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SUMMARY 

Cooperative communication is a technique which can improve the reliability and 

throughput of a wireless network through the cooperation between distributed wireless 

nodes. The contributions of this thesis include the design and analysis of some novel 

approaches for different cooperative communication schemes for the physical layer in 

wireless multi-hop networks.  

The first contribution is a new approach that combines random delay and phase 

dithering for single carrier cooperative transmission (CT); its benefit is that it lowers the 

coordination overheads in cooperative communication schemes. Simulation results, under 

different channel models, are compared with the results of the state-of-the-art practical 

phase dithering approach. The results show significant signal to noise ratio (SNR) gain, 

or equivalently, that higher data rates can be achieved. The approach is also robust to 

different channel models and can lower the overhead in channel estimation significantly, 

while the constant envelope characteristic of the transmitted signal is kept.  

The second contribution is a novel equalization algorithm in the frequency 

domain for the multiple carrier frequency offsets (CFOs) problem of cooperation 

communication. Using a permutation-based approach that employs the pseudo-banded 

matrix characterization, a recursive and computationally efficient equalization algorithm 

is proposed. This linear minimum mean-square error (MMSE) equalization algorithm 

works for both the virtual multiple-input-multiple-output (MIMO) or distributed spatial 

multiplexing (DSM) MIMO scheme and the distributed space time block coding (STBC)  



 

 

 xi 

scheme, for both orthogonal frequency division multiplexing (OFDM) and single-carrier 

frequency-domain equalization (SC-FDE). To the author’s knowledge, this is the first 

time a generalized approach has been proposed for such problems. Simulation results 

show that large frequency offsets can be compensated with high computational 

efficiency.  

The third contribution is a new set-based bounding approach to analyze diversity 

for SC-FDE over inter-symbol interference (ISI) channels, including linear equalizers 

such as zero forcing (ZF) and minimum mean-square error (MMSE). The diversity order 

of both the error probability and the outage diversity gain are analyzed. In previous 

works, the channel was constrained to have identical and independent distributed paths, 

whereas in this work we have relaxed the constraint to be a more practical channel with 

just independent paths. For finite length data blocks, the diversity order of the error 

probability and the outage diversity gain of ZF SC-FDE are proved to be one; the outage 

diversity gain of MMSE SC-FDE and its relationship to the channel memory length and 

data rate are proved rigorously, and the diversity order of the error probability of MMSE 

SC-FDE is shown to be one.  

The fourth contribution is a new method to calculate the joint probability density 

distribution (PDF) of the non-zero eigenvalues of the equivalent cascaded MIMO channel 

of the multi-hop amplify-and-forward (A&F) relay network. The closed form expression 

has the form of a product of determinants of matrices, while the entries of these matrices 

are expressed as multi-dimensional integrals, where the maximum integration dimension 

is the number of relay clusters (the number of hops minus one). While previously the 



 

 

 xii 

distribution could be found practically only by Monte Carlo simulation, now it can be 

evaluated by computationally efficient numerical methods. The contribution can be 

further employed to analyze the performance of the multi-hop network. To the authors’ 

knowledge, it is the first time a practical numerical method and an explicit closed form 

expression are presented for this problem.  
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CHAPTER 1. INTRODUCTION 

1.1 Motivation for Cooperative Communication 

Wireless communication has attracted enormous interest of researchers and 

experienced a huge boost in use in the last two decades, for it provides a feasible way of 

ubiquitous communication. While single-hop networks, such as cellular networks and 

wireless local area networks (WLANs), are commercially successful, other kinds of 

networks, such as wireless ad hoc networks (WANETs) and wireless sensor network 

(WSNs), are still not widely deployed. Because of the detrimental effects of the terrestrial 

wireless channel, such as path loss, shadowing, fading, and interference, one aim of the 

recent wireless communication research has been to improve the reliability and 

throughput of a multi-hop network by cooperative communication [4, 5, 8, 9, 10-16].  

Multiple antennas at the transmitter or the receiver or both can be used to overcome 

the detrimental effects of the terrestrial wireless channel, by providing array gain and 

diversity gain, for improved reliability, and spatial multiplexing, for higher data rates. 

The classic multiple-input-multiple-output (MIMO) system [10] can provide all of these 

gains in various combinations. Two typical MIMO configurations, point-to-point MIMO 

and multi-user MIMO (MU-MIMO), are shown in Fig. 1. 
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A MIMO system can be operated a variety of ways, the extremes ways being 

full transmit diversity, which maximizes the reliability, and full spatial multiplexing, 

which maximizes the transmission rate. When only the transmitter or only the 

receiver has multiple antennas, only array and diversity gains are possible. These 

configurations, called multi-input-single- output (MISO) and single-input-multi-

output (SIMO), respectively, are shown in Fig. 2. 

Most of the contributions of this dissertation treat distributed and multihop versions 

of MIMO and MISO configurations. Different cooperative communication schemes have 

specific purposes: distributed MISO, as known as cooperative diversity (CD) or 

Figure 1 Topologies of typical MIMO systems: (a) point-to-point MIMO (b) MU-

MIMO 

Figure 2 Topologies of typical MIMO systems: (a) MISO (b) SIMO 
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cooperative transmission (CT) [4, 5], is intended to improve the reliability or loss rate of 

data transmission over fading channels, while distributed MIMO, as known as virtual 

multiple-input-multiple-output (MIMO) [11-14] or distributed spatial multiplexing 

(DSM) [15, 16] are intended to improve the throughput of data transmission. CD and 

DSM networks generally consist of one or more source nodes, one or more stages or 

clusters of single-antenna relay nodes, and one destination node; the source and 

destination nodes could have a single antenna or be multi-antenna terminals. When these 

single-antenna nodes cooperate with each other to mimic a virtual antenna array, 

performance gains similar to those of traditional multi-antenna terminals can be achieved.  

This dissertation addresses some practical and theoretical issues in physical layer 

signal processing and performance analysis of different cooperative communication 

schemes in wireless multi-hop networks.  

1.2 Coordination Overhead for Cooperative Diversity 

One practical issue for CD is the coordination overhead, which involves control 

packets or signaling to determine the transmission parameters of each node in CD. While 

it was generally not mentioned in the CD proposals [4, 5, 7, 8], this overhead makes the 

efficiency of CD doubtful. A new approach that combines random delay and phase 

dithering, proposed for single carrier CD to lower the coordination overhead, is proposed 

in Chapter 3 in this dissertation. 

1.3 Multiple CFOs Problem for Cooperative Communication 
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Another issue is the multiple carrier frequency offsets (CFOs) problem, which 

originates from the distributed manner of the transmission [47]. The multiple CFOs 

problem can be compensated on the receiver side [49-58], however, performance and 

computational efficiency is an issue. A novel equalization algorithm in the frequency 

domain is proposed for the multiple carrier frequency offsets (CFOs) problem in Chapter 

4 in this dissertation. This generalized approach compensates large frequency offsets and 

has high computational efficiency.  

1.4 Diversity of Linear Equalizers for SC-FDE  

While single-carrier frequency-domain equalization (SC-FDE) [29] is widely used 

in wideband wireless and MIMO systems [31-35], and surely finds its place in 

cooperative communication, the diversity analysis for the point-to-point SC-FDE linear 

equalizer is still controversial [69, 73, 75-77]. A new set-based bounding approach is 

proposed in Chapter 5 to perform rigorous diversity analysis for SC-FDE linear 

equalizers, such as zero forcing (ZF) and minimum mean-square error (MMSE), and new 

conclusions are presented. 

1.5 Joint PDF of the Nonzero Eigenvalues of the Equivalent Channel Matrix for 

Multi-hop DSM MIMO with A&F Relays 

In the multi-hop virtual MIMO or DSM schemes, we are especially interested in 

amplify-and-forward (AF) relaying [15], for its simplicity and low overhead cost in 

application. However, nowadays, the analysis or evaluation of the network is based on 

Monte-Carlo simulation only [15, 16]. As in point-to-point MIMO, the joint distribution 
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of the eigenvalues of the scheme’s equivalent MIMO channel is important for analysis of 

the system, but such a distribution was previously unavailable. A novel approach in 

Chapter 6 provides the closed form expression for the joint PDF of the nonzero 

eigenvalues. 
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CHAPTER 2. ORIGIN AND HISTORY OF THE PROBLEM 

2.1 Background 

How to improve the throughput and connectivity of the wireless networks is one of 

the most important topics in the research of wireless communication, and significant 

progress has been made. In recent years, research in wireless networks suggests that 

cooperation between the nodes can improve the throughput and connectivity of the 

network dramatically [4, 5, 8, 9, 10-16].  

The idea behind cooperative communication dates back to the information theoretic 

aspects of the classic 3-node relay channel [1, 2], where a single relay node helps the 

source node send information to the destination node, as shown in Fig. 3. The 3-node 

relay channel may be the simplest cooperative multi-hop network, yet its capacity is 

generally unknown, except for some specific cases [2]. However, some useful results on 

the bounds of the relay channel capacity exist; among these, are the cut-set upper bound 

based on the max-flow min-cut theorem [3] and some achievable lower bounds with 

specific relaying protocols, such as decode-and-forward (DF), compress-and-forward 

(CF) and amplify-and-forward (AF), assuming full or global channel state information 

(CSI). Global CSI means both CSI on the receiver side (CSIR) and CSI on the transmitter 

side (CSIT), which needs some kind of feedback from the receiver to the transmitter.  
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Recent works on cooperative communication are different from this classic relay 

channel in many aspects. Physical layer cooperative communication happens when 

multiple single-antenna radios (not connected by wire) transmit and receive in a way that 

mimics a terminal with an antenna array; hence the cooperating radios are often referred 

to as virtual arrays. [4] proposed the concept of user CD (CT in [5]), a new form of 

spatial diversity which is realized by user cooperation in a mobile network. The relaying 

protocols suggested in [2], such as DF and AF, were employed in [4, 5], while coded 

cooperation, which can be viewed as an implementation of CF, was employed in [6]. 

These works on cooperative communication inspired many efforts in this area. The CD 

schemes generally assume CSIR only and consider the reliability characteristics, such as 

diversity order, symbol error rate (SER) and outage probability of the relay channel under 

the wireless fading effect [7]. The information theoretic results in [2] were extended in 

[8] to multi-hop cooperative transmission with multiple relays, as the cooperative 

diversity scheme was also extended from the model of single relay channel to multiple 

relay channel [9]. An example of multiple relay based two-hop CD network is shown in 

Fig. 4, which can be easily extended to multi-hop case.  

Figure 3 Classic 3-node relay network 
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CD is not the only scheme proposed for cooperative communication. To obtain the 

spatial multiplexing gain of classic multiple-input-multiple-output (MIMO) system [9], 

cooperative MIMO schemes were proposed in [11, 12], where cooperative transmission 

and/or cooperative reception for single-antenna nodes were explored. Similar ideas were 

proposed for multi-hop distributed networks as Virtual MIMO [13, 14], or distributed 

spatial multiplexing (DSM) [15] (cooperative spatial multiplexing in [16]) to achieve 

high throughput and spectral efficiency in a distributed multi-hop network with single-

antenna nodes.  

Despite the variety and complexity of the cooperative communication schemes,  the 

tremendous results on classic point-to-point MIMO can be applied directly; meanwhile, 

due to the distributive manner of cooperative communication, there are still a lot of key 

practical issues that need to be solved in application, especially, the coordination 

overhead and the multiple carrier frequency offsets (CFOs) problem.  

In the following paragraphs in this chapter, we first discuss the state of the art CD 

schemes, and then the practical issues such as coordination overhead and the multiple 

CFOs problem, and last the performance analysis for DSM.  

Figure 4 multiple relay based cooperative diversity 
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It is well known that multiple co-located transmit antennas can achieve micro 

spatial diversity gain [17, 18] and are very effective to tackle the multipath fading effect 

in wireless communication. Spatial diversity gain is realized by transmitting redundant 

signals in space through independently fading channels to the receiver; however, this 

method is difficult to implement on a user terminal. To ensure independent fading 

between the paths from different transmit antennas to the receiver, the transmit antennas 

should be located apart by a distance which is generally larger than several carrier’s 

wavelengths, especially when the multipath has a narrow angular spread, while the user 

terminals are limited in size to provide enough space which is necessary to de-correlate 

the antennas. Cooperative diversity has been studied as a way for one or more single-

antenna radios to help another single-antenna radio to transmit a single message more 

reliably, through combining in the physical layer, to combat multipath fading in terrestrial 

wireless communication. A “virtual” antenna array is composed by these single-antenna 

radios in cooperation. Another benefit of CD is that it also provides the macro diversity 

[19, 20] to counteract the large-scale shadow fading effect, where the co-located transmit 

antennas will fail. While there are vast varieties of the existing solutions for CD, we will 

divide the schemes into two large categories, according to with or without coordination. 

2.2 Cooperative Diversity with Coordination 

In this case, each transmitter needs to know its waveform assignment or the index of its 

transmitted waveform, so distributed or centralized coordination is necessary between 

these transmitter nodes. Another requirement for coordination may come from the 

channel estimation at the receiver side because generally transmitters should access 
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orthogonal channels to transmit training sequences independently, such as time-division 

multiple access (TDMA) or frequency-division multiple access (FDMA), which requires 

coordination. The existing schemes can be further divided into different sub-categories. 

The first sub-category is cooperative diversity with orthogonal relay channels, 

either by code division multiple access (CDMA), TDMA, or FDMA. The scheme in [4] 

is a coherent demodulation case where the CSI is known on the receiver side. The 

schemes of [21] and [22] assume a flat fading channel and non-coherent demodulation 

and differential demodulation, respectively; these types of demodulation have the 

advantages that channel estimation is not necessary, a simple receiver implementation, 

and less overhead in time varying channels. Orthogonal relay channels provide full 

diversity and are easy to implement, but they have low spectrum efficiency. In these 

papers, exact time synchronization is necessary. 

The second sub-category is non-orthogonal relay channels, which generally uses 

multiple-antenna space time coding (STC) or space frequency coding (SFC) [23] 

techniques. These techniques improve the spectrum efficiency compared to the 

orthogonal relay channels. Due to the similarity between the classic point-to-point MIMO 

and distributed MIMO, classic STC and SFC techniques can be introduced directly to the 

cooperative transmission if the DF mode is adopted for the relays. For example, the 

Alamouti scheme [24], can be used for cooperative diversity under flat fading channels. 

There are also non-coherent STC schemes [25] and differential STC schemes [26, 27, 

28], which simplify the channel estimation requirement for the flat fading channel. For 

frequency selective fading channels, space time block coding (STBC) or space frequency 
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block coding (SFBC) [23], which combines spatial diversity with SC-FDE [29] or OFDM 

[30] transmission, can also be implemented. These works include (1) time reversal STBC 

(TR-STBC) [31], which extends the Alamouti scheme to the frequency selective channel, 

(2) STBC SC-FDE [32], which extends the transit sequences of TR-STBC to have a 

circular cyclic form, and thus the equalization can be implemented with SC-FDE in 

frequency domain, like OFDM, (3) the SFBC SC-FDE [33], and (4) STBC OFDM [34]. 

The equalization techniques for these STBC SC-FDE schemes are described in [35]. 

Most of these works are extended from the Alamouti scheme, and focus on the 2-

transmitter (Tx) and 1-receiver (Rx) antennas case. Orthogonal STBC can be employed 

for the 2-transmitter case, and there is a rate loss when there are more transmitters. One 

issue about the STBC SC-FDE schemes is that rigorous diversity analysis is unavailable; 

even for point-to-point SC-FDE transmission, the conclusions of diversity order from 

different works [69, 73, 75, 76, 77] contradict each other and make this topic 

controversial. This dissertation offers in Chapter 5 the first rigorous derivation of 

diversity order for SC-FDE. 

A distributed STC scheme that assumes flat fading and AF relaying was proposed 

in [36], and the idea was further developed into a differential scheme in [37] and 

generalized in [38]. 

Other approaches include the coded cooperation and turbo-coded cooperation [39, 

40], which combine cooperative transmission with channel coding, wherein the users can 

transmit redundant information of their cooperative partners. Protocols for the two-user 

scenario were designed in [39, 40]. 
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2.3 Cooperative Diversity without Coordination 

As we mentioned in the introduction, the need for coordination introduces large overhead 

in the network and limits the scalability of cooperative transmission. While coordination 

is a MAC layer function, most of the work on cooperative transmission focuses on the 

physical layer and makes the simple assumption that the nodes are already well 

coordinated, without concern about how much is the overhead and how the coordination 

is realized. However, an ideal cooperative transmission is like the concept as 

Opportunistic large array (OLA) [41] where its most important property is that all the 

nodes transmit the same signal concurrently to cooperate without any coordination. OLA 

networks seems to be ideal for message broadcasting or flooding in a wireless network, 

however, in practice, the node density of a network is seldom high enough to maintain 

the OLA transmission [42]. Generally, there are only a limited number of relay nodes in 

the next hop who can decode the broadcast message, and the assumption that the received 

power can sum up [41, 42] does not hold unless orthogonal relay channels are employed, 

as those practical OLA networks which are studied in [99, 100]. 

Instead of transmitting the same signal concurrently from all the relay nodes as in 

OLA transmission, cooperative diversity schemes can provide transmit diversity to 

improve the reliability of data transmission. It is of great significance for the physical 

layer design to operate without coordination, and tolerate synchronization error which is 

inevitable in the network. To remove the requirement for coordination in cooperative 

transmission, a randomization technique is necessary. The scheme of time-variant phase 

rotations with AF protocol was suggested in [43] to transform the space diversity into 
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time diversity by creating a time-selective fading channel, and the diversity can be 

recovered by channel coding technique. This scheme was extended to a randomized DF 

version in [44]. A disadvantage of [44] is, under some channel models, it needs a very 

long phase dithering sequence to keep its performance, which introduces extra overhead. 

