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SUMMARY 

Protein glycosylation is essential for cell survival and proliferation. Comprehensive 

analysis of protein glycosylation can aid in a better understanding of protein functions, cellular 

activities, and the molecular mechanisms of diseases. Emerging mass spectrometry (MS)-based 

proteomics enables comprehensive analysis of protein glycosylation and many other types of 

modifications. However, due to the heterogeneity of glycans and the low abundance of many 

glycoproteins in complex biological samples, it is extraordinarily challenging to globally and 

site-specifically analyze glycoproteins. This thesis focuses on the development of new methods 

for global analysis of glycoproteins, and the applications of the newly developed methods for 

biomedical research.  

 This thesis is constituted of six chapters. Chapter 1 is an overview of MS-based 

glycoproteomics analysis, with an emphasis on the endeavors in the literature to solve the two 

major problems for global analysis of glycoproteins mentioned above. This chapter retraces the 

developments of important chemical and enzymatic methods in this field, and includes the 

discussion regarding how these methods have enabled qualitative and quantitative analyses of 

glycoproteins in a variety of biological systems. Chapter 2 focuses on the development of a 

strategy that utilizes the universal recognition between boronic acid and sugars, in order to 

enrich glycopeptides for LC-MS/MS analysis. Chapter 3 shows the approach of achieving 

quantitative analysis of protein glycosylation through the combination of boronic acid 

enrichment and quantitative proteomics. Chapter 4 describes a strategy for cell-surface N-

glycoproteome analysis. Metabolic labeling, click chemistry, and MS-based proteomics were 

combined to specifically map the glycoproteins located only on cell surface. The labeling 

efficiencies of different sugar analogs were compared, and this method was combined with 

either stable isotope labeling in cell culture (SILAC) or tandem mass tag (TMT)-labeling to 

quantitatively study the surface N-glycoproteins. Chapter 5 explains how protein S-
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GlcNAcylation was unexpectedly found in human cells. Starting with an attempt to profile 

protein O-GlcNAc, hundreds of S-GlcNAcylation sites were surprisingly identified on cysteine 

residues. This modification was demonstrated not to be caused by chemical reactions with the 

cleavable linker during sample preparation nor due to false site assignment. Furthermore, 

protein S-GlcNAcylation events were investigated with different sugar analog labeling in three 

cell lines. Chapter 6 features an application of MS-based proteomics in biomedical research. 

In this chapter, the cellular responses and pleiotropic effects in statin-treated cells on the 

proteome, glycoproteome, and phosphoproteome levels were analyzed. 

In addition to the independent projects discussed above, the collaborative projects about 

that investigation of the cellular mechanisms of gold-nanorod assisted cancer photothermal 

therapy, and the discordance between mRNA and proteome in ovarian cancer tissues were also 

conducted. The abstracts of the publications resulted from the collaborations are shown in the 

appendix.  

In conclusion, the work presented in this thesis majorly combines chemical biology and 

modern MS-based proteomics to study protein modifications, especially glycosylation. This 

thesis strives to advance the techniques of glycoproteomics and apply the state-of-the-art 

methods to investigate biological and biomedical problems. 
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CHAPTER 1. INTRODUCTION TO MASS SPECTROMETRIC 

ANALYSIS OF GLYCOPROTEINS IN COMPLEX BIOLOGICAL 

SYSTEMS 

 

1.1 Background Introduction 

Mass spectrometry (MS)-based proteomics has become an increasingly powerful tool 

to study diverse topics in complex biological systems. Protein post-translational modifications 

(PTMs) are extremely important in biological systems and regulate nearly every cellular 

activity including gene expression, signal transduction and cellular response to environmental 

cue. Comprehensive and site-specific analysis of protein modifications is beyond reach of 

conventional biochemistry methods. Modern MS technology provides a unique opportunity to 

globally and site-specifically characterize protein PTMs. However, it is extraordinarily 

challenging because of the low abundance of many modified proteins, sub-stoichiometry of 

protein modification, and the complexity of biological samples.  In addition, the modified 

groups are different, and therefore no common method can be used for all types of protein 

modifications. Innovative and effective methods are crucial to achieve the global analysis of 

protein modification. 

Among hundreds of known PTMs, protein glycosylation is one of the most important 

modifications and is essential for cell survival because it determines protein folding, trafficking, 

and stability and regulates many cellular activities, especially extracellular activities. Many 

glycoproteins are of extremely low abundance compared to non-modified proteins; meanwhile, 

glycosylation is very complex due to the heterogeneous glycan structures and a variety of 

amino acid residues being modified with glycans. To overcome the challenges brought by the 

complexity of glycosylation and the low abundance of glycosylated proteins, many elegant 
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methods were developed to qualitatively and quantitatively study protein glycosylation events 

in various kinds of samples.  

Here some major MS-based methods for global analysis of protein glycosylation are 

discussed. In the first part, we summarize the chemical and enzymatic methods for MS-based 

glycoproteomics, including different enrichment methods and the methods to generate a 

common tag for global analysis of protein N- and O-glycosylation with MS. Second, because 

reversible protein glycosylation makes glycoproteins highly dynamic, MS-based methods for 

glycoprotein dynamics study are included. The last part includes selected applications of MS-

based glycoproteomics in a variety of biology systems.  

 

1.2 Global Analysis of Glycoproteins 

1.2.1 Glycopeptide enrichment 

In order to globally analyze protein glycosylation, glycoprotein enrichment is 

imperative prior to MS analysis due to the low abundance of many glycoproteins, the dynamic 

nature of protein modifications and the complexity of biological samples 1-4. Enrichment can 

allow us to minimize the interference from highly abundant non-glycoproteins on the analysis 

of protein glycosylation, and to reach low-abundance glycoproteins. In the literature, a variety 

of enrichment methods were reported, and each method has its own advantages and limitations. 

 

1.2.1.1 Lectin 

Commercially available lectins were mostly originated from plants, with some also 

from bacteria and animal species. Each lectin can bind one or several types of glycans, and 

therefore lectins were extensively used to perform glycoprotein/peptide enrichment, although 

to an extent the specific binding also limits lectins from enriching all types of glycans for more 

comprehensive analysis of glycoproteins in complex biological samples. Several lectins, such 
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as concanavalin A (Con A, mainly specific for internal and nonreducing terminal α-D-

mannosyl and α-D-glucosyl groups), wheat germ agglutinin (WGA, specific for N-acetyl-D-

glucosamine and sialic acids), and ricinus communis agglutinin I (RCA I/ RCA 120, binds 

galactose or N-acetylgalactosamine residues) were widely used for glycoprotein/peptide 

enrichment 5. Typically, lectins were immobilized onto solid support and served for solid-phase 

extraction of glycopeptides. The lectin-functionalized beads can also be packed into separation 

columns, allowing for enrichment and elution of glycopeptides coupling with liquid 

chromatography (LC). Zielinska et al. combined lectin enrichment with filter-aided sample 

preparation (FASP) to map the N-glycosylation sites in four mouse tissues and blood plasma 6. 

They identified 6,367 sites on 2,352 proteins from extracellular space, organelle lumens, and 

other cellular locations. In addition to the widely known NX[S/T] (X stands for any amino acid 

residue other than proline) motif for protein N-glycosylation, they also found other rare motifs, 

such as the NXC motif. The same group further employed the FASP method coupled with 

lectins to profile the N-glycosylation sites across seven evolutionarily distant species, and 

found the distant species have common characteristics including sequence recognition patterns, 

structural constraints, and subcellular localization although the N-glycoproteome from those 

species are largely divergent 7. 

Besides protein N-glycosylation, lectin-based enrichment methods were also applied 

for O-glycosylation analysis although the strategies are not as mature as those for N-

glycosylation analysis. For instance, Darula and Medzihradszky used the jacalin lectin (specific 

for recognizing GalNAcα1-O- extension of the core 1 structure) to enrich O-glycopeptides and 

identified O-glycosylation sites from bovine serum through mass spectrometric analysis 8. The 

same lectin was also employed by Durham and Regnier, and they immobilized jacalin onto 

silica beads and further packed an LC column for serial lectin affinity chromatography analysis 

of O-glycopeptides after removing N-glycopeptides with Con A 9. Steentoft et al. performed 
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O-glycosylation analysis combining vicia villosa agglutinin (VVA) lectin chromatography 

with the SimpleCell technology 10, which will be discussed in more details in a section below.  

As an important and special type of O-glycosylation, O-GlcNAcylation has been well-

studied in the past three decades, and lectin-based methods have also been developed for 

comprehensive mapping of protein O-GlcNAcylation. In this context, WGA was exploited for 

the enrichment of O-GlcNAcylated proteins or peptides due to its substrate specificity. For 

example, Vosseller et al. developed lectin weak-affinity chromatography (LWAC), and by 

combining it with b-elimination/Michael addition with DTT (BEMAD) and ECD mass 

spectrometry, they analyzed 145 unique O-GlcNAcylated peptides from a postsynaptic density 

preparation 11. Overall, lectin-based strategies have greatly expanded the pool of N- and O-

glycosylation sites identified. 

 

1.2.1.2 Hydrazide chemistry 

In 2003, Zhang et al. developed an elegant strategy based on hydrazine chemistry for 

glycopeptide enrichment, followed by protein N-glycosylation analysis with MS 12. They 

oxidized the glycans to generate aldehyde groups, and then conjugated the glycoproteins to a 

solid support using hydrazide chemistry. After on-beads digestion, the non-glycopeptides were 

removed and the enriched glycopeptides were recovered by using Peptide-N-Glycosidase F 

(PNGase F) to cleave off the glycans. The peptides were then identified and quantified by LC-

MS/MS. This method was further modified by many groups for better performance and has 

been extensively used to study protein N-glycosylation in a variety of samples and species, 

from cells to clinical samples 13-15. During the oxidation, the glycans are damaged, and thus 

this method cannot be employed to analyze intact glycopeptides with glycan structural 

information.  
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Although initially this method was designed for protein N-glycosylation analysis as 

PNGase F can only recognize the N-glycans, researchers developed variants and used them for 

O-glycosylation analysis. Nilsson et al. combined hydrazide chemistry with acid cleavage to 

analyze sialylated glycoproteins, and identified 36 N-linked and 44 O-linked glycosylation 

sites from human cerebrospinal fluid with site and glycan structural information 16. Later they 

applied a similar strategy to study human urinary glycoproteins containing glycan information, 

and 58 N- and 63 O-linked “intact” glycopeptides were identified from 53 glycoproteins 17. 

This method was further improved by pretreating the samples with PNGase F to remove N-

glycans, and used CID-MS2/MS3 and ECD/ETD to comprehensively analyze the samples 18. 

Taga et al. combined hydrazide chemistry with galactose oxidase oxidation and formic acid-

induced cleaving of the hydrazone bond to study the O-glycosylations unique to collagen 19. 

Klement et al. also applied hydrazide chemistry to O-GlcNAcylation studies where they 

elevated the concentration of sodium periodate and reaction temperatures, and enriched the 

modified proteins through hydrazide chemistry 20. The O-GlcNAcylated peptides were released 

by hydroxylamine treatment and analyzed by tandem MS. A total of 12 O-GlcNAcylated 

peptides from 5 proteins were identified in that study.  

 

1.2.1.3 HILIC 

Hydrophilic interaction liquid chromatography (HILIC) is a separation technique that 

has been widely used in glycoproteomics to separate/enrich glycopeptides from non-

glycopeptides. Contrary to reverse-phase chromatography, the stationary phase of HILIC is 

very hydrophilic, allowing binding of hydrophilic analytes. Silica particles, amino or hydroxyl 

groups, zwitter ions are common materials for the HILIC stationary phase 21. The gradient of 

the mobile phase usually starts with high percentage of relatively nonpolar organic solvent, 
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then the percentage of polar component (usually aqueous solutions) is increased through the 

gradient timeline, resulting in higher hydrophilicity of the solution and stronger elution power.  

Because glycans are extremely hydrophilic molecules, the retention time of 

glycopeptides are generally longer than non-glycopeptides. In the literature, Hägglund et al. 

combined zwitter-ionic hydrophilic interaction chromatography (ZIC-HILIC) enrichment and 

partial deglycosylation to study protein N-glycosylation in human plasma, and identified 62 

glycosylation sites from 37 glycoproteins 22. The same group later employed a similar strategy 

to establish an enzymatic deglycosylation scheme to study core fucosylated N- and O-

glycosylation among human plasma proteins 23. HILIC enrichment was extensively applied for 

glycosylation analysis, including site mapping, intact glycopeptide analysis, and also 

contributed in O-GlcNAcylation studies 24.  However, if a non-glycopeptide contains multiple 

hydrophilic amino acid residues, its retention time may be comparable to glycopeptides, 

rendering the specificity of HILIC lower than many other enrichment methods. Nevertheless, 

HILIC can be coupled with other enrichment methods to perform two-dimensional separation 

and fractionation. There are some reports in the literature to improve the performance of HILIC, 

such as introducing ion-pairing reagents in the mobile phase and further functionalizing the 

stationary phase 25, 26, and have considerably advanced the use of HILIC in glycoproteomics. 

 

1.2.1.4 IsoTag 

Recently Woo et al. developed a highly innovative isotope-targeted glycoproteomics 

(IsoTaG)  method 27, which combined metabolic labeling, isotopic recording, and MS-based 

proteomics to analyze intact N- and O-glycopeptides. They synthesized an isotopic affinity 

probe, which has four critical parts: the aizde for tagging the glycans through copper-catalyzed 

azide-alkyne [3+2] cycloaddition (CuAAC), the biotin group for enriching the tagged 

glycopeptides through strong biotin-avidine interactions, the silane scaffold being readily 
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cleaved to release the glycopeptides after enrichment, the dibromide motif for MS detection of 

glycopeptides.  Due to the natural abundance of the stable isotopes of Br (Br79:Br80=1:1), 

glycopeptides tagged with the probe display a special pattern in MS analysis (termed IsoStamp) 

28. 

Four major steps are involved in the IsoTaG strategy: (1) metabolically label the 

glycans with a functional sugar analog (i.e. N-azidoacetylgalactosamine (Ac4GalNAz)); (2) 

tag the labeled glycoproteins with the probe, and then capture the glycoproteins on a solid phase 

through biotin-avidin interactions. The enriched glycoproteins were digested using trypsin and 

the glycopeptides were released by cleaving the silane scaffold; (3) analyze the glycopeptides 

by tandem MS. Here they used a pattern-searching algorithm, which recognizes the 2:5:1 

distribution of the dibromide motif to selectively sequence the glycopeptides; (4) assign 

glycosylation sites and glycan structures using Byonic software.  

IsoTaG increases the selection and detection speed of glycopeptides owning to the 

pattern-searching algorithm, and greatly aids in the analysis of intact glycopeptides. This 

strategy can be widely used for not only glycoproteomics, but also a variety of PTMs and 

targeted protein analyses. The metabolic labelling may limit its application for glycoprotein 

analysis of clinical samples. In addition, it requires many steps to perform the analysis (from 

probe synthesis to data-independent MS analysis), which may hinder its wide usage. 

 

1.2.1.5 NGAG 

Zhang and co-workers recently reported an innovative chemoenzymatic method, named 

solid phase extraction of N-linked glycans and glycosite-containing peptides (NGAG), to 

comprehensively analyze N-glycoproteins and glycans in complex samples 29. This method 

utilizes enzymatic and chemical reactions to analyze the N-glycans and their parent 

deglycosylated peptides. Briefly, proteins were firstly digested, and the resulting peptides were 
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guanidinized to block the ε-amino groups on the lysine side chain. Peptides were then 

conjugated to the solid phase via their N-termini, and the carboxyl groups of aspartic acid (D), 

glutamic acid (E), peptide C termini, and sialic acids were reacted with aniline to facilitate the 

mass spectrometric detections. N-glycans were released from the solid support by PNGase F 

treatment and subjected to MS analysis while their corresponding asparagine residues were 

converted to aspartic acids. This provides the opportunity for Asp-N-induced cleavage of the 

peptides, and thus releasing them from the solid phase while the aspartic acids that are not 

generated from PNGase F cleavage of N-glycans will not be affected because they were 

modified by aniline in the prior step. The released deglycosylated peptides were also identified 

by MS.  

This strategy led to the identification of 2,044 unique N-glycopeptides, and in an 

experiment comparing NGAG and hydrazide chemistry methods, they analyzed a total of 3,083 

unique N-glycosite-containing peptides from 1,473 glycoproteins in OVCAR-3 cells. 

Quantitative analysis of glycopeptides based on NGAG was also performed, and proved 

treating cells with tunicamycin mainly caused glycan occupancy reduction on the glycosylation 

sites. Further glycan dynamic experiments also showed differential alteration of glycans by the 

tunicamycin treatment. Overall, NGAG is an excellent example of rationale usage of chemical 

and enzymatic reactions to advance MS-based glycoproteomics, although the complex steps 

could potentially put limitations to its applications.  

 

1.2.1.6 Boronic acid-based enrichment methods 

Boronic acids have great potential for enriching glycopeptides/glycoproteins because 

one common feature of all glycans is that they all contain multiple hydroxyl groups. The 

covalent interactions between boronic acids and cis-diols on glycans have been extensively 

studied in the literature, and has been applied for glycoprotein analysis. Yang and co-workers 
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designed a boronic acid-functionalized core-satellite-structured composite material to capture 

glycopeptides/proteins, and analyzed 194 unique glycosylation sites from 155 different 

glycoproteins 30. Later the same group synthesized a boronic acid-functionalized detonation 

nanodiamond to enrich glycopeptides and analyze glycoproteins, which has led to the 

identification of 40 unique N-glycospeptides from 34 unique glycoproteins in mouse liver 31. 

Zeng et al. designed a surface patterned sample support with a hydrophobic outer layer and an 

internal boronic acid-modified gold microspot, to selectively enrich glycopeptides. The 

enriched glycopeptides were then directly subjected to MALDI MS analysis 32. Metz and co-

workers combined boronate affinity chromatography with ETD MS to analyze non-

enzymatically glycated peptides 33.  

Wu and co-workers have conjugated boronic acids onto magnetic beads, and then used 

the functionalized beads to enrich glycopeptides from protein digestions for MS-based 

proteomic analysis 34. Due to the nature of the pH-dependent reversible interactions between 

boronic acids and hydroxyl groups, the enrichment was performed under basic condition 

(pH=10) to capture glycopeptides on the beads. After several washes to remove non-

glycopeptides, the elution was performed under acidic condition to release glycopeptides. The 

enriched glycopeptides were then treated with PNGase F in heavy oxygen water (H2
18O) for 

only three hours to generate a common tag for N-glycosylation site identifications, which 

distinguishes the bona fide glycosylation sites from spontaneous asparagine deamidation sites. 

They applied this strategy to study the yeast glycoproteome, and identified 816 N-glycosylation 

sites on 332 proteins.  

The reactions between boronic acid and hydroxyl groups make boronic acid-based 

chemical enrichment universal for nearly all types of glycopeptides/glycoproteins. The 

reversible nature of this interaction and the mild reaction conditions ensures the glycans 

undamaged after enrichment, therefore this method is able to be used for intact glycopeptide 
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analysis with glycan structural information. This method can be further improved by 

strengthening the binding between boronic acids and glycans, allowing the capturing of more 

glycopeptides and minimizing glycopeptide loss. Overall, the combination of boronic acid-

based enrichment methods and MS-based proteomics has the potential to universally analyze 

protein glycosylation with structural information on a large scale. 

 

1.2.1.7 Click chemistry-based methods 

Metabolic labeling of glycans with unnatural sugar analogs has been proven to be 

powerful to study glycoproteins35. In the recent two decades, the Bertozzi group has been a 

pioneer in using unnatural sugar analogs to label glycoproteins. They firstly developed a cell 

surface engineering strategy by combining metabolic labeling with a modified Staudinger 

ligation reaction 36. They found that acetylated azide-containing sugar analogs have much 

greater labeling efficiency than the non-acetylated versions. Azide-containing sugar analogs 

are commonly used in these methods because the azide group is small, which does not create 

an unacceptable steric hindrance that renders the analog unable to be recognized by the 

enzymes, and it is relatively stable and biologically inert.  

To date, a variety of sugar analogs have been used for metabolic labeling, such as 

GalNAc, GlcNAc, fucose, and ManNAc analogs  37. After incorporation of the azido sugar 

analogs, a click reaction is performed to introduce another chemical handle for affinity 

enrichment. The glycoproteins/ glycopeptides can be analyzed by a variety of methods 

including proteomics techniques. 

 

1.2.1.8 Other chemical and enzymatic enrichment methods 

Chemical and/or enzymatic methods facilitated the identification and quantification of 

not only protein N-glycosylation, but also O-glycosylation, especially O-GlcNAcylation. For 
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instance, Khidekel et al. established a method, termed quantitative isotopic and 

chemoenzymatic tagging (QUIC-Tag), which enzymatically incorporates the ketone group 

onto O-GlcNAcylated proteins, and then tags it with biotin for affinity enrichment of O-

GlcNAcylated peptides/proteins for rapid and sensitive identification and quantification 38. 

Through combining this strategy with quantitative isotopic dimethyl labeling, they studied O-

GlcNAcylation dynamics in cultured neurons and rat brain samples. 

Wang et al. developed a click chemistry-based strategy by combining 

chemical/enzymatic tagging, photochemical cleavage, and electron-transfer dissociation (ETD) 

mass spectrometry to enrich O-GlcNAc modified peptides and map O-GlcNAcylation sites 39. 

They used enzyme GalT1 to transfer an azide-containing sugar analog (UDP-GalNAz) onto 

the O-GlcNAc moieties on the modified peptides, and then incorporated a biotin group on it 

through CuAAC for the enrichment. The enriched O-GlcNAcylated peptides were then 

released by photochemical cleavage, followed by LC-MS analysis. The same group has also 

made significant contributions to study the biological importance of protein O-GlcNAcylation 

and investigate the cross-talk between O-GlcNAcylation and phosphorylation through 

proteomics-based strategies 40-45. 

Chemical and enzymatic strategies significantly broaden the toolbox of MS-based 

proteomics, and have facilitated various qualitative and quantitative studies of protein PTMs. 

We envision that further development of chemoenzymatic methods will tremendously advance 

our understanding of protein glycosylation. 

 

1.2.2 Generating a common tag for MS analysis 

Glycans are highly heterogeneous, and the diverse structures contain a wealtj of 

biological information. At the same time, diversity of glycans results in difficulty for global 

analysis of protein glycosylation with MS. Unlike other modified groups with a fixed structure, 
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such as protein phosphorylation or methylation with a universal mass shift for all modified 

peptides and proteins 46, protein glycosylation does not have a common mass tag for MS 

analysis. In order to globally identify glycosylation sites, methods that generate a tag for 

glycosylation sites will provide convenience for spectra matching. This section covers the 

methods generating a common mass tag for MS-based glycoproteomics analysis. 

 

1.2.2.1 A common tag for protein N-glycosylation 

The simplest strategy is to remove the glycans while the residual mass can serve as a 

tag to localize the glycosylation site. To achieve this goal, enzymatic methods have been widely 

used to deglycosylate N-glycans. The enzyme peptide-N4-(N-acetyl-β-

glucosaminyl)asparagine amidase F (PNGase F) is the most commonly used to remove protein 

N-glycans. PNGase F was initially isolated from Flavobacterium meningoseptic in 1984 47, 

and has been used for N-glycan removal since then. It was reported to recognize a broad 

spectrum of substrates and can hydrolyze the glycosylamine linkage between the glycan and 

the amino acid, which generates a deglycosylated peptide and an intact oligosaccharide with 

the di-N-acetylchitobiose unit at the reducing end 48.  In the process, the asparagine residue will 

be converted to aspartic acid, introducing a mass shift which can serve as a universal mass tag 

for glycosylation site localization. The reaction is shown in Figure 1.1. 

 

Figure 1.1 Deglycosylation using PNGase F. After glycoprotein/glycopeptide enrichment, the 

glycan can be removed by PNGase F, converting Asn to Asp at the same time. 
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Although PNGase F has been widely used, there are still a few drawbacks of using this 

method. First, spontaneous deamidation of asparagine residues occurs at all time in vitro and 

in vivo which generates the same mass shift as PNGase F cleaving reaction, rendering it hard 

to control the false positive glycosylation site identification. To solve this problem, heavy 

oxygen water (H2
18O) has been employed as the solvent to carry out the enzymatic removal of 

N-glycans by PNGase F 49, 50. In this case, the mass tag of accumulated spontaneous 

deamidation is different from the one from authentic deglycosylation with PNGase F. The 

reaction can be performed for a shorter period of time to limit the impact of deamidation during 

PNGase F treatment. In our previous experiment, under the PNGase F treatment at neutral 

conditions, the spontaneous deamination effect can be negligible. The other limit of this method 

is that PNGase F is not able to remove glycans with fucose attached α1 → 3 to the asparagine-

linked N-acetylglucosamine residue 51. This problem has not been solved yet, although 

combining several deglycosylation enzymes may help release the glycans more efficiently. 

Aside from PNGase F, the endoglycosidases are a family of important deglycosylation 

enzymes that have also been reported in the literature. Endoglycosidase H (Endo H) is the most 

widely used one among the endoglycosidases. It cleaves within the chitobiose core of high 

mannose and some hybrid oligosaccharides from N-linked glycoproteins, although it does not 

work efficiently against complex glycans. Endo H was firstly isolated from Streptomyces 

plicatus and its structure was described by Robbins et al. in 1984 52. The residual mass of Endo 

H cleavage is different from that of PNGase F removal because the innermost GlcNAc residue 

remains on the peptide after the glycan cleavage. The cleaving process of Endo H is shown in 

Figure 1.2. 
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Figure 1.2 Deglycosylation using Endo H. After cleaving the glycan, the peptide is left with 

one residual GlcNAc. 

 

The remaining GlcNAc can serve as the mass tag for glycosylation site localization. 

However, this tag is considerably larger than the one from PNGase F treatment, which may 

have a negative effect on the quality of tandem MS, especially when collision-induced 

dissociation (CID) is used to fragment glycopeptides. In addition, Endo H has higher substrate 

specificity comparing to PNGase F, rendering the enzymatic glycan release not as complete. 

To improve the glycoproteome coverage, researchers have combined several endoglycosidases 

to remove glycans. For instance, Hägglund et al. combined Endo H and Endo D to 

deglycosylate glycopeptides enriched by hydrophilic interaction liquid chromatography, which 

led to the identification of 62 glycosylation sites on 37 glycoproteins from human plasma 

samples (Hägglund et al., 2004). 

 

Although enzymatic methods have their advantages, each enzyme has its own 

specificity besides that they are not cost-effective. Therefore, it is very difficult to universally 

remove all glycans using a single enzyme or a combination of several enzymes. Chemical 

methods were also developed to remove glycans for glycosylation mapping. More than three 

decades ago, Edge et al. developed a method using trifluoromethanesulfonic acid (TFMS) to 

remove glycans from fetuin, and found that this treatment at 0 or 25°C results in rapid cleavage 

of peripheral sugars, slow loss of serine- and threonine-linked GalNAc, and retention of N-

linked GlcNAc 53. Other methods such as ammonium hydroxide/carbonate-based chemical 
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deglycosylation were also reported in the literature 54. Recently, Chen et al. developed a method 

combining removal of glycans using TFMS and MS-based proteomics to perform large-scale 

analysis of protein N-glycosylation from complex biological samples 55. This method takes the 

advantage of the difference between the amide bond of the innermost N-linked GlcNAc and 

the glycosidic bond among the rest of the sugars, where TFMS can cleave the glycosidic bonds 

but not the amide bond. Therefore, after cleavage, the innermost GlcNAc remains on the 

peptide to serve as a tag for N-glycosylation site mapping. Although the tag is the same as that 

from Endo H treatment, this chemical method has the advantage of not being affected by the 

compositional and structural variation of the glycans, which can lead to a much broader 

glycoproteome coverage.  

Combining this method with lectin enrichment of glycopeptides, the authors identified 

555 N-glycosylation sites from 219 glycoproteins without further glycopeptide fractionation. 

The authors also compared this method to the Endo H method, and demonstrated that this 

chemical method outperformed the other by a large margin. Following this study, Ma et al. 

developed a strategy used TFA to deglycosylate glycopeptides with the assistance of 

microwave heating, which shortened the treatment time to merely ten minutes 56. Combining 

the new strategy with ZIC-HILIC enrichment and higher-energy collisional dissociation (HCD) 

fragmentation, they identified a total of 257 N-glycosylation sites and 144 N-glycoproteins 

from healthy human serum. Although chemical deglycosylation methods are generally more 

universal than enzymatic methods, the harsh deglycosylation conditions sometimes would 

damage the peptide backbone and thus sabotage the glycosylation site identification. 

 

1.2.2.2 A common tag for protein O-glycosylation 

 Although it is well known that protein O-glycosylation plays crucial roles in biological 

systems 57-59, the tools to study protein O-glycosylation is relatively under-represented 
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compared to N-glycosylation. As one of the methods that can deglycosylate O-glycans and 

leave a mass tag on the peptides, β-elimination has been well studied in the literature. The 

general principle of this method is to perform alkaline-induced release of glycans and leaves 

an alkene group on the deglycosylated site. The carbon-carbon double bond is reactive and 

susceptible to nucleophilic attack, and therefore, reduction was then performed on the alkene 

to stabilize the structure and create a mass tag for proteomic studies.  

 More than two decades ago, Greis et al. designed a β-elimination-based strategy to 

analyze O-GlcNAc-modified glycopeptides using MS. They demonstrated that β-elimination 

can create a mass shift for O-GlcNAcylated peptides, converting the previously glycosylated 

serine and threonine residues to alanine and 2-aminobutyric acid, respectively, and thus can be 

used for detection and site mapping of glycopeptides in complex samples 60. The same research 

group further developed this method by coupling β-elimination with Michael addition of 

dithiothreitol, termed BEMAD 45. This method creates a 136.2 Dalton mass shift through the 

loss of the glycans and addition of the DTT molecule, which can serve as a common mass tag 

for O-glycosylation (especially O-GlcNAcylation) site analysis. In the literature, there are also 

many other reports on β-elimination-based methods for maping protein O-glycosylation 9, 44, 61-

69. For instance, Rademaker et al. used NH4OH to initiate β-elimination, and after completion, 

NH3 was incorporated onto the amino acid residue from which the glycan was released. This 

method yielded a unique mass tag for database searching and was proved to be effective for as 

low as 1 pmol of starting material 70. Despite β-elimination-based methods hold the potential 

to generate common mass tags for O-glycosylation sites, the major drawback is that the reaction 

conditions are relatively harsh, which induces significant degradation of peptides. 

 Unlike N-glycans that can usually be removed by Endo H or PNGase F prior to LC-

MS/MS analysis, O-glycans are more daunting to be released by enzymatic methods. Despite 

this fact, attempts were still made on using enzymes to deglycosylate O-glycans. Hägglund et 
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al. combined two enzymatic deglycosylation strategies to identify both core fucosylated N-

glycans and O-glycosylation sites from human plasma proteins. They carried out PNGase F 

removal of N-glycans in H2
18O first, then Endo D and Endo H, along with several 

exoglycosidases (β-galactosidase, neuraminidase and N-acetyl- -glucosaminidase), were used 

to cleave the glycosidic bond between the two GlcNAc residues in N-glycans, leaving only one 

GlcNAc residue with potential fucosyl side chain on the peptide. Although initially this strategy 

was devised for N-glycosylation analysis, several O-glycosylated peptides were also found 

with a single GalNAc attached to the modification site, which was attributed to partial de-O-

glycosylation by the combination of endo- and exoglycosidases 23.  

In addition to the enzymatic and chemical methods mentioned above, another very 

elegant method was developed by Steentoft et al., which employs zinc-finger nuclease (ZFN) 

to genetically engineer cells, simplifying the O-glycan structures to create a common mass tag 

10. The modified cell lines are named SimpleCell lines. They applied ZFN targeting to modify 

the O-glycan elongation pathway in human cells, and thus truncate the human glycans. 

SimpleCell lines with homogenous O-glycosylation were generated. These cell lines solely 

express GalNAcα (Tn) or NeuAcα2-6GAlNAcα (STn) O-glycans, allowing O-glycopeptides 

to be easily enriched by lectins. The glycopeptide sequencing process is also greatly simplified 

due to the common tags. A total of >100 O-glycoproteins with >350 O-glycosylation sites were 

identified by combining this method with nano-flow liquid chromatography-mass spectrometry 

(nLC-MS/MS) with electron transfer dissociation (ETD) fragmentation. This method has 

opened up a new avenue to analyze the O-glycoproteome. With the development in gene 

editing techniques in recently years, similar strategies should have broader applications in 

protein modification studies. 

Following their first publication, Steentoft et al. further optimized the experimental 

conditions and mapped nearly 3,000 glycosylation sites in over 600 O-glycoproteins from 12 
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human cell lines 71. These cells were from different organ origins and the glycoproteomes are 

considerably different across these cell lines. Meanwhile, they also improved NetOGlyc4.0 as 

a tool for O-glycosylation prediction. In summary, this study contains very comprehensive O-

glycosylation information. 

 

1.3 Glycoprotein Dynamics 

Glycosylation is a reversible protein modification and glycoproteins are dynamic in and 

outside of cells. However, investigating glycoprotein dynamics can be quite challenging. The 

rapid advancement in glycoproteomics and multiplexed proteomics has provided the exciting 

possibility. The following subsection review several studies on MS-based proteomic 

investigation of glycoprotein dynamics. 

 

1.3.1 O-GlcNAcylated protein dynamics 

There are several methods reported in the literature to study glycoprotein dynamics and 

most of these studies were conducted in recent years. For instance, Wang et al. metabolically 

labeled O-GlcNAc by feeding cells with 13C6-glucose. The isotopically labeled glucose 

metabolized into 13C-labeled UDP-GlcNAc through the hexosamine biosynthetic pathway, and 

eventually labeled O-GlcNAcylated proteins. They then employed the boronic acid-based 

glycoprotein enrichment method to enrichment O-GlcNAcylated peptides for quantitative 

proteomics analysis. Through this strategy, protein O-GlcNAcylation turnover rates were 

determined. They identified 105 O-GlcNAcylated peptides from 42 proteins, and determined 

the turnover rates of 20 O-GlcNAcylated peptides from 14 proteins in the HeLa cells 72.  
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1.3.2 N-glycoprotein dynamics 

Recently Xiao et al. developed a method that integrated isotopic labeling, chemical 

enrichment, and multiplexed proteomics to perform glycoprotein degradation and synthesis 

rates simultaneous 73. In this study, cells were cultured in media containing heavy lysine and 

arginine, then chased in media with all light amino acids for different duration before being 

harvested. Then the proteins were extracted, digested, and the resulting peptides were subjected 

to boronic acid-based glycopeptide enrichment. The enriched glycopeptides from cells 

harvested at different time points were labeled by tandem mass tags (TMT) reagents, and then 

analyzed by LC-MS/MS. Due to the fact that after chasing cells with light media, the abundance 

of existing heavy amino acid-labeled proteins decrease and the light proteins increase, heavy 

glycoproteins were used for the determination of degradation rates and light glycoproteins for 

synthesis rate investigations. The synthesis rates of 847 N-glycoproteins and degradation rates 

of 704 N-glycoproteins were calculated in this study. 

 

1.4 Applications of MS-Based Glycoproteomics 

Protein glycosylation is one of the most complex modifications in all types of organisms. 

Characterizing glycosylation events in various samples will certainly lead to a deeper 

understanding of many cellular processes and better solutions of biomedical problems. The 

strategies developed in the field of glycoproteomics have been widely applied to investigate a 

great variety of experimental subjects, from prokaryotic cells to eukaryotic cells, from plants 

to animals, and from cultured cells to clinical samples. In this section, we review the 

applications of MS-based glycoproteomics. 
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1.4.1 Yeast 

Yeast (Saccharomyces cerevisiae) is most commonly used in biology laboratories. 

Although it serves as an excellent model system for eukaryotic cells, the global analysis of 

glycoproteins in yeast is still challenging. Unlike human glycan structures, the yeast glycans 

are mostly the high-mannose type 74, and the molecular weight of these N-glycans can 

sometimes be very large. In addition, yeast also has cell walls, and many cell wall proteins are 

heavily mannosylated. Investigating protein glycosylation in yeast has long been intriguing to 

researchers. 

In 2009, Schulz and Aebi designed a novel strategy to quantify glycosylation site 

occupancy in yeast. They enriched glycoproteins bound to the yeast polysaccharide cell wall, 

and released the glycans using Endo H, which also creates a mass tag at the same time. The 

peptides and glycopeptides were analyzed by LC-MS/MS. Their experimental results also 

revealed that the paralogues Ost3p and Ost6p have crucial roles in efficient glycosylation of 

distinct defined glycosylation sites 75.  

Bailey and Schulz demonstrated that adding a protein deglycosylation step prior to 

enzymatic protein digestion can systematically improve N-glycoprotein identification in yeast 

lacking Alg3p. By treating the proteins with PNGase F before AspN or trypsin digestion, the 

quality of yeast cell wall proteome identification was improved 76. 

As discussed above, Chen et al. developed a chemical deglycosylation method to study 

lectin-enriched yeast glycoproteome, and 555 protein N-glycosylation sites were identified on 

250 glycoproteins in yeast cells. They later devised a boronic acid-based enrichment strategy 

to universally analyze glycoproteins in yeast, and identified 816 N-glycosylation sites from 

332 glycoproteins. 

Xiao et al. performed quantification of the proteome and glycoproteome changes in 

yeast cells with or without the tunicamycin treatment. A total of 4,259 proteins and 135 
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glycoprorteins were quantified. More than 5% of the proteins were found to be decreased by at 

least 2-fold and 168 out of 465 glycopeptides were down-regulated due to the protein N-

glycosylation inhibition effect of tunicamycin 77. Smeekens et al. identified and quantified 

secreted yeast proteins (including glycoproteins) from tunicamycin-treated cells. The secreted 

yeast glycoproteins were separated from cells through mild washing and centrifugation that 

avoided cell death, limiting the impact of the intracellular proteins on the secretome analysis. 

A total of 27 glycoproteins were quantified and 26 of them were down-regulated, testifying 

that the secretion of some proteins is regulated by glycosylation 78. 

 

1.4.2 Plant 

Since glycosylation is an essential protein modification in all eukaryotic cells that 

regulates a variety of cellular processes, plant glycosylation is also of importance to investigate. 

Similar to mammalian cells, most proteins of the extracellular and endomembrane systems are 

glycosylated by N-linked oligosaccharides in plants. Protein N-glycosylation impacts not only 

their physicochemical properties, but also their biological functions 79. Despite the fact that 

protein glycosylation is relatively conserved across all eukaryotic species,  glycosylation in 

plant cells does have its uniqueness compared to mammalian cells. However, compared to lots 

of endeavors been put into glycosylation studies in mammalian cells, plant glycosylation is still 

relatively not as well-studied. While there is no universal protocol or procedure for plant 

proteomics, in general, a plant proteomics experiment typically involves the following steps: 

cell/tissue preparation, protein extraction and digestion, peptide separation, and MS-based 

identification 80. For modification studies, there usually is an additional enrichment step. The 

protein extraction procedure for plant can be very different from mammalian protein extraction 

because (1) plants have a great variety of tissues and the extraction procedure can be different 

for different tissues; (2) protein concentrations in plant samples are usually low and yet plant 
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tissues have high amount of proteases; (3) many plant-originated chemicals, such as the 

polysaccharides in cell wall, lipids, pigments, and metabolites, can greatly interfere with 

several steps of the typical proteomics workflow. 

Proteomic studies of plant glycoproteins have emerged since early 2000s. In 2003, 

Andon et al. performed a proteomic study on the mannose-binding proteins in rice (Oryza 

sativa). Instead of directly analyzing glycoproteins, they studied the proteins that are involved 

rice sugar metabolism, including several rice lectins 81. The method they used to enrich these 

proteins is column affinity chromatography, and α-D-mannose was used as the ligand to pack 

the column and bind the desired glycoproteins. Saravanan and Rose evaluated several 

extraction techniques to analyze proteins in recalcitrant plant tissues, and found that compared 

to acetone-based protein precipitation methods, phenol-based methods gave higher numbers of 

protein and glycoprotein identifications as shown in their results 82.  

Wimmer et al. designed an method to isolate “membrane-associated, boron-interacting 

proteins”, such as glycoproteins, glycosylphosphatidylinositol (GPI)-anchored proteins, using 

boronate affinity chromatography. Resin-immobilized phenylboronic acid was employed to 

capture glycoproteins from root microsomal preparations of arabidopsis (Arabidopsis thaliana) 

and maize (Zea mays). These proteins were then analyzed by 2D-gel electrophroresis and 

matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) MS 83.  

Albenne et al. systematically studied plant cell wall proteins including glycoproteins. 

They established a workflow to prepare cell wall peptides for MS analysis, and developed a 

bioinformatics tool to interpret the data. In that study, N-glycosylation was found on 

peroxidases, such as PER32. Their MS data also provided insights into N-glycan structures and 

facilitated protein glycosylation prediction 84. 

In later studies, especially those published in recent years, lectin-based enrichment 

strategies were the most widely used to enrich plant glycoproteins. Typically, one or several 



 
23 

lectins are immobilized on the resin to pack a column, and then lectin affinity chromatography 

is performed to separate and purify plant glycoproteins. Through this enrichment, researchers 

were able to analyze both N- and O-glycosylation. For instance, Rose and co-workers carried 

out a comparative study to analyze N-glycoproteins in tomato fruit. In one experiment, by 

combining three lectins, namely Con A, snowdrop lectin, and lentil lectin to enrich 

glycoproteins, they identified 448 putative N-glycoproteins. In the other parallel experiment 

using lectin affinity chromatography plus hydrophilic interaction chromatography as the 

enrichment method, 318 putative N-glycosylation sites on 230 N-glycoproteins were identified. 

Of note, 17 N-glycan structures were also studied 85. In another study on tomato fruit 

glycoproteins, Thannhauser and co-workers combined  ConA lectin affinity chromatography 

and LC-MALDI-MS/MS, and analyzed glycoproteins that involved in biological processes 

such as carbohydrate metabolism, proteolytic activity, oxidative catabolism, phosphatase 

activity, nucleic acid catabolism/transcriptional regulation 86. 

 

1.4.3 Mouse 

Mouse has been an excellent model for researchers to study biology in complex and 

dynamic physiological systems. It is frequently used in biomedical research as a substitute for 

human subjects. To overcome its several limitations in modeling human disease, many 

clinically-relevant mouse models were generated to mimic the cellular processes of human 

diseases 87. Through these models, molecular mechanisms and clinical responses of diseases 

were investigated. The data collected in these studies contribute immensely to developing new 

therapies to cure diseases. Due to the biomedical importance of mouse models, analyzing 

mouse glycoproteins have been the focus of many reports in the literature. 

Besides the large-scale mouse N-glycoproteome study performed by Mann and co-

workers that is described in the first section of this review, there are also many other impactful 



 
24 

glycosylation studies on mouse samples. Cima et al. used a glycoproteomics approach to aid 

in the discovery of serum biomarkers for prostate cancer. Hydrazide chemistry coupling with 

solid phase extraction was employed for the enrichment, and through this, they identified 775 

N-glycoproteins from sera and prostate tissue of wild-type and Pten-null mice 88. Label-free 

quantification was then performed, and the results demonstrated that Pten deletion led to 

changes in prostate and serum glycoproteomes. Based on these results, further targeted-

proteomics and bioinformatics studies were carried out to screen out potential biomarkers. This 

study is an excellent example of how rational design of proteomic analysis in mouse models 

can lead to the discovery of biomarkers. 

Goldberg et al. developed a program named Peptoonist that enabled automated N-

glycopeptide identification, which can identify glycopeptides and also annotate glycan 

composition. To validate this strategy, they prepared mouse models and then isolated proteins 

from these mouse ovaries and tested the program 89. Zhang et al. optimized a protocol for the 

enrichment of both glycopeptides and phosphopeptides through electrostatic repulsion 

hydrophilic interaction chromatography (ERLIC), and then analyzed 922 glycosylation sites 

on 544 unique glycoproteins, and 915 phosphorylation sites on 383 phosphoproteins from 

mouse brain membrane 90.  

Many mouse O-glycosylation studies were also reported in the literature. Alfaro et al. 

devised a strategy combining metabolic labeling and chemical/enzymatic photochemical 

cleavage to study mouse brain O-GlcNAcylated proteins as discussed above 41. From 100 µg 

tryptic peptides, they were able to identify 458 O-GlcNAc sites and 195 glycoproteins. 

Palmisano et al. combined titanium dioxide enrichment with HILIC to investigate protein 

modifications during mouse brain development, and were able to identify 3246 unique formerly 

sialoglycopeptides. More than 10% of these peptides were found to be differentially regulated 

in the development process 91. Although O-glycosylation studies in mouse are still quite 
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challenging now, with the development in enrichment strategies and MS fragmentation 

methods, we expect more applications of O-glycosylation analyses in mouse models will come 

up and greatly expand our knowledge of the functions of O-glycoprotein in cells with healthy 

or diseased states. 

 

1.4.4 Human cell lines and intact glycopeptide analyses 

The commonly used human cell lines along with stem cells 92 are the most widely used 

models in the glycoproteomics field. Using human cell lines, glycoproteome analysis has 

advanced from glycoprotein identification-centric studies to glycosylation site localization and 

site-specific structural characterization of glycan-containing peptides and proteins. Although 

bottom-up and top-down glycoproteomics are both developing rapidly, glycopeptide-based 

glycoproteomics is more commonly used to study the glycosylation sites and glycan structures 

on glycopeptide. In addition, stoichiometry and glycan occupancy information can also be 

obtained from this working route. To study glycan-containing glycopeptides in human cells, 

different fragmentation methods have their advantages and disadvantages. CID can generate 

abundant B- and Y- ions that are useful to identify the glycan composition and structure. 

