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SUMMARY

Machine learning is a robust process by which a computer can discover characteristics

of underlying data that enable it to create a model for making future predictions or classi-

fications from new data. Designing machine learning pipelines, unfortunately, is often as

much an art as it is a science, requiring pairing of feature construction, feature selection,

and learning methods, all with their own sets of parameters. No general machine learning

pipeline solution exists; each dataset has unique characteristics that make a particular set

of methods and parameters better suited to solving the problem than others.

To respond to the challenge of machine learning pipeline design, the field of automated

machine learning (autoML) has recently emerged. AutoML seeks to automate the often

arduous work of a data scientist, so they can focus on the underlying meanings of the data

and spend less time on the tedium of pipeline design and tuning.

This dissertation adapts and applies genetic programming to the newly emergent field

of automated machine learning. Genetic programming enables the artificial evolution of

an algorithm through a nearly infinite search space that otherwise requires a randomized

search.

This dissertation shows that through the process of genetic programming, it is possible

to produce machine learning pipelines, and the evolved pipelines can outperform those

created by human researchers.

The original contributions of this dissertation are:

1. A unique data representation for efficient genome construction that increases the

likelihood of successful evaluations.

2. A system of tiered evaluations that greatly accelerates the speed of the evolutionary

process by reducing the number of genomes that must train and evaluate against a

full dataset.
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3. A methodology for supporting high-level building blocks, such as machine learn-

ing methods and signal processing functions, that enables genetic programming to

compete with and evolve from human-created algorithms.

4. The Evolutionary Multi-objective Algorithm Design Engine (EMADE), an open-

source framework for the automated creation of algorithms that automatically solves

feature-domain, time-domain, and image-domain problems with better performance

than algorithms created by the hands of experts.

5. Demonstration of EMADE’s capabilities on different types of open machine learning

problems, including:

(a) The adult dataset problem, a feature classification challenge.

(b) Dog behavior classification from accelerometer data, a time-domain classifica-

tion problem.

(c) Prediction of safe-working times for first responders, a feature regression prob-

lem.

(d) Computation of water depth from LIDAR returns, a time-domain regression

problem.

6. A fuzzy selection operator that uses a probabilistic interpretation of dominance in

multi-objective space, often yielding higher-performing genomes in fewer evalua-

tions than traditional selection operators.

7. An investigation into the strategic pairing of parents to produce better offspring than

traditional evolutionary algorithms, which use random chance to produce their pair-

ings.
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CHAPTER 1

INTRODUCTION

This dissertation explores automated machine learning. This chapter briefly describes the

concepts of genetic algorithms, multiple objective genetic algorithms, genetic program-

ming, and vector-based genetic programming. After presenting these approaches, we enu-

merate the research contributions of this dissertation and outline the rest of the document.

1.1 Genetic Algorithms

A genetic algorithm works by simulating an evolutionary process to search for a set of

values that can be input into a black box evaluator and yield an optimal solution (e.g. the

largest or the lowest output that box can generate). A particular set of values that are input

to the black box is called a genome, while the set of all possible genomes is referred to as

the search space. The traditional representation for a genome is a list of values. Each one

of these values is analogous to a particular gene. The output of the black box is taken to be

an objective score for the corresponding input genome.

To simulate an evolutionary process, the genetic algorithm requires a set of genomes,

which is called a population. The genetic algorithm assigns each genome in the population

a fitness score that ties the genome’s objective score, produced by the evaluation function,

to the rest of the population with a measure of relative performance.

Figure 1.1 shows a diagram of the typical evolutionary loop. Each generation of the

simulated evolutionary process, the genetic algorithm uses a selection process to choose

the next generation of genomes based on their fitness scores. The genomes selected in this

fashion are known as the parents of the next generation. The parents then exchange genes

through crossover and have genes permuted through mutation.

An important step for most modern genetic algorithms is the computation of an elite
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Figure 1.1: This diagram shows the high-level steps of the evolutionary process that repeat
until the algorithm has converged.

pool. The elite pool acts like an archive to preserve solutions that have demonstrated lead-

ing objective scores. The presence of an elite pool helps the evolutionary process avoid

cyclical patterns that can emerge when random processes cause successful individuals to

fall out of the population.

Genetic algorithms excel when the fitness landscape, or mapping of genomes to objec-

tive space, is rough, meaning it is nonlinear and discontinuous. This rough objective space

results in many local minima and maxima. In these rough environments, traditional gradi-

ent descent based optimization methods are likely to fail, getting stuck on a local optima

unable to find other regions of the space that may contain better solutions.

A classic example problem for genetic algorithms is solving the one-max problem:

Evolve a boolean vector of size d that has the maximum sum, i.e. is all ones. In this

example we are manipulating a genome where each gene is either a 1 or 0. Let d = 10 and

an example genome a be

a = [0, 1, 1, 0, 0, 0, 1, 1, 0, 0].

This genome has an objective score of 4. Let genome b be

b = [1, 0, 1, 0, 1, 0, 1, 0, 0, 0].
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Genome b also has an objective score of 4. A mating operation of a single-point crossover

between a and b works as follows. A point is chosen at random:

a =
[
0, 1, 1, 0, 0,

∣∣∣ 0, 1, 1, 0, 0
]
,

b =
[
1, 0, 1, 0, 1,

∣∣∣ 0, 1, 0, 0, 0
]
.

The two parents exchange genes at the crossover point:

c = [0, 1, 1, 0, 0,0, 1, 0, 0, 0]

d = [1, 0, 1, 0, 1,0, 1, 1, 0, 0]

Then the objective score for c is 3, and the objective score for d is 5. Note that through

crossover alone, there is a limit on what the genetic algorithm may discover because tradi-

tional crossover locks all genes in their particular locations in the genome. This restriction

means that if no individual in the population has a gene in a particular location, then one

must be produced through mutation in order to obtain change. In the previous example, in

the fourth position both a and b have a zero. No amount of random crossover between the

two parents can produce a child with a one in the fourth position. Likewise, a and b also

have zeros present in the sixth, ninth, and tenth positions. In this example, we compute

the maximum objective score without mutation is the sum of the number of positions in

all genomes that contain a one. Therefore, if we set up a crossover-only evolution with a

population of {a, b}, then the maximum objective score of the optimization is six.

1.2 Multi-Objective Genetic Algorithms

While classical genetic algorithms are a robust technique for solving problems that can

be expressed with a single objective function, most performance in real-world problems is

not captured by a single objective. While tying a single objective score to a fitness value
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is relatively straight forward, there are many ways to approach the problem in multiple

objectives.

Most multiple objective genetic algorithms rely on a concept of Pareto-optimality for

their selection methods. A genome is considered to be Pareto-optimal if it is non-dominated

in objective space, meaning no other genome outperforms on all objectives. This concept

can be expressed as follows: let a population be represented as x = [x0, x1, ..., xN−1],

where xi represents a single genome in the population of N genomes. Let f(xi) =

[f0(xi), f1(xi), ..., fM−1(xi)], where fk is the kth objective function of M objective func-

tions. Then an individual xi is Pareto optimal in a maximization scheme if

@j ∈ 0...N − 1 | fk(xj) > fk(xi),∀k ∈ (0...M − 1), (1.1)

or in a minimization scheme if

@j ∈ 0...N − 1 | fk(xj) < fk(xi),∀k ∈ (0...M − 1).

Figure 1.2 illustrates the concept of Pareto-optimality in a two-objective minimization

problem. The points in the plot represent performance of genomes in this objective space.

Red points represent non-dominated solutions, and the red line that connects them rep-

resents the non-dominated frontier. Blue points represent dominated solutions, i.e. those

that have any another point that outperforms them in both objectives. The bounded area

between the frontier and the axes is tracked by the hypervolume.

In single-objective genetic algorithms we can track the performance of the optimiza-

tion using the fitness of the best performing genome. With multiple objectives, we must

instead use the hypervolume enclosed by the non-dominated surface, which shrinks with a

minimization problem or grows with a maximization problem.
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Figure 1.2: A 2-D illustration of Pareto-optimality when both objectives are being mini-
mized.

1.3 Genetic Programming

Genetic programming (GP) differentiates itself from the broader class of genetic algorithms

by its representation. While genetic algorithms manipulate the inputs to an evaluation

method, genetic programming modifies methods themselves as well as the connections

between them. Traditional genetic programming uses a tree structure as its genome. We

refer to the nodes of these trees as primitives, which can be any function that consumes

inputs and produces a single output. Historically, genetic programming uses low-level

primitives such as arithmetic, trigonometric, and logical functions. We call the leaf nodes of

the trees terminals, and they consist of inputs and scalar values that the primitives consume.

GP traditionally implements the tree structure as a lisp-like parse tree, which is a pre-

ordered list representation. Each operator (or node) is followed by the inputs to that opera-

tor. For example, the equation:

x2 + 2x+ 1

would be expressed as:

[+, 1,+, ∗, 2, x, ∗, x, x].

Figure 1.3 shows the tree structure that implements this parse tree.
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Figure 1.3: Tree structure that implements the equation x2 + 2x+ 1.

In genetic programming, crossover is the action of choosing random nodes in parents

and swapping subtrees from those nodes between the parents. Mutation of genomes occurs

by directly modifying the tree structure such as by removing primitives, changing primi-

tives, changing terminals, or inserting subtrees.

Crossover between the earlier individual means selecting a random subtree (under-

lined):

x2 + 2x+ 1 = [+, 1,+, ∗, 2, x, ∗, x, x]

and exchanging it with a random subtree from another individual (underlined):

x3 − x+ 5 = [+, 5,+, ∗,−1, x, ∗, x, ∗, x, x],

which yields the following two children:

[+, 1,+,∗, x, ∗, x, x, ∗, x, x] = x2+x3+1

[+, 5,+, ∗,−1, x,∗, 2, x] =2x−x+ 5.

Figure 1.4 shows this crossover example in tree structure format. The top two tree stuctures

show the parents while the bottom two trees show their offspring. The subtrees exchanged

are outlined in blue and green. Note that the tree in the top left is the same as the one in
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Figure 1.4: Crossover between x2 + 2x+ 1 and x3 − x+ 5.

Figure 1.3, but here we call attention to the subtree to be crossed over.

1.4 Machine Learning

Machine learning (ML) is a robust process by which a computer can discover character-

istics of underlying data that enable it to create a model for making future predictions or

classifications from new data. Machine learning can be either supervised, semi-supervised

or unsupervised, depending on the number of observations of data that have an associated

notion of truth. Truth is fed to the machine learning model for fitting and scoring purposes.

In this sense, truth is the value the model should be predicting or classifying for a particular

instance of data. Supervised machine learning is the most common, and occurs when every

observation of data has an associated truth value. Unsupervised learning occurs when data

is unlabeled, and usually consists of clustering methods to segregate instances into similar

groups based on statistical properties of the data. Semi-supervised learning is when some

instances of data contain truth and some do not.

Traditionally, supervised learning consists of two types of problems: classification and
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regression. Classification is the family of problems where the model must distinguish data

into discrete classes. Regression is the process for finding a relationship between features,

allowing for the prediction of a continuous value.

Machine learning is broken up into a number of steps including data preprocessing,

feature engineering, model selection, and parameter optimization. We refer to a machine

learning pipeline as the point when the processed data enters the algorithm up to the output

of a final prediction or classification.

Preprocessing is the action of preparing data for the learning process and involves im-

putation (i.e. replacing missing data with substituted values) or removal of data that was

malformed while being captured. The preprocessing step is also where we divide the data

into partitions. In this dissertation, we use three partitions referred to as training, testing,

and validation data. Training data is used to fit machine learning models, while testing data

is used to score the fitted models. Because genetic algorithms and genetic programming

search methods are driven by the scores of the testing data, we withhold a third set of data

to score the final models on data that they have not been exposed to previously. The pre-

processing step may also consider the balance of observations in each of the three datasets

and ensure that all three are statistically similar.

Feature engineering is the process by which raw data is transformed to find character-

istics that allow for models to best discriminate between categorical data or identify trends

in continuous data. This process can involve any combination of the following: the con-

struction of features from data, the synthesis of new features from existing features, or the

selection of a subset of features. For classification problems, the best feature space is one

that best separates the classes. For regression problems, the best feature space is one in

which some combination of features yields the highest correlation with truth data.

There are many different types of machine learning models that each have a set of

strengths and weaknesses. Model selection is the choice of a model, or combination of

models through stacking or ensemble techniques, that best adapts to the particular feature
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space and truth data at hand. Stacking occurs when the prediction of one model is used

as a feature for another. Ensemble techniques allow a number of models to each make

a prediction, and disambiguate results from the set of predictions. An example ensemble

technique can be something as simple as a majority vote.

Finally, parameter optimization is the last step of the design of a machine learning

pipeline. Here, the parameters used for each step of the pipeline can be tuned to obtain the

best performance for a particular pipeline against a targeted set of data. Techniques that

automatically set and tune parameter pipelines are often referred to as hyper-heuristics.

