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SUMMARY 

Deep brain stimulation (DBS) is a promising investigational treatment for patients 

with treatment resistant depression (TRD). However, the exact mechanism of action of 

SCCwm-DBS is unknown and its effects on the electrophysiology of brain networks are 

poorly understood despite high clinical efficacy.  

Recent hardware advances have enabled stimulation and recording in clinical 

populations. Local field potentials (LFPs) recorded from patients under transient 

stimulation demonstrate strong oscillatory features that change over time. Three scales 

are explored in order to understand the network-level contributions to chirp generation. It 

was found that a single Wilson Cowan population could generate a transient down chirp 

when the parameters are near a homoclinic bifurcation. In a network of Wilson Cowan 

models informed by network connections seen in diffusion tensor imaging (DTI) of 

SCCwm-DBS and connected via glutamatergic excitatory-excitatory connection, a 

modeled stimulation on the connections between regions showed the appearance of 

transient down chirps in Wilson Cowan populations downstream from the populations 

directly connected by the edge of excitation. The further addition of inhibitory 

connections between Wilson Cowan populations showed more consistent appearances of 

transient down chirps in the modeled right temporal pole, a feature which suggests an 

importance of future LFP recordings from the temporal lobe. 

The results of this thesis will be used to interpret empirical data collected from 

patient populations and can be objectively validated in patients through future 

experiments. The larger implications of this work may lead to identification of 

electrophysiological biometrics of SCCwm-DBS targeting and efficacy.



 1 
  

CHAPTER 1 

INTRODUCTION 

 

Major Depressive Disorder (MDD) is highly debilitating major mood disorder 

characterized by five or more symptoms including thoughts of death, insomnia, changes 

in weight, and feelings of hopelessness among other symptoms for a continuous period of 

two or more weeks (American Psychiatric Association, 2013). Treatment Resistant 

Depression (TRD) is a subset of MDD characterized by the failure to respond to four 

different types of antidepressant treatments (Fava, 2003; Nobler et al., 2001). Current 

metrics of testing for TRD response involve utilizing scoring methods such as a Hamilton 

Depression Rating Scale (HAM-D) to test for efficacy of both antidepressant drugs and 

more invasive methods such as electroconvulsive therapy (ETC) and deep brain 

stimulation (DBS). Current clinical treatment strategies proceed empirically but more 

targeted neuromodulation therapies are showing strong promise in treating MDD. The 

aim of our research group is to explore the mechanisms of DBS action in treating TRD. 

Clinical trials in DBS of the white matter tracts near the subcallosal cingulate 

(SCC), or SCCwm, at 130 hz stimulation had shown significant and continued patient 

response over the course of two years (Mayberg et al, 2005). Diffusion tensor imaging 

(DTI) images with whole brain tractography have established a network of brain regions 

and their connecting white matter tracts associated with successful TRD recovery in 

DBS. These pathways involve the connection of the SCC to the Medial Frontal cortex via 

forceps minor and uncinate fasciculus, the connection of the Rostral and dorsal cingulate 

cortex via the cingulum bundle and the connection of the SCC to the Subcortical Nuclei 
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(Riva-Posse et al, 2014). Recent advances in hardware have enabled recordings of Local 

field potentials (LFP) from the brain region being targeted. These LFP recordings before, 

during, and following DBS with Medtronic’s Activa PC+S DBS system have shown the 

appearance of dynamic changes in electrophysiological patterns. The most notable of 

these is the appearance of transient down chirps, a decrease in LFP frequency over time, 

during the first 20-100 seconds of stimulation (Figure 1). These down chirps are a patient 

specific, reproducible, response seen in the SCC LFP that may help to constrain neural 

circuit dynamics impacted by DBS, and be used as a metric to assess SCC 

neurophysiology. Although DBS of TRD has been shown to be a promising 

investigational treatment method for TRD, the mechanisms governing patient response 

and the generation of these transient down chirps are not well understood. 

 

This thesis aims to develop a model that can be used to infer the underlying 

excitatory-inhibitory activity that gives rise to dynamic oscillatory features such as the 

Figure 1. Local Field Potential Recordings of SCCwm  These empirical 
spectrograms showing left and right SCC LFP recordings during DBS. Left 
SCCwm tract stim occurs at 110 seconds, Right SCCwm tract stim occurs 
at 360 s, Bilateral SCCwm tract stim occurs at 600 s. Transient down chirps 
can be seen in left LFP recordings following left and bilateral SCCwm tract 
stim and in right LFP recordings following right and bilateral SCCwm tract 
stim. 
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transient down chirps. Specifically, this paper will focus on the generation of the 

aforementioned transient down chirps via a single region and a network level mean field 

population-firing model. A network level model informed by tractography is necessary as 

DBS is thought to directly modulate a network of brain regions (McIntyre & Hahn, 

2010). In the case of SCCwm-DBS, stimulation is known to modulate a network of brain 

regions (Mayberg, 2009). Despite this, the possibility of being able to explain these 

recordings with lower level single region dynamics cannot be ignored. Based on these 

observations and concerns, I conducted an incremental approach to this problem. 