However, CID, especially resonance-type CID technique cannot produce adequate and reliable 

fragments for glycosylation site and peptide sequence determination. Beam-type higher-energy 

collisional dissociation (HCD) usually can generate enough b- and y- ions for peptide 

identification, but the frequent detachment of glycans renders the site localization hardly 

reliable. ECD (electron-capture dissociation) and ETD (electron-transfer dissociation) type 

fragmentation methods yield c- and z- ions to determine the peptide backbone sequence and 

glycosylation site, but not enough information can be gathered to study the actual glycan side 

chain substructure.  
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Due to the drawbacks of each technology, attempts were made to perform MS3 or 

combine different fragmentation methods to analyze intact glycopeptides 93, 94. These attempts 

can improve peptide backbone fragmentation efficiency or allow pre-selection of glycopeptides, 

thus filtering out non-glycopeptides and allocating more analysis time for glycopeptides. 

Parker et al. combined glycomics and glycoproteomics to study the N-glycoproteome 95. They 

analyzed the glycosylation sites and glycan structures separately. The glycopeptides were 

deglycosylated with PNGase F and identified by LC-MS/MS first to accurately localize the N-

glycosylation site, then glycan-containing form of the same peptide and glycans were analyzed 

to find out the glycan composition. Eventually the data collected from both analyses were 

combined to reconstruct the intact-glycopeptides. With both glycome and glycoproteome 

information, a total of 863 unique N-glycopeptides from 161 glycoproteins were studied. Other 

attempts were focused on developing computational algorithms for site-specific assignments 

of intact glycopeptides. Zhang and co-workers developed software named GPQuest to analyze 

intact glycopeptides using the data collected from HCD-LC-MS/MS. This software firstly 

generates a spectral library of glycosite-containing peptides from MS analysis using HCD as 

the fragmentation method. Intact glycopeptides are then selected based on the oxonium ions, 

and the spectra are compared with the library generated from glycosite-containing peptides. 

This step assigns MS/MS spectra of intact glycopeptides to specific glycosite-containing 

peptides. The glycans were then determined by calculating the mass shift between the precursor 

ion of intact glycopeptide and the glycosite-containing peptide, and match the mass difference 

to a glycan database 96, 97.  

In 2012, Frese et al. developed a novel method that combined HCD with ETD (termed 

EThcD) to improve peptide backbone fragmentation. After the initial electron-transfer 

dissociation, all ions were fragmented by collision induced dissociation. Therefore, in the end, 

b-, y-, c-, and z-ions can be observed in the same spectrum 98. They later applied it for 
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phosphorylation analysis 99. This strategy was recently adopted and optimized by Yu et al. to 

analyze intact glycopeptides. After lectin and HILIC enrichment, the glycopeptides were 

analyzed by EThcD MS 100. Since both glycosidic and amide bonds were cleaved, rich 

information on glycan structure and peptide sequence were obtained. The authors also 

compared the number of glycoforms identified from EThcD or HCD alone, and demonstrated 

that a greater number of glycoforms were observed using EThcD. 

 

1.4.5 Clinical samples 

Glycosylation can changes chemical and physical properties of proteins, and regulate 

their binding and interactions with ligands or extracellular matrix, which is important in many 

biological processes. Aberrant glycosylation patterns reflect abnormal cellular processes and 

can be used to monitor disease status 101. Glycoproteomics has been applied in the research of 

a great variety of diseases, such as hepatitis, cancer, and infectious diseases. For instance, an 

increase on sialylation is a common feature of cancer cells 102. With the increased levels of 

sialic acid residues in cells, abnormal glycosylation patterns such as STn antigens start to 

present on cells 103. Also, as described by the Warburg effect, cancer cells predominantly 

produce energy through glycolysis instead of mitochondrial oxidative phosphorylation. This 

leads to a great increase in glucose uptake, which elevates the level of UDP-GlcNAc, the end 

product of hexosamine biosynthetic pathway. Correspondingly protein O-GlcNAcylation may 

increase dramatically. Due to this reason, hyper O-GlcNAcylation is also one of the hallmarks 

of cancer progression in cells 104.  

Currently, one of the most important glycoproteomic applications in clinical samples is 

to find new disease biomarkers 105. Unlike traditional strategies that screen a single or a small 

number of potential biomarker(s), monitoring a larger group of candidates using 

glycoproteomic approaches can often result in higher sensitivity and specificity. For example, 
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Ahn et al. attempted to screen biomarkers for small cell lung cancer through a glycoproteomic 

approach. They enriched glycoproteins using a lectin column, and then analyzed the 

glycoproteome changes through both label-free quantification and multiplex proteomics. The 

results demonstrated that the expression and glycosylation changes in fucosylated proteins, 

such as paraxonase 1, might serve as serological markers for small cell lung cancer 106. Qiu et 

al. profiled plasma glycoproteins in order to find biomarkers for colorectal cancer. They 

combined lectin glycoarray with LC-MS to determine the glycan patterns from the plasma 

samples from 9 normal, 5 adenoma, and 6 colorectal cancer patients, and found several proteins 

with elevated sialylation and fucosylation as potential biomarkers of colorectal cancer. These 

markers were then validated by lectin blotting of plasma samples from thirty patients 107.  

Halim et al. devised several applicable strategies to analyze glycoproteins with glycan 

structural information in clinical samples. In 2012, they performed a study to analyze N- and 

O-linked glycoproteins in urine samples. After eliminating the interferences by dialysis, they 

performed the enrichment with hydrazide chemistry, and characterized intact glycopeptides by 

CID and ECD. Later they combined PNGase F pretreatment and automated CID-MS2/MS3 

fragmentation for glycopeptide identification, and ECD/ETD for glycosylation site localization, 

to analyze intact O-glycopeptides in glycoproteins from human cerebrospinal fluid samples. 

This study provided guidance for future research of finding O-glycoproteins as potential 

biomarkers. In 2014, by using synthetic glycopeptides, urine samples, and peptides from 

human cerebrospinal fluid samples, they found that oxonium fragmentation patterns can be 

used to differentiate O-GlcNAc from O-GalNAc, which is a important discovery for intact O-

glycopeptide analysis 108. 

The applications of glycoproteomics in clinical samples are far more than what we 

described in this section, there are many comprehensive reviews that discuss the importance of 

glycoproteomic technologies in biomedical research 109-114.  Due to the irreplaceable roles of 



 
29 

glycoproteins play in various diseases, high-throughput glycoproteomic technologies will 

continue to be developed to enable large-scale and sensitive analysis of glycopeptides and 

glycan structures. Foreseeably, glycoproteomics will help shape the directions of future 

glycoscience research. 

 

1.5 Conclusions 

The tremendous development in chemical biology and MS technologies have allowed 

for rapid advancements in the glycoproteomics field. Here, we reviewed the chemical and 

enzymatic methods for glycoprotein analysis. We first included widely used methods for the 

enrichment of glycopeptides/proteins, such as lectin, hydrazide chemistry, HILIC, click 

chemistry-based and boronic acid-based enrichment methods. Following this, we discussed 

several enzymatic and chemical methods for the generation of common mass tags. This section 

focused on how researchers have attempted to solve the two challenging problems in 

glycoproteme analysis (low abundance of many glycoproteins and heterogeneity of glycan 

structures). With the methods described above and multiplexed proteomics, large-scale 

investigation of glycoprotein dynamics has come to realization. Therefore, The methods 

recently reported for studying the dynamics of the whole glycoproteome were also included. 

In the last section, we discussed many applications of MS-based glycoproteomics in different 

species, from yeast, plant, mouse models, to clinical samples, and intact glycopeptide analysis 

in human cells. 

With these methods and many other strategies underway, much valuable information 

about protein glycosylation have been and will be obtained, including glycoprotein 

identification, glycosylation site localization, and glycan structure elucidation, glycosylation 

stoichiometry investigation, and glycoprotein analysis with spatial and temporal information. 

Global analysis of protein glycosylation will undoubtedly provide important data that can have 
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tremendous impact on biochemical and biomedical research.  In addition, as we are entering 

an era where computational power advances immensely, we expect to see further developments 

in mass spectrometry. Next generation mass spectrometers will be able to enable more sensitive 

peptide sequencing, faster analyzing speed, and more suitable fragmentation techniques.  

Higher computational power also will allow for new bioinformatics tools to aid in 

glycoproteomics. New and innovative software will be developed to help us quickly and 

accurately identify glycopeptides, especially intact glycopeptides, and to provide us more 

valuable information regarding protein glycosylation sites and glycan structures. With the 

development of hardware and software, and effective chemical and enzymatic methods, it is 

expected that the field of glycoproteomics will grow exponentially in the next decade. 
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CHAPTER 2. A CHEMICAL METHOD BASED ON SYNERGISTIC 

AND REVERSIBLE COVALENT INTERACTIONS FOR LARGE-

SCALE ANALYSIS OF GLYCOPROTEINS 
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synergistic and reversible covalent interactions for large-scale analysis of glycoproteins, 
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2.1 Introduction 

Glycosylation is one of the most common and essential protein modifications in cells. 

It often determines protein folding, trafficking and stability, and regulates many cellular events, 

especially cell-cell communication, cell-matrix interactions, and cellular response to 

environmental cues1-4. Glycoproteins contain a wealth of information related to cellular 

developmental and diseased statuses5, 6, and aberrant protein glycosylation is directly related 

to human disease, including cancer and infectious diseases7-10. Global analysis of protein 

glycosylation is critical in understanding glycoprotein functions and identifying glycoproteins 

as biomarkers and drug targets10-12. However, due to the low abundance of many glycoproteins 

and heterogeneity of glycans, it is extraordinarily challenging to comprehensively analyze 

glycoproteins in complex biological samples.  

Currently mass spectrometry (MS)-based proteomics provides a unique opportunity to 

globally analyze protein modifications13-22, including glycosylation23-31. However, effective 

enrichment prior to MS analysis is imperative for each type of protein modification. For 

example, with the maturity of phosphoprotein enrichment methods, the global analysis of 
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protein phosphorylation has advanced tremendously, from the identification of several hundred 

phosphorylation sites a decade ago to over ten thousand sites in recent studies32-34.  

In order to comprehensively analyze protein glycosylation in complex biological 

samples, several glycoprotein/peptide enrichment methods have been reported, including 

lectin-based35, 36 and hydrazide chemistry-based methods37, 38, and hydrophilic interaction 

liquid chromatography (HILIC)39, 40. Currently lectin-based methods are most commonly used 

to enrich glycopeptides prior to MS analysis. Due to the inherent specificity of lectins, each 

type of lectin can only recognize a specific glycan structure, and thus, no single lectin or a 

combination of several lectins can universally enrich all glycosylated peptides or proteins. 

HILIC has also been extensively used to enrich glycoproteins or glycopeptides based on the 

increased hydrophilicity of glycopeptides. However, this method lacks specificity because it 

cannot distinguish glycopeptides from many hydrophilic non-glycopeptides. Recently, two 

elegant methods, i.e. isotope-targeted glycoproteomics (IsoTaG)41 and solid phase extraction 

of N-linked glycans and glycosite-containing peptides (NGAG)42, have been reported. By using 

IsoTaG, 32 N-glycopeptides and over 500 intact and fully elaborated O-glycopeptides from 

250 proteins across three human cell lines were identified41. NGAG was beautifully designed 

for N-glycopeptide enrichment, and 2,044 unique N-glycopeptides were identified in 

mammalian cells42. According to prediction and computational results, protein glycosylation is 

the most common modification43, 44. Despite the considerable progress that has been made in 

the past decade35, 37, 41, 42, 45-50, there is still a substantial gap between the number of 

glycoproteins reported in the literature and those existing in complex biological samples. 

Effective enrichment of glycopeptides/glycoproteins will profoundly advance the global 

analysis of protein glycosylation through MS-based proteomics.  

Previously, boronic acid (BA) was demonstrated to have great potential in universally 

enriching glycopeptides for the global analysis of protein glycosylation because of its 
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reversible covalent interactions with glycans51, 52. However, the method suffers from relatively 

weak interactions; therefore, low-abundance glycoproteins are not effectively enriched. In this 

work, we develop a new method to more effectively enrich glycopeptides, especially those of 

low-abundance, by greatly enhancing the interactions between boronic acid and glycopeptides. 

First, different boronic acid derivatives are tested, and benzoboroxole is found to be highly 

effective to enrich glycopeptides due to dramatically strengthened interactions. Second, based 

on the common features of a glycan containing multiple monosaccharides and one sugar 

bearing several hydroxyl groups, benzoboroxole conjugated dendrimer beads can 

synergistically interact with glycopeptides. The experimental results demonstrate that 

conjugating benzoboroxole to a dendrimer significantly increases the enrichment efficiency, 

even for glycopeptides only containing O-GlcNAc (N-acetyl glucosamine).  

The novel method is applied for the global analysis of glycoproteins in yeast (S. 

cerevisiae), mouse brain tissue, and human cells (MCF7, HEK 293T and Jurkat). Over 1,000 

N-glycosylation sites in yeast and 4,691 sites on 1,906 glycoproteins in human cells are 

identified, including many proteins with low abundance. The reversible nature of the 

interactions allows us to analyze intact O-glycopeptides with glycan structure information. We 

identify 234 O-mannosylated proteins in yeast and many glycoproteins with O-GlcNAc in 

human cells. These results demonstrate that the new method is universal and highly effective 

in enriching glycopeptides, especially from low-abundance glycoproteins that are normally of 

great biological importance. The current results also provide valuable information regarding 

glycoproteins in yeast and human cells to biological and biomedical research communities. 

Without sample restrictions, the current method can be applied to many other samples for 

glycoprotein analysis. 
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2.2 Experimental section 

2.2.1 Materials  

Complete protease inhibitors were purchased from Roche Applied Sciences and 

sequencing grade trypsin was from Promega. Dulbecco’s Modified Eagle‘s Medium (DMEM), 

phosphate buffered saline (PBS), N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide 

hydrochloride (EDC), 4-carboxy-2-nitrophenylboronic acid, (2-aminomethyl-5-fluoro) 

phenylboronic acid hydrochloride, 2-aminomethyl-4-fluorophenylboronic acid hydrochloride, 

trifluoroacetic acid (TFA), formic acid (FA), trimethylamine (TEA), piperidine, methanol, 

chloroform, dichloromethane (DCM), acetonitrile (ACN), and dimethylsulfoxide (DMSO) 

were from Sigma-Aldrich. 3-aminomethylphenylboronic acid hydrochloride was from Frontier 

Scientific Inc. 5-carboxybenzoboroxole and 1-hydroxy-7-azabenzotriazole (HOAt) were 

purchased from AK Scientific, Inc. (2,5-dioxopyrrolidin-1-yl) (2S)-2-(9H-fluoren-9-

ylmethoxycarbonylamino)-6-[(2-methylpropan-2-yl)oxycarbonylamino] hexanoate (Fmoc-L-

Lys(Boc)-OSu) and (S)-2,5-dioxopyrrolidin-1-yl 2,6-bis((tert-butoxycarbonyl) amino) 

hexanoate (Boc-Lys(Boc)-OSu) were from Ark Pharm, Inc. and Sigma-Aldrich. MagnaBind™ 

amine derivatized beads, MagnaBind™ carboxyl derivatized beads, and fetal bovine serum 

(FBS) were bought from Thermo Fisher Scientific. 

 

2.2.2 Magnetic beads derivatization 

MagnaBindTM carboxyl (or amine) derivatized beads were washed with DMSO three 

times. EDC was added to the beads slurry and incubated end-over-end for 10 min; HOAt was 

subsequently added, and the reaction mixture was further incubated for one hour. HOAt-

activated beads were washed with DMSO twice and incubated overnight with different amino 

boronic acids in DMSO containing 3.0% triethylamine (TEA). The boronic acid functionalized 
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beads were washed with DMSO twice and 20% ACN three times and stored in 20% ACN for 

further use.  

For dendrimer boronic acid derivatization, the solvent containing the MagnaBindTM 

amine derivatized beads was gradually changed from water to isopropanol to finally DCM 

(Figure 2.1 and 2.2). Then Fmoc-L-Lys(Boc)-OSu was reacted with the amino beads in DCM 

containing 0.3% TEA overnight. On the following day the beads were washed with DCM three 

times, and the Boc protection group was removed by incubation of beads in 50% TFA in DCM 

at room temperature for two hours. The beads were washed with DCM three times and one 

time with 3% TEA in DCM. To continue the derivatization, Boc-Lys(Boc)-OSu was added to 

the bead DCM solution followed by the addition of TEA (final concentration 3.0%). The 

reaction was carried out at room temperature with end-over-end rotation overnight. Then the 

Boc group was deprotected by 50% TFA as mentioned above. The Boc-Lys(Boc)-OSu 

conjugation step was repeated twice. Then the Fmoc groups were removed by mixing the 

functionalized beads in 50% piperidine DCM solution at room temperature for 30 minutes. 

Finally, all free amine groups were coupled with 5-carboxybenzoboroxole through EDC HOAt 

chemistry as described above.  
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Figure 2.1 Synthesis of the dendrimer with functional amine groups. 
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Figure 2.2 Conjugation of the boronic acid derivative, benzoboroxole, to the dendrimer. 

 

2.2.3 Yeast cell culture and protein extraction  

Yeast cells (strain BY4742, MAT alpha, derived from S288c) were grown in yeast 

extract peptone dextrose (YPD) media until they reached log-phase (optical density (OD) was 

about 1.0 at 600 nm). For biological duplicate experiments, cells were grown independently. 

Yeast cells were harvested by centrifugation and resuspended in a buffer containing 50 mM 4-

(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), pH 7.4, 150 mM NaCl, 0.5% 

sodium deoxycholate (SDC) and protease inhibitor cocktail (one tablet (complete mini, Roche) 

per 10 ml lysis buffer) at 4 ºC. Cells were lysed using the MiniBeadbeater (Biospec) at 

maximum speed, three cycles of 30 s each, with 2 min pauses between cycles to avoid 

overheating the lysates. After centrifugation, lysates were transferred to new tubes, and the 

protein concentration in the lysate was determined by BCA protein assay (Pierce).  
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2.2.4 Human cell culture, cell lysis and protein extraction  

MCF7, HEK 293T and Jurkat cells (American Type Culture Collection (ATCC)) were 

cultured following the instructions provided by ATCC. Once MCF7 and HEK 293T cells 

reached 80% confluency, cells were washed with PBS twice and harvested by scraping. Jurkat 

cells were harvested by centrifugation and then washed with PBS. Cell pellets were suspended 

in the ice-cold RIPA buffer (50 mM HEPES, pH=7.4, 150 mM NaCl, 0.5% SDC, benzonase 

(25 U/mL), and protease inhibitor cocktail) and incubated end-over-end for 1 hour at 4 °C. 

After complete solubilization of nuclei and digestion of genomic DNA, the lysate was 

centrifuged at 25,000 g for 10 minutes. The supernatant was collected and the protein 

concentration was measured by BCA protein assay.  

 

2.2.5 Protein extraction from mouse brain tissues  

For mouse brain samples, brain tissues from two C57BL/6 mice (3 and 6 months) were 

frozen in liquid nitrogen and homogenized in the RIPA buffer mentioned above. The mixtures 

were incubated on ice for an hour, and then clarified by centrifugation at 5,000 g for 20 minutes. 

Half of the supernatants (~8 mg proteins per experiment) were used for protein glycosylation 

analysis. 

 

2.2.6 Protein reduction, alkylation and digestion  

Lysates from yeast, human cells, or mouse brain tissue were reduced with 5 mM 

dithiothreitol (DTT) (56 °C, 25 minutes) and alkylated with 15 mM iodoacetamide (RT, 30 

minutes in the dark). Proteins were purified by the methanol-chloroform precipitation method. 

The purified proteins were digested with Lys-C (Wako) at a protein:enzyme ratio of ~100:1 in 

50 mM HEPES, pH=8.2, 1.6 M urea, 5% ACN at 31 °C overnight, and then 10 ng/µL trypsin 

(Promega) for 4 h. Digestion was quenched by the addition of TFA to a final concentration of 
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0.1%, and precipitate was removed by centrifugation at 5,000 g for 10 min. The supernatant 

was collected, and peptides were purified using a Sep-Pak tC18 cartridge (Waters). 

 

2.2.7 Glycopeptide enrichment  

For boronic acid derivative experiments, mammalian peptides were dissolved in 100 

mM ammonium acetate buffer and incubated for one hour with different boronic acid 

derivatized magnetic beads at room temperature. After incubation, the beads were washed with 

the binding buffer, and enriched peptides were eluted first by incubation with a solution 

containing ACN:H2O:TFA (50:49:1) at 37 °C for 30 min. Then the peptides were eluted two 

more times through incubation with 5% formic acid at 56 °C for 5 min each time. For the 

enrichment of peptides from yeast, human cells or mouse brain tissues using DBA, ~10 mg of 

peptides were used in each experiment and incubated with DBA beads in DMSO containing 

0.5% TEA, then washed five times using a buffer containing 50% DMSO and 50% 100 mM 

ammonium acetate (pH=11). Glycopeptides were then eluted as described above.  

For lectin enrichment, ConA and WGA-conjugated agarose beads (Vector Laboratories) 

were washed five times using the enrichment buffer (20mM tris-base pH=7.4, 0.15 M NaCl, 1 

mM MgCl2, 1 mM CaCl2, and 1 mM MnCl2)35. Peptides were dissolved in the enrichment 

buffer, mixed with the lectin beads, and vortexed under 37 oC for an hour. The beads were then 

washed again with the enrichment buffer for five times before glycopeptide elution using the 

elution buffer (0.2 M α-methyl mannoside, 0.2 M α-methyl glucoside, 0.2 M galactose, and 0.5 

M N-Acetyl-D-Glucosamine in PBS). The elution was performed twice with vortex for half an 

hour each, and the eluents were combined.  

 For HILIC enrichment, SeQuant® ZIC-HILIC SPE cartridges (the Nest Group) were 

washed with ten column volumes of 1.0% TFA in water, followed by three washes with the 

loading buffer (1.0% TFA in 80% ACN, 20% H2O)38-40. Peptides were loaded onto the column 
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in the loading buffer using a slow flow rate. The flow-through was re-loaded onto the column 

once. The column was then washed with the loading buffer three times. Glycopeptides were 

eluted using 1.0% TFA in water three times, and the eluents were combined. 

 

2.2.8 Glycopeptide PNGase F treatment and fractionation 

The enriched samples were dried in a lyophilizer overnight. The completely dried 

samples were dissolved in 40 mM ammonium bicarbonate in heavy-oxygen water (H2
18O) and 

treated with PNGase F (lyophilized powder from Sigma Aldrich) at 37 °C for 3 hours. For 

optimization experiments, after deglycosylation, peptide samples were purified using a stage 

tip. For all other experiments, enriched glycopeptides were desalted using a tC18 Sep-Pak 

cartridge, and then subjected to fractionation using high-pH reversed phase HPLC (pH=10). 

The sample was separated into 10 fractions using a 4.6×250 mm 5 µm particle reversed phase 

column (Waters) with a 40-min gradient of 5-50% ACN with 10 mM ammonium acetate. Every 

fraction was further purified with stage tip before LC-MS/MS. 

 

2.2.9 LC-MS/MS analysis 

Fractionated and purified peptide samples were resuspended in a solvent of 5.0% ACN 

and 4.0% FA, and 4 µL was loaded onto a microcapillary column packed with C18 beads 

(Magic C18AQ, 3 µm, 200 Å, 75 µm x 16 cm) using a WPS-3000TPLRS autosampler 

(UltiMate 3000 thermostatted Rapid Separation Pulled Loop Wellplate Sampler, Dionex). 

Peptides were separated by reversed-phase chromatography using an UltiMate 3000 binary 

pump with a 90-min gradient of 4-30% ACN (in 0.125% FA) and detected in a hybrid dual-

cell quadrupole linear ion trap - orbitrap mass spectrometer (LTQ Orbitrap Elite, ThermoFisher) 

using a data-dependent Top20 method. For each cycle, one full MS scan (resolution: 60,000) 

in the Orbitrap at 106 AGC target was followed by up to 20 MS/MS in the LTQ for the most 
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intense ions. The isolation window was 2 Da, which is the most commonly used, and the 

activation energy was 40% normalized collision energy (NCE), which was obtained through 

testing different NCEs to acquire the best results for the machine used here. Selected ions were 

excluded from further analysis for 90 s. Ions with a single or unassigned charge were not 

sequenced. Maximum ion accumulation times (Maximum IT) were 1000 ms for each full MS 

scan and 50 ms for MS/MS scans. For protein O-glycosylation analyses, the data was collected 

using a Q-Exactive Plus Orbitrap mass spectrometer with a two-hour LC gradient. Higher-

energy collisional dissociation (HCD) was used as the fragmentation method with the 

following parameters: 106 AGC target for full MS and 2×105 AGC target for MS2, 100 ms 

maximum IT, 2.0 Da isolation window, and 30% NCE. The dynamic exclusion time was set to 

60 sec. Both full MS and MS2 were collected in the Orbitrap cell with high mass accuracy and 

high resolution, which contribute to confident identification of O-glycopeptides.  

 

2.2.10 Database searches and data filtering  

The raw files were converted into mzXML format prior to the database search. The 

SEQUEST algorithm53 (version 28) was used to search all MS/MS spectra against either a 

database containing sequences of yeast (Saccharomyces cerevisiae) proteins downloaded from 

SGD (http://www.yeastgenome.org/) or human (Homo sapiens) proteins downloaded from 

UniProt. The following parameters were used for the database search: 10 ppm precursor mass 

tolerance; 1.0 Da product ion mass tolerance; fully tryptic digestion; up to two missed 

cleavages; variable modifications: oxidation of methionine (+15.9949) and 18O tag of Asn 

(+2.9883); fixed modifications: carbamidomethylation of cysteine (+57.0214). In order to 

estimate the false discovery rate (FDR) of peptide identification, both forward and reversed 

orientations of each protein sequence were listed in the database, and the target-decoy method 

was employed54. To distinguish between correct and incorrect peptide identifications, linear 
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discriminant analysis (LDA) was utilized with several parameters such as XCorr, ΔCn, and 

precursor mass error55. After scoring, peptides shorter than seven amino acid residues were 

discarded, and the remaining peptide spectral matches were controlled to have less than 1.0% 

FDR. When determining FDRs of the final data set, only glycopeptides were considered.  

For O-glycopeptide identification, we used ByonicTM software. Some parameters are 

similar as above. For yeast intact O-glycopeptide analysis, up to ten mannoses per glycan were 

searched for raw files. In order to control false positive rates, every peptide was required to 

have ≤0.001 for 1 D PEP (one dimensional posterior error probability) and >4 for |Log Prob| 

(the absolute value of the log10 of the posterior error probability)56. The Score of identified 

glycopeptide must be higher than 300, and the mass accuracy is less than 10 ppm. The PEP 

takes into account 10 features, including the ByonicTM score, delta score, precursor mass error, 

digestion specificity, etc. Requiring |Log Prob| to be larger than 4 means the P value is <10-4. 

These are very stringent criteria for filtering. For example, for protein O-GlcNAcylation 

analysis, after filtering, there was no reverse hit in the final datasets. For glycoproteins 

identified in each type of cells, we performed subcellular compartment analysis based on the 

protein location information downloaded from Uniprot (uniprot.org). 

 

2.2.11 Protein glycosylation site localization  

In order to evaluate the confidence of the glycosylation site assignment, a Modscore 

was calculated for each identified glycopeptides, which is similar to Ascore57. An algorithm 

considering all possible glycosylation sites of a peptide was used to generate the Modscore. It 

examines the presence or absence of MS/MS fragment ions unique to each glycosylation site 

and indicates the likelihood that the best site match is correct when compared with the next 

best match. Sites with Modscore ≥ 19 (P ≤ 0.01) were considered to be confidently localized.  
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2.2.12 Data availability 

The datasets generated during the current study are available in the PeptideAtlas 

repository (Dataset Identifier: PASS00980; Password: KV788a), 

https://db.systemsbiology.net/sbeams/cgi/PeptideAtlas/PASS_View?identifier=PASS00980. 

In total, there are 142 raw files (20 files for the yeast N-glycosylation duplicate experiments, 

20 files for the MCF7 N-glycosylation duplicate experiments, 10 files for the HEK 293T N-

glycosylation experiment, 10 files for the Jurkat N-glycosylation experiment, 22 files for the 

mouse brain N-glycosylation duplicate experiments, 20 files for the yeast O-mannosylation 

duplicate experiment, 20 files for the MCF7 O-GlcNAcylation duplicate experiments, 10 files 

for the HEK 293T O-GlcNAcylation experiment, 10 files for the Jurkat O-GlcNAcylation 

experiment). 

 

2.3 Results 

2.3.1 Enhancing glycopeptide enrichment with BA derivatives 

Boronic acid can form reversible covalent bonds with sugars and has been extensively 

used for sugar detection58-60. Therefore, BA-based methods have great potential in universally 

enriching glycopeptides and glycoproteins, and the reversible nature of the interaction leaves 

enriched glycopeptides intact after the release. However, the interaction between BA and sugar 

is relatively weak, preventing the enrichment of low-abundance glycoproteins. To effectively 

enrich low-abundance glycoproteins, which often contain important information, it is critical 

to strengthen the interaction.   

Reversible interactions between boronic acid and sugars have great potential to enrich 

glycopeptides/glycoproteins52, 61, 62. For global analysis of protein glycosylation, enrichment 

through strong interactions between boronic acid and glycopeptides is critical to cover low-

abundance glycopeptides.  
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There are several major factors that govern the interactions between boronic acid (BA) 

and sugars, including the pKa of BA, the solution pH, and steric/stereoelectronic effects58, 63. 

Although BA with a lower pKa is expected to have greater binding affinities at neutral pH, this 

is not always true for glycopeptide enrichment. Therefore, several BA derivatives with various 

pKa values were tested, and the optimum pH was found for each BA derivative. Previously, we 

demonstrated that phenylboronic acid conjugated beads were able to enrich glycopeptides from 

yeast whole cell lysates52. In yeast, high mannose glycans dominate, while glycans are more 

structurally diverse in mammalian cells. Here, we have designed and optimized a BA-based 

method to effectively enrich glycopeptides from mammalian cell lysates. The structures of 

several BA derivatives tested here are displayed in Figure 2.3a. Each of these BA derivatives 

was conjugated to magnetic beads containing either carboxylate or amine groups. After the –

NH2 or –COOH group reacts with the corresponding groups on the magnetic beads, the amide 

bond (–CONH–) between the beads and the benzene ring in each BA derivative should have a 

minimal effect on the optimum binding pH values.   
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Figure 2.3 Structures of boronic acid derivatives and experimental results using different 

derivatives. Structures of boronic acid derivatives tested in this work (a), and the number of 

glycopeptides identified with each BA derivative at varying pH values from the parallel 

experiments (b). 

 

In parallel experiments starting with the same amount of purified peptides from human 

cells (HEK 293T), we examined these BA derivatives at different pH values and compared the 

number of unique identified N-glycopeptides. Very few glycopeptides were identified at pH=7 

or 8 with any BA derivative. For all derivatives, the optimal pH was 10 or 11, as shown in 

Figure 2.3b. The derivatives IV and V enriched slightly more unique glycopeptides compared 

to phenylboronic acid (III). Although the pKa of derivative I (9.2) is similar to that of 
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phenylboronic acid (9.0), enrichment with I resulted in the identification of more unique 

glycopeptides. One possible reason is that the adjacent nitrogen may form an extra hydrogen 

bond with a nearby hydroxyl group on the glycan, which enhances the interactions between the 

BA derivative and glycans and facilitates the enrichment.   

Among these five boronic acids tested, derivative II (benzoboroxole) allowed the 

identification of the greatest number of glycopeptides. The interactions between benzoboroxole 

and sugars were reported to be stronger than those between phenylboronic acid and sugars59, 64, 

65. For example, the binding constant (Ka) for the reaction between benzoboroxole and fructose 

is 606 M-1 at neutral pH, which is nearly ten times higher than that between phenylboronic acid 

and fructose (79 M-1) under identical conditions64.  The current experimental results are very 

consistent with previous findings, and stronger interactions between BA and glycans can more 

effectively enrich glycopeptides. For the first time, the method based on benzoboroxole was 

systematically optimized for site-specific and global analysis of glycoproteins in combination 

with MS, and the results were dramatically improved compared to any other boronic acids 

tested here.   

 

2.3.2 Synergistic interactions to increase glycopeptide coverage 

Strengthening the interactions between benzoboroxole and glycopeptides will further 

increase the coverage of low-abundance glycopeptides. One glycan typically contains multiple 

monosaccharides, which allows one glycopeptide to interact with multiple benzoboroxole 

molecules. The synergistic effect for the interactions between multiple BA derivative 

molecules and glycans is expected to further facilitate the enrichment of glycopeptides, 

especially those with low abundance. Here we synthesized a dendrimer as the platform for 

synergistic interactions because the number of benzoboroxole molecules bound to a dendrimer 
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can be easily adjusted. More importantly, the dendrimer branches also provide structural 

flexibility to enhance the synergistic interactions. 

 

 

Figure 2.4 The structure of BA derivative II (benzoboroxole) conjugated dendrimer. 

 

The dendrimer was first synthesized and bound to magnetic beads, and next the BA 

derivative, benzoboroxole, was conjugated to the dendrimer (Figure 2.1 and 2.2). Many 

benzoboroxole molecules were bound to one dendrimer, as shown in Figure 2.4, and the 

number of benzoboroxole molecules on one dendrimer bead is proportional to the dendrimer 

size. In this case, several sugars from one glycan may interact with multiple benzoboroxole 

molecules simultaneously (Figure 2.5).  
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Figure 2.5 An example of the synergistic interactions between multiple benzoboroxole 

molecules in a dendrimer and several sugars within one glycan of a glycopeptide. 

 

Dendrimer size is expected to have a large impact on the synergistic interactions, and 

the effect of dendrimer size was systematically evaluated in parallel experiments, where the 

number of benzoboroxole molecules on the beads attempted to remain the same, and the 

amount of starting materials (peptides from HEK 293T cells) was also the same. In Figure 2.6, 

when the number of cycles is zero, the magnetic beads are directly conjugated with 

benzoboroxole without a dendrimer. The dendrimer size increases with the number of rounds 

of synthesis, as well as the number of benzoboroxole molecules after conjugation. With 

dendrimer beads synthesized through one to four rounds of the reaction, the number of total N-

glycopeptides, unique N-glycopeptides, and N-glycoproteins increased linearly (Figure 2.6). 

After four rounds of synthesis, the numbers are very comparable, and the specificity results 

have a similar trend (Figure 2.7). Once the number of benzoboroxole molecules on a single 

bead reaches the threshold, larger dendrimers with more benzoboroxole molecules do not affect 

the synergistic interactions, which occurs after four rounds of synthesis.  
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Figure 2.6 The effect of number of synthesis cycles and corresponding dendrimer size on the 

enrichment of glycopeptides. 

 

 

 

Figure 2.7 Specificity of the N-glycopeptide identifications increases with the number of the 

dendrimer synthesis cycles, and it levels off after the fourth cycle. The overall specificity of 

glycopeptide enrichment should be higher considering that O-glycopeptides were also enriched. 

 

Since the enrichment reaction is quick and the conditions are mild, prolonging the 

reaction time does not have negative effects on glycopeptide identification. As shown in Figure 

2.8, similar number of unique N-glycopeptides and glycoproteins were identified when the 
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incubation time varied between 10 minutes to 3 hours. We also assessed the residual N-glycans 

after PNGase F treatment, and duplicate experiments were performed to examine the 

percentage of residual N-glycans. The results demonstrated that the N-glycan removal 

efficiency with PNGase F within three hours was very high (Figure 2.9). Briefly, peptides from 

MCF7 whole cell protein digestion were subject to enrichment with the DBA beads. The 

enriched glycopeptides were then treated with PNGase F in H2
18O for three hours. The purified 

peptides were analyzed using an online LC-MS/MS system with a Q-Exactive Plus mass 

spectrometer, and both full MS and MS/MS were recorded in the Orbitrap cell. Higher-energy 

collisional dissociation (HCD) was used as the fragmentation method. We searched for the 

deglycosylated peptides (2.9883 Da mass shift on N) and the N-glycan-containing peptides 

using Byonic. As a result, 44 unique glycan-containing peptides and 1,866 deglycosylated 

peptides were identified in the first experiment; 45 unique glycan-containing peptides and 

1,871 unique deglycosylated peptides were identified in the second experiment. Overall, N-

glycopeptides with residual N-glycans are only around ~2%, demonstrating that the 3-hour 

PNGase F treatment was effective to remove N-glycans. 

 

Figure 2.8 The effect of reaction time on the N-glycopeptide identification. 
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Figure 2.9 Duplicate experimental results for assessing residual N-glycans after PNGase F 

treatment. Only about 2% N-glycopeptides contained residual glycans after the three-hour 

treatment. 

 

We performed the control experiments previously66  and found that the effect of 

spontaneous deamidation is negligible under the treatment conditions (pH=7.5 and 37 oC) for 

three hours. For all our experiments for protein N-glycosylation analysis, we strictly controlled 

the treatment time within three hours. Although a longer treatment time may lead to more 

complete removal of N-glycans and result in the identification of more N-glycosylation sites, 

spontaneous deamidation will cause higher false positive rates for protein N-glycosylation site 

identification.  

 

2.3.3 Further optimization of experimental conditions for DBA enrichment   

Effect of different solvents on glycopeptide enrichment. A variety of solvent combinations were 

tested for glycopeptide enrichment with DBA beads (Figure 2.10). The pH of all aqueous 

solutions was adjusted to 11 using an ammonium acetate buffer. For each combination, the 
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binding step of enrichment was performed for an hour in the first solution, and then the beads 

were washed five times in the second solution. The combination of “DMSO+DMSO” provided 

the highest enrichment efficiency with the identification of the most N-glycopeptides and 

glycoproteins. This is consistent with Le Chatelier's principle because water is the product of 

the reaction between the boronic acid derivative and sugars. Without water, the reaction shifts 

toward the direction of bond formation and becomes more complete. 

 

Washing buffer for glycopeptide enrichment optimization. Based on the results from Figure 

2.10, several washing buffers were tested, and the results are in Figure 2.11. We performed the 

enrichment in DMSO containing 0.5% trimethylamine (TEA) for one hour, and then washed 

the beads with different buffer combinations. The enriched peptides were subsequently 

deglycosylated and analyzed by LC-MS/MS. The washing buffer containing 50% DMSO and 

50% H2O (pH=11) outperformed all other combinations. The addition of water helped remove 

non-specifically bound peptides and increased the number of identified glycopeptides and 

glycoproteins.  

 

Figure 2.10 Effect of solvents on glycopeptide enrichment from a human cell lysate (HEK 

293T). 
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Figure 2.11 Washing buffer optimization for glycopeptide enrichment. 

 

Number of washes for glycopeptide enrichment optimization. Based on the previous results, we 

further optimized the number of washes (0-9 washes). All parallel experiments started with 

about 0.25 mg mammalian peptides, which were enriched with the DBA beads in DMSO 

containing 0.5% TEA for one hour, and then the number of times the beads were washed with 

50% DMSO and 50% H2O (pH=11) was varied. From 0 to 4 washes, a linear trend was found 

for N-glycopeptide and glycoprotein identifications because increasing the number of washes 

removed non-specifically bound peptides. After washing four times, there was no obvious 

change (Figure 2.12). These results indicate that the interactions between DBA and glycans are 

very strong because washing more times did not result in the loss of glycopeptides. 

 

Figure 2.12 The effect of washing times on glycopeptide enrichment. 
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Effect of sample size on the identification of glycopeptides and glycoproteins. Different amount 

of cultured MCF 7 cells were used to evaluate the effect of sample size on the N-glycopeptide 

identification with the DBA enrichment. Duplicate experiments were performed. Cells in each 

group were harvested and the final protein amounts in the eight groups were around 10, 30, 60, 

100, 200, 300, 500, and 1000 µg, respectively. After protein precipitation and digestion, the 

peptides were subject to DBA enrichment. The enriched glycopeptides were then purified and 

analyzed by LC-MS/MS. The data is presented in Figure 2.13.  

The lowest number of glycoproteins we identified in one MS run was about 200 from 

the 10 µg group among the samples tested here. When the sample amount is very small, the 

sample loss coming from every step may be a problem. For instance, a very small volume of 

solvent (lysis buffer or digestion buffer) was used to transfer the sample from tube to tube, 

which could result in a considerable (relatively higher percentage) sample loss. However, even 

for 10 µg proteins, we were still able to identify about 200 glycoproteins. More samples 

allowed us to identify higher numbers of unique glycopeptides and glycoproteins. After the 

protein amount reached ~300 µg, the increasing trend of the number of identified glycopeptides 

and glycoproteins slowed down, and both the 500 µg and 1000 µg groups yielded almost the 

same results. Besides the sample loss, the MS sensitivity is also a major contribution factor for 

the results that fewer glycoproteins were identified using a low sample amount. A machine 

with higher sensitivity would allow us to identify more glycoproteins using the same amount 

of material or the same number of glycoproteins using a lower amount of material. Of note, 

normally the protein digestion efficiency and peptide purification efficiency are lower than 

100%, and therefore, the resulting peptide amounts subjected to the DBA enrichment in the 

current experiment should be slightly lower than the sample amounts shown in the figure. 
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2.3.4 Comparison DBA with existing lectin- and HILIC-based methods 

To test the effectiveness of the Dendrimer-conjugated Boronic Acid derivative (DBA) 

enrichment, triplicate parallel experiments were performed to compare the current method with 

the commonly used lectin (combining WGA and ConA) and zwitterionic hydrophilic 

interaction liquid chromatography (ZIC-HILIC) enrichment methods. Each experiment started 

from the same amount of peptides from MCF7 cell whole lysates (Figure 2.14). For these 

parallel experiments, except the enrichment method, every other step was kept the same.  Prior 

to this comparison, we compared 0.1% and 1% TFA as ion-pairing reagent for the ZIC-HILIC 

experiment and found that 1% TFA had slightly better performance (Figure 2.14b).. Therefore, 

we used 1% TFA in the comparison experiment. From the parallel experiments, the greatest 

number of unique N-glycopeptides were identified using the current DBA method, and more 

unique N-glycopeptides were identified with ZIC-HILIC than the lectin-based method.  

Regarding the specificity, we compared the numbers of glycopeptides and non-

glycopeptides identified in each of the parallel experiments, and the results showed that the 

DBA method had the highest specificity (Figure 2.14c). We reasoned that although ZIC-HILIC 

allows for enrichment of a broader spectrum of glycopeptides than lectin, the principle of the 

ZIC-HILIC method is based on the hydrophilic property difference between glycopeptides and 

non-glycopeptides. Therefore, some hydrophilic but non-glycosylated peptides can also be 

enriched, lowering the enrichment specificity. Based on the number of unique glycopeptides 

identified, DBA outperformed the other two methods, while ZIC-HILIC had better 

performance than lectin. Furthermore, the current method also has the highest enrichment 

specificity. 
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2.3.5 Global characterization of protein N-glycosylation in yeast 

Using the newly developed method, we performed biological duplicate experiments for 

the global analysis of protein N- and O-glycosylation in yeast. For N-glycoprotein analysis, we 

identified 881 sites on 400 proteins in one experiment and 836 sites on 404 proteins in the other. 

Overall, 1,044 N-glycosylation sites (Figure 2.15a) on 501 proteins (Figure 2.15b) were 

identified. For the first time, over 1,000 protein N-glycosylation sites were identified in yeast. 

To ensure that the sites were confidently identified, very stringent criteria were applied during 

analysis. First, the false positive rate at the N-glycopeptide level was well-controlled  under 

1.0%, based on the target-decoy method54. Additionally, all N-glycosylation sites were required 

to contain the motif NX[S/T/C], where X is any amino acid except proline. The N-

glycosylation site was also required to contain heavy oxygen (18O) as a tag45. To minimize 

possible spontaneous deamidation during PNGase F treatment in heavy-oxygen water, the 

reaction was run for only three hours. Our previous results demonstrated that within three hours 

under mild conditions, spontaneous asparagine deamidation is negligible66. 

 

 

Figure 2.13 Evaluation of the effect of sample size on the identification of glycopeptides and 

glycoproteins with the DBA enrichment followed by LC-MS analysis. 
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Figure 2.14 Comparison of three enrichment methods (Lectin, ZIC-HILIC and DBA). (a) 

Optimization of the concentrations of TFA as the ion-pairing reagent for ZIC-HILIC 

enrichment. (b) The numbers of unique glycopeptides and glycoproteins identified using each 

of the three methods from parallel experiments. (c) Comparison of the enrichment specificity 

for the three enrichment methods. 
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Figure 2.15 (a) N-glycopeptides and (b) N-glycoproteins identified from the yeast duplicate 

experiments 

 

In order to demonstrate that low-abundance glycoproteins can be identified with the 

current method, we compared the abundance distributions of identified N-glycoproteins and all 

proteins in the whole yeast proteome, and they were very similar (Figure 2.16a). We reanalyzed 

our previous dataset using phenylboronic acid magnetic beads in yeast52 with the same criteria 

as above, and 716 N-glycosylation sites on 297 proteins were identified. The abundance 

distributions for both datasets are shown in Figure 2.16b. More N-glycoproteins were identified 

in each bin with the current method, especially for low-abundance N-glycoproteins (abundance 

from the literature67). For example, for proteins with abundances less than 2,000 copies per cell, 

about twice as many N-glycoproteins were identified in this work (158 vs. 84), which clearly 
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demonstrated that the current method is more effective in enriching low-abundance 

glycopeptides due to strengthened interactions from the BA derivative and synergistic 

interactions of DBA. 