1.5 Vector Based Genetic Programming for Automated Machine Learning

Traditional genetic programming (GP) only supports the use of arithmetic and logical op-

erators on scalar features. In GP, these operators, referred to as primitives, are combined

in tree structures representing the DNA of a program. When approaching an optimization

problem from this frame of reference, there are several apparent issues. First, any solu-

tions created by GP in this way must evolve from the most basic of building blocks. If we

compare this to the evolution of humankind from single-cell organisms, this is a task that

took nature almost four billion years to accomplish. It took approximately three billion

years for multi-cell organisms to evolve from single-cell organisms, which represents 75%

of evolutionary time on earth. Second, these low-level scalar features make it difficult to

leverage the human-generated solutions that have already been discovered in many appli-

cations. For example, if one wanted to evolve improvements to something as simple as a

k-nearest neighbor algorithm, it would be extremely difficult to construct a representation

of it with only a standard set of operators: (+,−, ∗, /,&, |, !, <,>,==). Finally, solutions

produced by GP are usually dense, deep, tree structures. This makes them difficult to read

and understand, preventing a human researcher from effectively learning from the results

of the GP. Because of these limitations, it is uncommon to find solutions generated by GP

that can outperform even the most basic human-derived machine learning functions.
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When we use higher-level input features such as vectors and matrices, more advanced

functions such as signal processing and machine learning functions can be combined with

the standard set of operators. These functions, along with a set of objectives, enables GP

to design readable, human-competitive algorithms directly from data. Allowing GP to pro-

duce the algorithms automatically is valuable in our current age of big data. Algorithm

design can be challenging for a researcher who must choose from a host of feature engi-

neering and machine learning techniques, and choose a set of hyper-parameters for each

step. When looking at a problem, a skilled person will typically approach a solution with a

limited set of techniques. Furthermore, it is difficult for a scientist to design an algorithm

optimized for multiple objectives. GP can create non-domain-biased solutions and do so

while optimizing for multiple objectives simultaneously. This new design paradigm can

free up a researcher’s time to steer the optimization towards specific solutions by analyzing

the data and resulting programs. The research may also be inspired by the algorithms that

the GP creates and pursue new courses as a result.

Many challenges must be addressed to successfully work with high-level primitives

as we have described. To support machine learning functions as primitives, training and

testing data used by each learner must be passed through the program. The same operations

that were performed on training data must be performed on testing data at any given step.

Strongly typed GP, which places restrictions on the tree structure based on the inputs and

outputs of the primitives, enforces the rigidity required by the functional blocks we use.

However, the standard data types available are too limiting; they do not allow data to flow

naturally from primitive to primitive. We require a custom type to contain our data and

wrapper methods that allow our primitives to understand this type. This allows the output

of one block, whether it is a signal processor or a machine learner, to be an input to the next

method. The container type must also be understood by evaluation functions, since this

formulation requires the object to be both the input to and output from the entire program.

Despite the use of more advanced operator functions, we still leverage the fundamen-
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tal attributes of GP (mating, mutating, and selection), and this means the evaluation of

multitudes of individuals is still necessary. These individuals, however, are more computa-

tionally expensive to evaluate than those in traditional GP due to the cascading of machine

learning functions and larger amounts of data. Generating solutions in a reasonable amount

of time requires access to a computer cluster that can support memory-intensive processes.

This dissertation is a natural evolution of previous work. Past attempts at combining

GP and machine learning have invoked a rigid search space, focusing on either feature

construction or the optimization of an existing learner or set of learners. There has been

little work performed that employs both of these approaches. When combined, there is

significant added benefit to be gained from cascading the results of these methods.

We created the Evolutionary Multi-objective Algorithm Design Engine (EMADE) frame-

work to implement automated algorithm design from high-level operators. This disserta-

tion describes increases of EMADE’s capability by seeking methods to reduce compute

time and produce solutions in fewer evaluations.

1.6 Original Contributions

This dissertation shows that through the process of genetic programming it is possible

to produce machine learning pipelines, and the evolved pipelines can outperform those

created by human researchers.

The original contributions of this dissertation are:

1. A unique data representation for efficient genome construction that increases the

likelihood of successful evaluations. Section 3.2 explains the details of this data

structure.

2. A system of tiered evaluations that greatly accelerates the speed of the evolutionary

process by reducing the number of genomes that must train and evaluate against a

full dataset. Section 3.10 details how this system works.
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3. A methodology for supporting high-level building blocks, such as machine learning

methods and signal processing functions, that enables genetic programming to com-

pete with and evolve from human-created algorithms. Sections 3.3 and 3.4 show how

these high-level building blocks are assembled.

4. The Evolutionary Multi-objective Algorithm Design Engine (EMADE), an open-

source framework for the automated creation of algorithms that automatically solves

feature-domain, time-domain, and image-domain problems with better performance

than algorithms created by the hands of experts. Chapter 3 shows the novel compo-

nents that differentiate EMADE from other autoML frameworks.

5. Chapter 4 demonstrates EMADE’s capabilities on different types of open machine

learning problems, including:

(a) The adult dataset problem, a feature classification challenge.

(b) Dog behavior classification from accelerometer data, a time-domain classifica-

tion problem.

(c) Prediction of safe-working times for first responders, a feature regression prob-

lem.

(d) Computation of water depth from LIDAR returns, a time-domain regression

problem.

6. A fuzzy selection operator that uses a probabilistic interpretation of dominance in

multi-objective space, often yielding higher-performing genomes in fewer evalua-

tions that traditional selection operators. Section 5.1 walks through the methods and

performance analysis of this operator.

7. An investigation into the strategic pairing of parents to produce better offspring

than traditional evolutionary algorithms, which rely on random chance. Appendix

A shows the results of this investigation.
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Table 1.1: Capability by problem type

Input Data Type Problem Type

Problem Name Feature Time Series Classification Regression

Adult Dataset X X
Heat Stress X X
AGLogica X X
LIDAR X X

1.7 Overview

Chapter 2 gives context by further explaining the concepts of genetic algorithms and genetic

programming, as well as how they fit into the broader field of automated machine learn-

ing based on prior efforts. Chapter 3 introduces the EMADE framework and describes

its unique capabilities. Chapter 4 shows the capabilities of the EMADE framework in a

number of different problem classes as shown in Table 1.1. Chapter 5 presents the research

contributions made in order to support EMADE, namely the capability to achieve the same

or better results as traditional methods while performing fewer and/or cheaper evaluations.

Chapter 6 summarizes our work and suggests further research to continue exploring the

field of automated machine learning using genetic programming.
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CHAPTER 2

BACKGROUND

2.1 Origins

The field of evolutionary computing grew out of John Holland’s book Adaptation in Natural

and Artificial Systems, published in 1975 [1]. Holland showed that the evolutionary process

discovered by Darwin [2] can be translated into many applications using what is now known

as the genetic algorithm [3]. Genetic algorithms have five key components: a method of

representation, an evaluation function, an initialization procedure, genetic operators, and

parameters [4, 5].

In 1992, John Koza gave life to the specific field of genetic programming (GP) with

his book Genetic Programming: On the Programming of Computers by Means of Natural

Selection [6]. In this book, Koza showed that GP was able to produce successful results

to problems in a variety of fields. GP is a specific case of genetic algorithms, where each

individual in the population is a representation of a computer program [3].

The key differentiation between GP and genetic algorithms is that a genetic program

is represented as a parse tree, rather than a vector of numbers. In his introductory book

[6], Koza defined genetic operations on the tree structure, representing the trees as LISP

expressions. Aside from the representation of an individual, almost all of the techniques

from genetic algorithms can be applied to the evolutionary process of GP.

2.2 Fitness

It is natural for evolutionary algorithms to live in a multi-objective space, such as the si-

multaneous maximization of true positives and the minimization of false negatives. Fitness

functions, however, produce a single scalar value to represent the aptitude of the individual
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relative to all other individuals in the gene pool. Many fitness functions are surveyed in

Fonseca and Fleming’s An Overview of Evolutionary Algorithms in Multi-Objective Opti-

mization [7]. A key concept used in multi-objective fitness functions is the evaluation of

relative performance based on Pareto dominance, which stems from the notion that not all

of an individual’s objectives may be simultaneously improved. By rewarding individuals

that are Pareto-dominant, we may drive the optimization toward the true Pareto-optimal

frontier. Equation 1.1 defines Pareto dominance.

While Pareto dominance is the main driver of most fitness functions, there are many

different strategies for handling the case of individuals that are equal in Pareto rank. Most

of these strategies rely on population-based clustering in objective space. These strate-

gies tend to have different methods, but follow the common thread of using a crowding

distance measure, rewarding individuals in less crowded regions of objective space. The

logic behind rewarding the more distant solutions is that those individuals contribute more

phenotypic diversity to the population, which adds important genotypic diversity.

The non-dominated sorting genetic algorithm (NSGA), introduced in Multi-Objective

Optimization using Non-Dominated Sorting in Genetic Algorithms [8], was one of the first

genetic algorithms to emphasize the Pareto optimal multi-objective space. NSGA is useful

for pushing the Pareto front by assigning its highest fitness to the first non-dominated front,

and decreasing fitness with increasing dominance levels. In their paper introducing NSGA-

II [9], Deb et al. point out that NSGA has several weakness, including a high computational

load, a lack of elitism, and a need for a sharing parameter. NSGA-II introduced a fast non-

dominated sort algorithm and diversity preservation through crowding distance sorting.

The Pareto Envelope-based Selection Algorithm (PESA) [10] and PESA-II [11] com-

pute crowding factors based on the amount of Pareto-optimal solutions that occur in the

same hyper-box in objective space. Those with fewer are selected over those with more

when using a binary tournament. PESA-II builds on this strategy by introducing the con-

cept of regions to PESA.
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Zitzler et al. [12] introduced an improved version of the Strength Pareto Evolutionary

Algorithm (SPEA) [13]. This fitness scoring method assigns each evaluated chromosome a

score that corresponds to the number of other chromosomes in the population that dominate

it. An individual on the Pareto front would be assigned a score of zero. The authors

also found that SPEA2 had the highest performance in high-dimensional objective spaces

compared to the performances of SPEA, NSGA-II, and PESA. The methods that had the

best overall performance were SPEA2 and NSGA-II.

Some more recent algorithms for fitness include novelty search [14] and MOEA/D [15].

Fitness can also be computed based on an individual’s contribution to the hyper-volume of

the Pareto surface. Algorithms that use this concept include SMS-EMOA [16] and HypE

[17].

Rohling [18] proposed a hypercube distance (HCD) scaling algorithm that scales fitness

values based on where a solution exists in objective space. The algorithm works with two

thresholds for each objective function: an “achievable” level and a “goal.” Each individ-

ual’s precomputed fitness is modified according to the formula

iscaled distance = idistance ×
1 + α

α +

(
K∑
k=0

HCD[k]

) 1
p

, (2.1)

where idistance is crowding distance of individual i (larger is better), α and p are constant

weight parameters (suggested to be 0.5 and 2, respectively, which manifest as euclidean

distance), K is the number of objectives, and HCD[k] is



1, fk ≥ achievablek

0, fk ≤ goalk(
fk − goalk

achievablek − goalk

)p
, otherwise

(2.2)
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in a minimization scheme. In Equation 2.2, fk represents the objective score, achievablek

is the threshold for an achievable result, and goalk is a desired objective value. Section 3.7

illustrates HCD in more detail.

2.3 Selection

After assigning fitnesses to each individual in a population, the next step of the evolution-

ary process is to select the parents for the next generation. A selection algorithm translates

each fitness score to a probability of selection for mating. There are three main forms of se-

lection used in GP: fitness proportionate selection (also known as roulette wheel selection),

tournament selection, and truncation selection.

Roulette wheel selection assigns each chromosome a probability of selection based on

their fitness relative to the rest of the population. If f(xi) represents the fitness score of

one individual in a population of N individuals, then the probability of selection for that

individual is

p(x = xi) =
|f(xi)|∑N−1
k=0 |f(xk)|

.

In tournament selection, selection occurs in rounds, where in each round k individuals are

randomly chosen. The individual with the best fitness score will proceed to the next round.

In a binary tournament, k = 2. A truncation selection sorts the population in order of fitness

scores and then chooses the first M of the N chromosomes, where the M individuals are

those with the best fitness. This truncation example assumes descending fitness where a

higher fitness is better than a lower one. In a problem setup where a lower fitness is better

than a higher one, truncation would either take the lastM chromosomes or sort in ascending

order.

Roulette wheel and binary tournament selection are more “bio-inspired” than trunca-

tion selection, as the latter does not assign any probability of mating to those below the

fitness threshold. In tournament selection, every individual except that with the absolute
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lowest fitness score has some probability of mating. With roulette wheel selection, every

individual has some probability of mating. Also, unlike binary tournament and roulette

wheel selections, there is no randomness in a truncation algorithm. Because randomness

is important for a genetic algorithm to search properly, we usually pair truncation with

another selection method.

2.4 Algorithm Examples

Most papers on fitness schemes also pair them with particular selection methods. In an

effort to make these fitness and selection pairings more clear, we will walk through two

algorithms in more detail: NSGA-II and SPEA2. This dissertation leverages both of these

algorithms to manage different parts of the evolutionary process.

2.4.1 Non-dominated Sorting Genetic Algorithm II

NSGA-II [9] uses a binary tournament in which dominance is given by

i ≺n j if (irank < jrank) or

((irank = jrank) and (idistance > jdistance)).

(2.3)

Here, i ≺n j means that individual i dominates j; this occurs if irank, the Pareto (non-

dominated) rank, is lower than jrank, which means that i closer to the non-dominated front.

In the case of a tie in rank, i ≺n j if idistance, the crowding distance of i, is greater than

jdistance, indicating individual i may fall in a less crowded region.

This selection process works as follows. First, the algorithm combines the previous

generation’s parents and their offspring into a population. Next, the algorithm sorts the

population into non-dominated ranks. This sort operates as follows:

1. Initialize rank r = 0 and copy all individuals in the population to a list p.

2. Initialize a new list of lists nd, indexed by rank r.
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(a) A sample objective space. (b) The objective space partitioned into non-
dominated ranks.

Figure 2.1: Demonstration of applying NSGA-II to an objective space.

3. Identify the non-dominated individuals in the population list p.

4. Move the non-dominated individuals to list nd[r] so that they are no longer in p.

5. If there are still individuals in p, increment r by one and go to 3.

Figure 2.1 illustrates this non-dominated sort. Figure 2.1a shows an example objective

space. In this example, we wish to minimize both objectives. The ideal solution the prob-

lem this objective space represents would be the origin, i.e. (0, 0). Figure 2.1b shows this

same objective space after computing non-dominated ranks. The blue line labled 0 shows

the non-dominated frontier. In the list representation of the population, the sort organizes

the individuals in ascending order of Pareto rank, i.e. [ Rank 0, Rank 1, Rank 2, Rank 3]

for this example.

