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SUMMARY

Earlier studies by Chow and Skolnick [1] suggest that the internal motions of

bacterial DNA may be governed by strong forces arising from being crowded into the

small space of the nucleoid, and that these internal motions affect the diffusion of

intranuclear protein through the dense matrix of the nucleoid. These findings open

new questions regarding the biological consequences of DNA internal motions, and

the ability of internal motions to influence protein diffusion in response to different

environment factors. The results of diffusion studies of DNA based on coarse-grained

simulations are presented. Here, our goals are to investigate the internal motions of

DNA with respect to external factors, namely salt concentration of the solvent and

intranuclear protein size, and to understand the mechanisms by which proteins dif-

fuse through the dense matrix of bacterial DNA. First, a novel coarse-grained model

of the DNA chain was developed and shown to maintain the fractal property of in

vivo DNA. Next, diffusion studies using this model were performed through Brownian

dynamics simulations. Our results suggest that DNA internal motions may be sub-

stantially affected by ion concentrations near physiological ion concentration ranges,

with the diffusion activity increasing to a limit with increases in ion concentration.

Furthermore, it was found that, for a fixed protein volume fraction, the motions of

proteins in a DNA-protein system are substantially affected by the size of the pro-

teins, with the diffusion activity increasing to a limit with decreasing protein radii,

but the internal motions of DNA within the same system do not appear to change

with changes to protein sizes.
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CHAPTER 1

INTRODUCTION

This thesis describes the Brownian dynamics studies of protein and DNA diffusive mo-

tions in the nucleoid. The report extensively details the background and motivations

for this work, as well as in-depth technical details of the experimental methods, and

discusses the results in the greater research context of biological processes occurring

in the nucleoid such as protein diffusion through the DNA matrix.

1.1 Motivation & Goals

One of the defining characteristics of the nucleoid is the high concentration of DNA

that is packed within. The typical E. coli nucleoid space has a DNA volume fraction

of 10–20% [2], leaving the average spacing between strands to be much less than the

effective hydrodynamic diameters of many large DNA binding proteins (DBPs). This

observation consequently brings up important questions regarding the role of DNA

structure and dynamics in facilitating key biological functions that involve the DNA,

such as target search by proteins, transcription, and replication, for it would seem

difficult to impossible for some of these functions to be carried out at all in such

a tightly packed environment. For example, how are DBPs able to diffuse through

the dense matrix of DNA to bind to their target sites? The theory of facilitated

diffusion was developed to reconcile the experimental observation that association rate

of experimental DBPs can be two orders of magnitude faster than the rate allowed by

the three-dimensional (3D) Smoluchowski diffusion limit [3], and hypothesizes three

modes for target search that DBPs can perform [4, 5], but it is unclear how DBPs

under these modes can successfully overcome the cage-like environment imposed by

the packed DNA. Another question is, how can DNA replication and strand separation
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successfully take place without a high likelihood of strand entanglement due to the

packed nature of DNA? Questions such as these have yet to be addressed, despite

the extensive work done in the field to understand the biological processes that can

be impacted by DNA crowding. A brief overview of aspects of DNA structure that

are relevant to understanding the problem space behind this work is presented in

Chapter 2.

There has been some interest in a bulk property of packed DNA known as DNA

diffusive motions, or “internal motions,” which are suspected of having biological

significance and may be key to answering some of the aforementioned open ques-

tions. Specifically, work by Ando and Skolnick [6], as well as Chow and Skolnick

[1], demonstrate that DNA diffusive motions can accelerate the rates of 1D and 3D

protein diffusion along the DNA strand and through the dense matrix of the nucleoid,

respectively. These findings open new questions regarding the nature of DNA internal

motions, and the ability of internal motions to influence other biological processes,

such as strand separation after DNA replication, in response to different environ-

ment factors. However, to the best of our knowledge, there have been no further

efforts since [1] to quantify DNA internal motions, and this is the focus of our work

here. DNA diffusive motions may be a contributing mechanism through which these

environment factors can indirectly regulate known biological processes involving the

DNA, and in this work, we seek to understand whether or not salt concentration and

protein size, two commonly studied parameters of protein diffusion, can have an effect

on DNA internal motions, which have already been shown to consequently influence

DBP diffusive motions.

1.2 Methodology

The Brownian dynamics simulation technique is a coarse-grained method in which

explicit solvent molecules are replaced by an implicit solvent medium that exert a
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stochastic force on the dispersed solute molecules, here referred to as “Brownian

particles.” The technique takes advantage of the fact that there is a large separation

in time scales between the rapid motion of solvent molecules and the more sluggish

motion of the large solutes, which enables for coarse-graining out the fast modes of

the solvent. Brownian dynamics is used exclusively in this work so that the dynamics

of bulk DNA can be studied over microsecond timescales, something that would

have otherwise been computationally too expensive with finer-grained methods such

as molecular dynamics. The theory behind the Brownian dynamics methodology is

presented in Chapter 2.

1.3 Outline of Work

For this work, we first developed a novel coarse-grained model of the DNA chain

that was shown to be able to maintain a fractal structure over long periods of time.

We then performed coarse-grained Brownian dynamics simulations of a DNA-only

and DNA-protein systems with different salt concentrations and different protein

sizes subject to a constant protein volume fraction, respectively, and measured the

diffusive motions of the DNA chain, which is modeled as a polymer chain of soft beads.

Details of the DNA model construction and the implementation of the simulation are

presented in-depth in Chapter 3, and the results of this work are summarized in

Chapter 4. To summarize, results from the first study suggest that DNA internal

motions may be substantially affected by ion concentrations near physiological ion

concentration ranges, with the diffusion activity increasing to a limit with increases

in ion concentration. On the other hand, results from the second study suggest that,

for a fixed protein volume fraction, the diffusion activity of proteins in a DNA-protein

system appear to increase to a limit with decreasing protein radii, but the internal

motions of DNA within the same system do not appear to change with changes to

protein sizes. The implications of these findings on our current understanding of
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biological processes occurring in the nucleoid and suggestions for future directions of

this research are discussed in Chapter 5.
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CHAPTER 2

BACKGROUND & THEORY

2.1 DNA

DNA is a molecule with biological activities defined by its structure. This has been a

well-established observation since the elucidation of the structure of DNA in 1953 by

Watson and Crick [7]. In their landmark paper, Watson and Crick noted that the base

pairing in the DNA’s structure suggested a “possible copying mechanism for genetic

material.” Since then, many biological functions for DNA have been identified, but

the detailed relationship between structure and function is still generally not well

understood. A brief review of DNA structure is presented; see [8, 9] for a more

thorough and general review of DNA.

2.1.1 DNA Conformations

The typical DNA molecule consists of two complementary polynucleotide chains that

are multiply interwound, forming a double helix. DNA is polymorphic, with the

prevailing conformation being B-DNA, which is a right-handed helix with a period

of approximately 10.5 base pairs (bp) per turn under physiological conditions. The

polymorphism of DNA was established as early as 1953 with the structure of B-DNA

elucidated by Watson and Crick, followed soon after by the structure of A-DNA es-

tablished by Franklin and Gosling from analyses of diffraction patterns obtained from

DNA fibers at relatively lower hydration levels [10, 11]. Since then, other conforma-

tions of DNA have been discovered, such as the Z form [12], which is a left handed

helix of approximately 12 bp per turn, the D form [13], and the C form [14], which

is found in the presence of lithium. All of these DNA forms differ in characteristics
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such as helical repeat, rise, and helix diameter (compiled and summarized in [15, 16]),

and their structures are directly determined by the sequence, hydration levels, and

cations in the surrounding solution. The B conformation accurately describes the

overall structure of DNA in vivo; however, the biologically relevant forms of DNA

include the A and Z conformations. A more detailed review of the different confor-

mations of DNA and their functions can be found in [16].

Figure 2.1: Side and top views of A (left), B (middle), and Z (right) conformations of DNA. Image
from [17].

Biochemical, crystallographic, and computer simulation studies have indicated

that the A-form of DNA plays many important biological functions. A-like confor-

mations have been observed in the target site for the TATA-box binding protein

(TBP), suggesting that A-DNA is an important intermediate step in forming a dis-

torted structure required for binding by TBP [18, 19]. In addition, the compact

nature of A-DNA relative to B-DNA has been shown to be necessary to reduce spa-

tial distance between neighboring target sites to allow for proper binding, such as

the E. coli cyclic AMP receptor protein (CAP) binding process [20]. Conformational
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switches from the B-form to the A-form DNA at the DNA replication site by DNA

polymerase [21] have been suggested to provide discrimination between correct and

incorrect base pairing, thus increasing the reliability and fidelity of DNA replication

[22]. Finally, it has been shown that nucleotide bases in A-DNA are an order of mag-

nitude less susceptible to UV damage compared to those of B-DNA [23], which may

explain its dominant presence in bacterial spores as protection against environmental

factors [24].

Similar biological functions for Z-DNA have been observed, in particular its role

in DNA transcription. Z-DNA is commonly associated with negative DNA super-

coiling (discussed in Section 2.1.4) [25, 26], and while supercoiling is associated with

both DNA transcription and replication, Z-DNA formation is primarily linked to the

rate of transcription [27]. Analyses of genomic databases indicate that sequences with

high affinity for forming Z-DNA are frequently found around transcription initiation

sites [28], usually at approximately three helical turns after the promoter sequence

[29]. This suggests that Z-DNA may influence transcription by modulating the su-

percoiling levels within a domain to provide torsional strain relief and thus lower the

energy barrier for protein-DNA binding. In eukaryotes, nucleosome and Z-DNA for-

mations are mutually exclusive [30], and it has been likewise hypothesized that, since

nucleosomes interfere with DNA accessibility by proteins, [31], the Z conformation

of DNA may play a role in regulating transcription, replication, and recombination

[29, 32].

2.1.2 Polymer Model & Persistence Length

DNA is commonly modeled as an elastic rod with a persistence length lp, bulk elas-

ticity (Young’s modulus) Y , torsional stiffness C, and twist-stretch coupling D [33],

values for which have all been determined by single-molecule experiments [34–37].

We will focus on the persistence length here as it is most relevant to this study. In
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polymer chemistry, the persistence length lp is a basic mechanical property of a poly-

mer that quantifies its stiffness, and is defined as the length over which correlations

in the direction of the tangent are lost:

lp =
Bs

kBT
(2.1)

where Bs is the flexural force constant (bending stiffness) of the polymer, kB is Boltz-

mann’s constant, and T is the temperature. Bs is defined as:

Bs = Y I (2.2)

where I is the moment of inertia of the polymer’s cross section. In the case of a

uniform rigid rod with radius a, I can be expressed as:

I =
πa4

4
(2.3)

The idea of the persistence length is that it defines the scale over which a polymer

remains roughly unbent in solution like an elastic rod. At scales longer than lp,

thermal fluctuations result in spontaneous bending of the polymer, and the polymer

can then only be described statistically as a worm-like chain (WLC). A WLC is a

continuous version of the three-dimensional random walk model of a polymer, or

Kratky-Porod model [38]. Related to the persistence length that is used in modeling

polymers is the concept of the Kuhn length, which for WLCs is equivalent to twice

the persistence length [39].

In an aqueous solution, the average persistence length of DNA is 46–50 nm, or

140–150 bp [40, 41], and the diameter of DNA is approximately 2.04 nm (effective

hydrodynamic diameter is 2.2–2.6 nm) [42], although this can vary significantly de-

pending on the conformation [43] and physicochemical properties of the environment

8



such as temperature [44]. The persistence length of a segment of DNA is dependent

on its sequence, which can cause significant variation due to differences in base stack-

ing energies and the residues which extend into the minor and major grooves of the

DNA strand.

The relative flexibility of DNA has been observed to be important for gene regula-

tion [45], as it has the potential to bring parts of genes into closer proximity with one

another in three-dimensional space than would be possible if the DNA was perfectly

linear. Furthermore, the entropic flexibility of DNA has been noted to be consistent

with standard polymer physics models like the WLC model [46], allowing for com-

puter studies of bulk DNA to be performed using coarse-grained models. However,

for DNA segments shorter than the persistence length, the bending force is approx-

imately constant, thus producing polymer behaviors that deviate from WLC model

predictions.

2.1.3 In Vivo Dimensions

As this work is focused on studying the properties of prokaryotic DNA systems,

we will focus on the in vivo dimensions of DNA for prokaryotes only. Prokaryotes

generally possess one circular chromosome, which makes up most of the DNA of the

cell. The DNA that comprises the prokaryotic chromosome is in a highly condensed

conformation, known as chromatin, and occupies a defined region of the cell that is

characterized by the absence of ribosomes. This chromatin-dense area forms a pseudo-

compartment [47] that is analogous to the eukaryotic nucleus, and is generally referred

to as the nucleoid. The nucleoid is generally observed to be less densely packed with

proteins than the surrounding cytoplasm, presumably due to the internal crowding

by the DNA.

The degree of DNA crowding in the nucleoid is estimated as follows. The typical

E. coli K-12 cell has a nucleoid volume of 0.14 µm3 [48], containing an average of 2.3
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genomes, each 4, 639, 221 base pairs long [49], or roughly 1.5 mm if expanded into

perfectly linear form. The nucleoid volume is then assumed to be a cube with side

lengths of about 3
√
0.14 ≈ 0.52 µm, which is then uniformly stacked with the DNA

that has been cut into segments of 0.52 µm. This approximation model gives an

average spacing of about 6.4 nm between the centers of DNA strands [50, 51]. Taking

the diameter of the DNA strand into account, this leaves a surface-to-surface spacing

between DNA strands to be roughly 4.4 nm, which is less than the diameter of large

transcription factors such as LacI.

The volume fraction of DNA in the nucleoid in vivo is not precisely known, with

research literature quoting a range of 10–20% [2]. Furthermore, this volume fraction

is subject to change during the life cycle of the cell [52].

The volume fraction of proteins in the nucleoid is also not precisely known, but can

be roughly estimated as follows. The number of nucleoid proteins in an E. coli cell is

estimated to be 50,000–200,000 [53, 54]; hereafter, the maximum of 200,000 proteins

is assumed. Assuming that the proteins are modeled as perfect spheres with a radius

of 2.19 nm, which is comparable to the hydrodynamic radius of proteins with similar

weight as nucleoid-associated protein HU [6], then the total volume nucleoid protein

volume is estimated to be 200, 000 · 4
3
π · 2.193 = 879, 9357.24 nm3, or 0.0087 µm3.

Given the nucleoid volume of 0.14 µm3, this amounts to a protein volume fraction of

approximately 6.28%.

2.1.4 Topological Organizations

Supercoiling

The characteristics and dimensions of DNA in vivo as described in Sections 2.1.2

and 2.1.3 necessitates extensive condensation and maintenance of a highly organized

structure [55] so that entanglements are prevented during DNA replication. In fact,

an approximately 103-fold compaction of the DNA is required in order for it to fit into
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the nucleoid [56]. A fundamental structural aspect of in vivo prokaryotic DNA that

makes this compaction possible is its supercoiling, namely negative supercoiling [57].

Observed in both plasmids and prokaryotic chromosomes, supercoiling is a property

of topologically closed polymers (where the free rotation of the polymer ends is re-

strained), and has been hypothesized to support several critical biological functions,

the most important of which is storing torsional tension energy for driving processes

that require unwinding of DNA strands [58], such as transcription [59–61], replica-

tion [62] and recombination [63]. Other hypothesized functions of supercoiled DNA

include bringing distant enhancer-promoter sequences to closer proximity to promote

transcription [64], influencing the efficiency of target DNA site search by proteins

[65], and inducing the formation of Z-DNA or other alternative conformations in

regulatory regions to influence protein binding [16, 66, 67].

Figure 2.2: Topological organization of the bacterial chromosome. DNA nicking (indicated by
scissors) relaxes only a single domain while the topological state of the remaining chromosome
remains intact, due to the presence of supercoil diffusion barriers (red). Image from [68].