A distributed random delay diversity version was proposed in [45], which can transform 

the space diversity into frequency diversity by creating a frequency-selective fading 

channel, and the diversity can be recovered by channel equalization technique. A 

randomized STC scheme was proposed in [46], where each relay node transmits an 

independent random linear combination of the codewords that would have been 

transmitted by all the elements of a multi-antenna system, with a disadvantage that the 

peak to average ratio (PAR) of the transmitted signal is high; on the other hand, the 

scheme could be viewed as a deterministic space time code transmitted over a 

randomized channel. This dissertation offers in Chapter 3 a new approach that combines 

random delay and phase dithering for single carrier cooperative transmission (CT) which 

lowers the coordination overheads in cooperative communication.  

2.4 Cooperative Communication with Asynchronism 

Asynchronism is an important problem in cooperative transmission [47]. While most of 

the cooperative communication approaches assume the channel is quasi-static, such an 

assumption cannot be maintained under multiple CFOs and Doppler frequency shifts, as 

it is hard for a distributive synchronization mechanism [48] in a wireless network to 

provide high accuracy. The timing estimation error and frequency estimation offset will 

accumulate hop by hop, while some other factors, such as propagation delay, processing 
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delay, and frequency drift, will make the problem even worse. While the timing 

asynchronism is similar to the dispersion in a multipath channel and can be compensated 

by equalization techniques [7], some authors have addressed the problem of multiple 

CFOs with compensation or equalization algorithms.  

For the multiple CFOs problem of cooperative diversity with delay diversity for the 

flat fading channel, a symbol-rate MMSE-DFE was developed in [49], and its enhanced 

version was presented in [50], to improve computation efficiency, a MLSE equalizer 

based on the Viterbi algorithm was developed in [51]. Multiple CFOs compensation 

algorithms for OFDM transmission were also developed in [52, 53, 54, 55]. In [95], a 

compensation algorithm for distributed TR-STBC transmission is suggested, wherein the 

matrix inversion problem in equalization was transformed into a banded matrix HLDL  

factorization [95] to simplify computation. 

The multiple CFOs problem also exists for virtual MIMO and DSM schemes [56]. 

While [57] focused on preamble design and CFO estimation, [58] presented a 

compensation algorithm for multiple CFOs for this scheme. One issue about these 

compensation algorithms is that they only work for small CFOs [54, 58] and the high 

computation load. This dissertation offers in Chapter 4 a novel recursive equalization 

algorithm in frequency domain which is computationally efficient. 

2.5 Performance Analysis of DSM and Virtual MIMO and DSM 

Among the different proposals for virtual MIMO [11, 12, 13, 14] and DSM [15, 16, 60], 

the DSM scheme with AF mode relaying [15] is of particular interest for its simplicity 
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and low coordination overhead. However, closed form analyses for this scheme are 

generally unavailable, and the performance evaluation generally depends on Monte-Carlo 

simulation. This is because we have little knowledge about the statistical characteristics 

of the equivalent cascaded MIMO channel of this scheme. To the author’s knowledge, 

there are few exact closed form expressions and they only exist for the 2-hop case, 

including the SER analysis in [59], and the marginal probability density function (PDF) 

of the eigenvalues for ergodic capacity analysis in [61, 62]. A closed form expression of 

the distribution of the eigenvalues of the equivalent channel matrix is needed. This 

dissertation offers in Chapter 6 a novel approach to get the closed form expression for 

this joint distribution. 
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CHAPTER 3. COOPERATIVE TRANSMISSION WITH 

RANDOMIZED DELAY AND PHASE DITHERING 

 Most of the present methods, either the cooperative transmission with orthogonal 

relay channels [4], or the distributed space time coding approach [9, 36, 37], make the 

simple assumption that the nodes are already well coordinated by the MAC layer 

function. The transmitters need to know the index of the waveform, so distributed or 

centralized coordination is necessary between these transmitter nodes. The need for 

coordination introduces large overhead in the network and limits the scalability of the 

transmission, and is difficult to accomplish in practice.  

To avoid the overhead, each node involved in CD can autonomously and randomly select 

its waveform index. The problem with this approach is that the nodes might choose the 

same index and this could cause link failure if the two copies destructively combine at the 

receiver. This is especially of concern in line-of-sight (LOS) channels where the 

cooperating nodes are approximately the same distance from the receiver. Several 

randomization approaches have been developed. In [46], the randomized space-time 

coding approach was proposed, in which each relay will transmit an independent, random 

linear combination of the STC waveform choices. One disadvantage of this approach is 

that, the peak to average ratio (PAR) of the transmitted signal increases because the linear 

combination of the space-time codewords destroys the constant envelope characteristic. 

The higher PAR leads to low power efficiency in the transmitter. In [44], by translating 

the slow or constant channel into a time-selective channel with a random phase dithering 

approach, the temporal diversity can be harvested by error correction decoding at the 

receiver and the transmitted signal maintains a constant envelope. However, a 
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disadvantage of [44] is, under some channel models, phase dithering needs a very long 

dithering sequence to keep its performance, which means extra overhead in channel 

estimation.   

We propose a new approach which combines random delay and phase dithering for single 

carrier cooperative transmission, which preserves the constant envelope characteristic. 

Combining the delay and dithering creates more randomness in the effective channel 

gain, or equivalently, mitigates the problem with randomized approaches (i.e., that the 

nodes might choose the same waveform), which shortens the frame length, and decreases 

training overhead. As in [44], both the multi-user AWGN channel scenario and the multi-

user Rayleigh channel scenario are considered.  
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In the following sections, we first describe the system model, then analysis using 

information theory and then show simulation results. We compare the new method and 

the phase-dithering-only approach via simulation, for both types of channels, assuming 

frequency domain turbo equalization (FDTE) [63]. Significant gains in both channel 

scenarios are shown. 

3.1 System Model 

3.1.1 System Model 

 Figure 5 shows the system model for both the transmitter side and the receiver 

side, where two relays are employed. Frequency domain turbo equalization (FDTE) was 

utilized on the receiver side. 

3.1.2 Frame Structure Design 

As shown in Figure 6, the whole encoded block of data was divided into N packets, each 

packet is a subset of the block comprised of consecutive coded bits. A training sequence 

is inserted ahead of each packet. All the relays transmit the same data and same training 

sequence, but random delay and phase dithering is applied on a packet basis. The relay 

will introduce an additional artificial delay which is chosen randomly for each packet. 
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Different packet will be modulated by a different random carrier phase. All the symbols 

within on packet will be modulated by the same random carrier phase. Different relay 

nodes will use different random phase sequences to modulate the packets in the block. So 

the composite equivalent channel could be frequency-selective and time-selective. 

 The training sequence at the head of a packet is introduced the same delay and phase as 

the data symbols in the packet. The training sequence is utilized to estimate the 

composite channel which is shown in Figure 7. 

3.2 Comparison of Phase Dithering Approach and Our Approach using 

Information Theory  

The random phase dithering approach was suggested in [44] for cooperative transmission 

without coordination. Our approach which combines random delay [45] and phase 

dithering was proposed. In this section, the information rate with modulation constrained 

input (BPSK, QPSK, etc.) for these two different approaches are analyzed from the view 

point of information theory.  

Training 

Sequence
Data Symbols

Packet 1

ZP1 ZP2
Training 

Sequence
Data Symbols

Packet 2

Zero 

Padding
ZP2

Training 

Sequence
Data SymbolsZP1 ZP2

Training 

Sequence
Data Symbols

Zero 

Padding
ZP2

Channel Estimation 

Interval
FFT Interval

D1

D2

Tx 1

Tx 2

Figure 7 Channel Estimation 



 

 

 20 

3.2.1 Channel Model and Information Rate for the Phase Dithering Approach 

We consider the modulation-constrained discrete time AWGN channel. The input-output 

relationship is given by 

sy E hx n   

Where x  is the input information-bearing symbol which is selected from a symbol set

 
1

0

M

m m
S s




  with probability  Prm mp x s  , y  is the channel output, and n  is the 

additive white Gaussian noise term. The noise is modeled as a complex Gaussian random 

variable with zero mean and variance 2oN per dimension. sE  represents the average 

signal energy. 

The information rate for a deterministic channel discrete-input continuous-output 

memoryless channel is the mutual information given by [7] 

1

2 1

0
0

( | )
( ; ) ( | )log ( )

( | )

M
m

m m M

m n nn

p y s
I y x p p y s dy

p y s p








 
C

. 

With random phase dithering, the equivalent channel is a time fading channel. Under the 

assumption that the data block is long and the number for phase dithering is large enough, 

we consider that the equivalent channel is randomized sufficiently and ergodic. The 

information rate for the phase dithering approach is the ergodic information rate of the 
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equivalent channel | |( ( , ); ) ( )s
PD h

o

E
C I y x f d

N
     where the probability density 

function for | |h  is | |( )hf  . 

For the two relay scenario with uniform distributed continuous phase dithering, and 

assume the amplitude of the channel gains from the relays are all equal to 1, then 

| |
2

2
( )

4
hf 

 



, where 0 2  . 

3.2.2 Channel Model and Information Rate for Our Approach 

Our approach combines random delay and phase dithering. We analyze the information 

rate for the memory channel, which is introduced by delay, and show that it is larger than 

the information rate for the phase dithering approach. 

The input-output relationship for a channel with memory is given by 

1

0

( )
L

k s k k l k

l

y E h l x n






  ,  

where kx  is the input information-bearing symbol at time k , ky  is the channel output at 

time k , and kn  is the additive white Gaussian noise term. ( )kh l  is the channel coefficient 

for the l th path of the channel impulse response at time k . We analyze the case for an 

ergodic channel with memory. 

The information rate for this memory channel model is defined by 
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lim 1
( ; )N NI I X Y

N N



, where NX  and NY  are the input and output sequences, 

respectively. Let 
1 2( , , , )N

NX x x x  and 
1 2( , , , )N

NY y y y . 

The calculation of the information rate for memory channel model involves 

multidimensional integrations, and it is generally difficult to compute even for 

moderately large N . A statistical estimation method was suggested in [64] to get the 

information rate for memory channel, where the Shannon-McMillan-Breiman theorem 

and the BCJR algorithm were applied. 

We rewrite the expression for information rate as 

lim 1 1
( ) ( )N NI H Y H N

N N N


  

 
, where 1 2( , , , )N

NN n n n . 

Because 
1

( )NH N
N

 is the entropy of the noise and can be calculated easily, what we 

need to do is to find 
1 1

( ) log( ( ))N NH Y E p Y
N N

     . 

The expected value can be estimated by the Monte Carlo method. However, with 

identical uniformly identically distributed (u.i.d.) input, the output is stationary and 

ergodic when the channel is ergodic or deterministic. Then Shannon-McMillan-Breiman 

theorem can be applied and the averaging can be performed on a single long run of a 

realization of the channel output sequence to estimate the expectation, and the BCJR 

algorithm can be employed to calculate ( )Np Y . 
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Suppose the memory channel can be described by a trellis diagram with sn  states, and we 

denote the state of the trellis at time k  by 1 2 1( , , , )k k k k LS x x x    . 

We define 

( ) ( , )N

k km p Y S m     

and  

1 1( ', ) ( | , ') ( | ')N

k k k k km m p Y S m S m p S m S m        ,  

where 0 , ' 1sm m n   . 

The forward recursion of the BCJR algorithm can be used to calculate 

1

1

' 0

( ) ( ', ) ( ')
sn

k k k

m

m m m m  






 . 

Finally, the desired probability ( )Np Y  can be obtained by 

1

0

( ) ( )
sn

N

N

m

p Y m




 . 

3.2.3 Information Rate Simulation Results 

Both the multi-user AWGN channel scenario and the multi-user Rayleigh channel 

scenario are simulated, and we analyze the results for the information rate and the actual 

packet error rate for our cooperative transmission scheme.  
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We analyze the two relay case, and assume a quasi-static channel and perfect channel 

estimation on the receiver side. The modulation schemes are BPSK and QPSK 

modulation with Gray Mapping. Figure 8 shows the information rate under two relays 

AWGN channel scenario for both BPSK and QPSK modulation. Figure 9 shows the 

information rate under two relays dynamic or block fading Rayleigh channel scenario for 

QPSK modulation. Here the relay AWGN channel means the two relay to destination 

channels all have amplitude one but uniformly distributed phase. The squares of the 

Rayleigh channels’ magnitudes have mean 1. The legend “PD” represents the phase 

dithering approach, and the legend “PDRD” represents our approach, which combines 

phase dithering and random delay. The Shannon capacity and the information rate for a 

real single AWGN channel with BPSK or QPSK modulation is also plotted out as a 

reference. It is shown that when the signal-to-noise ratio (SNR) EsNo is low, the 

Figure 8 Information Rate of Phase Dithering and our proposal 

under AWGN channel Information 
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information rates of different approaches are all close to the Shannon capacity. But when 

EsNo increases, our approach has a higher information rate than the phase dithering 

approach, or say, our approach needs smaller EsNo than the phase dithering approach to 

get the same information rate. For example, in Figure 8 and for BPSK modulation, the 

gain in EsNo is about 1dB when information rate is 0.5, about 3dB when information rate 

is 0.75; and the gain in EsNo is about 2.5dB when information rate is 1.5 for QPSK 

modulation; in Figure 9, the gain in EsNo is about 1dB when information rate is 1.5 for 

QPSK modulation.  

 

3.3 Packet Error Rate Analysis 

The information rate analysis in last section shows that our approach has higher capacity 

than phase dithering only approach. However, in a real world system, the performance is 

also influenced by other factors such as the code, frame length, interleaver, demodulation 

Figure 9 Rate of Phase Dithering and our proposal under dynamic 

Rayleigh channel 
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algorithms, etc. in this section, we analyze the Packet Error Rate (PER) by simulation. 

The FDTE receiver was utilized to get the PER. Both  the two-relay AWGN channel 

scenario and the two-relay Rayleigh channel scenario are simulated, and the results are 

compared with the results by phase dithering approach only. We assume perfect channel 

estimation on the receiver side, and QPSK modulation with Gray mapping. Figure 10 

shows the packet error rate (PER) under AWGN channel, Figure 11 shows the PER under 

dynamic or block fading Rayleigh channel, and Figure 12 shows the PER under quasi- 

static Rayleigh channel. An (2, 1, 7) convolution code is utilized; the frame length is 

2560 bits. We can see the improvement of our proposal over the phase-dithering-only 

approach. In Figure 10 for AWGN channel, when the number of packets in each block, 

N=20, the improvement in EbNo is about 5.5dB when PER=0.01, and about 7.5dB when 

PER=0.001, after two iterations between the decoder and equalizer. In Figure 11 for 

dynamic Rayleigh channel, when N=20, the improvement in EbNo is about 1.0dB when 

PER=0.01, after two iterations between the decoder and equalizer. In Figure 12 for static 

Rayleigh channel, when N=20, the improvement in EbNo is about 2.0dB when PER=0.1. 

From Figure 10, we find that our proposal has good performance when N=20, which is 

much better than phase dithering only method with N>20, this means less overhead for 

channel estimation and a higher efficiency. 
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3.4 Conclusion 

A new approach which combines random delay and phase dithering is proposed for 

cooperative transmission while the constant envelop characteristic of the transmitted 

signal was kept. The simulated results of information rate and error rate are compared 

with the results by phase-dithering-only approach. It shows that our approach is more 

robust to different channel models, with less channel estimation overhead, and can 

achieve better performance with a higher information rate or a gain in SNR.  

Figure 10 PER of Phase Dithering and our proposal under AWGN channel 
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 Figure 11 PER of Phase Dithering and our proposal under 

dynamic Rayleigh channel 
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Figure 12 PER of Phase Dithering and our proposal under quasi-static Rayleigh 

channel 
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CHAPTER 4. MULTIPLE CFOS EQUALIZATION IN DSM 

MIMO OFDM AND STBC SC-FDE 

One of the most critical issues in cooperation communication is the multiple carrier 

frequency offsets (CFOs) problem as an asynchronism [47], which originates from the 

distributed manner of the transmission and the difficulty in global synchronization [48] 

for a distributed wireless network.  

For CT, multiple CFOs compensation algorithms for OFDM transmission are also 

developed in [52, 53, 54, 55], where the compensation algorithm for distributed TR-

STBC transmission is suggested [94]. The multiple CFOs problem also exists for virtual 

MIMO and DSM schemes [56, 58. The major drawbacks of these compensation 

algorithms are that they only work for small CFOs [54, 58] and the high computation 

load. 

Here we develop a Linear MMSE equalization [65] algorithm in the frequency domain to 

compensate the CFOs, assuming the CFOs are known at the destination. By using the 

permutation based approach which employs the pseudo banded matrix characterization, a 

computationally efficient equalization algorithm is proposed. This permutation-based 

approach can be generalized for the problem of frequency domain equalization with 

multiple CFOs problems, for both OFDM and SC-FDE, and for both distributed MIMO 

and STBC scenarios. To the author’s knowledge, this is the first time a generalized 

approach has been proposed for such problems. Also, the algorithm is evaluated by 
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simulation to show that it can compensate large frequency offsets and have high 

computational efficiency.  

In the remainder of this chapter, we use the following notations: for a matrixΑ ,  a m b
c n d
 
 

Α  

denotes a corresponding submatrix, and  
mn

Α  denotes an element;    and  
N

  denote 

the complex conjugate and modulo- N operations; x    is the closest integer which is 

smaller than or equal to x , i.e., the floor operation. 

4.1 Multiple CFOs Equalization in DSM MIMO OFDM 

We first develop the algorithm within a DSM MIMO OFDM system with distributed 

transmit antennas. The performance of any OFDM system is highly sensitive to CFO 

because of the loss of orthogonality among subcarriers and the inter-carrier interference 

thus introduced. Therefore, accurate CFO estimation and tracking is important in OFDM 

systems. However, in the DSM scenario, because the different sources have different 

CFOs, the destination cannot track just one carrier frequency, and this causes the multiple 

CFOs problem in DSM. The compensation algorithm [58] fails if the channel becomes 

frequency selective. 