I begin by using a mean field approach to model a single isolated brain region. A 

biophysical mean field model would allow for a generalization of the response without 

knowing the neuron or ion level composition of the modeled brain region, something 

clinically challenging to do. A Wilson Cowan model (Wilson & Cowan, 1972) was 

chosen, as it is a simple mean field biophysical model, which can show a wide variety of 

oscillatory dynamics. Furthermore, since its first introduction, the Wilson Cowan model 

has been extended to include defined energy functions under cases of symmetric 

connectivity (Hopfield & Tank, 1986), spike-frequency adaptation and bursting (Soula & 

Chow 2007), among others. This allows ease of future incorporation of extensions to 

explain critical variances unable to be explained by the base Wilson Cowan model. As 

this model looks at excitatory and inhibitory population dynamics within a single 

population, this one population model would help understand possible localized 

mechanisms of action following SCCwm-DBS. 

I then introduce a two-brain region model designated by a system of two 

connecting Wilson Cowan populations. DTI recordings show a forceps minor connection 
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between the left and right SCC, regions where LFP recordings elicit transient down 

chirps following SCCwm-DBS (Riva-Posse et al, 2014). Studying a two population 

Wilson Cowan model can provide possible regional mechanisms of action of this the 

forceps minor connection as well as give an understanding on how connecting Wilson 

Cowan populations can generate the down chirp seen in SCCwm-DBS. Past research has 

been conducted on the dynamics of these two regions and cables of Wilson Cowan 

models in the context of modeling epileptical behavior (Meijer et al, 2015). However, 

there has not been a characterization of chirp generation in the two-region Wilson Cowan 

models. 

After understanding the dynamics of chirp generation in this two-region model, I 

expanded the Wilson Cowan model into a network of Wilson Cowan models. DTI shows 

that precise stimulation of four white matter tracts is needed to alleviate depression. The 

brain regions connected by these white matter tracts are likely targets of direct 

electrophysiological modulation. A subset of these regions is measurable using both 

invasive DBS LFP recordings and noninvasive scalp electroencephalogram (EEG). Six 

brain regions, in particular are hypothesized to be directly modulated by precise SCCwm-

DBS. The six-node network of Wilson Cowan models detailed in this work is directly 

informed by the tractography of an ongoing patient-based study. The use of this model 

allows for the prediction of possible acute transient level responses to DBS of SCCwm 

tracts. The model is topologically informed by the proposed SCC circuit and shows the 

impact of topological connections in the generation of clinical LFP data. 

While there are other much more complex models in the literature (Moran et al., 

2007; Sanz-Leon et al., 2015), the creation of a simple, fast model which can capture the 
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general dynamics and important variance of the physiological changes caused by DBS of 

TRD patients will allow for ease of future integration of a prediction and analysis tool 

into a real time, closed loop DBS device. Furthermore, Neural Mass and other forms of 

more complex mean field models have been able to show the onset of chirps under 

certain excitatory, inhibitory balances (McCarthy et al., 2011; Froemke, 2015). However, 

if a simple mean field model based on the SCC network can produce these chirps via a 

similar mechanism of excitatory, inhibitory balance, then clinically, it may be possible to 

make directed hypothesis testing that can be tested in patients with excitatory/inhibitory 

blockers. 

I end with the development of a graphical user interface (GUI) and toolbox, which 

allows for clinical investigators to generate and conduct analysis on the network Wilson 

Cowan model. Development of a toolbox capable of generating and predicting the 

appearance of possible electrophysiological biomarkers such as the transient down chirps 

seen in clinical settings can ultimately allow for clinicians to better monitor TRD and 

conduct analysis with real time LFP data. 

This work is important because it will allow for a quantitative description of an 

empirical electrophysiological feature and possible biometric for SCCwm-DBS efficacy. 

Furthermore, this work can be used to hypothesis test clinically feasible experimental 

procedures within the bounds of model based hypothesis testing. The focus of the 

network modeling effort is to understand how the topology affects chirp features. If a 

direct connection can be modeled between connectivity changes and chirp features, 

inversion of the model will be a next step to possibly infer the connectivity changes that 

are being induced by SCCwm-DBS stimulation conditions that give rise to the chirp. 
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Ultimately, a network model with tuned parameters and hypothesized structures based on 

the SCC circuit will be useful both in describing the mechanism of the signaling between 

the white matter tracts of interest and in predicting responses from stimulation parameters 

not yet tested via clinical trials. 
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CHAPTER 2 

METHODOLOGY 

 

 Modeling a complex system must begin at a scale representative of the system. 