Within each rank, NSGA-II sorts by crowding distance. Listing 2.1 shows the pseudo-

code computation of crowding distance for a given individual. Within the NSGA-II, while

a lower rank is better than a higher rank, a higher crowding distance is better than a lower

crowding distance. The crowding distance serves to estimate the average side length of the

hypercube that is formed around each individual in objective space when using its closest
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neighbors as vertices.

Code Listing 2.1: Pseudo-code for crowding distance computation in NSGA-II

# Crowding distance is computed by rank, so we iterate through each rank

individually.

for rank in ranks:

L = len(rank)

for individual in rank:

# Initialize the crowding distance for each individual.

individual.distance = 0

for objective in objectives:

# Sort current rank by objective score in ascending order.

rank = sort(rank, objective)

# Force individuals with min and max of objective to have highest

distances so that they will beat out

other individuals in the same rank.

These individuals have no neighbor

on one side.

rank[0].distance = inf

rank[-1].distance = inf

# Iterate through remaining L-2 individuals to increment their

distances.

for i in range(1, L-1):

# Add the normalized distance between the current individual’s

neighbors on this objective

rank[i].distance = rank[i].distance + (rank[i+1].objective - rank[

i-1].objective)/(rank[-1].objective

- rank[0].objective)

NSGA-II truncates the sorted population to the desired population size. For clarity, if

the desired population size is N , that yields N parents each generation. From these N

parents we produce N children. NSGA-II then operates on a population of 2N to sort and
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truncate back down to the next generation of N parents.

Now, theN parents are put through a binary tournament where we select two parentsN

times (with replacement). For each selection, we compare the two randomly selected par-

ents first by rank (favoring the lower) and then by crowding distance (favoring the higher).

The resultant N winners are then crossed over and mutated to become the N offspring.

Section 2.5 describes the mating and Section 2.6 describes mutation.

2.4.2 Strength Pareto Evolutionary Algorithm 2

Rather than utilize a Pareto rank determined by a non-dominated sort, the rank used by

SPEA2 for a given individual comes from the number of individuals in the population that

dominate the individual. The computation of this rank begins by computing a strength for

each individual. The strength is the number of individuals in the population that the given

individual dominates. Figure 2.2a shows a visual representation of this computation. In the

figure, the individual of interest dominates the blue shaded area of objective space in this

minimization problem. The individual receives a score of three, because three individuals

exist in this dominated area. Figure 2.2b shows the resultant strengths of each individual in

the population.

Next, SPEA2 uses the computed strengths for each individual to compute a rank for

each individual. For each individual, the sum of the strengths of the individuals in the re-

gion of space that dominate the given individual produces the rank score. Figure 2.3a shows

this computation of rank for a given individual. Figure 2.3b shows the ranks for all individ-

uals in the population. Because no individuals dominate the Pareto-optimal solutions, they

receive a rank of zero.

Next, to prevent ties on rank, SPEA2 adds a density estimation to each rank. Equation

2.4 shows the computation of this density metric. This equation relies on a selection of

the parameter k. σki is the euclidean distance to the kth nearest neighbor of individual i.

A common choice of k is k =
√

2N , where 2N is the size of the competing population,
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(a) Computation of strength for a single indi-
vidual.

(b) Strength computed for each individ-
ual in the population.

Figure 2.2: Demonstration of computing strength for SPEA2.

(a) Computation of rank for a single in-
dividual.

(b) Rank computed for each individual in
the population.

Figure 2.3: Demonstration of computing rank for SPEA2.
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i.e. N parents and N offspring. A smaller density metric indicates an individual is in a

less crowded area of objective space. This density metric is also always less than one. This

means the addition of density will never push an individual to a higher rank. Equation 2.5

combines rank and density to create the fitness, for each individual, that drives selection:

Di =
1

σki + 2
, (2.4)

Fi = Ri +Di. (2.5)

Like NSGA-II, we truncate the population of size 2N to N individuals for the next

generation. The truncation simply keeps the N individuals with lower ranks by sorting in

ascending order. We then perform N binary tournaments with replacement to select the N

parents for the next generation.

2.5 Mating

The standard operator for crossover in GP is the single-point crossover, proposed by Koza

in Genetic Programming: vol. 1 [6] as a modification of a standard technique used in

genetic algorithms. In this method, a node is selected from each tree and all information

from the corresponding subtrees are exchanged between the two chromosomes. Figure 2.4

shows an example of single-point crossover.

In Beadle and Johnson’s Semantically Driven Crossover in Genetic Programming [20],

a new method of crossover is proposed that ensures the two subtrees are not semantically

equivalent. This prevents creating two new individuals that accomplish the same tasks as

their parents. A similar theory is used by Ishibuchi and Shibata [21], where instead of

comparing genotypic diversity directly (defined as the structure and elements of the trees),

methods are proposed in selection based on maintaining phenotypic diversity (defined as

relating to the objective scores of each individual).
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Figure 2.4: Creation of a child from two parents using single-point crossover. [19]

2.6 Mutation

There are several different mutation operators available to a GP optimization, including

insertion, shrinking, and replacement. All three operations were proposed by Koza [6] and

taken from genetic algorithms. While the operators traditionally operated on vectors, Koza

rephrased them to operate on trees. “Insertion” is the creation of a new randomized subtree

and inserting it at some point into the chromosome. “Shrinking”, is the action of removing

a subtree, and replacing it with one of its leaves. “Replacement” is changing a single node

in the chromosome.

2.7 Hybridization: GP and Machine Learning Methods

While GP has not been used to directly operate on both machine learning and signal pro-

cessing algorithms simultaneously, it has been used in conjunction with existing machine

learning and signal processing methods individually, often achieving significant perfor-

mance gains over the base algorithms. Using GP to perform feature construction or selec-

tion for machine learning is a well-researched field. There have been numerous approaches

to allow the evolution of optimal feature sets.

H. Guo et al. [22] used GP with basic operators to generate features for machine learn-

ing classifiers. The authors compared the results of an artificial neural network (ANN) and
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a support vector machine (SVM). For both types of classifiers, the features generated by

GP showed significant improvements over the standard signal processing techniques alone.

Holladay et al. [23] introduce vector-based GP, a concept we use heavily in this disser-

tation. Sections 3.2, 3.3, and 3.4 detail how we leverage vector-based GP in this research.

In this formulation of GP, primitives act on vectors of inputs, rather than scalars. We com-

bine this with a notion from Vera et al. [24], which used GP on vector-based time series

data with the last value of the series representing the prediction. This provides a starting

place from which to target combining both signal processing methods and machine learning

functions with traditional primitives.

Streater [25] used GP to evolve feature construction programs from basic primitives for

inputs to machine learners, and evolved parameters for the SVMs he used for classification.

The results were scored for fitness based on the performance of several machine learning

algorithms on the constructed feature set. Rather than working with scalar coefficients or

derived features, the inputs to the genetic program were six matrices, each of which rep-

resented a different channel of an image. However, high-level primitives were not used in

his instruction set; instead, the instruction set consisted of simple mathematical operators:

plus, minus, multiply, divide, sine, cosine, square root, and log. Finally, rather than include

the learners in the evolutionary tree, they were used solely for evaluation.

L. Guo et al. [26] applied GP to the problem of feature extraction in electroencephalo-

graphic (EEG) signals. Their system consumes a feature vector created using a discrete

wavelet transform (DWT), and evolves new features computed from the input set. The fi-

nal set of features is sent to a k-Nearest Neighbors (kNN) classifier. However, the GP was

only performed on scalar elements of the feature vector with the operators of plus, minus,

times, divide, log, and square root. While L. Guo et al. were able to show significant im-

provement over the kNN classification by itself, treating the DWT coefficients as scalars

limited the traction they achieved.

Al-Sahaf et al. [27] developed a hybrid algorithm that uses a nearest-neighbor classifier
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to map GP output to a class label. This model was applied to a variety of health-related

datasets from the UCI Machine Learning Repository [28]. While this approach showed

improvements over naı̈ve Bayes, SVM, and kNN applied directly to the data, the search

space of evolved algorithms is limited by the small set of operators: addition, subtraction,

multiplication, and division.

Lee and Tong [29] combined GP with the autoregressive integrated moving average

(ARIMA) filter to improve time series predictions. The hybrid methodology used the form

ŷt = L̂t + N̂t, where the predicted signal ŷt is the sum of the predictions of the ARIMA

filter L̂t, which forecasts the linear component of the data, and the GP N̂t, which forecast

the nonlinear residuals. For the nonlinear portion, they found a lower dependence on the

size of available datasets, and were able to achieve higher quality results than other machine

learning techniques, including SVM and ANN. While they did combine traditional machine

learning techniques with GP, they did so in a limited fashion, applying it with a standard

set of basic operators and only focusing on errors made by a linear model.

Ravisankar et al. [30] proposed a hybrid of GP and machine learning to predict the

failures of dotcom companies. The authors divided the problem into its two key pieces,

feature selection and classification. A hybrid algorithm used a different machine learning

technique for feature selection than for classification. However, the authors did not consider

feature construction. Cascaded combinations of both selection and construction allow for

more complicated solutions.

Zhang et al. [31] combined GP with SVMs to produce credit scoring models, using a

divide and conquer approach like Lee and Tong. GP was used to develop a set of classifi-

cation rules for the data. Any residual data not assigned a class by GP would be classified

using an SVM. The authors were able to produce hybrid algorithms that had higher accura-

cies than any standalone machine learners. However, they enforce a limitation on the type

of machine learner used and restrict GP to only produce classification rules. Both of these

human derived choices can themselves be open to optimization.
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In Sherrah et al.’s work [32], the genetic program was allowed to not only create and

select features but also choose from three different classifiers as well. When compared

to standard machine learners, error was reduced in eight out of the nine tested datasets.

However, once again, the genetic program was limited by scalar features, basic primitives,

and a rigid structure.

2.8 Non-GA/GP Heuristic Methods

Hassan and Cohanim [33] showed genetic algorithm performance against a newer search

space heuristic: particle swarm optimization. While they show the quality of results is

similar, the space they use is limited. PSO moves candidate solutions in space to find

optima, but with GP, solutions do not have locations that can be acted on, just the resultant

Pareto space. While PSO is a powerful state-of-the-art technique, it is not a well suited

alternative to solve the problem of algorithm creation.

Simulated annealing is a popular alternative to GP, and one strongly suggested by

Steven Skiena in his Algorithm Design Manual [34]. Simulated annealing [35] uses ran-

dom exploration of a search space with a decaying probability of accepting worse solutions

over time. The idea of changing probabilities of accepting inferior solutions over time can

be applied to adaptive mating and mutation rates throughout the evolutionary process.

2.9 AutoML

In recent years, the field of automated machine learning has begun to take shape. One of

the the leaders in this field is the tree-based pipeline optimization tool (TPOT) [36]. TPOT

was developed at the University of Pennsylvania Epistasis labs to automatically combine

scikit-learn [37] machine learning functions using DEAP[38]. As Section 3.1 shows, the

work presented in this dissertation uses these same tools. Our work began prior to the

development of TPOT. While utilizing similar packages, our solution allows for both a

more flexible genotype and phenotype. Sections 4.1 and 4.5 draw comparisons between
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our research and TPOT.

Other AutoML frameworks using similar concepts include Auto-Weka [39], auto-sklearn

[40], and RoBO [41]. These frameworks focus on tuning hyper-parameters of machine

learning algorithms through techniques such as Bayesian optimization, as opposed to the

bio-inspired approach in this thesis. The more flexible bio-inspired approach enables a

richer search space of possible algorithms. While these frameworks are all promising, they

all work directly on feature data, rather than raw data sources, which greatly limits their

applicability to challenging problems in the time, image, or video domains.

In industry, the field of AutoML has been growing as well with companies like H2O.ai

[42], RapidMiner [43], and DataRobot [44] introducing automated methods of developing

and tuning models. One of the most recent and powerful entrants in this space is Google,

with their Cloud AutoML platform [45]. Unlike other competitors, this framework is able

to work with raw data types and train and tune more complex models. It is specifically

designed for the field of computer vision, and based off the concept of transfer learning,

which modifies pre-trained models from similar applications for the task at hand.
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CHAPTER 3

INTRODUCTION TO EMADE

3.1 Creating The EMADE Framework

Although Sections 2.7 and 2.9 show that combining traditional machine learning techniques

with GP has been accomplished in various applications, the current state of the art has not

yet opened up the entire algorithm creation process to GP. We enable the modification of

features and cascade the results of machine learning operations by using GP to create new

solutions, thus addressing the limitations of the works presented in Sections 2.7, 2.8, and

2.9, and enabling technical contributions in Chapters 4 and 5.

The Evolutionary Multi-objective Algorithm Design Engine (EMADE) framework is

built on top of DEAP (Distributed Evolutionary Algorithms in Python) [38], an existing GP

framework. We use DEAP for many reasons, including its active development, distributed

evaluation, and plug-and-play design. The DEAP framework enables us to drop in new def-

initions of individuals, primitives, terminals, and genetic operators, allowing support for a

new data type that ties together training and testing data. EMADE combines boolean logic,

arithmetic operators, signal processing, machine learning algorithms, and other primitives

to create high-level algorithms that are capable of outperforming human-derived solutions.

To facilitate quick application to new problems, an XML input file is used to begin an

EMADE optimization process. In the XML file, it is possible to define which data files,

evaluation functions, mating, mutation, and selection operators are being used. The input

file also allows the definition of any parameters associated with the operators, such as data

types, or probabilities.
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+ get_numpy(): numpy array
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FeatureData StreamData
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Figure 3.1: UML diagram of the data structure within EMADE.