4.1.1 System Model 

Consider the DSM MIMO OFDM scheme with TM  transmit antennas and RM  receive 

antennas. The receive antennas belong to a multi-antenna receiver, but the transmit 
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antennas belong to different transmitters geographically scattered, and thus multiple 

CFOs happen. Suppose N  is the number of subcarriers in OFDM modulation. 

After removing the cyclic prefix (CP), the time domain received signal samples at the 

j-th receive antenna can be expressed as the 1N   vector jy , where  

1

TM

j i ji i i

i

 y Λ H x z ,        (1) 

where ix  is an 1N   vector of the time domain transmitted signal samples at the i-th

transmit antenna, iz  is a vector of the additive white Gaussian noise (AWGN) samples 

with zero mean and covariance 2

n  at the i-th transmit antenna, jiH  is the circulant 

channel impulse response (CIR) matrix from the i-th transmit antenna to the j-th receive 

antenna, iΛ  is the phase error matrix for the i-th transmit antenna relative to the receiver, 

where (1) (2) ( )( , , , )N

i i i idiag   Λ  and ( ) 2
exp( ) k i

i

j k

N

 
  for k=1, 2, , N , and i  

denotes the i-th transmit antenna’s relative CFO normalized by the subcarrier frequency 

spacing.  

From (1), the frequency domain received signal for the j-th receive antenna is an 1N   

vector as 

1

 =
TM

H

j j i ji i i

i

 y Fy FΛ F H x z ,  
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where H

ji jiH FH F , i ix Fx , i iz Fz , F  is the N N  discrete Fourier transform 

(DFT) matrix, and H
F is its Hermitian. 

Define
1 2

[ , , , ]
MR

T T T Ty y y y , 
1 2

[ , , , ]
MR

T T T Tz z z z , and 
1 2

[ , , , ]
MT

T T T Tx x x x , we get  

 y Hx z ,          (2) 

where the corresponding submatrix of H  is  ( 1) 1
( 1) 1

H

i N m iN i ji
j N n jN
   
   

H FΛ F H  , which is 

approximately band-limited if i  is small, i.e., only the elements close to the diagonal 

axis are big in value, others are close to 0. Note that jiH  is diagonal, and H

iFΛ F  is 

circulant.  

The traditional LMMSE estimate of x  from (12) is  
1

2 2ˆ  H H

n s 


 x H HH I y , where 

the matrix inversion computation load is  
3

RO M N , which is huge when RM N  is big. 

[54] proposed a linear equalization approach to compensate the multiple CFOs for the  

STBC OFDM case, which can be modified for the spatial multiplexing case. However, 

the approach needs a matrix inversion per subcarrier per antenna, so the computation load 

is   33 2 1T RO NM M L , where T RM L M N ; and the approach fails under large 

CFOs.  

4.1.2 The Proposed Permutation Based Multiple CFOs Equalization Algorithm 
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(a) Pattern of H  (b) Pattern of H  

We propose an equalization algorithm in this section which can dramatically reduce this 

computational load by employing a recursive manner and the pseudo banded 

characteristic of the permutated matrix. 

Define the permutation matrices as  
,

1   for   

0,  otherwise

i

L i j

j 
 


P  and  
,

1   for   

0,  otherwise

i

R i j

j 
 


P , 

where     1 1 1i RN
i M i N         and     1 1 1i TN

i M i N         . 

Then from (2) we get 

 y Hx z ,          (3) 

where Ly P y , Rx P x , Rz P z  and T

L RH P HP . Note that H  is pseudo banded as the 

result of permutation and the pseudo banded characteristic of the submatrices of H , as 

shown in Fig. 13. 

Figure 13 The patterns of the banded matrix 

approximation for H  and H  
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Define     1 1
R

R NM
c k i NM    and     ' 1 1

T
T NM

c k k NM   ; these 

functions make the circular index operation. Let 

        1 1 1 2
[ , , , ]

R R R

T

k c k L M c k L M c k L M
y y y

      
y and define the  2 1 R TL M NM   

submatrix kH  as  
  1 ,R

k
mn c k L M m n  

      H H  for 1, ,k N , where L  is a parameter 

we choose for equalization, T RM L M N . Then from (3) we get 

k k k y H x z  for 1, ,k N .        (4) 

Let 
       '' 1 1 ' 1 2

[ , , , ]
TT T

T

k c kMc k M c k M
x x x

   
x . From the discussion of H , we conclude 

that the information of kx  is mainly concentrated in ky , and from (4) we get the LMMSE 

estimate of kx  as 

1ˆ  k k k k

x Α Φ y  for 1, ,k N ,        (5) 

where    
   
1 2 1

1 1 1
R

T T

H

m L Mk k
k M n k M

  

    

Α H and 2 2H

k k k n s  Φ H H I .  The inversion of kΦ  

needs computational load  
3

(2 1)RO M L  per subcarrier, but next we will find a 

recursive manner to reduce this load dramatically.  
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Because kH shares most of the elements of 1kH , it is not hard to find that we can write 

in the block partition manner as 
1

1

1 1

k

k H

k k





 

 
  
 

Ξ r
Φ

r ν
 and 

H

k k

k

k

 
  
 

ν r
Φ

r Ξ
, where Ξ  is a 

2 2R RLM LM  square matrix. As an extension derived from [50], if we have obtained 

11

1

1 1

k

k H

k k





 

 
  
 

Θ w
Φ

w s
, where Θ  is a 2 2R RLM LM  square matrix, then we get 

1 1 1 1

1

1

H H

k k k k k k k

k

k k

   





  
  

 

ν ν r Ψr ν ν r Ψ
Φ

Ψr ν Ψ
,      (6) 

where  
1

1 1 1 1H H

k k k k k


     Ψ Ξ Ξ r ν r Ξ r r Ξ  and  

1
1

1 1 1 1 1

H H

k k k k k




      Ξ Θ Θr ν r Θr r Θ . 

The matrix inversion computational load per subcarrier here is only  
3

RO M , and the 

main load is  2

TO M N  for matrix multiplication. We further reduce this computational 

load by approximate H  with bH  in (5) and (6), where 

Figure 14 Coded OFDM SER of the multiple CFOs 

equalization for 2x2 DSM 
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   
   

   

, '
for 1 1 ,  

                      1 1 ,  1

0,         otherwise

R R
c i c j

b T T
ij

m L M i m L M

m L M j m L M m N

        


           



H

H . 

With (6) and this band matrix approximation, (5) can be solved recursively by starting 

from k N  and ending with 1k  , and only one inversion for a (2 1) (2 1)L L    matrix 

NΦ  is needed. The total computation load is   2 2 1TO NM L , compared with 

  33 2 1T RO NM M L  in [54]. 

4.1.3 Simulation Results 

Fig. 14 depicts the simulation results for the coded OFDM Symbol Error Rate (SER) vs. 

SNR of the equalizer for 2x2 DSM OFDM case with multiple CFOs. In Monte Carlo 

simulation, we use the coded OFDM scheme with QPSK modulation, 128 subcarriers 

OFDM, 1 2  rate convolutional code with generator [133, 171] and constraint length 7, 

hard decoding; the channel is 2x2 i.i.d. Rayleigh with 2 i.i.d. taps, and we set 10L   in 

this simulation for our recursive approach combined with band matrix approximation. We 

also plot out the result of the modified approach from [54] for comparison. 

The black curve is the SER of a LMMSE detector with no CFOs, which plays as a 

benchmark for comparison. We plot two sets of curves with different CFOs, one with the 

CFOs 0.1 and -0.167, the other with the CFOs 0.31 and -0.267. We found that our 

recursive equalization algorithm works under both small CFOs and large CFOs, which 
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outperforms the approach of [54] quite well under large CFOs, and with much smaller 

computation load.  

4.2 Multiple CFOs Equalization in STBC SC-FDE 

Here we consider the STBC SC-FDE system with distributed transmit antennas. Similar 

to the DSM OFDM case, which was introduced in the last section, the performance of the 

STBC SC-FDE system is also highly sensitive to multiple CFOs as a block data 

transmission and frequency domain equalization scheme. We will show in this section 

that our approach also works for SC-FDE and STBC to compensate large frequency 

offsets and have high computational efficiency.  

4.2.1 System Model 

We consider the 2x1 SC-FDE STBC scheme supposed by [32] with two transmit and one 

receive antenna. Denote the thn symbol of the thk transmitted block from antenna i  by 

 ( )k

i nx , where ix  is an 1N   vector for 1,2i  . After removing the cyclic prefix (CP), 

the time domain received signal samples at the -thj slot can be expressed as the 1N   

vector jy , then received blocks at the -thk  and 1-thk   time slots are given by 

2
( ) ( ) ( ) ( )

1

j j j j

i i i i

i




 y Λ H x z  for , 1j k k  ,     (7) 

where ( )j
z  is a vector of the additive white Gaussian noise (AWGN) samples with zero 

mean and covariance 2

n  at the j-th slot, iH  is the circulant channel impulse response 
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(CIR) matrix from the i-th transmit antenna to the receive antenna, iΛ  is the phase error 

matrix for the i-th transmit antenna relative to the receiver, where 

(1) (2) ( )( , , , )N

i i i idiag   Λ  and ( ) 2
exp( ) k i

i

j k

N

 
  for =1, 2, , Nk , here i  denotes 

the i-th transmit antenna’s relative CFO normalized by the subcarrier frequency spacing. 

( )j

i are some known constants introduced by carrier offsets in the period of CP [32]. 

As in [32], for an odd integer number k  we define  

    ( 1) ( )

1 2

k k

N
n n   x x  and     ( 1) ( )

2 1

k k

N
n n  x x . 

From (7), the frequency domain received signal for the -thk  and 1-thk   time slots time 

slots are 1N   vectors as 

2
( ) ( ) ( )

1

 =j j H j

j i i i i j

i




 y Fy FΛ F H x z  for , 1j k k  ,    (8) 

where H

i iH FH F , ( ) ( )j j

i ix Fx , ( )j

j z Fz . 

From the properties of the DFT, we have [32] 

( 1) ( )

1 2

k k  x x  and ( 1) ( )

2 1

k k  x x . 

Without loss of generality, let 1k  , and define
1 2

[ , ]T T Ty y y , 
1 2

[ , ]T T Tz z z , and 

(1) (1)

1 2[ , ]T T Tx x x , from (8) we get  

 y Hx z ,          (9) 
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where 

( ) ( )

1 1 1 2 2 2

( 1) ( 1)

1 1 1 2 2 2

  

  -

k k

k k

 

  

 
  
  

Λ H Λ H
H

Λ H Λ H
 and  H

i iΛ FΛ F  which is approximately band-

limited if i  is small. Note that 
iH  is diagonal, and H

iFΛ F  is circulant.  

The traditional LMMSE estimate of x  from (9) is  
1

2 2ˆ  H H

n s 


 x H HH I y , where 

the matrix inversion computational load is high.  

4.2.2 Permutation Based Multiple CFOs Equalization Algorithm 

Now we adopt the same steps as Eq. (1)-(6) which are introduced in last section to get x̂ , 

and thus (1)

1x̂  and (1)

2x̂ . 

Then we get the estimation for the transmitted data as 

 (1) (1)ˆˆ H

i ix F x  for 1,2i  .       (10) 

4.2.3 Simulation Results 

Fig. 15 depicts the simulation results for the uncoded SC-FDE Symbol Error Rate (SER) 

vs. SNR of the equalizer for 2x1 uncoded STBC SC-FDE case [32] with multiple CFOs. 

In Monte Carlo simulation, we use an uncoded SC-FDE scheme with QPSK modulation 

and block data length 64N  , the channels from the transmit antennas to the receive 

antanna are i.i.d. Rayleigh with 2 i.i.d. taps, and we set 10L   in this simulation for our 

recursive approach combined with band matrix approximation. An error is counted when 

there is decision error in the whole STBC codeword. 
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The black curve is the SER of a LMMSE detector with no CFOs, which plays as a 

benchmark for comparison. We plot the performance curve of the proposed approach 

under the normalized CFOs 0.0931 and -0.067. We found that our recursive equalization 

algorithm has the performance very close to that of the conventional LMMSE.  

The corresponding simulation results for Bit Error Rate (BER) vs. SNR are plotted out in 

Fig. 16. One interesting phenomenon is that the proposed approach has lower BER than 

the conventional LMMSE as shown in Fig. 16, though the SER is still higher as shown in 

Fig. 15. Further analysis shows that the proposed approach has lower conditional BER in 

a decided SC-FDE symbol with decision error, as shown in Fig. 17. 

Figure 15 SC-FDE SER for 2x1 STBC under multiple CFOs  
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4.3 Conclusion 

A Linear MMSE equalization algorithm in the frequency domain is developed to 

compensate the multiple CFOs. By using the permutation based approach which employs 

the pseudo banded matrix characterization, a recursive and computationally efficient 

equalization algorithm is proposed. This approach can be generalized for the problem of 

frequency domain equalization with multiple CFOs problems, for both OFDM and SC-

FDE, and for both distributed MIMO and STBC scenarios. The algorithm is evaluated by 

simulation to show that it can compensate large frequency offsets and have high 

computational efficiency.  
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Figure 16 BER for SC-FDE 2x1 STBC under multiple CFOs  
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Figure 17 conditional BER for SC-FDE 2x1 STBC under multiple CFOs 
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CHAPTER 5. DIVERSITY ORDER ANALYSIS OF LINEAR SC-

FDE 

The single-carrier frequency-domain equalizer (SC-FDE) is a block data processing 

technique for frequency selective channels, first suggested in [66]. Similar to orthogonal 

frequency-division multiplexing (OFDM), its frequency domain counterpart, SC-FDE is 

preferred over the time domain equalizer for the broadband channel with a long channel 

impulse response (CIR) because of its lower complexity. Also, when compared to coded 

OFDM, SC-FDE has a much lower peak-to-average power ratio in transmitting, but 

similar error performance [67]. The above advantages make SC-FDE desirable for 

wireless broadband transmission. Single Carrier-FDMA, which is a modified version of 

SC-FDE for multiple accessing, is the uplink transmission technique for 3GPP LTE [68]. 

A good survey about SC-FDE is found in [67]. 

Outage probability is an appropriate metric for systems with powerful channel codes, 

however, for a system without such channel coding and where the data is decided at the 

output of the equalizer, the average symbol error probability (SEP) is popular. The 

diversity orders of these two metrics can be different and are important for fading 

channels. If the channel has only two taps, the most straightforward approach involves 

finding the probability density function (PDF) of the signal to interference noise ratio 

(SINR) by variable transformation [92, section 3-6]; for more taps, this generally 

involves multi-dimensional integration, which is extremely involved and generally leads 

to no explicit conclusion, so a new mathematical approach is desired. As we explain in 
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the next section and summarize in Table 1, several authors have analyzed diversity order 

of outage and SEP, however their results contradict each other and make this topic 

controversial.  

In this dissertation, we present a novel bounding technique to analyze diversity. It is a 

unified approach to derive the diversity order of the outage probability and SEP for both 

the minimum mean-square error (MMSE) and the zero forcing (ZF) SC-FDE. It is the 

first time these diversity orders have been derived strictly. The study shows that the 

diversity orders of SEP for both the MMSE and ZF SC-FDE are one. We have also 

relaxed the constraint for the channel model from channels with identical and 

independent distributed (i.i.d.) paths [69, 70] to channels with just independent paths in 

our analysis; this is a useful contribution because the average tap powers of most real 

channels decay exponentially [71]. The results proven in this dissertation are summarized 

in the bottom of Table 1. 

Analysis of the outage probability and diversity order for linear SC-FDE was first 

attempted in [72]; the study revealed that full diversity can be achieved for very low rate 

and diversity one for high rate, for MMSE SC-FDE. Limitations of this study include 

approximation of outage regions, only considers very high or very low data rates, and that 

the transmission block length must be equal to the number of channel taps. 

The study in [73] finds the outage diversity order of MMSE SC-FDE for the channel with 

i.i.d. paths. For the channel with memory length  , block data length n  and data rate R , 

the outage diversity gain is  min 2 1, 1MMSE R

outd n      . Explaining further in [69], the 
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authors follow the techniques used in diversity-multiplexing tradeoff (DMT) analysis in 

[78], which were originally proposed for the analysis of the diversity order of multiple-in  

Table 1 the asymptotic analysis of diversity order for SC-FDE 

Reference Channel 

model 

Type of 

equalization 

Type of 

metric 

Diversity order Notes 

[73] i.i.d.  

channel 

paths 

MMSE Outage  min 2 1, 1R n       Problematic 

proof 
[69] MMSE Outage  min 2 1, 1R n       

[69] MMSE SEP  min 2 1, 1R n       Wrong 

conclusion 

[70] ZF Outage 1 Problematic 

proof 

[74]  ML SEP full  

[75, 76]  ML SEP 1  

[77] i.i.d. 

channel 

paths 

ML SEP 1  The conclusion 

contradicts [75, 

76] 

[77] MMSE DFE SEP full 

This work inde-

pendent 

channel 

paths 

ZF SEP 1  

ZF Outage 1  

MMSE SEP 1  

MMSE Outage  min 2 1, 1R n        

 multiple-output (MIMO) transmission. In the proof of [69, Lemma 1], the authors 

implicitly assert that if two functions are exponentially equal, i.e., if ( , ) ( , )f g β β , 

then ( ( , ) ) ( ( , ) )P f c P g c  β β , where   is the average signal to noise ratio 

(SNR), β  represents a vector of random variables, ( )P   is the probability measure, and c   
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is a positive constant. Exponential equality will be defined in the next paragraph. 

However, this assertion can be verified not to be always correct and we give a counter-

example and the details in Appendix A.1.  

