inhibiter 

PF-28 or the actin de-stabilizer cyotochalasin D displayed higher measurements for both α-

actinin within FAs and mander’s coefficient compared to either of the experimental groups. 

Knockdown of β1 integrin in HFFs resulted in an increase of FA stability by both 

aforementioned measurements on Cit Fn and a decrease of total α-actinin within FAs on Fn.   
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Figure 26: α-Actinin Staining of Stable Focal Adhesions 

HFFs were stained with α-actinin as a proxy marker for stable FAs.  Representative spinning 

disk confocal images (A) of HFFs plated on Fn (top row) or Cit Fn (bottom row) with 

staining for α-actinin in green, paxillin in red, and overlay highlight less co-localization of 

fluorescent signal within cells plated on Cit Fn (pearson’s r = 0.523 ) compared to cells on 

Fn (pearson’s r = 0.822).  Scale bar = 12um.  Blue box indicates region of magnified 

overlays on right, scale bar 1.5um. Quantitation of α-actinin signal within FAs is shown in 

(B) and quantitation of the manders coefficient for percent of FAs overlapped by α-actinin 

signal is shown in (C).   Negative controls in B and C are HFFs exposed to PF-28 (grey), or 

cytochalasin D (CytoD), (brown). N = 75 cells per condition across 4 total coverslips.    
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TIRF videos of paxillin stain showed that the average lifetime of FAs, determined 

by the total number of frames in which a given FA possesses sufficient signal and size for 

detection, for any given cell was shorter for HFFs plated on Cit Fn compared to Fn with the 

average lifetime of FAs on Cit Fn being 196.5 seconds and 229.2 seconds out of a total 

possible 600 seconds (Figure 27A).  At the same time, the average amount of FA 

displacement within any given cell, calculated from displacement divided by total lifetime, 

was greater within HFFs on Cit Fn compared to Fn with the average rate of displacement 

being 0.0187 um/sec on Cit Fn and 0.01247um/sec on Fn (Figure 27C).  A histogram of FA 

duration plotted for all FAs across all cells shows that there is larger peak on the short 

duration side for Cit Fn and a larger peak on the long duration side for Fn indicating that a 

greater proportion of the FAs on Fn are long-lasting whereas a greater proportion of the FAs 

on Cit Fn are relatively short-lived (Figure 27B).  

 

Figure 27: FA Turnover as Measured Via TIRF Confocal Videos 

Tracking of FA presence over time via TIRF confocal microscopy of HFFs transfected with 

RFP paxillin reveals that HFFs on Cit Fn possess a greater number of short-lived FAs 

compared to those on Fn (A, B). The average rate of inward translocation (C) of FAs was 

simultaneously greater within HFFs plated on Cit Fn compared to Fn. Results represent 14 

cells analyzed per substrate across two biological replicates.     
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4.4.6 Fibroblast Random and Directional Migration is Enhanced on Cit Fn 

Random migration assays show that HFFs on Cit Fn compared to Fn possess a 

modestly enhanced migration capacity.  This was determined by average migration rate per 

cell (Figure 28A), the maximal migration rate achieved by any given cell (Figure 28B), the 

average persistence distance (defined as cumulative distance travelled without a change in  

Figure 28: Random Fibroblast Migration 

Quantification of average cell velocities (A) maximal velocities achieved per cell (B), 

average persistence distance (as defined by cumulated distance traveled without any 

changes of direction ≥ 90 degrees) (C) and maximal persistence distance achieved (D) are 

shown with cells on Fn shown in orange and Cit Fn shown in green.  Representative images 

(E) of overall migration routes taken by individual cells show multiple overlaid colored 

lines, each representing the path taken by a unique cell on Fn (top) or Cit Fn (bottom). 

Results represent a minimum of 35 cells per substrate across nine unique fields of view.  

 

direction > 90 degrees) (Figure 28C), and the maximal persistence distance achieved by any 

given cell (Figure 28D), all of which were greater on Cit Fn compared to Fn.  Wound healing 
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assays, a proxy for directional migration, reveal that HFFs on Cit Fn compared to Fn were 

able to achieve a significantly greater amount of wound coverage (Figure 29A,B).  The 

wound coverage of HFFs on both Fn and Cit Fn were substantially greater than that achieved 

on the negative control of adsorbed fibrinogen, which is a minimally adhesive surface for 

fibroblasts.   