3.2 Data Structure

EMADE uses strongly typed genetic programming, which enforces a set of rules during the

tree creation, mating, and mutation processes. To build complex classification and predic-

tion algorithms with EMADE, we added the ability to pass data between signal processing

functions and machine learning functions in any order.

To handle these transactions, we created a Python class that stores various representa-

tions of the features and class information for each dataset. These data objects are paired

together in a new class that supports training and testing data. This allows the same signal

processing methods to be applied to the training and testing data before and after going

through the machine learning operations. EMADE also allows the truth data, i.e. the cor-

rect values of the test data, to be directly compared with the results of the test data at the

end of the program.

Figure 3.1 shows the UML (Unified Modeling Language) diagram for the data structure

used in EMADE. The highest level representation of the data is an EMADEDataPair. This

single object stores two EMADEData objects, one representing the training data and one

representing the testing data. Each EMADEData object is a collection of EMADEDataInstance

objects. Each EMADEDataInstance represents one observation in a dataset. The instance

supports several different containers for storing data that makes up a single observation.
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The first is a FeatureData container. This container holds the features for the observa-

tion. We define features as descriptive values, where the order of the variables holds no

meaning. For example, the age or weight of a person could be considered features. Sim-

ilarly, we could consider the average and standard deviation of a signal to be features as

well. The second type of container is StreamData. Stream data is data where the order

has specific meaning. Examples include one-dimensional time series waveforms, two-

dimensional arrays representing images. or three-dimensional arrays representing movies.

While FeatureData objects are 1-Dimensional, StreamData can be N -dimensional. The fi-

nal component of the EMADEDataInstance is the target. The target is the supervised value

of the instance, meaning the item we are designing our classifier or regressor to predict

based on the features.

Implementation of a dual representation of data in EMADE allows for a more evolvable

tree structure than treating stream and feature data separately. We say a tree structure is

more evolvable if the probability of a destructive mating or mutation is lower. A destructive

operation is one where the child becomes an invalid program or algorithm, usually resulting

in an error when executed.

To understand how this dual representation makes our trees more evolvable, consider

solving a signal processing problem without it. If we begin by taking in a waveform for

each instance and feed that directly into a machine learning algorithm, we will have poor

performance due to the time-varying nature of the data, i.e., for all but the most trivial

signals, the machine learners will not be able to make sense of the data without constructed

features. To make a useful algorithm, we need derived features. If instead the data is loaded

into a stream container for the raw data in our dual representation, the features object will

remain empty, and the algorithm will be known to be fatal and hence not require evaluation.

Being able to identify algorithms prior to evaluation that will not be successful dramatically

speeds up the evolutionary process.

Now suppose that the algorithm has a properly constructed feature from an averaging
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Concatenate

ComputeMean ComputeVariance

Raw Data Raw Data 

(a) Without dual representation.

ComputeMean

ComputeVariance

Raw Data 

Stream to Features

Stream to Features

(b) With dual representation.

Figure 3.2: An example of feature construction without and with a dual representation of
the data.

algorithm, returning the mean for each instance. If we want to combine our feature with

another, e.g., a variance from each instance, we will need to take in the same raw signal

elsewhere in the tree and then join the resultant features together with a concatenate oper-

ation. Figure 3.2a illustrates this algorithm as a tree structure. Although this example is

relatively simple, as the evolution proceeds, the trees will become increasingly complex,

resulting in algorithms that construct more derived features. The result of this complexity

is a structure that relies heavily on concatenation nodes. Should a concatenation node be

mutated to an algebraic node such as an addition, as Figure 3.3 shows, the tree is at risk for

dimensionality errors.

The probability of a fatal mutation grows linearly with the number of constructed fea-

tures, i.e., the number of concatenation nodes. Our dual representation solves this problem

by pairing feature construction and concatenation together. Figure 3.2b shows how the

construction in Figure 3.2a looks in our dual representation. Section 3.4 covers how our

representation leverages an additional parameter that indicates to the primitive how to pro-

cess its input data.
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instances with a series of Nx1 Instances.

Figure 3.3: A mutation of the root concatenation node to an algebraic type of node.

3.3 Wrapping Machine Learning Functions

To use higher-level machine learning functions from existing Python toolboxes such as

Scikit [37] and Keras [46], as well as several hand-coded functions, we developed a method

of wrapping these primitives to incorporate them in a DEAP tree structure. Each primitive

must act on pairs of training data and testing data. The wrapping function must be able

to accept the input in a paired format, and produce the output in the same format. Tradi-

tionally, most of these functions from toolboxes act directly on Numpy arrays. Numpy is a

computationally efficient array and mathematical library for Python.

The general structure for wrapping a machine learning function is as follows: let xtrain

be the training data, which is an n ×m feature matrix, and let xtest be the testing data, an

l × m feature matrix, where m is the number of features and n and l are the number of

training and testing sample points, respectively. Let the machine learning function being

wrapped be fml, which produces a classifier or predictor:

f(x1, x2, ...xm) = fml(xtrain)(x1, x2, ...xm).
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Then, for the matrix we can produce a vector of estimates produced by the wrapped ma-

chine learner fml:

f(xtest) = fml(xtrain)(xtest) = ŷtest.

We can also produce the same vector for the prediction on the trained data:

f(xtrain) = fml(xtrain)(xtrain) = ŷtrain.

Each vector is appended as an additional feature column to the respective matrices so their

results can be built upon by further methods in GP. The returned data pair then comprises

x′train = [xtrain, ŷtrain]

and

x′test = [xtest, ŷtest],

with dimensions n×(m+1) for x′train and l×(m+1) for x′test. The number of features must

remain consistent between training and testing data, so if the data pair is consumed by an-

other machine learning primitive, the resulting function produced by fml will be applicable

to xtest. Therefore, the associated class data for x′test is also assigned to be ŷtest. This ability

for one machine learning function’s predictions to be used as a derived feature in another

machine learning model is known as stacking in the machine learning community.

Another benefit of the wrapping of the machine learning functions is the ability to store

the produced classifier or predictor. Each resultant fml can be pickled out of the program.

Pickling is a method of preserving objects in Python. The pickled data is labeled by the

parameters of the wrapped machine learner, as well as a hash of the xtrain data it operated

on. This hash comes from a series of mathematical operations that perform a one-way

compression of the data into a much smaller representation (in our case 256 bits). The

mathematical operations have an extremely low probability of producing the same hash
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for different data. Before rerunning the training of the machine learner, the file system is

inspected for this stored object. If it exists, it is used in place of recomputing the machine

learner, which saves a considerable amount of time, as subtree crossover mutation often

produces new algorithms with branches that contain machine learners that have already

been trained and evaluated exactly.

Code Listing 3.1 shows a template for wrapping machine learning functions. The code

works as follows: first, the learner description is converted to a base estimator. A base

estimator is an instantiated object used by the scikit API that can later be fit to data, or

once fit, can predict values from data. Next, the target values that the model is trying to

predict are extracted from the training data in the data pair. Features are then extracted from

both the training data and testing data. The model is fit on the trained features and target

values from the training data. The trained model is used to predict the target values of the

testing features. Finally, the newly created targets are copied to a new feature column to be

leveraged by further learners.

Code Listing 3.1: Template for Wrapping a Machine Learning Function

def single_learner(data_pair, learner):

"""

Generic wrapper for a machine learning function

That uses a scikit-learn estimator to fit on the

features found in the training data of a data pair,

and predicts on the features found in the testing data

of a data pair.

"""

# Get the underlying base estimator to use

base_estimator = get_scikit_model(learner)

# Deep copy of data so no modifications unintentionally

# propagate to other branches of the tree structure

data_pair = copy.deepcopy(data_pair)
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# Grab the training features as a numpy array where each

# row represents an instance

training_data = data_pair.get_train_data().get_numpy()

# Extract the truth data associated with each instance

target_values = np.array(

[inst.get_target()[0] for

inst in data_pair.get_train_data().get_instances()])

# Check for multiple target values

target_value_check(target_values)

# Using the scikit-learn API, fit the estimator to the

# training features and the truth data associated with them

base_estimator.fit(training_data, target_values)

# Grab the features associated with the test data

testing_data = data_pair.get_test_data().get_numpy()

# Use the fitted estimator to predict values for the

# test features.

predicted_classes = base_estimator.predict(testing_data)

# Store the predicted values on the target of each instance

# in the test object of the data pair, this will be used

# for scoring

[inst.set_target([target]) for inst, target in

zip(data_pair.get_test_data().get_instances(), predicted_classes)]

# Make the predictions a feature through use of the

# "make feature from class" method that adds it as a new feature

# column, but then restore the truth data for the training data.
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Table 3.1: Machine Learning Functions Implemented in EMADE as Primitives.

Classification Regression Ensemble

k-Nearest Neighbor Classifier k-Nearest Neighbor Regressor Adaboost
Support Vector Machine Classifier Support Vector Machine Regressor Bagged Learner

Decision Tree Classifier Decision Tree Regressor ExtraTrees
Random Forest Classifier Random Forest Regressor XGBoost [47]

Naive Bayes Classifier Gradiant Boosting Regressor LightGBM [48]
Logistic Regression Classifier

Gaussian Mixture Model Classifier
Best Linear Unbiased Predictor
Orthogonal Matching Pursuit

KMeans
Stochastic Gradient Descent
Passive Aggressive Classifier

# Set the self-predictions of the training data

trained_classes = base_estimator.predict(training_data)

[inst.set_target([target]) for inst, target in

zip(data_pair.get_train_data().get_instances(), trained_classes)]

data_pair = sm.makeFeatureFromClass(data_pair, name=learner.

learnerName)

# Restore the truth data to the training data for fitting

# future learners.

[inst.set_target([target]) for inst, target in

zip(data_pair.get_train_data().get_instances(), target_values)]

return data_pair

Table 3.1 lists the current set of machine learners that EMADE supports. To ensure

that these machine learning methods can be optimized, each wrapped learner exposes the

parameters it consumes to EMADE.

Machine learning primitives in EMADE operate only on data collected in the FeatureData

containers of each instance, ignoring any data stored in StreamData parts of the instance.
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Code Listing 3.1 shows this feature extraction through the get numpy() function called on

the training and testing data to return the features as a numpy array.

3.4 Wrapping Signal Processing Functions

Unlike traditional machine learning algorithms, in EMADE, signal processing primitives

are not restricted to operate solely on feature data. Instead, each function takes in a param-

eter that specifies one of three modes: stream to stream, features to features, or stream to

features. In the first two modes, each signal processing algorithm runs on each instance

in both the testing and training datasets, altering the appropriate structure, be it stream or

features. In the third mode, the signal processing algorithm creates a new set of features x′

from the stream data x(t). x′ is appended to the existing x feature set.

Figure 3.4 presents various primitives operating on a given instance in EMADE. The

first row represents the starting point for the instance of data, in this case a noisy waveform.

The first method is a low pass filter (LPF) that operates in stream to stream mode. This

filters the noisy waveform and replaces the stream data with the result. Next, we apply a

fast Fourier transform in stream to features mode, which constructs coefficients from the

stream data (that is now a denoised version of the original data), and places the resultant

coefficients in the features bucket. The last method is a cumulative sum in features to

features mode. Like the LPF, this primitive operates in place, computing a cumulative sum

on the features bucket and replacing the features bucket with the result. Note that both

buckets are carried from primitive to primitive through the tree structure.

Most signal processing functions in EMADE operate on each instance in the dataset

independently. Code Listing 3.2 shows the general form of a signal processing function.

The first step in wrapping a signal processing function is to correct input parameters to

make the primitive as robust as possible. Robustness is important since the evolutionary

process can produce a wide variety of parameters that can lead to errors in the underlying

signal processing function, wasting time spent on evaluating the tree. If we can correct a
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Features Stream

Low Pass Filter:
Stream to Stream

Filter acts on stream bucket in place

Fast Fourier Transform:
Stream to Features

Coefficients are computed from stream bucket
and placed in features bucket

Cumulative Sum:
Features to Features

Cumulative sum is computed directly on
feature bucket

Figure 3.4: An example of how primitives interact with stream and features buckets
for the algorithm: cumulativeSum(FFT(LPF(data, stream to stream), stream to features),
features to features).
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parameter to be within acceptable bounds, then we can potentially save valuable evaluation

time. For example, if the function cannot process a negative number as a parameter, a

simple correction would be to take the absolute value of the parameter.

After we correct parameters, we apply the function independently to the training data

and the testing data. We first iterate on each dataset separately, then we iterate on each

instance in that dataset. For each instance, we retrieve the data to be operated on from the

appropriate container, as denoted by the mode of the primitive. We then run the function

we are wrapping on the retrieved data, and assign it back to the container that the mode

denotes. Table 3.2 shows the signal processing functions that EMADE currently supports.

Code Listing 3.2: Template for Wrapping a Signal Processing Function

def my_signal_processing_template(data_pair,

param_1, param_2, mode=FEATURES_TO_FEATURES):

"""

Psuedo-code for wrapping a signal processing

function. This underlying example function has two parameters

that are exposed to the wrapper.

"""

# Step 1 correct parameters for robustness, e.g., if the wrapped

# function expects positive inputs correct_parameter could be

# the absolute value function

param_1 = correct_parameter(param_1)

param_2 = correct_parameter(param_2)

# Initialize where the data will be temporarily stored

data_list = []

# Iterate through train data then test data

for data_set in [data_pair.get_train_data(),

data_pair.get_test_data()]:

# Copy the dataset so as not to destroy original data
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instances = cp.deepcopy(data_set.get_instances())

# Iterate over all points in the dataset

for instance in instances:

# Based on the mode of the function,

# decide which bucket to get data from

if mode is FEATURES_TO_FEATURES:

data = instance.get_features().get_data()

elif mode is STREAM_TO_STREAM or STREAM_TO_FEATURES:

data = instance.get_stream().get_data()

# Now that we have the appropriate data,

# apply the function we are wrapping

data = run_function(data, param_1, param_2)

# Based on the mode of the function,

# decide where to put data back

if mode is FEATURES_TO_FEATURES:

instance.get_features().set_data(data)

elif mode is STREAM_TO_STREAM:

instance.get_stream().set_data(data)

elif mode is STREAM_TO_FEATURES:

old_features = instance.get_features().get_data()

new_features = np.concatenate(

(old_features.flatten(),

data.flatten())

)

# Set new labels for the generated features,

# e.g., labels may be names of features, or time indices

data_labels = generate_data_labels()

new_labels = np.concatenate((

instance.get_features().get_labels(),

data_labels

))

41



Table 3.2: Signal Processing Functions Supported in EMADE as Primitives.