The study in [70, Theorem 1] showed that the outage diversity order for the zero forcing 

(ZF) SC-FDE is one. The proof is given in [70, Appendix B]. However, in deriving the 

lower bound of the diversity, a property is simply assumed that the distribution of the 

SINR when SINR is close to 0 will be similar to that of a chi-squared random variable 

and the first order derivative of its cumulative distribution function (CDF) at zero is 

bounded and nonzero. Such an assertion is lack of proof. In this dissertation, we use 

upper and lower bounds to avoid this assumption. 

In summary, with regard to the outage diversity of the linear SC-FDE, rigorous analysis 

is needed to support the claimed results in [69, 70, 73].  

For SEP diversity, [74] claimed uncoded SC-FDE achieves full diversity gain with 

maximum-likelihood (ML) detection. However, [75] points out an error in [74] and 

claims the diversity order is 1 for optimal ML detection, thus 1 is the upper bound for any 

detection algorithm, while [76] makes the same claim. [77] argued that [75] only derived 

the lower bound for diversity order of ML detection, and claimed that the MMSE SC-

DFE with decision feedback can achieve full diversity. However, such analyses for linear 

equalizers, i.e., both ZF and MMSE SC-FDE, are still absent. Our work shows that the 

diversity orders of SEP of ZF and MMSE SC-FDE are both 1, and thus achieves the 

upper bound of diversity order for SC-FDE. We should point out that the analysis in [77] 
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assumes an equalizer with infinite data block length, and the diversity order is analyzed 

only for outage. Table 1 summarizes the issues with these previous works and shows 

what is proved in this dissertation. 

5.1 System Model 

In this section, we first define the model for the SC-FDE. Next, we give our notation for 

diversity order for SEP and outage probability. 

5.1.1 SC-FDE 

We consider the block data transmission scheme over a static frequency selective channel 

with independent paths and memory length  , the channel vector 

0 1[ , , , ] (0, )Th h hh D , where D  is a diagonal matrix with positive diagonal 

elements, i.e., the elements of h  are independently complex Gaussian distributed. The 

information symbol block x  is a column vector with length 1n   , with uncorrelated, 

zero mean components, 2H

sE    xx I . In the SC-FDE scheme, a cyclic prefix (CP) is 

inserted before x  on the transmitter side and removed on the receiver side, to avoid inter-

block interference. Suppose y is the received signal after CP removal, and then the input-

output model is  y Hx n , where H  is the circulant matrix generated with h  and the 

noise vector is 2(0, )nn I . The output of equalization is  

ˆ ( )  y Wy W Hx n ,        (11) 

where W  is the equalization matrix [29, 67]. The computationally efficient algorithm 
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uses the fast Fourier transform (FFT) and inverse FFT, and leads to the SC-FDE. The 

channel frequency response (CFR)  1 2, , ,
T

n  λ  is the n-point discrete Fourier 

transform (DFT) of h  

λ Fh ,           (12) 

where F  is a  1n    matrix with element     2 1 1j k l n

kl
e

  
F , i.e., F  is a submatrix 

formed by the first 1   columns of the DFT matrix. Note that the 'k s  are eigenvalues 

of H  and complex Gaussian.  

We define the transmission SNR 2 2

s n    and 

2

k k   .          (13) 

5.1.2 Diversity analysis 

Let P ( )e   be the SEP with channel-dependent SNR  , which is depicted in [7, Eq. (4.1-

15)]. While   is parameterized by  , the average SEP is defined as 

,
0

( ) ( ) ( )e eP P p d    


  ,         (14) 

where ( )p  is the PDF of  . The diversity order of error probability is defined as [18] 

,lim log ( ) loge ed P 


 


  .        (15) 
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The channel capacity is ( ) log(1 )C     and the outage probability is defined as 

 , ( ) ( )outP R P C R   , where R  is the transmission rate. The outage diversity order is 

defined as ,lim log ( , , , ) logout outd P R n


  


  . Outage event ( )C R   is equivalent to 

2 1R   . Note outd is modulation-independent whereas ed is modulation-dependent. 

As in [78], we denote exponential equality by ( ) df    if 
log ( )

lim
log

f
d






 , d  is 

called the exponential order of ( )f  ; we define as ( ) df    if ( ) ( )f f   for any 

function ( )f   such that ( ) df   , and  we define as ( ) df   if ( ) ( )f f   for any 

( )f   such that ( ) df   . 

5.2 General Approach and Simple Example 

In this section, we first describe our general approach to find diversity order, which uses 

upper and lower bounds, and then we show a simple example to illustrate our set-based 

approach to find the bounds. 

5.2.1 General approach 

We first state Proposition 1, which is the basis for our novel approach in this dissertation.  
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Proposition 1: If ( ) df    and ( ) df   , then ( ) df   .  This is clear from 

log ( )
lim

log

f
d






  and 

log ( )
lim

log

f
d






 , then 

log ( )
lim

log

f
d






 . Similarly, if  

( ) ( ) ( )f f f     when   is big enough, and ( ) ( ) df f   , then ( ) df   . 

Thus, our approach for each type of equalizer is as follows: we find upper and lower 

bounds for each of the error probability and the outage probability, and we show the 

upper and lower bounds are of the same exponential order; thus the bounds are tight in 

the sense of diversity order and we can claim that the equalizer has a certain diversity 

order. While trivial upper and lower bounds are easy to find, the challenging aspect of 

this work is to find bounds that have the same diversity order. 

5.2.2 Simple example of finding bounds 

As an illustration of how we find bounds, we consider the simplest case for the outage of 

MMSE SC-FDE. We show that the diversity order depends on the outage threshold of 

instantaneous SINR at the output of the equalizer. 

Figure 18 Integration region for diversity analysis 

of MMSE SC-FDE, 0 1   
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The simplest case is 1 2n     when the elements of h  are i.i.d. complex Gaussian 

distributed, for which the unbiased decision point SINR [72] is 
2

1
( , )

MMSE
f x y

   , 

where 
1 1

( , )
1 1

f x y
x y

 
 

, 
2

1x   , 
2

2y   , and 
1 , 

2  are i.i.d. complex 

Gaussian according to (12). Suppose outage happens when ( , )f x y  , which is 

equivalent to a threshold on MMSE . Then the outage probability is 

( ) ( ) ( )outP P p x p y dxdy


    ,  where the integration region  ( ,  ) :  ( , )x y f x y    , 

which is below the curve in Fig. 18.  Note 0,  0x y  .  

The case for 0 1   is shown in Fig. 18. Note that 2  includes 1 . We define the 

following regions as:  1( ,  ) :  0,  0k kx y x x y      for 1, 2k  , and 

 3 1( ,  ) :  0,  0x y x y y     . It is clear that 1 2 3( )    , so we can get the 

upper bound as 

2 3 2 3( ) ( ) ( ) ( )P P P P        . We can find 2( )P   by integration, specifically,  

1

2
0

( ) ( )
x

xP p x dx   , where 
2

1x    is exponentially distributed. It is easy to find that 

2log ( )
lim 1

log

P

 


   , which means the diversity order of 2( )P  is 1, or   1

2P   . 

Similarly,   1

3P   . It is trivial to prove that     1

2 3P P     . 



 

 

 54 

The lower bound is 
1( ) ( )P P   ; using the same technique, we have   1

1P   . 

Since the upper and lower bounds have the same diversity order, we conclude that 

MMSE SC-FDE has diversity order of one, for 1 2n    , 0 1  ,  and  i.i.d. 

complex Gaussian elements in h . 

This simple case is clear for explanation. But generally we have 1n   , the elements 

of h  are not i.i.d. complex Gaussian, and the 'k s  in (12) are not independent, so there is 

no such straightforward relation between the integration region and the diversity order 

shown in this example. However, we will still rely on operations on sets and bounding 

techniques for diversity analysis.  

5.3 Diversity Analysis of ZF SC-FDE 

Following the general approach we just introduced, we will find the diversity order of ZF 

SC-FDE in this section. Some results from this will be used in the analysis of MMSE SC-

FDE. 

For the ZF SC-FDE, the equalizer in (11) is 1( )H H

ZF

 W W H H H , and the unbiased 

decision point SNR is [72] 

2

1 1

1

1 1 1ZF n n

i i ii

n

n

 

  

  

 
.       (16) 

If the analytical expression of the distribution of   is known, the diversity order of error 

can be obtained by using the results of [93], and the diversity of outage can also be 
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derived. Although it is possible to find the distribution by variable transformation, the 

expression includes a multidimensional integral. In the simplest case where 1 2n    , 

the CDF of ZF  is only a two dimensional integral [70, Appendix C]. In other cases, the 

integral dimensions are higher and too complicated to be of any use in analysis.  

We next develop Proposition 2 and Lemma 1 to facilitate the diversity analysis of SEP, 

which is an extension of [93, Proposition 1].  

Proposition 2: For an instantaneous SNR x , we can deduce from [7, Eq. (4.2-93)] that 

4 3 2 1( ) P ( ) ( )x e x xM Q M M Q M    ,       (17)  

where ( )Q  is the Gaussian tail function, 1M , 2M , 3M  and 4M are modulation-

dependent positive constants. From (14) we get 

4 3 , 2 1
0 0

( ) ( ) ( ) ( )
x x xeM Q M p d P M Q M p d       

 

   . 

Lemma 1: If the following three assumptions are fulfilled: 

AS1) The instantaneous SNR x thn    , where   is the average SNR,   is a 

channel dependent nonnegative random variable, th is a nonnegative constant.   

AS2) The SEP of the memoryless modulation follows (17). 

AS3) The CDF ( ) ( )t tF a o     for C  , where 0C  , 0a  , and . Here we 

denote a function ( )f y of y as ( )to y  if 0lim ( ) 0t

y f y y  . 

0t 
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Then ,P
x

t

e    , i.e., the error diversity order is ed t . 

Proof: First we find a upper bound for the average SEP ,P
xe  . Because x in  , where 

i  , it is straightforward  to find ,P
i

t

e n    from [93, Proposition 1] and ,P
x

t

e    . 

Next we find a lower bound for ,P
xe  (thus the upper bound for ed  in (15)). For 

1x th   ,  or  1 n  , the instantaneous SEP satisfies  Pe x C  , where 

 P 1e thC    is a positive constant (note  Pe x  is monotone decreasing if 0x  ). Let 

 p   be the PDF of  , then 

       

   

1

,
0 0

1
1

0 0

P P d P d

1
d d ( )

th

x

th

e e x x x e x x x

tn
x x

p p

C p C p CF
n










     

    


 




 

  

 

 
,  

From (15) we get ed t . From Proposition 1 we conclude ,P
x

t

e     or ed t .   

We note that Lemma 1 does not address a particular equalizer. It is a result of assuming a 

certain affine dependence of SNR on  . 

Next, Proposition 3 and 4 constitute a special case of Lemma 1; we use this special case 

frequently in our work. 
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Proposition 3: If x   and   is exponentially distributed, then from Lemma 1, we 

get 1

0
( ) ( )

x
Q M p d   




  for any positive constant M , and we conclude 

1

, ( )
xeP     .  

Proposition 4: If 1 2, , , dx x x are independent exponential random variables, then 

  for 1 d

iP x t d i      for some positive real t . It is straightforward to prove 

this using integration. This simply extends the analysis in Section II to d  variables. 

Now we summarize the analysis for ZF SC-FDE, which is presented in the remainder of 

this section. The lower bounds for SEP and outage probability are derived in Lemma 2; 

the upper bounds are derived using Lemmas 3, 4 and Lemma 5; and the final result is 

Theorem 1. 

Lemma 2: The outage probability of the ZF SC-FDE is lower bounded as 1

, ( )
ZFoutP R  

, and the average SEP of the ZF SC-FDE is lower bounded as 1

,P
ZFe    . 

Proof: From (16), ZF i in     for any i . From Prop. 3,  1

, ie nP    . We get 

( ) ( )e ZF e iP P n   and , ,ZF ie e nP P  , because ( )eP   is a decreasing function.  From 

( ) ( )ZF iC C n  , we get , ,( ) ( )
ZF iout out nP R P R  .      

Lemma 3: Define a new random variable LB  by its CDF 

2

1 1

( ) min(1, ( )) min(1, ( ))
LB i

i

n n

i i

F F F  


 

 

   ; then  ( ) ( )
LB ZF

F F    for any 0  . 
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Proof: 

1 11 1 1

( ) Pr( ) 1 Pr Pr Pr Pr( ) ( )
ZF i

n n n n n

ZF i i i i

i ii i i

F U U U U F    
   

  
             

  , 

where  :i iU U    . Therefore 
1

( ) ( )
ZF i

n

i

F F  


  .     

Lemma 4: If ( ) ( )
LB ZF

F F    for any 0  , then , ,P P
ZF LBe e   and 

, ,( ) ( )
ZF LBout outP R P R  . 

Proof: Because ( )eP   is a decreasing continuous function of  , ( ) 0eP   , and ( ) 0eP  

, we have ( ) '( )e eP P x dx





  , where '( ) ( ) 0e eP dP d    . Then from (14) we get 

,
0 0 0 0

'( ) ( ) '( ) ( ) '( ) ( )
x

e e e eP P x p dxd P x p d dx P x F x dx   


   
   

          . 

The third equality follows by change of the order of integration. Then from 

( ) ( )
LB ZF

F F    we conclude , ,P P
ZF LBe e  and , ,( ) ( )

ZF LBout outP R P R  .   

Lemma 5: The outage probability of ZF SC-FDE is upper bounded as 1

, ( )
ZFoutP R   ; 

the average SEP of ZF SC-FDE is upper bounded as 1

,P
ZFe    . 
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Proof: With LB  defined in Lemma 3, then 2

1

( ) ( )
LB

i

n

i

F F 
  



  when    is small 

enough or   is big enough, and it follows From Prop. 4 that 

1

, ( ) (2 1)
LB LB

R

outP R F     .  

From Lemma 4, we have 1

, ,( ) ( )
ZF LBout outP R P R    .  

Let 
2

LB LB    where 2 2

1

( ) min(1, ( ))
LB i

n

i

F x F x
 



  , so 2 2

1

( ) ( )
LB i

n

i

p x p x
 



  for small 

enough x . It can be derived from Lemma 1 that 1

,P
LBe    .  

From Lemma 3 and Lemma 4, we have , ,P P
ZF LBe e  .     

Theorem 1: The diversity order of the error probability of the ZF SC-FDE is 1, i.e.,

1ZF

ed  ; and the diversity order of the outage of the ZF SC-FDE is 1, i.e., 1ZF

outd  . 

Proof: From Lemma 2 and Lemma 5.        

5.4 Diversity Analysis of MMSE SC-FDE 

We study the diversity order of MMSE SC-FDE in this section. For the MMSE SC-FDE, 

the equalizer in (11) is 1 1( )H H

MMSE     W W H H I H , and the unbiased decision point 

SINR is [72] 
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2

1 1

1 1
1 1

1 1 1 1

11

MMSE n n

k k kk
n n

 

  

    


 

.      (18) 

It is reasonable to assume that in SEP analysis for MMSE SC-FDE, the interference is 

also complex Gaussian. This enables us to apply Props. 2 and 3.  

Generally we have no analytical expression for the distribution of MMSE . Similarly to the 

last section, we use a bounding approach to find the diversity of MMSE SC-FDE.  

The facts that we clarified in the analysis of ZF SC-FDE are still indispensable for this 

section. 

5.4.1 SEP analysis of MMSE SC-FDE 

For SEP analysis, the upper bound is derived with Lemmas 6 and 7, the lower bound is 

derived with Lemmas 1 and 8, and the conclusion for error diversity order is given in 

Theorem 2. 

Lemma 6: MMSE ZF   for the linear SC-FDE. 

Proof:  We get from (18) that 1 1 1

1 1 1

1 1
(1 ) 1 (1 1 ) (1 )

1

1 1
(1 ) (1 1 ) (1 )

1

n n n

i i
i i i i

MMSE n n n

i i i

i i ii

f
n

g
n

 




  


  

  

 


  




  

  
, 

where 
1

( )
1

f x
x




 and ( )
1

x
g x

x



. By concavity of ( )f x  and ( )g x , 
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1 1

1 1
(1 ) ( 1 )

n n

i i

i i

f f
n n

 
 

  , 
1 1

1 1
(1 ) ( 1 )

n n

i i

i i

g g
n n

 
 

  . So 

1 1

1

11 1 1 1
( ) ( )

1
1

n n

MMSE ZFn

i ii i
i

i

f g
n n

n

 
 

 



   


.      

Lemma 7: The average SEP of MMSE SC-FDE is upper bounded as 1

,P
MMSEe    . 

Proof: from Lemma 6 and Theorem 1,  1

,P
MMSEe    .     

Lemma 8: The average SEP of MMSE SC-FDE is lower bounded as 1

,P
MMSEe    . 

Proof:  from (18), we get 1
1 (1 )

MMSE

i

n



 


 or 1MMSE in n    . We get 

1

,P
MMSEe    from Lemma 1.          

Theorem 2: The diversity order of SEP of MMSE SC-FDE is 1, i.e., 1MMSE

ed  . 

Proof: From Lemma 7 and Lemma 8.        

5.4.2 Outage probability analysis of MMSE SC-FDE 
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We get the capacity 
1

1
( ) log( 1 (1 ))

n

MMSE k

k

C
n

 


    from (18), so the outage event 

( )MMSEC R   is equivalent to MMSE   or 
1

1 (1 )
n

k

k

 


  . Here and in the remainder 

of this dissertation, we define 2 1R    and (1 ) 2Rn n    . 

For outage probability analysis, the lower bound is derived in Lemma 10, the upper 

bound is derived with Lemmas 12, 13 and 16, and the conclusion for outage diversity 

order is given in Theorem 3. We also develop Definition 1, Lemmas 9 and 11 to help the 

proof of Lemma 12, and develop Lemmas 14, 15 to help the proof of Lemma 16. 