DNA supercoiling is a fragile process, and even a slight change in the overall

superhelicity of chromosomal DNA is lethal [69–71]. However, studies have shown
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that, unlike plasmids, prokaryotic chromosomes do not behave as a single topological

unit but are composed of independently supercoiled domains, each with a topological

state that is uncoupled from the rest of the chromosome by supercoil diffusion bar-

riers (Figure 2.2) [72, 73]. These topological domains have a rosette-like appearance

with topologically locked duplex loops (i.e. “plectonemic loops”) emanating radially

from a central core containing RNA and proteins [74, 75], and appears to be present

across many prokaryote species [76]. As a consequence, a single loop could be relaxed

by nicking without affecting the superhelicity of neighboring loops [77]. Furthermore,

the establishment of supercoil domain boundaries appears to be essentially random

throughout the entire nucleoid, with domain lengths exhibiting an exponential dis-

tribution with a mean length of approximately 10 kbp [60], and these boundaries can

vary even within a single cell over time [78, 79]. More in-depth discussions of DNA

supercoiling and supercoil-induced conformations of DNA can be found in [16, 68,

80–85].

Fractal Globules & Crumpling

Another structural aspect of in vivo DNA that makes DNA compaction possible is its

crumpling into a fractal globule. A fractal globule, also known as a crumpled globule,

describes a chain polymer state that has both compact local and global scaling [86].

This is in contrast to an equilibrium globule, which describes polymers in a densely

knotted configuration and whose compaction exhibits poor scaling (Figure 2.3). Frac-

tal globules emerge from a polymer condensing and collapsing upon itself iteratively

over the whole chain as a result of topological constraints that prevent one region of

the chain from crossing over to another [87]. First introduced in [88], this long-lived

polymer state was proposed as a structural model of the human chromosome on the

scale of up to 10 Mbp [89], based on experimental observations using chromosome

conformational capture techniques [90]. Though the fractal globule model was first
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proposed for eukaryotic DNA, it appears to be applicable to prokaryotic DNA as well.

Computer and experimental studies have shown that long circular polymers tend to

collapse from spread-out configurations into crumpled globules under high concen-

trations [87, 91], suggesting that bacterial plasmids might follow this behavior in the

crowded environment of the cytoplasm. In addition, recent studies demonstrate that

the spatial distance between any locus and the origin of replication in prokaryotic

DNA correlates precisely linearly with the genomic distance between the two [92,

93]. Since this is scalar property exhibited by crumpled polymer conformations, the

finding has lead to the proposal that prokaryotic DNA in nucleoid might also exhibit

crumpling as well [94].

Figure 2.3: DNA loci clustering patterns in a fractal (left) vs. equilibrium (right) globule. Image
from [89].

Because the dynamics of compact DNA opening up from an unentangled fractal

conformation are very different from those of the knotted equilibrium conformation

[94], the presence of fractal globules in the DNA chain has important implications for
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its ability to promote biological activity. In fact, it has been observed that gene acti-

vation can cause rapid decondensations of large genomic regions (0.5–2.0 Mbp) [95],

presumably to expose the DNA in those regions for DBPs to subsequently interact

with in order to carry out transcription, replication, and other biological processes

[96]. Conversely, for a DNA chain in an equilibrium globule conformation, no given

region of the globule can fully open up as it would remain trapped by multiple local

entanglements embedded in the structure. While the fractal globule, as opposed to

equilibrium globule, is most consistent with experimental data, it is ultimately a long-

lived intermediate that gradually converts into an equilibrium globule. Computer

studies show that the loss of territorial organization in fractal globules is eventual,

and can be either accelerated by the presence of active DNA re-modeling enzymes

such as DNA topoisomerase II, or decelerated by the presence of crosslinking proteins

that bind chromosomal loci [94], though it is not clear what the mechanisms that help

maintain the DNA’s fractal globule in vivo look like. Detailed reviews of the fractal

globule model of DNA and its suitability as a model of chromatin organization can

be found in [89, 94, 97, 98].

2.1.5 Salt Effects

DNA is highly negatively charged due to the presence of phosphate groups along

the DNA backbone [7]. As such, salt (primarily Na+ and Mg2+) has been shown to

strongly modulate DNA properties [99] and play a pivotal role in maintaining the

stability of the DNA structure by regulating the charge neutrality and balance of the

system. Here, stability is determined by the estimated melting temperature Tm of the

molecule. According to the counter-ion theory proposed by Manning [100, 101], these

cations act as shielding agents and effectively screen out the electrostatic repulsion

exerted by the negatively charged backbone, allowing the complementary strands

of DNA to stabilize into helix form, as well as the overall DNA strand to compact
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onto itself. This proposal has been corroborated upon by multiple studies [102–

106], which have shown that double-strand stability increases logarithmically with

increasing cation concentration, regardless of strand length [107–110]. In addition,

studies have shown that salt concentration can affect the transition of DNA from the

B- to A-form [111, 112], as well as the stretching and unzipping behavior of the DNA

strand [103, 113, 114], indicating that the mechanical stability of DNA also increases

with the concentration of cations. It should be noted that all the aforementioned

studies were carried under 0.1–1.0 M salt concentrations, and that there is a limited

range of concentrations up to which cations contribute to the stability of the molecule,

beyond which the stability of DNA will be shattered entirely [115, 116]. See [102,

117, 118] for further discussions on the effects of salt on DNA strand stability.

As DNA is a polyelectrolyte, the parameters that describe DNA as a polymer (see

Section 2.1.2) are expected to be strongly dependent on salt conditions. In particular,

theoretical studies predict that the electrostatic repulsion experienced by the back-

bone increases the persistence length lp [119, 120]. This has been verified by single

molecule experiments, which observed a reduction of lp by approximately 20% when

the salt concentration of the surrounding environment was increased from 20 mM to

300 mM (monovalent salt) [121, 122], though the exact nature and mechanism of this

dependence is not well understood. Salt concentration also appears to strongly affect

aspects of DNA supercoiling [123, 124]. At low salt concentrations, DNA supercoils

appear to be more loosely interwound with the chain undergoing large scale opening

and closing as well as rapid slithering, while at high salt concentrations, the bend-

ing and torsional components dominate over electrostatic terms as a result of charge

screening, and the DNA supercoils appear highly compact and rigid [125]. More

importantly, the same study revealed a critical point associated with the collapse

of supercoils from the loose to tight conformations near the physiological salt con-

centration of 0.1 M, which suggests a potential regulatory role for salt on biological
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functions associated with supercoiled DNA [125]. Other aspects that have been found

to be dependent on salt concentration include the effective supercoil diameter [126–

129], the critical linking number for buckling [36, 130], the number of plectonemes

[131, 132], and torsional stiffness, though it is debated whether torsional stiffness is

decreased [126, 133], increased [134], or not affected [135] by the presence of salt. It

should be noted that the presence of salt also affects DNA supercoil dynamics [84],

with dynamic light scattering measurements showing that the internal motions of

superhelical DNA increase with salt concentration [136]. Finally, it appears that the

dependence of supercoiling on salt is not just a function of concentration, but also

the type and valence of the cations in solution [137, 138], with Na+ showing a higher

potential than K+ in driving chromatin compaction for instance [139]. More reviews

on the effect of salt concentration on supercoiling can be found in [84, 125, 135, 136,

140].

2.1.6 Crowding Effects

The typical E. coli cytosol contains roughly 300–400 mg/mL of macromolecules [141],

resulting in a volume fraction of 20–40% [141–144]. Such an environment is called

“crowded” as opposed to “concentrated,” since no single macromolecular species oc-

curs at high concentration, but together, the macromolecules reduce the volume of

solvent available for other molecules in the solution. The crowding effect is dependent

on shape of the macromolecule involved and is non-linearly dependent on the molec-

ular mass [145]. A variety of effects have been observed that are a result of macro-

molecular crowding, such as different reaction rates experienced by the biomolecules

in solution [142, 146], increased propensity of macromolecular association and assem-

bly [147], and three- to tenfold reduction of diffusion coefficients of the constituent

biomolecules compared to their values in water under infinite dilution [148–150].

Although the volume fraction of DNA in the nucleoid is lower than the 20–40%

16



volume fraction of macromolecules in the cytosol, macromolecular crowding plays

equally important biological roles in the nucleoid. Crowding in the nucleoid is dom-

inated by DNA binding proteins (DBPs) such as HU, which can cover up to 30%

of genomic prokaryotic DNA [151], leaving around 80% of the genome to be acces-

sible [53, 152]. Under crowding, the activity of water is decreased and hydration of

DNA becomes unfavorable, and this has been shown to stabilize DNA and RNA du-

plexes. In particular, duplexes can be destabilized by small co-solutes and stabilized

by large co-solutes [153] and stabilization is dependent on solute concentration [154]

as well as DNA length [155]. On the secondary-structure level, crowding appears

to favor the formation of non-canonical DNA structures, such as the triplex [156]

and G-quadruplex [157] forms, over the canonical B-DNA form. It should be noted

that theses studies were performed in biologically unfavorable salt concentration and

temperature conditions, leading to the hypothesis that co-solute crowding can com-

pensate for environment conditions unfavorable to non-canonical DNA structures by

providing a mechanism for adaptation and buffering against it [158, 159]. Further-

more, crowding has been shown to increase the binding stability of proteins to DNA

by effectively compacting the DNA-protein complex [160], thus promoting enzymatic

activities such as transcription [161]. Similar to the case with non-canonical DNA

structure formation, the sensitivity of DNA binding proteins, such as DNA poly-

merase, to salt can be reduced by the macromolecule buffering [162]. Suffice to say,

crowding is also an important factor in controlling the conformation of supercoiled

DNA [163]. More discussions on the effects of macromolecular crowding on DNA can

be found in [142, 164].

2.1.7 Facilitated Diffusion

Critical cellular processes involving the DNA such as transcription and replication rely

on recognition of the target sites located on the DNA and formation of complexes with
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DNA by DBPs. But how are DBPs able to rapidly and efficiently find their target

sites on the DNA given the dimensions of the DNA and nucleoid as described? This

question was raised after the seminal work by Riggs et al., which observed in vitro

that the lactose repressor was able to diffuse and locate its operator region around

two orders of magnitude faster than the rate allowed by the three-dimensional (3D)

Smoluchowski diffusion limit [3] (diffusion is discussed in Section 2.2). An additional

diffusion mechanism was suggested to resolve this discrepancy, known as reaction rate

enhancement by dimensional reduction, which is based on an earlier proposal by Adam

and Delbrück [165]. The modified diffusion model, known as “facilitated diffusion,”

has since been expanded upon by Berg, Winter, and von Hippel [166], and describes

three modes for target search that DBPs can perform: 1) 1D rotation-coupled sliding

along the DNA strand through the helical major groove without dissociation, 2)

1D hopping along the DNA strand to nearby locations via a series of microscopic

dissociation and association events, and 3) 3D diffusion in between the 1D diffusion

events that effectively acts as large inter-segmental jumps along the DNA [4, 5].

Target search under this proposed model could then be faster than either 1D or 3D

search by itself, since 1D diffusion would accelerate 3D search by exploring multiple

sites in tandem along the DNA once the DBP is non-specifically bound, and 3D

diffusion would optimize 1D search by cutting down revisits to the same sites.

Each of the three modes of diffusion has been confirmed experimentally in vitro

[167–169] and in vivo [170, 171] using spectroscopic [172] and single molecule-based

[173] techniques. Experiments at low salt concentrations [174] demonstrate that the

1D sliding of DBPs along the DNA is enabled by the electrostatic interaction between

the positively charged protein subunits common in DBPs [175] and the negatively

charged phosphate groups along the DNA backbone. The resulting affinity strongly

depends on the salt concentration [125, 176, 177], and is typically several orders of

magnitude lower than that of DBPs for their designated DNA target sites [178]. While
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increasing the salt concentration will increase the number of hopping events due to

its effective screening of DBP-backbone affinities, it does not appear to affect the 1D

diffusion coefficient of the DBP itself [179]. Other environmental factors that have

been observed to affect the 1D diffusion of DBPs include DNA conformation [180,

181], supercoiling [182, 183], DBP nonspecific binding energies [184–186], crowding

[187, 188], DNA self-crowding [189], and hydrodynamic effects [190]. More reviews

on facilitated diffusion can be found in [94, 166, 191–193].

2.1.8 Open Questions with the Facilitated Diffusion Model

Despite the intense work in this area to understand the mechanistic details and other

determinants that might affect DNA target search, a holistic understanding of the

process is yet to be achieved and many basic questions remain open, two of which we

will cover here that are closely relevant to this work. The first question is the role

of macromolecule crowders in affecting target search. Because the nucleoid environ-

ment is densely crowded, it is expected to hinder DBP diffusion and target search.

However, experiments suggest that on the contrary, crowding may even facilitate the

target search process and enhance their enzymatic activity [194, 195], thus hinting

that the physicochemical side effects of crowding should be taken into account [196].

Colloid physics dictates that crowders increase the macroscopic viscosity of the solu-

tion while building a depletion layer between the crowders that effectively maintains

a constant microscopic viscosity [176], but exactly how this dual-environment model

affects target search is unclear, with conflicting reports confirming that it either pro-

motes [194] or has no effect [197] on facilitated diffusion. Another point of contention

is the mechanism by which crowding affects 1D search, with some studies proposing

that interactions between the DBP and crowders promotes hopping, thus increasing

the overall rate of diffusion [198], and others observing that crowding prevents escapes

from 1D sliding to 3D diffusion, thus promoting 1D sliding [199, 200]. Finally, there
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are other nonspecifically-bound DBPs diffusing independently along the DNA strand

[5], and it is not well understood as to how DBPs overcome such obstacles during

1D sliding, though at least one study suggests that contact with bound crowders

may even enhance target search [151]. More comprehensive discussions of the role of

macromolecular crowding on target search can be found in [199, 201].

The second question is the efficacy of the facilitated model in explaining the ef-

ficiency of DNA target search. 1D sliding has been observed to be much slower

compared to 3D diffusion [170], and so 1D hopping and 3D diffusion are generally

considered to contribute more significantly to DNA target search [202]. However,

it has been observed that DBPs spend a large majority of their time in 1D search

compared to 3D search [167, 203]. For example, the lactose repressor LacI spends

90% of the time nonspecifically bound and diffusing in 1D along the DNA at a rate

65 times smaller than that for 3D diffusion [170]. Thus, it is unclear as to how a dom-

inant slower mode of diffusion can boost overall target search kinetics to support the

facilitated diffusion model [201], and it would appear that the inclusion of 1D sliding

in the target search process is advantageous only in a dilute DNA solution environ-

ment, where the DNA is not multiply folded onto itself [1]. The optimal combination

of 1D versus 3D diffusion is also unclear, with theoretical calculations showing that

the optimal target search rate is achieved when DBPs spend an approximately equal

amount of time in 3D diffusion and 1D diffusion [4], while computer studies suggest

that the optimal ratio of time spent for 3D diffusion together with 1D hopping versus

1D diffusion is closer to an 80:20 ratio [179]. Reviews on the role of 1D sliding in the

facilitated diffusion model can be found in [5, 192, 204, 205].

2.1.9 Previous Work and Motivations for this Study

The observation of a nucleoid that is highly concentrated with DNA as well as proteins

consequently brings up important questions regarding the role of DNA structure
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and dynamics in facilitating key biological functions that involve the DNA, such as

target search by proteins, transcription, and replication, for it would seem difficult

to impossible for some of these functions to be carried out at all in such a tightly

packed environment. For example, how are DBPs able to diffuse through the dense

matrix of DNA to bind to their target sites? As reviewed in Section 2.1.7, the theory

of facilitated diffusion was developed to address this question, but it is unclear how

DBPs diffusing under this model successfully overcome the cage-like environment

imposed by the packed DNA. Another question that comes up is, how can DNA

replication and strand separation successfully take place without a high likelihood of

strand entanglement due to the packed nature of DNA? Questions such as these have

yet to be addressed, despite the extensive work done in the field to understand the

biological processes that can be impacted by DNA self-crowding.

There has been some interest in a bulk property of packed DNA known as DNA

diffusive motions, or “internal motions,”which are suspected of having biological

significance and may be key to answering some of the aforementioned open questions.