Windowing Functions Filters Transforms Math Functions

Hann Averaging Discrete cosine transform Autocorrelation
Hamming Difference Fast Fourier transform p-Norm

Tukey Kalman Discrete wavelet transform Root mean square
Cosine Wiener Principal component analysis Sum

Lanczos Savitzky-Golay Independent component analysis Cumulative sum
Triangular Sparse principal component analysis Product

Bartlett Linear predictive coding Cumulative product
Gaussian Empirical cumulative distribution function Absolute value

Bartlett Hann Log
Blackman Arcsine

Kaiser Arccosine
Planck Taper Arctangent

Nuttall Sine
Blackman Harris Cosine
Blackman Nuttall Tangent

Flat top Exponential
Cross correlation

instance.get_features().set_data(

np.reshape(new_features, (1,-1)),

labels=new_labels

)

new_data_set = EMADEData(instances)

data_list.append(new_data_set)

# Build EMADEDataPair

data_pair = EMADEDataPair(train_data=data_list[0],

test_data=data_list[1])

gc.collect(); return data_pair

Depending on the method or the mode of operation, the dimensionality of the data can

change, both in terms of number of observations, and number of features. For this reason,

the passing of training data and testing data throughout the tree in tandem is important.

3.5 Other Primitives

Table 3.3 shows a variety of other functions found in EMADE, including a number of

image processing techniques implemented from OpenCV [49]. The table also includes
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Table 3.3: Other Functions Supported in EMADE as Primitives.

Clustering Affinity propagation Mean shift Dbscan Spectral
K-means Agglomerative Birch

Feature Selection K-Best Percentile Fpr Fdr
Generic Univariate Fwe Varience Threshold

Image Processing

Minimum to zero To uint8 To uint8 scaled To float
To Float normalize Edge detection Canny Corner detection Harris Corner detection min eigenval
Highpass Fourier ellipsoid Lowpass Fourier shift Highpass Fourier shift Highpass Fourier Gaussian
Highpass Fourier uniform Highpass unsharp mask Highpass Laplacian Highpass Sobel derivative
Lowpass filter median Median blur Lowpass filter average Blur
Lowpass filter Gaussian Lowpass filter bilateral Lowpass Fourier ellipsoid Lowpass Fourier Gaussian
Lowpass Fourier uniform Threshold binary Threshold to zero Morph erosion rect
Morph erosion ellipse Morph erosion cross Morph dilate rect Morph dilate ellipse
Morph dilate cross Morph open rect Morph open ellipse Morph open cross
Morph close rect Morph close ellipse Morph close cross Morph gradient rect
Morph gradient ellipse Morph gradient cross Morph tophat rect Morph tophat ellipse
Morph tophat cross Morph blackhat rect Morph blackhat ellipse Morph blackhat cross
Contours all Contours min area Contours max area Contours convex concave
Contours min length Contours max length Contour mask Contour mask min area
Contour mask max area Contour mask convex Contour mask min length Contour mask max length
Contour mask range length Contour mask min enclosing circle Contour mask max enclosing circle Contour mask min extent enclosing circle
Contour mask max extent enclosing circle Contour mask range extent enclosing circle Contour mask min aspect ratio Contour mask max aspect ratio
Contour mask range aspect ratio Contour mask min extent Contour mask max extent Contour mask range extent
Contour mask min solidity Contour mask max solidity Contour mask range solidity Contour mask min equ diameter
Contour mask max equ diameter Contour mask range equ diameter Threshold n largest Threshold n largest binary

some feature selection and clustering methods from scikit and other sources. While we do

not go into great detail about these methods, some of them are leveraged in Chapter 4 in

applications of EMADE.

3.6 Mating and Mutation

EMADE supports multiple mating methods, including single-point crossover, ephemeral-

only crossover, headless chicken crossover, and headless chicken ephemeral crossover.

Single-point crossover is leveraged directly from DEAP, while ephemeral-only and head-

less chicken mating operators are custom-implemented genetic operators for EMADE. An

ephemeral-only crossover is a mating method we developed for the specialization of ex-

changing regeneratable terminals between individuals, rather than entire subtrees as in tra-

ditional crossover. Figure 3.5 shows an example of ephemeral-only crossover. This method

of mating is our way of supporting tuning, making this technique closer in spirit to genetic

algorithms than to genetic programming, as it is only transferring parameters.Two individ-

uals that undergo an ephemeral-only crossover will have their general structures preserved.

Headless chicken crossover is a single-point crossover with one parent being a randomly

generated tree. Headless chicken ephemeral crossover is our ephemeral-only crossover

operating with one parent being a randomly generated tree.
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Figure 3.5: An example of an ephemeral only crossover. Note that only ephemerals of like
types can be exchanged, such as a scalar (pictured in red) or a machine learning parameter
(pictured in green).

Both headless chicken operators can be used as a litmus test for the effectiveness of

genetic programming at solving a particular problem. For example, if headless chicken

crossovers (randomness) are producing higher quality solutions than traditional single-

point crossover, then we can assume that useful information is not being exchanged through

crossover [50].

The mutation methods EMADE leverages are insertion, ephemeral, node replacement,

uniform, and shrink. All five are implemented from DEAP. An insertion mutation randomly

adds a new subtree to a location in the tree structure. An ephemeral mutation randomly

regenerates an ephemeral constant, which is a terminal in the tree. A node replacement

randomly changes one primitive to another. A uniform mutation is similar to an insertion,

but rather than adding a subtree to the individual, it replaces a random subtree with a newly

created one. A shrink mutation randomly removes a subtree, replacing the entire subtree

with one of its inputs.

For the shrink mutation (also known as the node removal operator) to function cor-

rectly, we require an added objective representing parsimony, e.g., the depth of the tree, or

the number of elements in the tree. Parsimony is essential because an algorithm that per-
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forms as well as another should be considered to be dominant if it is less complex. While

this objective does not directly affect performance, it does help support Occam’s razor,

“entities must not be multiplied beyond necessity,” or more colloquially “other things be-

ing equal, simpler explanations are generally better than more complex” [51]. Together,

a parsimony objective and shrink operator help to control bloat. Without the emphasis on

parsimony, the genomes in EMADE would continue to grow unchecked throughout the

evolutionary process. This bloat would increase the time it takes to evaluate each genome

as the optimization progresses, as well as increase the probability of crossing over inactive

subtrees (or latent DNA in our biology metaphor), which increases the probability of de-

structive operations. Chapter 4 shows some examples of bloat that appear in the application

of EMADE.

3.7 Selection

Selection is performed using NSGA-II as described in Section 2.4.1, with the exception

that crowding distances are modified prior to selection by applying the hypercube distance

(HCD) scaling algorithm proposed by Rohling [18], described in Section 2.2. HCD scaling

allows for the acceptance of an individual in a more crowded region if that region is more

interesting.

This procedure serves to steer the selection process towards regions of interest in ob-

jective space. The scaling factor in our usage is bounded between
3

1 + 2
√
K

(occurring

when the individual lies outside of the achievable region) and 3 (which occurs when the

individual lies inside of the goal region). Here, K is the number of objectives. Figure 3.6

shows a contour plot of how the scale factor changes based on an individual’s location in

objective space.

In EMADE, an elite pool is maintained and used to create a gene pool in each genera-

tion by appending any evaluated offspring, performing selection, and recomputing the elite

pool. Unlike the offspring selection process (which uses an NSGA-II scheme), a strength
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Figure 3.6: A plot of HCD in a two objective minimization example.

Pareto evolutionary algorithm (SPEA2) [12] truncation scheme is used to select the elite

pool. Section 2.4.2 explained the details of the algorithm.

In the context of EMADE, the fitness of each individual is computed as F (i) = R(i) +

D(i). Here, R(i) is the raw fitness score of individual i and D(i) =
1

σki + 2
, where σki is

the distance to the kth nearest data point to i. The gene pool is sorted in ascending order

by fitness, since SPEA2 is a minimization scheme. After the SPEA2 sorting, the pool is

truncated to the Nelite lowest (best) elements. These elements form the elite pool.

The crowding distance in the elite pool calculation is not scaled using the HCD operator

as it was for our modified NSGA-II. This can result in a wider coverage of the objective

space in the elite pool than is desired by the thresholds set for each objective. The ad-

vantage, however, is more genetic diversity being preserved from generation to generation,

even if it has a low probability of mating.

3.8 Hashing Evaluated Individuals and Subtrees

Facility Layout Optimization Using Simulation and Genetic Algorithms [52] showed that

re-computation of individuals can be avoided efficiently through the use of a hash table.

The EMADE framework uses a hash string representation (parse tree) of each created tree

with an SHA-256 hash. EMADE stores the objective score vector of the individual with its
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associated hash. When a new individual is created through mating, mutation, or generation,

its string representation is hashed to determine if it already exists in the hash table. If it

does, the values are pulled from the table, and it is not sent for evaluation. This trades off

the relatively inexpensive cost of hashing each new genome for the time intensive cost of

reevaluating an already computed individual.

EMADE also hashes results of machine learning training (in effect, subtrees). Be-

fore training a machine learning algorithm, the input feature data is hashed along with the

learner type and parameters. If this hash has already been written, the trained machine

learner is read from disk. This hashing method is significantly cheaper than retraining a

learner on the same set of features. It also helps as subtrees are exchanged in mating,

meaning trained and evaluated branches are reused across multiple individuals.

The expected benefit bi that hashing learner i provides can be expressed as bi = riti,

where ri represents the probability that the trained model will be used again on the same

data, with the same model parameters, and ti is the time it took to train model i. We also

must consider limiting our cache to a particular size S. We can now phrase our caching

system as a 0/1 knapsack problem where we wish to maintain a set j that maximizes
∑

j bj

such that
∑

j sj < S, where sj is the disk size of learner j.

For time-series and feature-based problems, we do not cache results for signal process-

ing functions. For the most part, the expected benefit of each method is significantly lower

than that of machine learning functions, since signal processing functions do not have to

be fit prior to application. While most machine learners have compact representations on

disk, most signal processing methods in EMADE have roughly the same memory footprint

as their input data, making caching a low-yield operation due not only to the limitations

of storage, but also the amount of time required to write and read the cached information.

Often, the write and read times are more expensive than the time to execute the functions in

memory. In the future, as we move to solve more complex application problems in the im-

agery and video domains, we may find caching these functions might be more worthwhile.
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3.9 Handling Large Datasets

DEAP handles its distributed computing through another Python package, SCOOP (Scalable

Concurrent Operations in Python) [53]. SCOOP spins up a number of workers among

a set of hosts. Because evaluating an individual can be memory intensive due to large

amounts of data and complex primitives, having multiple workers on a single machine can

quickly consume all of the available memory. To avoid this, each process’s memory usage

is monitored, and it is terminated if it exceeds a specified amount. SCOOP workers do not

respawn; therefore, each SCOOP worker must start a separate process to run the evaluation.

The original thread watches the newly created thread’s memory usage, and terminates it if

necessary. Any individual that consumes an intolerable amount of resources is given a poor

fitness score to avoid reproduction in the future.

3.10 Tiered Datasets

Some of the challenges in working with machine learning functions include the memory

and processing time required to preform classification or prediction. Both resources in-

crease exponentially with the size of the datasets. Evaluating hundreds of thousands of

individuals is an intensive task for even a powerful cluster of computers. To this end,

EMADE was designed to increase the size of the datasets used as an individual passes

through stages. A program can first be tested with a small set of data; all the individuals

that meet a threshold requirement are analyzed, and the top tier (strong Pareto strength) are

then sent on to the next largest dataset.

Datasets are tracked by an Age attribute assigned to each individual. In this metaphor,

age represents the knowledge and experience an individual acquires through its life. Through-

out the evolution, this age increases as the individual evaluates each tier of data.

Individuals move from dataset to dataset as follows. Age starts at zero, indicating the

individual needs to be evaluated on the first dataset. Evaluation begins on the smallest

48



dataset. When the objective scores are returned, EMADE adjusts them so that any individ-

ual that evaluates on a more mature dataset will dominate any individual that evaluated on

an earlier dataset. For example, take the case of a minimization problem with a three-tiered

dataset. If the two objectives are each bounded on [0, 1), then we can choose an offset of 1,

so that dataset 1 will yield adjusted scores of [2, 3), dataset 2 will be bounded on [1, 2), and

dataset 3 will be bounded on [0, 1). Figure 3.7 illustrates an example of the objective values

for a similar three-tiered dataset. Once adjusted objectives are returned, a subpopulation

N is selected for transitioning to the next level. Then, using thresholds, the subpopulation

is divided into two pieces, specialists (which are below the threshold in one objective) and

well-rounded individuals (which are below the thresholds in multiple objectives). EMADE

selects N/4 specialists and 3N/4 well-rounded individuals. The specialists help retain ge-

netic diversity near the boundaries of performance. Each piece contributes a portion of the

subpopulation using a SPEA2 sort and truncation selection.

After the individuals are selected, their age is incremented by 0.5 to indicate they have

completed the prior dataset and are awaiting results on the next tier of data. When the

individual returns from its maturation, its Age will be incremented by the remaining 0.5.