Lemma 9: With λ  defined in (12), if λ  is a 1m  sub-vector of λ , and 
2

i i   , then 

  min( , 1) for 1 m

iP t m i        for a positive real t . 

Proof: See Appendix A.2.         

The next lemmas, Lemmas 10 through 12, have the rather complicated set constructions 

that were alluded to in Section III B. These constructions enable treatment of the general 

case of 1n    and when the elements of h  are not i.i.d. 

Lemma 10: Outage probability of MMSE SC-FDE is lower bounded as 

 min 1, 1

, ( )
MMSEoutP R

 

 
      .  

Proof: Outage probability is 
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'

' '

,

1 1

1
( ) Pr( ) Pr( ) Pr( )

1MMSE

Kn

out k k

i ki

P R U U 
 

   


 ,    (19) 

where we define  ' 1,2, ,kS n  with ' 1kS      , and 

 ' '

1:  for every k i kU U t i S    where  1 1 1t        and 

'
     

1,2, ,
1

n
k K



  
   

      

. If
1i t   for all '

ki S , then 
1

1 (1 )
n

i

i

 


   and outage 

happens, so 

'

'

1

K

k

k

U


 is contained in the outage space, and 

'

'

1 1

1
Pr( ) Pr( )

1

Kn

k

i ki

U
 

 


 . 

From Lemma 9, we have 
min(1 , 1)'Pr( )kU

 


     . Finally we have 

min(1 , 1)'

1

1
Pr( ) Pr( )

1

n

k

i i

U
 

 


    



 


  .       

Definition 1: Let the set  1,2, ,kS S n  , with cardinality kS n      , and 

     
1,2, ,

n
k K

n 

  
   

      

, be one of the n      combinations of set S . Let 

0 1
n

t


 

    
   

. For a specific k , if 0i t   for every  ki S , then 
1

1
ki S i

 


   


 , 

and this will ensure 
1

1 (1 )
n

i

i

 


  ; define 
'

k

k k

k i

i S

U U


 ,  0:
k ki iU U t   and then 

'

k

k K

U


 is contained in the non-outage space. Note that 
'

k

k k

k i

i S

U U


  , and we get 

' ( ) ( )
k k

k k

k i i

k K k K i S k K

U U U
    

 
i I

, 1 2( , , , )
K

i i ii  where k ki S  for every k K , I  is 
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the set of all possible i , with cardinality ( )
K

n     I . For a specific i , the order of the 

set 
1

k

K

i

k

U


is defined as the number of different values of all the elements of this vector i , 

or the number of different constraints in the definition of the set, and is denoted as 

1

( )
k

K

i

k

order U


. 

Lemma 11: With all the definitions and notations given in Definition 1, we have 

1

min  ( ) 1
k

K

i

k

d order U 




    
i I

. 

Proof: Without loss of generality, we assume one of the sets who has the minimum set 

order d  is 1 2

1 1
k

K d

di i

k i

U U U U U
 

  , note that '

k

k k

k i

i S

U U


 , all the '

kU ’s can be 

grouped into d  groups, and all the k  can be grouped into d  groups correspondingly. We 

have 1 kS for all the k  in the first group, so the intersection of all the '

kU ’s in the first 

group is 1U ; similarly, we have kt S for all the k  in group t , so the intersection of all 

the 
'

kU ’s in group t  is tU , for all the  1,2, , 1t T d   . For d  to be the minimum 

order, then for all the k  in group d , we have kt S  for all t T , then 1 kd S n    or 

1 1kd n S        .         

Lemma 12: If   , i.e., if  is a positive non-integer, then the outage probability of 

MMSE SC-FDE is upper bounded as 
 min 1, 1

, ( )
MMSEoutP R

 

 
     .  
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Proof: using (19) and Definition 1, we get 
' '

1

1
Pr( ) 1 Pr( ) Pr( )

1

n

k k

i k ki

U U


   


  

'

1

Pr( ) Pr( ( )) Pr( ) Pr( )
k k k

K

k i i i

k K k K k K k

U U U U
     

    
i ii I II

. From Lemma 9 and Lemma 

11, we get 
min(1 , 1)

Pr( )
ki

k K

U
 


    



 for a set 
1

k

K

i

k

U


which has the minimum set order 

1d     . So 
min(1 , 1)

Pr( )
ki

k K

U
 


    

 


i I

 because the diversity order is dominated by 

the minimum order, and we conclude  min 1, 1MMSE LB

out outd d        .   

Example: We give an example to illustrate Definition 1, Lemmas 11 and 12. Let 3n   

and 1.5  , then as in Definition 1, 2n     ,  1, 2, 3K  , the sets  1 1, 2S  , 

 2 1, 3S  ,  3 2, 3S  . Then 
'

1 1 2U U U  , 
'

2 1 3U U U  , and we get 

' ' ( )
kk k i

k K k K k K

U U U
   

 
i I

, where 

 (1,1, 2), (1,1, 3), (1, 3, 2), (1, 3, 3), (2,1, 2), (2,1, 3), (2, 3, 2), (2, 3, 3)I , and 

1 2 3( , , )i i i i I . According to Lemma 11, 2d  , this could be illustrated as following: 

for a specific (1,1, 2)i , 
1

( ) 2
k

K

i

k

order U d


  ; and according to Lemma 9, the diversity 

order of the probability 
1

( )
k

K

i

k

P U


 is also d . Because the outage space is contained in 

'

k

k K

U


, this leads to the result in Lemma 12, i.e.,  min 1, 1MMSE

outd       . 
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While Lemma 12 is for the    case, we derive the upper bound for the   case in 

Lemmas 13 and 16. 

Lemma 13: If    , i.e.,   is a positive integer, and 1   , then outage probability 

of MMSE SC-FDE is upper bounded as ( 1)

, ( )
MMSEoutP R 

    . 

Proof: From 
1 1

1 1
Pr( ) Pr( 0.5)

1 1

n n

i ii i

 
  

   
 

  , from Lemma 12, we have 

( 1)

1

1
Pr( 0.5)

1

n

i i

 


 



  


 , so we conclude ( 1)

, ( )
MMSEoutP R 

    .   

Lemma 14: 
2

2 1 1( ,  )P c w a b w w d       , where i iw h , 1h  and 2h  are 

independently Rayleigh distributed, , ,a b c  and d  are some positive real constants. 

Proof: First, we assume 1h  and 2h  are identically distributed with PDF 
2

( ) 2 x

xp x xe . 

Let 1t d r , 2t c r , 3t d r , 
1

( )
b

f x a
x r r


  
 

 and 

2
1

( )
b

g x a
rx r


  
 

. 

We do the following integration for large enough r :  

2 2
1 1

1 2

2

2 2 21 3 1

3

3 1 1 1

3 3 3 3

( )

2 1 1 1 2 2
0

1

( ) ( ) ( )

0 0

2 2 2 1 1.5 2 2 1

0

( ,  ) 2 2

2 (1 ) 2 (1 ) 2 (1 )

2 2 ( ) 2 4 1 2

t f yy y

t

t t t
x g x x g x x g x

t

t t t t t

t t t t

b
P c w a w d y e dy y e dy

w

xe e dx xe e dx xe e dx

xdx xg x dx d a xdx ab dx b x dx   

 

     

    

    

     

     

 

  

   
1

' 2 ' 3 ' 2.5 ' 2 2lnd a c b            


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Next, we consider the case when  1h  and 2h  have different variances. We can find that, 

by scaling, the events 2 1c w a b w    and 1w d  are equivalent to 2 1c w a b w    

and 1w d , respectively, where 
i iw h , 

1h  and 
2h  are i.i.d., and , , ,a b c d  are 

some positive real constants. 

We conclude 
2

2 1 1( ,  )P c w a b w w d       .      

Lemma 15: Suppose 1m   . With λ  defined in (12), if λ  is a ( 1) 1m   sub-vector of 

λ  and 
2

i i   , then   ( 1)

1 1 ,  for 1 m

m iP a b c d m i     

       , where   

, ,a b c  and d  are positive real. 

Proof: Similar to the proof in Lemma 9, we have 
1

2


    '
λ Fh FD h UΣVh UΣh , 

where 
'

Σ  is ( 1) ( 1)m m    diagonal matrix with nonzero diagonal elements, 

   
'

Σ Σ 0  and ,
T

t t   Vh h h , h  is a ( 1) 1m   vector, the 'ih s  are i.i.d. complex 

Gaussian. By LQ decomposition, we have  '
λ UΣh LQh  and let 

1

0

  h Qh L λ L λ , 

where the 'ih s  are independent to each other, 
1

0

L L is a lower triangular matrix. Let 

i iz  , 1t b c   . From 1ma t   , we get 1 1ma t b c     , or 

' ' '

1 1ma z b c z   ; Similarly, from i d  , we get 
'

iz d . Let i iw h , from 

0h L λ , we get 0w L z . So if 
' ' '

1 1ma z b c z    and 
'

iz d  for 1m i  , then we 

can find 1 1ma w b c w    and iw d  for 1m i  , and we conclude 
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   

 

' ' ' '

1 1 1 1

( 1)

1 1

,  for 1 ,  for 1

,  for 1 .

m i m i

m

m i

P a b c d m i P a z b c z z d m i

P a w b c z z d m i

  



 

 



            

       
 

The last exponential inequality is obtained from extension of Lemma 14.    

Lemma 16: If    , i.e.,  is a positive integer, and 1   , then outage probability 

of MMSE SC-FDE is upper bounded as ( 1)

, ( )
MMSEoutP R 

    . 

Proof: See Appendix A.3.         

Theorem 3: The outage diversity order of MMSE SC-FDE is 

 min 2 1, 1MMSE R

outd n      , where outage happens if ( )MMSEC R  . 

Proof: From Prop. 4 and Lemmas 11, 14, 15.       

From Theorem 3, we get 1MMSE

outd    when n , i.e., MMSE SC-FDE with infinite 

data block length achieves full outage diversity order. We should point out that although 

[77] argued with [75] and claimed that the MMSE SC-DFE with decision feedback can 

achieve full diversity for SEP, careful investigation shows that the analysis in [77] is the 

outage diversity order with infinite data block length, so the conclusion of [77] is in 

correspondence with Theorem 3 in this dissertation and does not contradict with [75]. 

5.5 Simulation 
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Diversity order is an asymptotic result, making verification by Monte Carlo simulation 

challenging. In other words, the SNR in the simulations must be high enough to see the 

slopes approach their limiting values, and because this implies low error rates, the 

simulations can be very time consuming. Choosing a higher modulation order can cause 

the slopes to reach their limiting values at lower SNRs. The channel memory length,  , 

and the data block length, n , also play a role in how low the SNRs can be to see limit 

behavior. Not considering high enough modulation order and high enough SNRs can lead 

to a wrong conclusion, as we will show in this section.  

Monte Carlo simulations are found in many previous works; in most cases, the limiting 

slopes are obvious [69, 73]. So for the sake of brevity, we show the one case, [69], in 

Table I that had a wrong conclusion, and in this case, the Monte Carlo simulations were 

not done at high enough SNR. 

Figures 17 and 18 show the SEP for the MMSE SC-FDE versus Es No , or  , for two 

different channel lengths, respectively. The legend in each figure tells the data block 

length, n . The QAM modulation orders for Fig. 19 and 20 are 16 and 64, respectively. 

The channel taps were i.i.d. complex Gaussian with a total average power of 1. The 

number of trials for each point was sufficient to generate at least 1000 symbol detection 

errors.  
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We observe in the figures that the slopes are different for different values of n , and for 

different  , for the lower SNRs. If the SNR is less than about 35dB, the slopes appear to 

be consistent with  min 1, 1     , which is the conclusion of [69]. However, for 

higher SNRs, all slopes are observed to converge to one, which is the conclusion of this 

dissertation. 

Figure 19 Average symbol error probability of 

MMSE SC-FDE, 1 2   . 
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5.6 Conclusion 

The diversity order, which is an asymptotic result of linear SC-FDE is analyzed 

rigorously in a novel way with sets and bounding techniques, for both the ZF and MMSE 

equalizers, and for both outage and SEP. compared to previous works, the analysis treats 

a broader and more practical class of channels, specifically those with independent taps. 

The results resolve two previous contradictions and confirm the results of two 

problematic proofs. 

 

 

  

Figure 20 Average symbol error probability of 

MMSE SC-FDE, 1 3   . 
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CHAPTER 6. THE DISTRIBUTION OF NON-ZERO 

EIGENVALUES OF THE EQUIVALENT MIMO CHANNEL 

MATRIX FOR MULTI-HOP A&F RELAY NETWORK  

Cooperative MIMO schemes are proposed in [11, 12], where cooperative transmission 

and/or cooperative reception for single-antenna nodes are used, to obtain the performance 

gains of the point-to-point MIMO system [9]. Similar ideas are proposed for multi-hop 

distributed networks as Virtual MIMO [13, 14] or distributed spatial multiplexing (DSM) 

in [15] (cooperative spatial multiplexing in [16]) to achieve high throughput and spectral 

efficiency in a distributed multi-hop network with single-antenna nodes.  

Within these different proposals for virtual MIMO [11, 12, 13, 14] and DSM [15, 16], the 

DSM scheme with AF mode relaying [15] is of particular interesting for its simplicity and 

low coordination overhead. However, closed form analysis for this scheme is generally 

unavailable, and the performance evaluation generally depends on Monte-Carlo 

simulation. This is because we have little knowledge about the statistical characteristics 

of the equivalent cascaded MIMO channel of this scheme. To the author’s knowledge, 

there are few exact closed form expressions and they exist only for the 2-hop case, 

including the SER analysis in [59] and the marginal probability density function (PDF) of 

the eigenvalues for ergodic capacity analysis in [61, 62]. As in the performance analysis 

for conventional MIMO [79, 80], where the distribution of the eigenvalues of the channel 

matrix [81] plays an important role, a closed form expression of the distribution of the 
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eigenvalues of the equivalent channel matrix for the multi-hop virtual MIMO or DSM  is 

needed. 

6.1 Introduction 

In this section, we introduce the system model of multi-hop amplify and forward (A&F) 

relay network and its equivalent cascaded MIMO channel. 

The network consists of  L  clusters of relay antennas (or single-antenna relay nodes), a 

source, and a destination. The source and destination can each consist of a cluster of 

single-antenna nodes or one multi-antenna node. So the network has 1L  hops. The 

relays within each relay cluster do not communicate (cooperate) with each other. We 

denote the cluster of source antennas as the th0 cluster, and the cluster of destination 

antennas as the  1 thL cluster. The intermediate clusters are indexed from 1 to L. The 

transmission operates in a time slotted manner. All the antennas of the source transmit 

simultaneously in the first time slot, then the relays in the first cluster do A&F relaying 

and transmit simultaneously in the second time slot, then the relays in the second cluster 

do A&F relaying in the same manner in the third time slot to forward the signal to the 

third cluster. In this way the destination antennas finally receive the signal from the thL

cluster. 
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Suppose we have kR  antennas in the thk cluster. Assume each cluster transmits 

simultaneously. Let y  be the vector signal outputted by the destination node, x  be the 

vector signal transmitted by the source node, 
 l

w  be the white noise vector added by the 

thl relay cluster to its received signal, 
 1L

w  be the white noise vector added by the 

destination to its received signal, and lg  be the gain of the lth relay cluster. We assume 

lg  is a positive real, and the same for all the relays in the cluster. We assume the noise 

vector 
  2(0, )
l

lw I  is spatially white, i.e., its elements are i.i.d.. Let kH  be the 

1k kR R   channel matrix of the channel between the ( 1)k th relay cluster and the kth

relay cluster, i.e. the kth hop. We assume lH  has i.i.d. circularly symmetric complex 

Gaussian entries  ( ) (0,  1)l

ij l i j
h  H  for 1, , 1l L  .  Let 0R  be the number of 

the source antennas, and let 1LR   be the number of the destination antennas. The channel 

is assumed to be frequency flat, time invariant, and have AWGN. The system model is 

shown in Fig. 21. Let 
1

1 1l L L

l L





H H H H . The input output relationship of the entire 

series of clusters, is  

Figure 21 System Model for DSM with A&F 
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   
1 2

1 1

1 1

1 1 1

m
m L

l l n n m L

l L m L n L

g g g g
 

 

     

  
    
  
  y H x H w w .   (21) 

To facilitate the derivation,   we further get an equivalent system model, which is given in 

detail as the following. The equivalent system model for a 3-hop DSM with AF is shown 

in Fig. 22. From (21), we get 

   1 12 2
1 1

1 1 1

1 1 11 1 1 1 1

1
m Lm

l n
l l n n

l L m L n LL L l n m L

g g
g

 

     

 

 
 

        

  
    
  
  

y w w
H H x H . 

Let 
1 1L Lg  


y

y , 
 

 k
k

k


w
n  and 

1 1

1        if  1

   if  1 1
k

k k k

k
g

g k L  


 

  
. Then we get  

   
1 2

1 1

1 1 1

m
m L

l l n n

l L m L n L

g g
 

     

  
    
  
  

H n

y H x H n n ,     (22) 

i.e.,  y Hx n , where 
1

1

l l

l L

g
 

 H H and 
 

2
1

1 1

m
m

n n

m L n L

g


   


 

 
 n H n . Note that in 

Equation (22) the variances of the noise and the channel coefficients are normalized, and 

the integrated effect of these parameters is represented by lg  a positive real constant as 

the gain of the lth hop.  

Figure 22 Equivalent System Model for a 3-hop DSM with A&F 
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Let [ ]HER nn , 
1/2

e

H R H  and  1/2n R n , where n  is white. Then we have  

1/2

e

  R y H x n . 

The Wishart of the equivalent cascaded MIMO channel eH is
H

e e H H , but 

H

e eB H H has the same nonzero eigenvalues as .  