 

2.3.6 Analyzing protein O-mannosylation in yeast 

The reversible covalent interactions can leave enriched glycopeptides with intact 

glycans for site identification and glycan structure elucidation. In yeast, O-glycans consist of 

only mannose, but the number of mannose per glycan varies. The current enrichment method 

also enables us to globally analyze O-glycoproteins. In order to increase the identification 

confidence of intact O-glycopeptides, high-energy collisional dissociation (HCD) was 

employed for glycopeptide fragmentation, and the tandem mass spectra were recorded in the 

Orbitrap cell. Several important machine parameters, such as (automatic gain control) AGC 

target for MS and MS2, normalized collision energy, and maximum ion accumulation time for 

MS2, were optimized (Figure 2.17). We used ByonicTM to search the raw files for the 

identification of protein O-mannosylation.  
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Figure 2.16 (a) Abundance distributions of the whole proteome and N-glycoproteins identified 

here. (b) Comparison of the abundance distributions of yeast N-glycoproteins identified in this 

work and identified previously with the phenylboronic acid beads in 201452. 
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Figure 2.17 Machine parameters were optimized for yeast intact O-glycopeptide analysis using 

the Orbitrap cell to record tandem mass spectra of glycopeptides. (a) AGC target for full MS, 

(b) AGC target for MS2, (c) comparison of Top10 and Top15 methods, (d) normalized collision 

energy, (e) maximum ion accumulation time for MS2. 
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Figure 2.18 Examples of O-mannosylated peptides identified in this work. (a) Glycopeptide 

ANSLNELDVTATT[Hex9]VAK from protein GAS3. (b) Glycopeptide 

SYSAT[Hex8]TSDVACPATGK from protein GAS1. (c) Glycopeptide FSSSLS 

[Hex5]AQAFPR from protein EXG2. (d) Glycopeptide ISASSIDAS[Hex7]GFVQK  from 

protein SED4. (e) Glycopeptide TLDDFNNYS[Hex6]SEINK from protein GAS1. (f) 

Glycopeptide YPEAGPTAPVT[Hex2]K from protein YD056. (g) Glycopeptide K.DDTIS 

[Hex4]ATISYDK  from protein GAS3. (h) Glycopeptide R.VENGQTLT[Hex6]TFITK from 

protein PRY2. 

 

Several examples of the O-mannosylated peptides with different glycans identified here 

are displayed in Figure 2.18. Here, we identified 987 unique O-glycopeptides from 206 proteins 

in the first experiment and 971 unique O-glycopeptides from 196 proteins in the second 

experiments. In total, 234 O-glycoproteins were identified, and 168 proteins were identified in 

both experiments. The overlap was very high (81.5 and 85.7%), which further demonstrated 

that the identification of glycopeptides and glycoproteins were highly confident. The current 

results are proof-of-concept to demonstrate that the glycopeptide enrichment based on the 

reversible covalent interactions can keep enriched glycopeptides intact for site identification 

and glycan structure elucidation.  

The distribution of the number of mannose per glycan is in Figure 2.19. The number of 

unique glycopeptides with one mannose is the highest, and the second are those with four 

mannoses. For glycopeptides with glycans containing more than four mannoses, the number 

decreases with the increasing number of mannoses. The site localization confidence is lower 

than that of N-glycosylation due to the neutral loss of O-glycans and the presence of many 

serine and threonine residues on O-glycopeptides (Figure 2.20). Compared to the whole yeast 

proteome, both S and T were more frequent in the identified unique O-glycopeptides, and the 

occurrence of T was almost two times as many (9.0 vs. 11.8% for S and 5.9 vs. 10.7% for T). 
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Conversely, the frequency of N (N-glycosylation sites) in the identified O-glycopeptides was 

lower than the whole proteome (6.1 vs. 4.5%).  

In total, 234 O-glycoproteins were identified, and about one third were also N-

glycosylated (Figure 2.21). O-glycoproteins located on the cell wall (P=4.25E-32) are the most 

highly enriched when clustered using the Database for Annotation, Visualization and 

Integrated Discovery (DAVID)68 (Figure 2.22). Seventy-three O-glycoproteins belong to the 

endomembrane system, and 55 are located in the ER. Clustering of O-glycoproteins based on 

molecular function indicates that proteins related to hydrolase activity (acting on glycosyl 

bonds) and transferase activity (transferring glycosyl groups) are most highly enriched (Figure 

2.23). Based on reversible covalent interactions between DBA and glycans, protein O-

glycosylation can be confidently identified, providing valuable glycan structural information.  

 

 

Figure 2.19 Distribution of the number of mannose residues per glycan on all identified O-

glycopeptides. 
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Figure 2.20 Percentages of S, T and N in O-glycopeptides compared to the whole proteome. 

 

 

 

 

 

Figure 2.21 Comparison of O- and N-glycoproteins identified in yeast cells. 
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Figure 2.22 Clustering of O-glycoproteins based on cellular compartment. 

 

 
 

Figure 2.23 Clustering of identified O-glycoproteins in yeast based on molecular function. 
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2.3.7 Global analysis of protein N-glycosylation in human cells 

Due to the diversity of glycan structures, it is more challenging to globally analyze 

glycoproteins in human cells. The new DBA method was applied to globally analyze protein 

N-glycosylation in different types of human cells. Biological duplicate experiments were 

performed for MCF7 cells, and the number of glycosylation sites and glycoproteins identified 

in each experiment is shown in Figure 2.24. With the well-controlled FDR of <1.0% at the 

glycopeptide level and stringent criteria described above, we identified 2,710 N-glycosylation 

sites on 1,127 proteins in one experiment and 2,815 sites on 1,156 proteins in the other. Overall, 

2,340 common sites were identified in both experiments, which represent 86.3% and 83.1% of 

the total sites identified from each experiment, respectively. As expected, the overlap at the 

glycoprotein level was even higher: 981 common glycoproteins were identified. A total of 

3,185 glycosylation sites were identified on 1,302 proteins in MCF7 cells.  

The method was also employed to globally analyze protein N-glycosylation in HEK 

293T and Jurkat cells; 3,052 sites were identified on 1,301 proteins in HEK 293T cells, and 

2,120 sites on 948 proteins were found in Jurkat cells. The comparison of identified sites is in 

Figure 2.25. 

We further tested the effect of the dendrimer on glycopeptide enrichment by comparing 

DBA vs. benzoboroxole conjugated magnetic beads without the dendrimer (designated as BA). 

With the DBA beads, we were able to identify 88% more N-glycosylation sites and 79% more 

glycoproteins compared to the benzoboroxole conjugated magnetic beads (BA) (Figure 2.26a). 

The abundance distributions of all glycoproteins identified using either the DBA or BA beads 

are displayed in Figure 2.26b (abundances from an online database (PaxDb)69). Besides the 

number of glycoproteins identified using the DBA beads was higher than that with the BA 

beads in each abundance category, the DBA method was especially superior for glycoproteins 

with very low abundance (less than 10 ppm). For low-abundance proteins, over twice as many 
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N-glycoproteins were identified with the DBA beads (84 vs. 34 glycoproteins for <0.1 ppm, 

and 402 vs. 196 for 0.1-1.0 ppm). These results explicitly demonstrate that the synergistic 

interactions between multiple BA derivative molecules and glycans can greatly increase the 

coverage of low-abundance glycopeptides.   

 

 

 

 

Figure 2.24 (a) The N-glycosylation sites and (b) the glycoproteins identified from the MCF-

7 cell duplicate experiments. 
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Figure 2.25 Comparison of N-glycosylation sites identified in MCF7, HEK 293T and Jurkat 

cells. 

 

Combining the results from the three human cell lines, we identified a total of 4,691 N-

glycosylation sites on 1,906 proteins (Figure 2.28a). More than 10% of proteins (238) are 
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Figure 2.26 (a) Comparison of unique glycosylation sites and glycoproteins identified with the 

boronic acid derivative magnetic beads (designated as BA) and with the dendrimer beads 

conjugated with the boronic acid derivative (DBA). (b) Abundance distributions of N-

glycoproteins identified with the BA or DBA beads. 
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Figure 2.27 The distribution of unique N-glycosylation sites per glycoprotein in human cells. 

 

Figure 2.28 (a) Overlap of N-glycoproteins in three different types of cells (MCF7, HEK 293T 

and Jurkat), and (b) Protein clustering results for 180 N-glycoproteins identified exclusively in 

Jurkat cells 
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Figure 2.29 Clustering of N-glycoproteins based on (a) molecular function and (b) cellular 

compartment. 
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Many glycoproteins are known to be membrane proteins. Here, 1,251 out of 1,906 N-

glycoproteins are membrane proteins, which are highly enriched with an extremely low P value 

of 1.6E-192. Glycoproteins in the cell periphery, vesicle, ER, Golgi, and extracellular space 

are all enriched with very low P values (Figure 2.29b). Based on the information available on 

UniProt (uniprot.org), 524 of identified membrane proteins are type I membrane proteins, 177 

are type II, and 348 proteins contain multiple transmembrane domains (Figure 2.30). A total of 

301 receptors were identified among these N-glycoproteins (Figure 2.31a); glycosylation site 

locations for receptors identified as type I and II membrane proteins are shown in Figure 2.31b. 

All sites (1,079) were located in the extracellular space, which corresponds very well with the 

belief that glycans are located on the extracellular side of surface membrane proteins.  

 

 

Figure 2.30 Distribution of membrane proteins (Type I, II, III & IV, and multi-pass 

transmembrane (TM)) among all identified N-glycoproteins. 
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Figure 2.31 (a) The number of receptors (N-glycoproteins) identified in each type of human 

cells, and (b) N-glycosylation site locations on 301 receptors with X-axis as the TM domain. 

Each glycoprotein sequence was aligned against the transmembrane (TM) domain, and the 

glycosylation sites are indicated as yellow dots. All sites are located in the extracellular space. 
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(Figure 2.32). Domains corresponding with receptor activities, such as PTK (protein tyrosine 

kinase) and EGF (epidermal growth factor)-like domains, are also highly enriched. 

 

 

Figure 2.32 Domain analysis of N-glycoproteins showing the number of N-glycoproteins 

containing the most highly-enriched domains and their corresponding P values. 
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and 83.4% compared to the both experimental results, respectively) and protein (88.5 and 

88.0%) levels, which is consistent with the above results from duplicate experiments using 

human cells. The highly reproducible results further demonstrate that the current method is 

effective. 

Glycoproteins identified in the mouse brain tissues were clustered using DAVID based 

on biological process. About one quarter of identified glycoproteins (396) are related to cell 

surface receptor signaling pathway, which is the most highly enriched with a P value of 1.1E-

61. Proteins related to brain-specific functions such as nervous system development (P=4.1E-

61), axon development (P=1.9E-54), and synapse assembly (P=2.6E-30) were also highly 

enriched, as shown in Figure 2.34.  

 

2.3.9 Synergistic interactions to identify protein O-GlcNAcylation 

 Protein O-GlcNAcylation was discovered more than three decades ago, and it has been 

reported to be involved in many cellular events, from regulating cell signaling to gene 

expression70-72. Using BA-based methods, it is challenging to enrich O-GlcNAcylated proteins 

because only one sugar (GlcNAc) is bound to S or T, and this sugar does not contain a cis-1,2-

diol. Although boronic acid can interact with sugars without cis-1,2-diols, such as glucose and 

GlcNAc, the interaction is weak58, and enrichment is therefore less effective.  

In this work, we identified 510 total glycopeptides with HexNAc(1) and 304 unique 

glycopeptides located on 131 proteins in HEK 293T cells with the DBA enrichment Figure 

2.35. In striking contrast, with the BA derivative magnetic beads, only 18 total glycopeptides 

with HexNAc and 13 unique glycopeptides were found on 12 proteins. Among 131 

glycoproteins, 81 were located in the nucleus (Figure 2.36), and typically, these proteins are 

O-GlcNAcylated because only glycoproteins with O-GlcNAc have been reported in the nucleus. 
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Similarly, 131 O-glycoproteins with HexNAc(1) were identified in MCF7 cells, and 119 O-

glycoproteins were found in Jurkat cells. 

 

 
 

Figure 2.33 The number of protein N-glycosylation sites (a) and glycoproteins (b) identified 

in mouse brain tissues from biological duplicate experiments. 
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Figure 2.34 Clustering of glycoproteins identified in mouse brain tissues based on biological 

process.  

 

 

 

Figure 2.35 Comparison of glycoproteins with one HexNAc identified with BA and DBA, 

which clearly shows that the results from DBA are substantially better. 
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synergistically interact with different benzoboroxle molecules on a single dendrimer bead. 

Although there is no cis-1,2-diol in GlcNAc, multiple hydroxyl groups in each GlcNAc may 

form reversible covalent bonds with several benzoboroxle molecules on a dendrimer bead, as 

shown in Figure 2.37. The synergistic interactions can dramatically facilitate the enrichment of 

O-GlcNAcylated peptides with DBA. The results are highly reproducible in different types of 

human cells (HEK 293T, MCF7 and Jurkat). The greatest number of identified glycoproteins 

(about 50%) are located in the nucleus of each cell type Figure 2.38 and about 30% of them 

are in the cytoplasm. Glycoproteins in the nucleus and the cytoplasm are normally O-

GlcNAcylated. In addition, ~12% of them are in the ER/Golgi. Only a small portion of 

glycoproteins (~7%) are secreted proteins, which are likely to be O-GalNAcylated.  

 

 

Figure 2.36 Distribution of O-glycoproteins modified with HexNAc(1) identified in HEK 

293T cells based on cellular compartment. 
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Figure 2.37 Proposed mechanism of the interactions between DBA and GlcNAc benefiting 

from synergistic interactions. 

 

 

 

Figure 2.38 Cellular compartment distribution of glycoproteins containing one HexNAc 

identified in the three types of cells. 
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2.4 Discussion 

Based on universal and reversible covalent interactions between boronic acid and 

sugars, BA-based enrichment methods have great potential in enriching glycopeptides for 

global analysis of protein glycosylation. However, the relatively weak interactions prevent the 

enrichment of glycopeptides with low abundance. In order to effectively enrich glycopeptides 

in complex biological samples, it is critical to strengthen the interactions between BA and 

glycans.  

In this work, we enhanced the interactions between BA and glycans through two ways. 

First, we employed the BA derivative (benzoboroxole) to form stronger interactions with 

glycans, which was able to dramatically increase the coverage of low-abundance glycopeptides, 

as shown in Figure 2.3b and Figure 2.17. Second, based on the common features of a glycan 

containing multiple monosaccharides and one sugar bearing several hydroxyl groups, we 

benefited from synergistic interactions by conjugating many benzoboroxole molecules onto a 

dendrimer bead. The synergistic interactions between several benzoboroxole molecules on a 

bead and different sugars within a glycan make the enrichment much more effective, which is 

clearly demonstrated from the current results (Figure 2.26). The dendrimer provides an 

excellent platform to conjugate many benzoboroxole molecules onto the same bead. The 

dendrimer size is readily adjustable, and correspondingly, the number of benzoboroxole 

molecules can be controlled on each bead. Furthermore, the dendrimer provides structural 

flexibility to form stronger interactions with glycans. 

The reversible nature of the interactions between BA and glycans allows enriched 

peptides to be released with intact glycans. The direct analysis of intact glycopeptides provides 

valuable information about protein glycosylation sites and glycan structures. We systematically 

analyzed O-mannosylated proteins and their glycan structures in yeast, and overall, 234 O-

glycoproteins were identified. With stringent criteria for analysis, the identifications of O-
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glycopeptides and O-glycoproteins are highly confident. However, compared to protein N-

glycosylation site identification, O-glycosylation sites were less confidently localized because 

of the possible neutral loss of glycans during intact O-glycopeptipe analysis and high 

percentages of S and T in glycopeptides.  

Synergistic interactions can enhance not only the interactions between benzoboroxole 

and glycans containing multiple monosaccharides but also the interactions with O-

GlcNAcylated peptides. It is well-known that BA can form stronger interactions with sugars 

containing cis-1,2-diols because two covalent bonds are formed. The interaction between BA 

with glucose or GlcNAc without cis-1,2-diols is much weaker58. Here, due to the flexible nature 

of the dendrimer, one GlcNAc may form multiple covalent bonds with different benzoboroxle 

molecules, as shown in Figure 2.37. Compared to BA beads, DBA is much more effective in 

enriching O-GlcNAcylated peptides (Figure 2.35).  

Cluster of differentiation (CD) molecules are those located on the cell surface that 

provide immunophenotyping targets for cell classification73. Two examples of glycoproteins 

identified in Jurkat cells are shown in (Figure 2.39), and the majority of identified N-

glycosylation sites are located in extracellular domains. In our experiment, 188 CD proteins 

were identified as N-glycoproteins. There were more CDs identified in Jurkat cells (137) than 

MCF7 (115) or HEK 293T (129) cells (Figure 2.40), despite the fact that the total N-

glycoproteins identified in Jurkat cells were fewer. However, this result is consistent with the 

fact that more CDs are relevant to immune-related cells, including Jurkat cells. CDs with site-

specific information may be more meaningful for cell classification and serve as effective 

biomarkers for disease detection. 

Benefiting from the common features of a glycan containing multiple monosaccharides 

and one sugar bearing several hydroxyl groups, the current method can dramatically enhance 

the interactions between boronic acid and glycans, which is critical in analyzing glycoproteins 
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with low abundance. Furthermore, there are several other advantages. First, this method is 

quick and easy to operate. As shown in Figure 2.8, the results from 10-min incubation are 

almost the same as those from two- or three-hour incubation. Glycopeptides are captured under 

basic conditions and released in an acidic solution. Second, this method is highly reproducible 

and robust. Third, because the enrichment is based on the reversible interactions, the enriched 

glycopeptides remain intact, which allows us to analyze glycan structures and also to identify 

protein O-glycosylation, as demonstrated by the analyses of protein O-mannosylation in yeast 

and O-GlcNAcylation in human cells. Fourth, because there are no sample restrictions, this 

method can be extensively applied to analyze different types of samples, from whole cell 

lysates to clinical and plant samples.  

 

 
 
Figure 2.39 Two examples of glycoproteins (CD30 and CD96) with domain and glycosylation 

site information in Jurkat cells. 
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Figure 2.40 The numbers of CD N-glycoproteins (a), and the percentage of CD glycoproteins 

with respect to all N-glycoproteins (b) identified in each type of human cells. 

 

2.5 Conclusions 

The current method is based on the universal and reversible interactions between 

hydroxyl groups in glycans and boronic acid. The experimental results for yeast and human 

cells and mouse tissue demonstrated that this method is highly effective in enriching 

glycopeptides, especially for those with low abundance, and the reversible nature of the 
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interactions keep enriched glycopeptides intact for both site identification and glycan structure 

analysis. Due to the biological importance of glycoproteins, their global analysis will aid in a 

better understanding of glycoprotein functions and the molecular mechanisms of diseases, and 

the discovery of glycoproteins as drug targets and disease biomarkers.  
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CHAPTER 3. QUANTITATIVE ANALYSIS OF GLYCOPROTEINS BY 

COMBINING BORONIC ACID ENRICHMENT AND MS-BASED 

PROTEOMICS 

 

Partially adapted with permission from American Chemical Society  

Xiao, H. P., and Wu, R. H. Simultaneous Quantitation of Glycoprotein Degradation and 

Synthesis Rates by Integrating Isotope Labeling, Chemical Enrichment, and Multiplexed 

Proteomics. Analytical Chemistry, 2017, 89, 10361-10367. Copyright 2017 American 

Chemical Society.  

 

Partially adapted with permission from The Royal Society of Chemistry  

Xiao, H. P., and Wu, R. H. Quantification of tunicamycin-induced protein expression and N-

glycosylation changes in yeast. Analyst, 2016, 141, 3731-3745. Copyright The Royal Society 

of Chemistry 2016.  

 

3.1 Simultaneous Quantitation of Glycoprotein Degradation and Synthesis Rates by 

Integrating Isotope Labelling, Chemical Enrichment and Multiplexed Proteomics 

 

3.1.1 Introduction 

Protein glycosylation plays vital roles in a variety of cellular processes.1-4 The functions 

of glycoproteins are intrinsically related to their dynamics, and the presence of glycans on 

proteins create a steric hindrance that prevents proteases from approaching,5 thus impacting 

protein dynamics. Modern mass spectrometry (MS)-based proteomics has offered a unique 

opportunity for global analysis of glycoproteins,6-15 but it is still challenging due to the low 
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abundance of glycoproteins and the heterogeneity of glycan structures.16-23 Studying protein 

glycosylation and its dynamics not only advances our knowledge of the underlying 

mechanisms of many cellular activities and diseases, but also enables us to identify 

glycoproteins as disease biomarkers and drug targets.24-28  

There have been many reports about the global analysis of glycoproteins, and 

considerable progress has been made in recent years.6, 29-34 However, few of them focused on 

glycoprotein dynamics on a large scale in spite of its importance.35 Stable isotope labelling 

with amino acid in cell culture (SILAC) has been widely used for protein turnover study.36, 37 

Using pulse-chase SILAC, the newly-synthesized proteins can be distinguished from the 

existing background through incorporation of the heavy (or light) isotopic amino acid residues. 

The labelling can allow us to generate valuable information about protein degradation and 

synthesis through mass spectrometric analysis.  

In this work, we combined pulse-chase SILAC, chemical enrichment of glycopeptides, 

and multiplexed proteomics to globally quantify the degradation and synthesis rates of 

glycoproteins simultaneously. Pulse-chase labelling allowed us to track the protein abundance 

changes, and in combination with chemical enrichment of glycopeptides we were able to 

quantify glycoprotein dynamics. After enrichment, we labelled the enriched glycopeptides 

from multiple time points with the tandem mass tag (TMT) reagents38 for quantitation with 

MS-based proteomics and used their abundances to calculate the degradation and synthesis 

rates of glycoproteins.    

 

3.1.2 Experimental section 

3.1.2.1 Cell culture, heavy isotope labeling, and time course-based cell collection 

MCF-7 cells (ATCC) were grown in a humidified incubator at 37 °C and 5.0% CO2 in 

high glucose Dulbecco's modified eagle's medium (DMEM) (Sigma-Aldrich) with 10% fetal 
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bovine serum (FBS) (Corning) for each of the triplicate experiments. Heavy isotope labeling 

of cells was performed with 13C6, 15N2 L-lysine (Lys8) and 13C6 L-arginine (Arg6) (Cambridge 

Isotopes) in SILAC DMEM with 10% dialyzed FBS for about six generations. Media was then 

switched to normal media with Lys0 and Arg0 to begin the time-course experiment. Cells were 

collected separately at five time points (0, 6, 12, 24 and 48 hours).  

 

3.1.2.2 Cell lysis and protein digestion 

Cells were washed twice with phosphate buffered saline (PBS) and pelleted by 

centrifugation at 500 g for 3 minutes and washed twice with cold PBS. Cell pellets were lysed 

through end-to-end rotation at 4 ºC for 45 minutes in the lysis buffer (50 mM N-2-

hydroxyethylpiperazine-N-2-ethane sulfonic acid (HEPES) pH=7.4, 150 mM NaCl, 0.5% 

sodium deoxycholate (SDC), and 25 units/ mL benzonase and 1 tablet/ 10 mL protease 

inhibitor). Lysates were centrifuged, and the resulting supernatant was transferred into new 

tubes. Proteins were subjected to disulfide reduction with 5 mM dithiothreitol (DTT) (56 ºC, 

25 minutes) and alkylation with 14 mM iodoacetamide (room temperature, 20 minutes in the 

dark). Detergent was removed by the methanol-chloroform protein precipitation method. The 

purified proteins were digested with 10 ng/ µL Lys-C (Wako) in 50 mM HEPES pH 8.6, 1.6 

M urea, 5% ACN at 31 ºC for 16 hours, followed by further digestion with 8 ng/ µL Trypsin 

(Promega) at 37 ºC for 4 hours. 

 

3.1.2.3 Glycopeptide enrichment, TMT labeling, and deglycosylation 

Protein digestions were quenched by addition of trifluoroacetic acid (TFA) to a final 

concentration of 0.1%, followed by centrifugation to remove the precipitate. The peptides were 

desalted using a tC18 Sep-Pak cartridge (Waters) and lyophilized, subjected to boronic acid-

conjugated beads-based enrichment as described previously.39 The peptides were then eluted 
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twice by incubating the beads in a solution containing acetonitrile, water, and trifluoroacetic 

acid at a respective ratio of 50:49:1 for 30 minutes at 37 ºC. Eluates were desalted using tC18 

Sep-Pak cartridges and lyophilized. Purified glycopeptides from each time point were labeled 

with each channel (126, 128, 129, 130, or 131) of the multiplexed TMT reagents (Thermo) 

following the manufacturer’s protocol. Briefly, purified and lyophilized peptides were 

dissolved in 100 µL of 100 mM triethylammonium bicarbonate (TEAB) buffer, pH= 8.5. Each 

tube of TMT reagents was dissolved in 41 µL of anhydrous ACN, and 7 µL was transferred 

into the peptide tube with another 34 µL of ACN. The reaction was performed for 1 hour at 

room temperature, quenched by adding 8 µL of 5% hydroxylamine and shaking for 15 min. 

Peptides from all tubes were then mixed, desalted using a tC18 Sep-Pak cartridge, and 

lyophilized overnight. The dried peptides were deglycosylated with three units of peptide-N-

glycosidase F (PNGase F, Sigma-Aldrich)40 in 60 µL buffer containing 40 mM NH4HCO3 

(pH=9) in heavy-oxygen water (H2
18O) for 3 hours at 37 °C. The reaction was quenched by 

adding formic acid (FA) to a final concentration of 1%, and peptides were desalted again using 

tC18 Sep-Pak cartridges and dried. 

 

3.1.2.4 Glycopeptide fractionation and LC-MS/MS analysis  

Purified and dried peptides were separated by high pH reversed-phase high-

performance liquid chromatography (HPLC) into 10 fractions with a 40-min gradient of 5-55% 

ACN in 10 mM ammonium acetate (pH=10), dried and purified using the stage-tip method, 

and dissolved in a 10 µL solution with 5% ACN and 4% FA. 4 µL were loaded onto a 

microcapillary column packed with C18 beads (Magic C18AQ, 3 µm, 200 Å, 100 µm x 16 cm, 

Michrom Bioresources) by a Dionex WPS-3000TPLRS autosampler (UltiMate 3000 

thermostatted Rapid Separation Pulled Loop Wellplate Sampler). Peptides were separated by 

reversed-phase chromatography using an UltiMate 3000 binary pump with a 128 min gradient. 
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Peptides were detected with a data-dependent Top15 method41 in a hybrid dual-cell quadrupole 

linear ion trap - Orbitrap mass spectrometer (LTQ Orbitrap Elite, Thermo Scientific, with 

Xcalibur 3.0.63 software). For each cycle, one full MS scan (resolution: 60,000) in the Orbitrap 

at 106 automatic gain control (AGC) target was followed by up to 15 MS/MS in the Orbitrap 

again for the most intense ions. The selected ions were excluded from further analysis for 90 

seconds. Ions with singly or unassigned charge were not sequenced.  

 

3.1.2.5 Database Search and Data Filtering 

All MS2 spectra were converted into a mzXML format and searched using the 

SEQUEST algorithm (version 28).42 Spectra were matched against a database containing 

sequences of all proteins in the Human (Homo sapiens) database downloaded from the UniProt.  

The following parameters were used during the search: 10 ppm precursor mass tolerance; 0.1 

Da product ion mass tolerance; fully digested with trypsin; up to three missed cleavages; fixed 

modification: carbamidomethylation of cysteine (+57.0214); variable modifications: oxidation 

of methionine (+15.9949), O18 tag of asparagine (+2.9883). For heavy TMT-labeled proteins, 

these following fixed modifications were also added to the search: TMT plus heavy isotope for 

lysine (+237.1771), heavy arginine (+6.0201), N-terminal TMT (229.1629). For light TMT-

labeled proteins, TMT (+229.1629) was added to both lysine and N-terminal as fixed 

modification. False discovery rates (FDR) of glycopeptide and glycoprotein identifications 

were evaluated and controlled to less than 1% by the target-decoy method43 through linear 

discriminant analysis (LDA),44 using parameters such as XCorr, precursor mass error, and 

charge state, to control the glycopeptide identification quality.45 The consensus motif 

N#X[S/T/C] (# stands for the glycosylation site and X represents any amino acid residues other 

than proline) was also required to guarantee the reliability of the N-glycosylation analysis. 
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Peptides fewer than seven amino acid residues in length were deleted. The dataset was 

restricted to glycopeptides when determining FDRs for glycopeptide identification.46  

 

3.1.2.6 Glycosylation Site Localization 

We assigned and measured the confidence of glycosylation site localizations by 

calculating their ModScores, which applies a probabilistic algorithm46 that considers all 

possible glycosylation sites in a peptide and uses the presence of experimental fragment ions 

unique to each site to assess the localization confidence. Sites with ModScore > 13 (P < 0.05) 

were considered as confidently localized. If the same glycopeptide was quantified several times, 

the median value was used as the glycopeptide abundance change.  

 

 

3.1.3 Results and discussion 

3.1.3.1 Experimental procedure for simultaneous measurement of glycoprotein degradation 

and synthesis rates  

The experimental procedure is shown in Figure 3.1, and the detailed description is 

included in the Experimental Section. Briefly, MCF-7 cells were cultured with SILAC 

Dulbecco's Modified Eagle's Medium (DMEM) containing Lys8 and Arg6 for six generations 

for full heavy isotope incorporation, and then were equally passaged for the time-course 

experiments. When the cells were approaching nearly full confluency (to minimize the dilution 

effect from cell growth), we switched the media to normal DMEM with Lys0 and Arg0 and 

began the time course. Upon the media switch (0 h), the numbers of cells across different 

groups were kept as similar as possible. For each sample, there were also very similar amount 

of heavy isotope-labelled proteins (heavy proteins) and nearly no light isotope-labelled proteins 

(light proteins). We then harvested cells at each time point until the completion of the 48 h time 
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course. As time went by, heavy proteins were degraded and newly-synthesized proteins were 

theoretically all light proteins. Therefore, the abundance changes of heavy glycoproteins can 

be used to calculate the degradation rates while the abundance changes of light glycoproteins 

as a function of time are glycoprotein synthesis rates. We performed biological triplicate 

experiments to evaluate the reproducibility and ensure the technical rigor. 

Proteins were reduced, alkylated, and digested by Lys-C and trypsin. Purified peptides 

were subjected to the chemical enrichment of glycopeptides through incubation with boronic 

acid-conjugated magnetic beads, as reported previously.39, 47 The beads were then washed to 

remove nonglycopeptides, and elution was performed twice using a buffer containing water: 

acetonitrile: trifluoroacetic acid= 49:50:1. Glycopeptides from each time point were purified 

using C18 cartridges, labelled with the TMT reagents and mixed. Glycopeptides were treated 

with PNGase F in heavy oxygen water (H2
18O) to create a common tag on the N-glycosylation 

sites for MS analysis.48, 49 After purification, the deglycosylated peptides from each experiment 

were separated into 10 fractions using high-pH reversed-phase high performance liquid 

chromatography. Each fraction was further purified by the stage-tip method, followed by LC-

MS analysis.  
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Figure 3.1 The experimental procedure for the simultaneous quantification of the glycoprotein 

degradation/synthesis rates. 

 

3.1.3.2 Glycoprotein identification 

After glycopeptides were treated with PNGase F in heavy oxygen water (H2
18O), a 

common and unique tag (+2.9883 D) on the N-glycosylation sites was created for MS analysis. 

The deamidation of asparagine happens in vivo and in vitro. The tag containing the heavy 

oxygen can allow us to distinguish the real N-glycosylation sites from spontaneous 

deamidation of asparagine. However, the spontaneous deamidation of asparagine could occur 

during the PNGase F treatment in heavy water, resulting in the false positive identification. In 

order to minimize this, we carried out the reaction for only three hours. As tested previously, 

the spontaneous deamidation of asparagine is negligible for three hours under the mild 

enzymatic reaction conditions.48 
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The glycopeptides were filtered to <1% false discovery rate. Additionally they are 

required to have the consensus motif, i.e. N#X[S/T/C] (# stands for the glycosylation site and 

X represents any amino acid residues other than proline). Among biological triplicate 

experiments, we identified 1,373, 1,342, and 1,280 unique light glycopeptides (listed in a table 

online at doi.org/ 10.1021/acs.analchem.7b02241), respectively. They overlapped very well, 

and 790 glycopeptides were found in all three experiments (Figure 3.2a). Totally, 1,875 unique 

light glycopeptides were identified. Slightly fewer number of heavy glycopeptides were 

identified, i.e. 866, 1,048 and 1,097 in each of the three experiments (listed in a table online at 

doi.org/ 10.1021/acs.analchem.7b02241). Finally, 1,515 unique heavy glycopeptides were 

identified with site-specific information, and the comparison is displayed in (Figure 3.2b). 

 

3.1.3.3 Calculation of the glycoprotein degradation and synthesis rates 

We calculated the degradation/synthesis rates based on the abundance changes of 

glycopeptides as a function of time simulated by the following exponential decay/growth 

equation (1) or (2), as performed previously: 50, 51 

Based on the abundance changes of heavy glycopeptides, the degradation rates were 

calculated: 

Ph(t) = Ph0*exp(-kdt)        (1) 

According to the abundance changes of light glycopeptides, the synthesis rates were 

obtained using the following equation: 

Pl(t) = Pl0*exp(kst)        (2) 

where Ph0 or Pl0 is the abundance of the heavy or light glycopeptide at the first time point 

(represented by the intensity of the reporter ion), Ph(t) or Pl(t) is the abundance of the heavy or 

light glycopeptide at each subsequent time point, t stands for time. kd is the degradation rate 

constant while ks is the synthesis rate constant. The different time points at 0, 6, 12, 24, and 48 
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h were also designed to provide convenience for the exponential simulation and to be 

compatible with the measurement of relatively long half-lives of glycoproteins. 48, 49 

 

 
 
 

Figure 3.2 The overlap of the unique glycopeptides identified in the biological triplicate 

experiments: (a) light glycopeptides; (b) heavy glycopeptides. 
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An example of glycopeptide quantification is shown in Figure 3.3. Glycopeptide 

KWGHN#ITEFQQR is from protein ERO1A, an oxidoreductase involved in disulfide bond 

formation and preventing the accumulation of reactive oxygen species in the endoplasmic 

reticulum (ER). This glycopeptide was confidently identified with an XCorr of 3.8, and the 

glycosylation site was localized on N280, which was also reported on the UniProt 

(www.uniprot.org). We quantified its synthesis rate based on the reporter ion intensities. 

Through using this method, we quantified the synthesis rates of 847 glycoproteins (listed in a 

table online at doi.org/ 10.1021/acs.analchem.7b02241) and the degradation rates of 704 

glycoproteins (listed in a table online at doi.org/ 10.1021/acs.analchem.7b02241) from the 

three experiments.  

 
 
 
Figure 3.3 An example of glycopeptide identification and quantification.  

 

3.1.3.4 Evaluation of the experimental reproducibility 

The reproducibility was evaluated based on the biological triplicate experiments 

(Figure 3.4 and 3.5). The comparison of the synthesis rates from triplicate experiments is shown 
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experiments (Figure 3.2a) displaying high reproducibility given that all experiments were 

performed independently from cell culture to LC-MS/MS analysis. In addition, the calculated 

synthesis rates of the light glycoproteins from the three experiments were in reasonably good 

agreement (Figure 3.5).  

 

 
 
 

Figure 3.4 Reproducibility evaluation of the heavy glycopeptides/glycoproteins: (a) 

Comparison of the degradation rates of the N-glycoproteins quantified in the experiments 1 & 

2, and (b) Comparison of the degradation rates of the N-glycoproteins quantified in the 

experiments 2 & 3. 
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Figure 3.5 Comparison of the synthesis rates of the glycoproteins quantified in experiments 1 

& 2. (b) Comparison of the synthesis rates of the glycoproteins quantified in experiment 2 & 

3. (c) Examples of glycopeptide quantification: red- KPN#ATAEPTPPDR from protein MRC2, 

green- RELYN#GTADITLR from protein RPIEZO1, purple- TCDWLPKPN#MSASCK from 

protein PSAP, and blue- QPMAPNPCEANGGQGPCSHLCLINYN#R from protein LRP1. 

The heavy glycopeptide identification and quantification were also proved to be 

reproducible (Figure 3.2b and 2.44). Compared to the protein synthesis rates, their degradation 
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rates are generally lower, resulting in a more condensed distribution pattern for the heavy 

glycoproteins, which is further discussed below. 

We quantified both the synthesis (listed in a table online at doi.org/ 

10.1021/acs.analchem.7b02241) and degradation rates (listed in a table online at doi.org/ 

10.1021/acs.analchem.7b02241) for 639 glycoproteins (Figure 3.6). We illustrated the dynamic 

abundance changes over the time course for several light glycopeptides as examples in Figure 

3c. Due to the fact that the raw intensities for each peptide can vary within a range of several 

orders of magnitudes, we used the normalized ratio of intensity at each time point, i.e. the 

intensity (It) divided by the initial intensity (I0). Therefore, the values of all glycopeptides are 

1 at the first time point. The glycopeptides are from proteins MRC2, PIEZO1, PSAP, and LRP1, 

representing glycoproteins from a variety of subcellular locations and with various molecular 

functions.  

 

 
 

Figure 3.6 The overlap of the glycoproteins with the degradation and synthesis rates quantified.  

Since the time course lasted for 48 h, the accumulation of light glycoproteins made their 

abundance higher than heavy glycoproteins, rendering slightly fewer heavy glycoproteins 

being identified. Although the current time course was relatively long, a small group of proteins 
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with a very slow degradation or synthesis rate (k<0.0034 h-1, t1/2>200 h) were still not able to 

be accurately quantified, thus we annotated the rates for these proteins as “very slow” in the 

Supplementary Tables. For glycoproteins quantified in multiple experiments, we used their 

median synthesis and degradation rates for further data analysis in this work.  

 

3.1.3.5 Clustering of glycoproteins 

We clustered the identified glycoproteins according to cellular compartment using the 

Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.8 (Figure 

3.7a).52 Many categories, ranging from cell surface to organelle membranes, were highly 

enriched with low P values and high glycoprotein counts. We also clustered the glycoproteins 

with a relatively high synthesis rate (ks>0.03 h-1) according to molecular function . Interestingly, 

the highly enriched categories are receptor binding and transportation. The most highly 

enriched are those with glycosylation enzymatic activity, including transferase activity 

(transferring hexosyl groups) and hydrolase activity (hydrolyzing O-glycosyl compounds) 

(Figure 3.7b) 

Here we quantified the synthesis rates of 83 CD glycoproteins (listed in a table online 

at doi.org/ 10.1021/acs.analchem.7b02241), and twelve of them also belong to the family of 

cell adhesion molecules (CAMs), which are listed in Table 3.1. Many of them are integrins, 

which are typically a group of important transmembrane receptors that participate in the 

interactions between cells and extracellular matrix. For instance, ITGB1 was confidently 

quantified in the current experiments based on 11 unique glycopeptides. It is known to be 

conjoining with integrin alpha subunits to form various cell-surface receptors, such as forming 

a laminin receptor with integrin alpha subunit 6 (ITGA6). The latter is also quantified with a 

synthesis rate of 0.0380 h-1. The four integrins (ITGB1, ITGB2, ITGAV, and ITGA6) 
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quantified all have similar synthesis rates, ranging from 0.0377 h-1 to 0.0483 h-1, correlating 

well with the fact that they adjoin one another to form the receptor complex on the cell surface. 

 
 

Figure 3.7 Clustering of (a) the quantified glycoproteins according to cellular compartment 

and (b) the glycoproteins with a relatively higher synthesis rate based on molecular function. 
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Table 3.1 The 12 glycoproteins that are both CD and CAM molecules. 

CD 
Name 

Gene 
Symbol 

UniProt 
ID 

Unique 
Glycopeptid

e Hits 

Median 
Synthesi
s Rate 
(h-1) 

Annotation 

CD58 CD58 P19256 1 0.0552 
Lymphocyte function-
associated antigen 3 

CD54 ICAM1 P05362 3 0.0538 
Intercellular adhesion molecule 
1 

CD166 
ALCA

M Q13740 9 0.0517 CD166 antigen 
CD29 ITGB1 P05556 11 0.0483 Integrin beta-1 
CD276 CD276 Q5ZPR3 4 0.0427 CD276 antigen 
CD51 ITGAV P06756 8 0.0412 Integrin alpha-V 

CD171 
L1CA

M P32004 6 0.0388 
Neural cell adhesion molecule 
L1 

CD49f ITGA6 P23229 5 0.0380 Integrin alpha-6 
CD18 ITGB2 P05107 3 0.0377 Integrin beta-2 
CD62l SELL P14151 1 0.0272 L-selectin 

CD275 
ICOSL

G O75144 3 0.0205 ICOS ligand 
CD155 PVR P15151 1 0.0046 Poliovirus receptor 

 
 
 
3.1.3.6 Comparison of the difference between the synthesis and degradation rates 

We then analyzed the difference between the synthesis and degradation rates for 

glycoproteins (listed in a table online at doi.org/ 10.1021/acs.analchem.7b02241), and the rate 

differences are plotted in Figure 3.8. To ensure the analysis confidence, we only analyzed the 

glycoproteins with their synthesis/degradation rates accurately quantified (without “very slow” 

annotation) in at least two experiments, where 400 proteins fall into this category. Since cells 

were still growing throughout the time course, we anticipated that the majority of the proteins 

would have a faster synthesis rate than degradation rate. This was proved by the results (Figure 

3.8a) as 352 proteins (88%) had higher synthesis rates.  
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Figure 3.8 The difference between the synthesis and degradation rates for 400 glycoproteins 

with both rates quantified; (b) the biological processes in which 48 glycoproteins with a lower 

synthesis rate are involved in. 
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Interestingly, 48 proteins had lower synthesis rates, and they mostly participated in the 

biological processes of adhesion, locomotion, localization, and signaling (Figure 3.8b). We 

reasoned that at the end of the time course, as the cells were approaching a static state due to 

high confluence, these biological processes were not supposed to robustly continue, and thus 

the related glycoproteins were down-regulated. Another possible explanation arises from the 

current approach to calculate these two rates. The absolute glycoprotein degradation rate was 

calculated based on the abundance changes of heavy glycoproteins, and the contribution from 

heavy protein synthesis was negligible since heavy isotopic lysine and arginine were not 

supplied during the 48 h time course. However, light glycoproteins were used to calculate the 

synthesis rates while they were synthesized and degraded simultaneously. Since the starting 

light protein abundance was extremely low, we neglected the contribution from light protein 

degradation, but this contribution accumulated throughout the whole time course. Therefore, 

the real protein synthesis rates are likely slightly higher than the rates obtained in this work. 

 

3.1.4 Conclusions 

Evolution has endowed cells the ability to synthesize proteins in a conservative and 

low-risk pattern.53 In this study, we integrated pulse-chase SILAC, chemical enrichment of 

glycopeptides, and multiplex proteomics to simultaneously investigate the glycoprotein 

synthesis and degradation rates in human cells on a large scale. Rigorous criteria were applied 

for glycopeptide filtering, and 3,390 unique heavy and light glycopeptides with site-specific 

information led to the simultaneous quantitation of the degradation and/or synthesis rates of 

many glycoproteins. We quantified the synthesis rates of 847 N-glycoproteins and the 

degradation rates of 704 N-glycoproteins, and demonstrated this method to be reproducible 

based on the results from the biological triplicate experiments. The glycoproteins related to 

binding, transportation, and enzyme activity were determined to have higher synthesis rates. 
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The majority of the quantified glycoproteins were synthesized faster than degraded due to the 

cell growth. In combination with pulse-chase SILAC and glycopeptide enrichment, we can 

simultaneously quantify the synthesis and degradation rates of glycoproteins. This method can 

be extensively applied to investigate glycoprotein dynamics, which will aid in a better 

understanding of glycoprotein functions and the molecular mechanisms of biological events. 
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3.2 Quantification of Tunicamycin-Induced Protein Expression and N-Glycosylation 

Changes in Yeast 

 

3.2.1 Introduction 

Glycosylation is a prevalent protein modification in eukaryotic cells that plays essential 

roles in regulating protein folding, trafficking and stability.27, 54, 55 Aberrant glycosylation is 

frequently related to human disease, including cancer and infectious diseases.27, 56-62 In 

eukaryotic cells, N-glycosylation typically begins with the synthesis of the dolichol-linked 

precursor oligosaccharide (GlcNAc2Man9Glc3), followed by en bloc transfer of the precursor 

oligosaccharide to newly synthesized peptides in the endoplasmic reticulum (ER).1, 63 Then 

oligosaccharide is further trimmed and modified by many enzymes in the Golgi apparatus.64 

The pathway for N-glycosylation synthesis is conserved from yeast to mammalian cells.65 

Although yeast primarily contains high-mannose glycans which differ from those in 

mammalian cells,66 it can still be used as an excellent model system to study protein N-

glycosylation.4 

 Tunicamycin (TM), a glucosamine-containing antibiotic, blocks N-linked 

glycosylation by inhibiting the formation of the N-acetylglucosamine-dolichol-phosphate 

intermediate and thus traps cells in the G1 phase of the cell cycle.4, 67 TM was originally isolated 

and utilized for its antiviral activity by suppressing viral glycoprotein synthesis and membrane 

genesis.68, 69 Now tunicamycin is extensively used for protein N-glycosylation manipulation. 