LFP and EEG recordings measure mesoscopic brain dynamics that are representative of 

large numbers of synchronous neurons firing in a similar spatial orientation (Buzsaki, 

2006). These recorded oscillations are important because these oscillations may have of 

characteristic frequency ranges, spatial distributions, and patterns such as the transient 

down chirps seen in SCCwm-DBS. Understanding and modeling these patterns can give 

us insight into the underlying neuronal networks that generate these oscillations. Given 

the nature of the composition of these electrophysiological recording methods, a mean 

field population modeling approach is an appropriate set towards modeling the 

underlying neuronal networks and their dynamics that may cause these empirically 

measured recordings. Mean field models allow for the application of dynamical analysis 

methods such as bifurcation analysis to be conducted directly to a network of neurons, 

which allows for analysis of these mesoscopic brain dynamics. In addition, mean field 

neural mass models have been used heavily in studying the electrophysiological 

dynamics in other disorders, being capable of generating beta frequency dynamics seen in 

Parkinson’s disease patients (McCarthy, et al., 2011) and high-frequency, chirp-like 

signatures observed in EEG signals recorded in epileptical patients (Molaee-Ardekani, et 

al., 2009). Furthermore, mean field neuron models allow for a top down approach where 

further complexity may be added to a general model in explaining more of the complex 

system as needed. In this thesis, a simple mean field population model scaled from one 
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population to six populations connected together in an network inspired by patient 

tractography will be explored. Finally, the parameters of these mean field models relate 

directly to excitatory and inhibitory processes in neuronal tissue. These processes have 

been hypothesized and shown to be able to explain various types of electrophysiological 

dynamics seen in similar diseases treatable by DBS (McCarthy, et al., 2011; Froemke, 

2015).  

The mean field model used for a population of neurons was the Wilson Cowan 

model. A Wilson Cowan population is composed of an excitatory and an inhibitory 

subpopulation. Each of these subpopulations represents large numbers of firing neurons 

whose cohesive firing pattern can contribute to the mesoscopic oscillations we are trying 

to model. 

This model was solved in MATLAB using a modified Runge-Kutta differential 

equation solver. The local field potential of a region was modeled as the weighted sum of 

the excitatory and inhibitory subpopulation activities from each Wilson Cowan 

population. Dynamical systems analysis methods such as phase plane and eigenvalue 

analysis were conducted on the single population Wilson Cowan model. Eigenvalue and 

bifurcation analysis were conducted for both the two-population model and the 

topologically guided model. Spectrograms were generated for all model outputs to show 

the change in frequency over time of the modeled signal. 

 

Modeling 

Computational modeling is an useful tool to simulate and accelerate the study of 

possible mechanisms of action in biological and other real world systems, like that of 
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DBS of TRD patients. In the case of DBS of TRD patients, a network of mean field 

biophysical models can be used to understand the dynamics of groups of neurons that 

would cause the observed signals in LFP recordings. A group of neurons can furthermore 

be modeled as a single population of neurons with a subpopulation of excitatory neurons 

and a subpopulation of inhibitory neurons. The classic example of this mean field 

approach is the Wilson Cowan model (Wilson & Cowan, 1972).  

 

Wilson Cowan 

 A network of mean field population models was used to model the dynamics that 

would cause the observed signals in LFP recordings. Each neural region was modeled as 

a Wilson Cowan population, consisting of subpopulations of excitatory neurons and 

inhibitory neurons (1). Due to the simplicity of the neural oscillations elicited in Wilson 

Cowan models, neural oscillations and stimulus-dependent evoked responses can be 

easily explored and predicted as to test current hypotheses of DBS action. As Wilson 

Cowan subpopulations are homogeneous, the excitatory signaling are assumed to be 

glutamate based and the inhibitory signaling are assumed to be GABA based. 

  

 

 

The white matter tracts connecting each neural region were modeled by 

excitatory-excitatory subpopulation connectivity, mij, between regions (Figure 2). The 

white matter tracts modeled via the connectivity of neural regions are situated in the 

(1) 
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cortex. Many long distance cortical pathways involve excitatory network connectivity. 

Glutamate was chosen to be modeled as the excitatory neurotransmitter due to the 

extensive literature on modulation and change in glutamate activity in the cortex 

(Maddock et al., 2016; Lewis et al., 2003).  

 

Network Topology  

The network model was informed by the SCC Circuit shown to be involved in 

DBS of SCCwm tracts via DTI (Figure 3). In this circuit, the SCC, mF10, and Temporal 

lobes are connected via the uncinate fasciculus white matter tract. The left and right 

mF10’s are connected via the forceps minor. The left and right SCC are also connected 

via the forceps minor. Due to this, the weights of the modeled white matter tracts 

connected via the uncinate fasciculus were assumed to be uniform, but may be different 

from the forcepts minor. The white matter tracts were modeled via interregional weighted 

connectivity matrices. The model was explored for connectivity weights in the range of 

0.1 to 0.5, with the assumption that network influences will be smaller than intraregional 

effects on the region’s Excitatory/Inhibitory firing population. As DBS was conducted 

with 130Hz stimulation targeted at SCCwm tracts, stimulation was modeled as first a step 

Figure 2. Modeled Excitatory-Excitatory Connections 
Between Neurons . Connectivity is modeled by α and 
representing glutamate based excitatory-excitatory action. 
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change in network connectivity of proposed location of SCCwm stimulus, and then as a 

130hz modulator the SCCwm connectivity. Finally, the neural regions and white matter 

tracts in each hemisphere is consistent with the counterparts in the other hemisphere. 