The number of individuals N that are selected for advancement each generation degrades

by a factor of two:

N =
NL

2 · (Di + 1)
,

whereNL is the launch size for new individuals, andDi is the zero-indexed dataset number.

Any individual that fails its evaluation on dataset 0 will not be selected to advance to the

next level, meaningN only actually serves as an upper bound for the number of individuals

selected to advance. This number is lower bounded by the number of individuals with

valid fitness at age 1. In our three-tiered problem, if NL = 512, then every generation

512 new individuals are created, 256 individuals advance from dataset 0 to 1, and 128

individuals advance from 1 to 2. This means a maximum of 896 individuals are placed into

the evaluation queue.
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Figure 3.7: An example of a three-tiered structure where the objective scores for each
dataset are bounded on [0, 1) and being minimized.

This concept follows the idea of extra-genetic information in nature, knowledge ac-

quired over the life span of a particular species. Tiered datasets in EMADE were inspired

while solving the adult dataset problem from the UCI Machine Learning repository [28].

This problem presents the challenge of having 48,842 instances of data. Each instance

comprises fourteen features: age, workclass, fnlwgt1, education2, education-num3, marital-

status, occupation, relationship, race, sex, capital-gain, capital-loss, hours-per-week, and

native-country. With a dataset of this size, partitioning into a small and full dataset allowed

individuals to “fail fast.” More computer processing time was spent on individuals that

1 Description of fnlwgt (final weight) from the dataset:
The weights on the CPS files are controlled to independent estimates of the civilian noninstitutional popu-

lation of the US. These are prepared monthly for us by Population Division here at the Census Bureau. We
use 3 sets of controls. These are:

1. A single cell estimate of the population 16+ for each state.

2. Controls for Hispanic Origin by age and sex.

3. Controls by Race, age and sex.

We use all three sets of controls in our weighting program and “rake” through them 6 times so that by the end
we come back to all the controls we used.

The term estimate refers to population totals derived from CPS by creating “weighted tallies” of any spec-
ified socio-economic characteristics of the population.

People with similar demographic characteristics should have similar weights. There is one important
caveat to remember about this statement. That is that since the CPS sample is actually a collection of 51 state
samples, each with its own probability of selection, the statement only applies within state.

2Education is the highest level of education completed.
3Education-num is the number of years of education.
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had already been somewhat proven, rather than on fatal alleles (genotypes that resulted in

poor performance). This is similar to the work by Rohling [18] on computing expensive

evaluations independently. However, rather than thresholding on time-consuming objective

functions, we threshold on time-consuming and memory-intensive datasets.

In practice, on the adult dataset problem, out of 30,181 individuals, 24,294 were not

necessary to advance to the larger datasets. At an average computation time of 258 seconds

for an evaluation on the larger dataset, this represents a savings of over 1741 hours of

computation time. By contrast, on the smallest dataset, only one percent of the total number

of instances was used, and computation times averaged only 1.35 seconds. This means that

our gain of approximately 1741 hours came at the expense of only 2.21 computational

hours on the redundant computations required for those 5887 individuals that advanced.

As a percentage, these times translate to accomplishing the same amount of individuals

in 19.6% of the evaluation time, a savings of 80.4%. Chapter 4 shows more examples

of tiered datasets saving significant processing time on other problem domains, including

time-series and image-processing applications. Evaluation times and memory requirements

tend to be significantly more demanding with these larger data problems, and the tiered

dataset approach affords even more benefits in these domains.

3.11 Decentralized Control and Database

As EMADE moves from cluster configurations to cloud-based implementations, the lim-

itations of SCOOP become apparent. For example, bringing new workers online after an

optimization has started is not possible with SCOOP. To address the limitations of SCOOP,

we added an option for database-driven control. With this control scheme, EMADE lever-

ages a central database to support a scalable configuration, where a master and a set of

workers can be brought up or down at any time so long as the database persists. The

database consists of three tables, a history of all individuals that have been run in the evolu-

tionary process, a set of non-dominated individuals at each generation, and a table showing
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the status and performance of each individual.

The master process is responsible for maintaining the population of individuals and

producing offspring from those it sends for evaluation. The master is also responsible for

updating the non-dominated table each generation. The worker processes reads unevaluated

individuals from the database, evaluates them, and then updates them for later use by the

master.

Each individual in the database is referenced by a hash of the string representation of

the parse tree. The hash is created when the individual is created and set as an attribute on

the object. Therefore, the hash is only computed once over the lifespan of the individual,

be it on the worker or master process.

Other columns in the individuals table include the pickled representation of the indi-

vidual, each objective score that was computed on the individual, the ID of the last ordered

dataset that the individual was evaluated against, the generation in which the individual first

appeared, and the time to evaluate the most recent dataset.

When EMADE begins running, it can either start from an existing database, which we

call “reuse,” or wipe the database clean, which we refer to as “no-reuse.” By running with

reuse, we can have an effectively stateless optimization, as the full history of individuals is

available at any time in the database.

The database can also be used to implement island model evolution and migrations

through the use of multiple databases. Island models of evolution are common in the ge-

netic algorithm domain in which subpopulations are evolved independently, with the excep-

tion of periodic migrations between subpopulations. Optimizations can be run concurrently

or piecemeal, and individuals can be transferred from one database to the next to support

the migration operation. While we do not explore the utility of these approaches in this

research, the capability to study the impacts of this evolutionary strategy exists within our

database structure.

The database can also be accessed outside the optimization to support analysis, extrac-
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tion, and seeding operations. To seed the optimization, individuals can be added to the

database manually either before the optimization, in which case it will appear in the ini-

tial population, or during the optimization, where it will be evaluated in the order it was

inserted.

3.12 Batch Processing

As data size increases, the ability to keep entire datasets in memory simultaneously be-

comes more challenging. For applications with large data, we typically use batch process-

ing to read and operate on data piecemeal. While not all methods can be implemented in

batch mode, both the framework and those methods that can be implemented in batch are.

Batch processing is also known as out-of-core processing, and machine learning methods

that support it are often referred to as online learning methods. Some of these methods

are sensitive to the size of each batch, while others are not. The specific methods that

EMADE currently implements as primitives are the stochastic gradient descent (SGD) and

passive aggressive methods from scikit-learn. When processing batched data in EMADE ,

the batch size is currently set as a hyper-parameter in the input document. Batch size is not

included in the search space for optimization.

3.13 Summary

This chapter highlighted the unique capabilities of the EMADE infrastructure that set it

apart from traditional genetic programming approaches and other autoML frameworks.

The presented contributions allow for the application of automated approaches to challeng-

ing problems. In the past, it was not be possible to achieve human-competitive results

using genetic approaches due to the complexity of the algorithms that using simple prim-

itives could produce, the limited number of evaluations that the evolution could achieve

with more complex primitives, and the lack of evolvability of past representations.

Next, Chapter 4 shows how the contributions from this chapter support a wide variety
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of application problems, including those that were previously excluded from the domain

of autoML. Perhaps more importantly, Chapter 4 shows that EMADE produces human-

competitive solutions to these problems. Chapter 5 describes new approaches to aspects of

the evolutionary process that the contributions from this chapter enable.
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CHAPTER 4

DEMONSTRATIONS OF EMADE

This chapter demonstrates the capabilities of EMADE by applying it to several different

types of problems, as shown in Table 1.1. Each problem type results in EMADE-produced

algorithms competitive with human-made state-of-the-art in each domain. For the adult

dataset in Section 4.1 and the Titanic dataset in Section 4.5, we compare our results with

TPOT, an alternative autoML solution.

4.1 Feature Classification: Adult Dataset

The adult dataset can be found on the UCI Machine Learning Repository [28]. It comprises

48,842 points of data from the 1994 census, each with 14 features. The dataset consists of

two pieces, a training set of 32,561 instances and a withheld validation set of 16,281 in-

stances. The task for this dataset is a binary classification problem: given the 14 features,

predict whether each individual made more than, or less than or equal to 50 thousand dol-

lars. The features are age, workclass, fnlwgt, education, education-num, marital-status,

occupation, relationship, race, sex, capital-gain, capital-loss, hours-per-week, and native-

country. One of the challenges of this dataset is that the classes are unbalanced, i.e. there

is a 76/24 split for individuals making less than 50 thousand and individuals making more,

respectively. By producing a classifier which always chooses less than or equal to 50 thou-

sand, you instantly have 76% accuracy in terms of overall error. In general, classification

algorithms will favor the more common class. While simultaneously optimizing against

multiple objectives allows for a full exploration of the trade-off space, regardless of the im-

balance, the underlying favoritism of the classifiers to reducing false positives often results

in an imbalance on the distribution of non-dominated solutions.

To prepare the dataset for EMADE, we first take the 32,561 points of training data
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and run them through a vectorization process using scikit’s dictionary vectorizer method.

Vectorization transforms the 14 feature columns of categorical features, such as education,

marital-status, and native-country, into multiple binary columns. In this expanded repre-

sentation, each binary column indicates the presence of a particular categorical value. Each

vectorized column set always has a single element set to true. The result of this process

expands the original 14 features to 110 vectorized features.

Next, we cross-fold the training data into five training/testing pairs. Each pair comprises

80% training data and 20% testing data. A small sample of the the first fold forms our first

tier dataset of 262 training samples and 69 testing samples.

To evaluate each individual algorithm, we use three objectives. The first two are apt for

a binary classification problem: false positive rate, i.e. predicting a person made over 50

thousand dollars when they made less,

f1(ŷ, y) =
1∑N

k=0 1− yk

N∑
k=0

|(1− yk)(ŷk − yk)|,

and false negative rate, i.e. predicting a person made less than 50 thousand dollars when

they made more,

f2(ŷ, y) =
1∑N
k=0 yk

N∑
k=0

|yk(ŷk − yk)|.

For each of these objective functions, yk is the truth value for each data point and ŷk is the

prediction made by the algorithm being evaluated. The remaining objective is the number

of elements in the genome of the individual. Section 3.6 noted this objective rewards par-

simony. We use a parsimony objective function in all subsequent applications of EMADE.

Because this section deals with pure feature data (which other AutoML platforms can

handle as well), it makes sense to compare our results to results in literature. We com-

pare EMADE against another DEAP-based AutoML framework, TPOT, as both TPOT and

EMADE utilize evolutionary algorithms to evolve classifiers. Here, we run both EMADE

and TPOT with population sizes of 512 individuals and 100 generations. This should rep-
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resent on the order of 50,000 individuals evaluated. We use the same training data to

cross-fold into five training and testing pairs for designing and optimizing individuals in

both frameworks. We evaluate the Pareto-optimal algorithms from each framework on the

same withheld data from the UCI repository, and plot the performance of each algorithm

against false positives and false negatives.

The objectives define a Pareto front. Figure 4.8 show the frontier at the end of genera-

tion 100 for EMADE. We compute this frontier from the projection of the three-dimensional

front onto the plane of objectives f1 and f2, i.e. false positives and false negatives, respec-

tively. Every standalone machine learner is dominated by a chromosome created by the

framework. Figure 4.1 shows the hypervolume, or interchangeably, area under the curve

(AUC), as we are only considering two dimensions, of the non-dominated individuals on

objectives f1 and f2 during the 100 generations of the optimization. We compute AUC

using the left-hand Riemann sum of the objective scores of the non-dominated individuals

as

AUC =
N−2∑
i=1

(x[i+ 1]− x[i])(y[i]), (4.1)

where i is the ith Pareto coordinate pair when sorted by x coordinates in ascending order.

For our problem, x represents false positive rate (f1) and y represents false negative rate

(f2). During the evolutionary process, there are long periods of stagnation with little to

no change occurring between generations followed by abrupt reductions. This punctuated

equilibrium phenomena is something commonly observed in nature as well, where a popu-

lation is relatively stable until a useful mutation is discovered and quickly spreads through

the population as it reaches its next equilibrium.

Figure 4.2 shows the number of non-dominated individuals in each generation over the

course of the optimization. The general increase in the number of non-dominated individ-

uals over time indicates that the genetic algorithm is successfully exploring the trade-off

space between objectives. The small drops along the way indicate that the search produced

an individual that dominated several others in the non-dominated frontier. This may or
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Figure 4.1: Area under the curve enclosed by non-dominated individuals on objectives f1
and f2 (i.e., false positives and false negatives) during adult dataset optimization.

may not coincide with a drop in area under the curve, depending on which objectives the

new individual dominated the old individuals. It could be the case that the new individual

achieved the same results in f1 and f2, but did so in fewer elements, and so the AUC does

not change.

Figure 4.3 shows a box and whisker plot of the time it takes to evaluate each individual

in the population by generation. The orange line traces the median time in each generation,

while the green line traces the mean. Each generation, the box spans the first (Q1) to the

third (Q3) quartile of the evaluation times, from which the difference defines the interquar-

tile range (IQR = Q3−Q1). The whiskers extend fromQ1−1.5∗IQR toQ3+1.5∗IQR.

Any evaluation times outside the range [Q1− 1.5 ∗ IQR,Q3 + 1.5 ∗ IQR] are considered.

The blue dots on the figure show the evaluation times of these outliers.

Despite the emphasis placed on simplicity of the algorithms, on average they grow more

computationally expensive as time goes on. There is a hard cutoff at 9000 seconds for an

evaluation. This cutoff is a parameter set in EMADE, which we can see is set appropriately,
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Figure 4.2: Number of non-dominated individuals in each generation.

since all individuals that are stopped because of processing time are outliers. This cutoff

has an analogy to nature that is to the amount of time it takes to produce offspring. Nature

bounds the time when an organism is able to produce viable offspring. This upper bound

stops the evolutionary process from spending to long to produce solutions, enabling faster

generations. This is an advantage in nature as shorter times between generations allow for

more adaptable populations.