In yeast, the presence of TM has been reported to disrupt the formation of the external 

glycoprotein invertase, acid phosphatase, and cell wall mannan.67 Although the mechanism 

responsible for TM-initiated inhibition of protein N-glycosylation has long been appreciated, 

a comprehensive and quantitative analysis of the affected proteome and glycoproteome in cells 

has yet to be conducted. 
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 In recent years, MS-based proteomics methods have become increasingly powerful to 

systematically study protein expression and modification changes in complex biological 

samples.29, 70-77 However, it is still challenging to investigate low-abundance proteins, which 

requires effective fractionation or other sample preparation.78-82 Furthermore, the global 

analysis of glycoproteins in complex biological samples is extraordinarily difficult because of 

the high heterogeneity of glycans and low abundance of many glycoproteins.32 Enrichment of 

glycopeptides and the generation of a common mass tag on glycosylation sites are required 

prior to MS analysis. In our recent study, based on a common feature of glycans, i.e. multiple 

hydroxyl groups in each glycan, boronic acid-based enrichment was used to effectively enrich 

glycopeptides in yeast whole cell lysates.39 By incorporating this enrichment method, it is 

possible to comprehensively quantify protein glycosylation changes with quantitative 

proteomics. 

Using yeast as a model system, we systematically investigated the cell response to TM 

at the proteome and N-glycoproteome levels. We quantified 4,259 proteins, which nearly 

covers the entire yeast proteome. Many proteins related to several glycan metabolism and 

glycolysis-related pathways were down-regulated in TM-treated cells. We also globally 

quantified protein N-glycosylation changes as a result of the TM treatment.  Among down-

regulated glycoproteins, those related to glycosylation, glycoprotein metabolic processes, 

carbohydrate processes, and cell wall organization were highly enriched. The current results 

clearly demonstrate that there are dramatic protein expression and N-glycosylation changes 

resulting from the tunicamycin treatment.  

 

 

 

 



 
120 

3.2.2 Experimental section 

3.2.2.1 Yeast strains, SILAC labeling, and TM treatment conditions 

Yeast (Saccharomyces cerevisiae) cells were seeded in “heavy” (Lys8 (13C6 and 15N2); 

Arg6 (13C6) Cambridge isotopes) or “light” (Lys0, Arg0) media (synthetic complete medium 

with lysine and arginine drop-out) and cultured overnight. Tunicamycin (TM) (Cayman 

Chemicals) stock solution (10 mg/mL) was prepared by dissolving TM in dimethyl sulfoxide 

(DMSO). When the cell population had undergone more than ten doubling times and reached 

the exponential growth phase (OD=0.3 at 600 nm), TM (2 µg/mL) was added into the “heavy” 

media while the “light” cells were treated by the same amount of DMSO as a vehicle control. 

After treatment for three hours, cells were harvested and mixed at a 1:1 ratio based on measured 

protein concentrations. 

 

3.2.2.2 Cell lysis, protein extraction and digestion 

Cells were washed twice with deionized water, pelleted by centrifugation at 4,000 g for 

5 minutes, and then resuspended in lysis buffer (50 mM 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES) pH=7.6, 150 mM NaCl, 0.5% sodium deoxycholate 

(SDC), 20 U/mL benzonase, and 1 protease inhibitor tablet per 10 mL buffer). Cell lysis was 

performed using a MiniBeadbeater (Biospec), three 30 second cycles at maximum speed, with 

2 minute pauses on ice in between each cycle. Lysates were then centrifuged at 15,000 g for 

10 minutes and the resulting supernatant was transferred into a new tube. The protein 

concentration was measured by a bicinchoninic acid (BCA) assay (Pierce) and proteins were 

subjected to disulfide reduction with 5 mM dithiothreitol (DTT) (56 ºC, 25 minutes) and 

alkylation with 14 mM iodoacetamide (RT, 20 minutes in the dark). Detergents were removed 

by methanol-chloroform protein precipitation. The purified proteins were digested with 10 

ng/µL Lys-C (Wako) in buffer containing 50 mM HEPES pH=8.6, 1.6 M urea, and 5% ACN, 
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at 31 ºC for 16 hours, followed by further digestion with 8 ng/uL Trypsin (Promega) at 37 ºC 

for 4 hours. 

 

3.2.2.3 Peptide separation, fractionation, and glycopeptide enrichment 

Protein digestions were acidified by the addition of trifluoroacetic acid (TFA) to a final 

concentration of 0.1%, followed by centrifugation to remove the precipitate. Then peptides 

were desalted using a tC18 Sep-Pak cartridge (Waters). Purified peptides were aliquoted into 

two portions: ~0.5 mg for protein analysis and a ~8 mg for glycosylation analysis. For protein 

analysis, lyophilized peptides were fractionated into 20 fractions by high pH reversed-phase 

high-performance liquid chromatography (HPLC) with a 40 minute gradient of 5-55% ACN in 

10 mM ammonium acetate (pH=10), and then desalted again using stage-tips. For glycosylation 

analysis, the separation and enrichment of glycopeptides was carried out by utilizing the 

covalent interaction between boronic acid and glycans containing multiple hydroxyl groups, as 

described previously.39 Peptides were directly subjected to glycopeptide enrichment without 

HPLC fractionation. Then we separated the glycopeptides into three fractions during the later 

stage-tip step. Briefly, the peptide mixture was dissolved in 200 mM ammonium acetate buffer 

(pH=10), and incubated with boronic acid-conjugated magnetic beads at 37 ºC for 1 h. The 

beads were then washed five times with the binding buffer to remove non-specifically bound 

peptides. Glycopeptides were eluted by incubating the beads in a solution containing 

acetonitrile, water, and trifluoroacetic acid at a respective ratio of 50:49:1 for 30 minutes at 37 

ºC. Eluates were desalted using tC18 Sep-Pak cartridges and lyophilized overnight.  

 

3.2.2.4 PNGase F treatment for glycopeptides 

Glycopeptides were deglycosylated with five units of peptide-N-glycosidase F 

(PNGase F, Sigma-Aldrich) in 100 µL buffer containing 50 mM NH4HCO3 (pH=9) in heavy-
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oxygen water (H2
18O) for 3h at 37 °C.83, 84 The reaction was quenched by adding formic acid 

(FA) to a final concentration of 1%. Peptides were further purified via stage tip and separated 

into 3 fractions using 20%, 50% and 80% ACN containing 1% HOAc. 

 

3.2.2.5 LC-MS/MS analysis  

All purified and dried peptide fractions were dissolved in a solvent containing 5% ACN 

and 4% FA, and a fraction of each sample was loaded onto a microcapillary column packed 

with C18 beads (Magic C18AQ, 3 µm, 200 Å, 100 µm x 16 cm, Michrom Bioresources) by a 

Dionex WPS-3000TPLRS autosampler (UltiMate 3000 thermostatted Rapid Separation Pulled 

Loop Wellplate Sampler). For protein analysis, peptides were separated by reversed-phase 

liquid chromatography using an UltiMate 3000 binary pump with a 90-minute gradient of 4-

30% ACN containing 0.125% FA.  For the enriched glycopeptide samples, a 110-minute 

gradient of 3-25%, 8-38%, 10-50% ACN with 0.125% FA was used for each of the three 

fractions. Peptides were detected with a data-dependent method41, 85 in a hybrid dual-cell 

quadrupole linear ion trap – Orbitrap mass spectrometer (LTQ Orbitrap Elite, ThermoFisher, 

with Xcalibur 3.0.63 software). For each cycle, one full MS scan (resolution: 60,000) in the 

Orbitrap (106 AGC target) was followed by up to 20 MS/MS in the LTQ for the most intense 

ions. The selected ions were excluded from further sequencing for 90 seconds. Ions with single 

or unassigned charges were not selected for MS/MS scans. Maximum ion accumulation times 

were 1000 ms for each full MS scan and 50 ms for MS/MS scans. 

 

3.2.2.6 Database search and data filtering 

Raw mass spectra were converted into mzXML format, and then searched using the 

SEQUEST algorithm (version 28).42  The following parameters were used during the search: 

10 ppm precursor mass tolerance; 1.0 Da product ion mass tolerance; fully digested with 
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trypsin; up to three missed cleavages; fixed modifications: carbamidomethylation of cysteine 

(+57.0214); variable modifications: oxidation of methionine (+15.9949), 18O tag on asparagine 

(+2.9883, for glycosylation analysis), heavy lysine (+8.0142) and heavy arginine (+6.0201). 

The target-decoy method43, 86 was employed to determine the false discovery rate (FDR). 

Linear discriminant analysis (LDA) was then performed to control the quality of peptide 

identifications using parameters such as XCorr, charge state and precursor mass accuracy,45 

which is also similar to the previous report.44 Peptides fewer than seven amino acid residues in 

length were considered unreliable and deleted. Peptide spectral matches were filtered to a <1% 

FDR. For protein analysis, the peptide-level FDR was calculated based on all identified 

peptides. For glycoprotein analysis, the dataset was restricted to glycopeptides when 

determining FDRs for glycopeptide identification.46, 87 Furthermore, an additional protein-level 

filter was applied in each dataset to reduce the protein-level FDRs (<1%) for proteins and 

glycoproteins. Consequently, the FDRs at the peptide level were much less than 1%. 

 

3.2.2.7 Glycosylation site localization and peptide quantification 

We used ModScores to assign glycosylation sites and measure the confidence of their   

localizations.46, 88 The ModScore software considers all possible glycosylation sites in a peptide 

and uses the presence of experimental fragments unique to each site to determine the actual 

glycosylation site and calculated ModScore value based on the binominal probability P 

(!"#$%"&' = −10×-"./0 1 ).	We considered ModScore > 13 (P < 0.05) as confidently 

localized. If the same peptide was quantified several times, the median heavy-to-light (H/L) 

value was used as the peptide abundance change. For peptides used for proteome analysis, we 

required that either its heavy or light isotope peak had a signal-to-noise ratio (S/N) greater than 

3. If the S/N of the heavy peak was less than 3, then we required that the light peak had an S/N 

great than 5, and vice versa. Two criteria were applied for glycosylation site quantification: (1) 
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the quantified glycopeptide must contain only one glycosylation site; (2) the site must be 

confidently localized with a ModScore >13. 

 

3.2.3 Results and Discussion 

3.2.3.1 Tunicamycin treatment and glycoprotein enrichment 

Tunicamycin has been widely used to model specific types of stress that affect protein 

folding in the ER.89, 90 However, the protein abundance changes in tunicamycin-treated cells 

have remained unexplored on a large scale. Our first aim was to study the proteome changes 

resulting from the TM treatment. Because TM is known to inhibit the formation of the N-

acetylglucosamine-dolichol-phosphate intermediate and thus prevents protein N-glycosylation, 

we also systematically investigated N-glycoproteome alterations in TM-treated yeast cells. 

Since many membrane proteins are known to be glycosylated, 0.5% sodium deoxycholate 

(SDC) was added into the lysis buffer to increase membrane protein extraction. As a detergent, 

SDC can disrupt and dissociate many types of protein interactions, and also increase the 

solubility of membrane proteins. After cell lysis, protein extraction and purification, 0.5 mg of 

digested peptides were separated into 20 fractions using high-pH reversed phase liquid 

chromatography (Figure 3.9). In combination with further separation under acidic conditions 

during on-line LC-MS/MS analysis, two-dimensional orthogonal separation can minimize 

peptide peak overlap and boost the identification of low-abundance proteins. 
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Figure 3.9 Experimental procedure for the global analysis of proteins and N-glycoproteins in 

TM-treated yeast cells vs. untreated cells.  

 

Two technical challenges must be overcome to globally study protein N-glycosylation 

by using MS-based proteomics techniques: the low expression levels of many glycoproteins, 

and the heterogeneity of glycan structures. Therefore, an effective enrichment method and an 

efficient approach to generate a common tag on glycosylation sites for subsequent database 
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searching are required. Based on one common features of glycoproteins, i.e. glycan structures 

bearing multiple hydroxyl groups, we globally enriched glycoproteins and/or glycopeptides 

through the universal boronic acid-cis diol recognition.39 Boronic acid was immobilized onto 

magnetic beads to capture glycopeptides, and the reversible nature of the covalent interactions 

between boronic acid and diols made it possible to release glycopeptides (after the removal of 

non-specifically bound peptides) for further analysis. After enrichment, peptides were treated 

with PNGase F in heavy-oxygen water (H2
18O) to remove N-glycans, which converted 

asparagine (Asn) to aspartic acid (Asp) containing heavy oxygen and created a mass shift of 

+2.9883 Da.30, 40 Heavy oxygen on Asp allows us to easily distinguish authentic N-

glycosylation sites from those caused by deamidation occurring in vitro and in vivo. Treatment 

time was shortened to only 3 hours to minimize possible deamidation that occurs during the 

PNGase F cleavage process. 

 

3.2.3.2 Examples of peptide and glycopeptide identification and quantification 

In order to accurately quantify the protein expression and glycosylation changes, an 

Orbitrap mass spectrometer with high resolution and mass accuracy (Thermo hybrid LTQ-

Orbitrap Elite MS) was used in this study. Figure 3.10 shows examples of peptide and 

glycopeptide identifications and quantifications. Both peptides are from the protein PDI1 

(YCL043C), which is a disulfide isomerase essential for the formation of disulfide bonds in 

secretory and cell-surface proteins, and may unscramble non-native disulfide bonds. In 

addition, it participates in the processing of unfolded protein-bound Man8GlcNAc2 

oligosaccharides to Man7GlcNAc2, thereby promoting degradation in unfolded protein 

response (http://www.yeastgenome.org). This protein was determined to be up-regulated by 

2.6 fold in TM-treated yeast cells, possibly as a result of TM interrupting the proper 

glycosylation of various proteins, and unfolded or misfolded proteins accumulating in the ER.  
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Heavy isotope peaks of the peptide GLMNFVSIDAR are shown to be more than twice as 

intense as the light peaks in Figure 3.10a.  

 

 
 

Figure 3.10 Examples of full and tandem mass spectra of peptides. (a) The full and (c) tandem 

mass spectra of the peptide GLMNFVSIDAR and (b) the full and (d) tandem mass spectra of 

the glycopeptide RLAPTYQELADTYAN*ATSDVLIAK. Both peptides are from the protein 

PDI1. (c) and (d) demonstrated that the two peptides were confidently identified with high 

XCorr values. (@-heavy arginine, #-heavy lysine, *-glycosylation site) 

 

In TM-treated yeast cells, the glycosylation site N425 on this protein was down-

regulated by 2.5 fold. The tandem mass spectra corresponding to the identification of the 

glycopeptide R@LAPTYQELADTYAN*ATSDVLIAK# (@-heavy arginine, #-heavy lysine 

and *-glycosylation site) is shown in Figure 3.10b; this glycopeptide was confidently identified 

with an XCorr of 5.04 and a ModScore of 1000. The two ratios of peptides and glycopeptides 

from the same protein are excellent examples of differential protein expression and 

glycosylation changes resulting from the TM treatment. Several other glycosylation sites (N82, 
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N117, N155 and N174) on this protein were also down-regulated (listed in a table online at 

doi.org/10.1039/C6AN00144K). 

 

3.2.3.3 Global analysis of protein abundance changes 

After protein samples were fractionated into 20 samples, they were measured using an 

online LC-MS system. With these powerful MS-based proteomics techniques, we were able to 

confidently quantify 4,259 yeast proteins (listed in a table online at 

doi.org/10.1039/C6AN00144K), which nearly covered the entire yeast proteome.91, 92 

Moreover, 95% of identified glycoproteins were also identified in the proteome experiments 

(Figure 3.11a). Due to their low abundances, seven glycoproteins were not identified in 

proteome analysis without efficient enrichment. The protein abundance change distribution is 

shown in Figure 3.11b and most protein abundances did not have marked changes. Overall, 

400 proteins were up-regulated while 226 proteins were down-regulated by at least 2 fold in 

TM-treated yeast cells. We then clustered them separately according to biological process or 

pathway using the Database for Annotation, Visualization, and Integrated Discovery 6.7 

(DAVID 6.7).93 Several glycan metabolism pathways, including starch and sucrose metabolism, 

fructose and mannose metabolism, the pentose phosphate pathway, and glycolysis-related 

pathways were significantly enriched among up-regulated proteins (Figure 3.12a)). This 

phenomenon may be due to excess glycans present in cells as a result of protein glycosylation 

inhibition by TM. We have quantified the majority of the proteins involved in the canonical 

unfolded protein response pathway,94 including Ero1 (YML130C), an essential oxidoreductase 

that produces disulfide bonds in the ER, which was up-regulated by 5.2 fold. Other related 

proteins, including Hrd3 (YLR207W), Gcn2 (YDR283C), and Ire1 (YHR079C), had increased 

abundances of 1.7, 1.6, and 1.8 fold, respectively. 
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Figure 3.11 Protein identification and quantification results. (a) The overlap between proteins 

and glycoproteins identified in this work. (b) The ratio distribution of quantified proteins. 

 

For down-regulated proteins, ribosome and RNA processing-related biological 

processes were notably enriched, which meant that protein translation was reduced. This 

correlates very well with previous studies in the literature.95, 96 For example, Steffen et al. found 

that ribosomal deficiency protects yeast cells against ER stress, which was a result of many 

secretory proteins getting trapped in the ER due to the inhibition of their glycosylation. The 

treatment of the ribosomal protein gene deletion strains with TM showed significant ER stress 

resistance.95 In addition, protein transportation between the Golgi and plasma membrane was 

also attenuated. Cell wall integrity and stress response component 4 (Wsc4) is a protein that 
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participates in protein transportation to the membrane, and cell wall biogenesis and 

degradation, and its expression was reduced to 6.6% as a result of a drug treatment. The 

dramatic down-regulation of this protein suggests that cell wall formation may be impacted in 

the TM-treated cells because  protein N-glycosylation regulated protein folding and trafficking 

and here it was inhibited by TM. Therefore, cell wall proteins cannot be transported to the cell 

wall. 

 

3.2.3.4 Site-specific glycoprotein identification 

The common tag generated by PNGase F deglycosylation in heavy-oxygen water 

(H2
18O) allowed the global and site-specific identification of protein N-glycosylation. As 

shown in Figure 3.10b, fragments in the tandem mass spectrum enabled us to confidently 

localize protein glycosylation sites. A total of 448 glycosylation sites were identified in the 

current experiment (listed in a table online at doi.org/10.1039/C6AN00144K). Here we 

assessed the confidence of site localizations with the calculation of ModScore values, which 

take all possible glycosylation sites in a peptide into account and uses the existing experimental 

fragment ions unique to each site to determine the actual glycosylation site.39, 41, 46 For instance, 

two possible glycosylation sites located next to each other without adequate fragment ions to 

distinguish them will result in a low Modscore. A ModScore greater than 13 represents a P 

value less than 0.05, which we considered to be well-localized. Figure 3.13a shows that the 

majority of the glycosylation site identified in this experiment are well-localized, and 68.5% 

of identified sites even have a ModScore larger than 19 (corresponding to a P value less than 

0.01).  
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Figure 3.12 Clustering of up- and down-regulated proteins in tunicamycin-treated cells. (a) 

Enriched pathways for up-regulated proteins. (2) Enriched biological processes among down-

regulated proteins. 

 

Many proteins carried multiple N-glycosylation sites (Figure 3.13b) and more than 30 

proteins contained at least five glycosylation sites. For example, a total of 15 possible 

glycosylation sites were identified from the protein Rax2 (YLR084C). Rax2 is required for the 

maintenance of the bipolar budding pattern, and is involved in selecting bud sites.97 It was 

reported that Rax2 is a glycosylated type I membrane protein, with its long N-terminal domain 

in the extracellular space.98 In TM-treated yeast cells, Rax2 was down-regulated by 2.07 fold 
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while its four singly glycosylated peptides were down-regulated with ratios of 0.45, 0.46, 0.51, 

and 0.51, respectively. 

We further investigated the correlation between the number of identified glycosylation 

sites and the glycoprotein length (Figure 3.13c). It seems plausible that longer proteins could 

carry statistically more glycosylation sites which would allow a greater number of 

glycosylation sites to be identified. When we plotted the number of glycosylation sites as a 

function of the protein length, there was no significant correlation between the two. 

Next we considered whether protein and glycoprotein identifications in this work were 

biased for highly abundant proteins. Based on the number of copies (abundances) of yeast 

proteins reported in the literature,99 we plotted the abundance distribution of proteins and 

glycoproteins identified here with the protein abundance distribution from the literature in 

Figure 3.13d. The x-axis represents the number of protein molecules per cell, and the y-axis 

shows the percentage of proteins. Despite all three protein datasets having similar distributions 

over various amounts of protein molecules, we quantified a considerable amount of proteins 

and glycoproteins that were not quantified by the tandem affinity purification (TAP) coupled 

to immune-detection method in the literature.99 This means that modern MS methods are very 

sensitive and can detect proteins with very low abundances. In addition, the median length of 

glycoproteins identified in this experiment is 581 amino acid residues, while the yeast whole 

proteome (http://www.yeastgenome.org/) has a median of 359 amino acid residues. This 

suggested that glycoproteins are generally longer than other proteins, although the number of 

N-glycosylation sites on each protein is not always relevant to the protein length. 
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Figure 3.13 The results of site-specific N-glycosylation identification. (a) The ModScore 

distribution for the identified glycosylation sites. (b) The number of glycosylation sites 

identified in glycoproteins. (c) The correlation between the number of glycosylation sites and 

the length of glycoproteins. (d) The abundance distribution of proteins and glycoproteins in the 

literature99 and quantified in this work. 

 

3.2.3.5 Quantification of glycopeptides and singly-glycosylated peptides 

In this work, a total of 465 unique glycopeptides were quantified, among which more 

than one third (162 glycopeptides) were down-regulated by more than 2 fold, while only 40 

glycopeptides were up-regulated (listed in a table online at doi.org/10.1039/C6AN00144K).  

These results are agreeable with the known glycosylation inhibition effects of TM. The 

distribution of glycopeptide abundances is shown in Figure 3.14a. Glycopeptides are not 

expected to be up-regulated as a result of tunicamycin treatment, however this could occur 

because some N-acetylglucosamine-dolichol-phosphate intermediates still exist in cells for a 
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short period after treatment, or if the corresponding parent proteins are up-regulated. For 

instance, glycopeptide R.TPLVAWGAGLNK#PVHNPFPVSDN*YTENWE LSSIK#.R has 

an up-regulation ratio of 2.01, while the corresponding protein YKL165C were up-regulated 

for 3.47 fold. The regulation ratio for this peptide is determined to be 0.58 after calibration. 

Meanwhile, peptide K.SPVETVSDSLQFSFNGN*QTK (2.34 fold) from protein YDR055W 

(4.65 fold) has a ratio of 0.50 after calibration. Here we only treated cells for three hours, but 

more glycopeptides are anticipated to be down-regulated if cells are treated for a longer time.  

Glycoproteins containing down-regulated glycopeptides were clustered according to 

biological processes using DAVID 6.7 (Figure 3.14b). The glycosylation, glycoprotein 

metabolic processes, carbohydrate processes, and cell wall organization were highly enriched. 

Compared to proteome analysis results, these more directly reflect the primary impact of 

inhibiting protein N-glycosylation by TM in yeast cells. Interestingly, several proteins 

containing down-regulated N-glycopeptides were related to protein O-glycosylation. A total of 

five glycoproteins in the current results were involved in this process, among which three were 

also involved in protein N-glycosylation. The other two glycoproteins, dolichyl-phosphate-

mannose-protein mannosyltransferase 2 (PMT2, YAL023C) and PMT5 (YDL093W) are 

glycosyltransferases that specifically participate in protein O-glycosylation (especially O-

linked mannosylation). The current results suggest that TM treatment could also interfere  

protein O-glycosylation by suppressing the N-glycosylation of important O-glycosylation 

transferases.  
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Figure 3.14 The ratio distribution of glycopeptides and glycoprotein clustering. (a) Ratio 

distribution of the quantified glycopeptides. (b) Clustering of the down-regulated glycoproteins 

according to biological processes. 

 

Finally, we extracted all the singly-glycosylated glycopeptides with a ModScore larger 

than 13, and performed quantification at the glycosylation site level. The ratio distribution 

(Figure 3.15a) of quantified glycosylation sites is largely similar to that of quantified 

glycopeptides. A total of 253 sites were quantified, among which 81 were down-regulated and 

18 were up-regulated. Clustering analysis also revealed that glycosylation was impacted 

(Figure 3.15b). The high-mannose type N-glycan biosynthesis pathway was found to be down-

regulated with a P value of 1.24E-4; all sites quantified in this pathway were well-localized 
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(Table 3.2). Powerful MS-based proteomics methods allowed us to systematically and site-

specifically quantify protein N-glycosylation changes in TM-treated cells, offering valuable 

insight into tunicamycin-cell interactions. 

 
                          
 
Figure 3.15 (a) Ratio distribution of the quantified glycosylation sites. (b) Clustering of the 

down-regulated glycosylation sites according to biological processes. 

 

3.2.4 Conclusions 

Tunicamycin has been widely used to manipulate protein N-glycosylation, but the 

global analysis of protein expression and N-glycosylation changes as a result of tunicamycin 
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investigated the protein abundance and N-glycosylation changes by powerful MS-based 

proteomics techniques.  Through combination with quantitative proteomics, we have quantified 

4,259 proteins in tunicamycin-treated yeast cells. The majority of protein abundances changed 

very little if at all, but nearly 10% of quantified proteins were down-regulated by >2 fold, 

among which proteins related to several glycan metabolism and glycolysis-related pathways 

were highly enriched. In addition, several proteins in the canonical unfolded protein response 

pathway were up-regulated because the inhibition of N-glycosylation dramatically impacts the 

proper folding and subsequent trafficking of some proteins.  

We comprehensively quantified protein N-glycosylation changes in yeast cells induced 

by tunicamycin by combining boronic acid-based glycopeptide enrichment, enzymatic 

deglycosylation in heavy-oxygen water, and MS-based proteomics. More than one third (168) 

of 465 quantified unique glycopeptides were down-regulated in yeast cells with three-hour 

treatment. Among down-regulated glycoproteins, those related to glycosylation, glycoprotein 

metabolic processes, carbohydrate processes, and cell wall organization were highly enriched. 

The high-mannose type N-glycan biosynthesis pathway was also found to be down-regulated. 

For the first time, we systematically and quantitatively investigated protein expression and N-

glycosylation changes in tunicamycin-treated yeast cells. These results will provide a better 

understanding of how cells interact with tunicamycin and how N-glycosylation is affected as a 

result. 
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Table 3.2 Down-regulated glycosylation sites involved in the high-mannose type N-glycan 

biosynthesis pathway (P=1.2E-4) 

 

Reference Peptide Site 
Mod 
Score PPM XCorr 

H/L 
ratio Annotation 

YJR131W 

K.YLAYLTGN*R.T 224 1000 1.02 2.16 0.01 Endoplasmic reticulum 
mannosyl-
oligosaccharide 1,2-
alpha-mannosidase 
(MNS1)  

R.MLGGLLSAYHL
SDVLEVGN*K.T 155 1000 0.16 3.33 0.44 

YER001W 

K.MFPFINN*FTTE
TFHEMVPK.I 254 17.0 -1.21 2.52 0.04 

Alpha-1,3-
mannosyltransferase 
(MNN1)  

K.TLN*ATFPNYD
PDNFK.K 225 65.4 1.75 4.74 0.05 
R.SPDFKPVENNY
DN*STNVPQEIWF
LDVSNTIHPK.W 

383 38.3 -3.16 5.77 0.17 

YJL186W K.FTDTLSGKLN*F
SIPQR.E 136 1000 -0.77 3.51 0.41 

Alpha-1,2-
mannosyltransferase 
(MNN5)  

YPL053C K.SYGGN*ETTLG
FMVPSYINHR.G 98 145.0 -0.2 3.76 0.48 Mannosyltransferase 

(KTR6)  
 
*- glycosylation site 
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CHAPTER 4. IDENTIFICATION AND QUANTIFICATION OF THE 

CELL-SURFACE N-GLYCOPROTEINS 

 

Partially adapted with permission from American Chemical Society  

Xiao, H. P., Tang, G. X., and Wu, R. H. Site-Specific Quantification of Surface N-

Glycoproteins in Statin-Treated Liver Cells. Analytical Chemistry, 2016, 88, 3324-3332. 

Copyright 2016 American Chemical Society.  

 

Partially adapted with permission from The Royal Society of Chemistry  

Xiao, H. P., and Wu, R. H. Quantitative Investigation of Human Cell Surface N-Glycoprotein 

Dynamics. Chemical Science, 2017, 8, 268-277. Copyright The Royal Society of Chemistry 

2017.  

 

 

4.1 Analysis of Cell-Surface N-Glycoproteome and Site-specific Quantification of Surface 

N-glycoproteins in Statin-treated Liver Cells 

 

4.1.1 Introduction 

Glycosylation is one of the most important protein modifications and is essential for 

cell survival.1 There are two major types of protein glycosylation: N-linked glycosylation and 

O-linked glycosylation. For O-glycosylation, glycans are bound to the side chains of serine and 

threonine, while N-glycosylation involves glycans covalently attached to the side chain of 

asparagine. In eukaryotic cells, there is machinery in the endoplasmic reticulum (ER) 

responsible for attaching the initial glycan block ((GlcNAc)2(Mannose)9(Glucose)3) to nascent 

peptides. It is well known that N-glycosylation plays determinant roles in protein folding and 
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trafficking, and N-glycosylated proteins are especially important in regulating extracellular 

activities, including cell-cell communication and cell-matrix interactions.2 Aberrant protein N-

glycosylation is frequently related to human disease,3 including Alzheimer’s disease (AD),4 

cancer,5 and infectious diseases.6 

        Half a century ago, early mammalian cell morphology studies discovered abundant 

carbohydrates on the external surface of the cell membrane.7, 8 To date, numerous research 

results have indicated that the majority of cell surface proteins are glycosylated.9, 10 Despite the 

number of glycoproteins located on the cell surface and their importance in biological functions, 

the global analysis of surface glycoproteins is extraordinarily challenging.11, 12 Modern mass 

spectrometry (MS)-based proteomics techniques provide the capacity to comprehensively 

analyze protein modifications.13-23 These methods can be employed to systematically identify 

modified proteins, localize the modification sites, and quantify their abundance changes.24-28 

However, the heterogeneity of glycans and low abundance of many glycoproteins make the 

global analysis of glycoproteins extraordinarily difficult.29 It is even more challenging to 

specifically and comprehensively analyze N-glycoproteins only on the cell surface because it 

requires the selective separation and enrichment of surface N-glycoproteins.  

Statins have been widely used to lower cholesterol levels in patients by inhibiting 3-

hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR),30 an enzyme in the upstream 

portion of the mevalonate pathway. Besides cholesterol, the synthesis of many intermediate 

and end products in this pathway, including ubiquinone and dolichol, are significantly affected 

by the inhibition of this enzyme.31 Dolichol plays an essential role in protein N-glycosylation, 

and functions as a membrane anchor for the formation of a precursor oligosaccharide.32 The 

effect of statin on surface protein glycosylation is still unknown which may contribute to the 

pleiotropic effects of statins. The systematic and quantitative analysis of surface glycoproteins 

in statin-treated cells will potentially shed light on the molecular mechanisms behind the 
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pleiotropic effects of statins, which will allow patients to receive the full benefits of this 

medicine.  

        In this work, we systematically evaluated metabolic labeling with three sugar analogs, i.e. 

GalNAz, GlcNAz and ManNAz, for the identification of cell surface N-glycoproteins by 

combining copper-free click chemistry and MS-based proteomics. The parallel experiments 

showed that GalNAz labeling resulted in the greatest number of protein N-glycosylation sites 

identified, while GlcNAz resulted in the smallest number of protein N-glycosylation sites. Thus, 

GalNAz labeling was employed for the global quantification of surface glycoproteins in HepG2 

liver cells treated with statin. Systematic and quantitative analysis of surface proteins in statin-

treated cells clearly demonstrated that many glycosylation sites were down-regulated compared 

to untreated cells. This method offers a means to globally, site-specifically and quantitatively 

study protein N-glycosylation on the cell surface. 

 

4.1.2 Experimental section 

4.1.2.1 Cell culture and metabolic labeling 

HepG2 (C3A) cells ( Hep G2 [HEPG2] (ATCC® HB-8065™)) were grown in a 

humidified incubator at 37 °C and 5.0% CO2 in Dulbecco's modified eagle's medium (DMEM) 

(Sigma-Aldrich) containing low glucose and 10% fetal bovine serum (FBS) (Thermo). For the 

glycoprotein identification experiments, when cells reached about 40% confluency, 100 µM 

GalNAz, GlcNAz or ManNAz (Click Chemistry Tools) was added to the media. Cells were 

further cultured for 24 h. In each case, duplicate biological experiments were performed. 

For the quantification experiment, “heavy” and “light” stable isotope labeling by amino 

acids in cell culture (SILAC) (Sigma-Aldrich) media were freshly prepared by adding 0.146 

g/L 13C6
15N2 L-lysine (Lys-8) and 0.84 g/L 13C6 L-arginine (Arg-6) (Cambridge Isotopes Inc.) 

or the corresponding non-labeled lysine (Lys-0) and arginine (Arg-0) to DMEM and 
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supplemented with 10% dialyzed FBS (Corning). Cells were cultured for about six generations 

before the atorvastatin treatment. 40 mM atorvastatin (Cayman Chemical) stock solution was 

prepared in DMSO (Sigma-Aldrich). About 2 × 107 cells were treated with 15 µM atorvastatin 

in serum-free heavy medium for 48 h. A similar number of light cells were treated by DMSO 

in serum-free light medium as a control. 100 µM GalNAz was added in after 24 h of atorvastatin 

or DMSO treatment.  

 

4.1.2.2 In-flask copper-free click reaction, cell lysis and protein digestion 

Cells were washed twice with phosphate buffered saline (PBS) before 100 µM 

dibenzocyclooctyne (DBCO)-sulfo-biotin in PBS was added into the cell culture flasks. 

Surface glycoproteins were tagged with biotin through the specific click reaction between 

DBCO and the azido group in the sugar analogs under physiological conditions33-35. Cells were 

incubated for 1 h with gentle agitation at 37 °C, then harvested by scraping in PBS. For the 

quantification experiments, heavy and light cells were equally combined based on the protein 

ratio of 1:1 from a trial run. The cell mixtures were pelleted by centrifugation at 500 g for 3 

minutes and washed twice with cold PBS. Cytosol proteins were removed by incubating in a 

buffer containing 150 mM NaCl, 50 mM HEPES pH=7.6, 25 µg/mL digitonin, and 1 tablet/ 10 

mL protease inhibitor (complete mini, EDTA-free, Roche) on ice for 10 minutes. After 

incubation, samples were centrifuged at 2000 g for another 10 minutes.  Cell pellets were 

washed with the previous buffer, then lysed through end-over-end rotation at 4 ºC for 45 

minutes in lysis buffer (50 mM HEPES pH=7.6, 150 mM NaCl, 0.5% SDC, 10 units/mL 

benzonase and 1 tablet/10 mL protease inhibitor). Lysates were centrifuged, and the resulting 

supernatant was transferred to new tubes. Proteins were subjected to disulfide reduction with 

5 mM DTT (56 ºC, 25 minutes) and alkylation with 14 mM iodoacetamide (RT, 20 minutes in 

the dark). Detergent was removed by methanol-chloroform protein precipitation. The purified 
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proteins were digested with 10 ng/µL Lys-C (Wako) in 50 mM HEPES pH 8.6, 1.6 M urea, 

5% ACN at 31 ºC for 16 hours, followed by further digestion with 8 ng/uL Trypsin (Promega) 

at 37 ºC for 4 hours. 

 

4.1.2.3 Glycopeptide separation and enrichment 

Digestion mixtures were acidified by the addition of trifluoroacetic acid (TFA) to a 

final concentration of 0.1%, clarified by centrifugation and desalted using a tC18 Sep-Pak 

cartridge (Waters). Purified peptides were dried and then enriched with NeutrAvidin beads 

(Thermo) at 37 °C for 30 min. The samples were transferred to spin columns, followed by 

thoroughly washing according to the manufacturer’s protocol. Peptides were then eluted from 

the beads three times by 2 min incubations with 200 µL of 8 M guanidine-HCl (pH = 1.5) at 

56 °C. Eluates were combined, desalted using tC18 Sep-Pak cartridge and lyophilized 

overnight. Completely dry peptides were deglycosylated with eight units of peptide-N-

glycosidase F (PNGase F, Sigma-Aldrich) in 40 µL buffer containing 50 mM NH4HCO3 

(pH=9) in heavy-oxygen water (H2
18O) for 3 h at 37 °C. The reaction was quenched by adding 

formic acid (FA) to a final concentration of 1%. Peptides were further purified via stage tip and 

separated into 3 fractions using 20%, 50% and 80% ACN containing 1% HOAc. 

 

 

4.1.2.4 LC-MS/MS analysis  

Purified and dried peptide samples were each dissolved in a 10 µL of 5% ACN and 4% 

FA, and 4 µL of the resulting solutions were loaded onto a microcapillary column packed with 

C18 beads (Magic C18AQ, 3 µm, 200 Å, 100 µm x 16 cm, Michrom Bioresources) by a Dionex 

WPS-3000TPLRS autosampler (UltiMate 3000 thermostatted Rapid Separation Pulled Loop 

Wellplate Sampler). Peptides were separated by reversed-phase chromatography using an 
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UltiMate 3000 binary pump with a 110 min gradient of 3-25%, 8-38%, 10-50% ACN (with 

0.125% FA) for the three fractions, respectively. Peptides were detected with a data-dependent 

Top20 method36 in a hybrid dual-cell quadrupole linear ion trap – Orbitrap mass spectrometer 

(LTQ Orbitrap Elite, ThermoFisher, with Xcalibur 3.0.63 software). For each cycle, one full 

MS scan (resolution: 60,000) in the Orbitrap at 106 AGC target was followed by up to 20 

MS/MS in the LTQ for the most intense ions. The selected ions were excluded from further 

analysis for 90 seconds. Ions with singly or unassigned charge were not sequenced. Maximum 

ion accumulation times were 1000 ms for each full MS scan and 50 ms for MS/MS scans. 

 

4.1.2.5 Database searching and data filtering 

All MS2 spectra were converted into an mzXML format, and then searched using the 

SEQUEST algorithm (version 28).37 Spectra were matched against a database containing 

sequences of all proteins in the UniProt Human (Homo sapiens) database (downloaded in 

February 2014).  The following parameters were used during the search: 20 ppm precursor 

mass tolerance; 1.0 Da product ion mass tolerance; fully digested with trypsin; up to three 

missed cleavages; fixed modifications: carbamidomethylation of cysteine (+57.0214); variable 

modifications: oxidation of methionine (+15.9949), O18 tag of asparagine (+2.9883), heavy 

lysine (+8.0142) and heavy arginine (+6.0201). False discovery rates (FDR) of peptide and 

protein identifications were evaluated and controlled by the target-decoy method.38 Each 

protein sequence was listed in both forward and reversed orders. Linear discriminant analysis 

(LDA), which is similar to other methods in the literature,39 was used to control the quality of 

peptide identifications using parameters such as XCorr, precursor mass error, and charge 

state.40 Peptides fewer than seven amino acid residues in length were deleted. Furthermore, 

peptide spectral matches were filtered to a 1% FDR. The dataset was restricted to glycopeptides 

when determining FDRs for glycopeptide identification.41 Furthermore, an additional protein-
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level filter was applied in each dataset to reduce the protein-level FDRs (<1%) for 

glycoproteins. Consequently the FDRs at the peptide level were much less than 1%. 

 

4.1.2.6 Glycosylation site localization and peptide quantification 

We assigned and measured the confidence of glycosylation site localizations by 

calculating their ModScores, which applies a probabilistic algorithm41 that considers all 

possible glycosylation sites in a peptide and uses the presence of experimental fragment ions 

unique to each site. Sites with a ModScore > 13 (P < 0.05) were considered confidently 

localized. For peptide quantification, we required an S/N value >3 for both heavy and light 

peptides. If the S/N value of a certain heavy peptide was less than 3, then that of the 

corresponding light peptide was required to be greater than 5, and vice versa. If the same 

glycopeptide was quantified several times, the median value was used as the glycopeptide 

abundance change. Glycosylation site quantification had the following criteria: first, the 

quantified glycopeptide contain only a single glycosylation site; second, the site be well-

localized with a ModScore >13. If multiple unique singly glycosylated peptides containing the 

same glycosylation site were identified, the ratio of the glycosylation sites was the median 

value of these glycopeptide ratios. 

4.1.3 Results and discussion 

4.1.3.1 Metabolic labeling, surface glycoprotein enrichment and MS analysis  

In recent years, unnatural sugars containing a bio-orthogonal group have been used to 

label glycosylated proteins.9, 42 Glycoproteins bearing the biologically inert azido or alkyne 

group can be bound to a fluorescence probe to visualize them. This metabolic labeling can also 

be used to selectively enrich glycoproteins based on the unique bio-orthogonal group. Several 

sugar analogs, including GlcNAz, GalNAz and ManNaz (structures are in Figure 4.1b), have 

been reported to label cells.9, 43, 44 Here, in parallel experiments, we labeled cells using each of 
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the three sugar analogs,, and evaluated their effectiveness for the global and site-specific 

analysis of N-glycoproteins on the cell surface in combination with MS-based proteomics.  

After cells were cultured in low glucose media containing each of these three sugar 

analogs, surface glycoproteins containing the azido functional group on living cells were 

selectively bound to DBCO-sulfo-biotin via in-flask copper-free click chemistry under 

physiological conditions for 1 h, as shown in Figure 4.1a. Because the hydrophilic DBCO-

sulfo-biotin cannot penetrate the cell plasma membrane, only glycoproteins located on the cell 

surface were tagged under mild conditions. After cell lysis and protein digestion, surface 

glycoproteins tagged with a biotin group allowed further enrichment to be performed based on 

strong and specific interactions between biotin in glycopeptides and NeutrAvidin, which was 

conjugated to beads. Non-modified peptides were removed by washing the beads several times. 

Non-specific binding is a drawback of the streptavidin enrichment method, however, the 

enrichment took place at the peptide level, which increased specificity compared to protein 

level enrichment. 
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Figure 4.1 (a) Experimental procedure for the global analysis of the N-glycoproteome on the 

cell surface. (b) The structures of three sugar analogs used: GalNAz, GlcNAz and ManNAz. 

(c) A sample tandem mass spectrum of the peptide TCVSN#CTASQFVCK from LRP1. (d) 

Another sample MS2 of YFFN#VSDEAALLEK from ITGA2 (# denotes the glycosylation site). 
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18O to remove N-glycans, which converted asparagine (Asn) to heavy-oxygen 

aspartic acid (Asp) and created a mass shift of +2.9883 Da for glycosylation site 
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identification.45, 46 This strategy was similar to a previous method for proteolytic stable isotope 

labeling, in which heavy-oxygen water was used to label digested peptides with trypsin and 

individual proteins from two proteome samples were quantitatively analyzed.47 In this case, 

heavy oxygen on Asp enabled us to distinguish authentic N-glycosylation sites from those 

caused by deamidation on non-glycosylated asparagines in vitro and in vivo. Deamidation on 

non-glycosylated asparagines could also occur during PNGase F treatment, which may result 

in false positive identifications, which is why we ran the reaction for 3 h to minimize false 

positive identification. Control experiments showed that the effect of uncontrolled deamidation 

within the three-hour PNGase F treatment was nearly negligible, which is described in more 

detail below. In addition, after glycopeptide enrichment, the presence of non-glycosylated 

peptides was significantly decreased, therefore the chance of any deamidation from non-

glycosylated peptides was dramatically reduced. Overall, the PNGase F treatment in heavy 

oxygen water increased the confidence of glycopeptide identification. 

An Orbitrap mass spectrometer with high resolution and mass accuracy provides the 

capability to confidently identify glycopeptides. For example, two tandem mass spectra for two 

glycopeptides in cluster of differentiation (CD) proteins, which are very important for 

differentiation and classification of cells, are shown in Figure 4.1c and d. The glycopeptide 

TCVSN#CTASQFVCK (# represents the glycosylation site) from LRP1 (CD91), prolow-

density lipoprotein receptor-related protein 1, was identified with an XCorr of 4.2 and a mass 

accuracy of -0.47 ppm. LRP1 is a single-pass type I membrane protein and is involved in 

endocytosis and in phagocytosis of apoptotic cells. It may modulate cellular events, such as 

kinase-dependent intracellular signaling, neuronal calcium signaling, and neurotransmission. 

As shown in Figure 4.1d, YFFN#VSDEAALLEK was also very confidently identified with an 

XCorr of 4.6 and a mass accuracy of 0.13 ppm. This peptide is from the protein ITGA2, integrin 

alpha-2, which is a receptor for laminin, collagen, collagen C-propeptides, fibronectin and E-
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cadherin. It is an extremely important surface protein that regulates cell adhesion, cell-matrix 

interactions and host-virus interactions. In this work, we have confidently identified several 

glycosylation sites, i.e., N105, N112, N343, N432, N1057, and N1074 in ITGA2. 