 

 

 
Figure 29: Wound Closure Directional Cell Migration 

Representative contrast-enhanced and binarized images of wound defects (B) after HFFs 

were permitted 15 hours for inward migration show a white region representing the 

underlying wound defect and black regions representing that eventually covered by 

migrating HFFs.  Quantification of binarized images in MatLab (A) reveals an overall 

greater amount of cell coverage on Cit Fn compared to Fn. Results represent four unique 

wells per substrate in which 3 separate fields of view were captured each.   
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4.5 Discussion 

Fibroblasts possessed decreased adhesion ability on Cit Fn compared to Fn along with 

overall lower spread area.  This is somewhat surprising based our previous results showing 

that fibroblasts on Cit Fn exhibit enhanced α5β1 integrin expression, and the fact that α5β1 

integrins can bind with greater force than can αvβ3 integrins.  Nevertheless, these results 

were previously confirmed using synovial fibroblasts on Cit Fn [4].  Further, we know 

fibroblasts on Cit Fn rely predominantly on α5β1 along with possessing reduced αvβ3 

attachment strength, and it has been previously shown that β3-knockdown cells possess 

smaller areas whereas β1-knockdown cells possess larger areas than normal cells [149]; 

therefore it can be argued that cells on Cit Fn mimic the spreading of β3-kockdown cells, 

albeit to a much lesser extent. 

One possible explanation for these differences in adhesion and spread area is that 

since fibroblasts on Cit Fn rely predominantly on α5β1 for adhesion, and α5β1 integrins 

bind with slower kinetics, at the timepoints examined, fibroblasts on Cit Fn may still have 

been weakly bound and were therefore washed away in greater numbers. Indeed, while 

α5β1integrins are capable of binding to Fn within 15 minutes of cell plating, the overall 

quantity of α5β1 attachments is less than 50% of that possible after a full hour of plating, 

and only a portion of these α5β1 integrin attachments would be expected to exist in a 

tensioned state (utilizing PHSRN + RGD)[158]. 

Further, citrullination of Fn significantly reduces the affinity of αvβ3-mediated 

integrin binding, and the most simplistic interpretation of this fact would be that elimination 

of a prominent binding residue should result in overall decreased adhesion.  Indeed, though 
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the ratio of α5β1 to αvβ3 may be enhanced on Cit Fn, as well as the average amount of α5β1 

within individual FAs, there may still be changes in the total surface coverage of FAs as 

well as the quality (active vs inactive) of α5β1 attachments.  A similar reduction of spread 

area was observed on Cit-9*10 fragments, indicating that citrullination of the cell-binding 

domain alone is sufficient to elicit changes in cell adhesion; i.e. integrin interactions underlie 

the observed adhesion differences.   

AFM analysis showed a modest but significant increase of bulk modulus on Cit Fn 

compared to Fn.  Although this assay was performed on protein-coated glass, mean cell 

stiffness ranged between 4-6kpa, so we can conclude with reasonable confidence that 

measurements do not reflect the stiffness of the underlying substrate itself.  Cells were plated 

for only 45 minutes prior to commencement of AFM probing, which is far less time than 

required for full cell spreading or attainment of complete “stiffness matching” [103].  

Nevertheless, these results point towards early cellular efforts towards stiffness matching, a 

strong indication that the fibroblasts on Cit Fn are interpreting their environment as being 

artificially stiff, and reacting in kind.  The enhanced F-actin content per cell volume on Cit 

Fn, as observed in Aim 1, may provide a direct physical explanation for the observed 

changes in bulk cell stiffness. 

Apoptosis experiments did not elicit any changes in either apoptotic or necrotic cell 

death between Fn and Cit Fn.  One possible explanation for these findings is that oxidative 

stress, a relatively broad intrinsic pathway was the only apoptotic stimulus tested, and results 

may have differed if an external pathway, such as Fas ligand or TNFα had been tested.  