Our objective is to derive the joint PDF for the nonzero eigenvalues of B . Although the 

joint distribution of nonzero eigenvalues of the Wishart matrix [81] is well developed in 

previous works [82] and has its application, the analytical approach for such a Wishart 

matrix of the equivalent MIMO channel in multi-hop AF is still absent, and for similar 

problems such as cascaded MIMO channel. In this dissertation, we will first derive a 

recursive algorithm to find the distribution of nonzero eigenvalues, and then the form of 

the PDF is found as a multiplication of matrix determinants. [83, 84] are good tutorials 

for Wishart matrix. 

As an illustration of the recursive algorithm, we consider the simplest case. We assume a 

3 hop case ( 1 3L  ) with the same of number of antennas in each cluster, 1H , 2H , 3H  

are square matrices of the same size, and 1 2 3 1g g g   in Eq. (22). According to Eq. 

(26), we have  

1

1 2 3 3 2 2 3 3 3 3 2 1( )H H H H H H   B H H H H H H H H H I H H H .  
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Let “  ” stands for “equivalence in distribution”. Let 
1

         for  3

   for 1, 2

k

k

k k

k

k


 



H
H

D H
 with 

singular value decomposition (SVD) H

k k k kH U Λ V  and 
1

2( )H

k k k k


 D I Λ Λ Λ , we can 

prove 
1 1

HB H H , which is given in detail in next section. 

If we define ( )( )H k

k k k diag Σ Λ Λ σ  and ( )( )H k

k k k diag D D D d  for  1, 2, 3k  , then 

2 1( )k k k kg  D I Σ Σ . Note that H

k kH H has the same eigenvalues as H

k kH H , let ( )k
σ  be 

the vector of the eigenvalues of H

k kH H . From previous works on Wishart matrix [89, 90] 

and the equality 1

H H

k k k k kH H H D H  for  1, 2k  , we know the PDF of ( )k
σ  given ( 1)k

d

(or 1kD ) , i.e., the conditional PDF ( ) ( 1)

( ) ( 1)

|
( | )k k

k kf 



σ d
σ d ; we also know the PDF of (3)

σ

as (3)

(3)( )f
σ

σ . We can get the pdf of (1)
σ  by multi-dimensional integration in a recursive 

manner with the following steps:  

1. With known (3)

(3)( )f
σ

σ , from 1

3 3 3( ) D I Σ Σ  , we get (3)

(3)( )f
d

d by variable 

transformation.  

2. From 2 2 2 3 2

H HH H H D H , get ( 2) ( 2) (3) (3)

3

(2) (2) (3) (3) (3)

|
( ) ( | ) ( )f f f d σ σ d d
σ σ d d d , and then 

( 2)

(2)( )f
d

d  by variable transformation from 1

2 2 2( ) D I Σ Σ .  

3. From 1 1 1 2 1

H HH H H D H , get (1) (1 ( 2) ( 2)

2

(1) (1) (2) (2) (2)

|
( ) ( | ) ( )f f f d σ σ d d
σ σ d d d , i.e., the 

joint PDF for the nonzero eigenvalues of B . 
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The above example for the simplest case illustrated how the joint PDF (1)

(1)( )f
σ

σ  can be 

obtained in a recursive manner. However, in this dissertation we will consider a general 

case with arbitrary number of hops and arbitrary number of antennas within each cluster, 

and take the gain of each hop into account. The details are given in the remaining of this 

chapter. 

Let 

1

1 1 1 1k l l k k k k

l k

g g g g 



 T H H H H  for 1k L  .     (23) 

Observe that  

1k k k kg T H T  if 1k  .        (24) 

Also let 
2

H
k m m

k n n n n

m n k n k

g g
  

  
   

  
  M H H  for 1k  , and 1 M 0 . Then we have 

1

2 1 1

H
k m m

H

k k k n n n n k k

m n k n k

g g g g


    

   
         

  M H I H H H  , and 

 2

1

H H

k k k k k k kg  M H M H H H .       (25) 

Note 
1

1

1

l l L

l L

g 

 

 H H T  and 
1

1

2 1 1

[ ]

H
L m m

H

n n n n L

m n L n L

E g g




    

  
      

  
  R nn H H I M I , 

where I  is the identity matrix.  
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From Equations (23)-(25), and the definitions of eH , R , H and 1LT , we get 

 

 

11

1 1 1

1
2

1 1 1 1 1( )

H H H

e e L L L

H H H

L L L L L L L Lg



  




    

   

  

B H H H R H T M I T

T H H M I H I H T
.    (26) 

With Eq. 26, we will develop Preposition 4 and Theorem 4 in the next section, which are 

the basis for the recursive approach. 

We use the following notation throughout the next. Let X  be a matrix. We denote a 

submatrix of X  as  a i b
c j d
 
 

X  if it is composed of the elements  
,i j

X , where a i b   , 

c j d  , and , ,a b c  and d  are some positive integers.  det X  or X  is the 

determinant of X ,  rank X is  the rank of X , and t
X  is the transpose. Let 

 1 2, ,  ... , R  σ , denote 1 2( , ,  ... , )Rdiag   Σ  or ( )diagΣ σ  the diagonal 

matrix with diagonal entry  
, ii i

Σ . 

6.2 Recursive Approach to Find the Distribution of the Non-zero Eigenvalues 

In this section, we derive a recursive approach to the derivation of the PDF of the non-

zero eigenvalues of B . The work in this section will build the basis for the next section 

for further simplification. Suppose we have eigenvalue decompose (EVD) HB UΣU , 

where 1 2( , ,  ... , ,  0,  ... , 0)Rdiag   Σ ,  0 1 1min , ,  ... , LR R R R  , and  

 1 2, ,  ... , R  σ  the vector of the non-zero eigenvalues of B . 
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Define 
1

1 1

                                      if  2

( ) min( , )   if  1

L

k

k k k

R k L
r

rank R r k L



 

 
 

   H
 and 

 
1

         if  1

   if  1

k

k

k k

k L

k L

 
 

 

H
H

D H
,         (27) 

where kD  and kH  will be defined as follows. Let 
H

k k k kH U Λ V  be the SVD, where 

 
,

0k i i
Λ  for 1 ki r  , and let 

1
22( )H

k k k k kg
 D I Λ Λ Λ ,        (28) 

 
1 , k

k k i j r 
Λ Λ ,  

1 , k
k k i j r 
D D ,  

2

11 1
1

k

k

i rk k
j R 

  
 

H H .    (29)  

Note that kΛ and kD are diagonal matrices with full rank. We can get kΛ (and kD ) in a 

reverse recursive manner, i.e., with kH , we can find kΛ , and then 1kH  and 1kΛ . We 

illustrate this recursive manner with a simple example: suppose we have a 3-hop network, 

i.e., 1 3L  ; then start from 3H (or 3H ), we find 3Λ and 3D  from Eq. (28) and (29); 

then 2H  from Eq. (27) and then 2Λ , 2D  from Eq. (28) and (29); then 1H  from Eq. (27) 

and finally 1Λ , 1D  from Eq. (28) and (29).  

We start from 1k L   and Eq. (26) to get Preposition 4 at first. 

Preposition 4: 
1

1 1 1 1( )H H H

L L L L L L L



    B T D D Μ D I D T  
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Proof: With SVD 1 1 1 1

H

L L L L   H U Λ V  and definition
1

22

1 1 1 1 1( )H

L L L L Lg


     D I Λ Λ Λ , 

we will prove from (26) that 

 
1

1 1 1 1( )H H H

L L L L L L L



    B T D D Μ D I D T .     (30) 

From (26), we have 

 
1

2

1 1 1 1 1

2 1

1 1 1 1 1 1 1 1 1 1 1 1 1

2 1

1 1 1 1 1 1 1 1 1

1 1

( )

( ( ) )

( ( ) )

( ( )

H H H

L L L L L L L L

H H H H H H H

L L L L L L L L L L L L L L L L

H H H H H

L L L L L L L L L L L L

H H

L L L L

g

g

g




    

 

            

 

        

 

  

  

  

 

B T H H M I H I H T

T V Λ U U Λ V M I V Λ U I U Λ V T

T V Λ Λ V M I V Λ I Λ V T

T Λ Λ M I Λ
2 1

1 1 1)H

L L L Lg 

   I Λ T

. (31) 

Note we use the fact that 1

H

L L L V H H , because LH  is Gaussian matrix, and 1

H

LV is 

orthogonal matrix. From these we have 1

H

L L L V T T  and 1 1( )H

L L L L   V M I V M I  

which assure the last equivalence in Eq. (31). 

From Eq. (30) and the definition in Eq. (28), we have 

1
2

1 1
2 2

1
2

1

1 1 1 1

2

1 1 1 1

2 2 1

1 1 1 1 1 1 1 1

2

1 1 1 1

2 1

1 1 1 1 1 1 1

( )

( )

(( ) ( ) )

( )

( )

H H H

L L L L L L L

H H H

L L L L L

H H H

L L L L L L L L L

H

L L L L L

H H H H

L L L L L L L L L

g

g g

g

g



   



   

   

       



   

 

      

 

 

  



  

B T D D Μ D I D T

T Λ I Λ Λ

I Λ Λ Λ Μ Λ I Λ Λ I

I Λ Λ Λ T

T Λ Λ Μ Λ Λ Λ I Λ TL

.   (32) 

Eq. (32) is same to Eq. (31), so it is proved that Eq. (26) and Eq. (30) are the same, i.e., it 

is proved that 
1

1 1 1 1( )H H H

L L L L L L L



    B T D D Μ D I D T .     
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 Based on Preposition 4 and Equations (23)-(29), we can further develop a recursive 

algorithm in Theorem 4 for 1 1k L   . Note the recursive manner in Eq. (25) and (27). 

Theorem 4: 
1

1 1 1 1( )H H H

k k k k k k k



    B T D D Μ D I D T  for 1 1k L   . 

Proof: First, for 1k L  , Theorem 4 is proved to hold as in the proof of Preposition 4. 

From the definitionin Eq. (27), 1 1L L H H , Eq. (26) turns into  

 
1

2

1 1 1 1 1( )H H H

L L L L L L L Lg




      B T H H M I H I H T .    (33) 

Second step, we can prove from Preposition 4 that 

 

1

1 1 1 1

2 1

1 1 1 1 1 1 1

2 1

1 1 1

( )

( ( ) )

( ( ) )

H H H

L L L L L L L

H H H H H

L L L L L L L L L L L L

H H H

L L L L L L L L

g

g



   

 

      

 

  

 

  

  

B T D D Μ D I D T

T H D D H Μ I H D I D H T

T H H Μ I H I H T

.  (34) 

Note that the last equality can be easily proved. We can find the similarity between (26), 

(33) and (34), except the index is changed. Sequentially, we can prove 

1

1 1 1( )H H H

L L L L L L L



   B T D D Μ D I D T  as the proof in Preposition 4. So a reverse recursive 

algorithm can be developed, and we have 
1

1 1 1 1( )H H H

k k k k k k k



    B T D D Μ D I D T  for 

1 1k L   .          

Next we will go further to develop the recursive algorithm to find the PDF of the non-

zero eigenvalues of B , which is similar to what we have explained in the example of the 

simplest 3-hop case. From Theorem 4 and Equations (23)-(29), we finally get 
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1 2 2

1 2 2 1 2 2 1 1 1 2 2 1 1 1 1( )H H H H H Hg g   B T D D ΜD I D T H D D H H H ,  

and if we find the distribution of 
1Λ , and consequently by variable transformation, the 

distribution of the non-zero eigenvalues of B . We now make the following definitions: 

( ) ( ) ( )

1 2( , ,   , )
k

H k k k

k k k rdiag    Σ Λ Λ  ,      (35) 

( ) ( ) ( )

1 2( , ,   , )
k

H k k k

k k k rdiag d d d D D D .      (36)   

Then 1 1 1

H H H H

k k k k k k k k k   H H H D D H H D H  could be Wishart or pseudo-Wishart matrix 

[89, 90], and we will offer a recursive algorithm. Let ( ) ( ) ( ) ( )

1 2, ,   , 
k

t
k k k k

r     σ  be the 

non-zero eigenvalue vector of 
H

k kH H , let ( ) ( ) ( ) ( )

1 2, ,   , 
k

t
k k k k

rd d d   d . 

From definitions in Equations (28), (29), (35) and (36) we get 

2 1( )k k k kg  D I Σ Σ ,        (37) 

and 
( ) ( ) 2 ( )( )k k k

i i k id g    for 2 1k L    and 1 ki r  . 

For k L , if 1 1 1 1min( , , , )k k k L kr R R R R     , then 
H

k kH H  is correlated central 

Wishart [85]; else it is correlated central pseudo Wishart [87, 88]. For 1k L  , 

1 1

H H

k k L L H H H H is always correlated central Wishart matrix. Note that 

1 1 1 1

H H

L L L L   H H H H .  
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With Equations (28), (29), (35)-(37), we can get kΛ (and kD ) in a reverse recursive 

manner, i.e., with kH , we find kΛ , and then 1kH  and 1kΛ ; We start from 1k L  , 

and with the results on distribution of the non-zero eigenvalues of Wishart and pseudo-

Wishart matrix as in [85, 86, 87, 88], given ( )k
d , we can find the conditional pdf of ( 1)k

σ  

( 1)

( 1)( )L

Lf 



σ
σ  is known 

1k L   

While 1k   do 

 ( 1) ( )

( 1) ( )

|
( | )k k

k kf 



σ d
σ d  is known   

get ( 1) ( )

( 1) ( )

|
( | )k k

k kf 



σ σ
σ σ  from ( 1) ( )

( 1) ( )

|
( | )k k

k kf 



σ d
σ d  with   

 variable transform
2 1( )k k k kg  D I Σ Σ  

  find ( 1) ( 1) ( ) ( )

( 1) ( 1) ( ) ( ) ( )

|
( ) ( | ) ( )k k k k

k

k k k k kf f f d 

  σ σ σ σ
σ σ σ σ σ  

 1k k    

End while 

Figure 23 Recursive algorithm to find joint PDF 
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as ( 1) ( )

( 1) ( )

|
( | )k k

k kf 



σ d
σ d  . After variable transformation from ( )k

d  to ( )k
σ , we get 

( 1) ( )

( 1) ( )

|
( | )k k

k kf 



σ σ
σ σ , and then the pdf of ( 1)k

σ  by multi-dimensional integration as: 

( 1) ( 1) ( ) ( )

( 1) ( 1) ( ) ( ) ( )

|
( ) ( | ) ( )k k k k

k

k k k k kf f f d 

  σ σ σ σ
σ σ σ σ σ .   (38) 

So with ( 1)

( 1)( )L

Lf 



σ
σ , the pdf of ( 1)L

σ , is known [85, 86], we can finally find (1)

(1)( )f
σ

σ

with a reverse recursive algorithm by employing Eq. (38) and Equations (28), (29), (35)-

(37). This recursive algorithm is summarized in Fig. 23. 

This recursive approach plays a central role for this work. However, there are two 

problems when we do this integration as in Eq. (38): 

1. The dimension of integration is 
1

2

L

k

k

r




  and could be a big number even for a small 

number of hops, which means very high computational load for numerical evaluation.   

2. The explicit expression will be extremely complicated even if not impossible to get, 

even for a small number of hops.  

Further steps to simplify the expression are developed in the next section.  

6.3 The Form of Products of Matrix Determinants 

In this section, we will go a further step which is based on the recursive approach of last 

section, and find that the joint PDF which can be expressed in the form of the products of 

determinants of matrices. The entries of these matrices are expressed as multi-
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dimensional integration, where the maximum dimension is just the number of relay 

clusters (the number of hops minus one). The complete set of equations needed to find 

this joint PDF is given at the end of this section as shown in Theorem 6. 

We denote the joint distribution of the ordered non-zero eigenvalue vector as 
( )

( )( )
k

o kf
σ

σ , 

where ( ) ( ) ( )

1 2   
k

k k k

r     .  

To facilitate our discussion, we first make an extension to [86, Corollary 1] or Cauchy-

Binet formula [91] in Theorem 5; and then presents Prepositions 5, 6 and 7. 

Theorem 5: Given ( ) ( )   Α x C Α x , where  1 2, ,   , 
t

Mx x xx  is a 1M   vector,

( )Α x  is a N N  matrix, ( )Α x  is a N M  matrix, C  is a N K  matrix, N M  and 

K N M  . The elements of C  are some constants (not a function of x  ). The entries of 

( )Α x  have the form  ( ) ( )i ji j
x   Α x . Given Β(x)  which is a M M  matrix with the 

entry   ( )i ji j
xΒ(x) , and arbitrary functions ( )  , then the following identity holds: 

1

( ) ( ) ( ) !
M

l

l

x d M


  Α x Β x x Θ , where the multiple integration is over the domain 

 1 2, , , Ma x b a x b a x b       , 1 2 Md dx dx dxx ,    Θ C Θ  and 

 ( ) ( )
b

i j
i j a

x x x dx      Θ . 

Proof: see Appendix B.1.          
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We make the following definitions in the remainder of this section. 

Suppose 
1 2, ,   , 

t

qx x x   x  is a 1q  vector,  we define: 

V(x)  is a q q  Vandermonde matrix with the ( , )i j th  element   1 i

jij
x  V(x)  ,  

Φ(x)  is a q q  Vandermonde matrix with the ( , )i j th  element   1( ) ( )
j

i

i jij
x x  Φ x ,   

Let 
1 2, ,   , 

t

py y y   y  be a 1p  vector, p q , we define 

 
( , )              1  

( , ) ( ) 1
( , )       

j

i jij
i p q j

i y i p q
y for j p

x y p q i p




  

  
   

  

Ψ x y  where 

1( , ) ii y y   and 1( , ) p q x yx y y e    . 