 

 

 

 

 

 

 

 

 

 

Local Field Potential 

 In the simplest case, LFP recordings can be represented as a weighted sum of the 

current outputs of neurons near the recording electrode (Einevoll et al, 2013). Other more 

representative models for LFPs include microscopic models utilizing the Maxwell 

equations (Bedard et al., 2004) and macroscopic models utilizing mean field methods 

(Bédard & Destexhe, 2009). Due to the difficulty of decomposing clinical LFP recordings 

and the scope of this thesis, LFPs were modeled with a summation of modeled excitatory 

and inhibitory neural subpopulation responses within a neural region. 

 

 

Figure 3. Layout of SCC Network Informed by DTI. Panel A 
shows DTI tractography indicating SCCwm tracts and neural regions 
involved in DBS of TRD (Riva-Posse el al, 2014). Panel B shows 
network model informed by the DTI tractography. 
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Dynamical Modeling Metrics 

Phase Plane Analysis 

 The phase plane of a one-population system could be visualized by plotting the 

amount of excitatory activation by the amount of inhibitory activation. The resulting 

trajectory could be used to find limit cycles and stability within a two dimensional 

system. Nullclines were further solved and plotted to break up the phase space into 

various regions of qualitative behavior. The following equations were used to solve for 

the nullclines (2). 

 
 

      
 

Eigenvalue Analysis 

 Eigenvalues can be used to solve for stability and bifurcations in dynamical 

systems. In the simplest case, a positive eigenvalue will result in an unstable system and a 

negative eigenvalue will result in a stable system. When the eigenvalue is negative, then 

the system will reach a cyclical oscillation (limit cycle). In the case of a homoclinic 

bifurcation, there must be a saddle node with eigenvalues that must satisfy one of the 

following criterions: 

1. The leading eigenvalues of a saddle node are real and simple;  

2. The leading stable eigenvalues are real and simple; the leading unstable 

eigenvalues are imaginary and simple 

3. The leading eigenvalues are non-real and simple. 

Where leading eigenvalues are those that are closest to the imaginary axis. The saddle 

node quantity was defined as . Where  is defined as the leading 

(2) 
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unstable eigenvalue and is defined as the leading stable eigenvalue. In the real and 

symmetric case, the Jacobi eigenvalue algorithm was used to solve for the eigenvalues. In 

the nonsymmetrical or non-real case, the power iteration was used. 

 

Bifurcation Analysis 

 Many dynamical systems, such as the Wilson Cowan model are composed of 

differential equations. These differential equations involve a number of parameters, 

which describe various inputs the behavior of the dynamical system. In some cases, a 

small variation in a parameter can cause a significant impact on the behavior of the 

dynamical system. The point where the system changes from one type of behavior to 

another is defined as a bifurcation. In many cases, the changes in the mesoscopic 

oscillation patterns seen in EEG and LFP recordings may be caused by specific critical 

changes in input or other factors to the contributing neuron populations, much like a 

bifurcation.  

There are two main categories of bifurcations. Local bifurcations, such as Hoph 

and Period-doubling bifurcations, occur when the change in parameter causes a change in 

the stability of the system to change. As an analogy, this can be thought of as if you are 

driving to the grocer and there has been an accident forcing a detour. Now your trajectory 

has changed because of a change in your routine system. Global bifurcations, such as 

homoclinic and heteroclinic bifurcations, occur when the change in parameter causes a 

trajectory to collide with an equilibrium point (a constant solution), thereby causing a 

new trajectory to occur. As an analogy, this can be thought of as if you are driving to the 
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grocer. Suddenly, you see a farmers market up ahead in your trajectory. From then on, 

you go to the farmers market every week rather than the grocer. 

Understanding how, when, and where these bifurcations occur allows the modeler 

to study and make statements about the modeled dynamical system. In this work, 

Bifurcation analysis was conducted using the MATLAB software MatCont.  

Spectrogram 

 Brain oscillations are ubiquitous and can be recorded with methods such LFP and 

EEG (Buzsaki, 2006). Analysis of these oscillations relies heavily on Fourier analysis 

techniques and decomposition in the frequency-domain. Additionally, given the dynamic 

nature of brain activities, time-domain analysis and representations are also important. 

Using techniques such as short time Fourier transform (STFT) allows for a time-

frequency domain representation that allows for visualization and analysis across 

domains. 

A spectrogram is a widely used visual representation of the frequencies of signals 

as they vary over time. Spectrograms were generated using MATLAB spectrogram 

function, which computes the squared magnitude of the short time Fourier transform 

using a small window width (3). 

 

The window widths were defined to be 128 samples with 120-sample overlap in order to 

allow for ample sampling without taking large amounts of computational time. The 

sampling frequency was defined as 1/fs Hz. 

(3) 
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CHAPTER 3 

RESULTS 

 

 To study how a population of neurons can generate the specific 

electrophysiological signals seen in empirical SCC LFP recordings, I first performed 

parameter analysis of the single Wilson Cowan model using dynamical systems analysis 

methods detailed in the methods. Then model was then expanded to two populations to 

look at how connectivity between regions may affect the dynamical oscillations. 