Another explanation is that Cit Fn alone is insufficient to produce changes in apoptotic 

resistance.  A study by Fan et al [3] demonstrated the protective benefits of Cit Fn in 
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comparison to Fn via both TUNEL and Annexin staining, but they used primary RA 

synovial fibroblasts which were already in an activated state, along with soluble Fn as their 

apoptotic stimulus.  Therefore, it is possible that Cit Fn only produces an anti-apoptotic 

influence on fibroblasts that have already been epigenetically, genetically, and/or otherwise 

stimulated by the immune presence and chronic inflammation seen in RA. It’s also possible 

that variation in the potential for activation exists among the different types and ages of 

fibroblasts being studied.  Therefore, the differences seen in the Fan study may have been 

specific to synovial fibroblasts, or simply those that are older than the HFFs used in our 

experiments.    

A final hypothesis for the lack of difference in apoptotic behavior is that conflicting 

signaling cascades may be engaged on Cit Fn as a result of enhanced α5β1 integrin presence.  

Specifically, NF-kB, ERK, Akt, and β-catenin pathways are all capable of being induced, 

and each of these contributes to cell survival.  Concurrently, JNK signaling can also be 

induced by α5β1 binding, which is involved with activating apoptotic stimuli.  If the wrong 

combination of these various pathways is enhanced or inhibited, it could ultimately have a 

net neutral result.   

Exposure of fibroblasts to Cit-Fibrin did produce an apoptotic protective benefit, 

though the mechanism was not likely to have been mediated through integrin signaling.  To 

start, without a PHSRN site, α5β1 integrins would not be expected to have enhanced 

attachment to Cit-fibrin, or at the very least to not exist in the tensioned state that would 

allow for typical β1-mediated mechanotransduction.  A more likely explanation lies in the 

Toll-Like Receptor 4 (TLR4) which has previously demonstrated an enhanced ability to 

bind Cit-Fib in comparison to Fib, therefore stimulating the activation of macrophages and 
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enhancing their TNF-α production [33].  Fibroblasts are known to possess TLR4, and this 

can lead directly to enhancement of NF-kB pro-survival signaling.  Based on these findings, 

within a provisional matrix consisting of both Fn and fibrin, citrullination may still be able 

produce apoptotic resistance in fibroblasts. 

With regards to both cell metabolism and cell proliferation, no differences were 

observed between Cit Fn and Fn.  The same held true for identical versions of these 

experiments performed on Cit Fibrin.  While most phenotype experiments were performed 

in SFM, in the absence of serum-derived growth factors and other components, no 

proliferation could be observed on either Fn or Cit Fn.  Therefore, both of these experiments 

were conducted using 0.2% Fn-depleted serum, which was sufficient to produce low levels 

of proliferation.  Other than citrullination not actually impacting proliferation or 

metabolism, one explanation for these results is that fibroblasts require additional stimulus, 

in addition to Cit Fn before differences can be observed. Another is that the short timespan 

during which fibroblasts were exposed to Fn or Cit Fn was insufficient for both the 

necessary genetic changes and subsequent gene products that would have influenced 

proliferation or metabolism to be produced.   

Finally, it should be noted that proliferation is not a universally accepted acquired 

phenotype across all different types of activated fibroblasts.  There is a general consensus 

among the cancer literature that CAFs are hyperproliferative [73, 98], but among the RA 

literature, several studies have failed to demonstrate hyperproliferation of RA FLS [75].  

Meanwhile, several RA studies have produced both evidence for the phenomenon of 

apoptotic resistance along with an explanation of mechanism in RA FLS [2, 75, 78, 79, 84]. 

Expectations of a proliferative phenotype in FAFs is more mixed with studies demonstrating 
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both enhanced growth, decreased growth, as well as no differences in proliferation [94, 101].  

A majority of the fibrosis literature, however seems to suggest that FAFs do exhibit 

apoptotic resistance [71, 166, 167].  Therefore, in the case of both RA FLS and FAFs, the 

observed increases in total cell number may be more a consequence of increased apoptotic 

resistance rather than an increase in proliferation.    

4.5.1 Interpretation of Enhanced Migration on Cit Fn 

Possibly the most influential phenotypical changes observed were those related to 

enhanced migration, as this could directly to contribute to cell invasiveness. The most 

obvious explanation for these differences are β1 integrins, which play a larger role in Cit Fn 

adhesion and have also been implicated as the main fibroblast adhesive molecules 

responsible for migration.  Case in point, β1-blocking was previously shown to result in an 

85% decrease of fibroblast migration in a wound healing assay compared to αv-blocking 

which only reduced fibroblast migration by 15% [128].  Further, invasive tumor cells are 

also known to strongly express β1 [149], indicating that these integrins may have a causative 

role in tumor malignancy.  