In the beginning of the optimization (i.e., generations 0 through 18), the average eval-

uation time is drastically lower, since the evolution has not yet discovered an algorithm

that can make it past the first tier dataset. The average evaluation in generation 100 com-

pleted significantly faster than the generations that proceeded it. This anomaly comes from

the fact that the experiment ended at the beginning of generation 101. In a traditional,

synchronous evolution, the beginning of generation 101 would mean that every individual

in generation 100 completed their evaluation. However, EMADE uses an asynchronous

evolution technique. We use this technique to ensure that EMADE is always evaluating

individuals in parallel, rather than having many of idle workers waiting for the laggards of
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Figure 4.3: Box and whisker plot of the amount of time it takes to evaluate one individual
in the population by generation.

one generation to finish. Because of our asynchronous evaluation process, generation 101

beginning, does not guarantee that every individual in generation 100 completed its full

evaluation. We also know that it takes multiple generations for individuals to move from

tier to tier when using multiple datasets. By the time we stopped EMADE in generation

101, 50 individuals completed evaluation on the full dataset from generation 100, while 182

individuals were only evaluated on the first tier dataset. Contrasting these numbers with in-

dividuals from generation 99, 98 individuals were evaluated on the full dataset while 88

were only evaluated on the first tier.

Figure 4.4 shows the time between each generation during the evolution, i.e. from

the start of generation k to the start of generation k + 1. The amount of time between

generations increases throughout the evolutionary process. We expect this increase in inter-

generational time to increase because we know that average evaluation times per individual

increases throughout the evolutionary process as well. The inter-generational time varies,
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Figure 4.4: Inter-generational time throughout the course of an evolution.

despite the clear trend upwards trend. Neighboring generations can vary by as much as

100% toward the end of the experiment. This variability could be in part due to system

loads, but may also just be a natural by-product of the algorithms that each generation

produces.

Figure 4.5 shows the individual with the best overall accuracy of 87.64% on the 5 cross-

folds run through EMADE. This accuracy is characterized by a false positive rate of 5.5%

and a false negative rate of 34.2%. This follows our intuition; with the imbalance of the

dataset, we achieve the best accuracy mainly by suppressing false positives, as 76% of the

dataset is made up of negative examples, i.e. those who have made less than 50 thousand

dollars.

The algorithm in Figure 4.5 has quite a bit of genetic bloat. The root of the tree is a

SelKBest, which is a feature reduction method. This feature selection method makes no

alterations to the classifications of the algorithm and thus has no impact on performance.

Figure 4.6 shows this same genome with the feature reduction method removed.

Once the bloat is removed, the genome is still more complex than the algorithm it
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Figure 4.5: Individual with best overall accuracy scored on the cross-folded training and
testing data from the vectorized adult dataset.

Figure 4.6: Active portion of genome from Figure 4.5.
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Figure 4.7: Effective algorithm after simplification from Figure 4.6.

represents. The active genome in Figure 4.6 contains a ModifyLearnerInt method

that effectively changes the maximum depth of the Boosted Learner from 3 to 7.

Figure 4.7 shows the simplified genome.

The final algorithm is simply a combination of two learning techniques. The bagged

learner consumes the boosted learner as an input and uses it to fit multiple random subsets

of the data. The bagged learner then aggregates the classifications of the multiple boosted

learners to create the final classification of the algorithm. The underlying boosted learner

uses an AdaBoost algorithm to assign more importance to misclassified samples during

training.

After running the evolution for 100 generations, we chose the final non-dominated set

of algorithms produced by EMADE for evaluation against the validation set. The vali-

dation set contains 16,281 points of data. We put these points of data through the same

pre-processing steps applied to the training data. Figure 4.8 highlights the similarity be-

tween the performance of EMADE’s algorithms on the cross-folded testing data and the

withheld validation data. On the other hand, the algorithm produced by TPOT, which had a

testing accuracy of 87.57%, validated to an accuracy of 87.13%, while EMADE validated

to an accuracy 87.61%. EMADE’s ability to resist overtraining is due to its emphasis on

multiple objectives. While TPOT produced only ten solutions on two objectives of accu-

racy and complexity (number of elements), EMADE used three objectives to produce 137

algorithms. Figure 4.9 shows a zoomed-in view of the non-dominated frontier to highlight

the difference in final solutions produced by EMADE and TPOT.
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Figure 4.8: Non-dominated frontier on objectives of false positive rate and false negative
rate.

Figure 4.9: Non-dominated frontier on objectives of false positive rate and false negative
rate, zoomed-in to show comparison with TPOT.
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4.2 Time Series Classification: AGLogica

AGLogica is a company interested in behavior classification of companion animals to

support veterinary care. They aim to produce objective measurements of behaviors that

correlate with medical issues to better monitor the results of care and treatment plans.

EMADE produced high-quality classification algorithms that detect various behaviors from

accelerometer data, such as scratching and shaking. AGLogica uses both of these behav-

ioral algorithms in their Vetrax cloud platform to identify pruritic conditions and monitor

their treatment. Pruritic conditions are those that cause animals to itch or scratch.

4.2.1 Data Collection

Because EMADE requires supervised data, and no available canine accelerometer data set

exists, AGLogica collected a robust data set from two Atlanta Humane Society (AHS) lo-

cations, as well as the Animal Dermatology Clinic (ADC). In total, data was captured from

573 dogs: 235 from the AHS Howell Mill campus, 250 from the AHS Mansell campus,

and 88 from the ADC.

For each data dog in the study, AGLogica collected both video and sensor data. The

video was captured using various digital platforms, including a GoPro Hero4, Nexus 7

tablet, and Cannon VIXIA HF R600. The accelerometer data was captured from an Axivity

AX3 sensor sampling at 100 Hz. AGlogica used an annotation tool from the Language

Archive called ELAN (the EUDICO Linguistic Annotator) to label actions that occurred

during each data collection. Annotating the data began with a synchronization of video

and accelerometer information. The annotator aligned the two data sources based on a

strong up/down motion performed as the accelerometer was held in front of the camera

at the beginning of each collection. Then, with accelerometer data hidden, each video

was hand annotated by two observers using the controlled vocabulary shown in Table 4.1.

The common annotations from the two observers were then exported to line up with the
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Table 4.1: Controlled Vocabulary for Behavior Annotation

Gait Activity Scratching Licking Interaction Ignore

Walking - Off Leash Shaking Front Leg - Body Licking Paws Petting Not In View
Walking - On Leash Drinking Front Leg - Head Licking Body Other
Running - Off Leash Eating Hind Leg - Body Other
Running - On Leash Chewing Hind Leg - Head
Laying - Resting Barking Other
Sitting - Resting Excreting
Standing - Resting Urinating

Digging

Figure 4.10: Data is organized in rows when exported from ELAN, where each row repre-
sents one sample of data taken by the accelerometer.

accelerometer data such that every sample from the sensor was labeled with the activity.

Figure 4.10 shows an example of how an exported annotation is formatted. The columns

t, x, y, and z represent the readings from the accelerometer, t being time, and x, y, z being

the three axes of the accelerometer at each time. The annotated label is produced from the

annotations in ELAN.

4.2.2 Data Processing

Once the data has been exported from ELAN, each dog has its own file with the columns

time, x acceleration, y acceleration, z acceleration, and annotation. We drop all unannotated

rows from each file, and then break the remaining rows into one second frames of data. We

label each frame from their associated annotations. Each labeled frame is essentially a

3x100 matrix, where the three rows are the three accelerometer axes and the 100 columns

contain the 100 Hz samples for each labeled second. We also label each frame with the file
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it came from, ensuring that the data can be folded in manner where no data from a single

dog can appear in more than one set.

Because AGLogica performed their data collections for relatively short and carefully

observed periods of time, most of our data comes from regularly positioned accelerometers.

The position in question sits directly below a dog’s neck, with the z axis capturing up/down

motion, the x axis capturing left/right motion, and the y axis capturing forward/backward

motion. Because all our data is captured from a similar location, any algorithms produced

from this data will be biased to the same location. To better leverage these algorithms

in real-world scenarios, we transform each 3x100 frame by multiplying it with a rotation

matrix of a random angle about the y-axis:

framecorrected = Ry(θ) · frameraw =


cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)

 · frameraw, (4.2)

where θ is randomly generated for each frame that we transform. Rotating the data around

random angles about the neck (y-axis) helps add robustness to the dataset to prevent over-

training.

For scratching and shaking behaviors, we filter out data where the coefficient of vari-

ation (CoV= σ
µ

) of the frame is less than 0.2. Because both of these are high-energy be-

haviors, we prune down the data where little to no activity is occurring to help suppress the

false positive rates, as well as correct any over-annotations that occurred during the hand

annotation process. Over-annotations occurred when observers marked longer windows of

time in the video than the behavior took place. Removal of low-energy frames ensures we

are only making high-energy classifications on high-energy measurements.

We determined the threshold of 0.2 empirically by analyzing the training and testing

sets visually. We started with a low CoV threshold, and slowly raised it while inspecting

each frame of data of “scratching” and “shaking.” We looked for a high enough CoV
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Figure 4.11: A grid of all scratching data in the training set. Boxes with a green background
have a CoV> 0.2, while those with a red background have a CoV≤ 0.2. A change in color
of the line indicates a change in dog from which the frame was taken.

to remove frames where virtually no activity was present on the accelerometer, without

removing any frames that had activity. Figure 4.11 is an example visualization of the CoV

process for scratching data, where the frames shown with a green background are marked

as passing the CoV test, and those with a red background are marked as failing the CoV

test.

For the evolutionary machine learning process, we organize our data into two chunks:

the first is the set of data that we use to train and score the models, the second we withhold

until the final algorithms have been chosen and then use it to validate the algorithms on data

to which they have not been previously exposed. We cross-fold the first set of data into five

80/20 training/testing splits. The training data is a random selection of 80% of dogs in the

first set of data; we use it to fit machine learning models in the tree structure. The testing

data is the remaining 20% of dogs in the first set of data; we use it to compute objective

scores and assess performance. We average the objective scores over the five splits of the

data to get some sense of robustness for the algorithm. When finally implemented for

validation, we use the combined set of training and testing data for training the machine
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learning methods.

We took a small redundant portion of one of the folds to be a lower tier data set. This

enables EMADE to quickly identify algorithms that are unable to perform successful clas-

sifications without requiring the processing of the full dataset.

4.2.3 Objectives

While the overall goal of the Vetrax platform is to perform multi-class detection, we im-

plemented this as a series of binary classifiers in a rejection chain, as shown in Figure 4.12.

For each classifier, the objectives of false positives and false negatives are necessary. Both

the shaking and scratching events being observed are rare in the data set, making up about

4% of all one-second frames. This unbalanced data set means that high accuracy can easily

be achieved, but having strong confidence in the predictions by the classifier is more diffi-

cult, due to the metric of precision (also called positive predictive value). Precision is the

ratio of true positives to all positives reported by the algorithm (i.e. true positives and false

positives). For example, a 4% false positive rate and 0% false negative rate would lead to a

precision value of just 50%; when we see a prediction from the classifier, we may as well

flip a coin as to whether or not the dog was truly performing the activity. While precision

was not used as an objective in the optimization process (as it is just a weighted combi-

nation of false positives and false negatives), it was strongly considered when looking at

thresholds and algorithm selection.

4.2.4 New Primitives

AGLogica reached out to an expert in canine behavior classification for implementation of

their solution. One method they used was the empirical cumulative distribution function

(ECDF) coefficient method [54], which we implemented in EMADE.

For ECDF, on each axis, accelerometer readings are sorted in ascending order, then N

linearly spaced indices are sampled from the sorted array. The 3xN matrix of sample is
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Figure 4.12: Example of a rejection chain of binary classifiers. Each of the shaking and
scratching classifier only need to identify a single behavior. The frame of data will pass
through the chain until it is tested positive by one of these classifiers. At the end a place-
holder is in place to label the frame as running, walking or resting based on the total energy
in the frame.

then flattened into a single dimensional array of length 3N and appended with the means of

each of the axis for a total of 3N + 3 samples. Interestingly, without seeding any pre-made

tree configurations, EMADE found the ECDF coefficients to be a powerful primitive for

working with the accelerometer data.

4.2.5 Results

Because EMADE-evolved behavioral classification algorithms are a market differentiator

for AGLogica, we cannot share their implemented algorithms. However, we have per-

mission to show developmental algorithms. Figure 4.13 shows a walking algorithm pro-

duced by EMADE. While the performance of this algorithm was not sufficient to be a non-

dominated individual (and thus we are permitted to share it), it does demonstrate the ability

of EMADE to work with multi-dimensional time-series data. For this algorithm, EMADE

discovered the utility of the spectral representation of the accelerometer data combined

with a high pass filter to isolate the higher frequency components of the signal. These

higher frequency components help discriminate walking from other behaviors. The algo-
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rithm next uses a feature selection method to reduce the feature space to 11% of its size

prior to feeding the results to a triple-stacked learning procedure. The learning procedure

combines a Gaussian mixture model that feeds its prediction, along with the feature set, to

a bagged random forest classifier. Finally, the predictions of both the mixture model and

the bagged random forest combine with the selected spectral features to train a Bayesian

classifier.

This individual has a false positive rate of 31.33% and a false negative rate of 12.45%.

The high false positive rate comes from confusion with running. This algorithm is signif-

icantly more accurate than the prior state-of-the-art of choosing energy-based thresholds

and applying them to the particular sample. The energy calculation is

99∑
i=0

(
√
x[i]2 + y[i]2 + z[i]2 − 1), (4.3)

where i is the sample index in each 100 Hz frame of data; x, y, and z are the accelerometer

values in g’s of each axis, respectively. Figure 4.14 shows the analysis of true positive

(i.e. 1 - false negative) and false positive performance based on selecting two thresholds

to segment data between resting and walking, and walking and running. For comparison

to the EMADE algorithms, we select thresholds as follows. We begin with the selection

of a low threshold to lock in a true positive rate for resting. Reaching the 90th percentile

requires a low threshold of at least five. Next, for comparing to EMADE, we choose a high

threshold to match true positive rates for walking. With a low threshold of five, this 87.55%

false positive rate requires a high threshold around 60. With this configuration, the energy

calculation method has a false positive performance in the 50th percentile range. By these

measures, the EMADE-produced algorithm reduced false positives by 37.3%, i.e. orig−new
orig

.