 

4.1.3.2 Evaluation of glycopeptides and glycosylation Sites Identified in cells labeled with 

different sugar analogs  

The procedure for our parallel experiments differed only in the sugar analogs, which 

allowed us to objectively evaluate the effectiveness of three sugar analogs for global surface 

glycoprotein analysis. The number of identified glycosylation sites and glycoproteins and their 

overlap between biological duplicate experiments using each of the three sugar analogs are 

displayed in Figure 4.2. Theoretically, each sugar analog labels a different group of 

glycoproteins based on glycan structure and the enzymes responsible for glycan synthesis, 

therefore the results of from these three labeling experiments are expected to be different.  

Overall, 590 glycosylation sites were identified on 274 proteins in the GalNAz labeling 

experiments (listed in a table online at doi.org/10.1021/acs.analchem.5b04871), including 261 

proteins (95.3%) which were either secreted, located on the cell membrane or exported by 

extracellular vesicular exosomes based on the information from Uniprot (www.uniprot.org). 

Meanwhile, 446 glycosylation sites on 219 proteins, and 117 sites on 91 proteins were 

identified in the duplicate ManNAz (listed in a table online at 

doi.org/10.1021/acs.analchem.5b04871) and GlcNAz (listed in a table online at 

10.1021/acs.analchem.5b04871) labeling experiments, respectively.  
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Figure 4.2 Reproducibility assessment in duplicate labeling experiments of (a) GalNAz, (b) 

GlcNAz, and (c) ManNAz.  
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glycoprotein level, as expected, the overlap was even higher. In the two experiments, 217 and 

231 glycoproteins were identified, and the number of overlapped proteins was 174. 

Considering the large-scale analysis, this level of overlap is within a reasonable range. Since 

we ran biological duplicate experiments for each sugar analog, the inconsistencies between 

duplicates could be due to the sample differences, the dynamic nature of protein glycosylation, 

sample preparation (sample loss) or false positive identifications. The comparison of surface 

glycosylation sites and glycoproteins identified in the three parallel experiments using different 

sugar analogs is displayed in Figure 4.3. The majority of the glycosylation sites and 

glycoproteins identified in ManNAz labeling experiments (335 of 446 sites, 176 of 219 

proteins) and GlcNAz labeling experiments (90 of 119 sites, 70 of 91 proteins) were also 

identified in the GalNAz experiments, demonstrating the highest coverage of surface 

glycosylation sites and glycoproteins. Based on these results, GalNAz was employed for the 

quantification of surface proteins in statin-treated cells in order to obtain higher glycoprotein 

coverage, as described below. Overall, 725 cell-surface glycosylation sites on 337 

glycoproteins were identified combining all these experimental results. 

 
Figure 4.3 Comparison of (a) surface N-glycosylation sites, and (b) N-glycoproteins identified 

in GalNAz, GlcNAz and ManNAz labeling experiments. 
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In order to verify that the results were reliable, we designed two controls to run in 

parallel with the GalNAz labeling experiment.  The experimental procedure for the first control 

was consistent with the GalNAz labeled experiment, except the click reaction was omitted; the 

second control omitted the PNGase F deglycosylation reaction. We identified 886 unique 

glycopeptides in the GalNAz labeling experiment, and only 20 glycopeptides in the first control. 

These 20 unique glycopeptides may have resulted from non-specific binding of the 

NeutrAvidin enrichment, non-glycosylated Asn deamidation in heavy-oxygen water during 

PNGase F treatment, or false positive identification of glycopeptides. However, any non-

glycosylated Asn deamidation before or after the PNGase F treatment would result in a mass 

difference of 0.9840 Da, not 2.9883 Da, so they would be easily distinguishable during data 

analysis. Only non-glycosylated Asn deamidation within the three-hour PNGase F treatment 

in heavy-oxygen water would contribute to false positive identification. In the second control 

experiment without PNGase F, only 7 unique glycopeptides were identified, likely due to the 

deamination of free Asn. This is less than 1% compared to the 886 unique glycopeptides 

identified in the parallel GalNAz labeling experiment, which indicates that the effect of non-

glycosylated Asn deamidation within the three hour reaction was nearly negligible. These 

control experiments clearly verified the reliability of the current results. 

 

4.1.3.3 Clustering of surface N-glycoproteins identified in GalNAz labeling experiments 

Most of the identified glycoproteins contain a single glycosylation site. There were also 

some proteins with more than ten sites; for example, 21 N-glycosylation sites were identified 

on LRP1. The clinical importance of LRP1 in Alzheimer’s disease and cardiovascular disease 

also brings extensive attention to this protein. Glycosylation may stabilize this receptor-related 

protein, and also differentiates the protein’s functions in different tissues.49  
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In order to further evaluate the specificity of our method, the identified glycoproteins 

in the GalNAz labeling experiments were clustered according to molecular function and 

biological process using the Database for Annotation, Visualization, and Integrated Discovery 

6.7 (DAVID 6.7).50 We investigated the molecular functions of the identified glycoproteins 

and the biological processes they are involved in. The molecular functions with the highest 

level of enrichment were receptor activity, signal transducer activity, and binding, with 

remarkably low P values (Figure 4.4). Among biological processes, cell adhesion was 

prominently enriched with a P value of 3.6E-20 and 48 proteins involved. Integrin-mediated 

signaling pathway and cell motion were also notably enriched with P values of 1.8E-10 and 

4.1E-10, respectively. These are consistent with the well-known molecular functions and 

biological processes of surface proteins, which demonstrated that the current method for 

surface glycoprotein identification is effective. 
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Figure 4.4 Clustering of identified surface N-glycoproteins based on (a) molecular functions 

and (b) biological processes. 
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of drugs. Statins are the most popular and effective drugs for lowering patients’ cholesterol. As 

effective cholesterol-lowering HMGCR inhibitors, statins inhibit the rate-limiting step of the 

cholesterol biosynthesis pathway, known as the mevalonate pathway. It has been extensively 

documented that these drugs have pleiotropic effects,51 but their molecular mechanisms remain 

to be explored. The inhibition of HMGCR also prevents the synthesis of other products in this 

pathway, including ubiquinone, dolichol and farnesyl-pyrophosphate (farnesyl-PP). Dolichol 

is essential to protein N-glycosylation in the form of dolichyl phosphate (Dol-P). Dol-P serves 

as the carrier in pyrophosphate-linked oligosaccharide assembly as well as acting as the 

acceptor in the synthesis of the sugar donors Dol-P-Man and Dol-P-Glc from GDP-Man and 

UDP-Glc, respectively. Upon the inhibition of dolichol, protein N-glycosylation is expected to 

be dramatically impacted due to the inability to process lipid-linked oligosaccharide 

biosynthesis and transportation. However, systematic and quantitative analysis of surface N-

glycoproteins in statin-treated cells has yet to be reported. 

        Based on the optimized sugar analog labeling method discussed above, surface protein N-

glycosylation changes in atorvastatin-treated cells were analyzed by combining GalNAz 

labeling and a quantitative proteomics method. Since the primary organ target of statins is the 

liver, HepG2, a human liver carcinoma cell line, was used in this work. Stable isotope labeling 

by amino acids in cell culture (SILAC)52 was employed to evaluate the surface N-glycoprotein 

changes between statin-treated and untreated cells. Cells were treated by atorvastatin for 24 h 

to inhibit dolichol synthesis, then labeled with GalNAz for another 24 h in the presence of 

atorvastatin. An in-flask copper-free click reaction with DBCO-sulfo-biotin was then 

performed to specifically tag surface N-glycoproteins (Figure 4.5a).  Subsequent cell lysis, 

protein digestion, and enrichment of surface glycopeptides with NeutrAvidin beads were 

performed as described above. The selectively enriched surface N-glycopeptide samples were 

analyzed by LC-MS. An example of peptide quantification is shown in Figure 4.5, and the full 
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MS and elution profile of a peptide (VASVININPN*TTHSTGSCR, where * is the 

glycosylation site) from LAMP2 (CD107) are shown in Figure 4.5b and c, respectively. 

LAMP2 is a single-pass type I membrane protein that regulates cell adhesion and 

inter/intracellular signal transduction when expressed on the cell surface. Based on the elution 

profiles, we can very accurately quantify the abundance changes of this peptide in statin-treated 

cells vs. untreated cells, i.e. the ratio of the areas under the curves for heavy and light versions 

of the peptide (H/L = 0.38). 

The combination of GalNAz labeling and SILAC led to the quantification of 360 unique 

N-glycopeptides from 178 cell-surface glycoproteins (listed in a table online at 

doi.org/10.1021/acs.analchem.5b04871). Among quantified unique glycopeptides, the 

majority only contained a single N-glycosylation site, while only 20 contained two sites, as 

shown in Figure 4.6a. The distribution of 360 quantified unique glycopeptides is shown in 

Figure 4.6b. Based on the two criteria described above, 280 singly glycosylated sites (listed in 

a table online at doi.org/10.1021/acs.analchem.5b04871) were quantified with a similar 

distribution, as shown in Figure 4.7. 
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Figure 4.5 (a) Overview of labeling and tagging workflow in quantification experiments, and 

(b, c) the quantification of the heavy and light versions of an example glycopeptide from 

LAMP2: (b) full MS (* represents glycosylation site and @ represents heavy arginine) and (c) 

extracted elution profiles for both versions of the peptides. 
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In this quantification experiment, we identified significantly more down-regulated 

glycopeptides or glycosylation sites (103 sites) than up-regulated glycopeptides or 

glycosylation sites (37 sites) in atorvastatin-treated cells. Although dolichol biosynthesis was 

inhibited by atorvastatin for one day before GalNAz labeling, dolichol can be recycled in cells 

after sugar transportation is completed.53 Therefore, statin treatment for a short time can impact 

but not entirely prevent protein N-glycosylation. Another possible explanation for site up-

regulation could be due to the up-regulation of the corresponding parent protein. Namely, if a 

protein is dramatically up-regulated in treated cells while N-glycosylation sites from this 

protein are largely unaffected or even slightly down-regulated, we could still find these sites 

up-regulated. For instance, the abundance of the N1523 site on APOB changed by 1.6 fold in 

the treated cells, whereas the protein ratio was found to be up-regulated 2.0 fold, as reported 

previously.54 Similar effects have been found in protein phosphorylation studies reported in the 

literature.55 

 

4.1.3.5 Analysis of Down-regulated Surface N-glycosylation Sites in Atorvastatin-treated Cells 

Among 84 surface proteins bearing 103 down-regulated glycosylation sites, we 

performed protein clustering using DAVID 6.7.50 Glycoproteins in the Alzheimer’s disease 

pathway were highly enriched, and glycoproteins and sites in this pathway are listed in Table 

4.1. Previous studies have shown inconsistent effects of statin use in AD.56 Some studies found 

beneficial effects,57 but others did not.58 Glycosylation defects in amyloid precursor protein 

(APP), tau, nicastrin and other proteins in AD were reported previously,59 and defective 

glycosylation may be important in AD pathogenesis, A prior study found that N-glycosylation 

of human nicastrin was required to interact with lectins, including calnexin and ERGIC-53.60 

In this study, N417 on nicastrin was quantified to be down-regulated by 5.4 fold. Furthermore, 
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proteins participating in immune response processes, such as response to wounding, external 

stimulus, etc. were also enriched.  

 

 
 

 

Figure 4.6 (a) Distribution of the quantified glycosylation sites on each peptide and protein, 

(b) ratio distribution of quantified unique glycopeptides, and (c) domain analysis of IGF2R and 

quantified N-glycosylated sites (ratio is shown below each site). 
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We also performed domain analysis to correlate the localization of glycosylation sites 

and functional domains of proteins.61 Domains on proteins carry out a wide variety of functions 

or interactions. Investigating glycosylation site regulations within domains may provide useful 

information in biological events. For example, CD222, also called IGF2R, is a transporter of 

phosphorylated lysosomal enzymes from the Golgi complex and the cell surface to the 

lysosome, and has 15 repeating cation-independent mannose-6-phosphate receptor domains 

(CIMR) (shown in green in Figure 4.6c). These domains specifically bind the 

phosphomannosyl residues on lysosomal enzymes. IGF2R also has a fibronectin type II domain 

(FN2) (shown in red) which serves as the binding site for collagens. All these domains are 

located in the extracellular space, as shown on the left of the transmembrane domain (TM), 

which is integrated into the cell plasma membrane. We have quantified four glycosylation sites 

(N112, N581, N1757, and N2136), among which three are localized within the CIMR domains 

with the other located at the N-terminal tail. These site abundances decreased to 53%, 42%, 

65%, and 45%, respectively, under the statin treatment, which may affect the interactions 

between this CD and its interactors. 

 

 
 

Figure 4.7 Distribution of quantified unique glycosylation sites in atorvastatin-treated cells vs. 

untreated cells. 
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By combining GalNAz labeling, click chemistry tagging, and MS-based proteomics, 

we found that many glycosylation sites on surface proteins were down-regulated in 

atorvastatin-treated HepG2 cells. Patients are typically prescribed the drug long-term (months 

to years). Here, we found that many surface protein glycosylation sites were down-regulated 

when cells were treated for only two days. Further studies, including time-course experiments 

and animal model experiments, will help us better understand the protein glycosylation changes 

caused by statin and the molecular mechanisms of its pleiotropic effects. 

 

Table 4.1 Down-regulated glycosylation sites quantified from proteins in the Alzheimer’s 

disease pathway (P=0.027) 
Gene 
Symbol Peptide PPM XCorr Glycosyla-

tion Site 
Mod
Score 

Site 
Ratio Annotation 

ADAM
17 

EQQLESCACN*ETDN
SCK 1.89 4.69 594 76.7 0.03 Disintegrin and 

metalloproteinase domain-
containing protein 17 KCQEAIN*ATCK -0.99 2.41 539 1000 0.21 

NCSTN RPN*QSQPLPPSSLQR 4.69 2.61 417 1000 0.18 
Nicastrin, Essential 
subunit of the gamma-
secretase complex 

LRP1 

CIPEHWTCDGDNDCG
DYSDETHAN*CTNQA
TRPPGGCHTDEFQCR 

2.01 3.17 1050 5.3 0.24 

Prolow-density lipoprotein 
receptor-related protein 1 

QSGDVTCN*CTDGR -2.61 1.43 4364 1000 0.27 
CTQQVCAGYCAN*NS
TCTVNQGNQPQCR 0.55 5.40 4278 6.6 0.32 

CTQQVCAGYCANN*S
TCTVNQGNQPQCR@ -1.68 4.82 4279 6.6 0.32 

FAS CKPNFFCN*STVCEH
CDPCTK 0.1 4.27 136 28.5 0.19 

Tumor necrosis factor 
receptor superfamily 
member 6 

ITPR1 VESGEN*CSSPAPR@ 0.13 2.37 2512 1000 0.13 
Inositol 1,4,5-
trisphosphate receptor 
type 1 

 

*- glycosylation site; @-heavy arginine 

 

4.1.4 Conclusions  

Glycosylation changes on cell-surface proteins are hallmarks of many diseases, but 

global and site-specific analysis of cell-surface N-glycoproteins is extraordinarily challenging. 

In-depth analyses of the surface glycoproteome changes will potentially lead to clinical 
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applications, such as the identification of diagnostic and therapeutic targets. In this work, we 

compared labeling with three sugar analogs (GalNAz, ManNAz and GlcNAz) for the global 

analysis of surface glycoproteins, in combination with click chemistry tagging, selective 

enrichment, and MS analysis. The results clearly demonstrated that more protein glycosylation 

sites on the cell surface were identified with GalNAz labeling compared to GlcNAz or 

ManNAz. By using GalNAz labeling, surface protein N-glycosylation changes between statin-

treated and untreated cells were comprehensively and site-specifically analyzed in combination 

with quantitative proteomics. Many glycopeptides were down-regulated in statin-treated 

HepG2 cells compared to untreated cells because statin prevents the synthesis of dolichol, 

which is essential for the formation of dolichol-linked precursor oligosaccharides. Several N-

glycosylation sites on surface proteins related to Alzheimer’s disease were found to be down-

regulated. Site-specific information regarding surface proteins will provide insight into protein 

functions and also lead to a better understanding of the molecular mechanisms of statin’s 

pleiotropic effects.  
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4.2 Quantitative Investigation of Human Cell Surface N-Glycoprotein Dynamics 

  

4.2.1 Introduction 

Nearly all proteins on the cell surface are glycosylated, and surface glycoproteins are 

essential for cell survival.1 Protein glycosylation play crucial roles in a wide variety of 

extracellular activities, including antibody recognition, cell adhesion, microorganism binding, 

facilitating ligand binding and affecting receptor multimerization.62-68 Aberrant surface protein 

glycosylation impacts cellular properties, such as cell solubility and mobility, which is related 

to human disease,3, 69, 70 including cancer,5, 71 congenital disorders and infectious diseases.6, 72 

It has been long understood that the covalent attachment between glycans and proteins is 

extremely complicated because of the heterogeneity of glycan structures, which makes the 

comprehensive analysis of protein glycosylation challenging.14, 16, 45, 73-78 It is even more 

difficult to analyze glycoproteins only located on the cell surface. The elegant and pioneering 

work of using sugar analogs to engineer cell surface glycans and glycoproteins has opened a 

new avenue to study cell surface glycoproteins.9, 79 

Surface glycoproteins are dynamic for cells to adapt the ever-changing extracellular 

environment. The presence of glycans on proteins not only facilitates protein folding and 

trafficking, but also protects proteins from degradation.80-83 Glycans create a steric hindrance 

around the peptide backbone, which mechanically prevents proteases from properly binding to 

proteins. In addition, protein glycosylation also protects the protein backbone from being 

damaged or degraded through oxidation, chemical crosslinking, precipitation, and 

denaturation.84, 85 However, systematic study of glycoprotein dynamics and half-lives has yet 

to be reported, including the dynamics of crucial cell surface glycoproteins, due to the lack of 

effective methods. In recent years, MS-based proteomics enable the global analysis of proteins 

and protein modifications, including glycosylation.55, 86-95 Due to the complexity of biological 
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samples, effective separation and enrichment are required to comprehensively analyze every 

type of protein modification.71, 96, 97 In order to analyze glycoproteins located only on the cell 

surface, it is essential to selectively separate and enrich them from high abundance intracellular 

proteins prior to MS analysis.  

In this work, we have designed a method to target surface N-glycoproteins and quantify 

their half-lives by combining pulse-chase metabolic labelling, click chemistry, and multiplexed 

proteomics. A sugar analog, N-azidoacetylgalactosamine (GalNAz), was employed to label 

cells to generate a chemical handle for further surface glycoprotein tagging via copper-free 

click chemistry under mild physiological conditions. Pulse-chase labelling allowed us to track 

the abundance changes of cell surface glycoproteins while avoiding contribution from newly 

synthesized glycoproteins during the cell growth because they were not labelled with the 

functional azido group. After enrichment of tagged glycopeptides, six-plexed Tandem Mass 

Tag (TMT) reagents98 were used to label enriched glycopeptides at six different time points for 

quantification with MS-based proteomics. Eventually the glycoprotein abundance changes as 

a function of time were measured, and their half-lives were globally determined. This 

integrated method specifically targeting surface glycoproteins can be extensively applied to 

biological and biomedical research. 

 

4.2.2 Experimental section 

3.2.2.1 Cell culture, metabolic labeling, and copper-free click reaction 

MCF-7 cells (from American type culture collection (ATCC)) were equally seeded into 

twelve T175 cell culture flasks (Thermo) with Dulbecco's Modified Eagle's Mmedium 

(DMEM) (Sigma-Aldrich) containing 10% fetal bovine serum (FBS) (Thermo). Cells were 

grown in a humidified incubator with 5.0% CO2 at 37 °C. When cells reached 50% confluency, 

100 µM GalNAz (Click Chemistry Tools) was added to the media and cells were cultured for 
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another 24 h. Click reaction was then performed for all flasks. Briefly, cells were gently washed 

twice with phosphate buffered saline (PBS), then 100 µM dibenzocyclooctyne (DBCO)-sulfo-

biotin in DMEM was added into the cell culture flasks. Cells were incubated for 1 h at 37 °C, 

and then washed twice using PBS. The media were then switched to normal DMEM with 10% 

FBS and different flasks were further cultured for 0, 2, 4, 6, 8, and 10 hours. Cells were pelleted 

by centrifugation at 300 g for 5 minutes, and washed twice with cold PBS. Cells were then 

incubated in a buffer containing 150 mM NaCl, 50 mM HEPES pH=7.6, 25 µg/mL digitonin, 

and 1 tablet/ 10 mL protease inhibitor (Complete mini, EDTA-free, Roche) on ice for 10 

minutes. Cytosolic proteins were removed by centrifuging the samples at 2500 g for another 

10 minutes and discarding the supernatant.  Cell pellets were lysed through end-over-end 

rotation at 4 ºC for 45 minutes in lysis buffer (50 mM HEPES pH=7.6, 150 mM NaCl, 0.5% 

SDC, 10 units/mL benzonase and 1 tablet/ 10 mL protease inhibitor). Lysates were centrifuged, 

and the resulting supernatant was transferred to new tubes. Proteins were subjected to disulfide 

reduction with 5 mM DTT (56 ºC, 25 minutes) and alkylation with 14 mM iodoacetamide (RT, 

20 minutes in the dark). Detergent was removed by methanol-chloroform protein precipitation. 

The purified proteins were digested with 10 ng/µL Lys-C (Wako) in 50 mM HEPES pH=8.6, 

1.6 M urea, 5% ACN at 31 ºC for 16 hours, followed by further digestion with 8 ng/uL Trypsin 

(Promega) at 37 ºC for 4 hours. 

 

4.2.2.2 Glycopeptide separation and enrichment  

Digestion mixtures were acidified by addition of trifluoroacetic acid (TFA) to a final 

concentration of 0.1%, clarified by centrifugation and desalted using a tC18 Sep-Pak cartridge 

(Waters). Purified peptides were dried and then enriched with NeutrAvidin beads (Thermo) at 

37 °C for 30 minutes. The samples were transferred to spin columns, followed by thoroughly 

washing according to the manufacturer’s protocol. Peptides were then eluted from the beads 
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three times by 2-min incubations with 200 µL of 8 M guanidine-HCl (pH = 1.5) at 56 °C. 

Eluates were combined, desalted using tC18 Sep-Pak cartridge, and lyophilized.  

 

4.2.2.3 TMT labelling and PNGase F cleavage 

Purified peptides from each of the six time points were labelled with one of the sixplex 

TMT reagents (Thermo) following the manufacturer’s protocol. Briefly, purified and 

lyophilized peptides were dissolved in 100 µL of 100 mM triethylammonium bicarbonate 

(TEAB) buffer, pH= 8.5. Each tube of TMT reagents was dissolved in 41 µL of anhydrous 

DMSO and transferred into the peptide tube. The reaction lasted for 1 h at room temperature, 

and then was quenched by adding 8 µL of 5% hydroxylamine. Peptides from all six tubes were 

then mixed, desalted again using a tC18 Sep-Pak cartridge, and lyophilized overnight. 

Completely dried peptides were deglycosylated with eight units of peptide-N-glycosidase F 

(PNGase F, Sigma-Aldrich) in 40 µL buffer containing 50 mM NH4HCO3 (pH=9) in heavy-

oxygen water (H2
18O) for 3 h at 37 °C. The reaction was quenched by adding formic acid (FA) 

to a final concentration of 1%. Peptides were further purified via stage tip and separated into 

three fractions using 20%, 50% and 80% ACN containing 1% HOAc, respectively.  

 

4.2.2.4 LC-MS/MS analysis  

Purified and dried peptide samples were dissolved in 13 µL of solvent containing 5% 

ACN and 4% FA, and 4 µL of dissolved sample were loaded onto a microcapillary column 

packed with C18 beads (Magic C18AQ, 3 µm, 200 Å, 100 µm x 16 cm, Michrom Bioresources) 

by a Dionex WPS-3000TPLRS autosampler (UltiMate 3000 thermostatted Rapid Separation 

Pulled Loop Wellplate Sampler). Peptides were separated by reversed-phase chromatography 

using an UltiMate 3000 binary pump with a 112-minute gradient of 1-12%, 3-14%, or 3-24% 

ACN (with 0.125% FA) for the three fractions. Peptides were detected with a data-dependent 
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Top15 method 99  in a hybrid dual-cell quadrupole linear ion trap – Orbitrap mass spectrometer 

(LTQ Orbitrap Elite, ThermoFisher, with Xcalibur 3.0.63 software). For each cycle, one full 

MS scan (resolution: 60,000) in the Orbitrap at 106 AGC target was followed by up to 15 

MS/MS for the most intense ions. The selected ions were excluded from further analysis for 90 

seconds. Ions with single or unassigned charge were discarded. MS2 scans were performed in 

the orbitrap cell by activating with high energy collision dissociation (HCD) at 40% normalized 

collision energy with 1.2 m/z isolation width.  

 

4.2.2.5 Database search and data filtering 

All MS2 spectra were converted into an mzXML format, and then searched using the 

SEQUEST algorithm (version 28).37 Spectra were matched against a database containing 

sequences of all proteins in the UniProt Human (Homo sapiens) database (downloaded in 

February 2014).  The following parameters were used during the search: 10 ppm mass 

tolerance; fully digested with trypsin; up to 2 missed cleava ges; fixed modifications: 

carbamidomethylation of cysteine (+57.0214), TMT modification of lysine (+229.1629) and 

N-terminus (+229.1629); variable modifications: oxidation of methionine (+15.9949), 18O tag 

on asparagine (+2.9883). False discovery rates (FDR) of peptide and protein identifications 

were evaluated and controlled by the target-decoy method.38 Each protein sequence was listed 

in both forward and reversed orders. Linear discriminant analysis (LDA), which is similar to 

other methods in the literature,39 was used to control the quality of peptide identifications using 

parameters such as Xcorr, precursor mass error, and charge state.40 Peptides fewer than seven 

amino acid residues in length were deleted. Furthermore, peptide spectral matches were filtered 

to <1% FDR. The dataset was restricted to glycopeptides when determining FDRs for 

glycopeptide identification.41 Furthermore, an additional protein-level filter was applied in 
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each dataset to reduce the protein-level FDRs (<1%) for glycoproteins. Consequently the FDRs 

at the glycopeptide level were much less than 1%. 

 

4.2.2.6 Glycosylation site localization, glycopeptide quantification, and bioinformatics 

analysis 

The confidence associated with each glycosylation site localization was represented by their 

ModScore, which is calculated from a probabilistic algorithm.41 ModScore is similar to 

AScore,41 and it considers all possible modification sites in a modified peptide, and matches 

the fragments with theoretical fragments from the peptide with potential modification sites. If 

the ModScore for a residue is relatively high, then the probability of modification occurred on 

that site is also high. Conversely, there may be a low score for potential sites, which means that 

there are not sufficient fragments to confidently locate the modification site. Sites with 

ModScore > 13 (P <0.05) were considered as confidently localized. The TMT reporter ion 

intensities obtained in MS2 were recorded and calibrated prior to performing glycopeptide 

quantification. If the same glycopeptide was quantified several times, the median value was 

used as the glycopeptide abundance change. The protein ratio was calculated based on the 

median ratios of all unique glycopeptides. Protein annotations were extracted from the UniProt 

database (http://www.uniprot.org). The Database for Annotation, Visualization and Integrated 

discovery (DAVID) v6.7 (http://david.abcc.ncifcrf.gov/home.jsp)100 was employed to perform 

functional analysis. All raw files and annotated spectra are accessible in the following public 

accessible website (http://www.peptideatlas.org/PASS/PASS00913, Password: BE6745wv). 
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4.2.3 Results 

4.2.3.1 The principle of surface glycoprotein enrichment and identification 

The incorporation of bio-orthogonal groups into proteins or modified proteins has 

recently been demonstrated to be very effective to study proteins in complex biological 

systems.9, 33, 101-108 In this work glycoproteins were labelled with a sugar analog containing a 

biologically inert but chemically functional azido group, and the labelled surface glycoproteins 

in living cells were specifically tagged with biotin via copper-free click chemistry (Figure 4.8). 

Here we performed click reaction prior to medium switch, which can eliminate potential 

negative effects from cells using stored GalNAz and protein internalization on protein half-life 

quantification. After cell lysis and protein digestion, only biotin-tagged glycopeptides were 

selectively enriched with NeutrAvidin beads through specific biotin-avidin interactions. 

Enriched and purified samples were analyzed by an online LC-MS system, and both full MS 

and MS2 were recorded in the Orbitrap cell with high resolution and high mass accuracy.  

The TMT method enables the identification and quantitation of glycopeptides and 

glycoproteins in different samples in combination with tandem mass spectrometry (MS). The 

tags contain four regions, namely a mass reporter region, a cleavable linker region, a mass 

normalization region and a protein/peptide reactive group. In this case, the reactive group of 

N-hydroxysuccinimide (NHS) can react quickly with the amine group at the N-terminus and 

the side chain of the lysine residue for every peptide. Each of six samples was tagged with one 

channel of TMT reagents, then mixed. For the same peptide in six samples, they all carry 

isobaric tags, and have the same elution time and m/z in the full mass spectra. When peptides 

are fragmented, the reporter ion generated from tagged peptide will have an intensity 

proportional to the peptide amount in each sample. Eventually peptide backbone fragments 

allow us to identify peptides and the reporter ion intensities enable us to quantify the peptide 

abundance changes across the six samples.  
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Figure 4.8 Experimental procedure for studying surface glycoprotein dynamics and measuring 

their half-lives.  

 

An example of peptide identification and quantification is displayed in Figure 4.9(a). 

The peptide N#VSVAEGK (# denotes the glycosylation site) was confidently identified with 

an XCorr of 3.2. The XCorr value is the cross-correlation value from the SEQUEST search, 

which reflects how good the match between theoretical and experimental tandem mass spectra 

is. XCorr values are usually higher for well-matched, large peptides, and lower for smaller 

peptides. Considering the short length of this peptide, this XCorr value can allow us to 

confidently identify this glycopeptide, and as shown in Figure 4.9(a), nearly all y and b ions 

were detected. The ModScore for the glycosylation site (N286) is 1000 because there is only 

one possible site localization. This peptide is from PTGFRN, which is a well-known receptor 

regulator located on the cell surface.109 The reporter ion intensities enabled us to accurately 
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quantify the glycopeptide abundance changes as a function of time (Figure 4.9(a), left insert). 

Correspondingly we were able to calculate the half-life of 15.5 h based on the abundance 

changes (Figure 4.9(a), right insert).  

Here in duplicate experiments, we identified a total of 545 unique glycosylation sites 

on 265 glycoproteins (listed in tables online at doi.org/10.1039/C6SC01814A), and most of 

them (480 sites) were well localized with a ModScore >13. The overlap of unique glycosylation 

sites identified between two replicates is around 80% across all identification and 

quantification results (Figure 4.9(b) and (c)), which demonstrated that the current method is 

highly reproducible. The majority of unique glycopeptides contained a single glycosylation 

site, and there are a small group of proteins bearing more than five sites, including IGF1R, 

ECE1, LAMP1, CELSR2, PLXNB2, CEACAM5, ITGB1, and PTPRJ. For example, IGF1R, 

a receptor tyrosine kinase which mediates actions of insulin-like growth factor 1 (IGF1) located 

on plasma membrane. Here we identified eleven glycosylation sites: N244, N314, N607, N622, 

N638, N640, N747, N756, N764, N900, and N913. All these sites exist in the extracellular 

space, which is further discussed below. 
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Figure 4.9 An example of glycopeptide identification and quantification and the comparison 

of identified unique glycosylation sites and quantified surface glycoproteins. (a) Example MS 

showing peptide identification and quantification. Based on the fragments, we were able to 

confidently identify the glycopeptide N#VSVAEGK (# denotes the glycosylation site) from 

the protein PTGFRN, and based on the reporter ion intensities, the half-life of this glycopeptide 

was 15.5 hours. (b) Comparison of the unique surface protein glycosylation sites identified in 

two parallel experiments. (c) Comparison of the quantified surface glycoproteins in duplicate 

experiments. 

 

We clustered the identified glycoproteins according to cellular compartment and 

pathway using the Database for Annotation, Visualization, and Integrated Discovery 6.7 

(DAVID 6.7) (Figure 4.10). 50 For cellular compartments, membrane-related categories were 
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highly enriched, including intrinsic to membrane (P=1.80*10-81), plasma membrane (8.50*10-

49), cell surface (6.20*10-20), external side of the plasma membrane (5.50*10-14), and receptor 

complex (6.20*10-11). Among the pathways, the ECM-receptor interactions (5.60*10-11) and 

cell adhesion molecules (CAMs) (1.30*10-10) pathways were prominently enriched. CAMs are 

cell-surface proteins involved in binding with the extracellular matrix (ECM) or with other 

cells during cell adhesion. These enriched categories are consistent with the expected functions 

of cell-surface glycoproteins. 

 

Figure 4.10 Clustering of surface glycoproteins identified in this work. (a) Cellular 

compartments, and (b) pathways. 

 

4.2.3.2 Site location of type I and II glycoproteins based on the transmembrane domain 

The site-specific virtue of our method allowed us to localize each glycosylation site in 

this experiment. In Figure 4.11, we illustrated the site localization on type I and II 
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transmembrane glycoproteins identified in this experiment. Type I transmembrane proteins 

have their N-termini located in the extracellular space while type II transmembrane proteins 

have their C-termini located in the extracellular space. As shown in Figure 4.11, the x-axis 

represents the transmembrane (TM) domain of any proteins, and the y-axis denotes the number 

of amino acid residues away from the transmembrane domain. The space above the x-axis is 

the extracellular space and below is the intracellular space. Each line depicts a protein, and the 

yellow dots represent the glycosylation sites.  

 

 

Figure 4.11 Site location of the type I and II N-glycoproteins based on the transmembrane 

domain (TM). We aligned each glycoprotein according to their transmembrane domain, which 

is known to be anchored in the plasma membrane, and each yellow dot refers to one 

glycosylation site. 

 

All glycosylation sites are clearly located in the extracellular space, which is in 

agreement with the experimental design and the common belief that glycans on surface proteins 

are located outside of the cell. We identified many more type I transmembrane proteins than 
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type II, which corresponds well to the ratio of type I and II transmembrane proteins in UniProt 

(www.uniprot.org). 

 

4.2.3.3 Quantification of surface glycoprotein abundance changes 

Enriched peptides in each sample were labelled with one of six TMT reagents. TMT 

labelling allowed us to quantify multiple samples at once. Here we measured six samples from 

six time points simultaneously. This can dramatically increase the experimental throughput and 

reduce potential quantification errors. The starting amount of labelled surface glycoproteins 

was similar for each sample before the medium was switched. Based on this, we then quantified 

these surface glycoprotein abundance changes as a function of time. The six groups of TMT-

labelled glycopeptides were mixed and subjected to PNGase F cleavage in heavy-oxygen water 

(H2
18O) to generate a common tag (+2.9883 Da) for MS analysis.45 This enabled us to 

distinguish authentic N-glycosylation sites from those caused by the naturally occurred 

deamidation of Asn. Finally, the peptide mixture was purified and loaded into an online LC-

MS system for further analysis.  

The TMT reporter ion intensities in the MS2 provided us an opportunity to accurately 

measure the abundance changes of glycopeptides from different time points. Potential 

interferences from TMT labelling were likely avoided in this experiment because these samples 

were much simpler than whole cell lysates since surface glycoproteins only represent a very 

small portion of the whole proteome, and we also further fractionated the mixed sample into 

three fractions. Furthermore, long LC gradients were used to separate each fraction. Because 

the abundances of the same glycopeptide from six samples can be measured in one MS2 

spectrum, this dramatically lowered the measurement error. In some cases, for instance, if one 

of the six TMT channels has abnormal signal intensity, then it will be dropped and the half-life 

will be calculated based on the signal intensities from the other five channels. 
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4.2.3.4 Measurement of surface glycoprotein half-lives 

Based on the abundance changes of glycopeptides at six time points, their half-lives 

were simulated by the following exponential decay equation, as performed previously:99, 110 

P(t) = P0*exp(-kt) 

where P0 is the intensity of the reporter ion at the first time point, P(t) is the intensity of the 

reporter ion at each subsequent time point, k is the degradation rate constant and t is time. In 

duplicate experiments, we quantified 522 unique glycopeptides(ModScore>13); the vast 

majority of them (484 glycopeptides) contained a single glycosylation site. 

In the duplicate experiments, we quantified 386 glycosylation sites (listed in tables 

online at doi.org/10.1039/C6SC01814A) based on two criteria: glycopeptides were singly 

glycosylated and the ModScore was larger than 13. If a glycoprotein contained two or more 

unique glycosylation sites, the half-life refers to the median half-life of the mixed different 

glycoforms. The half-life values for the 248 glycoproteins were determined, and are listed in 

tables online at doi.org/10.1039/C6SC01814A. We plotted the half-lives of glycosylation sites 

in replicate 1 against those in replicate 2 (Figure 4.12(a)), and good linear simulation and a 

high R2 value were obtained. The reproducibility is much better when the half-lives are 

relatively low, which is discussed below. 
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Figure 4.12 (a) Distribution of the half-lives of surface glycoproteins. (b) Comparison of the 

half-lives of surface protein glycosylation sites measured in the duplicate experiments. (c) The 

median half-lives of glycoproteins with different molecular functions. Proteins with receptor 

and transducer activities have the shortest median half-life (17.8 h), while proteins with 

catalytic activity have a longer median half-life (40.0 h). 
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The distribution of the half-lives of surface glycoproteins is shown in Figure 4.12(b). 

Most proteins have a half-life between 10-30 h. A total of 39 glycoproteins have a half-life of 

less than 10 h, while about one fifth of glycoproteins (46) have a half-life of longer than 100 h. 

The median half-life of all glycoproteins quantified in our experiment was 19.6 h, which is 

much longer than the half-life of 8.7 h for over 800 newly synthesized proteins in our previous 

work,99 and also longer than a half-life of 8.2 h for 100 proteins measured with a MS-

independent method.111 This is consistent with the assumption that glycans can stabilize 

proteins by preventing them from being degraded.   

The functions associated with relatively long- or short-lived proteins were also 

investigated. Proteins with a half-life longer than 100 h or shorter than 10 h were clustered 

according to biological processes (Figure 4.13). While cell adhesion is enriched in both 

categories, notably, positive regulation of catalytic activity is enriched among long-lived 

proteins.  

The median half-lives for proteins with various molecular functions were examined. As 

shown in Figure 4.12(c), the median half-life of proteins with receptor activity (17.8 h), 

molecular transducer activity (17.8 h), and binding activity (19.5) is very similar to the overall 

protein median half-life (19.6 h), while proteins related to catalytic activity (do not include 

receptor tyrosine kinases since they only have intracellular catalytic activities) have a longer 

median half-life of 40.0 h, which suggests that glycan may protect enzymes on the cell surface 

more effectively.  
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Figure 4.13 (a) Biological processes of relatively short-lived glycoproteins (half-life <10 h). 

(b) Biological processes of relatively long-lived glycoproteins (half-life >100 h).   

 

4.2.3.5 Half-lives of glycosylation sites within or outside of domains 

Among 386 quantified glycosylation sites, nearly half of them (170 sites) were located 

in different domains based on the domain information on UniProt, while 216 sites were not 

located in any protein domains. The median half-life for the 216 sites located outside of any 

domain is 21.5 h, which is 21% longer than that the median half-life of 170 sites located within 

a specific domain (17.7 h), as shown in Figure 4.14(a). The domains containing the greatest 

number of quantified glycosylation sites are Ig-like, fibronectin type-III, cadherin, and sema 

domains, which are shown in Figure 4.14(b), along with their median half-lives. These domains 

are frequently contained in cell surface proteins, and play crucial roles in regulating cell-matrix 

interactions and cell surface receptor protein-ligand interactions. 68 sites are located in the Ig-
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like domain with a median half-life of 19.0 h. The median half-life of sites located in the 

cadherin domain is only 11.0 h, which is dramatically shorter than the median half-life of 21.5 

h for sites located outside of any domain. These results suggest that glycans located within a 

domain may play a major role in regulating protein interactions with other molecules, while 

glycans located outside of any domain are mostly involved in protecting proteins from 

degradation.  

 

 

 

Figure 4.14 (a) Comparison of median half-lives for sites located outside domains and within 

domains. (b) The number of glycosylation sites located in different domains and their median 

half-lives 
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4.2.3.6 Half-lives of CD proteins and receptors 

Cluster of differentiation (CD) molecules are of great biomedical significance because 

they serve as cell markers in immunophenotyping to distinguish and classify cells.112 CDs refer 

not only to proteins but can also be assigned to lipid and glycans on the cell surface. Among 

all of the glycoproteins quantified here, 62 are CD proteins (Table 4.2 and a table online at 

doi.org/10.1039/C6SC01814A). The site-specific nature of this method provides an avenue to 

quantify the real glycosylated form of proteins. For example, we identified the glycosylation 

site N365, N381, and N424 on CD98, which is involved in sodium-independent, high-affinity 

transport of large neutral amino acids. The half-life of the glycosylated form of CD98 is 27.2 

h, which is much longer than the half-life (10.1 h) in the literature.99 Furthermore, the half-life 

of CD71 (Transferrin receptor protein 1) is 18.3 h in this work for its glycoform on the cell 

surface, while the half-life of this protein was reported to be 4.4 h previously.99 Glycosylated 

and non-glycosylated forms of a protein coexist at any given time. Traditional gel-based or 

MS-based methods measure the half-life of the mixed glycosylated and non-glycosylated forms 

of a protein, but here we were able to measure the half-lives of only the glycosylated form of 

each protein because only surface glycoproteins were separated and analyzed.  

 

4.2.4 Discussion 

Mammalian cell surface is typically covered with sugars, and these sugars may be 

bound to lipids or proteins. Glycoproteins located on the cell surface regulate nearly every 

extracellular activity. Systematic and quantitative analysis of surface glycoproteins can aid in 

a better understanding of protein structure, properties and functions and also cellular activities. 

Due to the heterogeneity of glycans and low abundance of many glycoproteins, it is extremely 

challenging to globally identify and quantify glycoproteins in complex biological samples.97 It 

is even much more challenging to specifically analyze surface glycoproteins. Fluorescence 
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experiments have obtained very valuable information about cell surface glycans.113 However, 

it is hard to identify which proteins are bound to glycans and the exact glycosylation sites. MS-

based proteomics provides the possibility to identify and quantify glycoproteins, but in order 

to analyze surface glycoproteins, selective enrichment of surface glycoproteins is required prior 

to MS analysis. It has remained a daunting task to systematically investigate cell surface 

glycoproteins dynamic, and to date, it has yet to be reported. Integrating pulse-chase metabolic 

labelling, selective enrichment of surface glycoproteins, and multiplexed proteomics, for the 

first time, we site-specifically and systematically quantified surface glycoprotein abundance 

changes as a function of time, and measured their half-lives.  

 

Table 4.2 Half-lives of exemplary CD proteins. 

UniProt 
ID 

Gene 
symbol 

CD 
name 

Protein half-life 
Annotation This 

work (h) 
Previous work 

(h)[a] 
P02786 TFRC CD71 18.3 4.499 Transferrin receptor protein 1 
P05556 ITGB1 CD29 24.2  Integrin beta-1 
P08069 IGF1R CD221 12.6  Insulin-like growth factor 1 

receptor 
P08195 SLC3A2 CD98 27.2 10.199 4F2 cell-surface antigen heavy 

chain 
P08962 CD63 CD63 24.2  CD63 antigen 
P25445 FAS CD95 39.1  Tumor necrosis factor receptor 

superfamily member 6 
P26006 ITGA3 CD49c 37.3  Integrin alpha-3 
P48960 CD97 CD97 13.2  CD97 antigen 
P54709 ATP1B3 CD298 61.1  Sodium/potassium-transporting 

ATPase subunit beta-3 
P78536 ADAM17 CD156b 112.7  Disintegrin and metalloproteinase 

domain-containing protein 17 
[a] Half-lives of corresponding proteins reported in the literature. 

  

Besides protein degradation, other contributions to cell surface glycoprotein dynamics 

include protein internalization/recycling, and deglycosylation. By tagging surface 

glycoproteins immediately before the medium switch, the effect of protein internalization on 
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the measurement of protein half-lives was able to be avoided because even though a protein 

was internalized, the biotin tag can ensure that it will be eventually analyzed. In other cases, 

when deglycosylation event happens, the protein will turn into a non-glycoprotein, which does 

not fit into our experimental subject and thus will not be enriched and analyzed. 

One limitation of this method is that proteins with very long half-lives might not be 

accurately determined because the full length of the time course may only cover the very 

beginning of the simulation curve, thus a minor variation could result in a large error. We 

applied a 200 h cut-off value to those long-lived proteins, namely, any protein with a half-life 

longer than 200 h was included in the >200 h category. Although this category did not present 

actual half-life values, it still indicates that these glycoproteins are very stable. Since the 

majority of the glycoproteins have half-lives shorter than 200 h, this category did not affect the 

calculation of the median half-life nonetheless. 