Somewhat less clear, however, is the fact that fibroblasts on Cit Fn also displayed 

enhanced persistence in random migration assays even though cells expressing only β1 

integrins are associated with more random migration [147], and αv integrins are specifically 

associated with improved directional persistence [168, 169].  Nevertheless there is also 

evidence to suggest that α5β1forms such stable adhesions that they effectively reduce 

fibroblast migration rates as a direct result of slow trailing edge detachment [120, 169]; yet 

results from both our TIRF real-time analysis of FA turnover as well as α-actinin staining 
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for stable focal adhesions clearly demonstrate that FA turnover rates are actually enhanced 

on Cit Fn compared to Fn. This discrepancy may partially be explained by the fact that the 

Schiller study that showed a decrease in migration due to β1 studied fibroblasts that only 

expressed β1 whereas in the current system, αvβ3 integrins are also present and can still 

attach to Cit Fn, albeit more weakly, and thus the result is an intermediate phenotype.  Our 

observation of enhanced migrational persistence may therefore also constitute an 

intermediate phenotype due to increased α5β1 presence intermixed with altered αvβ3 

attachment.   

The contribution of downstream integrin-mediated signaling also needs to be 

considered.  In Aim 1 it was shown that fibroblasts on Cit Fn increase phosphorylation of 

FAK which is directly linked to both high FA turnover and enhanced fibroblast migration 

[124, 128]. These effects are mediated through phosphorylation of α-actinin, which 

decreases attachment to F-actin and allows for improved turnover [124].  Less likely, due 

to lack of evidence for change due to Cit Fn, is the FAK-rac-rho signaling axis which can 

impact migration via enhanced lamellipodial formation through p130cas and also increase 

actin-myosin contraction [120, 124].  ILK inhibition of GSK3-β, which we did find to be 

enhanced, also likely plays a role in migration persistence. Considering that active GSK3-β 

normally phosphorylates FAK at S722 leading to decreased FAK activity and cell 

migration, phospho-GSK3-β would be expected to produce the exact opposite result [162].   

Finally, the contribution of citrullination towards alteration of fibroblast adhesion 

likely contributes to observed changes in migration. It is well established that there exists a 

biphasic relationship between cell adhesion and migration, and fibroblasts on Cit Fn possess 

decreased adhesion and spreading, which could potentiate the ease of rearwards FA release 
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in migrating cells. This theory is supported by our migration results on Cit-Fib in both types 

of migration assays, which similar to Cit Fn, demonstrated an enhancement of fibroblast 

migration over its unmodified protein counterpart.  In the case of Cit Fib, however, this 

enhanced migration occurs despite the known lack of α5β1 binding, which suggests that a 

mechanism other than β1-mediated signaling may also contribute to enhanced migration on 

citrullinated proteins.     

Possibly related to cell migration, both floating and strained fibrin/Fn gel contraction 

assays showed a significantly diminished ability of fibroblasts to contract citrullinated gels. 

Since adhesion assays showed overall weaker fibroblast attachment to Cit Fn compared to 

Fn, it is therefore plausible that fibroblasts on citrullinated gels simply possessed a reduced 

ability to generate sufficient forces for bulk gel contraction.  However, successful gel 

contraction is known to be dependent on three main factors: strong cell adhesion, robust 

intracellular contractile machinery, and low mobility.  Fast pseudopodial retraction during 

cell translocation is actually associated with release of tension from the matrix so much so 

that an inverse relationship has been observed between cell translocation and maintenance 

of substrate tension [170]. In support of this notion, traction forces in gel contraction assays 

have been documented as being the weakest when the most mobile and invasive cells are 

studied [171].   

Since we have shown fibroblast motility to be enhanced on both Cit-Fib and Cit-Fn, 

this lack of gel contraction may therefore constitute additional evidence for enhanced 

fibroblast migration on provisional matrix rather than a deficit in ability to generate 

contractile forces.  Indeed, while there is certainly abundant support for the existence of 

enhanced mechanotransduction signaling on Cit Fn mediated through an artificial elevation 
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of tensioned α5β1, it is still unclear whether this enhanced α5β1 presence simply mimics a 

tensioned state or if it is capable of creating increased cellular tensions.  A more localized 

approach to measuring cell-generated forces, such as traction force microscopy (TFM) 

would likely be required to definitively resolve this query.            