Following this, the model was expanded to the topologically informed network model to 

show possible modeled neuron populations that display transient down chirps. 

Spectrograms were shown for visualization of time-frequency dynamics. 

Section 1: Single Population 

 A model of the Single Wilson population was generated using MATLAB. A 

parameter space exploration was conducted to search for possible parameter sets that may 

generate a transient down chirp. Phase plane portraits of the time course showed a set of 

parameters that can generate these transient down chirps. One subset of these parameters 

used was wei = 1.5, wie = 1, wii = 0.25, wee = 1, φE = 0.125, φI = 0.4, τE = 0.01s, τI = 

0.0067641s, rE = 0, rI = 0, aE = 50, aI = 50, θE = 0, θI = 0 (Figure 4, 5). An extended list 

of parameters that can elicit the transient down chirp responses can be found in Appendix 

A, Table 1. Time constants were chosen to be within the bounds of possible time 

constants for glutamate and GABA based neurotransmitter action. A phase-plane analysis 

of parameters can be found in Appendix A. 
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 From the time domain, it can be seen that in generating a transient down chirp, the 

excitatory subpopulation has a 40 percent higher peak firing activity than the inhibitory 

subpopulation (Figure 4). Furthermore, the end of the transient down chirp occurs 

following an end of the oscillations for the excitatory and inhibitory subpopulations. 

Phase Plane 

 Phase plane analysis of the transient down chirp shows the appearance of a 

homoclinic bifurcation. Nullclines shows the appearance of a stable node at E = 0.215, I 

= 0.4. There is an unstable downstream node at E = 0, I = 0. Finally, there is a saddle 

point at E = 0.1, I = 0.01. The start of the trajectory must be at an Excitatory/Inhibitory 

balance encompassed within the homoclinic trajectory. The time trajectory of oscillations 

will take longer as the phase plane trajectory grows until it reaches the homoclinic 

bifurcation (Figure 4). This in turn causes a decrease in frequency.   
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Frequency Space 

 Frequency domain representations of the modeled transient down chirp showed 

appearance of chirps that lasts upwards of 20 seconds with a maximum frequency of 20 

hz. An example of a modeled transient down chirp lasting 13 s and reaching 15 Hz max 

frequency is show in figure 5 below.  

 

 Applying time constant constraints of 10 ms for the excitatory glutamergic 

subpopulation and 6.76 ms for the inhibitory GABA subpopulation, it was found that the 

resulting response excitatory and inhibitory population response decreased in frequency, 

but increased in duration. The time constants were chosen to be within range of possible 

time constants for these neurotransmitters (Computational Neuroscience Research 

Group@Waterloo, n.d.). 
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Figure 5. ISI and Spectrogram of Single Population Down Chirp. Left figures shows the Interspike 
Interval of the fundamental frequency of the transient down chirp and the right figure shows 
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Section 2: Two Populations 

 We extended the single population model to a two-population model to 

understand how an excitatory-excitatory connection between two populations of Wilson 

Cowan models can elicit a chirp. A modulation of the connectivity between the 

populations was conducted by decreasing the excitatory-excitatory connectivity to 0.03. 

This was to simulate the condition where stimulation may interrupt connectivity between 

regions. Figure 6 shows a raster plot of the firing of two Wilson Cowan populations 

connected with various levels of connectivity. These Wilson Cowan populations were set 

at parameters of wei = 1.5, wie = 1, wii = 0.25, wee = 1, φE = 0.125, φI = 0.5, τE = 0.01s, τI 

= [0.0065s, 0.0074s], rE = 0, rI = 0, aE = 50, aI = 50, θE = 0, θI = 0. These parameters 

were set such that it is near a homoclinic bifurcation individually, but still capable of 

maintaining a stable oscillation. Other parameter sets near homoclinic bifurcations as 

well as cases where the two Wilson Cowan populations were completely the same were 

also explored. The general findings were similar across these simulations. 

 This two-population model showed the appearance of transient down chirps 

following a sudden decrease in connectivity. Furthermore, results showed the appearance 

of some inter-population mechanism that may cause the appearance of the down chirp 

due to differential response to stimulus between regions (Figure 6). It was found that 

increasing the connectivity between regions past 0.5 caused a general suppression of 

modeled excitatory and inhibitory firing in both populations. 
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Section 3: Network 

 The modeling thus far has focused on single populations and small networks. 