DNA internal motions were first proposed under the term “segmental diffusion” and

studied analytically using the WLC model [206], where it was found that the associa-

tion rates for a large protein to specific DNA sites can be dominated by DNA internal

motions; more recent discussions can be found in [183]. Since then, some theoretical

studies have attempted to incorporate this effect into the current understanding of

DNA structure and function, such as the DNA target search problem for example.

Specifically, Ando and Skolnick [190] carried out Brownian dynamics (BD) simula-

tions of a flexible DNA chain with restrained endpoints to investigate the effects of

hydrodynamic interactions on DBP 1D sliding, and demonstrated that DNA motions

could at least double the 1D diffusion of DBPs along DNA. Subsequent work by

Chow and Skolnick [1] demonstrated, using BD simulations of bulk DNA, that DNA

diffusive motions can be substantial in a tightly packed environment and can increase
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DBP diffusion when the DBPs are nonspecifically bound. The proposed mechanism

for this phenomenon, which builds upon the facilitated diffusion model, is that as the

DBP is performing a 1D search, the environment around the strand of DNA to which

the DBP is nonspecifically bound changes due to the mobility of the strand. This will

bring strands that were originally far from the DBP to within diffusion-reachable dis-

tance, in addition to effectively pushing DBPs around with a dynamic mesh. When

the DBP unbinds, it can rebind to these new strands that would have been much

less accessible to the freely diffusing DBP if the DNA strands were immobile. In this

way, the dynamic structure of packed DNA, through its internal motions, accelerates

protein target search by expanding the effective diffusion radius of a DBP.

The work on understanding DNA internal motions is still in a primordial state.

To the best of our knowledge, there have been no recent efforts to quantify DNA

diffusive motions with respect to environmental factors, and this is the focus of our

study here. As reviewed in previous sections, many environmental factors, such as salt

concentration, crowding, and temperature, have been shown in both in vitro and in

vivo studies to influence biological processes, such as the association of DBPs for their

target binding sites or the efficiency of DNA replication; however, the mechanisms

for their influence and the role of DNA internal motions in all of this are often

not considered. Moreover, most of these studies assume that the DNA strands are

immobile, and very few studies have taken DNA diffusive motions into account. We

believe that DNA diffusive motions may be a contributing mechanism through which

these known factors can indirectly regulate many biological processes. Specifically

for this work, we seek to understand whether or not salt concentration and protein

size, two commonly studied parameters of protein diffusion, can have an effect on

DNA internal motions, which have already been shown to consequently influence

DBP diffusive motions.

In contrast to environmental factors, such as salt concentration, which are
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carefully adjusted to reflect physiological conditions, most studies of DNA and

biomolecules in general have been performed under dilute, as opposed to crowded,

conditions [142]. For example, most facilitated diffusion studies use single, relatively

short (on the order of a few thousand base pairs), straight segments of DNA for

investigation (see references in Section 2.1.7). However, computer studies have sug-

gested that the effects of crowding likely dominate in vivo macromolecular motion

[6], hinting that the results of these studies may need to be revisited. The study by

Chow and Skolnick [1] was one of the first to explicitly model the crowded conditions

of the nucleoid; however, the generated model did not match the fractal property

of DNA, which has been suggested to play a role in determining the target search

efficacy of DBP 3D diffusion [65, 207]. Thus, a secondary goal of this study is to

produce a coarse-grained DNA model that, in addition to reproducing the crowded

environment of the nucleoid suitable for studying DNA internal motions, is able to

maintain a fractal structure over long periods of time. Similar to [1], since this study

is focused on understanding DNA strand dynamics in a packed DNA globule, the

employed DNA and protein models are necessarily much coarser than other models

previously used to study DNA and DBP diffusion where nucleoid packing was not

considered.

2.2 Diffusion

Diffusion is the process by which particles redistribute themselves from regions of

high chemical potential or particle concentration to regions of low chemical poten-

tial or particle concentration as a result of random motion. Diffusion as a general-

ized phenomenon is driven by one or more gradients of the diffusing species, though

throughout this work, the gradient generally refers to the chemical gradient of the sys-

tem. The distinguishing features of diffusion are that it depends on particles moving

around in random walk, known as Brownian motion (see Section 2.3.1), and that un-
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like bulk motion, or mass flow, it is dependent only on concentration gradients within

a medium rather than pressure gradients of the medium itself. A brief overview of

aspects of diffusion relevant to this work is presented; for a more detailed overview,

see [208–210].

2.2.1 Stokes’ Law

Stokes’ law describes the frictional force, also called the drag force, that is exerted on

a stationary spherical particle held in a viscous fluid moving with a steady velocity

[211, 212], and is given by:

Fd = 6πηrvd (2.4)

where Fd is the frictional force (Stokes’ drag) acting on the fluid-particle interface, η

is the dynamic viscosity of the fluid, r is the radius of the spherical object (i.e. the

Stokes radius), and vd is the flow velocity of the fluid relative to the object. The

dynamic, or shear, viscosity of a fluid expresses its resistance to forming shear flows,

a phenomenon in which adjacent layers of the fluid move in parallel but at different

speeds. By translation, Eq. 2.4 is also applied to a spherical particle moving with

steady velocity vd (also known as the terminal drift velocity) in an otherwise stagnant

fluid.

The Reynolds number is the ratio of inertial forces to viscous forces within a fluid

and is used to describe flow patterns in different fluid flow situations [213]. Flows at

low Reynolds numbers tend to be laminar (sheet-like), while flows at high Reynolds

numbers tend to be turbulent due to differences in the fluid’s speed and direction.

Stokes’s law is derived by solving the Navier-Stokes equations in the limit where the

Reynolds number is small (Re ≪ 1), which is also known as the Stokes flow limit.

The derivation details for Stokes’ law and discussion of the Navier-Stokes equations

are well beyond the scope of this work; see [214, 215] for reference.
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In biophysics, Stokes’ law is used to define the so-called effective Stokes radius for

molecules. This is subtly different from the effective radius of a hydrated molecule

in solution, as the Stokes radius of a molecule is equivalent to the radius of a hard

sphere that diffuses at the same rate as the molecule. Since most molecules are

not perfectly spherical, the Stokes radius is generally smaller than the effective, or

rotational, radius of the molecule. Similarly, an extended molecule will have a larger

Stokes’ radius compared to a compact molecule with the same molecular weight. The

Stokes radius is also referred to as the hydrodynamic radius of a molecule, but only

in biophysical contexts; the term has a different meaning in polymer chemistry.

Rearranging Eq. 2.4 gives the mobility µ of the spherical particle, which is the

ratio of the particle’s terminal drift velocity to an applied force, or the drag force in

this case:

µ =
vd
Fd

= (6πηr)−1

(2.5)

In the limit of low Reynolds number, µ is the inverse of the drag coefficient γ of the

particle in the moving fluid.

2.2.2 Einstein-Smoluchowski Diffusion

In statistical mechanics, the mean squared displacement (MSD) is a measure of the

deviation of the position of a particle with respect to a reference position over the

observation time frame t. Physically, it can be thought of as a measure of the amount

of space “explored” by a particle moving around in the system. It is the most common

measure of the spatial extent of random motion, also known as Brownian motion

(discussed in depth in Sec 2.3.1), and major work on determining the MSD for a

Brownian particle was done by Einstein [216], who derived it from Fick’s laws of
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diffusion [217] down to the following:

⟨(xt − x0)
2⟩ = 2dDt (2.6)

where x0 is the reference, or starting, position of the particle, xt is the position of the

particle after time t relative to the reference position, d is the dimension of the space

traveled by the particle and D is the particle’s diffusion coefficient. Eq. 2.6 is obtained

under the assumption that the mean particle displacement is zero in any direction (as

is for Brownian motion), which holds true if particle inertia is neglected and t ≫ 0.

This type of diffusion is called Einstein-Smoluchowski, or normal, diffusion, and can

be fitted into a generalized power law:

⟨(xt − x0)
2⟩ ∝ tα (2.7)

where α = 1.

When the relationship in Eq. 2.7 is non-linear, the diffusion process is called

anomalous diffusion. If α > 1, the phenomenon is called super-diffusion. An ex-

ample of this is an active cellular transport process. If α < 1, the phenomenon is

called sub-diffusion, or dispersion. This usually occurs when a system is not yet

equilibrated. In biophysical studies, the diffusion coefficient is measured by apply-

ing Eq. 2.6 to recorded observations of the MSD. However, due to the presence of

anomalous diffusion at the beginning of an experiment, the diffusion coefficient is in

practice estimated only from MSD measurements in the range where t is sufficiently

large. See [218] for more discussions on anomalous diffusion.

In the process of deriving Eq. 2.6, Einstein also derived an expression for the

diffusion coefficient, which was independently arrived at by Smoluchowski [219]:

D = µkBT (2.8)
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where µ is the mobility of the particle. This is known as the Einstein-Smoluchowski

Relation. Combining Eq. 2.5 into this equation consequently produces the following

equation:

D =
kBT

6πηr
(2.9)

which is known as the Stokes-Einstein Relation. This equation relates the diffusion

of a perfectly spherical Brownian particle directly to its radius and the viscosity

of the surrounding fluid, and is commonly used to compute the input parameter

D for computer-based studies of diffusion when D has not yet been experimentally

determined (discussed in 2.3.6). Likewise, the Stokes-Einstein relation is used to

compute the Stokes radius of a molecule given its experimentally-determined diffusion

coefficient. For in-depth discussions of Einstein-Smoluchowski diffusion, see [220–222].

2.2.3 Calculating the Mean Squared Displacement

The MSD is measured over increasing time intervals and averaged over the number of

particles to study the diffusive properties of the system, and is defined as a function

of the observed system trajectory x:

MSD(t) = ⟨(xt − x0)
2⟩ = 1

N

N∑
n=1

(
xn(t)− xn(0)

)2

(2.10)

In practice, both experiments and computer simulations may not be able to sample

a long-enough time span to gather enough data points for computing the MSD for

large values of t due to its high computational cost. However, this problem can be

worked around by invoking the so-called ergodic hypothesis.

A random process is said to be ergodic if its statistical properties can be deduced

from a single, sufficiently long, random sample of the process [223]. Ergodic systems

exhibit the same behaviors averaged over time as averaged over the space of all the
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system’s microstates in its phase space, i.e., the ensemble average is equal to the

time-average during the evolution of a system’s trajectory. The ensemble average is

defined as the mean of a quantity that is a function of the microstate of a system.

In physics, ergodicity implies that a system satisfies the ergodic hypothesis of ther-

modynamics. This allows for steady-state properties of the system, which may be

difficult to compute over the phase space, to be easily estimated instead by averaging

the values collected from the system’s trajectory over time.

Because the time-averaged properties of the system undergoing Brownian motion

can be assumed to be the steady state properties according to the ergodic hypothesis

[224–226], more data points for the squared displacement over a time frame t can be

collected simply by shifting the observation window to obtain measurements under

different reference positions for the particle. Assuming a discrete-time system trajec-

tory x that has been measured up to time T , the formula for calculation of the MSD

can be extended as follows:

MSD(t) = ⟨(xτ+t − xτ )
2⟩ = 1

N(T − t)

T−t∑
τ=0

N∑
n=1

(
xn(τ + t)− xn(τ)

)2

(2.11)

More discussions on techniques for MSD calculations can be found in [227, 228].

2.3 The Brownian Dynamics Method

The Brownian dynamics (BD) simulation technique is a coarse-grained method in

which explicit solvent molecules are replaced by an implicit solvent medium that ex-

ert a stochastic force on the dispersed solute molecules, here referred to as “Brownian

particles.” The technique takes advantage of the fact that there is a large separation in

time scales between the rapid motion of solvent molecules and the more sluggish mo-

tion of the large solutes. The ability to coarse-grain out these fast modes of the solvent
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allows one to simulate much larger time scales than those allowed by finer-grained

methods such as molecular dynamics simulation. At the core of a BD simulation

is a stochastic differential equation (SDE) that is numerically integrated forward in

time to create a trajectory of the system, which consequently allows for the study

of the temporal evolution and dynamics of large solutes in a complex medium. BD

simulations are particularly well suited for studying the structure and flow dynamics

of complex fluids and colloidal suspensions in non-equilibrium situations.

2.3.1 Brownian Motion

Brownian motion is the random motion of a small particle suspended in a fluid (a

liquid or gas) that results from its collision with the fast-moving molecules in the

fluid. While early investigations of this phenomenon were made on pollen grains,

dust particles, and various other objects of colloidal size, the theory has also been

applied and extended to situations where the “Brownian particle” is not a real particle

at all, but instead some collective property of a macroscopic system. For example, in

a Brownian-system description of the concentration of a component of a chemically

reacting system near thermal equilibrium, the “Brownian motions” are defined to be

the irregular fluctuations of this concentration over time.

Standard Brownian motion processes are continuous-time stochastic processes,

and are also referred to as Wiener processes in probability theory [229]. A Wiener

process [W (t); t ≥ 0] is defined by the following properties:

1. W (0) = 0.

2. ⟨W (t)⟩ = 0 for t ≥ 0.

3. For every t > 0, the future increments W (t + τ) − W (t), where τ ≥ 0, are

independent of the past values W (s), where s < τ . In other words, W (t) has

stationary independent increments.

4. W (t+τ)−W (t) is normally distributed with mean 0 and variance proportional
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to τ , i.e. W (t+ τ)−W (t) ∼ N (0, τ).

5. W is continuous everywhere, but differentiable nowhere.

A Wiener process can be constructed as the scaling limit of a random walk, i.e.

the limit of a random walk on a lattice grid as the grid spacing becomes infinitesimally

small. In fact, Wiener processes can be constructed from any discrete-time stochas-

tic processes with stationary independent increments. This is known as Donsker’s

Theorem [230], and is a functional extension of the Central Limit Theorem [231],

which asserts that the sum of independent random variables tends toward a normal

distribution even if the original variables themselves are not normally distributed.

2.3.2 Equations of Motion

The description of classical dynamics can be generalized with the Lagrangian formu-

lation approach. The equations of motion are expressed using generalized coordinates

q(t) that span a high dimensional space. The Lagrangian of the system is defined as:

L(q̇(t),q(t), t) = K − U (2.12)

where K and U are the kinetic and potential energies of the system, respectively, and

q̇(t) is the derivative of q with respect to time. While K and U can explicitly depend

on q, q̇, and t, a Cartesian coordinate (Newtonian) system is assumed here, where

q = x, U is purely a function of q, and K is purely a function of q̇ as given by:

K(ẋ) =
∑
i

1

2
mi(ẋi)

2 (2.13)

From the Lagrangian, an equation of motion can be derived using the Euler-

Lagrange equation:

d
dt

∂L
∂q̇i
− ∂L

∂qi
= 0, i = 1, ..., N (2.14)
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The Euler-Lagrange equation results from what is known as an action principle, and

its derivation is a topic in the field of calculus of variations, which will not be covered

here; see [232, 233] for proof. For a Newtonian system, the following equations hold

by the chain rule and substitution of the definitions of K and U :

∂L
∂q̇i

=
∂

∂ẋi

K(ẋi)−
∂

∂ẋi

U(xi)

= miẍi − 0

(2.15)

∂L
∂qi

=
∂

∂xi

K(ẋi)−
∂

∂xi

U(xi)

= 0 + fi

(2.16)

Combining Eqs. 2.15 and 2.16 into 2.14 reduces to the familiar Newton’s equation of

motion:

m
dv
dt = ftotal(t) (2.17)

Other descriptions of classical dynamics exist, most notably the Hamiltonian for-

mulation. However, the Lagrangian formulation is the most useful for solving the

equations of motion. Rigorous treatments of the subject can be found in [234, 235].

2.3.3 Thermal Equilibrium

In thermodynamics, a particle in one dimension is said to be at thermal equi-

librium, i.e. does not experience acceleration, when its mean squared velocity is

⟨v2⟩ = kBT/m, where kB is Boltzmann’s constant, T is temperature, and m is the

mass of the particle. This can be derived using the definition of kinetic energy from

classical mechanics and the Equipartition Theorem from thermodynamics [236, 237],

which states that the average kinetic energy associated with each degree of freedom
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is kBT/2:

1

2
mv̄2 =

1

2
kBT (2.18)

2.3.4 Langevin Dynamics

Consider the one-dimensional motion of a colloidal-sized spherical particle of mass m

in explicit solvent. Newton’s equation of motion for the particle is given by Eq. 2.17,

and can be numerically solved by molecular dynamics (MD). Interactions between

the particles (atoms in this case) are given by pairwise potentials, with bonded in-

teractions like angles and dihedrals being approximated by many-body potentials.