The current experimental results have clearly demonstrated that glycans can more 

effectively protect enzymes than receptors and binding proteins located on the cell surface from 

being degraded, because proteins related to catalytic activity have a long median half-life of 

40.0 h (quantified surface enzymes are listed in a table online at 

doi.org/10.1039/C6SC01814A). It is well-known that there are many proteases in the 

extracellular space, but these quantified surface enzymes were still relatively more stable. For 

example, for GAPDH (glycerolaldehyde-3-phosphate dehydrogenase), it has both 

glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thus playing a role in 

glycolysis and nuclear functions, respectively. In our previous work, its half-life was measured 

to be 10.4 h.99 Here its glycoform located on the cell surface are extraordinarily stable with a 

half-life of more than 200 h. Proteins in the mitochondria or nuclei typically have a longer half-

life because proteins located in these compartments may avoid being accessed by many 
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proteases. Cell surface proteins are exposed to different environments, but glycans on surface 

proteins may provide one layer of protection, especially for proteins with catalytic activity. 

 

4.2.5 Conclusions 

We have designed the first method to target surface glycoproteins, site-specifically 

study their dynamics and measure their half-lives by incorporating metabolic labelling, click 

chemistry, and TMT tagging. The current method has several advantages. Firstly, only surface 

glycoproteins were selectively tagged and enriched for MS analysis. Secondly, site-specific 

protein glycosylation information was obtained in this work, and only authentic glycosylated 

forms of proteins were analyzed. Thirdly, multiplexed proteomics enabled to quantify 

glycoproteins at several time points simultaneously, increasing the accuracy of measuring 

protein abundance changes and the corresponding half-lives. Furthermore, the high throughput 

MS-based experiment allowed us to systematically study surface glycoprotein dynamics.  

By using this new method, we quantified 248 surface glycoprotein dynamics with the 

median half-life was 19.6 h, which is over two times longer than that of newly synthesized 

proteins measured in our recent work (8.7 h).99 The median half-life of glycopeptides with sites 

located outside of any domain is longer than that of glycopeptides with sites within different 

domains. Surface glycoproteins corresponding to catalytic activities were more stable with the 

median half-life of 40.0 h. Although there are many proteases outside of the cells, glycans can 

effectively protect surface enzymes from being degraded. Investigation of surface glycoprotein 

dynamics can aid in better understanding their properties and functions. This method can be 

extensively applied to investigate surface glycoproteins and their dynamics in biological and 

biomedical research.   
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CHAPTER 5. GLOBAL AND SITE-SPECIFIC ANALYSIS REVEALING 

UNEXPECTED AND EXTENSIVE PROTEIN S-GLCNACYLATION 

IN HUMAN CELLS 

 

Partially adapted with permission from American Chemical Society  

Xiao, H. P., and Wu, R. H. Global and Site-Specific Analysis Revealing Unexpected and 

Extensive Protein S-GlcNAcylation in Human Cells. Analytical Chemistry, 2017, 89, 3656-

3663. Copyright 2017 American Chemical Society.  

 

5.1 Unexpected Observation of Protein S-GlcNAcylation in Human Cells 

 

5.1.1 Introduction 

Glycosylation is one of the most common and diverse protein modifications, and is 

essential for mammalian cell survival.1-3 Heterogeneous protein glycosylation contains a 

wealth of information regarding the cellular developmental and diseased statuses. Aberrant 

protein glycosylation is directly related to human disease, such as cancer and infectious 

diseases.4, 5 However, heterogeneity of glycosylation renders their study much more 

challenging compared to many other types of protein modification.6, 7 Investigation of protein 

glycosylation can aid in a better understanding of protein function, cellular activity, and the 

molecular mechanisms of disease.  

N-acetylglucosamine (GlcNAc) was discovered to be bound to the side chains of serine 

and threonine over three decades ago,8 termed O-GlcNAcylation, and was regulated by O-

GlcNAc transferase (OGT)9 and O-GlcNAc amidase (OGA).10 This modification is involved 

in many cellular events, from regulation of signal transduction to gene expression.10, 11 The 

same glycan (GlcNAc) has recently been found to be attached to the side chain of cysteine in 
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bacteria,12 which is named as protein S-GlcNAcylation. Glycocin F, a 43-amino acid 

bacteriocin from Lactobacillus plantarum, contains two beta-linked GlcNAc moieties, attached 

through side chain linkages to a serine via oxygen, and to a cysteine via sulfur.12 This 

modification has just been reported in rat and mouse samples, and 14 modification sites in 11 

proteins were identified.13 In the same report, recombinant Host Cell Factor 1 isolated from 

HEK cells was identified to be S-GlcNAcylated.13 Compared to O-GlcNAcylation, S-

GlcNAcylation remains to be explored.  

Modern mass spectrometry (MS)-based proteomics provides a unique opportunity to 

comprehensively and site-specifically analyze protein modifications,14-26 which is beyond the 

reach of conventional biochemistry methods. Due to the fact that many modified proteins have 

low abundance, it is critical to separate and enrich proteins or peptides with the modified group 

of interest prior to MS analysis.27-32 In order to globally analyze protein O-GlcNacylation, 

several methods were reported to enrich O-GlcNAcylated proteins/peptides from complex 

biological samples. Mild beta-elimination followed by Michael addition with dithiothreitol 

(BEMAD) was employed for global analysis of protein O-GlcNAcylation.33 Lectins or 

antibodies were also used to enrich glycoproteins/glycopeptides for MS analysis. 14, 34, 35 An 

elegant chemoenzymatic approach was developed by exploiting an engineered 

galactosyltransferase enzyme to selectively label O-GlcNAc proteins with a ketone-biotin tag, 

which permits enrichment of low-abundance O-GlcNAc species from complex mixtures.36, 37 

The enzymatic reaction combined with click chemistry was further developed to enrich O-

GlcNAcylated peptides for MS analysis.15, 38 A sugar analog (N-azidoacetylglucosamine 

(GlcNAz)) was also used to feed cells and label glycoproteins for visualization and MS analysis. 

39, 40 Currently bio-orthogonal chemistry is very powerful in investigating proteins and protein 

modifications.41-44 In combination with metabolic labeling and MS-based proteomics, global 

analysis of protein modification may be achieved. In order to analyze protein modification site-
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specifically, an effective cleavable linker is required, and the tag after cleavage must be 

relatively small to be compatible with MS analysis. Site-specific analysis provides not only 

valuable information about the modification site but also solid experimental evidence of protein 

modification.  

In this work, unexpected S-GlcNAcylation on cysteine residues was demonstrated to 

extensively exist in human cells through global and site-specific analysis of protein 

GlcNAcylation. This result was further confirmed by different independent experiments. Motif 

analysis showed that the modified cysteine sites surrounded with an acidic amino acid residue 

(D or E) are highly enriched, which strongly suggests that a particular type of enzyme is 

responsible for this modification and has a preference for the sites surrounded by acidic amino 

acids. Protein clustering results showed that glycoproteins with well-localized S-

GlcNAcylation sites are involved in the regulation of cell-cell interactions and gene expression. 

For the first time, the global and site-specific analysis unraveled extensive protein S-

GlcNAcylation existing in human cells.   

 

5.1.2 Experimental section 

5.1.2.1 Cell culturing and metabolic labeling 

MCF-7 cells (from American type culture collection (ATCC)) were grown in a 

humidified incubator at 37 °C and 5.0% CO2 in Dulbecco's modified eagle's medium (DMEM) 

(Sigma-Aldrich) containing 10% fetal bovine serum (FBS) (Thermo). When cells reached 

~60% confluency, the media was switched to DMEM containing 10% dialyzed FBS with 250 

µM N-azidoacetylglucosamine-tetraacylated (GlcNAz) (Click Chemistry Tools). Cells were 

metabolically labeled in this media for 36 h and then treated with 50 µM O-(2-Acetamido-2-

deoxy-D-glucopyranosylidenamino)N-phenylcarbamate (PUGNAc) (Cayman Chemicals) for 

two hours before harvest. 
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5.1.2.2 Cell lysis, Copper-catalyzed azide alkyne cycloaddition (CuAAC), and protein 

digestion 

Cells were washed three times with phosphate buffered saline (PBS) to remove GlcNAz 

and then harvested by scraping. The cell mixtures were pelleted by centrifugation at 300 g for 

5 minutes and washed twice with cold PBS. Cell pellets were lysed through end-over-end 

rotation at 4 ºC for 45 minutes in lysis buffer (50 mM HEPES pH=7.4, 150 mM NaCl, 0.5% 

sodium deoxycholate (SDC), 25 units/mL benzonase, 100 µM PUGNAc, and 1 tablet/ 10 mL 

protease inhibitor (Roche)). Lysates were centrifuged, and the resulting supernatant was 

transferred to new tubes to perform CuAAC. Briefly, bis-N-[1-(4,4-dimethyl-2,6-

dioxocyclohexylidene)ethyl]  (DDE)-biotin-alkyne (Click Chemistry Tools) was dissolved in 

DMSO and added to the cell lysate to a final concentration of 250 µM. For the experiment 

using the photocleavable (PC) linker, PC-biotin-alkyne (Click Chemistry Tools) was added 

into the cell lysate to the same final concentration. At the same time, CuSO4 and tris(3-

hydroxypropyltriazolylmethyl) amine (THPTA) were added to the lysate to final 

concentrations of 1 mM and 5 mM, respectively. Finally, sodium ascorbate was freshly 

prepared and added to the lysis mixture at a concentration of 15 mM to initiate the reaction. 

The reaction vessel was covered with aluminum foil, and then placed onto an end-over-end 

rotor at room temperature, and rotated for 2 h. Since DDE-biotin-alkyne is cleavable by strong 

reducing reagent such as dithiothreitol (DTT), reduction and alkylation of disulfide bonds were 

not performed. SDC was removed by the methanol-chloroform protein precipitation method. 

The purified proteins were digested with 10 ng/µL Lys-C (Wako) in 50 mM HEPES pH 8.6, 

1.6 M urea, 5% ACN at 31 ºC for 16 hours, followed by further digestion with 8 ng/uL Trypsin 

(Promega) at 37 ºC for 4 hours. 
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5.1.2.3 Glycopeptide separation and enrichment 

Digestion mixtures were acidified by the addition of trifluoroacetic acid (TFA) to a 

final concentration of 0.1%, clarified by centrifugation, and desalted by using a tC18 Sep-Pak 

cartridge (Waters). Purified peptides were dried and then enriched with NeutrAvidin beads 

(Thermo) at 37 °C for 30 min in 100 mM PBS. The samples were transferred to spin columns 

and washed thoroughly according to the manufacturer’s protocol. Peptides were then eluted 

from the beads through incubation with 2% hydrazine in 100 mM sodium phosphate for 2 

hours, and then washed twice with the elution buffer. Eluates were combined and acidified by 

adding TFA, desalted using tC18 Sep-Pak cartridge, and lyophilized. Dried peptides were 

dissolved in 1% formic acid (FA), purified further with a stage-tip, and separated into 3 

fractions using 20%, 50% and 80% ACN containing 1% HOAc. 

 

5.1.2.4 LC-MS/MS analysis  

Purified and dried peptide samples were dissolved in a 9 µL solution of 5% ACN and 

4% FA each. 4 µL of the resulting solutions were loaded onto a microcapillary column packed 

with C18 beads (Magic C18AQ, 3 µm, 200 Å, 100 µm x 16 cm, Michrom Bioresources) by a 

Dionex WPS-3000TPLRS autosampler (UltiMate 3000 thermostatted Rapid Separation Pulled 

Loop Wellplate Sampler). Peptides were separated by reversed-phase chromatography using 

an UltiMate 3000 binary pump with a 110 min gradient of 3-22%, 8-35%, 12-45% ACN (with 

0.125% FA), respectively, for three fractions. Peptides were detected with a data-dependent 

Top20 method in a hybrid dual-cell quadrupole linear ion trap - Orbitrap mass spectrometer 

(LTQ Orbitrap Elite, ThermoFisher, with Xcalibur 3.0.63 software). For each cycle, one full 

MS scan (resolution: 60,000) in the Orbitrap at 106 AGC target was followed by up to 20 

MS/MS in the LTQ for the most intense ions. The selected ions were excluded from further 
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analysis for 90 seconds. Ions with singly or unassigned charge were not sequenced. Maximum 

ion accumulation times were 1000 ms for each full MS scan and 50 ms for MS/MS scans. 

5.1.2.5 Database search and data filtering 

All MS2 spectra were converted into mzXML files, and then searched using the 

SEQUEST algorithm (version 28).45 Spectra were matched with sequences of all proteins in 

the UniProt Human (Homo sapiens) database.  The following parameters were used during the 

search: 10 ppm precursor mass tolerance, 1.0 Da product ion mass tolerance, fully digested 

with trypsin, up to three missed cleavages. The variable modifications: oxidation of methionine 

(+15.9949), tag of GlcNAcylation on serine, threonine, and cysteine (+299.12297). False 

discovery rates (FDR) of peptide and protein identifications were evaluated and controlled by 

the target-decoy method.46, 47 Each protein sequence was listed in both forward and reverse 

orders. Linear discriminant analysis (LDA) was used to control the quality of peptide 

identifications using the following parameters: XCorr, differential sequence dCN, missed 

cleavages, ppm, precursor mass error, peptide length, and charge states. Peptides shorter than 

seven amino acid residues in length were deleted. Furthermore, peptide spectral matches were 

filtered to 1% FDR. The dataset was restricted to GlcNAcylated peptides when determining 

FDR for glycopeptide identification. In order to increase the identification confidence, we 

further filtered the dataset to less than 1% FDR at the glycoprotein level, and in this case, the 

FDR for glycopeptide identification is much less than 1%. 

 

5.1.2.6 GlcNAcylation site localization and quality control 

We assigned and measured the confidence of glycosylation site localizations by 

calculating the corresponding ModScores, which applies a probabilistic algorithm that 

considers all possible glycosylation sites in a peptide and uses the presence of experimental 

fragment ions unique to each site.48, 49 Sites with ModScore > 13 (P < 0.05) were considered 



 
204 

as confidently localized. All sites and peptides were then manually checked; sites on peptides 

with low mass accuracy (>5 ppm) or low XCorr (<1.5) were manually removed to ensure the 

quality of our results.  

 

5.1.2.7 Motif Analysis 

In the motif analysis, only well-localized S-GlcNAcylation sites were used, and 

sequences were centered on each site, extended to 13 aa (6 residues on each side of the site), 

and analyzed with the Motif-X algorithm.50 The number of occurrences is set to at least 20, and 

the significance is 0.0001. The Homo sapiens protein database was used as a background.  

 

5.1.2.8 Data Availability 

All raw files are accessible in the following public accessible website 

(http://www.peptideatlas.org/PASS/PASS00981, pass- word: MV9545qx).  

 

5.1.3 Results and discussion 

5.1.3.1 Principle of the enrichment of GlcNAcylated peptides 

Usage of sugar analogs to label cells has recently been proven to be effective for protein 

glycosylation investigation, which has been well documented.51, 52 Labeled glycoproteins with 

sugar analogs can be bound to fluorophoric groups for visualization and also be enriched for 

further analysis by MS.53-55 Here, we used a sugar analog (Ac4GlcNAz) to label glycoproteins 

in MCF-7 cells, as shown in Figure 5.1. After cell lysis and protein extraction, we incubated 

proteins with DDE-biotin-alkyne with Cu(I) as the catalyst.56 GlcNAcylated proteins with the 

functional azido group were tagged with biotin. After digestion, glycopeptides tagged with 

biotin were enriched with NeutrAvidin beads. After removing non-glycopeptides, we released 

the enriched glycopeptides using hydrazine (N2H4). The cleavable linker was cleaved and an 
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amine group was left on glycopeptides for MS analysis. Finally, the mass tag of 299.1230 Da 

is well-suited for glycopeptide identification and site localization by LC-MS/MS. 

 

Figure 5.1 Experimental procedure of selectively enriching GlcNAcylated peptides for MS 

analysis (The curves with different colors represent peptides). 

 

5.1.3.2 Integration of a cleavable linker for site-specific identification of protein 

GlcNAacylation 

To perform site-specific analysis of protein GlcNAcylation, a cleavable linker is 

required, which is different from the analysis of protein N-glycosylation because N-glycans 

can be removed with an enzyme, such as PNGase F, to generate a common tag for MS 

analysis.27, 57 Ideally, the cleavable linker needs to be compatible with the experimental 

400 600 800 1000 1200 1400
m/z
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conditions, including click reaction conditions. Furthermore, after cleavage, the remaining tag 

should be small for MS analysis. Cleavable linkers based on disulfide bond are extensively 

reported in the literature.58 However, this type of cleavable linker is incompatible with the 

current experiment because the disulfide bond may not survive under reductive conditions of 

the Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. 

Here a DDE-based cleavable linker was used due to its advantages. First, the linker is 

stable under reductive CuAAC conditions. Second, after the cleavage, the remaining tag is 

small with a mass of 95 Da, as marked in a red circle in Figure 5.1. Third, the tag containing 

an amine group will increase the ionization efficiency of glycopeptides, facilitating the MS 

analysis of glycopeptides. In addition, with this specific sugar analog and the remaining tag, 

the final mass (299.1230 Da) can distinguish this modification from any other modifications. 

This cleavable linker allows us to site-specifically identify protein GlcNAcylation, and the tag 

on the peptides also provides solid experimental evidence for the protein modification.  

 

5.1.3.3 Identification of protein GlcNAcylation 

By using the cleavable linker, a small tag on glycopeptides enabled us to confidently 

identify glycopeptides and localize the glycosylation sites. Two examples are shown in Figure 

5.2. The glycopeptide VS#VCAETYNPDEEEEDTDPR (# - glycosylation site) was identified 

with a mass accuracy of 0.98 ppm and XCorr of 3.86. This peptide is from protein PRKAR2A, 

which is a regulatory subunit of the cAMP-dependent kinases. 
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Figure 5.2 Examples of glycopeptide identification. (A) The peptide 

VS#VCAETYNPDEEEEDTDPR (# - glycosylation site) was identified, which is from protein 

PRKAR2A. (B) The peptide KLEEEQIILEDQNC#K from Myh9 was confidently identified 

with an XCorr of 3.88 and mass accuracy of 1.45 ppm, and the site C1002 was bound to the 

glycan. 

 

Unexpectedly, we identified many sites located on cysteine, which is discussed in 

details below, and one example is shown in Figure 5.2B. The glycopeptide 

KLEEEQIILEDQNC#K was confidently identified with an XCorr of 3.88 and mass accuracy 

of 1.45 ppm. It is from protein MYH9, and GlcNAc is bound to the site of cysteine 1002. 

Furthermore, the lack of any serine or threonine residue in this peptide excludes the possibility 

of protein O-GlcNAcylation. From the fragments, the tag neutral loss occurred (the highest 
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peak in Fig. 4.2B). Nevertheless, there was enough energy left to further fragment the peptide 

for confident identification.   

 
Figure 5.3 ModScore distribution of the GlcNAcylation sites identified in the DDE experiment.  

 

In this experiment, we identified 537 unique glycopeptides, and correspondingly 507 

sites were assigned on 367 proteins (listed in a table online at 

doi.org/10.1021/acs.analchem.6b05064). Among 507 sites, 269 were well-localized with 

ModScore>13 (Figure 5.3). The portion of sites being well localized is relatively low because 

of the following reasons. First, the sugar (GlcNAc) was bound to peptides, thus the neutral loss 

frequently occurred under collision induced dissociation (CID), as shown in Figure 5.2, which 

results in the relatively low rate of the site localization. Furthermore, there are multiple possible 

glycosylation sites, i.e. STC, and many peptides contain several of these residues. Sometimes 

only two fragments can distinguish two possible sites nearby, making the site localization more 

challenging. 
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Figure 5.4 Motifs identified from the well-localized protein O-GlcNAcylation sites 

(ModScore>13), using only ST as possible modification sites to perform SEQUEST search. 

 

 

4.1.3.4 Confident identification of protein S-GlcNAcylation on cysteine residues 

Initially, we used ST as dynamic modification sites for SEQUEST search because it is 

well-known that protein O-GlcNAcylation occurs on serine and threonine. Subsequently, we 

observed that cysteine is commonly located around S or T. When we conducted motif analysis, 

several motifs with cysteine around the sites were highly enriched, as shown in Figure 5.4. This 

results in a consideration that the cysteine residue may be modified with GlcNAc, and 

correspondingly, we used STC as dynamic modification sites to perform the search. 

Surprisingly, we found many sites (even greater than S and T, see below) were located on 

cysteine. In order to demonstrate the reliability of S-GlcNAcylation, we further performed the 

following experiments and data analysis. 
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1). S-GlcNAc is not from possible chemical reaction during sample preparation: 

The free thiol group of cysteine is reactive and could undergo reactions during sample 

preparation. To avoid the potential reactions during the sample preparation, we alkylated free 

thiol groups for the subsequent experiment by adding 1 mM IAA in the solution 20 minutes 

before and during the two-hour click reaction. Similar results were obtained, including the 

number of total and unique glycopeptides with S-GlcNAc. The comparison of the results is 

included below. 

2). S-GlcNAc is not produced by the cleavable linker: In order to further confirm 

that S-GlcNAcylation is authentic, we employed a completely different type of cleavable linker, 

photocleavable linker (the structure is in Figure 5.5). After enrichment, glycopeptides were 

cleaved under UV radiation at 350 nm for one hour. Because the remaining tag is the same, it 

has all the advantages described above. Similarly, we identified many glycopeptides with S-

GlcNAc, as compared below. 

 

 

Figure 5.5 The structure of the photocleavable (PC) linker. After enrichment, the linker was 

cleaved using radiation at 350 nm for one hour, which generates the same tag as the DDE linker. 

 

3). S-GlcNAc is not due to false assignment: To exclude the possibility of wrong 

assignment, we checked whether there are some identified glycopeptides without any S or T. 

Among the glycopeptides identified in the DDE experiment, 26 unique glycopeptides did not 

contain any serine or threonine. Among 269 well-localized glycosylation sites, 199 sites (74%) 

were localized on cysteine while only 20 sites were located on threonine and 50 sites on serine 
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(Figure 5.6). These results further demonstrated that S-GlcNAcylation is not due to wrong 

assignment.  

 

Figure 5.6 Distributions of well-localized sites on cysteine (C), serine (S) and threonine (T) in 

three independent experiments (DDE, DDE-Alk and PC).  

 

5.1.3.5 Comparison of glycopeptides identified in three independent experiments  

Among the three experiments (DDE-biotin-alkyne without alkylation (DDE), with 

alkylation (DDE-Alk), and photocleavable linker (PC)), we obtained very comparable results. 

In the DDE experiment, 74% of well-localized sites (199/269) were located on cysteine. With 

alkylation (DDE-Alk) experiment, 71% sites (174/244) belonged to S-GlcNAcylation (All 

identified sites are listed in a table online at doi.org/10.1021/acs.analchem.6b05064). In the PC 

experiment, 247 well-localized sites were identified (listed in a table online at 

doi.org/10.1021/acs.analchem.6b05064), and most of them (183 sites, 74%) were also located 

on cysteine (Figure 5.6). From the independent experiments, the number of protein S-

GlcNAcylation sites from each experiment was very similar. Well-localized S-GlcNAcylation 

sites in three independent experiments were listed in a table online at 

doi.org/10.1021/acs.analchem.6b05064 and compared in Figure 5.8A. In addition, 
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glycoproteins with well-localized sites were compared in Figure 5.7. Relatively, the overlap 

was not exceptionally high, but this is also common for large-scale analysis of protein 

modification considering that the modification may be dynamic and these are biologically 

independent experiments with different linker molecules and the presence or absence of 

iodoacetamide.   

 

 

 

Figure 5.7 Comparison of glycoproteins with well-localized S-GlcNAcylation sites identified 

in three independent experiments. 

 

5.1.3.6 Motif Analysis of Well-Localized S-GlcNAcylation Sites  

Motif analysis was performed only for well-localized S- GlcNAcylation sites (357), 

among which 45 sites contain the motif of EC, and 40 sites with a motif of CXE (X - any amino 

acid residue). In addition, there are 26 sites with a cysteine followed by an aspartic acid residue, 

and 29 sites have a motif of CXXXE. As shown in Fig. 4.8B, the sites surrounded by an acidic 

amino acid are highly enriched. Protein modification can result from enzymatic or chemical 

reactions. For example, O-GlcNAcylation is catalyzed by OGT, but protein glycation is caused 
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by a chemical reaction. It is uncertain whether S-GlcNAcylation is due to chemical or 

enzymatic reactions. However, the identification of these motifs strongly suggests that some 

enzymes are responsible for this type of modification, and the enzyme’s binding pocket has a 

preference for acidic residues. It will be of great interest to identify the enzyme(s) responsible 

for S-GlcNAcylation. 

5.1.3.7 Clustering of Proteins Modified with Well-Localized S-GlcNAc 

To understand possible functions of protein S-GlcNAcylation, we clustered 

glycoproteins with well-localized S-GlcNAcylation sites using the Database for Annotation, 

Visualization and Integrated Discovery (DAVID, v6.8).59 Based on cellular compartment, the 

most highly enriched categories are cell-cell adherens junction, nuclear part, organelle lumen, 

and intracellular membrane-bounded organelle (Fig. 4.9A). 40 identified glycoproteins are 

located in the cell-cell adherens junction with an extremely low P value of 6.46E-23. Almost 

half of the proteins (137) are nuclear proteins with a P value of 3.65E-22. There are 27 proteins 

belonging to the chromosomal part, and 9 proteins are from the SWI/SNF (SWItch/Sucrose 

Non-Fermentable) superfamily-type complex, listed in Table 5.1. SWI/SNF is a nucleosome 

remodeling complex that exists in both eukaryotes and prokaryotes. However, the exact action 

mode of this complex remains to be further explored. Protein S-GlcNAcylation may contribute 

to its function. Based on the clustering results, two major functions are related to these 

glycoproteins modified with S-GlcNAc: the regulation of cell-cell interactions and gene 

expression, which likely are the major functions of protein S-GlcNAcylation. From DAVID, 

among 298 glycoproteins, most of them (260) are also phosphoproteins, and 164 glycoproteins 

can be acetylated. This modification may cross-talk with acetylation and phosphorylation to 

regulate gene expression. 
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Figure 5.8 Comparison of (A) well-localized S-GlcNAcylation sites; (B) Four motifs were 

identified among the well-localized S-GlcNAcylation sites. 

The clustering results based on molecular function are displayed in Fig. 4.9B. Nearly 

half of the glycoproteins (131) are nucleic acid binding proteins with a P value of 2.51E-15. 

Furthermore, 16 proteins have transcription cofactor activities, and 8 proteins are bound to 

histones. 39 proteins belong to the category of binding proteins involved in cell adhesion with 

a P value of 4.78E-22. These results further consolidate the possible functions related to this 

type of modification: the regulation of cell-cell interactions and gene expression.  
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Table 5.1 The identification of S-GlcNAcylation sites in glycopeptides from the SWI/SNF 

superfamily-type complex. 

Reference Gene 
symbol Glycopeptide PPM XCorr Site Mod 

Score Annotation 

Q9NRG0 CHRAC1 
ATELFVQC#LATYSY
R 2.58 2.86 55 38.2 

Chromatin accessibility complex 
protein 1 

Q15532 SS18 
MLDDNNHLIQC#IM
DSQNK 0.15 2.72 34 31.3 

Appears to function synergistically 
with RBM14 as a transcriptional 
coactivator 

Q96T23 RSF1 
EVVEC#QSTSTVGGQ
SVK 1.34 3.09 650 51.0 Remodeling and spacing factor 1 

Q12830 BPTF 
C#APAPPPPPPPPTSG
PIGGLR 0.36 2.25 20 85.3 

Nucleosome-remodeling factor subunit 
BPTF 

Q9NPI1 BRD7 

RKPDGTTTLGLLHPV
DPIVGEPGYC#PVR 0.96 4.06 367 80.9 

Bromodomain-containing protein 7, 
acts both as coactivator and as 
corepressor and may play a role in 
chromatin remodeling.  
 

DGTDTSQSGEDGGC
#WQR -0.46 2.68 271 33.7 

O14497 ARID1A 

GPADMASQC#WGA
AAAAAAAAAASGG
AQQR -0.13 3.68 336 14.2 

AT-rich interactive domain-containing 
protein 1A, involved in transcriptional 
activation and repression of select 
genes by chromatin remodeling 

Q9Y265 RUVBL1 
EVYEGEVTELTPC#E
TENPMGGYGK 1.15 3.70 141 30.8 

RuvB-like 1, possesses single-stranded 
DNA-stimulated ATPase and ATP-
dependent DNA helicase (3' to 5') 
activity 

Q16576 RBBP7 

VHIPNDDAQFDASH
C#DSDKGEFGGFGSV
TGK -0.15 3.76 97 16.1 

Core histone-binding subunit that may 
target chromatin remodeling factors, 
histone acetyltransferases and histone 
deacetylases 

Q14839 CHD4 
FAEVEC#LAESHQHL
SK -1.34 3.46 1827 31.3 

Chromodomain-helicase-DNA-
binding protein 4 

 
#-glycosylation site 
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Figure 5.9 Clustering of glycoproteins with well-localized S-GlcNAcylation sites based on 

cellular compartment (A) and molecular function (B). The right y axis is –Log(P) and the left 

one is the protein number. 
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5.1.4 Conclusions 

In this work, global and site-specific analysis of protein GlcNAcylation reveals 

unexpected S-GlcNAcylation on cysteine residues extensively existing in human cells. This 

result was further confirmed by different independent experiments. Motif analysis showed that 

the modified cysteine sites surrounded with an acidic amino acid residue (D or E) are highly 

enriched, which strongly suggests that a particular type of enzyme is responsible for this 

modification and has a preference for the sites surrounded by acidic amino acids. Protein 

clustering results demonstrated that glycoproteins with well-localized S-GlcNAcylation sites 

are involved in the regulation of cell-cell interactions and gene expression. For the first time, 

we discovered extensive protein S-GlcNAcylation existing in human cells through global and 

site-specific analysis of protein GlcNAcylation. Further work remains to be performed for a 

better understanding of protein S-GlcNAcylation, including the identification of possible 

enzymes responsible for this type of modification and illumination of the functions of protein 

S-GlcNAcylation.  
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5.2 Exploring Protein S-GlcNAcylation with Different Sugar Analog Labelling and in 

Various Types of Human Cells 

 

5.2.1 Introduction  

Protein glycosylation is highly diverse because of the heterogeneity of glycans and 

multiple side chains of amino acid residues being glycosylated.6, 60, 61 It regulates many cellular 

events and is essential for mammalian cell survival.5, 62-64 Aberrant protein glycosylation events 

are hallmarks of human diseases, such as cancer and infectious diseases.65-69 Among several 

types of protein glycosylation, the dynamic posttranslational attachment of β-N-

acetylglucosamine (GlcNAc) to the side chains of serine and threonine via O-linkage is termed 

O-GlcNAcylation,70 which modifies numerous cytoplasmic and nuclear proteins and regulates 

their activity, stability, and localization.71-73 Protein O-GlcNAcylation was discovered by 

Torres and Hart over three decades ago,8 and since then many O-GlcNAc-centered studies have 

been conducted.37, 38, 74-79  

Compared to O-GlcNAcylation, the attachment of GlcNAc onto the side chain of 

cysteine, i.e. S-GlcNAcylation, is nearly unexplored with few publications in the literature. In 

2011, S-GlcNAc was found to attach to Cys43 of Glycocin F, a bacteriocin from Lactobacillus 

plantarum through S-linkage.12 Last year, Maynard et al. reported S-GlcNAcylation events in 

mice samples through performing mass spectrometric analysis using electron transfer 

dissociation (ETD).13 Recently synthetic S-GlcNAc was reported to be an enzymatically stable 

and structurally reasonable surrogate for O-GlcNAc at the peptide and protein levels.80  

Recent advancements in mass-spectrometry (MS)-based proteomic techniques have 

provided a unique opportunity to globally and site-specifically investigate protein 

modifications.11, 17-21, 25, 81-87 Due to the low abundance of glycoproteins, it is imperative to 

separate and enrich the modified proteins or peptides prior to MS analysis.16, 27-32, 55, 88, 89 In 
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recent years, the combination of metabolic labeling and click chemistry has been proven to be 

very powerful to enrich modified proteins or peptides for global analysis of protein 

modifications with MS-based proteomics.39, 44, 54, 57, 90-93 In our previous work, by combining 

metabolic labelling, click chemistry and cleavable linkers with MS-based proteomics, we 

unexpectedly found that S-GlcNAcylation extensively existed in human cells.94 Several 

biologically independent experiments were performed to confirm that it was not produced by 

side reactions of the thiol groups during sample preparation, the cleavable linker utilized in the 

experiments, or false site assignments.94 Further investigations will aid in a better 

understanding of protein S-GlcNAcylation. 

In this work, we explored protein S-GlcNAcylation by evaluating the metabolic 

labelling with two different sugar analogs, namely GalNAz and GlcNAz, for global analysis of 

protein O- and S-GlcNAcylation. Furthermore, S-GlcNAcylation was systematically 

investigated in three types of human cells (MCF7, HEK 293T, and HeLa). The percentages of 

S-GlcNAcylation sites among the total well-localized sites are very similar across all these 

cells with over 70% of the well-localized sites being located on cysteine. We further performed 

motif and domain analysis for the well-localized S-GlcNAcylation sites. Together these data 

provide a systematic view of protein S-GlcNAcylation events in human cells. 

 

5.2.2 Experimental section 

5.2.2.1 Cell culturing and metabolic labelling 

MCF-7, HEK 293 T, and HeLa cells are from American type culture collection (ATCC) 

and were seeded in T-75 culturing flasks upon thawing. Cells were grown in a humidified 

incubator at 37 °C and 5.0% CO2 in Dulbecco's modified eagle's medium (DMEM) (Sigma-

Aldrich) containing 10% fetal bovine serum (FBS) (Thermo). When cells reached ~60% 

confluency, the media was switched to DMEM containing 10% dialyzed FBS with 100 µM 
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GalNAz or GlcNAz (Click Chemistry Tools) for metabolic labelling. Cells were labeled for 36 

h and then treated with 50 µM O-(2-acetamido-2-deoxy-D-glucopyranosylidenamino)N-

phenylcarbamate (PUGNAc) (Cayman Chemicals) for two hours before harvest.  

 

5.2.2.2 Sample preparation, LC-MS/MS analysis and data processing 

 See section 5.1.2. 

 

5.2.3 Results and discussion 

5.2.3.1 Experimental procedure of GlcNAcylation site identification  

Here we used the method integrating metabolic labelling, click chemistry and a 

cleavable linker to enrich GlcNAcylated peptides and generate a small tag on GlcNAcylation 

sites. Then the enriched glycopeptides were analyzed using MS-based proteomics, as shown in 

Figure 5.10. Cells were labeled with either GalNAz or GlcNAz, and then lysed. Labeled 

proteins in the cell lysate were reacted with bis-N-[1-(4,4-dimethyl-2,6-

dioxocyclohexylidene)ethyl] (DDE)-biotin-alkyne through copper(I)-catalyzed azide-alkyne 

cycloaddition (CuAAC) to incorporate a biotin tag for affinity enrichment.56 Proteins were 

digested, and the labeled peptides were enriched with NeutrAvidin beads. Non-specific binding 

peptides were removed with stringent washes and the GlcNAcylated peptides were released 

through cleaving the DDE group with hydrazine (N2H4). This resulted in a mass tag of 

299.1230 Da on the GlcNAcylation sites, which can be used for glycopeptide identification 

and glycosylation site localization. A total of four experiments were performed: GalNAz 

labelling of MCF7 cells (GAlNAz-MCF7), GlcNAz labelling of MCF7 cells (GlcNAz-MCF7), 

GlcNAz labelling of HEK 293T cells (GlcNAz-HEK 293T), and GlcNAz labelling of HeLa 

cells (GlcNAz-HeLa). 
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Figure 5.10 Experimental procedure for the chemoproteomic analysis of protein 

GlcNAcylation. 

 

We previously demonstrated that S-GlcNAcylation was not from side reactions during 

sample preparation, produced by the cleavable linker, or due to false assignment.94 Serine and 

threonine are among the most frequent amino acid residues in proteins, and the percentages of 

S and T residues in glycopeptides are even higher, rendering the site localization more difficult. 

Therefore, the ModScores of the GlcNAcylated sites identified in proteomics experiments are 

generally lower than those for N-glycosylation sites.  

 

Identification of S- and O-GlcNAcylated
Peptides with the Tag

Cell Lysis & Click Reaction

Digestion& Enrichment

LC-MS/MS
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Figure 5.11 The totall and well-localized S- and O-GlcNAcylation sites identified from the 

four experiments: (A) GalNAz-MCF7; (B) GlcNAz-MCF-7; (C) GlcNAz-HEK 293T; (D) 

GlcNAz-HeLa. 

 

The total and well-localized O- and S-GlcNAcylation site numbers in the four 

experiments are compared in Figure 5.11. Interestingly, the site localization confidence for S-

GlcNAcylation sites is generally higher partially due to the fact that there are a considerable 

amount of S-GlcNAc-containing peptides without any S or T residue in the sequence while 

additional S or T residue(s) nearly always appear in the O-GlcNAcylated peptides. 
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5.2.3.2 Distinctive labelling performances of GalNAz and GlcNAz  

Firstly, we compared labelling MCF7 cells using two different sugar analogs (GalNAz 

and GlcNAz) for the global analysis of protein GlcNAcylation. In the literature, it was reported 

that although the sugar analog GlcNAz was structurally more similar to GlcNAc, GalNAz was 

able to label O-GlcNAcylated proteins in human cells more efficiently.95 In addition, UDP-

GalNAz and UDP-GlcNAc are interconvertible through their salvage pathways.95, 96 The 

current results further indicated that GalNAz outperformed GlcNAc for the identification of O-

GlcNAcylated proteins, while GlcNAz appeared to be more effective to label S-GlcNAcylated 

proteins (Figure 5.12A).  

In this work, in order to ensure the technical rigor and to avoid the site localization 

ambiguity caused by false site assignment, we only analyzed the well-localized sites with 

ModScore > 13. As shown in Figure 5.12A, many more sites were identified in the GlcNAz 

labelling experiment and the majority of them were S-GlcNAcylation sites, while GalNAz 

labelling generated more O-GlcNAcylation sites. In the GalNAz labelling experiment, 69.3% 

of the well-localized sites were O-GlcNAcylation sites while it was only 19.1% for GlcNAz 

labelling (Figure 5.12A). For S-GlcNAcylation site identification, the labelling with GlcNAz 

dramatically outperformed GalNAz with 313 well-localized S-GlcNAcylation sites from the 

GlcNAz labelling vs. 58 from the GalNAz labelling. Labelling using these two sugar analogs 

resulted in a relatively small overlap (Figure 5.12B), and the overlapped sites are mostly 

located on the cysteine residues (82.6%, Figure 5.12C).  
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Figure 5.12 (A) Distributions of the well-localized sites on cysteine, serine, and 

threonine in the GalNAz and GlcNAz labelling experiments; (B) The site overlap 

between the two experiments; (C) The O- and S-GlcNAcylation site percentages among 

the overlapped sites.  

 

 Although the sites identified from the two experiments are quite different, the 

GlcNAcylated proteins identified from the two experiments have shown a better overlap with 
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identified from each experiment based on cellular compartment (Figure 5.14) and molecular 

function (Figure 5.15) using the Database for Annotation, Visualization and Integrated 

Discovery (DAVID, v6.8).59 The proteins identified from the two experiments were mostly 

intracellular and nuclear proteins with a much smaller portion of them involved in adherens 

junction, which could potentially locate on cell surface (Figure 5.14). Clustering based on 

molecular function showed that the glycoproteins from the two experiments participated in 

several types of binding activities, such as nucleic acid binding and cell adhesion molecule 

binding (Figure 5.15). The protein clustering results imply that although O- and S-GlcNAc 

locate on different sites from different proteins, many GlcNAcylated proteins have similar 

locations and functions. 

 

 
 
 
Figure 5.13 The overlap between the GlcNAcylated proteins identified in the GalNAz-MCF7 

and GlcNAz-MCF7 experiments. 
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GalNAz
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Figure 5.14 Clustering of the GlcNAcylated proteins from (A) the GalNAz-MCF7 experiment 

and (B) the GlcNAz-MCF7 experiment based on cellular compartment. 
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Figure 5.15 Clustering of the GlcNAcylated proteins from (A) the GalNAz-MCF7 experiment 

and (B) the GlcNAz-MCF7 experiment based on molecular function. 

 

 

 

 

 

0

100

200

0

10

20

cell
adhesion
molecule
binding

nucleic acid
binding

enzyme
binding

nucleotide
binding

cytoskeletal
protein
binding

nucleoside
binding

Pr
ot

ei
n 

C
ou

nt

-L
og

 (P
)

GlcNAz-MCF7

0

30

60

90

120

0

5

10

15

20

25

nucleic acid
binding

cell adhesion
molecule
binding

transcription
factor binding

chromatin
binding

transcription
cofactor
activity

Pr
ot

ei
n 

C
ou

nt

-L
og

 (P
)

GalNAz-MCF7

A

B



 
228 

5.2.3.3 Comparison of protein GlcNAcylation in three types of human cells 

After identifying GlcNAz as a more robust probe for protein S-GlcNAcylation 

identification, we then analyzed protein GlcNAcylation in different types of cells using this 

sugar analog to label cells. The cell lines have different origins with distinctive disease statuses. 

MCF7 is a breast cancer cell line, HEK 293T is an immortalized but not cancerous cell line 

originally derived from human embryonic kidney, and HeLa cells were from cervical cancer 

tissue.  

 

Figure 5.16 The (A) number and (B) percentage distributions of the O- and S-

GlcNAcylation sites identified in three types of human cells. 
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The comparison of the total and well-localized sites from the three experiments is 

shown in Figure 5.11, and the distributions of the well-localized sites on cysteine, serine, or 

threonine for three types of cells are displayed in Figure 5.16. The greatest number of S-

GlcNAcylation sites were identified from HEK 293T cells (Figure 5.16A). MCF7 has the 

highest percentage of S-GlcNAcylation sites while HeLa has the highest percentage of O-

GlcNAcylation (Figure 5.16B).  

 

 
 

Figure 5.17 (A) the site overlap of the three experiments, and (B) the O- and S-GlcNAcylation 

site percentages among the overlapped sites. 

 

Overall, the percentages of S-GlcNAcylation sites among the total well-localized sites 

were  similar across the three types of cell, and 80.9%, 75.5%, and 71.5% of GlcNAcylation 

sites were localized on the cysteine residues in MCF7, HEK 293T, and HeLa cells, respectively. 
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The overlap is less at the site level than the protein level (Figure 5.17A). Among the overlapped 

sites, 96.4% of them are located on cysteine (Figure 5.17B), featuring an even higher 

percentage of S-GlcNAcylation sites than it from the overlap between the GalNAz and GlcNAz 

labelling experiments. Although the percentages of S-GlcNAcylation sites change only slightly 

across these different cell lines, the site location was quite different. The possible reasons are 

that some sites may be cell-specific, and that similar to O-GlcNAcylayion, S-GlcNAcylation 

may also be dynamic. 

The comparison of the GlcNAcylated proteins identified in the three experiments is 

shown in Figure 5.18A. Compared to labelling MCF7 cells using two different sugar analogs, 

labelling different types of human cells using one sugar analog has resulted in a better overlap. 

We clustered the non-overlapping proteins in each type of cells separately using DAVID v6.8 

according to their tissue expressions through the UniGene category. As expected, the non-

overlapping proteins have shown tissue and disease-specificity as the exact tissue origin and 

disease status-related category was found enriched in each type of cell (Figure 5.18B). 
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Figure 5.18 (A) GlcNAcylated proteins identified from GlcNAz labelling in three types 

of human cells; (B) The non-overlapping proteins have shown cell type and disease 

status specificity; (C) The functional domains found with most C site hits. 
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5.2.3.4 Analysis of the well-localized S-GlcNAcylation sites  

Taken together, we identified a total of 1132 well-localized GlcNAcylation sites 

from the four experiments, among which 724 are located on cysteine, 240 on serine, and 

168 on threonine (Figure 5.19). We clustered the O- and S-GlcNAcylated proteins based 

on their cellular compartment, molecular function, and biological process and found the 

highly enriched categories are very similar between the two (Table 5.2).  

 

 
 
 

Figure 5.19 The distribution of the well-localized O- and S-GlcNAcylation site identified in 

all experiments taken together.  

 

After optimizing the experimental conditions and using different types of cells 

and sugar analogs, we identified dramatically more well-localized sites on cysteine than 

those in our previous study (724 vs. 199).94 Based on many more well-localized S-

GlcNAcylation sites, motif analysis results should be more statistically meaningful.  

Several motifs with an acidic amino acid near the modification site were once again 

identified (Figure 5.20), demonstrating that our motif analysis results were highly 

reproducible. In addition, a new motif with the proline residue locating three amino 
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acids away from the modified cysteine was found here. Identification of these motifs 

strongly suggests that some enzymes are responsible for S-GlcNAcylation.  

 

 

 

Figure 5.20 The motifs identified from the well-localized S-GlcNAcylation sites. 

 

  Moreover, in the literature, researchers found that the location of cysteine-related 

motifs, such as the CP motif for heme-responsive proteins97, 98 and CXXC for redox 

proteins99, 100 are usually important for their functions. We also studied the S-

GlcNAcylation site locations along the protein sequences, but no obvious trend was 

found (Figure 5.21). The sites seem to locate evenly along their protein sequences 

despite that there are slightly fewer sites located within 10-20% of the protein length 

away from the protein N-termini.   
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Figure 5.21 The S-GlcNAcylation site location distribution along the protein sequence.  