4.6 Conclusions  

Phenotype analysis of fibroblasts interacting with Cit Fn reveals an overall decrease 

of cell attachment and spreading on Cit Fn in comparison to Fn.  These findings were 

accompanied by an enhancement of cell stiffness on Cit Fn compared to Fn and no 

detectable differences in cell proliferation or metabolism on Cit Fn compared to Fn.  There 

were also no measureable differences in apoptotic resistance to oxidative stress between 

Cit Fn and Fn, although Cit Fibrin was shown to provide protection from apoptosis; since 

fibroblasts are unable to engage PHSRN on Cit Fibrin, the mechanism underlying this 

protection likely lies outside the realm of integrin-mediated signaling.  Fibroblasts on 

citrullinated Fibrin/Fn combination gels were less able to contract the bulk constructs in 

comparison to un-modified gels, though these results are likely indicative of a release of 

tension due to enhanced motility rather than a deficit of contraction, especially considering 

that both random and directional cell migration assays display increased cell motility on 

Cit Fn in comparison to Fn. Confocal TIRF videos and α-actinin staining for stable FAs 

confirm that a heightened level of FA turnover significantly contributes to enhanced cell 

migration.  Altogether, these results indicate that citrullination of Fn as an independent 

stimulus is sufficient to elicit changes in cell migration, which is a key feature of all types 

of activated fibroblasts and contributes to their invasiveness. Therefore, inhibition of 
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citrullination may constitute a promising therapeutic strategy for combatting a variety of 

chronic inflammatory conditions. 
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CHAPTER 5. OVERALL CONCLUSIONS AND FUTURE 

DIRECTIONS 

Citrullination of Cit Fn results in 24 unique sites of modification that ultimately 

influence integrin engagement in such a manner that they create an integrin switch where 

α5β1 integrins are preferred over αvβ3 integrins.  The downstream mechanotransduction 

signaling resulting from this integrin switch leads to alterations in several fibroblast 

phenotypes, especially that of migration. The hypothesized inter-relationship of the 

complete findings of Aims 1 and 2 are summarized in Figure 30. 

Figure 30: Overall Summary: 

The citrullination of Cit Fn leads to an enhancement of α5β1 affinity and a decrease of αvβ3 

affinity, the latter of which likely underlies decreased cell adhesion and spreading at early 

timepoints.  The combined impact of altered integrin affinities leads to an integrin switch 

with an overall increase of α5β1 presence in focal adhesion (FA) along with increased 

integrin clustering.  β1-dominated integrin signaling leads to enhancements of pFAK, 

pSRC, vinculin, and p-ILK, all of which are capable of contributing to enhanced F-actin 

formation , itself a likely contributor to increased cell stiffness.  Phospho-FAK may directly 

lead to enhanced FA turnover, and p-ILK may directly lead to phosphorylation (and 

therefore inhibition) of GSK.  The combination of enhanced FA turnover, increased, F-actin 

presence, and GSK inhibition likely all contribute to enhanced fibroblast migration.  

Enhanced cell migration along with low adhesion and cell spreading at early timepoints 

likely influences the low level of gel contraction.  Finally additional phenotypes are possible 

as a result of enhanced pFAK/pSRC, vinculin, pILK, and pGSK.     
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Of course, to fully elucidate the impact of Cit-pECM, additional research will be 

required.  Assuming the lack of detectable differences in Rho, Rac, and myosin II are real, 

this current work still identified at least three signaling pathways activated through 

interaction of fibroblasts with Cit Fn alone (Figure 31), including that of vinculin—FAK 

/SRC—α-actinin—F-actin, that of ILK—parvin—vinculin—F-actin, and that of ILK—p-

GSK.   

 

Figure 31: Summary of Mechanotransduction Signaling Findings and Future 

Avenues for Exploration 

All three mechanotransduction signaling pathways have been combined into one diagram 

where entities found to exhibit no difference on Fn vs Cit Fn are outlined in red, and those 

that are up-regulated due to cell exposure to Cit fin are outlined in green.  Overlaid green 

shading represents pathways that appear to be completely activated (from integrin 

engagement down to change in protein function) due to Cit Fn interaction.  Overlaid yellow 

shading represents pathways that have yet to be explored but may potentially be influenced 

due to Cit Fn interaction.   
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Some of the key signaling nodes that are likely influenced by interaction with Cit Fn but 

have yet to be explicitly explored include that of MAPK/ERK signaling, Akt signaling, and 

β-catenin signaling.   