These potential terms, collectively called the force field, are rough approximations

of solutions given by the Schrödinger equation at best, and their quality is the main

determinant of the accuracy of an MD simulation. However, to determine a force

field, ftotal(t) needs to be defined, and it is usually not practical or even desirable

to look for an exact expression for ftotal(t). Moreover, MD can be an unnecessarily

expensive method for studying this type of system, because the target of interest

is the solute molecule, which is generally orders of magnitude larger than the sur-

rounding solvent molecules, and so the characteristic times of motion of the two are

considerably different.

Consequently, a one-dimensional system consisting of a Brownian particle in im-

plicit solvent is considered instead. In this model, ftotal(t) is mostly dominated by a

frictional force −γv that is exerted by the solvent medium (i.e. collision frequency of

the particle against the solvent) and is proportional to the velocity of the Brownian

particle. γ in this case is the drag coefficient of the spherical particle in the moving

fluid, which is the inverse of the mobility as defined by Stokes’ law (Eq. 2.5) and can
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be alternatively defined as:

γ = mξ (2.19)

where ξ is the friction constant and has units of inverse time (s−1). If this was the

full story, then the equation of motion for the Brownian particle becomes simply:

m
dv
dt
∼= −γv (2.20)

Since this is a linear first-order differential equation, it has the solution:

v(t) = v(0)e−γt/m (2.21)

Eq. 2.21 implies that the velocity of the Brownian particle will decay to zero

after a very long time. But that cannot be true, since Eq. 2.18 holds for a system in

thermal equilibrium, and so the assumption that ftotal(t) is dominated by the frictional

force needs to be modified. As suggested by the observed randomness of a Brownian

trajectory, the appropriate modification is to add a “random,” or fluctuating, force

term into the equation of motion. This is the basis of Langevin dynamics.

A Langevin dynamics system arises from a classical system by removing degrees

of freedom. The degrees of freedom which are removed exert conservative forces on

the rest of the system. The frictional force, which is proportional to the velocity of

the particle, is added to the conservative force and removes kinetic energy from the

system. All other forces are assumed to add up to a random force (thermal noise),

which adds kinetic energy back into the system. These frictional and random forces

are caused by collisions of solvent molecules with the colloidal particle. The formal

equation of motion for Langevin dynamics for a particle in a one-dimensional system
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is:

m dv = f(r) dt−mξv dt+ dW (2.22)

where f is the force exerted by an external field and W is a Wiener process. The

external field is usually empirically designed or chosen from a set of existing designs

based on the system under study, and contains body forces such as sterics and elec-

trostatics. The term dW is an additive noise term, i.e. it is independent of the state

of the system. This is in contrast to multiplicative noise, which is state-dependent.

Though it is possible to treat Langevin dynamics with memory in the noise term

[238], we will not be doing so here.

Langevin equations are usually written in differential form, which can be obtained

by dividing both sides of Eq. 2.22 by dt. Note that this is formally incorrect, since

W (t) is not differentiable. The differential form of the Langevin equation in Cartesian

coordinates, generalized for a system of N particles, is:

MẌ = −∇U(X)−MΞẊ + R (2.23)

where X is the positional trajectory of the system, M is the (diagonal) mass matrix,

Ξ is a 3N × 3N friction matrix that describes frictional interaction between each

degree of freedom of each particle (a second-rank tensor [239]), and R is the random

force consisting of 3N independent random variables acting on the system of interest

due to the motion of solvent molecules. In practice, Ξ is often chosen to be block-

diagonal, and furthermore, the 3 × 3 block diagonals of Ξ are each chosen to be

isotropic for simplicity. Thus, the equation of motion is simplified to the following

second-order stochastic differential equation (SDE) for a single Brownian particle i
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in three dimensions:

mi
d2ri
dt2 = fi(r)−miξi

dri
dt +Ri (2.24)

More extensive formal derivations of Langevin dynamics, including the treatment of

Langevin dynamics with memory, can be found in Zwanzig [240–242] and Mori [243].

2.3.5 Fluctuation-Dissipation Theorem

The noise factor R is Gaussian distributed and δ-correlated in time:

⟨R(t)⟩ = 0, ⟨R(t)R(t′)⟩ = 2Bδ(t− t′) (2.25)

where B is a measure of the strength of the fluctuating force, and δ is the Dirac

delta function indicating that there is no correlation between the noise values in any

distinct time intervals dt and dt′.

To resolve B, we first analytically solve the Langevin equation. Since Eq. 2.22 is

a linear first-order differential equation, it has the solution:

v(t) = e−γtv(0) +

∫ t

0

dt′e−γ(t−t′)/mR(t′)/m (2.26)

Substituting this into ⟨v(t)2⟩ gives:

⟨v(t)2⟩ = e−2γt/mv(0)2 +
B

γm
(1− e−2γt/m) (2.27)

The algebraic derivations for Eqs. 2.26 and 2.27 can be found in [244].

In the long time limit, the exponential terms drop out, and this quantity ap-

proaches B/γm. But since the system approaches thermal equilibrium in the long

time limit, the mean squared velocity must approach kBT/m. Combining Eq. 2.18
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with 2.27 consequently results in the following:

B = γkBT (2.28)

This result is known as the Fluctuation-Dissipation Theorem. It relates the

strength of the random noise B to the magnitude of the friction γ, and describes

the balance between the two terms that were introduced into Langevin dynamics.

The larger its value, the greater the influence of the surrounding fluctuating force

exerted by the solvent. This balance is the requirement for a Langevin system to be

in an equilibrium state.

2.3.6 Brownian Dynamics

Brownian dynamics (BD) is a simplified version of Langevin dynamics that corre-

sponds to the limit where the friction is high, under which correlations in the velocity

decay and no average acceleration takes place. Such a system is called an overdamped

Langevin system. Since there is no average acceleration, the left-hand inertial term

of Eq. 2.24 is ignored to give:

0 = fi(r)− γi
dri
dt +

√
2BiGi (2.29)

where γi = miξi and Gi is the Gaussian random variable N (0, 1). This is known as

the position Langevin equation.

Shifting the terms around and substituting in the Einstein-Smoluchowski relation
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(Eq. 2.8) gives:

dri
dt = γ−1

i fi(r) + γ−1
i

√
2BiGi

= γ−1
i fi(r) +

√
2γ−1

i kBTGi

= γ−1
i fi(r) +

√
2DiGi

(2.30)

In order to run a BD simulation of a Langevin system, Eq. 2.30 needs to be

transformed into an algebraic equation ri(t+∆t) as a function of ri(t), where ∆t is the

time step. This can be done by a time-ordered expansion using the Euler-Maruyama

scheme [245], giving the following update equation for a Brownian particle in three

dimensions:

ri(t+∆t) = ri(t) + γ−1
i fi(r(t))∆t+ ηi(t) (2.31)

where ηi(t) is the random displacement, defined as:

ηi(t) = N (0,
√
2Di) (2.32)

This update formula is known as the Ermak-McCammon Method [246], and full

details can be found in their landmark paper, which underpins the Brownian dynamics

methodology. The steps for running a BD simulation are thus outlined in Algorithm 1.

It should be noted that although one of the objectives of BD simulations is to estimate

the diffusion constants of the particles of interest, an initial value for D must be

supplied into the algorithm, which can simply be estimated by using the Stokes-

Einstein relation (Eq. 2.9) for an ideal spherical particle.
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Algorithm 1 Ermak-McCammon algorithm for BD simulations without hydrody-
namic interactions

1: t← 0;
2: ∆t← Choose time step size;
3: γ ← Initialize the drag coefficients of all the particles;
4: r(0)← Initialize positions of all the particles;
5: while true do
6: f(r(t))← Calculate the forces on each particle;
7: η(t)← Generate a random displacement vector according to Eq. 2.32;
8: r(t+∆t)← Update the particle positions at the next time step according to

Eq. 2.31;
9: t← t+∆t;

10: end while

2.3.7 Numerical Integration Schemes

While stability analysis has been well-studied for numerical solutions of SDEs, dif-

ferent definitions of stability have been introduced to quantify the term for different

application contexts; this topic is covered in depth in [247–249]. The Euler-Maruyama

(EM) scheme used in Eq. 2.31 is a simple first-order scheme that has been shown

to be “numerically stable in the mean” by Saito and Mitsui [250, 251], but yields

overestimations of calculated dynamic quantities, such as MSD values, that increases

with increasing time step size ∆t [252, 253]. This has been noted to be a fundamen-

tal issue with the original Brownian dynamics methodology, and several numerical

methods of higher-order have been introduced since then to address this.

One such numerical method is the van Gunsteren-Berendesen (GB) Method [254],

which proposes the following position update algorithm:

ri(t+∆t) = ri(t) +
1

2
γ−1
i

(
2fi(r(t)) + ∆tḟi(r(t))

)
∆t+ ηi(t) (2.33)

where the time derivative of the force is approximated by:

ḟi(r(t)) =
fi(r(t))− fi(r(t−∆t))

∆t
(2.34)
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Since the Langevin system converges into a classical Newtonian system in the limit of

zero friction, the GB scheme likewise converges to the Leap-Frog Integration scheme

when applied to MD simulations.

Compared to the EM scheme, the GB scheme has been observed to give a larger

deviation for the mean square displacement per time step, but yields a better estimate

of static quantities, such as energies, than the EM scheme. This follows from the fact

that although the GB scheme is of higher order than the EM scheme, it is not a true

second order algorithm, as the deterministic part of the scheme is of order ∆t2 while

the stochastic part involves only a term at the ∆t1/2 level.

In addition, higher-order integration schemes based on Runge-Kutta (RK) meth-

ods are also used for numerically solving SDEs [255–258]. Stochastic RK-based

schemes have been observed to provide much more accurate estimates of both static

and dynamic quantities than either the EM or GB schemes. However, as with their

deterministic counterparts, they require more than one evaluation of the forces and/or

higher-order derivative calculations per time step, which significantly reduces their

computational efficiency and thus renders them advantageous mostly in simpler sys-

tems with a fewer variables. In-depth analyses and comparisons of these schemes can

be found in [252, 253, 259, 260].

2.3.8 Advantages and Drawbacks

Due to its efficiency in handling large simulation volumes and particle numbers, as

well as its ability to handle much longer time scales than those afforded by all-atom

MD simulations, BD simulations are well suited for exploring many-protein scenarios

that occur in biological cells, and are particularly useful for describing processes such

as diffusion controlled reactions.

However, the Brownian dynamics methodology, or at least the simplified version

that is described here, comes with a set of drawbacks. First, Langevin dynamics
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mimics the viscous aspect of a solvent. Specifically, the Brownian regime of Langevin

dynamics describes the diffusive limit of the Langevin equation where the motion is

more random, and so uses very large values for the coefficient of friction γ. However,

if one of the objectives of a simulation is to control temperature, one should be careful

to use a small value for γ, and/or consider running Langevin dynamics simulations

instead. See Table 2.1 for a comparison of fluid simulation methodologies.

Second, while Langevin dynamics removes degrees of freedom from the solvent, it

does not fully model an implicit solvent; specifically, the model does not account for

electrostatic screening and hydrophobic effects exerted by the solvent. More impor-

tantly, it does not capture hydrodynamic interactions for denser solvents. Though

hydrodynamic interactions (HI) will not be explored in this work, the idea behind

HI is that when a colloidal particle moves through solvent, it drags a part of the

solvent with it, thus inducing a flow field that moves in parallel and affects neighbor-

ing particles. Hydrodynamic interactions add back the mechanical coupling between

the colloidal particles that was lost in the implicit solvent approximation, albeit on a

coarse-grained level. Depending on the system of study, the addition of HI may be

required to correctly model the system [261].

Finally, the simplified version of formulation of BD assumes that the colloidal

particles are spherical. However, in real systems, colloids such as proteins are in

general not truly spherical, leading to colloidal dynamics that are different from those

of perfect spheres. In addition, as consequence of the spherical particle assumption,

rotational motion has been silently ignored. Similarly, the hydrodynamics of non-

spherical colloids is different from those of perfect spheres. This can be addressed,

however, by fine-graining the model of the colloids under study. For example, a

protein can be modeled not as one but as a cluster of multiple Brownian particles

bounded together by stretch and bend interactions, with each particle corresponding

to a sub-region of the protein.
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Table 2.1: Various granularity levels of physical descriptions for colloidal particles in a solution.
τR = ξ−1 is the relaxation time of the particles. Table from [262].

Solvent Microscopic Equation in the Equation of the Simulation
Model Variables Phase Space Trajectories Method

Discrete {rsolvent,psolvent, Liouville Newton Molecular
Solvent rsolute,psolute} Dynamics

Continuous
Solvent

msolvent ≪ msolute

{rsolute,psolute} Fokker-Planck Langevin Langevin
BD

{rsolute} Smoluchowski Ermak- Smoluchowski
t > τR McCammon BD

2.3.9 Alternative Methods

BD represents a very coarse-grained model of a fluid system, and there are a number

of other methods that range in accuracy and computational complexity from this

model with the simplified implicit solvent all the way down to a fully-explicit solvent

model employed by MD. As hinted earlier, one set of approaches involve adding in

hydrodynamic interactions, such as BD with HI using the full Ermak-McCammon

method [246] or Stokesian Dynamics [263, 264]. Another set of approaches is Fluid

Particle methods, which involve numerically solving the Navier-Stokes equation [265,

266]. Other methods such as Dissipative Particle Dynamics [267–269], Multi-Particle

Collision Dynamics (also known as Stochastic Rotation Dynamics) [270, 271], and

the Lowe-Anderson thermostat [272] involve the use virtual particles to represent

momentum “units” of the solvent. Yet another approach is the grid-based Lattice-

Boltzmann simulation method, where a linearized Boltzmann equation is solved [273–

277].

All of these methods introduce hydrodynamic interactions or some other form

of softened interactions into the Langevin system, and include simplified but explicit

models of the solvent. The solute particles are almost always treated by these methods

as inertial systems. As a consequence, they are rather computationally expensive due

to the addition of many more degrees of freedom for consideration and/or the long-
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range nature of these interactions that require the use of elaborate numerical schemes

(see [278] for a detailed comparison). Furthermore, while the theory of HI is rather

well understood at low particle densities, much less is known at high particle densities

[279], and so simple BD simulations without HI still has its place as a useful tool for

studying colloidal dynamics in these conditions, in addition to circumventing the

computational complexity of methods involving HI.

2.4 Electrostatics

The importance of electrostatic interactions in biological systems cannot be under-

estimated, and in an aqueous environment, the presence of electrolytes affects the

functional, structural, and dynamic properties of every class of biomolecules, some

of which that are relevant to this work have been described in Section 2.1.5. Thus,

a brief overview of electrostatic theory for electrolytes in a dilute solution typical of

the cellular environment is presented. Note that the centimeter-gram-second (cgs, or

Gaussian) electrostatic units of measurement will be used throughout this section for

consistency of notation.

2.4.1 Electrolyte Solution Model

Consider an electrolyte solution of volume V that is electrically neutral and consists

of s different species of ions, with the i-th species having a concentration ci and

charge qi = zieee, where zi is i’s charge valence and eee is the charge of an electron (the

elementary charge). It should be noted that only strong electrolytes, or those with

high dissociation constants, such as Na+Cl−, are considered. Thus, ions will be con-

sidered as hard spheres that are distributed in a continuum of relative permittivity

εr (formerly known as the “dielectric constant” [280]) and yielding an average charge

density ρ. This system is governed by two equations: the Poisson equation, which

defines the electric potential in terms of the charge density, and the Boltzmann equa-

42



tion, which defines the equilibrium charge distribution given an electric potential.

When combined, these two equations form a self-consistent system.