DBS is thought to directly modulate a network of brain regions (McIntyre & Hahn, 

2010). In the case of SCCwm-DBS, stimulation is known to modulate a network of brain 

regions [Mayberg, 2009]. In order to better account for stimulation effects on the brain, I 

extended the model to a network of brain regions to understand how and where a 

topologically informed network of Wilson Cowan populations may generate these 

transient down chirps.The Wilson Cowan populations were set up to be the same with the 

following parameter set: wei = 1.5, wie = 1, wii = 0.25, wee = 1, φE = 0.125, φI =0.4, τE = 

0.01s, τI = 0.0072s, rE = 0, rI = 0, aE = 50, aI = 50, θE = 0, θI = 0 (Figure 6). These 

parameters were set such that in unconnected to each other, the Wilson Cowan models 

are capable or each generating a stable oscillatory behavior. The initial 

excitatory/inhibitory firing populations were randomized to be within 0.25 +/- 0.05 and 

Figure 6. Modeled Raster Plot of Two-Population Response 
Under Varying Connectivity Levels. Populations were connected 
via excitatory-excitatory connections and first modeled to a 
certain amount between 0-20 seconds. Connectivity was 
decreased to 0.03 for the next 20 seconds. Finally, connectivity 
was increased back to the original number.  
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0.12 +/- 0.01 respectively. Excitatory-Excitatory connections were set to 0.1 to simulate a 

lower impact of further away sources to the excitatory/inhibitory subpopulations within a 

region. Other connectivity between 0.05 and 0.3 were explored. While capable of 

generating transient down chirps, the ratio of time constants for excitatory/inhibitory 

subpopulations becomes much less than 1 and difficult to justify using experimental time 

constants for Glutamate and GABA actions as the connectivity between regions increased 

above 0.15. Furthermore, oscillations were not found in the model at connectivity above 

0.19. As a simple sensitivity analysis, the model was run with a connectivity of 0.2 

(Figure 7). 

 This network of Wilson Cowan populations showed the appearance of down 

chirps in certain nodes following sudden decreases in the connectivity between regions. 

Down chirps often occurred in regions both downstream and upstream from the location 

of stimulation.  

 

 

 

 

Figure 7. Sensitivity test showing upper bound of connectivity. Inability to generate 
transient down chirps after connectivity increases to 0.2. Stimulation was simulated by 
changing connectivity between nodes 1 and 2 to 0. 
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Frequency Space 

 Spectrogram representations of the network following a decrease in connectivity 

between nodes 2 and 3 showed distinctive down transient down chirps that occur in nodes 

5 and 6 (Figure 8). Node 2 showed a 12 second down chirp followed by an up chirp over 

the course of 25 seconds.  

  

 Further simulations, taking into advantage the geometry of the model SCC circuit 

and utilizing biologically feasible time constants for glutamate and GABA showed the 

advent of chirps occurring in regions downstream and upstream of the simulated white 

matter tract of stimulation (Figure 9). It was found that decreasing the connectivity 

between nodes 2 and 3 caused the appearance of transient down chirps in the modeled 

left SCC (region 1).  

 Finally, an inhibitory connectivity was added between modeled regions as a 

means of exploring other possible connections not originally assumed in the model. 

There has been literature showing that DBS of TRD in rat models are dependent on the 

integrity of serotonergic systems (Hamani et al., 2010; Delaloye & Holtzheimer, 2014). 

Figure 8. Spectrograms of Network Modeled Regions. Normal 
connectivity was assumed to be 0.25. Stimulation was simulated by 
changing connectivity between nodes 2 and 3 to zero.  
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Thus, serotonin time scaled inhibitory-inhibitory and inhibitory to excitatory connections 

were added to study possible effects on the location of the transient down chirp 

appearance. It was found that this addition caused the appearance of transient down 

chirps in the right medial frontal regions to occur (Figure 10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Time traces and Spectrograms of Network Modeled Regions. Normal 
connectivity was assumed to be 0.1. From top to bottom, stimulation was simulated by 
decreasing connectivity between nodes 1 and 2, nodes 2 and 3, and nodes 1 and 3 to 0 to 
represent stimulation on the uncinate fasciculus. Left panels show time course and right 
panels show spectrogram responses of modeled regions. 1/f base noise was added post 
hoc for visualization of spectrogram. 
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Figure 10. Time traces and Spectrograms of Network Modeled Regions with 
Seratonin. Normal connectivity was assumed to be 0.1. Network level inhibitory 
connections were added to simulate Serotonin. From top to bottom, stimulation was 
simulated by decreasing connectivity between nodes 1 and 2, nodes 2 and 3, and nodes 1 
and 3 to 0 to represent stimulation on the uncinate fasciculus. Left panels show time 
course and right panels show spectrogram responses of modeled regions. 1/f base noise 
was added post hoc for visualization of spectrogram. 
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Section 4: Toolbox 

 

 Clinical investigators can greatly benefit from computational models. In strict 

experimental setups, precise control over variables enables direct study of pairwise 

variable interactions. Such a strict experimental setup is impossible in clinical 

populations. Computational models bridge the gap by enabling hypothesis-testing of 

explicit objective models in the context of clinical data. In order to make computational 

models more palatable to clinicians, easy-to-use interfaces and application program 

interfaces (API) are a critical necessity. 

 As a final step, I develop a MATLAB graphical user interface (GUI) to make the 

developed model accessible to clinical investigators. Specifically, the GUI developed was 

designed to enable easier exploration of the parameter space. Future integration into a set 

of tools capable of helping to inform and predict DBS action is a major goal.  