 A point of potential contradiction laid out in the current findings is that while several 

key signal transduction pathways appear to be activated as a result of Cit Fn interaction, cell 

phenotype differences were only observed in the area of cell migration.  Granted, there are 

some phenotypes such as cytokine secretion and cell differentiation that were not tested and 

may actually be influenced by these interactions.  A caveat however, is that in an effort to 

be well controlled, the current studies investigated the influence of Cit Fn as a stand-alone 

stimulus, and this is simply not a practical reality.  Within an in vivo inflammatory 

environment, fibroblasts would also be exposed to copious amounts of cytokines, growth 

factors, as well as being directly stimulated by immune and other types of cells.  Therefore, 

it is possible that in combination with additional stimuli, Cit Fn may be able to elicit changes 

in phenotypes beyond just that of cell migration.  This idea is supported by the findings from 

previous studies using primary activated human RA synovial fibroblasts which did show 

enhancements of such characteristics as cytokine secretion and apoptotic resistance in the 

in vitro presence of Cit Fn [3, 4, 35].   

 The converse argument then is that the over-simplification of experiments conducted 

herein may have resulted in exaggerated outcomes.  For instance, in any experimental setup 

where cells were exposed to Cit Fn, that protein was citrullinated to the maximal extent 

possible in solution, whereas this may not reflect the extent of citrullination possible in vivo 

due to both PAD enzyme concentrations and the fact that a portion of Fn would likely 

already have been incorporated into the matrix in an extended conformation.  Further, our 
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cells were cultured in serum-free media to eliminate exposure to extraneous non-

citrullinated Fn as well as growth factors and other bio-molecules, which in reality would 

be very likely to influence cell behavior. The combination of these additional stimuli with 

the possibility of a lower concentration of citrullinated Fn epitopes in vivo could potentially 

activate pathways that act counter to those demonstrated to be activated in the current 

research.  Indeed, while consistent, the majority of Cit Fn impacts on cell phenotype in this 

research were fairly mild and required relatively high sample size to demonstrate an effect.  

Therefore, under more physiologically accurate conditions, it is possible that alterations to 

various fibroblast phenotypes due to exposure to Cit Fn would be muted or altogether cease 

to exist.    

Another factor to point out is that almost every experiment in this research was 

conducted with Human Foreskin Fibroblasts, which are very young cells.  While similar 

changes in integrin preference were also observed with CCL210 human lung fibroblasts, it 

is possible that the nature of integrin binding, molecular signaling, and cell phenotype may 

either be enhanced or diminished in other types of fibroblasts.  Fibroblasts are intrinsically 

diverse cells, and from one fibroblast subtype to another, behaviors can vary significantly. 

Thus, before firm conclusions about the influence of Cit-pECM on fibroblast functions in 

specific diseases can be made, it is recommended to investigate the influence of Cit-pECM 

on the disease-relevant fibroblast subtype.   

 Yet another question that has yet to be fully answered is how the integrin switch 

from αvβ3 to α5β1 occurs at a molecular level.  We demonstrated an enhancement of α5β1 

attachment as well as a decrease of αvβ3 affinity, either or both of which may contribute to 

the integrin switch phenomenon to varying degrees.  The citrullination sites specifically 
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responsible for these changes in affinity most likely include R1274 and R1284 within the 

8th type III Fn repeat, R1410 within the PHSRN synergy site and/or R1434 within the 9th 

type III Fn repeat, and also R1452, R1476, and R1479 within the 10th type III Fn repeat.  

Site-specific mutagenesis would likely be required to elucidate the contribution of each of 

these modifications towards affinity changes with both αvβ3 and α5β1 integrins. 

 While determining the influence of specific citrullination sites may seem a 

needlessly onerous exercise, this discovery may have significant implications for the 

pharmaceutical development of citrullination inhibitors.  In particular, the aforementioned 

R1410, R1434, and R1452 citrullination sites—all of which possess the highest likelihood 

of impacting α5β1 interaction due to proximity to PHSRN—were all demonstrated to be 

exclusively modified by PAD2 in the current study.  Whether or not citrullination at these 

sites actually impacts α5β1 interaction and whether that in turn significantly influences the 

integrin switch from αvβ3 to α5β1 would dramatically influence the perceived importance 

of PAD2 enzyme inhibition for therapeutic intervention.  There are currently exists a debate 

as to optimal mechanism and amount of PAD inhibition required for therapeutic efficacy. 