The electroneutrality condition of the electrolyte solution requires that the charges

of all the ions sum up to zero:

1

V

i=s∑
i=1

Nizi =
i=s∑
i=1

cizi

= 0

(2.35)

where Ni is the total number of ions of species i.

We now fix a single ion j at the origin and calculate the equilibrium potential φj(r)

and charge distributions ci(r) of species i around it. First, we define the distance of

closest approach ad between ion j and a counter ion k:

ad = rj + rk (2.36)

where rj and rk are the radii of j and k, respectively.

The electroneutrality condition implies that the summation of all charges around

j beyond rj must be equal to the charge bore by j. Hence:

∫ ∞

ad

4πr2ρdr = −zjeee (2.37)

The ions are assumed to be in thermodynamic equilibrium with each other and

relatively free to move around in the solution, and so they obey Boltzmann statistics

and form a Boltzmann distribution. The concentration ci of species i is consequently

altered from its bulk average value c0i by a corresponding Boltzmann factor:

ci(r) = c0i exp(−βU(r)) (2.38)
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where β is the inverse scale factor defined by Boltzmann’s constant kB and tempera-

ture T :

β =
1

kBT
(2.39)

The relationship in Eq. 2.38 is given by statistical mechanics, where the probability

of a particle having energy U is proportional to the Boltzmann factor e−βU . In the

infinite temperature limit, the Boltzmann factor approximates to 1, and all ions are

distributed uniformly without regard for their electrostatic interactions. Likewise,

the distribution is smoothed out into a uniform distribution when U = 0.

In the absence of an external field, the energy U of an ion of species i with charge

valence zi in an electric potential field φ is equivalent to its electrostatic potential

energy Ue, defined to be:

Ue(r) = zieeeφj(r) (2.40)

Substituting Eq. 2.40 back into Eq. 2.38 gives (abbreviating the dependence on r in

the equation):

ci = c0i exp(−zieeeφjβ) (2.41)

This distribution function gives the probability of finding an ion of a single species i

per volume element at a distance r from the central ion j. We can sum this result

over all ion species i to express the overall charge density at distance r with respect

to ion j:

ρj =
∑
i

cieeezi

=
∑
i

c0ieeezi exp(−zieeeφjβ)

(2.42)
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This is known as the Boltzmann Equation relating the charge distribution to the

electric potential felt by ion j.

2.4.2 Poisson-Boltzmann Equation

We consider the Laplacian operator:

∆ = ∇2 =
∂

∂x2
+

∂

∂y2
+

∂

∂z2
(2.43)

which is also given in spherical coordinates by:

∆φ =
1

r2
d
dr

(
r2

dφ
dr

)
(2.44)

The Poisson Equation states that, at any point r, the Laplacian of the electric po-

tential of a system is related to the charge density by the following formula:

∆φ =
−4π
εr

ρ (2.45)

Thus, an ion will feel the electric potential created by other ions according to the

above equation, and will adjust its spatial position in the presence of electrostatic

boundary conditions, which can be either a constant surface potential or constant

surface charge density. These boundary conditions are also referred to as Dirichlet

and Neumann boundary conditions, respectively.

Combining Eq. 2.42 into Eq. 2.45 gives the following:

∆φj =
−4π
εr

∑
i

c0ieeezi exp(−zieeeφjβ) (2.46)

This is known as the full Poisson-Boltzmann equation.
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2.4.3 Debye-Hückel Approximation

The full Poisson-Boltzmann equation is a partial differential equation of elliptic type

with φj defined on both sides, and so is generally not analytically solvable, nor does it

follow the principle of linear superposition for the relationship between the number of

charges and the strength of the potential field. However, if the potential field is weak

enough, the equation can be linearized and a solution can be approximated. This is

the basis of Debye-Hückel theory [281]. The Debye-Hückel approximation assumes

a sufficiently low concentration of ions such that zieeeφj ≪ kBT , i.e. the energy

derived from electrical forces is small compared to the thermal energy. Under this

assumption, the exponential terms in Eq. 2.42 can be expanded using the Taylor series

and the higher order terms (higher than O(∆φ2
j)) can be truncated, thus linearizing

the equation. Doing so and subsequently removing the first expanded term by the

electroneutrality condition (Eq. 2.35) gives:

ρj =
∑
i

c0ieeezi(1− zieeeφjβ)

= eee
∑
i

c0i zi −
∑
i

c0ieee
2z2i φjβ

= −
∑
i

c0ieee
2z2i φjβ

(2.47)

Substituting this definition of ρj to the Poisson-Boltzmann equation, followed by

rearrangement of the terms, simplifies the equation to:

∆φj = κ2φj (2.48)
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where κ is defined as:

κ2 = 4πε−1
r eee2β

∑
i

c0i z
2
i (2.49)

Eq. 2.48 is analytically solvable, and a general solution to this equation that

satisfies the constraint that the potential converges to a finite value when r →∞ is:

φj = A
e−κr

r
(2.50)

To obtain the value of the constant A, we first derive a new equation form for ρj,

by substituting the left and right hand sides of 2.48 with 2.45 and 2.50, respectively,

and subsequently rearranging the terms:

ρj =
−κ2εr
4π

A
e−κr

r
(2.51)

This form of ρj is then substituted into 2.37 to produce a new expression of the

electroneutrality condition:

Aκ2εr

∫ ∞

ad

re−κrdr = zjeee (2.52)

From this equation, A can then be analytically solved using integration by parts, after

which the following value is obtained:

A =
zjeee

εr

eκad

1 + κad
(2.53)

In the case of a dilute solution with the Debye-Hückel approximation, ad ≪ κ−1,

and so the term eκad
1+κad

approximates to 1, thus simplifying A and giving the final

expression for the Debye-Hückel potential:

φj =
zjeee

εr

e−κr

r
(2.54)
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2.4.4 Debye-Hückel Screening Length

The value κ−1, where κ is given from Eq. 2.49, is known as the Debye-Hückel screening

length, or Debye length. Similarly, the Debye sphere for an ion j is defined as the

volume surrounding j whose radius is j’s Debye length κ−1
j . Physically, the Debye

length is the distance above which an ion’s charge is effectively “shielded” by the

surrounding ions in a solution. The excess charge within the Debye sphere of j is

approximately equal to charge −zjeee, thus canceling out the field of j’s charge +zjeee

at distances further than κ−1
j . Symmetrically, as ions are located farther away from

j, they are increasingly electrically screened off by ions closer to j. Consequently,

the electric potential will decrease in magnitude by 1/eee with each κ−1
j distance away

from j. Thus, the Debye length is effectively a measure of an ion’s net electrostatic

effect in solution and how far out this effect persists, and is inversely dependent on

the bulk concentration of electrolytes. For reference, the Debye length for an ion in

a 1.0 M Na+Cl− solution is approximately 3 Å [282].

2.4.5 Advantages and Disadvantages of the Debye-Hückel Approximation

The Debye-Hückel treatment provides a simple description to the many-body interac-

tions between ions by only assigning, for any given pair of ions separated by distance

r, a pair-wise interaction that decays exponentially due to the screening by all neigh-

boring ions surrounding the pair. Moreover, the treatment is claimed to be valid

only at large distances between ions (i.e. greater than κ−1) [283], which generally

holds true when the salt concentration of the solution is low. Though the theory is

at best an approximation of the distribution of the electric potential in solution, pre-

dictions made by Debye-Hückel theory have been shown to be rather accurate under

physiological conditions, where the electrolyte strength is about 0.1 M [284], and so

this model is used in our work. However, it should be noted that, while it produces

good results for solutions of monovalent ions, the Debye-Hückel approximation and
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Poisson-Boltzmann theory in general fails to reproduce some of the important fea-

tures associated with multivalent ion solutions [282]. Thus, for solutions of higher

ionic strengths, where Debye-Hückel theory can no longer accurately predict elec-

trolyte behavior, alternative electrostatic models are considered instead, such as the

Pitzer equations [285], the Davies equation [286], or specific ion interaction theory

[287]. For more discussions on the theory of electrostatics applied to biological sys-

tems, see [281–283, 288].
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CHAPTER 3

COMPUTATIONAL METHODS

3.1 In Silico Representation

The DNA chain was modeled as a chain of adjacent soft beads, each with radius a =

1.59 nm. This value has been used in earlier studies to reproduce the hydrodynamic

properties of DNA [289], and corresponds to approximately 9.35 base pairs. The

interaction forces of this DNA model follow those of Chow and Skolnick [1], which in

turn are based on the model proposed by Jian, Schlick, and Vologodskii [290, 291],

hereafter referred to as the JSV model. It should be noted that many alternative

coarse-grained models of DNA exist, such as the elastic rod model by Swigon et al.

[292], the mesoscale model by Knotts et al. [293], and the bead-rod model by Wang

and Gao [294], which employs inextensible rods. However, the JSV model was chosen

due to its suitability for simulating and roughly quantifying the diffusive motions of

a large DNA strand (> 100 kbp) by coarse-graining out the strand into a string of

individual beads whose displacements over time can be easily measured. The forces

of the JSV model are discussed in detail in Section 3.2.3 onwards.

Proteins were also modeled as soft beads, but without charge nor affinity to any

specific DNA sites (i.e. DNA beads). For studies of the DNA-protein system, all

protein beads in the given system are assigned the same radius, and the number of

beads introduced to the system was set such that the protein volume fraction was fixed

to a physiological protein volume fraction of 6% (see Section 2.1.3 for the estimation

of this value).
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3.1.1 Nondimensional Units

All simulations were performed using nondimensional units, with a nondimensional

time step size of 10−4, or 1.64 ps. Particle positions were recorded for analysis every

1000 time steps, which corresponds to 0.1 units of time (1.64 ns). In the context of

this work, one unit of time is defined to be the characteristic time interval required

for a particle in a monodisperse solution to escape its cage of immediate neighbors,

i.e. transition from short-time to long-time diffusion.

MSD values are measured and reported in units of a2, where a is the radius of

a DNA bead. Likewise, diffusion constants are reported in units of D0, where D0 is

defined to be the infinite-dilution diffusion constant for a particle of the same size as

a DNA bead as given by the Stokes-Einstein relation:

D0 =
kBT

6πηa
≈ 154 µm2/s (3.1)

where η is the viscosity of water under physiological conditions. Consequently, time

is measured in units of a2/D0, which corresponds to 16.4 ns.

3.2 Simulation Technical Details

We developed a custom Brownian dynamics simulation package called BDT to run the

simulations in this study. The following subsections describe the theory and technical

details underlying the implementation of BDT.

3.2.1 Periodic Boundary Conditions

To approximate a large DNA system in the bulk range without needing to consider

DNA-solvent interface effects, periodic boundary conditions (PBCs) were placed on

the system. PBCs are a common technique in particle simulations, in which systems

approximated by PBCs consist of an infinite number of unit cells, one of which is
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the original simulation box being maintained by the simulation program, and the

rest are copies called images [228, 295]. Properties of the original simulation box

are recorded using the minimum-image convention, in which each individual particle

in the simulation interacts with the closest image of the remaining particles in the

system. The space made by a PBC is topologically a torus: as particles pass through

one face of the simulation box, they (or rather, their image) re-enter through the

opposite face.

While PBCs can be implemented by “folding back” the positions of the particles

into the box when they leave, BDT does not perform positional fold-backs; instead,

particles are allowed to exit the box volume, but interactions will be computed with

the nearest images. The choice of PBC implementation has no effect on the course of

the simulation beyond numerical precision errors; however, diffusion properties of the

system such as mean displacements and diffusion lengths would become impossible to

calculate if particles experienced unphysical positional displacements over time due

to PBC fold-backs.

3.2.2 Neighbor Lists

In particle simulations, pair interaction energies between particles i and j are usually

modeled in the following form [295]:

Uij ∝ r−n
ij (3.2)

where rij is the inter-particle distance. These interactions can be classified as either

short-ranged (n > 1) or long-ranged (n ≤ 1). While the exact computation of

pair interactions between particles is an O(N2) operation, it is possible to reduce

the runtime complexity for computing short-ranged interactions by leveraging the

observation that short-range interactions decay quickly, and skipping the calculation

of pair interactions altogether for all particles j greater than a certain distance ri,cutoff
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from particle i.

To achieve this, neighbor lists (also known as Verlet lists) are used to filter out

pairs of particles down to only those that are within a certain cutoff radius of each

other. Neighbor lists can be naïvely built by periodically checking all possible pairs

of particles, which is an O(N2) procedure. However, this routine can be optimized

into an O(N) algorithm using acceleration data structures. The accelerated neighbor

list algorithm implemented in BDT is known as the cell-list-accelerated neighbor list

method [228, 296, 297]. This method first spatially sorts particles into spatial bins,

called cells, that are sized by the largest cutoff radius of all pair potentials in the

system (Algorithm 2). To find neighbors, each particle then needs to search only its

cell and the 26 surrounding cells, as opposed to the entire simulation domain (Figure

3.1). Since the number of particles per cell is roughly constant and particle binning is

an O(N) operation, neighbor search using cell lists is effectively an O(N) operation.

Figure 3.1: Neighbor search using cell lists in 2-dimensional space. Instead of searching the entire
simulation domain, each particle needs to search only its resident cell and the surrounding cells
(orange) for neighbors to add to its neighbor list.

A small buffer radius rbuff is typically added to the cutoff radius when searching

for neighbor particles, so that the neighbor list can be computed less frequently. Doing
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so will require the neighbor list to be rebuilt only when a particle diffuses over rbuff/2

distance, as opposed to after every time step in the simulation. However, increasing

rbuff also increases the number of particles that are included in the neighbor list,

which slows down the evaluation of pair interactions, and so rbuff must be chosen

judiciously.

While the cell-list-accelerated neighbor list method is very efficient for systems

with nearly monodisperse cutoffs, such as in the case of this study, the performance

will degrade for systems with large cutoff radius asymmetries due to increased number

of particles per cell and increased search volume. Studies have shown that the cell-

list-accelerated neighbor list method works best when the asymmetry between the

largest and smallest cutoff radius is less than a 2:1 ratio [296]. Neighbor list methods

based on alternative acceleration data structures are found to be more suitable for

these scenarios; these are discussed in detail in [296]. In addition, multiple neighbor

lists can be built for calculating different types of pair interactions, each with its own

appropriate rcutoff and acceleration data structure. Building multiple neighbor lists is

useful when there is a significant disparity in the pairwise cutoffs defined by different

pair potentials, since each neighbor list will be built based on the exact rcutoff of the

corresponding pair potential, and pair interaction calculations for a particle i will not

involve particles j that lie outside ri,cutoff . This technique improves the performance

of the pair interaction calculations, though at the expense of duplicate computations.

3.2.3 Steric Interactions

BD simulations [246] without hydrodynamic interactions (HI) model steric interac-

tions between particles using the free-draining (FD) approximation, in which particles
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Algorithm 2 Optimized neighbor list construction algorithm
1: {Assign particles into their appropriate cells}
2: for all particles i in the system do
3: Calculate the index j of the cell that particle i currently resides in;
4: Append i into cell j’s particle list;
5: end for
6: {Apply Verlet procedure to build neighbor list}
7: for all particles i in the system do
8: l← cell number of particle i;
9: for all cells m among cell l and neighbors of l do

10: for all particles j in cell m do
11: sij ← Compute the absolute distance between i and j;
12: rij ← Apply PBC to sij to obtain the minimum image distance;
13: if rij < ri,cutoff + rbuff then
14: Append j into the neighbor list of particle i;
15: end if
16: end for
17: end for
18: end for

experience repulsive forces only when they overlap:

Usteric =


1
2
ks(rij − (ai + aj))

2, if rij < ai + aj

0, otherwise
(3.3)

where rij is the distance between the centers of the two particles, ai and aj are the radii

of the two particles, and ks is the steric force constant. This form can be normalized

by dividing by the average of the particle radii:

Usteric =


1
2
ks(r

′ − 2)2, if r′ < 2

0, otherwise
(3.4)

where r′ = 2rij/(ai + aj) is the normalized distance between two particles. In this

work, a value of ks = 100kBT/a
2 was used, to match the DNA stretching force

constant used (to be discussed in Section 3.2.4). Steric interactions between DNA

beads that are adjacent and next-adjacent to each other were not computed, since
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their interaction forces are already accounted for by the stretch and bend potentials,

respectively (to be discussed in 3.2.4 and 3.2.5).