 A MATLAB graphical user interface (GUI) and toolkit was then developed to 

allow for ease of parameter space explorations for the model and for potential future 

integration into a set of tools capable of helping to inform and predict DBS action. The 

GUI was set up to allow for user input of Wilson Cowan parameters and displays the time 

course and frequency decomposition of the resulting Excitatory and Inhibitory population 

responses. Phase plane and Jacobian based eigenvalue portraits can be generated utilizing 

an analysis function within the GUI (Figure 11). Confirmation of the toolbox included 

comparison to the results from the previous three sections. Further verification was 

conducted comparing to results published in literature (Onslow, 2014; Meijer et al, 2015). 

An example result with a parameter as defined by literature is shown in figure 9 (Onslow, 
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2014). The parameters were set at wei = 2, wie = 2, wii = 0, wee = 2.4, φE = 0.7, φI = 0, θE 

= 1, θI = 1, τE = 0.0032s, τI = 0.0032s, rE = 0, rI = 0, aE = 4, aI = 4. 

 The work done here is a first step in the larger goal of enabling rapid model fitting 

to empirical electrophysiology. The GUI interface, combined with the model itself, can 

be used to quantify empirical electrophysiology in the context of excitatory and inhibitory 

networks.  
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Figure 11. MATLAB GUI for 
Generation and Analysis of Wilson 
Cowan Model. The GUI displays time 
course, frequency decomposition, phase 
plane, and eigenvalue analysis of Wilson 
Cowan parameters. Shown results involved 
a parameter set defined in literature. 
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CHAPTER 4 

DISCUSSION 

 

 Precise stimulation of white matter tracts passing through the SCC alleviated 

depression by an unknown mechanism. In this study, we develop a model with the intent 

of explaining specific oscillatory features found in empirical electrophysiology. Local 

field potential recordings of the SCC in DBS of SCCwm tracts utilizing implanted 

Medtronic PC+S neurostimulator at 130 hz frequency in clinical trials have shown the 

emergence of transient down chirps. Electrophysiology studies in patient populations is 

complicated by the lack of experimental control. Despite this limitation, hypothesis 

testing is possible through the use of computational models. In this thesis, I developed a 

computational model using basic principles of excitatory-inhibitory balance. 

Utilizing a network of Wilson Cowan models informed by a network of neural regions 

and white matter tracts involved in DBS of SCCwm tracts in TRD patients, we were able 

to both generate and show that these transient down chirps may be caused at specific 

excitatory and inhibitory neuron population balance. Utilizing this and future expansions 

of this model coupled with biological constraints would allow for a noninvasive method 

of predicting when and under what circumstances these transient down chirps could occur 

and to help guide future hypothesis based clinical testing with DBS. To this end, a 

graphical user interface allowing for analysis and ease of testing various parameter sets 

was developed.  

 The proposed mean field model showed that transient down chirps appear when 

the excitatory-inhibitory phase plane trajectory reaches a homoclinic bifurcation (Figure 
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4). This homoclinic bifurcation is at its core a specific excitatory-inhibitory balance. This 

idea of an excitatory-inhibitory balance can also be seen in experiments (Chiken & 

Nambu, 2014) for Parkinson’s disease and models for periodic stimulation (Mahmud & 

Vassanelli, 2016). Thus, looking at the single population phase plane alone, one could 

think of the transient down chirp as an intra-population response in the neuron population 

to reach this excitatory-inhibitory balance.  

 The two-population model supported this idea of intra-population response as 

being the primary cause of the transient down chirp. However, this model introduced a 

possibility of some form of inter-population mechanism behind the down chirps (figure 

6). More importantly, the two-population model showed that in the simplest case, a 

decrease in connectivity between the two regions could cause a transient down chirp. An 

increase in connectivity did not produce such a response, and often times suppressed the 

firing of excitatory and inhibitory populations to 0 (Figure 6). This suggests that DBS of 

white matter tracts may cause a decrease in population connectivity, or communication, 

between regions directly connected by said white matter tract.  

 Expansion of the two-population model into the network based on the SCC circuit 

showed the appearance of an inter-population mechanism of transient down-chirp 

generation. It can be expected that in a purely intra-population response, only the regions 

directly connected by the stimulated white matter tract would show the transient down 

chirp. However, it was the down stream nodes not directly connected to the stimulated 

white matter tracts that showed the appearance of transient down chirps. This could 

possibly suggest that either the topological layout of the network or the propagation of 

stimulation down the network is responsible, at least in part, with the appearance of 



 28 
 

transient down chirps. This is important because currently, clinical LFP recordings that 

see these transient down chirps are recorded from only the left and right SCC’s. The 

mean field network model results shown suggest that these patterns can also be seen in 

both the temporal lobes and mf10’s. If these transient down chirps were indicative of 

successful DBS treatment of TRD patients, then it would be advantageous to record from 

these other regions in the SCC network.  