Many research efforts, especially those associated with cancer prevention, are focused on 

developing PAD4-specific inhibitors; therefore clarifying the contribution of PAD2 

modifications toward both signaling and cell phenotype may have the capacity to shift the 

balance of this debate. 

 Certainly, the pharmaceutical debate as to whether PAD4 alone or more PADs 

should be inhibited in the pursuit of novel therapeutic interventions hinges largely on 

whether or not this inhibition would have any unwanted and/or off-target side-effects. No 

currently published PAD inhibition studies have indicated any sort of adverse side effects.  
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Yet in our attempts to use BB-Cl-amidine, the most potent pan-PAD inhibitor currently in 

existence in a preventative mouse model of lung fibrosis, we observed several unusual skin 

side effects. Briefly, freshly prepared BB-Cl-amidine from Cayman Chemical in 

DMSO+sterile saline was administered to mice subcutaneously at a dose of 5mg/kg/day for 

a total of 33 days. About 70% of mice receiving the BB-Cl-amidine treatment (compared to 

0% of vehicle) developed one or more skin lesions over the course of the study.  

Furthermore, the skin of the treatment mice became noticeably less elastic over the course 

of the study to the point that it became more difficult to both scruff the mice as well as to 

insert a needle through the skin. These findings suggest first that owing to the role PAD 

enzymes play in maintenance of skin protein structure[1, 42] that subcutaneous 

administration of PAD inhibitors is inadvisable.  Second, PADs type 1, 3, and 4 are known 

to function in the epidermis [2, 8, 15], and it is possible that their inhibition may be to blame 

for the side effects observed here. Either way, additional research as to the normal 

physiological role of PAD enzymes is recommended before choosing one or multiple PAD 

enzyme targets.        

 Yet another unanswered α5β1-specific question is how does citrullination of Fn 

influence the state—i.e. tensioned or relaxed—of its binding. As previously described, α5β1 

integrins can bind through RGD only (relaxed state) or through RGD + PHSRN (tensioned 

state). While interferometry results showed a slight enhancement of Cit Fn affinity for α5β1 

integrins, the experimental setup utilizing constant plate-shaking at 1000rpm may have 

artificially forced all or the majority of the α5β1 integrins into a tensioned state. ICC 

experiments performed on stiff glass coverslips would also likely have encouraged a 

tensioned state of α5β1integrins.  It is therefore unclear whether the same enhancement of 
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α5β1 affinity and/or presence would be observed in a more physiologically accurate 

environment possessing both lower substrate stiffness and a lack intense shear force.   

Further, interferometry provides an indirect measurement of the rate of interaction 

between two entities without necessarily specifying the strength of said interaction.  

Therefore, from interferometry results alone, it is not possible to conclude whether the α5β1 

integrin binding events that occurred were in a tensioned or relaxed state, and further, 

whether or not citrullination of Fn influences the tendency of α5β1 integrins to exist in one 

state or another compared to with non-modified Fn.  Certainly, our ICC staining for integrin 

subunits indicated an enhancement of both α5 and β1 subunits, but again, these results do 

not clarify the state of the integrin. Understanding the state of α5β1 integrins is important 

because the state can potentially influence downstream signaling. An experiment like 

traction force microscopy (TFM) could potentially clarify both the presence of α5β1 

integrins in tensioned states as well as whether the apparent integrin switch allows the cells 

in turn to generate increased amounts of intracellular tension.  