Because steric interactions are non-existent when the inter-bead distance is greater

than 2a, only a tiny subset of the N − 1 other DNA beads needs to be accounted for

when computing the forces acting on a single bead. Thus, BDT maintains a neighbor

list with a cutoff of 2a′ + ϵ, where a′ is the radius of the largest particle in the

system (DNA bead or protein) and ϵ is a small value relative to a′. Details of BDT’s

neighbor list implementation can be found in Section 3.2.2. BDT’s use of neighbor lists

not only reduced the steric forces computation routine from an O(N2) to effectively

O(N) operation, but also enabled the parallelization of the steric forces computation

routine overall (Algorithm 3).

Algorithm 3 Parallel steric forces computation algorithm
1: {Run iterations of the outer for-loop in parallel}
2: for i = 1 to N do
3: for all neighbors j of particle i do
4: δ ← Compute the steric force between i and j;
5: fi ← fi + δ;
6: end for
7: end for

3.2.4 Stretch Interactions

The JSV model of DNA defines the stretch potential holding adjacent DNA beads

together to form a chain to be:

Ustretch =
h

2
(rij − 2a)2 (3.5)

where rij is the center-to-center distance between the adjacent beads i and j, and a is

the DNA bead radius. This form implies that the equilibrium stretch distance is the

center-to-center distance between the beads at the point where they exactly touch.

The stretch potential corresponds to the following force function that describes each
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inter-bead stretch:

Fstretch = −dUstretch

drij
= −h(rij − 2a) (3.6)

where h is the force constant that has been experimentally determined [290] to be

h = 100kBT/a
2.

In BDT’s code, stretches are stored as structs holding the indices of the adjacent

beads participating in the stretch and the stretch force constant. Computing the total

contribution of the stretch forces to the overall forces is a trivial routine that can be

optimized by parallelization. However, with the exception of those situated at the

ends of the chain, all beads in the DNA chain participate in exactly two stretch inter-

actions, and so care must be taken to avoid race conditions when updating the force

values on each participating bead in parallel. If the stretch interactions are indexed

in the order that they appear along the chain, then the topological structure of the

chain lends itself to the straightforward algorithm implemented in BDT, Algorithm 4.

Algorithm 4 Parallel stretch forces computation algorithm
1: k ← 2; ▷ Set the number of rounds of parallelized operations
2: {Assume a sequential numbering of the stretch interactions}
3: for j = 0 to k − 1 do
4: {Run iterations of the inner for-loop in parallel}
5: for all stretch interactions i where i mod k = j do
6: Compute and update forces for particles participating in stretch i;
7: end for
8: end for

Under Algorithm 4, all even-indexed stretch interactions are computed together in

parallel in the first round, followed by odd-indexed stretch interactions in the second

round (Figure 3.2). This algorithm completely avoids data race conditions, as force

values associated with each DNA bead are accessed and updated only once during

each parallelization round (line 6 of Algorithm 4).

The general problem of finding the most optimal scheduling for the stretch forces
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computation routine, can be stated as a problem of finding the minimum number of

buckets k that the stretch interactions can be bucketed into, such that no two stretch

interactions in each bucket set share a common participant bead. This is isomorphic

to the Edge Coloring Problem in graph theory. While finding the optimal solution

to this problem is known to be NP-hard, it has been shown that the edges of every

simple undirected graph with at most ∆ edges per vertex can be colored with at most

∆+1 colors. This is known as Vizing’s Theorem [298]. Algorithm 4’s construction is

based on this theorem, and it can be clearly seen that in the case of the DNA chain

model, it is the most optimal solution to the problem.

Figure 3.2: Computing stretch potentials in parallel using Algorithm 4. Stretches 1 and 3 are
processed in parallel in the first round (blue) followed by 2 and 4 in parallel (orange).

3.2.5 Bend Interactions

In addition to the stretch potential, the JSV model also defines the bend potential

between three adjacent DNA beads to model the elastic properties of a polymer. The

bend potential is given as:

Ubend =
g

2
θ2ijk (3.7)

where θijk is the angle between the three beads. The bend potential uses a rigidity

constant value of g = 14.8kBT , which was selected using long simulations in infinitely

dilute conditions to match the persistence length of DNA (50 nm) [290].

Similar to stretch interactions, bends in BDT are stored as structs holding the

indices of the participating beads and the bend force constant. Likewise, it is possible

to compute the total contribution of the bend forces to the overall forces in parallel,

and Algorithm 4 can be leveraged for this, simply by setting k = 3 in line 1 of the
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algorithm (Figure 3.3).

Figure 3.3: Computing bend potentials in parallel using Algorithm 4. Bends 1 and 4 are processed
in parallel in the first round (blue), followed by 2 and 5 in parallel (orange), followed by 3 and 6 in
parallel (cyan).

3.2.6 Debye-Hückel Interactions

Electrostatic interactions between DNA beads were modeled using the Debye-Hückel

(DH) potential for an infinitely-thin charged cylinder [291, 299]. DNA beads are

negatively charged, and each bead in the chain is assigned an effective point charge

q based on the charge of a charged cylinder segment of equivalent size:

q = 2aν (3.8)

where a is the radius of the DNA bead and ν is the effective linear charge density of

the model DNA. ν corresponds to the best approximation for the Poisson-Boltzmann

solution for DNA modeled as a charged cylinder, and extensive details on the method

for deriving values for ν can be found in [300, 301]. Both literature and regression-

estimated values for ν at different ion concentrations are shown in Table 4.1.

Applying Eq. 2.54, the DH potential experienced by a bead i of the DNA chain

is then:

UDH =
∑
j>i+1

q2

εr

exp(−κrij)
rij

(3.9)

where εr is the relative permittivity of the medium, and κ is the inverse of the Debye

screening length. A symmetric monovalent electrolyte (e.g. Na+Cl−) solution is
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assumed, in which the concentration of electrolyte pairs (i.e. the salt concentration)

is equal the separate concentrations of the cations and anions. Thus, applying Eq. 2.49

gives:

κ2 = 4πε−1
r eee2β(c0+z

2
+ + c0−z

2
−)

= 4πε−1
r eee2β(2cs)

(3.10)

or equivalently:

λD = κ−1 =

√
εrkBT

8πeee2cs
(3.11)

where cs is the molar salt concentration of the solution. In this work, the systems

modeled an aqueous medium under room temperature conditions (εr = 80, T = 298

K). The Debye screening lengths corresponding to the salt concentrations used in this

work and following this model can be found in Table 3.1.

Table 3.1: Debye screening lengths for symmetric monovalent electrolytes in a monodisperse solution
at different salt concentrations.

Salt Debye screening
Concentration (M) Length λD (nm)

0.0001 30.7
0.001 9.71
0.01 3.07
0.05 1.37
0.1 0.97
0.2 0.69
0.3 0.56
0.4 0.49
0.5 0.43
1.0 0.31
2.0 0.22

Like steric interactions, DH interactions are short-ranged, and so their calculations

can be accelerated through the use of neighbor lists. However, since DH interactions

do not simply truncate for rij > 2a as steric interactions (as defined in Eq. 3.4) do, an
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appropriate cutoff must be chosen for building a neighbor list suitable for calculating

DH interactions (discussed in Section 3.4). In BDT, a single common neighbor list was

used for calculating both steric and DH interactions as opposed to separate neighbor

lists, as no significant computational time difference was observed between computing

steric and DH interactions using a common list versus two separate neighbor lists.

Similar to the case of steric interactions, DH interactions were not computed between

DNA beads that were adjacent or next-adjacent to each other, since their interactions

are already accounted for by the bend and stretch potentials.

3.3 Preparation of the Initial DNA(-Protein) System

3.3.1 Hilbert Curve Construction of the DNA Chain

To construct an initial DNA configuration for our studies, DNA beads were arranged

along a Hilbert curve [302] with a spacing of 2a between the centers of each bead

along the chain. The straight segments of the Hilbert curve were set to be at least

100 nm (twice the persistence length of DNA), which allows the DNA to start in a

relaxed state. The chain was grown to 16,352 beads (approximately 152,891 base

pairs) so that it would completely fill up the volume of a cube while having at least

the length of 6,912 beads used for the model in [1] (Figure 3.4a). Details of the theory

behind Hilbert curves and algorithm for generating Hilbert curves can be found in

[303–305], and an example code implementation for 3D Hilbert curve generation can

be found in [306]. Unlike the DNA model prepared in [1], the DNA chain prepared

in this work was left to be an un-closed loop in order to preserve the fractal property

of the chain generated by the Hilbert algorithm.

3.3.2 DNA Chain Compression

The size of the simulation box was chosen to approximate a physiological DNA vol-

ume fraction of 13% in order to be consistent with the study methods laid out in
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[1]. A compression process was applied to reduce the box volume from 718.683 nm3

to 128.43 nm3 so that the desired volume fraction of 13% is reached. Volume reduc-

tions were proportional to the remaining volume difference between the current and

target box volumes, and equilibration steps were added in between (Algorithm 5).

The process naturally compacts and coils the DNA depending on the stretching and

rigidity parameters of the DNA model, and its effect on the chain’s internal struc-

ture and topology can be observed in Figure 3.4. Since compression is not an actual

physical process, DH interactions were ignored during compression as an implemen-

tation optimization. A trajectory of the first 600 ns of the compression process for a

DNA-protein system is shown in Movie S1.

Algorithm 5 DNA(-protein) system compression algorithm
1: nsteps ← 1000;
2: vc ← Current box volume;
3: vt ← Target simulation box volume that results in DNA volume fraction of 13%;
4: while vc > vt do
5: {Equilibrate the system}
6: for i = 1 to nsteps do
7: {Advance single time step in BD simulation}
8: end for
9: {Shrink box volume by 1% of the difference between current and target vol-

umes}
10: ∆v ← 0.01 · (vc − vt);
11: vc ← vc −∆v;
12: end while

3.3.3 Addition of Proteins

For systems containing both DNA and protein, protein beads were inserted into the

system at pseudorandom positions after the generation of the DNA chain but before

the compression process (Figure 3.4a). The protein beads were placed such that

they did not overlap with neighboring protein and DNA beads. For a given system,

the radius was set to be uniform across all constituent proteins, and the number of

proteins was pre-computed and assigned such that the target protein volume fraction
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of 6% is reached along with the desired DNA protein fraction after the compression

process.

3.4 Estimation of Debye-Hückel Interaction Cutoffs

A test was created to estimate appropriate cutoffs (rcutoff ) for building neighbor

suitable for use with computing DH interactions. Using the magnitude of the inter-

particle forces as a measurement quantity, we define ζ(r) as the proportion of contri-

bution by DH interactions to the overall forces felt by the system:

ζ(r) =

∑
N

∥∥∥f⃗DH(r)
∥∥∥∑

N

∥∥∥f⃗steric + f⃗stretch + f⃗bend + f⃗DH(r)
∥∥∥ (3.12)

where N is the number of particles in the system, and f⃗DH(r) is the total DH inter-

action acting on a particle from its neighbors that are within distance r from it. The

test finds an appropriate cutoff length by searching for the minimum value of r such

that any marginal increase in r will result in a less than 0.01% increase in ζ(r):

min r

s.t.
∥∥ζ(r +∆r)− ζ(r)

∥∥ < 0.0001

(3.13)

where ∆r is a small value relative to a (our work used ∆r = 0.1a). To ensure

safety against possible numerical errors, the test was set to terminate the search not

at the exact minimum value r′ that satisfied this condition, but at r′ + 3∆r. This

test was performed using the prepared initial DNA configuration to obtain suitable

rcutoff values for calculating DH interactions in systems at different salt concentrations

(Table 4.2).

During the study, alternative schemes were tried as the test condition for searching

the appropriate cutoff, shown in Eqs. 3.14 and 3.14 for completeness. These schemes

have poor physical and mathematical basis; moreover, the cutoff values produced by
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these schemes were often smaller than either the Debye lengths corresponding to the

salt concentration level of the system and/or the cutoff values produced by the scheme

in Eq. 3.13, suggesting that they may not be sufficient enough to accurately reflect

DH interactions to within acceptable numerical error margin.

∥f⃗DH(r +∆r)∥ − ∥f⃗DH(r)∥

∥f⃗steric∥+ ∥f⃗stretch∥+ ∥f⃗bend∥+ ∥f⃗DH(r)∥
< 0.0001 (3.14)

∥f⃗DH(r +∆r)∥ − ∥f⃗DH(r)∥

∥f⃗steric + f⃗stretch + f⃗bend∥+ ∥f⃗DH(r)∥
< 0.0001 (3.15)
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(a) (b)

(c) (d)

Figure 3.4: Preparation of the DNA(-protein) system, starting with generation of the DNA chain as
a Hilbert curve (a), followed by compression (b), (c) into its final form (d). Figures were generated
by VMD [307].
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CHAPTER 4

RESULTS

4.1 Estimation of the Effective DNA Linear Charge Density

While the linear charge density of DNA ν can be implicitly solved by numerical

integration methods as hinted in Section 3.2.6, a regression model was applied in

this study instead to estimate ν. A log-log graph of ν against salt concentration was

plotted using existing literature data, from which an exponential relationship between

the two variables was observed (Figure 4.1). Accordingly, we fitted a linear regression

model between log log ν and log cs using the least squares approach, and built a model

where the sum of the squared residuals was 0.0045. The small residual provided a

level of confidence to the use of this regression model for estimating ν for the set of

salt concentrations used in this study. In this work, existing literature values were

used where possible, and regression-estimated values of ν were deferred to only where

needed (Table 4.1).
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Figure 4.1: Log-log plot of reported DNA linear charge density values (ν) vs. salt concentration.
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Table 4.1: Reported and extrapolated effective linear charge densities of DNA modeled under the
Debye-Hückel potential at different salt concentrations. eee is the charge of an electron.

Salt Effective Charge
Concentration (M) Density (eee/Å)

0.0001 0.147a

0.001 0.168a

0.002 0.178
0.005 0.208
0.01 0.243
0.02 0.296
0.04 0.382
0.05 0.415a

0.1 0.608
0.2 0.994
0.3 1.517a

0.4 2.078a

0.5 2.62b

1.0 7.88
2.0 30.47a

a Value is based on estimation using regression model
against existing reported values.

b [300] reports 2.62 while [301] reports 2.59.

4.2 Effect of Salt Concentrations on DNA Internal Motions

To evaluate the effects of salt concentration on DNA internal motions, we performed

BD simulations with the prepared bulk DNA-only system for a range of salt con-

centration values from 10−4 M to 2.0 M, as well as without Debye-Hückel potential

(DH) interactions enabled (effectively corresponding to salt concentration cs = ∞).

Unless otherwise stated, all simulations were run for 2,000 units of time or 32.8 µs.

Mean square displacement (MSD) analysis was performed on the output trajectories,

and the MSD curves for the simulation trajectories at the different concentrations

are overlaid and plotted in Figure 4.2. The anomalous diffusion regime was ignored,

and the diffusion constants were measured only from a time interval of 80 (1.3 µs)

onwards, where nearly linear behavior of the MSD curves was observed. The cutoff

lengths used for building neighbor lists and estimated diffusion constants for DNA at
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different salt concentrations are reported in Table 4.2. In addition, a semilog plot of

estimated diffusion constants against salt concentration is prepared in Figure 4.3.

Our coarse-grained model of the DNA was able to reproduce the simulation results

of earlier studies. In particular, the estimated diffusion constant for DNA under 0.01

M conditions (D ≈ 0.0094D0) closely matches the number reported by Chow and

Skolnick (D ≈ 0.0109D0) [1], which suggests a level of robustness in our results,

given that our methods modeled DNA length and configurations that are substantially

different from those presented in [1].