 

5.2.3.5 Domain analysis of the well-localized S-GlcNAcylation sites 

We further performed domain analysis for the well-localized S-GlcNAcylation sites. 

Ninety-nine sites are located in a variety of functional domains. Figure 5.18C shows the 

domains with the most site hits. Four domains are involved in binding: RRM is a putative RNA-

binding domain that binds single strand RNAs,101 KH-1 is a nucleic acid binding domain,102 tr-

type G is a translational-type guanine nucleotide-binding domain,103 and EF-hand domain is 

responsible for calcium binding.104 Some sites were located in kinase activity-related domains, 

such as SH3, which is a tyrosine kinase activity-related domain.105 These results correspond 

well with the protein clustering results above and in our previous work, and hence demonstrate 

that S-GlcNAcylation may be majorly involved in gene expression (especially nucleotides-

related binding activities) and signal transduction (protein kinase activity), which are similar 

to O-GlcNAc. This increases the possibility that protein S-GlcNAcylation has similar functions 

as O-GlcNAcylation although more research is required to further explore the functions of 

protein S-GlcNAcylation. 
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Table 5.2 Clustering of the S- and O-GlcNAcylated proteins according to cellular compartment, 

molecular function, and biological process using DAVID v6.8. 

Category Term 

S-GlcNAcylation O-GlcNAcylation 

Protein 
Count P-Value Protein 

Count P-Value 

Cellular  Intracellular part 552 4.60E-
44 276 1.90E-

22 

Compartment Nuclear part 270 1.00E-
41 147 7.80E-

28 

  Organelle lumen 280 2.10E-
38 147 3.40E-

23 

Molecular 
Function 

Cell-cell adherens 
junction 55 1.40E-

23 35 3.20E-
18 

Nucleic acid binding 262 5.30E-
30 137 2.50E-

19 

Protein binding 
involved in cell 
adhesion 

54 7.90E-
23 34 1.30E-

17 

Biological  Cellular component 
organization 310 2.20E-

22 156 1.50E-
11 

Process Nitrogen compound 
metabolic process 335 4.20E-

21 169 4.50E-
11 

 Cellular localization 149 2.70E-
13 70 1.20E-

05 

  Cell cycle process 96 7.00E-
13 51 5.10E-

08 
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5.2.4 Conclusions 

Protein glycosylation is essential for mammalian cell growth and proliferation, and it is 

highly diverse. Previously we made an unexpected finding of extensive protein S-GlcNAcylation 

existing in human cells. Compared to O-GlcNAcylation, this type of glycosylation remains largely 

unexplored. Here we investigated protein S-GlcNAcylation with the two different sugar analogs 

and in three types of human cells. The experimental results demonstrated the different percentages 

of O- and S-GlcNAcylation sites were identified with the GalNAz or GlcNAz labeling. The sugar 

analog GalNAz outperformed GlcNAz on the identification of protein O-GlcNAcylation, while 

the latter was proven to be much more effective for the global analysis of protein S-GlcNAcylation. 

In the comparison of protein GlcNAcylation in three types of human cells: MCF7, HEK 293T and 

HeLa, the greatest number of GlcNAcylation sites were identified in HEK 293T cells. The 

percentages of S-GlcNAcylation sites among the total well-localized sites are similar across the 

three types of human cells, and the majority of the well-localized glycosylation sites were located 

on the cysteine residues. The results of the S-GlcNAcylation site motif analysis are consistent with 

our previous finding of several motifs with an acidic amino acid around the site. Compared to other 

domains, the RNA-binding domains (RRM and KH-1) have the greatest number of sites located 

within, which is in a good agreement with the clustering results that proteins related to nucleic acid 

binding and chromatin binding were enriched. Taken together, this work demonstrated the 

dramatic difference of GlcNAcylated protein labelling with the two sugar analogs, and proteins 

are S-GlcNAcylated to a similar extent in the three different types of human cells tested. Further 

investigation of protein glycosylation will advance our understanding of this important and 

complex modification. 
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CHAPTER 6. ANALYSIS OF CELLULAR RESPONSES AND 

PLEIOTROPIC EFFECTS IN STATIN-TREATED LIVER CELLS ON 

THE PROTEOME, GLYCOPROTEOME, AND PHOSPHOPROTEOME 

LEVELS 
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6.1 Systematic Investigation of Cellular Response and Pleiotropic Effects in Atorvastatin-

treated Liver Cells by MS-based Proteomics 

 

6.1.1 Introduction 

Heart and cardiovascular diseases (CVDs) are the leading causes of morbidity and 

mortality in the United States and around the world.1, 2 With the increase in life expectancy, these 
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age-related diseases are becoming increasingly prevalent. Statins, as effective cholesterol-

lowering 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) inhibitors, are 

recommended as treatment and preventative drugs by the American Heart Association (AHA).2, 3 

Currently statins are very popular drugs, with ~15 percent of adults in the United States taking 

statins. In November 2013, the AHA and American College of Cardiology released a new clinical 

practice guideline for the treatment of blood cholesterol in people at high risk for CVDs caused by 

atherosclerosis. The guideline identifies four major groups of patients for whom statins have the 

greatest chance of preventing stroke and heart attack.4 Under the new guideline, one third of all 

American adults would meet the threshold to consider taking cholesterol-lowering statin drugs.5  

The first statin, lovastatin, was approved by the Food and Drug Administration in 1987. In 

1996, Pfizer introduced atorvastatin (Lipitor) as a pharmaceutical for the reduction of cholesterol 

as a preventative measure for heart disease. Atorvastatin quickly became one of the best-selling 

pharmaceuticals in history, recording sales of $12.4 billion in 2008 alone.6 Atorvastatin, as well 

as other statins, were designed to inhibit the rate-limiting step of the cholesterol biosynthesis 

pathway, known as the mevalonate pathway. The enzyme responsible for catalyzing this rate-

limiting step is HMGCR.7 As more than two-thirds of the body’s total cholesterol is synthesized 

in cells,8 blocking this pathway to achieve a therapeutic decrease of cholesterol is immensely 

effective. 

HMGCR is an enzyme in the upstream portion of the mevalonate pathway. Besides 

cholesterol, the synthesis of many intermediate and end products in this pathway, including 

ubiquinone, dolichol and farnesyl-pyrophosphate (farnesy-PP), are significantly affected by the 

inhibition of this enzyme. Ubiquinone is a component of the electron transport chain and 

participates in aerobic cellular respiration, generating energy in the form of adenosine triphosphate 
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(ATP), which accounts for 95% of the total energy generated in the body.9, 10 Dolichol plays an 

essential role in protein N-glycosylation, and functions as a membrane anchor for the formation of 

a precursor oligosaccharide.11 Farnesyl-PP and geranylgeranyl pyrophosphate (geranylgeranyl-

PP) are also important compounds responsible for two other types of protein post-translational 

modifications, i.e. farnesylation and geranylgeranylation, which are involved in protein trafficking 

and localization, and subsequently regulate cell signaling via protein phosphorylation.12-14 Several 

end products in the mevalonate pathway play critical roles in cells. Therefore, many other 

cholesterol-independent effects, so-called pleiotropic effects, have been reported: improving 

endothelial function,15 attenuating vascular and myocardial remodeling, inhibiting vascular 

inflammation and oxidation,16, 17 and stabilizing atherosclerotic plaques.7, 18-22Statins have been 

shown to reduce the chance of cardiac rejection in cardiac transplants.23 They have also been 

reported to inhibit cellular proliferation and induce necrosis, thus allowing them to be potential 

anticancer agents.24-29 In addition, statins are associated with a significant reduction in the risk of 

hip fracture,30 and could be used as potential anti-Alzheimer’s 31-33 and antidiabetic drugs.34-36 

Several adverse effects of statins have also been reported, including rare acute kidney injury, 

memory loss and confusion.37 However, the molecular mechanisms of these pleiotropic effects of 

statins are largely unknown.  

With the development of mass spectrometry (MS) instrumentation, genomic science and 

computer technology, modern liquid chromatography (LC)-MS-based proteomics techniques 

provide a unique opportunity to globally analyze proteins and protein post-translational 

modifications in complex biological samples.38-45 These methods have great advantages for 

characterizing proteins and protein modifications; they are applicable to identify proteins, locate 

modification sites and quantify their abundance changes without requiring antibodies.46-54 Protein 
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changes in the secretome55 and lipid rafts56 in endothelial cells treated by statin were reported 

recently. Additionally, protein abundance changes in HL-60 (human acute promyelocytic 

leukemia) cells treated by lovastatin were investigated by MS-based quantitative proteomics 

techniques.57 It was found that the abundances of estrogen receptor α and steroid receptor RNA 

activator 1 in the estrogen receptor signaling pathway were decreased, and glutamate metabolism 

was altered in treated HL-60 cells.57 Intracellular signal transduction is mainly carried out by 

protein phosphorylation, but global analysis of protein phosphorylation in cells treated by statin 

has yet to be reported. Considering that the majority of cholesterol (~85%) in the human body is 

synthesized in the liver,58 investigating the liver cell response to atorvastatin is of great interest. 

Comprehensive and systematic investigation of proteins and protein phosphorylation in liver cells 

will provide a better understanding of liver cell responses to statin and the underlying molecular 

mechanisms of the corresponding pleiotropic effects. This information will be beneficial in 

expanding the use of statins to other noncardiac vascular diseases and minimizing potential side 

effects.   

In this work, we have globally and quantitatively studied protein and protein 

phosphorylation changes in cells treated by atorvastatin. Since the majority of cholesterol is 

produced in the liver, a liver carcinoma cell line (HepG2) was used in this study. After cells were 

treated by atorvastatin for 24 hours, proteins and phosphoproteins were globally identified and 

quantified by MS-based proteomics techniques. As expected, many lipid-related proteins were up-

regulated in cells treated by atorvastatin, including HMGCR, FDFT, SQLE and LDLR. 

Phosphopeptides on a group of G-protein modulators were up-regulated, which strongly suggests 

that cell signal rewiring was a result of statin treatment on lipidated proteins. Several basic motifs 

were enriched among down-regulated phosphorylation sites, which indicates that kinases with 
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preference for these motifs, such as PKA and PKC, have attenuated activities. The current work 

represents the first global analysis of proteins and phosphoproteins in liver cells treated by 

atorvastatin, which can provide a better understanding of the mode of action of statins and the 

molecular mechanisms of their pleiotropic effects. 

 

6.1.2 Materials and methods 

6.1.2.1 Cell culture, SILAC labeling and atorvastatin treatment 

HepG2 (C3A) cells (from American type culture collection (ATCC)) were grown in 

Dulbecco's modified eagle's medium (DMEM) (Sigma-Aldrich) containing 1000 mg/L glucose 

and 10% fetal bovine serum (FBS) (Thermo). “Heavy” and “light” SILAC (stable isotope labeling 

by amino acids in cell culture) (Sigma-Aldrich) media were freshly prepared by adding 0.146 g/L 

13C6
15N2 L-lysine (Lys-8) (Cambridge Isotopes) or the corresponding non-labeled lysine, 12C6

14N2 

L-lysine (Lys-0) and supplemented with 10% dialyzed FBS (Corning). Cells were cultured for 

about seven generations under 37 ºC, 5% CO2 and humidified atmosphere before treatment. 40 

mM atorvastatin (Cayman Chemical) stock solution was prepared by dissolving in DMSO (Sigma-

Aldrich). About 9 × 107 heavy HepG2 cells were treated with 15 µM atorvastatin in serum-free 

heavy medium for 24 h. A similar number of light cells were treated by DMSO in serum-free light 

medium as a control.  

 

6.1.2.2. Cell lysis, protein extraction and digestion 

Heavy and light SILAC-labeled HepG2 cells were harvested by scraping in phosphate 

buffered saline (PBS), and equally combined based on the protein ratio from a trial run. The cell 

mixtures were pelleted by centrifugation at 500 g for 3 min, washed with cold PBS and lysed 
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through end-over-end rotation at 4 ºC for 45 minutes in lysis buffer (50 mM  HEPES pH=7.6, 150 

mM NaCl, 50 mM NaF, 50 mM β-glycerophosphate, 1 mM sodium orthovanadate, 1 mM 

phenylmethylsulfonyl fluoride, 10 mM sodium pyrophosphate, 0.5% SDC, 10 units/mL benzonase 

and one protease inhibitor cocktail tablet (complete mini, EDTA-free, Roche) per 10 mL). Lysates 

were centrifuged, and the resulting supernatant was transferred to new tubes. Proteins were 

subjected to disulfide reduction with 5 mM DTT (56 ºC, 25 min) and alkylation with 14 mM 

iodoacetamide (RT, 20 min in the dark). Detergent was removed by methanol chloroform 

precipitation. The purified proteins were digested with 10 ng/µL Lys-C (Wako) in 50 mM HEPES 

pH 8.6, 1.6 M urea, 5% ACN at 31ºC for 16 h. 

 

6.1.2.3 Peptide separation for protein analysis 

Digestion mixtures were acidified by addition of trifluoroacetic acid (TFA) to a final 

concentration of 0.1%, clarified by centrifugation and desalted using tC18 SepPak cartridge 

(Waters). For protein expression analysis, the peptide mixture was separated by high pH reversed-

phase high-performance liquid chromatography (HPLC) into 21 fractions with a 40-min gradient 

of 5-55% ACN in 10 mM ammonium acetate (pH=10).  

 

6.1.2.4 Phosphopeptide enrichment 

Effective enrichment is critical to globally identify and quantify protein phosphorylation, 

and here two-step enrichment was employed. The first separation of phosphopeptides from non-

phosphopeptides was carried out using strong cation change (SCX) chromatography as 

described.59 At pH~3, phosphate groups carrying negative charges make phosphopeptides elute 

earlier than their counterparts. The sample was separated into 12 fractions. Phosphopeptides in 
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each fraction were further enriched by TiO2 particles (GL Science Inc., Japan). Enriched 

phosphopeptide samples were purified by tC18 SepPak cartridge prior to MS analysis. 

  

6.1.2.5 LC-MS/MS analyses  

Purified and dried peptide samples were dissolved in a solution of 5% ACN and 4% formic 

acid (FA), and 2 µL of the resulting solutions were loaded onto a microcapillary column packed 

with C18 beads (Magic C18AQ, 3 µm, 200 Å, 100 µm x 16 cm, Michrom Bioresources) by a 

Dionex WPS-3000TPLRS autosampler (UltiMate 3000 thermostatted Rapid Separation Pulled 

Loop Wellplate Sampler). Peptides were separated by reversed-phase chromatography using an 

UltiMate 3000 binary pump with a 90 min gradient of 4-30% ACN (in 0.125% FA).  For 

phosphorylation samples, a 110 min gradient was used. Peptides were detected with a data-

dependent Top20 method60 in a hybrid dual-cell quadrupole linear ion trap – Orbitrap mass 

spectrometer (LTQ Orbitrap Elite, ThermoFisher, with Xcalibur 3.0.63 software). For each cycle, 

one full MS scan (resolution: 60,000) in the Orbitrap at 106 AGC target was followed by up to 20 

MS/MS in the LTQ for the most intense ions. The selected ions were excluded from further analysis 

for 90 seconds. Ions with singly or unassigned charge were not sequenced. Maximum ion 

accumulation times were 1000 ms for each full MS scan and 50 ms for MS/MS scans. 

 

6.1.2.6 Database searches and data filtering 

Raw data files from the mass spectrometer were converted into mzXML format. Individual 

precursors selected for MS2 sequencing were checked for incorrect monoisotopic peak 

assignments while refining precursor ion mass measurements.50 All MS2 spectra were then 

searched using the SEQUEST algorithm (version 28),61 and spectra were matched against a 
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database encompassing sequences of all proteins in the UniProt Human (Homo sapiens) database 

(downloaded in February 2014) containing common contaminants such as keratins.  Each protein 

sequence was listed in both forward and reversed orders to control the false discovery rate (FDR) 

of peptide and protein identification.  Data from protein expression experiments were searched 

using the following parameters: 20 ppm precursor mass tolerance; 1.0 Da product ion mass 

tolerance; fully digested with Lys-C; up to three missed cleavages; variable modifications: 

oxidation of methionine (+15.9949); fixed modifications: carbamidomethylation of cysteine 

(+57.0214).  Phosphopeptide samples were searched using the same parameters, with the addition 

of a variable modification of serine, threonine, and tyrosine (+79.9663).  

The target-decoy method was employed to estimate and control FDRs at the peptide and 

protein levels.62, 63 Data for either protein or protein phosphorylation analysis were processed 

separately. Linear discriminant analysis (LDA) was used to distinguish correct and incorrect 

peptide identifications using numerous parameters such as Xcorr, ΔCn, precursor mass error, and 

charge state.50 Separate linear discriminant models were trained for each LC-MS analysis using 

forward and reversed peptide sequences to provide positive and negative training data. This 

approach is similar to other methods in the literature which employed different features or 

alternative classifiers.64-66 After scoring, only peptides with at least seven amino acid residues in 

length were kept, and peptide spectral matches were filtered to a 1% FDR based on the number of 

decoy sequences in the remaining data set. Since phosphorylated and non-phosphorylated peptides 

have different score distributions, the dataset was restricted to phosphopeptides when determining 

FDRs for phosphopeptide identification.67 

When large proteomics datasets are assembled, the protein-level FDR is often dramatically 

accumulated with the increased sample numbers, despite keeping the peptide-level FDR at a 
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constant 1% for each run. Therefore, we applied an additional protein-level filter to each dataset 

to reduce the protein-level FDRs (<1%) for proteins and phosphoproteins.  Consequently the FDRs 

at the peptide level were markedly reduced. 

  

6.1.2.7 Phosphorylation site localization and peptide quantification 

To assign phosphorylation site localizations and measure the assignment confidence, we 

applied a probabilistic algorithm67 that considers all phospho-forms of a peptide and uses the 

presence or absence of experimental fragment ions unique to each form to calculate an ambiguity 

score (Ascore). The Ascore indicates the likelihood that the best site match is correct when 

compared with the next best match. We considered sites with Ascore ≥13 (P≤ 0.05) to be 

confidently localized. For peptide quantification, we required an S/N value >3 for both heavy and 

light species. If the S/N value of one member of a pair was less than 3, the partner was required to 

be greater than 5.  

 

6.1.2.8 Motif analysis 

In the motif analysis, only quantified sites were used, i.e. singly phosphorylated peptides 

with well-localized phosphorylation sites (Ascore≥13) were considered. For up- and down-

regulated phosphorylation sites, sequences were centered on each phosphorylation site and 

extended to 13 aa (6 residues on each side of the site) and analyzed with the Motif-X algorithm.68 

The Homo sapiens protein database was used as a background.  
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6.1.3 Results and discussion 

6.1.3.1 Protein identification and quantification 

HepG2 cells were treated by atorvastatin for 24 hours before harvest and subsequent 

protein and protein phosphorylation analysis, as shown in Figure 6.1. For protein identification 

and quantification, proteins were digested by Lys-C, purified and then fractionated into 21 samples 

by HPLC. Each fraction was then measured by LC-MS/MS. Overall, 157,118 total peptides 

corresponding to 78,316 unique peptides were identified, and 6,316 proteins (based on gene 

symbols) were identified with 0.99% FDR at the protein level and 0.12% at the peptide level.   

Examples of both a mass spectrum (MS) and tandem mass spectrum (MS2) are displayed 

in Figure 6.2. The MS shows a pair of the peptide isotope profiles; the heavy peptide is from cells 

treated by atorvastatin, which has stronger intensity, while the light peptide is from untreated cells.  

The peptide DQEVLLQTFLDDASPGDK# (# refers to the heavy lysine) was confidently 

identified in the MS2 with an XCorr of 6.6 and a mass accuracy of -0.05 ppm (Figure 6.2b). This 

peptide is from the protein APOB (apolipoprotein B), which is a very large protein that is a major 

protein constituent of chylomicrons, low-density lipoproteins (LDL) and very low-density 

lipoproteins (VLDL). 
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Figure 6.1 Experimental procedure of the global analysis of proteins and protein phosphorylation. 

 

We identified 270 total and 194 unique peptides from this protein. The elution profiles of 

the light and heavy versions of the peptide are shown in Figure 6.2c. The ratio of the areas under 

the curves provides highly accurate protein abundance changes. From over 100 quantified unique 

peptides, we obtained an overall abundance change of 2.02 between treated and untreated cells.  

Based on the criteria described in the methods section, we were able to quantify 6,181 

proteins (listed in a table online at doi.org/10.1021/pr501277g), with their abundance distribution 

displayed in Figure 6.3a. At least two peptides were quantified in 5,907 proteins. A total of 104 

proteins were down-regulated while 81 proteins were up-regulated by over 2-fold in cells treated 

by atorvastatin. As expected, few proteins were regulated because atorvastatin is mild enough that 

it can be taken for many years without significant side effects, and cells were only treated for one 

day in these experiments. 
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Figure 6.2 Examples of (a) a mass spectrum, (b) a tandem mass spectrum and (c) the elution 

profiles of heavy (atorvastatin-treated) and light (untreated) versions of the peptide 

DQEVLLQTFLDDASPGDK, which is from the protein APOB. 
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6.1.3.2 Up-regulated proteins related to lipid metabolic process 

Upon inhibition of HMGCR by atorvastatin, a considerable number of proteins related to the lipid 

metabolic process were up-regulated. About 21% of up-regulated proteins (17 out of 81), listed in 

Table 6.1, are related to the lipid metabolic process, which is highly enriched with a P value of 8.7 

x 10-8 (Figure 6.3b) based on the analysis using the Database for Annotation, Visualization and 

Integrated Discovery (DAVID).69   

 
 
 

Figure 6.3 (a) Protein abundance changes for cells treated by atorvastatin vs. untreated, and (b) 

clustering of up-regulated proteins. 
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For example, ACSS2, acetyl-coenzyme A synthetase, which is located in the cytoplasm 

and activates acetate for lipid synthesis or energy generation, was up-regulated by 2.6-fold. 

CYP19A1, aromatase, which is crucial for cholesterol homeostasis, was up-regulated by 2.2-fold. 

It catalyzes a rate-limiting step in cholesterol catabolism and bile acid biosynthesis by introducing 

a hydrophilic moiety at position 7 of cholesterol (http://www.uniprot.org/uniprot/P22680). CNBP, 

a cellular nucleic acid-binding protein involved in sterol-mediated repression, was also quantified 

to be up-regulated by 2.7-fold in treated cells.  

 

Table 6.1 Up-regulated proteins related to lipid metabolic processes. 

Reference Gene 
symbol 

Peptide 
hits 

Protein 
ratio Annotation 

P33121 ACSL1 39 2.3 Long chain fatty acid CoA ligase 1 

Q08AH3 ACSM2A 3 3.1 Acyl-coenzyme A synthetase 
ACSM2A, mitochondrial 

Q68CK6 ACSM2B 3 3.1 Acyl-coenzyme A synthetase 
ACSM2B, mitochondrial 

Q9NR19 ACSS2 22 2.6 Acetyl-coenzyme A synthetase, 
cytoplasmic 

P06727 APOA4 24 4.9 Apolipoprotein A-IV 
P04114 APOB 239 2.0 Apolipoprotein B-100 
P62633 CNBP 20 2.0 Cellular nucleic acid-binding protein 
P11511 CYP19A1 8 2.2 Aromatase 

Q9H5J4 ELOVL6 1 4.3 Elongation of very long chain fatty 
acids protein 6 

O95864 FADS2 3 3.0 Fatty acid desaturase 2 
P37268 FDFT1 69 2.8 Squalene synthase 

P04035 HMGCR 21 15.3 3-hydroxy-3-methylglutaryl-
coenzyme A reductase 

Q14693 LPIN1 2 2.1 Phosphatidate phosphatase LPIN1 

Q8NBP7 PCSK9 9 3.8 Proprotein convertase 
subtilisin/kexin type 9 

Q5T2R2 PDSS1 3 2.4 Decaprenyl-diphosphate synthase 
subunit 1 

O00767 SCD 13 2.4 Acyl-CoA desaturase 
Q14534 SQLE 27 4.4 Squalene monooxygenase 
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6.1.3.3 Abundance changes of proteins in the mevalonate pathway 

Atorvastatin inhibited HMGCR which prevented the synthesis of cholesterol and other 

lipids in the mevalonate pathway. HMGCR was highly up-regulated by 15.3-fold, which is 

consistent with the up-regulation of HMGCR mRNA in a previous study.70 We identified 26 total 

peptides, and 18 unique peptides from this protein. After filtering based on the criterion of S/N>3, 

the final abundance change was calculated from 12 unique quantified peptides. In the mevalonate 

pathway, the abundance of the upstream protein HMGCS1, HMG-CoA synthase, was elevated by 

1.8-fold. The abundances of both ACAT1, acetyl-CoA acetyltransferase in mitochondria, and 

ACAT2, acetyl-CoA acetyltransferase in cytoplasm, were also increased by 1.4- and 1.5-fold, 

respectively. Downstream proteins, including MVK, PMVK, MVD, FDPS and GGPS1, were not 

significantly regulated, as shown in Figure 6.4. The essential intermediate in this pathway, 

farnesyl-PP, can be converted into different types of lipids including squalene, ubiquinones, sterols, 

heme A, dolichols, and geranylgeranyl-PP. Interestingly, FDFT1, which catalyzes farnesyl-PP to 

squalene, was up-regulated by 2.8-fold, and another downstream enzyme, SQLE, squalene 

monooxygenase, was also up-regulated by 4.4-fold.  

Low-density lipoprotein receptor (LDLR), which binds LDL, is the major cholesterol-

carrying plasma lipoprotein, and is transported into cells by endocytosis. It has been reported that 

statin can up-regulate the hepatic LDLR, resulting in lower serum LDL levels.71 It was also 

documented that an increase at the LDLR mRNA level occurred in human circulating mononuclear 

cells as a response to atorvastatin.72 In the current work, LDLR was quantified to be up-regulated 

by 2.0-fold in cells treated by atorvastatin, which is correlated with increased cholesterol intake 

due to intracellular cholesterol synthesis inhibition. 
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Figure 6.4 Abundance changes of proteins in the mevalonate pathway and some proteins related 

to cholesterol transportation (all abundance changes refer to intracellular proteins). 
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APOA4 is another critical protein in the secretion and catabolism of chylomicrons and 

VLDL. It is required for efficient activation of lipoprotein lipase by ApoC-II and is a potent 

activator of LCAT. Furthermore, the anti-oxidant and anti-antherogenic properties of APOA473, 74 

may contribute to the pleiotropic effects of statins. This protein is highly up-regulated by 4.9-fold. 

Proteome analysis can provide a global view of protein abundance changes in atorvastatin-treated 

cells. Most proteins in this pathway are not significantly regulated, while several very important 

proteins, including HMGCR, FDFT1, SQLE, LDLR and APOA4, are up-regulated. 

 

6.1.3.4 Clustering of down-regulated proteins 

Among 104 down-regulated proteins, 30 proteins (29%) with gene expression function are 

enriched with a P value of 1.1 x 10-3. Some proteins related to nucleobase and nucleic acid 

metabolic process, cytoskeleton organization, macromolecular biosynthetic process, and cell cycle 

process are also down-regulated. In addition, proteins that have roles in cellular response to stress 

and DNA damage are also enriched among down-regulated proteins.  

For down-regulated proteins, 44 are located in the nucleus, which is the most highly 

enriched location based on cellular compartment clustering, with a P value of 2.8 x 10-5. In addition, 

32 proteins are related to nucleic acid binding with a P value of 5.7 x 10-4. Three proteins 

corresponding to chronic myeloid leukemia were down-regulated: E2F3, MDM2, and NFKBIA. 

A group of eight proteins associated with programmed cell death, CFLAR, TOP1, SEMA6A, 

CASP4, MAP1S, NFKBIA, ACIN1, and CCAR1, were also found to be down-regulated, and they 

are marked in green in Figure 6.3a. For instance, CCAR1, cell division cycle and apoptosis 

regulator protein 1, may play an important role in transcriptional regulation and apoptosis signaling. 

Here we quantified 15 unique peptides from this protein, with its abundance down-regulated by 



 
261 

2.8-fold in cells treated by atorvastatin. CASP4 (Caspase-4) is involved in the activation cascade 

of caspases responsible for apoptosis execution, and was also decreased by 2.1-fold.    

 

6.1.3.5 Global analysis of protein phosphorylation  

For protein phosphorylation, effective enrichment is vital to achieve large-scale 

identification and quantification by MS. A two-step enrichment method was used for protein 

phosphorylation analysis. SCX can be used to separate phosphopeptides from non-phophopeptides 

based on charge. At pH~3, the phosphate group is negatively charged, which makes 

phosphopeptides carry a lower overall positive charge. Therefore they elute from the SCX column 

before non-phosphopeptides. Following SCX fractionation, each of the twelve fractions was 

further enriched by TiO2. In this experiment, we identified 27,369 total phosphopeptides with a 

false positive rate of less than 0.1% at the phosphopeptide level, and 15,513 unique 

phosphopeptides were identified from 2,302 proteins.  

The overlap between identified proteins and phosphoproteins is shown in Figure 6.5a. 

Although the amount of starting material for protein analysis was over 50 times less than that for 

protein phosphorylation analysis, over 82% overlap between the datasets clearly demonstrated that 

the protein coverage was very high in the protein analysis. In total, 6,730 proteins were identified 

in HepG2 cells. 

 Overall, 9,791 unique phosphopeptides in 2,238 proteins were quantified (listed in a table 

online at doi.org/10.1021/pr501277g), among which 759 unique phosphopeptides from 354 

proteins were down-regulated by at least twofold while 431 phosphopeptides in 266 proteins were 

up-regulated. Compared to protein abundance changes, phosphopeptide abundance changes were 
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more dynamic, which is consistent with the fact that proteins have much longer half-lives than 

protein phosphorylation, which can occur under a second. 

 

 
 

Figure 6.5 (a) Comparison of proteins (6,316) identified in the protein experiment and 

phosphoproteins (2,302) in the phosphorylation experiment, and (b) the abundance distribution of 

quantified phosphopeptides. 

 

6.1.3.6 Motif analysis of regulated phosphorylation sites 

Due to the specific structures of kinase catalytic domains, every type of kinase has a 

preferential motif surrounding the phosphorylation sites of substrates. Motif analysis of regulated 

phosphorylation sites may provide valuable information regarding the effect of atorvastatin on the 

activities of kinases in cells. In order to pinpoint the up- and down-regulated phosphorylation sites, 
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only singly phosphorylated peptides with well-localized phosphorylation sites (Ascore > 13) were 

considered.  Based on the dataset of over 9,000 quantified unique phosphopeptides, 3,409 

phosphopeptides met these requirements, among which 218 were down-regulated and 106 were 

up-regulated. The motif analysis results showed that the [S/T]P motif was found among both up- 

and down-regulated phosphorylation sites, which is the typical motif of cyclin-dependent kinases 

(CDKs) and mitogen-activated protein kinases (MAPKs). The up- and down-regulated sites with 

the [S/T]P motif could be from the direct and indirect effects of atorvastatin. Besides [S/T]P, no 

other motif was identified among up-regulated phosphorylation sites. 

 In contrast, several other types of motifs were found exclusively among down-regulated 

phosphorylation sites, including SPK, SD, E….S, K.T, K..S and K….S (“.” represents any amino 

acid residue), as shown in Figure 6.6. Basophilic enzymes such as PKA and PKC can recognize 

basic side chains preceding the target serine or threonine residues. Three identified motifs have a 

K before down-regulated phosphorylation sites. For example, K..S is the preferred motif of PKC.75 

PKC family members play significant roles in a variety of intracellular signal transduction 

processes, and are involved in receptor desensitization, modulating membrane structure events, 

regulating transcription, mediating immune responses, and regulating cell growth. These functions 

are achieved by PKC-mediated phosphorylation of their protein substrates. PKC, activated by 

tumor promoter phorbol ester, may phosphorylate potent activators of transcription, and thus lead 

to increased expression of oncogenes, promoting cancer progression.76 Here, phosphorylation sites 

with the preferred basic motif K..S were enriched among down-regulated sites in cells treated by 

astorvastatin, which suggests that the activity of PKC was attenuated by the statin.  
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Figure 6.6 The results of motif analysis among down-regulated phosphorylation sites. 

 

6.1.3.7 Pathway analysis based on regulated protein phosphorylation 

Phosphoproteins containing up- or down-regulated phosphopeptides were clustered using 

DAVID.69 Proteins related to gene expression, cell cycle and macromolecular metabolic process 

are highly enriched among up- and down-regulated phosphoproteins.  For example, 99 out of 354 

down-regulated phosphoproteins were related to gene expression with a P value of 1.9 x 10-8, while 

68 of 266 up-regulated phosphoproteins were found to belong to this category (P=3.6 x 10-4).  

Regulation of gene expression by protein phosphorylation is very complex in cells treated by statin. 

Up-regulated phosphoproteins: Similar to the protein abundance changes, after statin 

treatment, phosphopeptides from several proteins with functions relating to metabolism of lipids 

and lipoproteins were up-regulated, including HMGCR, HMGCS1, HMGCL, FDFT1, FASN, 

HADHA and LDLR. Protein activities are often regulated by their phosphorylation and the up-
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regulation of protein phosphorylation very likely corresponds to the increased activities of these 

proteins.  

While statins inhibit HMGCR to lower cholesterol, the synthesis of other lipids through 

the mevalonate pathway is also inhibited, including farnesy-PP and geranylgeranyl-PP. Therefore, 

protein lipidation will be dramatically impacted. Lipidation of proteins plays critical roles in 

protein localization and signal transduction, for example the lipidated proteins Ras, Rho and Rap.13 

In this experiment, twelve G-protein modulators that contained up-regulated phosphopeptides 

were quantified, listed in Table 6.2. For example, ARHGAP11A, Rho GTPase-activating protein 

11A, is involved in the regulation of small GTPase mediated signal transduction. Four unique 

phosphopeptides were quantified, but only the peptide AGCFS@PK (@ refers to the 

phosphorylation site) with a site at S422 was highly up-regulated by 6.6-fold. This site contains 

the SP motif. The doubly phosphorylated peptide with sites at S718 and S719 has a ratio of 1.5, 

and the other two phosphopeptides with sites at S484 or S868 have ratios of 1.0 and 1.3, 

respectively. Without protein lipidation, Ras, Rho and Rap cannot be localized to the plasma 

membrane and correspondingly cannot transduce signals effectively, which may be the 

explanation of why many G-protein modulators have up-regulated phosphorylation. In addition, 

some phosphopeptides from these G-protein modulators were down-regulated (listed in a table 

online at doi.org/10.1021/pr501277g) as a result of atorvastatin treatment. It is well-known that 

signal transduction by protein phosphorylation is extremely intricate in cells. The current 

experiments further demonstrated that the statin treatment impacts G-protein related signal 

transduction. 
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Table 6.2 Up-regulated phosphopeptides from G-protein modulators.  

Reference Gene 
symbol Phosphopeptide PPM XCorr Site Ascore Peptide 

ratio Annotation 

P53367 ARFIP1 
K.LKT@PGVDAPSWL
EEQ 0.8 2.98 361 78.2 9.5 

Arfaptin-1, interacts with 
GTP-bound ARF3 

Q6P4F7 
ARHGAP
11A K.AGCFS@PK -0.1 1.72 422 1000 6.6 

Rho GTPase-activating 
protein 11A 

Q6ZUM4 
ARHGAP
27 

SS@QDGDTPAQASPP
EEK 0.7 3.36 456 0.0 16.6 

Rho GTPase-activating 
protein 27 

SSQDGDTPAQAS@PP
EEK# 0.8 2.60 466 17.3 2.0 

Q9UBC2 EPS15L1 
DSLRSTPS@HGSVSSL
NSTGSLS@PK# 0.5 2.87 

241, 
255 

6.0,  
5.7 3.0 

Epidermal growth factor 
receptor substrate 15-like 
1 

P85299 PRR5 FMSSPSLS@DLGK# 1.7 1.67 16 6.6 7.1 

Subunit of mTORC2, 
which regulates cell 
growth and survival. 

Q9NYI0 PSD3 
SHS@SPSLNPDT@SPI
TAK# -1.2 3.78 

1011, 
1019 

9.3, 
0.0 3.4 

PH and SEC7 domain-
containing protein 3 

Q96QF0 RAB3IP 
STSSAMSGS@HQDLS
VIQPIVK 0.5 2.77 296 0.0 2.2 

Rab-3A-interacting 
protein 

Q9H6Z4 RANBP3 NESSNAS@EEEACEK 0.0 4.47 244 73.3 5.3 Ran-binding protein 3 

Q684P5 
RAP1GA
P2 

QEVFVYSPSPSSESPS
@LGAAATPIIMSRSPT
DAK# -1.5 3.96 687 4.4 3.7 

Rap1 GTPase-activating 
protein 2 

Q92609 TBC1D5 

SQAPVCSPLVFSDPLM
GPASASSSNPSS@SPD
DDSSK -0.1 4.89 775 0.0 3.3 

TBC1 domain family 
member 5, a GTPase-
activating protein for Rab 
family protein(s) 

O75962 TRIO 

DSLSVSSNDAS@PPAS
VASLQPHMIGAQSS@
PGPK 3.2 4.12 

1745,
1763 

7.4,  
9.3 64.1 

Triple functional domain 
protein, promotes the 
exchange of GDP by GTP, 
positive regulation of 
GTPase activity 

DSLSVSSNDASPPAS@
VASLQPHMIGAQSSPG
PK 0.4 4.91 1749 2.6 43.3 

 

The activities of kinases are often regulated by their phosphorylation, and many 

phosphopeptides from several kinases were up-regulated, including EPHA2, PTK2, CAMK1, 

CDK1, CAMK2D, MAP3K4, PAK2, PKN1, RPS6KC1, STK33 and TLK1, TGFBR2 and TPR. 

MAP3K4, mitogen-activated protein kinase kinase kinase 4, is a component of a protein kinase 

signal transduction cascade and activates the CSBP2, P38 and JNK MAPK pathways. Three out 

of four quantified phosphopeptides were up-regulated by 2.0-2.5-fold, respectively. The three up-

regulated peptides have the same sequence, but different phosphorylation sites. This could be due 

to incorrect site assignments because of insufficient fragment information in the MS2 spectra. 

TLK1, a serine/threonine-protein kinase tousled-like 1, is rapidly and transiently inhibited by 
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phosphorylation following the generation of DNA double-stranded breaks during S-phase.77, 78 In 

our experiment, two triply phosphorylated peptides were up-regulated, which suggested that the 

activity of TLK1 was attenuated in cells treated by atorvastatin. However, several quantified 

phosphopeptides from TLK2 were not regulated. TGFBR2 is a transmembrane serine/threonine 

kinase forming with the TGF-beta type I serine/threonine kinase receptor, TGFBR1, the non-

promiscuous receptor for the TGF-beta cytokines TGFB1 (transforming growth factor beta-1), 

TGFB2 and TGFB3. It transduces the TGFB1, TGFB2 and TGFB3 signal from the cell surface to 

the cytoplasm and is thus regulating a plethora of physiological and pathological processes 

including cell cycle arrest in epithelial and hematopoietic cells, control of mesenchymal cell 

proliferation and differentiation, wound healing, extracellular matrix production, 

immunosuppression and carcinogenesis (http://www.uniprot.org/uniprot/P37173). The C-terminal 

peptides (located in the cytoplasm) with the phosphorylation sites at S562 and T566 were up-

regulated by 2.8-fold. More detailed information about quantified phosphopeptides in kinases is 

included in listed in a table online at doi.org/10.1021/pr501277g. 

Down-regulated phosphoproteins: In this experiment, more phosphopeptides were down-

regulated than up-regulated. In addition to many phosphoproteins related to gene expression and 

the cell cycle, other interesting pathways, including the splicesome, tight junction, apoptosis, and 

CARM1 (coactivator-associated arginine methyltransferase 1) and regulation of estrogen receptor 

pathways, contain down-regulated phosphoproteins.        

Tight junctions, also known as occluding junctions, are the closely associated areas of two 

cells whose membranes join together forming a virtually impermeable barrier to fluid. In the tight 

junction pathway, phosphopeptides from seven proteins were found to be down-regulated, 

including EPB41L2, INADL, CTTN, PARD3, OCLN, CGN and MLLT4. Down-regulation of 
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these phosphoproteins in the tight junctions may interfere with cell-cell interactions, which may 

be related to the pleiotropic effects of statins.  

Four proteins (SRA1, BRCA1, MED1 and POLR2A) that have roles in the CARM1 and 

regulation of estrogen receptor pathway were found to contain down-regulated phosphopeptides 

in cells treated by the statin. SRA1, steroid receptor RNA activator 1, enhances cellular 

proliferation and differentiation, and promotes apoptosis in vivo and may play a role in 

tumorigenesis.79 It is highly expressed in the liver and skeletal muscle and is up-regulated in human 

tumors of the breast, ovary, and uterus. At the protein level, SRA1 is slightly down-regulated with 

a ratio of 0.77, which is similar to literature reports.57 In the phosphorylation experiment, one 

peptide RVAAPQDGS@PRVPAS@ETSPGPPPMGPPPPSSK was down-regulated by 2.5-fold, 

but the other singly phosphorylated peptide at the C-terminus of the protein was not regulated.  

MED1 is a component of the Mediator complex, and a coactivator involved in the regulated 

transcription of nearly all RNA polymerase II-dependent genes. In cells treated by atorvastatin, the 

abundance of MED1 was decreased by a ratio of 0.62, which is in a very good agreement with the 

~ 30% decrease previously reported in HL-60 cells treated by lovastatin.57 Based on the 

quantification of protein phosphorylation, 21 out of 24 unique quantified phosphopeptides were 

down-regulated in MED1. Our phosphorylation results clearly demonstrate that atorvastatin has 

an impact on the CARM1 and regulation of estrogen receptor pathway, which may contribute to 

its anti-cancer activity. 

 

6.1.4 Conclusions 

Statins are the most common and effective drugs for lowering cholesterol in patients.  The 

have pleiotropic effects possibly due to off-target effects and/or secondary effects from lipid 
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synthesis inhibition in the mevalonate pathway. Here we systemically investigated the protein and 

protein phosphorylation abundance changes in HepG2 cells treated by atorvastatin. Over 6,000 

proteins were quantified, but only a very small portion of them were regulated, i.e. 104 down-

regulated and 81 up-regulated.  As expected, many lipid-related proteins were up-regulated, 

including HMGCR, FDFT, SQLE and LDLR, while proteins related to gene expression, cellular 

response to stress and apoptosis were down-regulated. We quantified almost 10,000 unique 

phosphopeptides, which were more dynamic than proteins. The protein phosphorylation results 

demonstrate that many proteins with gene expression and cell cycle function have regulated 

phosphorylation, including both up- and down-regulated phosphorylation. Several basic motifs 

found among down-regulated sites indicated that kinases with preferences for these motifs have 

attenuated activities, including PKA and PKC. In addition to phosphoproteins related to lipid 

metabolism, phosphopeptides on a group of G-protein modulators were up-regulated, which may 

be due to cell signal transduction changes resulted from the effect of protein lipidation by the statin. 

Phosphopeptides from several proteins related to the tight junction, apoptosis, and CARM1 and 

regulation of estrogen receptor pathways were down-regulated. MS-based proteomics techniques 

provide an ideal way to gain insight into the protein and modified protein changes in cells treated 

by statin. A more comprehensive understanding of the cellular response to statins and the 

underlying molecular mechanisms of their pleiotropic effects will be beneficial in applying them 

to treat noncardiac vascular diseases, and minimizing their potential side effects.   
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6.2 Mass Spectrometric Analysis of the Human N-glycoproteome in Statin-Treated Liver 

Cells with Two Lectin-Independent Chemical Enrichment Methods 

 

6.2.1 Introduction 

Protein glycosylation is critical in determining protein folding, trafficking, stability and 

activity 80, 81. Among multiple types of protein glycosylation, N- and O-linked glycosylation are 

the two major types 82, 83. N-linked glycosylation occurs on the side chain of the asparagine residue 

and often has an N-X-S/T/C (X stands for any amino acid residues other than proline) 84, 85, while 

O-linked glycosylation is on the side chains of serine and threonine residues 86-88. N-glycosylation 

typically begins with the synthesis of the dolichol-linked precursor oligosaccharide 

(GlcNAc2Man9Glc3), followed by en bloc transfer of the precursor oligosaccharide to newly 

synthesized peptides in the endoplasmic reticulum (ER) 89, 90. Due to its importance in biological 

systems 91-93, N-glycosylation has also brought extensive attention for its role in human disease, 

such as Alzheimer’s disease (AD), cancer, and infectious diseases 92, 94, 95. 