While the current research certainly raises several additional questions that warrant 

follow-up, in a broader context, our findings are already quite striking with regards to 

highlighting the importance of Cit Fn over other citrullinated matrix proteins.  Of course, 

many citrullinated proteins possess an ability to stimulate an immune response, though the 

mechanisms are varied, and they include many outside the realm of integrin interactions.  In 

the context of engagement with the matrix, including integrin activation of downstream 

signaling, Cit Fn truly does appear to be special.  Though few previous studies of 

citrullinated ECM proteins (including collagen, fibrin, and fn) have been conducted, they 

have all tended to conclude that fibroblast attachment worsens as a consequence of 
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citrullination, and phenotypes typically associated with the respective ECM proteins 

consequently also become diminished.  Ours is the first study to provide evidence of an 

activating consequence of any ECM protein both in the context of integrin engagement and 

downstream signaling.  The fact that these effects were found on Cit Fn, which preferentially 

interacts with fibroblasts over other cell types may indicate that the effects of citrullination 

(outside of immune stimulation) may therefore possess a targeted effect on fibroblasts.  This 

information may be essential both in understanding the process of fibroblast activation, but 

also the innate physiological role citrullination plays in the maintenance of normal fibroblast 

health and function.   

In attempting to understand the evolutionary designed role of citrullination in human 

health, a piece of evidence from neurological citrullination patterns stands out.  Namely, 

children under 2 years of age have almost all of their myelin basic protein (MBP) 

citrullinated, and this amount decreases over time to about 20% in adulthood; thus 

citrullination is thought to be important to brain plasticity in early development [19].  Our 

results indicate a role for citrullination in fibroblast activation similar to what may be seen 

in normal wound healing as well as the pathological “wound healing” that occurs in fibrotic 

conditions.  The fields of regenerative medicine and wound healing often draw inspiration 

from tissue morphogenesis, as entities like Fn with alternate splice variants EDA and EDB 

exist in abundance and are thought to be important to mammalian tissue development and 

morphogenesis.  EDA and EDB Fn variants decrease with age, though when they are 

present, they tend to be associated with wound healing and enhanced fibroblast migration.  

Citrullination may similarly play an as yet unspecified role in early mammalian tissue 

morphogenesis.  Similar to both EDA/B variants and Cit-MBP, Cit Fn may have evolved to 
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decrease its presence and functionality with age, but in cases of disease and wound healing, 

it experiences localized spikes that can be helpful or harmful depending on the 

circumstances and duration of its presence.       

Finally, regardless of the underlying cause for citrullination in humans, the fact is 

that it is known to occur in a broad range of conditions to varying extents, and it has the 

potential to impact a variety of cell types both in the context of immune stimulation and 

fibroblast activation.  Citrullination therefore provides an important example of the idea of 

matrix memory—essentially that the influence of events, such as inflammation, on cell 

function and behavior can persist past the cessation of the instigating event. Especially in 

the case of citrullination, where modification of several protease cleavage sites renders them 

unrecognizable for degradation, citrullinated epitopes can become a much longer-lasting 

“memory”.   

This concept of matrix memory is important, because while the ECM is generally 

considered a dynamic entity that is constantly remodeled by its cellular denizens, it is 

dangerous to always rely on this dynamism.  Specifically in the context of implantable tissue 

scaffolds and biomaterials, the potential for long-lasting impacts of PTMs creates a limit in 

the ability of scientists and engineers to control exact ECM properties and predict impacts 

on cell phenotypes.  Considering that citrullination is inflammation mediated, it would very 

likely be present as a part of the foreign body response as a consequence of implantation of 

almost any natural or synthetic biomaterial; thus citrullination is a very real concern for the 

fields of regenerative medicine and biomaterials.   

Indubitably, there is much more that needs to be understood about citrullination, its 

innate physiological function, and its biological consequences.  This need is all the more 
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greater due to citrullination’s potential implications in a variety of fields.  Specifically, it 

constitutes a promising novel therapeutic target in a variety of chronic inflammatory 

diseases including RA, cancer, atherosclerosis, and more.  Further, it is a widespread 

phenomenon with the ability to influence a host of basic biological functions that may 

constitute and an important consideration in regenerative scaffold and biomaterial design.      
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APPENDIX A.  

A.1  Definitions and Abbreviations 

Table 3: Cytokine Protein Abbreviations 

  

Table 4: Growth Factor Abbreviations 
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Table 5: Apoptosis Protein Abbreviations 

 

 

5.1 Additional Interferometry Results 

 

Figure 32: Residuals of alpha5 beta1 BLI interactions with Fn 
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Figure 33: Sample BLI αvβ3 with Fn  

Global 1:1 curve fits are overlaid in black 

 

 

Figure 34: Sample BLI of αvβ3 with Cit Fn 

Global 1:1 curve fits are overlaid in black 
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