To illustrate the effect of electrostatic interactions on the internal motions of the

model chain, Figure 4.3 shows a trendline plot of the computed diffusion constants

over the range of salt concentrations used in this study. The diffusion activity of DNA

as a function of salt concentration follows an S-curve pattern, with a lower limit of

≈ 0.009D0 (≈ 1.45 µm2/s) when the concentration is 10−4 M, and an upper limit

of ≈ 0.021D0 (≈ 3.16 µm2/s). This observation can be explained by Debye-Hückel

theory: at extremely high salt concentrations, electrostatic interactions between the

negatively charged phosphate groups along the DNA backbone are screened and thus

internal motions are limited only by the self-crowding of DNA. At extremely low con-

centrations, there is little to no screening and the tapering of the diffusion constant is

due to the electrostatic repulsion imposed by the DNA chain onto itself. Interestingly,

the most rapid changes in DNA internal motions occur near the physiological salt con-

centration range of 0.1 M, the implications of which will be discussed in Section 5.1.

We conclude that the internal motions of DNA in the nucleoid can be significantly

affected by differences in the salt concentration of its environment, and that this

change in mobility may in turn influence the ability of DBPs such as LacI to diffuse

around DNA strands. A trajectory of the DNA-only system under physiological salt

concentration 0.1 M is shown in Movie S2, which covers a simulation interval of 600

ns.
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Table 4.2: Neighbor list cutoffs used and estimated diffusion constants of DNA (beads) for the
DNA-only system at different salt concentrations.

Salt Cutoff Estimated DNA (Bead)
Concentration (M) (a) Diffusion Constant (D0)

0.0001 11.5 0.011157
0.001 9.4 0.009987
0.01 7.4 0.009445
0.05 5.5 0.010776
0.1 4.9 0.012781
0.2 4.3 0.015299
0.3 4.1 0.016402
0.4 3.9 0.016928
0.5 3.7 0.017645
1.0 3.2 0.018975
2.0 2.8 0.019798

∞ (no DH) - 0.020522

4.3 Effect of Protein Size on DNA Internal Motions and Protein Diffusion

in the Nucleoid

Next, we evaluate the effect of protein size on both DNA and protein diffusive mo-

tions in the nucleoid environment. We carried out a similar simulation protocol for

a set of DNA-protein systems at a physiological salt concentration of 0.1 M, where

each system contained proteins with an assigned common radius that was unique for

that system. The number of beads introduced into each system was set such that

the protein volume fraction remained fixed to 6%. The MSD curves for the simula-

tion trajectories at the different protein radii are overlaid and plotted in Figure 4.5.

Figure 4.6 shows a trendline plot of the computed diffusion constants for both DNA

(beads) and proteins over the range of systems where the radii of the constituent

proteins spanned from the hydrodynamic radius of DNA beads to that of a sphere

with 4 times the hydrodynamic volume of a protein with similar molecular weight as

LacI.

The diffusion values estimated from this study for a protein with a size compara-
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Figure 4.2: MSD curves of DNA (beads) for BD simulation trajectories of the DNA-only system at
different salt concentrations.

ble to the effective hydrodynamic radius of LacI were slightly different from those in

[1], which reported a diffusion value of 0.025D0 (≈ 3.85 µm2/s) that is close to the ex-

perimental values observed in vivo (≈ 3 µm2/s) [170]; our computer studies reported

a value of 0.0504D0 (≈ 7.76 µm2/s) (Table 4). There may be two reasons for the

difference in protein diffusion constants. The first is the difference in salt concentra-

tions of the prepared systems. Since we used a physiological salt concentration of 0.1

M instead of the 0.01 M specified in [1], the increased effective electrostatic screening

will allow the DNA chain to diffuse faster, and since DNA internal motions have been

shown to increase protein motions, it may not be unexpected to consequently observe

an increase in protein diffusion constants. The second is that our simulation studies

did not incorporate hydrodynamic interactions (HI), which have been demonstrated

in earlier studies to reduce DBP motions by nearly a factor of 2 [1]. However, since

the inclusion of HI in the aforementioned study did not appear to significantly reduce

DNA diffusive motions, we do not anticipate the addition of HI to significantly alter

the diffusion trends found in the results, which we describe next.
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Figure 4.3: Estimated diffusion constants (mean ±1 standard deviation) of the DNA beads in the
DNA-only system as a function of salt concentration, based on data from Table 4.2.

The diffusion activity of the proteins as a function of protein radii (for fixed

volume fraction) follows an S-curve pattern (Figure 4.6). When the proteins are

much larger than the average distance between DNA strands, they become effectively

trapped by the mesh of strands, and their diffusion constants correspond with that of

the relatively immobile DNA. When the proteins are smaller than the average inter-

strand spacing, their diffusion increases to a limit, and it may be the case that their

motions become increasingly governed by the macromolecular volume fraction. On

the other hand, DNA internal motions did not appear to be affected by differences in

the radii of the protein embedded in the DNA matrix. It may be that in the case of

tightly-packed bulk DNA that is used in our studies, the effect of steric crowding from

proteins on DNA internal motions is insignificant compared to that of DNA internal

forces (as long as the volume fraction of proteins remains fixed). A trajectory of the

DNA-protein system under 0.1 M conditions with proteins of 4.4 nm radii is shown

in Movie S3, which covers a simulation interval of 600 ns.
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(a) (b)
Figure 4.4: Full (a) and close-up (b) views of the DNA-only system under simulation. The thickness
of the DNA strand is reduced for visualization purposes, and so the inter-strand spacing appears to
be larger than that in the actual system under study.

4.4 Properties of the DNA Model

It is well established that the structure of DNA plays an important role in affecting the

biological activities of the cell (see Sections 2.1.1, 2.1.4). Thus, it is imperative that

the structure and conformation of the DNA model used in this study be quantitatively

discussed here. Since this study is focused on the internal motions of DNA as bulk

polymer, as opposed to small linear DNA strands or plasmids, our DNA model was

prepared from a Hilbert curve conformation, as elongated fractal globules have been

hypothesized [94] to be able to replicate the experimental observation that DNA

genomic distance to a central loci in E. coli is linearly related to spatial distance [93].

This is in contrast to past studies [205], where models of E. coli DNA under crowded

conditions use a conformation derived from a closed self-avoiding walk.

The estimated average center-to-center spacing between the DNA beads produced

by this DNA model is approximately 6.381 nm, leaving 6.381 − (1.59 · 2) = 3.201

nm of surface-to-surface spacing. The center-to-center spacing nearly matches the
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Table 4.3: Estimated diffusion constants for both DNA (beads) and proteins in the DNA-protein
system with different-sized proteins, subject to a constant 6% protein volume fraction.

Protein Number of Estimated DNA Estimated Protein
Radius (nm) Proteins (Bead) Diffusion Diffusion

Constant (D0) Constant (D0)
1.272 14397 0.0151 0.3557
1.431 10112 0.0153 0.3604
1.738 5644 0.0149 0.3545
2.190a 2821 0.0138 0.3187
2.507 1881 0.0139 0.2790
2.738 1444 0.0141 0.2496
3.285 836 0.0138 0.1638
3.492 696 0.0169 0.1339
3.979 471 0.0132 0.0768
4.400b 348 0.0151 0.0504
4.718 283 0.0131 0.0360
5.037 232 0.0144 0.0269
5.544 174 0.0139 0.0171
6.985 87 0.0141 0.0093

a 2.190 nm is comparable to the hydrodynamic radius of proteins with similar weight as the
nucleoid-associated protein HU [6].

b 4.400 nm is comparable to the hydrodynamic radius of proteins with similar weight as lac re-
pressor (LacI) [6].

experimentally-determined ≈ 6.4 nm value (Section 2.1.3), while the surface-to-

surface spacing of this model is smaller than the corresponding experimental value by

approximately 1.2 nm due to the large Stokes radius of the DNA beads in the model.

This difference is not expected to affect the results of this study, since the modeled

beads are soft beads with the steric interactions tuned to match the hydrodynamic

properties of DNA [289, 290].

To quantify the structure of the DNA chain, we counted the number of interactions

between loci (beads in this case) along the chain and effectively estimated the contact

probability between two loci separated by a given sequential distance s. This is

analogous to the measurements obtained by in vitro analysis of spatial organization

of chromatin using chromosome conformation capture-based techniques [308, 309].

The probability values for s were plotted against the chain distance between the
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Figure 4.5: MSD curves of DNA (a) and proteins (b), respectively, for BD simulation trajectories
of the DNA-protein system with different-sized proteins subject to a constant 6% protein volume
fraction.

beads and fitted to the power law s−γ. Unless otherwise stated, the threshold inter-

bead distance, below which two DNA beads are considered to be in contact, was set

to be 4a, where a is the radius of the DNA bead.

A DNA conformation with γ close to 1 is consistent with that of a fractal (crum-

pled) globule, where genetic distance between two loci in the DNA chain correlates

with their 3D spatial distance [88, 310]. For reference, the γ value for eukaryotic

(human) DNA has been determined to be close to 1 [89]. On the other hand, a con-
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(b)
Figure 4.6: Estimated diffusion constants (mean ±1 standard deviation) of the DNA beads (a) and
proteins (b), respectively, in the DNA-protein system as a function of protein size (subject to a
constant 6% protein volume fraction), based on data from Table 4.3.mm

formation with γ value close to 1.5 corresponds to that of an equilibrium globule, in

which there is no correlation between genetic and spatial distances of two DNA loci

(Figure 2.3).

In both of the studies carried out in this work, DNA bead contact probabilities in

the initial prepared DNA configuration (Figure 3.4d) were found to be more consistent

with those of a fractal globule, with a scaling exponent of γ ≈ 1.04 (Figure 4.8a) for

the DNA-only system and γ ≈ 1.085 (Figure 4.9a) for the DNA-protein system with
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(a) (b)
Figure 4.7: Full (a) and close-up (b) views of a DNA-protein system with proteins of 4.4 nm radii
under simulation. The thickness of the DNA strand is reduced for visualization purposes.

proteins having 4.4 nm radii. In contrast, the structure of the DNA model used in

[1] was reported to have a γ value that is closer to 1.5. We note that the DNA

preparation procedure used in [1] substantially differs from those used in this study.

First, the DNA chain in [1] was prepared not as a Hilbert curve (a true fractal), but

as a Peano curve [305, 311] that was afterwards modified to make the chain a closed

loop in order to avoid chain entanglements [87]. In addition, the prepared chain in [1]

was an order of magnitude shorter than the chain prepared in this study, thus lacking

the length to build up to a 3D structure with sufficient levels of self-similarity. It is

likely that the combination of these two factors account for the difference in γ values

of the two generated DNA structures.

For both of the systems studied, the bead contact probabilities yielded similar γ

values even when different threshold values were used for defining two beads to be in

contact (Figure 4.10), suggesting that the prepared DNA model exhibits a sufficiently

deep level of structural self-similarity. Moreover, the γ value for the DNA-only system

measured after 4,000 time units (65.6 µs) of simulation under 0.1 M conditions is

nearly identical to that of the initial DNA configuration, suggesting that the fractal
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Figure 4.8: (a): DNA bead contact frequency (proportional to probability) for the initial config-
uration of the DNA-only system. The solid line corresponds to a power-law scaling exponent of
γ = 1.04. (b): DNA bead contact frequencies for the same system after 2,000 units of simulation
time at 10−4 M (γ ≈ 0.99) and 2.0 M (γ ≈ 1.02) conditions.

structure may be long-lived for at least up to the time ranges explored by our computer

studies (Figure 4.10b). Similar findings were observed in the DNA-protein system

with proteins having 4.4 nm radii (Figure 4.9a). In light of the DNA preparation

choices made in [1], the ability of the model prepared in this study to maintain a

fractal globule for very long time intervals also suggests that, for the simulated time

ranges at least, the formation of knots and other entanglements in an open-ended

chain might not be a strong concern if the structure is sufficiently large and fractal.

In the studies involving the DNA-only system, it was observed that the DNA bead

contact probabilities after simulation do not appear to be affected by differences in

salt concentration levels, i.e. the peaks of the frequency plots and the γ values

were found to be nearly the same (Figure 4.8b), at least for the time scales used in

our studies. In combination with our findings regarding DNA internal motions over

different salt concentration levels, this observation suggest that for bulk DNA, salt

concentration predominantly affects the internal motions of DNA (kinetics), but not

its overall structure (equilibrium).

Similarly, for the range of protein radii used in the studies involving the DNA-

protein system, the DNA contact probabilities did not appear to be affected by size
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Figure 4.9: (a): DNA bead contact frequencies for a DNA-protein system containing proteins with
4.400 nm radii after 0, 2,000, and 3,000 units of simulation time at 0.1 M. The γ values are estimated
to be 1.085, 0.9862, and 0.9720, respectively. (b): DNA bead contact frequencies after 2,000 units of
simulation time for systems containing proteins with 1.272 nm (γ ≈ 0.99) and 6.985 nm (γ ≈ 1.02)
radii.

differences of the proteins that were embedded within its structure (Figure 4.9b),

suggesting that the internal motions of DNA allow it to accommodate proteins flexibly

without losing its fractal structure. However, this study was carried out under a

constant 6% protein volume fraction, and so it may be possible instead that there is

a dependence of DNA contact probabilities on volume fraction.
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Figure 4.10: DNA bead contact frequencies for the DNA-only system after 2,000 and 4,000 units
of simulation time under 0.1 M conditions, using 3.0a (a), 4.0a (b), 6.0a (c), and 8.0a (d) as the
defined threshold for two beads to be considered in contact.

79



CHAPTER 5

DISCUSSION & FUTURE DIRECTIONS

The goal of this study was to evaluate the role of the physicochemical environment

of the nucleoid on DNA internal motions. Specifically, two aspects were chosen as

parameters of study, which are salt concentration and protein size. To begin to

address this goal, we built a coarse-grained model of the DNA as a fractal chain of

beads in systems with and without model proteins, and carried out diffusion studies

through Brownian dynamics simulations with this model. A discussion of our findings

is presented, along with suggestions for next steps in the direction of this research.

5.1 Role of Salt Concentration on DNA Internal Motions

In the first study, we examined the effect of salt concentration on DNA internal mo-

tions, and found that the diffusion constant nearly doubled as the salt concentration

increased from 10−4 to 2.0 M. The most substantial variation in DNA diffusion be-

havior was observed in the 0.1 M to 0.5 M salt concentration range (Figure 4.3),

which suggests that salt concentrations near 0.1 M can regulate DNA internal mo-

tions. This finding may be significant for several reasons. First, existing literature

shows that intracellular concentration of ions in prokaryotes is at least 0.1 M [6, 312],

suggesting that there may be biological significance to this value. Second, studies

involving DNA supercoiling, another property that emerges from bulk DNA, demon-

strate that supercoil formations are highly dependent on the salt concentration of its

environment [135, 313, 314]. In particular, the critical point associated with rapid

collapse of DNA from loose to tight supercoils appears to exist near 0.1 M [125].

While not explicitly modeled in this study, supercoils have been shown to form bub-

bles along the double-stranded DNA due to the torsional tension energy stored [58],
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and in doing so, influence the transcription process and consequently gene regulation

[59]. Though not well understood, it has been previously suggested that these super-

coil formations themselves contribute to the DNA internal motions [313, 315, 316].

Finally, the activity of transcription and other structural proteins that bind DNA,

such as nucleoid-associated protein HU, appears to be active at these salt concentra-

tion levels and promoted in highly negative-supercoiled DNA sites [58, 59, 317, 318].

If these observations are put together, then the role of salt concentration on DNA

internal motions can be hypothesized as follows: at increased salt concentrations, the

negative charges along the DNA backbone phosphates become effectively screened,

which permits greater internal motions as well as closer contacts between the DNA

strands, allowing for tight supercoiling. Tight supercoiling in turn opens up bubbles

along the DNA strand to expose certain sites for interaction with proteins, while the

internal dynamics of bulk DNA transport the proteins across this matrix to these

sites, effectively complementing the promotion of biological activities in the nucleoid,

e.g. transcription or replication. Verification or disproof of this hypothesis by future

work in this area will contribute to our understanding of one of the key biological

processes in the nucleoid, i.e. protein diffusion (see Section 2.1.8).