             With the development of mass spectrometry (MS) instrumentation and computation 

techniques, current MS-based proteomics is very powerful in analyzing protein modifications, 

including glycosylation, in complex biological samples 96-107. Due to the low abundance of many 

glycoproteins, sub-stoichiometry of protein glycosylation, and the complexity of biological 

samples, it is imperative to enrich glycoproteins prior to MS analysis 106, 108, 109. Conventional 

lectin-based enrichment methods have been extensively used 110, 111. However, due to the binding 

specificity of lectin, no single or several types of lectin can cover all glycoproteins that have highly 

diverse glycans in human cells.  
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In recent years, several very elegant methods have been developed and tremendously 

advanced the glycoproteomics field 85, 106, 107, 112-114. In this work, we systematically compared two 

lectin-independent chemical methods to enrich and analyze glycoproteins in human cells: one 

based on boronic acid and cis-diol interactions 108, 115 and the other benefited from metabolic 

labeling and click reaction 116-118. For the first method, we utilized the universal and reversible 

interactions between boronic acid and sugar molecules. Boronic acid and cis-diols can form 

reversible covalent bonds in basic solutions, and conversely, the bonds are prone to cleavage under 

acidic conditions. The reversible nature of this bond ensures that glycopeptides can be effectively 

released after capturing. The second method takes advantage of the endogenous glycoprotein 

synthesis machinery to incorporate a chemical handle into glycans for further click chemistry and 

biotin avidin-based glycopeptide enrichment. An unnatural sugar analog containing an azide group 

was employed to feed cells in order to generate the chemical handle mentioned above. Comparing 

to BA, we reasoned that MC has the advantage of better reflecting the dynamic changes in cells 

since only the newly-synthesized glycoproteins are labeled by the sugar analog, while BA may be 

more universal for glycoprotein enrichment.   

In this work, we designed an experiment to comprehensively compare the identification 

and quantification of glycoproteins with these two methods. We analyzed the glycoproteome 

changes in statin-treated liver cells using these two methods. Statins are a group of cholesterol-

lowering drugs that target 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), which 

is the rate-limiting enzyme of the mevalonate pathway. Upon inhibition of HMGCR, the synthesis 

of many intermediate and end products in this pathway was affected, which induced many well-

known pleiotropic effects of statins. Dolichol is one of the end products and is involved in protein 

N-glycosylation, functioning as the membrane anchor for precursor oligosaccharides formation. 
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Therefore, we expected that protein N-glycosylation was attenuated in statin-treated cells. Using 

liver cells (HepG2) as a biological model, we systematically evaluated the performance of these 

two methods and explained the underlying mechanisms for the differences observed. The current 

work may provide useful information for future selection of enrichment methods to study the cell 

glycoproteome under different circumstances. 

 

6.2.2 Experimental section 

6.2.2.1 Cell Culture and metabolic labeling 

HepG2 (C3A) cells (from American type culture collection (ATCC)) were grown in 

“heavy” and “light” SILAC (stable isotope labeling with amino acids in cell culture) Dulbecco's 

modified eagle's medium (DMEM) (Sigma-Aldrich) for five generations before treatment with a 

statin. The medium also contained 1000 mg/L glucose and 10% dialyzed fetal bovine serum 

(diFBS) (Corning).  “Heavy” and “light” SILAC media were freshly prepared by adding 0.146 g/L 

13C6
15N2 L-lysine (Lys-8) and 0.84 g/L 13C6 L-arginine (Arg-6) (Cambridge Isotope Lab) or the 

corresponding non-labeled L-lysine (Lys-0) and L-arginine (Arg-0). When cells reached about 

70% confluency, we switched to SILAC media without diFBS and added 15 µM atorvastatin to 

the heavy group. Meanwhile, dimethyl sulfoxide (DMSO) was used to treat the light group as a 

vehicle control. For the MC experiments, 100 µM tetra-acetylated N-azidoacetylgalactosamine 

(Ac4GalNAz) (Click Chemistry Tools) was added into both heavy and light cells at the statin or 

mock treatment time. Cells were then maintained in a humidified incubator at 37 °C and 5.0% CO2 

for 24 h. 
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6.2.2.2 Cell lysis, click reaction, and protein digestion 

Cells were washed twice with phosphate buffered saline (PBS), harvested by scraping in 

PBS, and pelleted by centrifugation at 500 g for 3 min. Two trial runs using about 2% of total cells 

were conducted to calibrate the heavy and light cell ratios in the BA and MC experiments. For the 

real experiments, heavy and light cells were mixed based on the protein ratio of 1:1 according to 

the results from the trial runs. The cell pellets were lysed through end-over-end rotation at 4 ºC for 

45 minutes in a lysis buffer (50 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) 

pH=7.6, 150 mM NaCl, 0.5% sodium deoxycholate (SDC), 25 units/mL benzonase and 1 tablet/ 

10 mL protease inhibitor (EDTA-free, Roche)). Lysates were centrifuged, and the resulting 

supernatant was transferred to new tubes. For the MC experiment, the supernatant was reacted 

with 100 µM dibenzocyclooctyne (DBCO)-sulfo-biotin to have the metabolically labeled 

glycoproteins tagged with biotin through the specific click reaction between the azido group and 

DBCO 119-121. Proteins were subjected to disulfide reduction with 5 mM 1,4-dithiothreitol (DTT) 

(56 ºC, 25 min) and alkylation with 14 mM iodoacetamide (RT, 20 min in the dark). Detergent 

was removed by the methanol-chloroform protein precipitation method. The purified proteins were 

digested with 10 ng/µL Lys-C (Wako) in 50 mM HEPES pH 8.2, 1.6 M urea, 5% ACN at 31 ºC 

for 16 h, and 10 ng/uL trypsin (Promega) at 37 ºC for 4 h. 

 

6.2.2.3 Glycopeptide separation, enrichment and deglycosylation 

Digestion mixtures were acidified by addition of trifluoroacetic acid (TFA) to a final 

concentration of 0.1%, clarified by centrifugation, desalted using tC18 SepPak cartridge (Waters), 

and lyophilized. For the BA experiment, purified peptides were dried and enriched with boronic 

acid-conjugated magnetic beads (Figure 6.7a). Briefly, beads were washed three times with 100 
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mM ammonium acetate. Peptides were dissolved in the same buffer and mixed with the beads. The 

mixture was incubated in a shaking incubator at room temperature for an hour, and the beads were 

washed with the buffer mentioned above to remove non-glycopeptides. Finally, the beads were 

eluted with ACN:H2O:TFA = 49:50:1 with shaking. The elution was lyophilized and purified with 

tC18 SepPak cartridge, dried overnight, and treated with four units of peptide-N-glycosidase F 

(PNGase F, Sigma-Aldrich) in 80 µL buffer containing 50 mM NH4HCO3 in heavy oxygen water 

(H2
18O) at 37 °C for 3 h. The reaction was quenched by addition of 1% TFA to pH~2, desalted, 

and dried. The glycopeptides were fractionated by high pH reversed-phase high-performance 

liquid chromatography (HPLC) into 10 fractions with a 40-min gradient of 5-55% ACN in 10 mM 

ammonium acetate (pH=10). The fractions were dried and further purified with the stage-tip 

method. 

For the MC experiment, purified and dried peptides were enriched with NeutrAvidin beads 

(Thermo) at 37 °C for 30 min (Fig. 5.7b). The samples were transferred to spin columns and 

washed according to manufacturer’s protocol. Peptides were eluted from the beads by 3-min 

incubations with 300 µL of 8 M guanidine-HCL (pH=1.5) at 56 °C three times. Eluates were 

combined, desalted using tC18 SepPak cartridge, and lyophilized overnight. Dried peptides were 

deglycosylated as described in the BA experiment and quenched using the same method. 

Subsequently, we also attempted to fractionate the glycopeptide sample using HPLC, but the 

results were not ideal because the enriched sample amount in the MC experiment was much lower 

than the sample amount in the BA experiment since only the newly-synthesized and metabolically 

labeled glycopeptides were enriched. Finally, we fractionated the deglycosylated peptides during 

the stage-tip step, and the sample was separated into 3 fractions using the elution buffer with 20%, 

50% and 80% ACN, respectively, containing 1% HOAc. 
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Figure 6.7 Experimental schemes of the (a) BA and (b) MC experiments.  

(a)

(b)
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6.2.2.4 LC-MS/MS analyses  

Purified and dried peptide samples were dissolved in 10 µL solution of 5% ACN and 4% 

formic acid (FA) each, and 4 µL of the resulting solutions were loaded onto a microcapillary 

column packed with C18 beads (Magic C18AQ, 3 µm, 200 Å, 100 µm x 16 cm, Michrom 

Bioresources) by Dionex WPS-3000TPLRS autosampler (UltiMate 3000 thermostatted Rapid 

Separation Pulled Loop Wellplate Sampler). Peptides were separated by reversed-phase 

chromatography using UltiMate 3000 binary pump with a 110 min gradient with increasing 

concentration of ACN (in 0.125% FA). Peptides were detected with a data-dependent Top20 

method 42, 60 in a hybrid dual-cell quadrupole linear ion trap - Orbitrap mass spectrometer (LTQ 

Orbitrap Elite, ThermoFisher, with Xcalibur 3.0.63 software). For each cycle, one full MS scan 

(resolution: 60,000) in the Orbitrap at 106 AGC target was followed by up to 20 MS/MS in the 

LTQ for the most intense ions. The selected ions were excluded from further analysis for 90 

seconds. Ions with singly or unassigned charge were not sequenced. Maximum ion accumulation 

times were 1000 ms for each full MS scan and 50 ms for MS/MS scans. 

 

6.2.2.5 Database searches and data filtering 

Raw data files from the mass spectrometer were converted into mzXML format, and 

precursor ion mass measurements were refined by checking the monoisotopic peak assignments 

50. All spectra were searched using the SEQUEST algorithm (version 28) 61 and matched against 

a database encompassing sequences of all proteins in the UniProt Human (Homo sapiens) database 

containing common contaminants. Each protein sequence was listed in both forward and reverse 

orders to control the false discovery rate (FDR) of glycopeptide identifications. We performed the 

database search using the following parameters: 10 ppm precursor mass tolerance; 1.0 Da product 
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ion mass tolerance; fully digested with trypsin; up to two missed cleavages; variable modifications: 

oxidation of methionine (+15.9949), O18 tag of asparagine (+2.9883), heavy lysine (+8.0142), and 

heavy arginine (+6.0201); fixed modifications: carbamidomethylation of cysteine (+57.0214).  

The target-decoy method was employed to estimate and control FDRs at the glycopeptide 

levels 62, 63. Through linear discriminant analysis (LDA), which is similar to other methods reported 

in the literature 64-66, several parameters (such as XCorr, ΔCn, precursor mass error, and charge 

state) were used to distinguish correct and incorrect peptide identifications 50. After scoring, 

peptides shorter than six amino acid residues were removed, and the dataset was restricted to 

glycopeptides when determining FDRs. Glycopeptide FDRs were filtered to <1 % based on the 

number of decoy sequences in the final data set.  

 

6.2.2.6 Glycopeptide quantification and glycosylation site localization  

For peptide quantification, we required an S/N value larger than 3 for both heavy and light 

species. If the S/N value of one member of a heavy and light pair was less than 3, the partner was 

required to be greater than 5. A probabilistic algorithm was used to localize N-glycosylation sites 

and to estimate the assignment confidence 67, 122. A ModScore was calculated for each 

glycosylation site, and sites with a ModScore >13 (P<0.05) were considered to be confidently 

localized.  

 

6.2.3 Results and discussion 

6.2.3.1 Examples of glycopeptide identification 

The enriched glycopeptides were treated with PNGase F in heavy oxygen water to remove 

N-glycans and to generate a common tag. When this enzymatic reaction occurs in heavy oxygen 
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water, the converted Asp from the glycosylation site contains heavy oxygen, which creates a mass 

shift of +2.9883 Da for MS analysis. In this case, heavy oxygen on Asp enabled us to distinguish 

authentic N-glycosylation sites from those caused by spontaneous asparagine deamidation, which 

may happen in vivo and during sample preparation. It could also occur during PNGase F treatment, 

which may result in false positive identifications of protein N-glycosylation sites. To minimize 

false positive identifications, we ran the reaction for 3 h, during which the effect of deamidation 

was nearly negligible 118. 

Two examples of N-glycopeptide identifications are shown in Figure 6.8. Formerly 

glycosylated peptide YHYN*GTLLDGTLFDSSYSR@ (*-N-glycosylation site, @-heavy 

arginine) was confidently identified with XCorr of 5.9 from the BA experiment (Figure 6.8a). This 

peptide is from protein FKBP9, one of the peptidyl-prolyl cis-trans isomerases (PPIases) that 

accelerates the folding of proteins during protein synthesis. The other deglycosylated peptide 

SSCGKEN*TSDPSLVIAFGR shown in Figure 6.8b is from protein LAMP1- lysosome-

associated membrane glycoprotein 1, which has the major function of presenting carbohydrate 

ligands to selectins. This peptide was identified in the MC experiment with an even higher XCorr 

of 6.2 and mass accuracy of -0.23 PPM. The site N84 is confidently identified to be glycosylated 

with ModScore=1,000, and the score of 1,000 means that only one possible glycosylation site 

exists on the identified glycopeptide. 
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Figure 6.8 Tandem mass spectra of (a) the glycopeptide YHYN*GTLLDGTLFDSSYSR@ (*-N-

glycosylation site, @-heavy arginine) from protein FKBP9 identified in the BA experiment, and 

(b) the glycopeptide SSCGKEN*TSDPSLVIAFGR from protein LAMP1 identified in the MC 

experiment.  

 

 

(b)

(a)

400 800 1200 1600 2000
m/z

R
el

at
iv

e 
Ab

un
da

nc
e

y4

b8
y9

b7b3 y3 b
4 y5

b5

y6
b6

y7 y
8

y1
0

b9

b1
0

b1
1
y1
2

b1
2

b1
3 y
13

b1
4 y1
4

b1
5

b1
6

y1
7
b1
7

XCorr=6.2

y1
1

y1
5

y1
6 b1
8

400 800 1200 1600 2000
m/z

R
el

at
iv

e 
Ab

un
da

nc
e

y4

b8

y9

b7b3
y3

b4
y5

b5

y6 y7 y8

y1
0 XCorr=5.9

b1
1

y1
2

b1
2

b1
3

y1
4

y1
5

b1
5 y1
6

b6

b9 b1
0
y1
1

y1
3

b1
5

y1
7



 
280 

 In this work, a total of 2,641 unique formerly glycosylated peptides were identified with 

the boronic acid-based enrichment method and 1,493 with the method combining metabolic 

labeling with click chemistry. These results indicated that the boronic acid enrichment method is 

more universal. 

  

6.2.3.2 N-glycosylation sites identified with the two lectin-independent enrichment methods 

 Boronic acids and sugars can form reversible covalent bonds. Based on this universal 

reaction, our lab has employed this chemical enrichment method to analyze the yeast 

glycoproteome 108. The results demonstrated that this method can be used to effectively enrich 

glycopeptides from digested whole cell lysates. The potential pitfall of this reaction is that the 

interactions are relatively weak, which could affect the enrichment of glycopeptides from low-

abundance glycoproteins. 

Metabolic labeling can be employed to label proteins and/or modified proteins, and the 

labeled proteins and modified proteins may bind to fluorophore for visualization or be selectively 

enriched for further analysis 116, 123. In this study, we incorporated an azide-containing sugar analog 

(Ac4GalNAz) into glycans in glycoproteins, and this azide group was used as a chemical handle 

to tag a biotin molecule onto the metabolically labeled glycans through click chemistry 124, 125. 

Tagging glycoproteins with biotin allowed further glycopeptide enrichment through the strong 

interaction between biotin on labeled peptides and NeutrAvidin beads after cell lysis and digestion. 

The detailed experimental procedure is shown in Figure 6.7b. Stringent wash was employed to 

remove non-glycopeptides. Compared to BA, MC has more steps, and the enrichment is largely 

dependent on metabolic labeling and click reaction efficiency. Since only sugar analog-labeled 
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peptides were enriched with the MC method, it can largely minimize sample complexity, which is 

an advantage when investigating cellular responses to drug treatment.  

 

 
 

 

Figure 6.9 Comparison of glycosylation sites (a) and glycoproteins (b) identified using the two 

enrichment methods. 

 

For glycosylation site identification, in addition to running the PNGase F treatment for 

three hours and filtering glycopeptides with <1% FDR, we also applied another criterion: all 

glycosylation sites must have the consensus motif of NXS/T/C 85 (X stands for a random amino 
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acid other than proline). We confidently identified 1,045 N-glycosylation sites on 432 proteins 

with the boronic acid-based enrichment method, and the sites are listed in a table online at 

doi.org/10.1016/j.ijms.2017.05.010. Using the enrichment method combined with metabolic 

labeling and click chemistry, 685 N-glycosylation sites were identified on 351 proteins (listed in a 

table online at doi.org/10.1016/j.ijms.2017.05.010). 418 common sites were identified in both 

experiments (Figure 6.9a). Many proteins contain one glycosylation site while some proteins are 

highly glycosylated. For instance, LRP1, prolow-density lipoprotein receptor-related protein 1 is 

a large protein with molecular weight 504,606 Da and 4,454 amino acid residues. We identified 

very similar number of glycosylation sites on this protein through the two experiments: 21 sites in 

BA and 20 in MC. As expected, the overlap at the protein level was higher, and 259 common 

glycoproteins were identified from the two experiments (Figure 6.9b).  

 

6.2.3.3 Protein clustering based on molecular function 

 We clustered the glycoproteins identified exclusively in either BA or MC experiment 

according to the molecular function analysis using the Database for Annotation, Visualization and 

Integrated Discovery (DAVID) 69 (Figure 6.10). Interestingly, we found that the most enriched 

categories for glycoproteins identified in the BA experiment are intracellular enzyme activity-

related, such as hydrolase and transferase activities. However, among glycoproteins identified in 

the MC experiment, the top enriched categories are binding, receptor, and molecular transducer 

activities. These activities are known to occur prominently on the cell surface. The differences 

may be attributed to the following reasons. The boronic acid-based enrichment method is universal, 

which may unbiasedly enrich cell surface and intracellular glycoproteins. However, the enrichment 

method based on metabolic labeling and click chemistry is very dependent on the metabolic 
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labeling efficiency, and the latter relies on the endogenous glycan synthesis machinery. In this 

work, we used Ac4GalNAz to feed the cells and labeled the glycans containing GalNAc or GlcNAc. 

Normally, cell surface glycoproteins have mature glycan structures in order to be transported to 

the plasma membrane and/or be secreted, thus these glycans are more likely to have GalNAc 

moieties that can be substituted by GalNAz.  

 

 
 

Figure 6.10 Clustering of the glycoproteins identified only in the (a) BA or (b) MC experiment 

based on molecular function. 

 

 

0 4 8 12

Hydrolase activity, hydrolyzing O-
glycosyl compounds

Transferase activity, transferring
hexosyl groups

Hydrolase activity, acting on glycosyl
bonds

Transferase activity, transferring
glycosyl groups

Mannosidase activity

Exopeptidase activity

-Log (P)

0 4 8 12

Transmembrane receptor
protein kinase activity

Growth factor binding

Cytokine binding

Molecular transducer
activity

-Log (P)

(a)

(b)



 
284 

Although all N-Glycans have GlcNAc, GalNAz must convert into GlcNAz before labeling. 

Therefore, the labeling of GlcNAz may not be as efficient as GalNAz over a relatively short 

labeling period. For intracellular glycoproteins, especially those still in the ER and Golgi, because 

their glycan structures are likely immature, the chance of being labeled would be lower than those 

on the cell surface. Overall, BA is a more global and universal method, while MC has better 

performance on the identification of glycoproteins located on the cell surface. 

 

 
6.2.3.4 Quantification of cell glycoproteome changes in statin-treated cells  

Statins are a family of popular drugs for lowering cholesterol, but they may affect protein 

N-glycosylation because the inhibition of HMGCR by statins also prevents the synthesis of other 

products in the mevalonate pathway, including ubiquinone, dolichol, and farnesyl-pyrophosphate 

(farnesyl-PP) 7. Dolichol is essential to protein N-glycosylation in the form of dolichyl phosphate 

(Dol-P), which serves as the carrier in pyrophosphate-linked oligosaccharide assembly as well as 

acting as the acceptor in the synthesis of the sugar donors Dol-P-Man and Dol-P-Glc from GDP-

Man and UDP-Glc, respectively. Thus, protein N-glycosylation is expected to be impacted while 

the dolichol synthesis is hindered by the statin treatment. Perturbation of protein N-glycosylation 

by statins may contribute to the well-known “pleiotropic effects” of statins 7, 126. Systematic and 

quantitative investigation of protein N-glycosylation changes by statins will provide insight into 

the molecular mechanisms of the pleiotropic effects and allow patients to benefit further from the 

drug. 

 Statin is a relatively mild drug, and patients typically take it for months or years 3. Here, 

we used it to treat cells only for one day, and the drug indirectly affected N-glycosylation; in 



 
285 

addition, dolichol in cells was not depleted. Therefore, we did not expect that N-glycosylation 

would be dramatically influenced over a short period of the treatment. 

 An example of the full MS and elution profiles of the heavy and light versions of 

glycopeptide WSFSN*GTSWR are shown in Figure 6.11a and 5.11b. Based on the areas under 

the curves from both elution profiles, we were able to accurately quantify the ratio of the 

glycopeptide as 2.17. This peptide is from protein NEU1 (sialidase-1), which catalyzes the removal 

of sialic acid moieties from glycoproteins and glycolipids. The protein abundance was up-

regulated by 2.07 fold under the drug treatment.  

We quantified a total of 1,247 unique glycopeptides from BA and 682 glycopeptides from 

MC with an overlap of 376 peptides (Figure 6.11c). As anticipated, majority of the quantified 

peptides were not regulated when two-fold change was used as a threshold. With the BA method, 

59 glycopeptides were down-regulated while 93 were up-regulated before normalization. With the 

MC method, 24 glycopeptides were down-regulated while 62 were up-regulated. 

 

6.2.3.5 Glycosylation site quantification and normalization by their corresponding parent protein 

abundance changes 

For the N-glycosylation site quantification, besides the identification criteria discussed 

above, all glycopeptides must be singly glycosylated with the site ModScore > 13. With the site 

localization confidence, the quantitation can be site-specific. Although 1,045 glycosylation sites 

were identified from BA, only 719 sites (listed in a table online at 

doi.org/10.1016/j.ijms.2017.05.010) were quantified; while in MC, the combination of MC and 

SILAC led to the confident quantitation of 584 glycosylated sites (listed in a table online at 

doi.org/10.1016/j.ijms.2017.05.010) out of 685 unique glycosylation sites identified. 330 sites 
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were quantified in both experiments (Figure 6.11d). Relatively low overlap was expected because 

the principles of two enrichment methods are different. The powerful MS-based proteomics can 

allow us to site-specifically quantify protein glycosylation changes. 

 

 
 

Figure 6.11 (a) An example of the full MS of the heavy (WSFSN*GTSWR@) and light 

(WSFSN*GTSWR) glycopeptides with the same sequence; (b) the elution profiles of the two 

glycopeptides; (c) comparison of unique glycopeptides quantified in the two experiments; (d) 

comparison of the glycosylation sites quantified from the two experiments. 
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When performing quantitative study of protein modifications, we need to pay attention to 

the abundance changes of their parent proteins. For instance, if a protein is dramatically up-

regulated in treated cells while the stoichiometry of the modification sites from this protein are 

largely unaffected or even down-regulated, we could still profile these sites to be up-regulated 

because site down-regulation cannot cancel out the effect of protein up-regulation. As shown in 

Figure 6.12a, for example, if we assume that two out of three copies of a certain protein are N-

glycosylated, then it will result in 66.7% glycosylation rate. After the drug treatment, although 

four copies of this protein are glycosylated, the glycosylation percentage is significantly lowered. 

This is due to protein expression up-regulation in the treated cells. Therefore, we normalized the 

raw site ratios by the corresponding parent protein ratios we obtained previously 117 to provide 

more quantitative information. This normalization strategy was previously applied for 

phosphorylation analysis in the literature 52.   

 The site ratio distributions in the BA and MC experiments before and after normalization 

are shown in Figure 6.12b and c. The whole series were shifted towards the down-regulation side 

after normalization. We listed a few quantified sites as examples in Table 6.3; two-fold was set as 

the threshold for defining a site to be regulated. All the listed sites have raw ratios larger than 2. 

However, their protein ratios are also larger than 2, which demonstrated that these proteins were 

up-regulated in the statin-treated cells. For instance, the first site in the list is from protein 

HMGCR, the rate-liming enzyme in the mevalonate pathway and the direct target of statins. Since 

the function of this protein was inhibited by the statin, this protein expression was up-regulated 

dramatically in the statin-treated cells, and the protein ratio for HMGCR increased by 15.4 fold. 

Without normalization by the protein ratio, N-glycosylation site 281 on HMGCR was up-regulated 
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by 25.9 fold, while the normalized ratio was 1.7. After normalization, six out of seven N-

glycosylation sites were determined to be not regulated. 

 Among 640 normalized sites from the BA experiment (listed in a table online at 

doi.org/10.1016/j.ijms.2017.05.010), 22 were up-regulated, and 35 were down-regulated. In 

contrast, 30 sites were up-regulated, and 50 were down-regulated among 518 normalized sites 

from the MC experiment. Although we quantified fewer sites from the MC experiment, more sites 

were down-regulated. This phenomenon is in very good agreement with the expectation that the 

results from the MC experiment may be more dynamic because it only enriches the newly-

synthesized glycoproteins during the statin treatment. 

 
Table 6.3 Some example N-glycosylation sites quantified in the BA experiment.  

Gene 
Symbol PPM XCorr Peptide Site Mod 

Score 
Site 
ratio 

Protein 
ratio 

Site ratio 
normalized 

HMGCR -0.43 4.24 WIADPSPQN*STA
DTSK# 281 1000 25.89 15.35 1.69 

KLB -0.28 2.17 FALDWASVLPTGN
*LSAVNR@ 611 31.94 14.24 2.02 7.05 

SLCO4C1 -1.06 1.93 VYYN*CSCIER 544 1000 5.39 4.18 1.29 

KLB -1.18 2.32 MGQN*VSLNLR 391 59.30 2.88 2.02 1.43 

A1BG 0.50 3.50 
EGDHEFLEVPEAQ
EDVEATFPVHQPG
N*YSCSYR@ 

179 1000 2.75 3.05 0.90 

NEU1 
0.06 1.43 VN*LTLR@ 343 1000 2.47 2.07 1.19 

0.30 1.77 WSFSN*GTSWRK 352 1000 2.17 2.07 1.05 

*-glycosylation site, #-heavy lysine, @-heavy arginine 
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Figure 6.12 (a) An illustration of glycosylation site and glycoprotein abundance changes; 

glycosylation site regulation distributions before and after normalization using corresponding 

protein ratios in the (b) BA and (c) MC experiments.    
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6.2.4. Conclusions  

Protein glycosylation alteration is often a hallmark of human disease. In-depth analysis of 

glycoprotein changes may aid in a better understanding of glycoprotein functions and lead to the 

discovery of disease biomarkers and drug targets. Modern MS-based proteomics is very powerful 

in globally analyzing protein modifications, but it is pivotal to enrich modified proteins in complex 

biological samples prior to MS analysis. Lectin-based enrichment methods have been used 

extensively to enrich glycopeptides. However, the binding specificity of lectin prevents high 

coverage of glycopeptides. Here, we evaluated two lectin-independent chemical enrichment 

methods (namely, BA and MC) for global analysis of protein N-glycosylation. BA is based on the 

reversible interactions between boronic acids and hydroxyl groups on glycans; MC utilizes the 

endogenous glycan synthesis pathways in human cells to incorporate a sugar analog with a 

chemically functional, but biologically inert group, into the glycan structure, followed by 

biorthogonal reactions and affinity enrichment. BA is more universal and helped identify a greater 

number of glycosylation sites, whereas MC has better performance on cell surface glycoprotein 

identification. Furthermore, the quantitative results from the MC experiment were more dynamic 

because it enriched the newly synthesized glycoproteins under the drug treatment. For the 

quantification of protein modification, normalization using the parent protein ratios can provide 

more quantitative information regarding the protein expression and modification changes. Because 

of the high abundance of proteins and sugars in human cells, the interactions between proteins and 

sugars are ubiquitous. Global analysis of protein glycosylation will dramatically facilitate 

glycoscience research in the biological and biomedical fields. 
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APPENDIX 

 

 This appendix summarizes the completed collaboration projects that are not presented in 

the prior chapters. A brief description is provided for each project. In addition, the abstract of a 

book chapter resulted from the original research is also included. 

 

A1. Simultaneous Time-Dependent Surface Enhanced Raman Spectroscopy, Metabolomics 

and Proteomics Reveal Cancer Cell Death Mechanisms Associated with Au-Nanorod Photo-

Thermal Therapy 

Reproduced with permission from American Chemical Society  

Ali, M. R. K., Wu, Y., Han, T. G., Zang, X. L., Xiao, H. P., Tang, Y., Wu, R. H., Fernandez, F. 

M., El-Sayed, M. A. Simultaneous time-dependent surface enhanced raman spectroscopy, 

metabolomics and proteomics reveal cancer cell death mechanisms associated with Au-nanorod 

photo-thermal therapy, Journal of the American Chemical Society, 2016, 138, 15434-15442. 

Copyright 2016 American Chemical Society. 

In cancer plasmonic photothermal therapy (PPTT), plasmonic nanoparticles are used to 

convert light into localized heat, leading to cancer cell death. Among plasmonic nanoparticles, 

gold nanorods (AuNRs) with specific dimensions enabling them to absorb near-infrared laser light 

have been widely used. The detailed mechanism of PPTT therapy, however, still remains poorly 

understood. Typically, surface-enhanced Raman spectroscopy (SERS) has been used to detect 

time-dependent changes in the intensity of the vibration frequencies of molecules that appear or 

disappear during different cellular processes. A complete proven assignment of the molecular 

identity of these vibrations and their biological importance has not yet been accomplished. Mass 
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spectrometry (MS) is a powerful technique that is able to accurately identify molecules in chemical 

mixtures by observing their m/z values and fragmentation patterns. Here, we complemented the 

study of changes in SERS spectra with MS-based metabolomics and proteomics to identify the 

chemical species responsible for the observed changes in SERS band intensities during PPTT. We 

observed an increase in intensity of the bands at around 1000, 1207, and 1580 cm–1, which were 

assigned in the literature to phenylalanine, albeit with dispute. Our metabolomics results showed 

increased levels of phenylalanine, its derivatives, and phenylalanine-containing peptides, 

providing evidence for more confidence in the SERS peak assignments. To better understand the 

mechanism of phenylalanine increase upon PPTT, we combined metabolomics and proteomics 

results through network analysis, which proved that phenylalanine metabolism was perturbed. 

Furthermore, several apoptosis pathways were activated via key proteins (e.g., HADHA and 

ACAT1), consistent with the proposed role of altered phenylalanine metabolism in inducing 

apoptosis. Our study shows that the integration of the SERS with MS-based metabolomics and 

proteomics can assist the assignment of signals in SERS spectra and further characterize the related 

molecular mechanisms of the cellular processes involved in PPTT. 

 

A2. Evaluation and Optimization of Reduction and Alkylation methods to Maximize Peptide 

Identification with MS-based Proteomics 

Reproduced with permission from The Royal Society of Chemistry  

Suttapitugsakul, S., Xiao, H. P., Smeekens, J. M., Wu, R. H. Evaluation and optimization of 

reduction and alkylation methods to maximize peptide identification with MS-based proteomics, 

Molecular BioSystems, 2017, 13, 2574-2582. Copyright 2017 The Royal Society of Chemistry. 

Mass spectrometry (MS) has become an increasingly important technique to analyze 
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proteins. In popular bottom-up MS-based proteomics, reduction and alkylation are routine steps to 

facilitate peptide identification. However, incomplete reactions and side reactions may occur, 

which compromise the experimental results. In this work, we systematically evaluated the 

reduction step with commonly used reagents, i.e., dithiothreitol, 2-mercaptoethanol, tris(2-

carboxyethyl)phosphine, or tris(3-hydroxypropyl)phosphine, and alkylation with iodoacetamide, 

acrylamide, N-ethylmaleimide, or 4-vinylpyridine. By using digested peptides from a yeast whole-

cell lysate, the number of proteins and peptides identified were very similar using four different 

reducing reagents. The results from four alkylating reagents, however, were dramatically different 

with iodoacetamide giving the highest number of peptides with alkylated cysteine and the lowest 

number of peptides with incomplete cysteine alkylation and side reactions. Alkylation conditions 

with iodoacetamide were further optimized. To identify more peptides with cysteine, thiopropyl-

sepharose 6B resins were used to enrich them, and the optimal conditions were employed for the 

reduction and alkylation. The enrichment resulted in over three times more cysteine-containing 

peptides than without enrichment. Systematic evaluation of the reduction and alkylation with 

different reagents can aid in a better design of bottom-up proteomic experiments. 

 

A3. Global Analysis of Secreted Proteins and Glycoproteins in Saccharomyces Cerevisiae 

Reproduced with permission from American Chemical Society  

Smeekens, J. M., Xiao, H. P., Wu, R. H. Global analysis of secreted proteins and glycoproteins in 

Saccharomyces cerevisiae, Journal of Proteome Research, 2017, 16, 1039-1049. Copyright 2017 

American Chemical Society. 

 Protein secretion is essential for numerous cellular activities, and secreted proteins in 

bodily fluids are a promising and noninvasive source of biomarkers for disease detection. 
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Systematic analysis of secreted proteins and glycoproteins will provide insight into protein 

function and cellular activities. Yeast (Saccharomyces cerevisiae) is an excellent model system for 

eukaryotic cells, but global analysis of secreted proteins and glycoproteins in yeast is challenging 

due to the low abundances of secreted proteins and contamination from high-abundance 

intracellular proteins. Here, by using mild separation of secreted proteins from cells, we 

comprehensively identified and quantified secreted proteins and glycoproteins through inhibition 

of glycosylation and mass spectrometry-based proteomics. In biological triplicate experiments, 

245 secreted proteins were identified, and comparison with previous experimental and 

computational results demonstrated that many identified proteins were located in the extracellular 

space. Most quantified secreted proteins were down-regulated from cells treated with an N-

glycosylation inhibitor (tunicamycin). The quantitative results strongly suggest that the secretion 

of these down-regulated proteins was regulated by glycosylation, while the secretion of proteins 

with minimal abundance changes was contrarily irrelevant to protein glycosylation, likely being 

secreted through nonclassical pathways. Glycoproteins in the yeast secretome were globally 

analyzed for the first time. A total of 27 proteins were quantified in at least two protein and 

glycosylation triplicate experiments, and all except one were down-regulated under N-

glycosylation inhibition, which is solid experimental evidence to further demonstrate that the 

secretion of these proteins is regulated by their glycosylation. These results provide valuable 

insight into protein secretion, which will further advance protein secretion and disease studies. 

 

A4. Evidence for the Importance of Post-Transcriptional Regulatory Changes in Ovarian 

Cancer Metastasis and the Contribution of miRNAs  

Reproduced with permission from Macmillan Publishers Limited, part of Springer Nature.  
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Zhang, M. N., Matyunina, L. V., Walker, L. D., Chen, W. X., Xiao, H. P., Benigno, B. B., Wu, R. 

H., McDonald, J. F. Evidence for the importance of post-transcriptional regulatory changes in 

ovarian cancer metastasis and the contribution of miRNAs, Scientific Reports, 2017, 7:8171. 

Copyright 2017 Macmillan Publishers Limited, part of Springer Nature. 

 High-throughput technologies have identified significant changes in patterns of mRNA 

expression over cancer development but the functional significance of these changes often rests 

upon the assumption that observed changes in levels of mRNA accurately reflect changes in levels 

of their encoded proteins. We systematically compared the expression of 4436 genes on the RNA 

and protein levels between discrete tumor samples collected from the ovary and from the omentum 

of the same OC patient. The overall correlation between global changes in levels of mRNA and 

their encoding proteins is low (r = 0.38). The majority of differences are on the protein level with 

no corresponding change on the mRNA level. Indirect and direct evidence indicates that a 

significant fraction of the differences may be mediated by microRNAs. 

 

A5. Specific Identification of Glycoproteins Bearing the Tn antigen in human cells 

Reproduced with permission from Wiley-VCH Verlag GmbH &Co. 

Zheng, J. N., Xiao, H. P., Wu, R. H. Specific identification of glycoproteins bearing the Tn antigen 

in human cells, Angewandte Chemie International Edition, 2017, 56, 7107-7111. Copyright 2017 

Wiley-VCH Verlag GmbH &Co. 

 Glycoproteins contain a wealth of valuable information regarding the development and 

disease status of cells. In cancer cells, some glycans (such as the Tn antigen) are highly up-

regulated, but this remains largely unknown for glycoproteins with a particular glycan. Herein, an 

innovative method combining enzymatic and chemical reactions was first designed to enrich 
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glycoproteins with the Tn antigen. Using synthetic glycopeptides with O-GalNAc (the Tn antigen) 

or O-GlcNAc, we demonstrated that the method is selective for glycopeptides with O-GalNAc and 

can distinguish between these two modifications. The diagnostic ions from the tagged O-GalNAc 

further confirmed the effectiveness of the method and confidence in the identification of 

glycopeptides with the Tn antigen by mass spectrometry. Using this method, we identified 96 

glycoproteins with the Tn antigen in Jurkat cells. The method can be extensively applied in 

biological and biomedical research. 

 

A6. Gold Nanorod-Assisted Plasmonic Photothermal Therapy of Cancer: Efficacy, Toxicity 

and Mechanistic Studies in vivo 

Reproduced with permission from National Academy of Sciences (U.S.). 

Ali, M. R. K., Rahman, M. A., Wu, Y., Han, T. G., Peng, X. H., Mackay, M. A., Wang, D. S., 

Shin, H. J., Chen, Z., Xiao, H. P., Wu, R. H., Tang, Y., Shin, D. M., El-Sayed, M. A. Gold nanorod-

assisted plasmonic photothermal therapy of cancer: efficacy, toxicity and mechanistic studies in 

vivo, Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 

E3110-E3118. Copyright National Academy of Sciences (U.S.). 

 Gold nanorods (AuNRs)-assisted plasmonic photothermal therapy (AuNRs-PPTT) is a 

promising strategy for combating cancer in which AuNRs absorb near-infrared light and convert 

it into heat, causing cell death mainly by apoptosis and/or necrosis. Developing a valid PPTT that 

induces cancer cell apoptosis and avoids necrosis in vivo and exploring its molecular mechanism 

of action is of great importance. Furthermore, assessment of the long-term fate of the AuNRs after 

treatment is critical for clinical use. We first optimized the size, surface modification [rifampicin 

(RF) conjugation], and concentration (2.5 nM) of AuNRs and the PPTT laser power (2 W/cm2) to 
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achieve maximal induction of apoptosis. Second, we studied the potential mechanism of action of 

AuNRs-PPTT using quantitative proteomic analysis in mouse tumor tissues. Several death 

pathways were identified, mainly involving apoptosis and cell death by releasing neutrophil 

extracellular traps (NETs) (NETosis), which were more obvious upon PPTT using RF-conjugated 

AuNRs (AuNRs@RF) than with polyethylene glycol thiol-conjugated AuNRs. Cytochrome c and 

p53-related apoptosis mechanisms were identified as contributing to the enhanced effect of PPTT 

with AuNRs@RF. Furthermore, Pin1 and IL18-related signaling contributed to the observed 

perturbation of the NETosis pathway by PPTT with AuNRs@RF. Third, we report a 15-month 

toxicity study that showed no long-term toxicity of AuNRs in vivo. Together, these data 

demonstrate that our AuNRs-PPTT platform is effective and safe for cancer therapy in mouse 

models. These findings provide a strong framework for the translation of PPTT to the clinic. 

 

A7. Targeting Cancer Cell Integrins Using Gold Nanorods in Photothermal Therapy Inhibits 

Migration through Affecting Cytoskeletal Proteins 

Reproduced with permission from National Academy of Sciences (U.S.). 

Ali, M. R. K., Wu, Y., Tang, Y., Xiao, H. P., Chen, K. C., Han, T. G., Fang, N., Wu, R. H.,  El-

Sayed, M. A. Targeting cancer cell integrins using gold nanorods in photothermal therapy inhibits 

migration through affecting cytoskeletal proteins. Proceedings of the National Academy of 

Sciences of the United States of America, 2017, 114, E5655-E5663. Copyright National Academy 

of Sciences (U.S.). 

 Metastasis is responsible for most cancer-related deaths, but the current clinical treatments 

are not effective. Recently, gold nanoparticles (AuNPs) were discovered to inhibit cancer cell 

migration and prevent metastasis. Rationally designed AuNPs could greatly benefit their 
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antimigration property, but the molecular mechanisms need to be explored. Cytoskeletons are cell 

structural proteins that closely relate to migration, and surface receptor integrins play critical roles 

in controlling the organization of cytoskeletons. Herein, we developed a strategy to inhibit cancer 

cell migration by targeting integrins, using Arg–Gly–Asp (RGD) peptide-functionalized gold 

nanorods. To enhance the effect, AuNRs were further activated with 808-nm near-infrared (NIR) 

light to generate heat for photothermal therapy (PPTT), where the temperature was adjusted not to 

affect the cell viability/proliferation. Our results demonstrate changes in cell morphology, 

observed as cytoskeleton protrusions-i.e., lamellipodia and filopodia-were reduced after treatment. 

The Western blot analysis indicates the downstream effectors of integrin were attracted toward the 

antimigration direction. Proteomics results indicated broad perturbations in four signaling 

pathways, Rho GTPases, actin, microtubule, and kinases-related pathways, which are the 

downstream regulators of integrins. Due to the dominant role of integrins in controlling 

cytoskeleton, focal adhesion, actomyosin contraction, and actin and microtubule assembly have 

been disrupted by targeting integrins. PPTT further enhanced the remodeling of cytoskeletal 

proteins and decreased migration. In summary, the ability of targeting AuNRs to cancer cell 

integrins and the introduction of PPTT stimulated broad regulation on the cytoskeleton, which 

provides the evidence for a potential medical application for controlling cancer metastasis. 

 

A8. Exosomes Isolated from Bone Marrow-Derived MSCs Support the ex vivo Survival of 

Human Peripheral Blood-Derived Plasma Cells 

Reproduced under the terms of the Creative Commons Attribution-NonCommercial License. 

Lewis, C. H., Nguyen, D., Garimalla, S., Xiao, H. P., Gibson, G., Wu, R. H., Galipeau, J., Lee, F. 

E. Exosomes isolated from bone marrow-derived MSCs support the ex vivo survival of human 



 
307 

peripheral blood-derived plasma cells. Journal of Extracellular Vesicles, accepted. Copyright 

retained by the authors. 

 Conditioned medium (CM) was from marrow-derived mesenchymal stromal cells (MSCs) 

was previously demonstrated to be able to maintains blood ASCs cell function for up to 30 days 

in vitro. We here purified MSC-derived exosomes from CM, and tested whether these vesicles 

could recapitulate the homeostatic interactions of the marrow niche. We treated MSC CM with a 

liposome-disrupting agent, abolishing plasma cell antibody-secretion by 75%. We further 

interrogated exosome production from replicating and irradiated, growth-arrested MSCs to better 

mirror the physiology of endogenous mobilized or quiescent marrow MSCs. We isolated 

Exosomes and the accompanying Exosome-Depleted CM (Exo-Depl CM), and assessed their 

ability to sustain antibody-secreting cells (ASCs) from healthy adult humans in vitro. Purified 

exosomes from both irradiated (Irrad) and Non-Irrad MSCs were comparable in their ability to 

support ASC functionality.  However, Exo-Depl CM derived from Non-Irrad-MSCs was 50% less 

effective than corresponding fractions from Irrad-MSCs.  Taken together, these findings indicate 

that MSC exosomes are an effective support system for the ex vivo culture of ASCs, and that 

growth arrested MSCs also produce additional products which act additively on ASCs. To identify 

which factors account for such differential support, we used proteomics and pathway analysis, 

identifying proteins involved in the survival of B-lineage cells and stroma cells, that were enriched 

in exosomes, including the ectoenzyme bone marrow stromal cell antigen-1 (CD157). Our data 

support the hypothesis that the in vitro support of ASC by MSC can be recapitulated with purified 

exosomes, suggesting a niche support mechanism which can operate independently of cell contact 

and MSC cell cycle status. These findings have great import for the exosome field and elucidation 

of factors that modulate B-cell biology. 
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A9. A Boronic Acid-Based Enrichment for Site-Specific Identification of the N-

glycoproteome Using MS-Based Proteomics 

Reproduced with permission from Springer International Publishing AG. 

Xiao H. P., Tang G.X., Chen W. X., Wu R. H. A Boronic Acid-Based Enrichment for Site-Specific 

Identification of the N-glycoproteome Using MS-Based Proteomics. In: Grant J., Li H. (eds) 

Analysis of Post-Translational Modifications and Proteolysis in Neuroscience. Neuromethods, 

2015, vol 114. Humana Press, New York, NY. Copyright 2017 Springer International Publishing 

AG. 

 Modification of proteins by N-linked glycans plays a critically important role in biological 

systems, including determining protein folding and trafficking as well as regulating many 

biological processes. Aberrant glycosylation is well known to be related to disease, including 

cancer and neurodegenerative diseases. Current mass spectrometry (MS)-based proteomics 

provides the possibility for site-specific identification of the N-glycoproteome; however, this is 

extraordinarily challenging because of the low abundance of many N-glycoproteins and the 

heterogeneity of glycans. Effective enrichment is essential to comprehensively analyze N-

glycoproteins in complex biological samples. The covalent interaction between boronic acid and 

cis-diols allows us to selectively capture glycopeptides and glycoproteins, whereas the reversible 

nature of the bond enables them to be released after non-glycopeptides are removed. By virtue of 

the universal boronic acid-diol recognition, large-scale mapping of N-glycoproteins can be 

achieved by combining boronic acid-based enrichment, PNGase F treatment in the presence of 

heavy oxygen (18O) water, and MS analysis. This method can be extensively applied for the 

comprehensive analysis of N-glycoproteins in a wide variety of complex biological samples. 
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