 Furthermore, of the modeled neural regions, the right mF10 was the only region 

to not display a transient down chirp when simulating stimulation on an edge simulating 

the left uncinate fasciculus white matter tract. From a modeling standpoint, the node 

representing the mF10 has the most connections to it. It is possible that the nearby 

oscillations of adjacent regions in the right hemisphere are helping to stabilize the 

oscillation in the right mF10. 

 In addition, with the introduction of serotonin based inhibitory connections on top 

of the original assumption of glutamate based excitatory-excitatory connections, the 

modeled right temporal lobe more consistently displayed these transient down chirps 

when they appeared in the right or left modeled SCC nodes. In terms of modeling, this 

may be due to the extra inhibition causing the oscillations to fall down into an unstable 

down node region. This is relevant because research has shown that serotonin has an 

effect on the mechanisms of DBS of TRD in the medial frontal stimulation in rat models 

(Hamani et al., 2010; Delaloye & Holtzheimer, 2014). In these experiments, the depletion 

of serotonin lowered the efficacy of DBS. Meanwhile the SCC network model showed 

that with the inclusion of a serotonin based inhibitory signal in the network model, there 

was a definitive change in the location and appearance of transient down chirps in the 
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temporal and mF10 regions. While transient down chirps were not seen in these rat 

models, and both the modeled and current clinical DBS are focused on the SCCwm tract, 

the role of serotonin might have a similar mechanism of action. This further supports the 

need for possible future recordings from the temporal and medial frontal regions of the 

SCC network.  
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

 Dynamical modeling of neural regions utilizing mean field neural mass models is 

a important first step in understanding how excitatory and inhibitory populations may be 

interacting to generate reproducible electrophysiological signatures found in DBS of 

TRD. A major implication of this work is that now that a simple Wilson Cowan model 

has shown to display a transient down chirp, the model can be further expanded and 

optimized to be used a possible future predictor for when and where transient down 

chirps may occur following stimulation. 

 Future work needs to first address fitting the model to the current LFP data 

recorded from the left and right SCC. This will allow for a characterization of the amount 

of variance in the data that can be accounted for. The model in it's current stage is not 

fitted to data yet, and so can only give some qualitative predictions on what the SCC 

network could be doing in generating the chirps. Further investigation into modeling long 

distance white matter tract connections should be conducted to help biologically 

constrain the model. The current method of utilizing a changing connectivity matrix is a 

first step in modeling this connection, but future work should include possible spatial 

features involving possibly a more detailed special representation of the modeled 

stimulation site. The parameter space and assumption used in this work should be further 

modified for relevance in an animal model or clinical setting. Furthermore, as currently 

the appearance of a down chirp occurs during a homoclinic bifurcation, it is very 

dependent on the ratio of the excitatory and inhibitory time constants. In future models or 
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expansions of this model, the parameter sets should be optimized for decrease 

dependency on the time constants themselves.  

 One major assumption of the modeling work detailed above was the assumption 

of homogeneous populations of neurons for each neural region that are exclusively 

Glutamate and GABA based. This assumption is a simplification that does not reflect the 

true biology of the neural regions modeled. To address this, the next step would be to 

expand the model through a dynamic causal model approach of incorporating more 

subpopulations of different types of neuron subpopulations within each modeled region 

or the virtual brain approach of applying large fields of Wilson Cowan type models to 

represent each neural region. Both approach have their merits and following 

optimization, may explain more of the variance of the original LFP data. In addition, the 

work shown in this thesis assumes equal initial connectivity for white matter tracts and 

complete symmetry between the left and right neural regions. These assumptions are 

simplifications that do describe the physiology in a sufficient manner, so the results here 

may fail to elicit dynamics that comes with increased complexity in the model. Many of 

these complexities can be addressed with more detailed mesoscopic neural mass models 

and extensions to the current model. Ultimately, the goal of these models is to given an 

explanation for the transient down chirp seen in the SCC LFP data sets and to explain a 

certain amount of variance. Thus, factors such as noise and representation of LFP from 

modeled population responses should be further considered in the future.  

 Finally, the development of a toolbox capable to conducting all of the analysis 

necessary for the generation and prediction of potential electrophysiological biomarkers 

such as the transient down chirp is an important step to informing future closed loop DBS 
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devices and clinical trials. The current version of the GUI described in this thesis is an 

early iteration of what could be a part of a larger DBS analysis toolbox. As further 

analysis and possible expansions to the models, as described above, are conducted, the 

GUI will need to be continuously updated to reflect the ongoing research. 
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APPENDIX A 

PARAMETER SPACE EXPLORATION 

Table of Select Homoclinic Bifurcations 

 

Phase Plane parameter space mapping 

 Thresholds shift the position of the nullclines. In the bottom left figure, we notice 

an increase in inhibitory threshold shifts the I-nullcline right. On the bottom right figure, 

we noticed an increase in excitatory threshold shifts the E-nullcline down. 
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K rotates the nullclines. 
 

 
 
 
Connections between subpopulations changes curvature of nullclines. 

= 
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Ratio of time constant changes the trajectory of the excitatory and inhibitory populations, 

but does not change the nullclines themselves. 

 

I now map out the trajectory of two different types of phase planes parameters. 
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