Preposition 5: Let H DH , where H  is a M N matrix with i.i.d. complex Gaussian 

entries with variance 1, D  is a M M diagonal matrix, and 

1 2( , ,  ... , )H

Mdiag d d d D DD . N M  so 
H

H H  is Wishart. Let σ  be the vector of 

the non-zero eigenvalues of 
H

H H . Given 1 2( , ,  ... , )t

Md d dd , the joint conditional pdf 

of ordered non-zero eigenvalues of 
H

H H  is 

1

|

1

( | ) ( ) ( , ) ( )
( )

P
M

o o

l

l

f K  





 σ d

D
σ d Φ σ Ψ σ d

V d
, where ( ) N Mx x  , 

1

1

( )!
M

o

i

K N i






  
 
 . 
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Proof: For the case that H
H H  is Wishart, σ  and d  are all 1M   vectors. From [85, 86], 

we get |

1

ˆ( | ) ( ) ( , ) ( )
( )

P
M

o o

l

l

f K  





 σ d

D
σ d Φ σ Ψ σ d

V d
, where 

/ˆ j ix y

ij
e
  

 
Ψ(x, y)  and 

1

1

( )!
M

o

i

K N i






  
 
 , and when a constraint on d  holds as 1 2   Md d d   .  It is easy 

to prove that ˆ ( , ) ( , )Ψ σ d D Ψ σ d . And if we get a vector d̂  from d  by swapping any 

two elements in d , and let 1 2
ˆ ˆ ˆˆ ( , ,  ... , )Mdiag d d dD , we find that ˆ D D  and 

ˆ( , ) ( , )

ˆ ( )( )


Ψ σ d Ψ σ d

V dV d
; and further, we find that the constraint on d  actually does not 

matter for the expression of  | ( | )ofσ d σ d ; thus Preposition 5 holds.     

Preposition 6: Let H DH , H  is a M N matrix with i.i.d. complex Gaussian entries 

with variance 1, D  is a M M diagonal matrix, and 1 2( , ,  ... , )H

Mdiag d d d D DD . 

Let  min( , )Q M N  and max( , )P M N . Let σ  be the vector of the unordered non-

zero eigenvalues of 
H

H H . Given 1 2( , ,  ... , )t

Md d dd , the joint conditional pdf of σ  is 

1

|

1

( | ) ( ) ( , ) ( )
( )

P
M

l

l

f K  





 σ d

D
σ d Φ σ Ψ σ d

V d
, where ( ) P Mx x  , 

1

1

! ( )!
Q

i

K Q N i






  
 
 . 

Proof: For the case that 
H

H H  is pseudo Wishart, P M , Q N  and ( ) 1P Mx x   , 

from [87, Appendix A] or [88, eq. (14)], and with ( , ) ( , )t Ψ σ d Ψ σ d , we have 
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|

1
( | ) ( ) ( , )

( )
f Kσ d σ d Φ σ Ψ σ d

Φ d
, where 

1 1

1 1

! ! ( )!
Q Q

k i

K k Q N i

 

 

  
    
  
  . Note that  

1

( ) ( )j i

i j M

d d
  

 Φ d  for a Vandermonde matrix ( )Φ d , and 

 

1

1

1 1

( )

M

M

M j i

k M i j M

d d d





    


 
 
 D  .  

Because  
1

1 1 1

1 1
( ) (( ) ( )) ( ) / ( ) ( ) /

M

j i j i

i j M i j M i j Mj i

d d d d
d d



        

        V d Φ d D  , 

it is proved that Preposition 6 holds for the pseudo Wishart case.  

For the case that 
H

H H  is Wishart, Q M , P N , σ  and d  are all 1M   vectors. From 

Preposition 5, we have

1

|

1

( | ) ( ) ( , ) ( )
( )

P
M

o o

l

l

f K  





 σ d

D
σ d Φ σ Ψ σ d

V d
, where 

1

1

( )!
Q

o

i

K N i






  
 
 ; and from [84, Theorem 2.6], the joint pdf for the unordered 

eigenvalues is  
1

| |( | ) ! ( | )of Q f


σ d σ dσ d σ d . We find that Preposition 6 holds for the 

Wishart case.            

Before we proceed to the final result, we make the following definition for brevity: 

Let 2 1L Lr R  , we define for 1k L   that:  

1 1min( , )k k k kq r R r   , 
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 1 1max( , )k k kp R r  ,  

 
1

1

1

1 2

1

( )!
k

k k

r
r ro

k k k

i

K R i g




 

 




  
 
 , 

   
1

1

11

1 1 2 1 1

1

! ( )! !
k

k k

q
r r o

k k k k k k

i

K q R i g r K




 

    




  
 

  

 

1 1
2

1
' ( ) 1

k

k

p

r k
k

g
x x

x


 


 
  

 
 ,   

1

     if  1
( )

        if  1

k k

k k

p r x

k p r

x e k L
x

x k L




 



  
 

 

, and 

 

1

( 1) ( )

11 ( ) ( 1) ( )

( 1) ( 1) ( )

1

( , )              if  1  
ˆ( , ) ( )   1

( , )     if  
k k

k k

j k kk k k k

i j kk k kij
i r r j k k k

i i r r
for j r

r r i r

 
 

  




 

 

  

            

Ψ σ d , 

where ( 1) 1

2
( , ) ( )k i

k

z
i z

g z
  





 and 

2
1 1 (1 )( 1)

2
( , ) ( ) k k kr r y g zk

k

z
y z e

g z



   





. 

Proposition 7: 1kH  is a 2k kr R   matrix. Given ( )k
σ , the joint conditional pdf of ( 1)k

σ  is  

1

( 1) ( )

( 1) ( ) ( 1) ( 1) ( ) ( ) ( 1)

1 1( )|
1 1

1
( | ) ( ) ( , ) ' ( ) ( )

( )

k k

k k

r r
k k k k k k k

k k l k lk
l l

f K    




   

 

 

  σ σ
σ σ Φ σ Ψ σ d

Φ σ
 

for 1k L  ,  

Proof: with
( ) ( ) 2 ( )( )k k k

j j k jd g   , we find that 

( )

( )

2 ( )
1 1

k k
kr r

jk

k j k
j j k j

d
g




 

 


 D , and  
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 

2 2

( ) ( ) ( ) ( )
1 1

112 ( ) ( ) ( ) ( ) ( )

1 1

1 1
( ) (( ) ( )) (1 1 )

( ) / ( ) ( ) /

k k

kk k

k k

k k
k k k k k

i j r i j rj i i j

rr rk k k k k

k j i j i k k

i j r i j r

g g

d d

g g

 

   

 

     

 

     

       

  

 

 

V d

Φ σ Σ

, 

with 
1 11 ( )

1

' ( )
k

k k

r
p r k

k k k l

l

  



D Σ , from Preposition 6 we get 

1
1

( 1) ( )

1 1

( 1) ( ) ( 1) ( 1) ( ) ( 1)

1 1( )|
1

( | ) ( ) ( , ) ( )
( )

k k
k

k k

r p q
k k k k k k k k

k k lk
l

f K  






 

   

 



 σ σ

Σ D
σ σ Φ σ Ψ σ d

Φ σ
.  

With all these preparations, we get our main result next. 

Theorem 6: the pdf of the unordered non-zero eigenvalues has the form 

( )

( ) ( ) ( ) ( )

1

( ) ( ) ( ) ( )
k

k

r
k k k k

k k k l

l

f K  


 σ
σ Φ σ Φ σ , 

 where ( ) ( )

1( ) ( )k k

k L k k k
   Φ σ C C C Φ σ  for 1k L  , and the entries of LC , 

, kC  are not a function of ( )k
σ  but some constants. Also the entries of 

( )( )k

kΦ σ  have 

the form  ( ) ( ) ( )( ) ( )k k k

k i jij
    Φ σ  and its value for a specific ( )k

j  can be evaluated by 

1L k   dimensional integration. 
( )( )k

kΦ σ  is a 1 1L Lr r   matrix, kC  is a  1 1L k kr r r    

matrix and its entries are obtained by 1L k   dimensional integration, 
( )( )k

kΦ σ  is a 

1L kr r   matrix, 

Proof:  First, we will prove that Theorem 6 holds for 1k L  .  
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For the last hop, 1 1 2min( , )L L L Lq r R r     and 1 2max( , )L L Lp R r  where 2 1L Lr R  . 

Note that 1 1 1 1

H H

L L L L   H H H H , so for the last hop, whatever the sizes of the last two 

clusters are, it is always a Wishart case. The joint distribution of the ordered non-zero 

eigenvalue vector of 1 1

H

L L H H  is [85, 86]:  

1

( 1)

( 1) ( 1) ( 1) ( 1)

1 1 1

1

( ) ( ) ( ) ( )
L

L

q
o L uc L L L

L L L l

l

f K  




   

  



 
σ

σ Φ σ Φ σ , where  
( 1) ( 1)

1( ) ( )L L

L

 

 Φ σ Φ σ , 

1 1

1( ) L Lp q x

L x x e   

  , 
1 1

1

1 1 1

1 1

( )! ( )!
L Lq q

uc

L L L

i j

K p i q j
 



  

 

 
   
 
  . 

From [84, Theorm 2.6], the joint pdf for the unordered eigenvalues is 

 ( )
( )

1( ) ( )( ) ! ( )k
k

k o k

kf q f



σ

σ
σ σ . 

So Theorem 6 holds for 1k L  , where 
( 1) ( 1) ( 1)

1 1( ) ( ) ( )L L L

L L

  

  Φ σ Φ σ Φ σ , 

( 1) 1( ) ( )L i

i ix x x    ,  and  
1 1

1

1

1 1 1 1 1 1

1 1

! ! ( )! ( )!
L Lq q

uc

L L L L L L

i j

K q K q p i q j
 





     

 

 
    

 
  . 

Note 1 1L Lq r  , and 1 1

1( ) ( ) L Lp q x

k Lx x x e    

  . 

Next we will prove that Theorem 6 holds for 1k    if it holds for k  .    

From Proposition 7, and multi-dimensional integration Eq. (38), we get 
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( 1) ( 1) ( ) ( )
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( 1) ( 1) ( ) ( ) ( )

|

( 1) ( 1) ( ) ( 1) ( ) ( ) ( ) ( )
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1 1 1
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  



    

       

     

  

  

     

 

 



 

  

 

  

  

  



 





  

σ σ σ σ
σ σ σ σ σ

Φ σ Φ σ Ψ σ d σ

Φ σ Φ σ
1

1

r 





where 1 1!K r K K     , the domain  ( ) ( ) ( )

1 20, 0,   , 0r

  

       , 

( ) ( ) ( ) ( )

1 2 rd d d d


     σ ,  and  

( 1) ( ) ( 1) ( ) ( ) ( ) ( )

1

1 1

! ( ) ( ) ( , ) ( ) ' ( )
k

r r

k l l

l l

r d
 

      

       



 

  Φ σ Φ σ Ψ σ d σ . 

if Theorem 6 holds for  k  , then we have 

( ) ( )( ) ( )L

 

  
   Φ σ C C Φ σ .      (39) 

From Theorem 5, we have 

( 1) ( 1)

1 1
ˆ( ) ( )L

 

  

 

 
 
 

Φ σ C C Φ σ , 

where ( 1) ( ) ( 1)

1
0

ˆ ˆ( ) ( ) ( ) ( ) ' ( )i j
i j

x x x x dx  

     


 


  
  Φ σ ,  

1

( ) ( 1)

1
0( 1)

1
( ) ( 1) ( 1)

1
0

( ) ( , ) ( ) ' ( )           if  1
ˆ ( )

( ) ( , ) ( ) ' ( )  if 

i

i j

i j r r

x j x x x dx j r r

x x x x dx r r j r
 

 

   



  

    

   

    








 
 

  

   


    
   





Φ σ . 

Apparently, an entry ( 1)

1
ˆ ( )

i j








 
 Φ σ will be some constant if 11 j r r    , so 

( 1) ( 1)

1 1 1
ˆ ( ) ( ) 

  

 

  
   Φ σ C Φ σ , and we get 
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( 1) ( 1)

1 1 1( ) ( )L

 

   

 

  
   Φ σ C C C Φ σ ,     (40) 

where 1 C  is a  1 1Lr r r     matrix with its entries are some constants, 
( 1)

1( )k

k



Φ σ  is 

a 1 1Lr r   matrix. We have 

   ( ) ( 1)

1
0

( ) ( , ) ( ) ' ( )ii j
x j x x x dx 

     




  C  for 11 j r r    ,  (41) 

( 1) ( ) ( 1) ( 1)

1
0

( ) ( ) ( , ) ( ) ' ( )k

k i ji j
x x x x dx  

     


  


    Φ σ  for 11 j r  . (42) 

So if (39) exists, then (40) can be deduced, and it is proved that Theorem 6 holds for 

1k    if it holds for k  . 

By applying above procedure recursively, i.e., with 
( 1)

1( )L

L



Φ σ , find 
( )( )L

LΦ σ  next, 

then
( 1)

1( )L

L



Φ σ  next, and keep on going, we develop an algorithm to find the entries of 

( )( )k

kΦ σ  as described next. 

Let ( 1)( , ) 1L     , '( ) ( ) ( )
kk k k k kz z z   , and  

1
( 1)

1

1

( ) ( , ) ( )
k

m

k k k m m m m

m L

h z z z z  






 

 z , 

then for 1k L   the explicit expression is  

 ( ) ( ) ( ) ( ) ( )

1 1 1 1 1
0 0

( ) ( ) ( ) ( , )k k k k k

k i j i L j k k L ki j
z z h dz dz    

 

    
      Φ σ z , (41) 

   ( )

1 1 1 1 1
0 0

( ) ( , )k

k i L k k L ki j
z j z h dz dz 

 

      C z ,    (42) 
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for k L , the explicit expression is as in (39) and (40) where 1L   .   

Briefly, we use the conclusion of Theorem 6 and Equations (39)-(42) to get the closed 

form expression for the joint PDF. We summarize in Fig. 26 how to get ( )

( )( )k

kf
σ

σ . 

6.4 Simulation Results 

For simplicity, we analyze the eigenvalue distribution of a 2 hop with 2x2 configuration 

for each hop, while we employ the multiple DSM with AF scheme. Let 1 2 1g g  in Eq. 

(22), and we have 
1

1 2 2 2 2 1( )H H H  B H H H H I H H  according to Eq. (26). We show in Fig. 

24 and 25 the eigenvalue distribution of analytical approach and Monte-Carlo simulation, 

respectively. Gauss–Laguerre quadrature method is used in numerical analysis. 

The analytical approach and Monte-Carlo simulation coincides perfectly, which proves 

the validity of our approach.  

6.5 Conclusion 

A closed form expression for the joint distribution of the eigenvalues of the equivalent 

channel matrix the DSM scheme with AF mode relaying is developed in this dissertation, 

the main conclusion is presented in Theorem 6 and validated through comparison with 

simulation. This work could be further employed for the analysis for multi-hop DSM 

networks as the SER analysis in [59, 80] and capacity analysis in [61, 62, 79].  
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Figure 24 Analytical Result for joint PDF 

Figure 25 Monte Carlo Simulation for joint PDF 
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End for 

For  to l L k  do 
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1
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



   

 
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For  1 11 to ,  1 to  L l li r j r r    do   

   ( )
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l i L l l L li j
z j z h dz dz 
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End for 
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1( ) ( )k k

k L k k k
   Φ σ C C C Φ σ  

( )
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 σ
σ Φ σ Φ σ  

Figure 26 the closed form expression for the joint PDF ( )

( )( )k

kf
σ

σ  
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CHAPTER 7. CONCLUSIONS AND SUGGESTED FUTURE 

WORKS 

This dissertation is focused on the design and analysis of novel approaches and issues in 

physical layer for cooperative communication in wireless multi-hop networks. In Chapter 

3, we design a novel randomization based approach to reduce the coordination overhead 

in cooperative communication; In Chapter 4, we design a novel equalization algorithm in 

frequency domain for multiple CFOs problem; In Chapter 5, the first rigorous analysis for 

the diversity orders of linear SC-FDE equalizers is presented; In Chapter 6, for the first 

time, the closed form expression of the joint PDF of the nonzero eigenvalues of the 

equivalent matrix of the multi-hop DSM with AF is presented.  In the subsections below, 

we expand on each of these contributions and give some ideas for future work. 

7.1 Coordination overhead reduction for Cooperative Diversity 

To reduce the coordination overhead in CT or CD, we have designed a novel 

randomization based approach In Chapter 3. The approach combines random delay and 

phase dithering. Simulation results, under different channel models, are compared with 

the results of the state-of-the-art practical phase dithering approach. The results show 

significant SNR gain, or equivalently, that higher data rates can be achieved. The 

approach is also robust to different channel models and can lower the overhead in 

channel estimation significantly, while the constant envelope characteristic of the 

transmitted signal is kept. 
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In our simulation, perfect channel estimation is assumed, which is impossible in practice. 

The design of the channel estimation and the training sequences, and the effect of channel 

estimation error to a real system, could be studied under different channel models.  

7.2 Equalization for multiple CFOs 

We have designed a novel equalization algorithm in frequency domain in Chapter 4 for 

multiple CFOs problem of cooperation communication. Using a permutation-based 

approach that employs the pseudo-banded matrix characterization, a recursive and 

computationally efficient equalization algorithm is proposed. Simulation results show 

that large frequency offsets can be compensated with high computational efficiency. This 

linear MMSE equalization algorithm is ready to be extended for both the virtual MIMO 

or DSM MIMO scheme and the STBC scheme, for both OFDM and SC-FDE.  

In our simulation, perfect CFOs estimation and channel estimation is assumed, which is 

impossible in practice. The design of the training sequences for CFOs estimation, and the 

effect of estimation error could be studied. A tracking mechanism similar to [100] could 

be developed. 