Since the results of the first study suggest that electrostatic interactions can be

very influential to DNA dynamics in the crowded nucleoid, it may be useful for future

studies to consider an electrostatic model that includes more explicit features than

what is offered by the Debye-Hückel approximation, in order to better capture and

understand the effects of salt on DNA diffusive motions. Namely, the model should

take into account both the identity of the cations in solution as well as their valences,

since both factors have been previously suggested to affect the formation of secondary-

level structures of the DNA such as DNA supercoils (see Section 2.1.5).
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5.2 Role of Protein Size on DNA and Protein Diffusive Motions

In the second study, we examined whether or not a protein’s size had an effect on

either DNA and/or protein diffusive motions in the nucleoid, and found that the rate

of protein diffusion through the matrix decreases as a function of increasing protein

size. One important observation made is that while large proteins are effectively

trapped in the cages formed by the DNA matrix, proteins with diameters smaller

than the average surface-to-surface DNA inter-strand spacing observe increases in

their diffusion constants only to a certain limit, i.e. they do not behave as if the DNA

strands were non-existent. To quantify this behavior, we carried out a simulation

protocol similar to that specified for the DNA-protein studies, but for a protein-only

system. In this short study, the protein volume fraction was kept at a constant 19%,

this value being the sum of the DNA and protein volume fractions used in the DNA-

protein study. For proteins with small radii, the results indicate an up to three-fold

difference in diffusion constants between proteins diffusing inside a matrix of DNA

strands and proteins diffusing in a similar setting where the DNA chain is replaced

by other freely-diffusing proteins (Figure 5.1). Moreover, protein motions in this

scenario appeared to decrease exponentially as the proteins’ sizes are increased. The

time scales of diffusion between the DNA and protein appear to be different enough

that the DNA chain may appear to the proteins as a relatively-fixed mesh blocking

their movements. From an evolutionary biology standpoint, the relatively-fixed cage-

like nature of the DNA matrix may be a reason why DNA-involved biological processes

such as transcription tend to involve complex assemblies of many small proteins at

the site of interest on the DNA as opposed to fewer but larger proteins.

The results of the second study also suggest that DNA internal motions remain

relatively unaffected by the size of the proteins diffusing within it, assuming a constant

protein volume fraction. This observation is likely a result of both the properties of
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the DNA employed, as well as the choice of low protein volume fraction. For tightly-

packed bulk DNA, the diffusive motions of the DNA appear to be dominated primarily

by the steric and bend forces imposed by the DNA model, and unless there is a dense-

enough amount of proteins embedded in the matrix, the effects of steric crowding

imposed by the protein onto DNA relative to those imposed internally by the DNA

model are likely to be minimal at best. Thus, it may be more beneficial instead to

investigate the effects of protein volume fraction on DNA internal motions, if any, as

a follow-up to this work. This would be synonymous to investigating crowding effects

in the nucleoid, though it should be noted that crowding in the nucleoid can be very

different from crowding in the cytoplasm, where the freely diffusing macromolecules

are not blocked by a relatively fixed and dense cage-like polymer, as suggested by the

results of the aforementioned short study of a protein-only system.
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Figure 5.1: Estimated diffusion constants of proteins in a protein-only system as a function of protein
size (subject to a constant 19% protein volume fraction).
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5.3 DNA Model

In both studies, the prepared DNA-only and DNA-protein systems exhibited a ten-

dency to maintain its fractal structure, at least for the microsecond-level time spans

covered by the simulations. Moreover, the fractal property appeared to be maintained

across a range of salt concentrations from 10−4 to 2.0 M, and also did not appear

to be perturbed by the size of the proteins embedded within it, at least for proteins

with radii ranging from 30% to 110% of the average inter-strand spacing distance

(while the protein volume fraction was maintained at 6%). There are two possible

factors behind the ability of this DNA model to maintain its fractal property. The

first is that the model was constructed from a Hilbert curve prior to compression

into its final compact form, and that the compression process was able to preserve

the basic fractal property of the chain the chain’s fractal property. The second is

that the crowded conditions of the prepared system, along with the strong stretch

and bend forces that are parameterized into the model, likely presents an unfavorable

conformational and energy barrier that the DNA chain must overcome in order to

evolve its conformation from that of a fractal globule to equilibrium globule. This

corresponds to a previously-made proposal that the formation and maintenance of

“chromosomal territories” in eukaryotic DNA requires topological constraints [319].

The original theory of the fractal globule model [88] suggested that the lifetime of

a fractal globule is determined by the time t ∼ O(N3) required to thread the ends of

the polymer through the globule, where N is the bead length of the polymer chain.

However, prior simulations have shown that the actual times required for large DNA

globules to converge to the equilibrium globule can actually exceed this asymptotic

bound [94], with estimates suggesting that the process can take over 500 years [52].

This lifetime also depends on the stringency of the topological constraints, which

can be enhanced by the presence of crosslinking proteins or violated by the presence
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of DNA topology-altering DBPs such as DNA topoisomerase II (topo II) [94]. The

proteins modeled in this work, however, do not interact with the DNA chain beyond

sterically clashing against it. In either case, it is probably reasonable to claim that,

for the time scales generally used to study DNA and protein diffusive motions in the

nucleoid, the structure remains sufficiently fractal for the model to be useful.

There are some questions about the DNA model constructed for this work that

remain open. The first question is whether or not chain entanglements will occur

under this open-ended DNA chain model. Though no entanglements have been ob-

served in the simulations carried out, there is no guarantee that this will not happen

given enough simulation time. However, similar to the case of possible degeneration

of the DNA chain into an equilibrium globule, it may be possible that the setup of the

DNA model also makes entanglements and knot formations energetically-prohibitive.

The second question is whether or not the properties observed in the model con-

structed in this work can hold for shorter DNA chains, and if so, what is the lower-

bound length before the chain cannot longer maintain its fractal form for a reasonable

amount of time. The DNA chain in our work was constructed to fill up the volume

of a cube while having at least the length of the model chain from [1] (6,912 beads

long), but if the same properties can hold for a shorter model, then it would justify

the use of a smaller system in future studies to reduce the time required for running

simulations of the DNA chain. All of these questions should be addressed in future

studies in order to refine and provide a better-understood model of DNA for which

to perform future coarse-grained in silico DNA studies against.

Despite the efforts to reproduce a faithful model of in vivo DNA, the model

itself is very rudimentary and fails to answer the most basic questions regarding

DNA and proteins in the nucleoid. These questions include: how is the entropically-

low fractal conformation of DNA achieved in vivo in the first place? Why is the

formation of a fractal globule preferred to an equilibrium globule? What are the
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mechanisms through which the DNA’s fractal conformation is maintained over time?

If the fractal conformation is largely maintained by crosslinking proteins binding

to multiple strands, does their presence effectively slow down overall DNA diffusive

motions? In addition, the model does not contain finer-grained features that can

reproduce secondary structures found in in vivo DNA, such as DNA supercoils, which

have been suggested to contribute to DNA internal motions [315, 316]. In fact, despite

the amount of work on DNA secondary structures and topologies (see Section 2.1.4),

it is still not clear yet how they fit into the current understanding of fractal DNA

globules to provide a coherent description of DNA structure. These questions will

need to be addressed by future work in order to grasp a better picture of the role of

DNA structure and dynamics in biological processes involving the DNA.

5.4 Protein Model

While the results of the second study proved to be helpful for understanding the

effects of protein size on its diffusion through the nucleoid, the soft-bead protein

model used in the study needs several improvements to be able to provide better

insights on the role of proteins in affecting DNA diffusive motions. In particular,

the biggest observed drawback to the current model is its coarse-grained nature,

in which proteins are represented by a single large soft-bead. Though single-bead

approximations have been shown to be useful for analyzing in vivo macromolecular

diffusion in the cytoplasm [6], the model ultimately does not reflect how proteins look

and behave in vivo, and so fails to capture the microscopic details of proteins and

protein-DNA interactions that would affect DNA internal forces. One consequence

of this choice of model is that it is not possible to model proteins with complex

shapes, nor proteins whose topologies constantly change as they diffuse through the

DNA. Though ephemeral, changes in a protein’s shape can be the difference between

being able to diffuse through a gap between the strands and being trapped by the
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cage imposed by the strands, since many DBPs such as LacI have sizes that are

on the same order as the average inter-strand spacing of DNA in the nucleoid. A

straightforward extension to the model to address this would be to fine-grain the

representation of the protein from a single soft-bead to an assembly of smaller soft-

beads held together by stretch and bend interactions. However, the optimal level of

granularity that should be represented in a multi-bead assembly model and the force

parameter values required to reproduce the in vivo behavior of proteins are neither

well-understood nor agreed upon.

Protein electrostatics, whose fine-tuning are essential for protein binding and func-

tion [320], are another aspect of proteins that was not reflected in the protein model

used in our studies. While the first study focused on solvent salt concentrations in

affecting DNA internal motions, the presence of salt will likely have an effect on pro-

tein diffusive motions as well depending on the proteins’ charge distributions. Electro-

static interactions are known to have large and pronounced effects on macromolecules

in the cellular environment, especially under crowded conditions (see Section 2.1.5),

and likewise, the presence of DNA-protein electrostatic interactions will likely affect

DNA diffusive motions. Modeling electrostatics and partial charges in proteins can be

achieved, for example, by leveraging the aforementioned finer-grained representation

of the proteins to assign whole charges to the individual soft-beads that comprise a

protein assembly.

Related to protein electrostatics that was also not considered in the protein model

is the DNA site-specificity of DNA-binding proteins. Even if the bulk DNA in the

nucleoid was assumed to be uniformly accessible for proteins to diffuse through (i.e.

not compacted in certain regions), it is not likely for proteins to be uniformly dispersed

across the matrix, since DBPs in general have binding preferences to certain sequences

and sites along the DNA. This observation suggests that the diffusion constant of a

protein near its preferred binding sequence can be lowered if its affinity to the site is
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strong enough to prevent or delay its diffusive “escape” to another region of the DNA

matrix. Similarly, the presence of a protein bound to a DNA segment will highly

likely impact that segment’s diffusive activity, due to the add-on weight imposed by

the latched protein that effectively deters the mobility of the segment in solution.

These phenomenon are not well understood yet, and so future in silico studies in

this area should at least take DNA site-specificity into account when modeling the

proteins.

5.5 Solvent Model

Our computer studies were performed on a coarse-grained system where the solvent

is implicitly modeled. This solvent model needs to be improved to provide better ac-

curacy in reproducing the in vivo fluid dynamics that both DNA and protein motions

are affected by, since it is well known that the properties of a fluid on the nanometer

scale, which is the scale of observation covered by this work, are different from those

in the bulk [321, 322]. In particular, we did not take into account the HI experienced

by the particles in our coarse-grained model. While earlier simulation studies have

demonstrated that HI, along with crowding, likely dominates in-vivo macromolecular

motion [6], it should be noted that in both the DNA-only and DNA-protein systems

studied, the stretch and bend forces dominate the dynamics of highly compressed

DNA, and so HI would appear to play a larger role in DNA dynamics only if DNA

occupied a much higher volume fraction in the nucleoid (i.e. at least cytoplasm levels

of 20–40%) and the DNA chain was initially set to be in a relaxed un-crumpled state.

On the other hand, HI has been previously shown to reduce the motion of the proteins

embedded in the compacted DNA chain by approximately a factor of 2 [1], confirming

that the effects of HI on freely-diffusing macromolecules cannot be be neglected in

the crowded environment of the nucleoid.

Alternative simulation methodologies are required if HI is to be accounted for in
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future studies. Brownian dynamics with HI according to the McCammon algorithm

[246] is usually the methodology of choice, but the HI in BD is highly simplified

and generally incorporate only isolated body resistance. Stokesian dynamics (SD)

is another option and is known for its rigorous inclusion and accurate handing of

many-body HI, but can be computationally expensive – the classical SD algorithm

requires O(N3) operations [264], though subsequent developments have reduced the

computational complexity of the method down to O(N1.25 logN) [323, 324]. More re-

cently, a hybrid method has been developed to capture the best of both approaches,

in which average hydrodynamic effects computed using a mean field approach are

included into the Brownian dynamics algorithm [325, 326]. This approach, hereafter

referred to as the Mean Field Treatment (MFT) method, has been shown to accu-

rately reproduce equilibrium properties of concentrated protein solutions as well as

the decreased diffusive behavior of proteins caused by the crowding. The speed and

accuracy of MFT would make the method applicable to very large-scale simulations

of crowded solutions, such as the nucleoid in the case of this work.

5.6 Other Considerations

The model of the nucleoid used in our work is ideal and naïve at best even if the

suggested improvements to the DNA, protein, and solvent models were included,

because it does not fully reflect the dynamics of the nucleoid in the living cell.

First, we did not consider a model where the DNA conformations are changing as

they normally do throughout the cell cycle [52]. Because replication and separation

of the duplicate DNA strands requires the structure of DNA to change or break down

significantly to accommodate this event, it is highly likely that an accurate simulation

of the nucleoid as it undergoes such an event will provide us the crucial insights needed

to understand the origins of the DNA’s ability to build and maintain its fractal

property in the first place. Second, we did not consider in our model intranuclear
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proteins that cleave and re-join DNA segments, such as DNA topoisomerase II [327].

While topoisomerases are known to simplify the DNA topology at the strand and

knot level [328], it is not clear how their activities can selectively bring about changes

to the overall topology of large DNA chains [329], and future work with a model

that takes into account DNA cleavages and re-joins will provide better details of the

mechanisms through which DNA structure can form in vivo. Finally, while we have

discussed possible improvements to the DNA model to account for secondary- and

higher-level structures, we have not considered the role of external factors in the in

vivo nucleoid environment that actively bend or block the motions of DNA, such as

the presence of nucleoid-associated protein HU. While biophysical studies involving

the nucleoid have included the treatment of crowder and blocker proteins [188, 197],

they have mostly focused on understanding their effects on facilitated diffusion, and

there have been virtually no concentrated efforts to specifically study the roles and

effects of these proteins on DNA internal motions, if any. Such investigation may

prove to be useful to understanding the flexibility of DNA dynamics in response to

the physicochemical changes of its surrounding environment.

5.7 Software Development & Tooling

The implementation of a custom Brownian dynamics package for the purpose of this

work came with its set of challenges, and one aspect of this project that could be

drastically improved is the software tooling that is available for streamlining the

progress of work.

First, there was an overwhelming need to write custom scripts in MATLAB [330],

often from scratch, for ad hoc trajectory analyses. MATLAB was initially chosen

since it came with a set of mathematical libraries useful for computing bulk statis-

tical values. However, it appears that tools and libraries for trajectory analyses are

already abundant but are generally published for more widely available programming
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language environments such as Python [331]; see [332–334] for examples. While us-

ing these libraries requires that the input trajectories conform to an existing de facto

file format, such as .TRR or .XTC [335], adding support into BDT for writing out to

these formats is almost certain to be worth the investment, since existing molecular

dynamics trajectory analysis tools like MDTraj [336] can subsequently be leveraged

to perform both standard and ad hoc analyses, such as computing the MSD values

over a range of time values or selecting certain trajectory frames to compute a specific

system property, respectively.

Second, the agility of software development was much lower than desired as a

result of the choice of implementing BDT in C++. While C++ is a high performance

language that is able to compile down into very optimized programs, which is nec-

essary for running simulations, the development productivity and maintenance costs

associated with using C++ suffers from the lack of utility libraries, lack of in-language

debugging facilities, build system non-portability across different computer platforms

and compilers, and the absence of a package system for the language. Consequently,

monumental effort is required for common development tasks such as adding new

code, refactoring code, or importing an external library. Over the last few years,

however, the Rust programming language [337] has gained attention as a promising

programming language that advertises many of the features and benefits traditionally

claimed only by C++, such as speed as demanded by BDT’s use case, while offering

features not offered by C++ such as compiler-guaranteed memory safety and thread

safety. More importantly, Rust comes with a strong tooling ecosystem around the

language, such as its build and package systems, thus making the case to be a viable

and ergonomic alternative to C++ for the development of high performance simula-

tion software. Migration of BDT to Rust appears to be a promising direction for the

evolution of the software package, and in fact, work has already begun on a re-write

of BDT in Rust to investigate this direction.
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