7.3 Diversity of linear SC-FDE 

A new set-based bounding approach is presented in Chapter 5 to analyze diversity for 

SC-FDE over ISI channels, including linear equalizers such as ZF and MMSE. The 

diversity order of both the error probability and the outage diversity gain are analyzed. 

We have relaxed the constraint on the channel to be a more practical channel with just 
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independent paths. This is the first time a rigorous analysis about the diversity of linear 

SC-FDE is presented. The result is ready to be used for further analysis about the 

diversity of MIMO SC-FDE or STBC SC-FDE system. 

7.4 The joint PDF of the nonzero eigenvalues of DSM with AF 

We present a novel approach the first time to get the closed form expression for the joint 

PDF of the non-zero eigenvalues of the equivalent cascaded MIMO channel of the multi-

hop AF relay network. The closed form expression has the form of a product of 

determinants of matrices, while the entries of these matrices are expressed as multi-

dimensional integrals, where the maximum integration dimension is the number of relay 

clusters (the number of hops minus one). With this closed form expression, the joint PDF 

can be evaluated by computationally efficient numerical methods. The contribution can 

be further employed to analyze the performance of the multi-hop virtue MIMO network 

as the SER analysis and capacity analysis as in [59, 61, 62, 79, 80] for point-to-point 

MIMO system. 
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APPENDIX A. DIVERSITY ORDER ANALYSIS OF SC-FDE 

 

A.1  Counter-example 

 We first describe our counterexample and then show how it applies to [69]. Then 

we show how these results might be confused with the relationship between convergence 

almost surely and convergence in distribution.  

Let  1( , ) 1f   β and  1 2( , ) 1 ( )g     β , where  1  and 2  are i.i.d. 

exponential random variables with pdf ( ) xp x e  for 0x  . Observe that 

lim ( , ) lim ( , ) 0f g
 

 
 

 α α  almost surely. We now show that ( , ) ( , )f g β β . Here 

the definition exponential equality [69, 78], denoted ( ) ( )f g  , is defined by  

log ( ) log ( )
lim lim

log log

f g

 

 

  
 ; if the expression involves random variables, the limits will 

be taken almost surely (with probability 1). We have 

 1log loglog ( , )
lim lim 1

log log

f

 

 

  

 
  

β
, 

 1 2log loglog ( , )
lim lim 1

log log

g

 

  

  

      
β

. 

Therefore, by the definition of exponential equality, because 
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log ( , ) log ( , )
lim lim

log log

f g

 

 

  


β β
,        (20) 

we may write ( , ) ( , )f g β β . 

Next we show that ( , ) ( , )f g β β  does not imply ( ( , ) ) ( ( , ) )P f c P g c  β β  

for any positive constant c . First consider a probability involving ( , )f β : 

1

1

1
( ( , ) ) ( ) ( ) 1 cc

P f c P c P e  
  

      β . 

And we get 

 

2

2
log 1 1

2!log ( ( , ) ) log(1 )
lim lim lim 1

log log log

c

c c

P f c e 

  

 

  



  

 
    

       
β

.  

We get the second equality by expansion of Taylor series. Next, consider the similar 

probability involving ( , )g β : 

  1 2

1 2

1
( ( , ) ) ( ) ( ) 1 1cc c

P g c P c P e   
    

 
         

  
β . 

Note that 1 2   is a 2  random variable with 4 degrees of freedom, and we get the last 

equality from [7, eq. (2.3-24)]. Again, using the Taylor expansion, we have 



 

 

 103 

 

2

2

log 1 1
log ( , )

lim lim
log log

log 1 1 1
2!

lim 2
log

c c
e

P g c

c c c



 





 

  





 



 
  

   

  
      

     

β

.  

So ( ( , ) ) ( ( , ) )P f c P g c  β β  doesn’t hold, and we see by this example that 

( , ) ( , )f g β β  does not necessarily imply ( ( , ) ) ( ( , ) )P f c P g c  β β .  

Next, we show how the above example relates to the proof in [69, Lemma 1].  We note 

that the conclusion in [69, Lemma 1] is correct, but the method of proof is flawed. In 

[69], the functions ( , )f β  and ( , )g β  are different than our example. In [69, eq. (17)], 

their random variable k  is complex Gaussian, so we can write
1

1
( , )

1

n

k k

f 





β , 

where 
2

k k  ; and  
 

1

: 1
( , ) max k

k k

g M


 
  


 β α , where α is a function of β . In 

going from [69, eq. (17)] to “  
 

1

2
: 1

1

1
max

1

k

k k

n

k k

P m P M m


 


 






           
 α ”, 

i.e., the expression following [69, eq. (18)], the authors simply assume ( , ) ( , )f g β β  

implies ( ( , ) ) ( ( , ) )P f m P g m  β β  for a positive real constant m , and explained 

this as “the first (asymptotic) equality follows from exchange of limit and probability due 

to continuity of functions…” in [69, p. 1025]. However, as we have shown, that 

implication is not true in general and requires proof for their particular f  and g . In fact, 

the method of this dissertation can be used to prove their conclusion is correct. 
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Now we show how these results might be confused with the relationship between 

convergence almost surely and convergence in distribution.  

First recall that almost sure convergence for a random sequence  nX , 

 lim 1n
n

P X X


  ,  implies convergence in distribution [96],  

   lim n
n

P X c P X c


   . We may restate this in a slightly modified version for our 

functions ( , )f β and ( , )g β , and after a discretization procedure, we will get

( , ) ( , )f g β β  or eq. (20) implies 
log ( , ) log ( , )

lim lim
log log

f g
P c P c

 

 

  

  
    

  

β β
. 

We observe that the last equality is not the same as ( ( , ) ) ( ( , ) )P f c P g c  β β , 

which is denoted as 
   log ( , ) log ( , )

lim lim
log log

P f c P g c

 

 

  

 


β β
. In other words, 

there is a difference in the relative position of probability and log functions. 

We can also show with a counter example that 
( , )

lim 1
( , )

f

g






β

β
 does not imply 

( ( , ) ) ( ( , ) )P f c P g c  β β , but ignore the details here for brevity. 

A.2  Proof of Lemma 9 

First we consider the case where 1m   . We choose '
λ  to be a  1 1    sub-vector of 

λ , and we also define
2

' '

i i   . So '
λ  is also a sub-vector of λ , and ' 'λ Fh , where 

'
F  

is a    1 1     submatrix of F . With the result from [97, Lemma 2], F  is full spark, 
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i.e., every    1 1     submatrix of F  is invertible, the existence of the inverse of '
F  

is guaranteed. So 1 '( ) '
h F λ ; note that the 'ih s  are independent. If for 1 1i    , 

'

i t  , then we have '

i t   and 
2

ih t   for some positive real t , and 

       2 1' for 1  for 1 1  for 1 1i i iP t m i P t i P h t i


     
 

            

,  

where the last exponential equality follows from Prop. 4. It is also easy to find that if all 

2

ih t   for some positive real t ,  then i t  for 1m i  , so 

     2 1
 for 1  for 1 1i iP t m i P h t i


   

 
        .  

We conclude    1
 for 1iP t m i


 

 
    if 1m   . 

Next we consider the case where  1m   . Let 
1

2


h D h  where 
1 1

2 2
 

D D D , so 

1
2


D  is a diagonal matrix with non-zero diagonal elements, and h  is a vector with its 

elements i.i.d. complex Gaussian. We have 
1

2


 λ Fh FD h , where F  is a submatrix of 

F , and F  can be proved to be full rank as following: we choose '
λ  which is a  1 1    

sub-vector of λ such that λ  is a sub-vector of '
λ , and ' 'λ Fh . As proved in last case, 

'
F

is invertible, note that F  is made from some rows of
'

F , so F  is full rank. Next, it is easy 

to prove that 
1

2


F FD is full rank, and we have F UΣV  by singular value 

decomposition (SVD). Then   λ Fh UΣVh UΣh , where Σ  is the submatrix of Σ  in 
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the left corner, Σ  is m m diagonal matrix with nonzero diagonal elements, U  and V  

are unitary matrix,     Σ Σ 0  and ,
T

t t   Vh h h , where h is a 1m  vector. Note that 

the 'ih s  are i.i.d. complex Gaussian because V  is unitary and 'ih s are i.i.d. complex 

Gaussian. From the above we have 1( ) H h Σ U λ Aλ  and  1λ A h , where 

1( ) HA Σ U . From i t  for 1m i  , we get 
2

3ih t   for a positive real 
3t  for 

1m i  , so 

   
2

3 for 1  for 1 m

i iP t m i P h t m i          .  

It is also easy to find that if all 
2

4ih t   for some positive real 4t ,  then i t   for 

1m i  , so 

   
2

4 for 1 for 1 m

i iP t m i P h t m i          .  

We have   for 1 m

iP t m i       if 1m   . 

Finally, we conclude   for 1 m

iP t m i     .      

A.3  Proof of Lemma 16 
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For the non-outage event, we have 
1

1 1
1

1 1 1

n
j

i i j j
i j


 

  


    
  

 . Let 

 1,2, ,S n , 
 1

1,2, ,
n

K
n 

 
  

  
, and the set  , \j k jS S S j   with cardinality 

,j kS n   , where j S  and k K . Let 1a n    , b n    and j ja b   .  If 

i j   for every ,j ki S , we have 

1

1 1

1 1

n

i i j
i j


 



 
 

  or 
1

1

1

n

i i







 .  

Non-outage probability is '

,

1 1 1

1
P( ) P( ( ))

1

Knn

j k

i j ki

U
  

 


 , so we get the outage 

probability as 

' ' '

, , ,

1 , , ,

1
P( ) 1 Pr( ) Pr( ) Pr( )

1

n

j k j k j k

i j S k K j S k K j S k Ki

U U U
      

    


 ,  

where  '

, ,:  for every j k i j j kU U i S    , and we have 
,

, ,

'

, , j k

j k j k

j k j i

i S

U U


 and 

,

, ,

'

, , j k

j k j k

j k j i

i S

U U


 , where  
, ,, , ,: , 

j k j kj i i j j k j kU U i S    . So we get 

, ,

, ,

'

, , ,

, , ,

( ) ( )
j k j k

j k j k

j k j i j i

j S k K j S k K i S j S k K

U U U
       

 
i I

, 

 
,

'

, ,

1 , ,

P( 1 1 ) Pr( ) Pr( )
j k

n

i j k j i

i j S k K j S k K

U U 
    

    
i I

,  
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where 1,1 1, 2 2,1 2, 2 ,1 , 21, 2, ,
( , , , , , , , , , , , , )n nK K n K
i i i i i i i i ii , , ,j k j ki S , and I  is the 

set composed of all possible i , its cardinality ( )
n K

n  I . 

Note the fact that  
, ,, :

j k j kj i i jU U        
, ,5 5 5: : ,

j k j ki i j jU t U t t          for 

, ,j k j ki S ; here 
5t  is a positive constant, such that if 5j t  , then 

, 5j ki t  .  

We call 
, 5j ki t   the Type I constraint, and define  

, ,, 5:
j k j k

I

j i iU U t   . We call 

,5 j ki jt     when 5j t   the Type II constraint, and define 

 
, ,, 5 5: ,

j k j k

II

j i i j jU U t t      . So ,

,

'

, ,

, ,

( )j k

j k

l

j k j i

j S k K j k

U U
  




i
ι
I
L

, where  , I,  IIj kl  , ι  

is the vector whose elements are ,j kl  with all possible j  and k , and L is the set 

composed of all possible ι . 

If ι = I , i.e., the all I vector, then ,

,,

,

( )j k

j k

l

E j i

j S k K

U U
   


i ι II,

 has the same form as the case 

where   , we have ,

,,

,

min  ( ) 1j k

j k

l

j i

j S k K

order U 
 

 

 
i ι II,

 and 
( 1)Pr( )EU     with a 

discussion similar to Lemmas 11 and 12. With these facts, we only need to focus our 

study on the case where ι I , i.e., there is at least one Type II constraint involved in our 

analysis. W. l. o. g., we assume the specific term involved is 
,, j k

II

j iU where ( , ) ( , )j k n K  

and , ,
1j k n K

i i  , i.e., , 1

II

nU . Next, we will prove for this case the diversity order is lower 

bounded by 1  . We have 
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, , ,

, , , ,

, ,

, ,

, , , ,

'

, , , ,

, , , ( , ) ( , )
( , ) ( , )

, , , 1

, \{1}
( , ) ( , )

,

( ) ( ( )) ( )

( ( )) (( ) )

(( (

j k j k j k

j k j k j k j k

j k j k

j k n K

j k j k n K n K

n

j k j i j i j i

j S k K j S k K i S j S k K i S j k n K
j k n K i S

j i n i n

j S k K i S i S
j k n K

I

O i K

U U U U

U U U

U U U

        
 

   


  

  

  

, ,

,

,

, 1 ,1,

\{1}

,

,

)) )

( )

n

n K n K

j k

j k

II I II

n ni K

i S

l

j i A B C

j S k K

U U

U U U U



  


 

   
i
l
I
L

, 

where we define as  

, ,

, ,

, ,

        ,
( , ) ( , )

( ( ))
j k j k

j k j k

I II

O j i j i

j S k K i S
j k n K

U U U
  


  ,  

, ,

, ,

\{1}

( ( ))
n n

n K n K

I II

A O i K i K

i S

U U U U


   ,  

,1

I

B O nU U U  , and ,1

II

C O nU U U  .  

As already cited, we only need to analyze CU , where the specific Type II constraint term 

, 1

II

nU  is involved. Note that 
, ,, j k j k

I

j i iU U  and  
,, 5:

j k

II

j i j jU U t U   . Using the fact 

, , , ,, , ,j k j k j k j k

I II

j i j i j i i jU U U U U    , it is easy to find that O DU U , where 

 
,

' ' ' '
, ,,

( , ) ( , )

( ( )) ( ) ( )
j k k k

j k j k k k

D i j i i

j S k K i S i Sk K k K
j k n K

U U U U U
     



   
i I

, 
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the set '
     

1,2, ,
1

n
K

n 

 
  

   
, kS S  with cardinality 1kS n    , and 

'

'

1 2( , , , )
K

i i ii  where k ki S  for every 'k K , and 'I  is the set composed of all 

possible '
i . Note the second equality in the above equation can be easily found by 

enumeration. From ,1

II

C O nU U U  , we get ,1

II

C D nU U U  . 

Next we prove ,1

II

D nU U  has diversity 1  . For a specific 
'

i , let 

  '

'

,1( )
k

II

E i nk K
U U U


 i . Note  'EU i  if any 1ki  ; we also note that for all 

possible '
kik K

U


, the minimum order is  , which can be proved in the same manner as 

in the former case where   , i.e., Lemma 12. So for  'EU i , the '
kik K

U


which 

has the minimum order   should has the form 
' 1k qi pk K q
U U



 
 , where 

 1 2, , ,p p p    1, 2, , n /{1}  and i jp p  if i j , we also have 

 1 2n , , ,p p p  for   '

EP U i  to be of minimum diversity. For the specific 
'

i  such 

that '
kik K

U


is of minimum order  , w.l.o.g., we can assume the specific set 

   '

5 1 5: ,  for n 1E n jU U t t j n          i . The diversity of this set’s 

probability is lower bounded by 1LB

outd    using Lemma 15. The probability of the set 

,1

II

D nU U  also has diversity low bounded by 1   because it is dominated by the sets 

' ,1( )
k

II

i nk K
U U


  which are of the minimum order. 
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We conclude 1MMSE LB

out outd d     if 1   .      
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APPENDIX B. JOINT PDF OF NONZERO EIGENVULUES 

B.1  Proof of Theorem 5 

Proof: let 1 2, , , N     be a permutation of the arrangement 1 2  N , and sgn( )  

denotes the sign or signature of the permutation.  

Let 1 2, , , M     be a permutation of the arrangement 1 2  M , and sgn( )

denotes the sign of the permutation. Let 1 2, , , N     to be a partial permutation of 

the arrangement 1 2  N , and sgn( )  denotes the sign of the permutation. Let k k   

for 1 k K   and k K kK     for 1 k M  . Because the correspondence between   

and  ,  we denote   as  . Then sgn( ) sgn( )  . 

Define ( ) ( )k K k      for 1 k M  . Then ( ) ( )
k Kk

 
 


    for 1K k N   . 

From [86, Eq. 37], we have 

 

 

, , ,

1 1 1

,

1 1

( ) sgn( ) sgn( )

sgn( )

k k k

k k

N K N

k k k

k k k K

K N

k k K

k k K

C

C x

  

 

 



   

 

   



  

  
    

  

  
   

  

    

  

Α x

,  

and  

   ,

1 1 1

( ) sgn( ) sgn( ) sgn( )
k k k

M M N

k k k K

k k k K

x x



  
  

      

   

       Β x ,  then 
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   

   

1

,

1 1 1 1

,
1 1

( ) ( ) ( )

sgn( ) sgn( ) ( )

sgn( ) sgn( ) ( )

k k k

kk k k

M

l

l

K N N M

k k K k K l

k k K k K l

K N b

k K k K k K k K
a

k k K

D x d

C x x x d

C x x x dx



 



  
 



  
 



    

    



 

     

   

  



    
     

    

  
   

  

 

      

   

Α x Β x x

x

   
,

1 1

,
1

sgn( ) sgn( ) ( )

! !sgn( ) sgn( )

kk k k

k k

K N b

a
k k K

N

k

C x x x dx

M M

 





  
 



 


    

  

  



  
   

  

 



    

 Θ

 

We get the last equality from [86, Eq. 38], and !M  is the number of all possible 

permutation  . 

Here we have  
   

                                      for  1

( )         for  K+1   

i j

bi ji j

i j
a

C j K

x x x dx j N


  

 


  
 

Θ , so we have the 

form    Θ C Θ  where  ( ) ( )
b

i j
i j a

x x x dx      Θ . 

It is obvious that [86, Corollary 1] is a special case of Theorem 1 when N M .  
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