The energy calculation in Equation 4.3 can still be used for running and walking.

While we cannot share algorithm details, we can share some performance information

from the development of the scratching and shaking algorithms. Figures 4.15 and 4.16
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Figure 4.13: Example algorithm evolved by EMADE to classify walking behaviors.

Figure 4.14: Performance for running, walking, and resting segmentation based on two
thresholds on total energy.
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show non-dominated frontiers for shaking and scratching algorithms, respectively, scored

on testing data. The shaded areas represent the positive predictive value (PPV) for each

region of objective space, based on the rate of occurrence of each behavior in the dataset.

After applying the testing data set, the head shaking algorithm selected for implementa-

tion showed sensitivity of 72.16% and specificity of 99.78%. In our testing, shaking made

up 0.81% of the data, resulting in an overall accuracy of 99.56%, a positive predictive value

of 72.57%, and a negative predictive value of 99.78%.

We validated the final scratching algorithm selected for implementation to show sen-

sitivity rate of 76.85% and specificity rate of 99.73%. Scratching made up 2.12% of the

data, resulting in an overall accuracy of 99.24%, a positive predictive value of 86.07%, and

a negative predictive value of 99.50%.

The low false positive rates and high positive predictive values allow the shaking and

scratching algorithms to produce reliable trends. Combined with a baseline measurement

of a dog prior to an intervention, these trends can be used by a veterinarian to objectively

understand how an animal responds to treatment.

4.2.6 Discussion

This section demonstrates the power of EMADE and autoML to generate extremely ac-

curate classification algorithms through multi-objective optimization. This work also rep-

resents the first application of autoML through genetic programming to time-series data.

Furthermore, the results featured in this section led to cloud-implemented algorithms, pro-

viding an industry-first objective tool for aiding management of pruritic conditions in dogs.

4.3 Feature Regression: Heat Stress Prediction

Emergency responders are required to wear personal protective equipment when respond-

ing to a variety of threats, primarily chemical, nuclear, and biological agents. In addition to

the dangers posed by these substances, the personnel also risk suffering the effects of heat
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Figure 4.15: Non-dominated frontier of performance of shaking classifier on cross-folded
test sets.

Figure 4.16: Non-dominated frontier of performance of scratching classifier on cross-
folded test sets.
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stress from the microclimate inside their hazmat suits, the type of work being performed,

and the external environment.

The effects of heat stress can be detected in changes in a user’s core temperature or

heart rate.1 If a subject’s heart rate is sustained2 above 0.9 × (220 − Age) or the subject’s

core temperature exceeds 38.5 degrees Celsius, then the emergency responder is considered

to be at risk. It is not recommended that an operator remain within a vapor-tight protective

garment for greater than one hour. Because of this guideline, we use an hour as an upper

bound for our trials. The earliest time in the trial at which any of these constraints is

violated is called the expected pull-time.

This section, uses EMADE to create algorithms that predict expected pull-time, given

characteristics of the user, the type of suit, and the environment. This application showcases

EMADE’s ability to operate on feature data.

4.3.1 Data Collection

Data was collected at two facilities by The Netherlands Organisation for Applied Scientific

Research (TNO) in Delft, Netherlands and North Carolina State University (NCSU) in

Raleigh, NC, USA. Subjects were asked to use a treadmill at varying intensities in different

environments, wearing a selection of suits. In total, 163 trials were performed. In each

trial, numerous sensors recorded data: one heart rate sensor, one core temperature sensor,

five microclimate relative humidity sensors, five microclimate temperature sensors, and five

different skin temperature sensors. Depending on the trial, data was sampled from each of

the sensors at a rate of one sample every ten or fifteen seconds.

1Throughout this section, heart rate is measured in beats per minute, temperature is measured in degrees
Celsius, and age is measured in years.

2By sustained, we mean that the heart rate continuously stays above the threshold for at least a minute.
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4.3.2 Physics-Based Model

We received a first-principles physics-based model from our sponsor. It was developed by

physiologists for thermal analysis, and provides time series predictions for a subject’s core

temperature based on 331 parameters that describe the clothing worn, the activity being

performed, the environment the work was performed in, and the physical attributes of the

user. The model does not provide the ability to predict heart rate. Also, for accurate pre-

dictions, it requires information that will be unavailable to the user at time of use; most

notably, an initial core temperature. The results of this model are used as one of our fea-

tures, which are described in the next section. In the context of EMADE, using this model

as a set of features is equivalent to forcing this node to be a primitive in every tree structure.

4.3.3 Feature Space

Although EMADE has the capability to work with time-domain data frames, for this prob-

lem we concentrated on operating directly in feature space. We framed the problem in this

manner due to the unavailability of real-time heart rate and core temperature data from the

subject during a trip downrange. All predictions will need to be constructed from action-

able situational data: the physical description of the subject, the environmental parameters

that can easily be measured in the field, and the parameters that make up the suit. The

eight features we use to predict expected pull-time are age (years), height (meters), weight

(kg), intensity of the work being performed (discrete value, indicating 2.5, 4, or 5.5 km/hr),

temperature (◦Celsius), relative humidity (percentage), suit (discrete value, meaning one

of six hazmat suits), and the prediction made by the physics model. The physics model’s

predictions were all generated beforehand using the software package provided by TNO on

each row in our data set, to increase the efficiency of running the optimization. In the field,

they would be generated on demand.

Out of the 163 trials performed, 120 were used for constructing the feature set. The

trials in which the activity was terminated prior to the expected pull-time were excluded,
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because in these instances we do not have a truth value that we are able to compare to our

predictions.3

4.3.4 Evaluation

Individual algorithms were evaluated using five randomly generated folds of the data set.

Care was taken to ensure that if a subject appeared in multiple trials, then all of that sub-

ject’s trials would be in either the training or the testing set. For each fold, 80% of the

subjects were placed in the training set and the remaining trials were used as testing data.

The objective scores are calculated based on the algorithm’s ability to successfully predict

values for the test data, and each objective was averaged over the five folds of the data.

Evaluation was performed on a cluster of eighteen Linux computers. The individuals

were distributed through DEAP’s built-in integration with SCOOP, which works in con-

junction with the cluster’s management software, Son of Grid Engine (SGE), to distribute

the load across the nodes effectively. We used a parallel environment allocation rule in

SGE to ensure that only three jobs were running on each machine. This yielded fifty-three

total evaluation slots and one root worker performing the evolutionary loop.

4.3.5 Evolutionary Parameters

For this problem, we used four mating operators with different rates of application: one-

point crossover (50%), ephemeral-only crossover (50%), headless chicken crossover (10%),

and headless chicken ephemeral crossover (10%). The mutation methods used and their

rates of application were: insertion (5%), ephemeral (25%), node replacement (5%), uni-

form (5%), and shrink (5%). We applied each operator independently across the population.

The elite pool was chosen to be a fixed size of 512 individuals. Two hundred indi-

viduals were selected to be evaluated in each asynchronous generation, meaning selection

3Actual pull-time is the time at which the trial was actually concluded. This can be less than the expected
pull-time due to a measurement error or a subject voluntarily terminating his or her trial early. Both cases
occurred.
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was generally performed from approximately 712 individuals, depending on the arrival of

results.4

4.3.6 Objective Functions

EMADE produced algorithms in two phases of optimization with two different sets of

objectives.

Optimization 1

If {yj}Nj=1 are the expected pull-times (truth values) and {ŷj}Nj=1 are the corresponding

predictions (so that ŷk is the predicted value of yk for k = 1, 2, . . . , N ) and if J =

{1, 2, . . . , N} is the set indexing the sequences, then Junder = {j ∈ J : ŷj < yj} is

the set of indices where under predictions occurred and Jover = {j ∈ J : ŷj > yj} is the set

of indices where over predictions occurred. In the context of the application of the models

we create, an over prediction puts the first responder at risk, i.e. we predict they can work

longer than they are able to safely. An under prediction puts the task the responder is trying

to accomplish at risk, since we predict they have less time than they do to perform their

critical task. There is a meaningful trade-off space here, and different situations certainly

call for different tolerances of error.

The first set of objective functions were chosen to minimize different types of prediction

errors. They were:

• Root Mean Squared (RMS) error,

√√√√ 1

N

N∑
k=1

(yk − ŷk)2

• mean over prediction, f(Jover)

• mean under prediction, f(Junder)

• percent error,
1

N

N∑
k=0

|yk − ŷk|
yk

4EMADE does not use generation synchronization, but rather creates a queue of solutions to evaluate. It
spawns a new generation when the queue falls below a certain size (in this case, one hundred individuals).
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• the depth of the algorithm’s tree

where f(K) =
1

|K|
∑
k∈K

|yk − ŷk|.

Optimization 2

For the second cycle of optimization, the Pareto front from the first cycle was used to

seed the optimization. This set of objective functions was designed to explicitly reduce the

variability in error in addition to the size of the error. These functions are:

• mean over prediction

• mean under prediction

• count of over predicted trials, |Jover|

• count of under predicted trials, |Junder|

• standard deviation of over prediction, g(Jover)

• standard deviation of under prediction, g(Junder)

• maximum over prediction, h(Jover)

• maximum under prediction, h(Junder)

• the depth of the algorithm’s tree

Here, g(K) =

√
1

|K|
∑
k∈K

(xk − x̄)2 is the standard deviation of xk = |yk − ŷk| over the set

K and h(K) = max
k∈K
|yk − ŷk|.

4.3.7 Results and Discussion

Optimization 1

Beginning our evolutionary process with a human-generated solution affords us a point in

objective space against which we can compare our automatically generated algorithms. In
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Figure 4.17: Pareto fronts of solutions generated by EMADE when projected from five
dimensions to two dimensions: mean over prediction and mean under prediction, both
displayed in minutes. The scores are averages from five folds of testing data.

this case, we used the physics-based model described in Section 4.3.2 by itself to predict

a subject’s core temperature over time. These predictions were used in turn to predict

expected pull-time, as described in Section 4.3. The results of evaluating the model against

our objective functions from Section 4.3.6 are shown in table 4.2. This table also shows

the results of other human-derived primitives that were applied to the feature space and

objective functions. As described in Section 3.3, these machine learning functions are used

by EMADE as primitives. By itself, the physics-based model dominates the kNN, decision

trees, and Bayes classifier, while it is co-dominant with the OMP and SVM functions.

When leveraged together, we were able to produce algorithms that dominate all of these

single-element solutions.

A graph of the Pareto fronts over time of two objectives from our five objective opti-

mization is shown in Figure 4.17. Because both objectives represent error metrics, they are

both minimized. The inner-most (bottom left) line represents the final Pareto front com-

puted in these two dimensions. Analysis of these scores illustrates the power of EMADE,

which evolves starting with human-derived point solutions to reach Pareto-dominant solu-

tions to human-generated algorithms. With a mean over prediction of 11.3 minutes and a
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Figure 4.18: Pareto fronts of solutions generated by EMADE when projected from nine
dimensions to two dimensions: mean over prediction and mean under prediction, both
displayed in minutes. The scores are averages from five folds of testing data.

mean under prediction of 10.0 minutes for the physics-based model, there are numerous

solutions on the final Pareto front to choose from. Each of the human-derived machine

learners that are used as primitives in EMADE are dominated by our Pareto front in the

plotted objectives.

Optimization 2

A second optimization was performed using the Pareto front of the previous optimization

as a set of seeds. The Pareto front over time for this cycle is shown in Figure 4.18. A selec-

tion of solutions dominant to the physics based model is shown in Table 4.3.5 EMADE’s

dominance of the physics-based model and the basic machine learners holds in the two

objectives of interest.

Table 4.3 shows the ten solutions in the nine objective space generated by EMADE that

dominate the physics-based model on all objectives. There are also results not shown in this

table that dominate the human-derived machine learners on all objectives. The algorithm

that was chosen for implementation corresponds to ID 1359 in the table. This algorithm’s
5Depth, count over, and count under do not factor into dominance. We seek to minimize these objectives,

but they do not have negative effects on performance.
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Figure 4.19: An algorithm that dominates the physics-based model. This result was chosen
to be used in the field.

Table 4.2: 9 Objectives Baseline Performance. Errors are in minutes.

Method Mean Maximum Standard
Deviation

Over Under Over Under Over Under
Physics Model 11.3 10.0 38.8 28.5 9.30 6.21

kNN 16.8 19.4 33.3 43.0 10.53 11.43
SVM 27.9 0.0 51.5 0.0 12.22 0.00
Bayes 15.7 14.6 38.1 24.1 11.09 7.37
Trees 13.8 16.1 40.7 28.9 11.62 9.65

Random Forest 16.9 13.3 42.9 29.8 12.15 9.47
k-means 0.0 42.8 0.0 60.0 0.00 16.74
BLUP 1,099.0 764.7 5,885.3 2,348.5 1,575.09 722.45
OMP 13.4 6.8 29.1 22.6 8.99 5.48
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Table 4.3: 9 Objectives Machine Learner Performance. Errors are in minutes.

ID Mean Maximum Standard Depth
Deviation of

Over Under Over Under Over Under Tree
430 10.4 9.5 25.2 26.0 8.83 6.15 3
431 10.4 9.5 25.2 26.0 8.83 6.15 2
541 11.0 9.4 26.2 26.8 8.46 6.17 6
544 11.3 9.4 26.8 26.7 8.84 6.16 3
545 11.3 9.4 26.8 26.7 8.84 6.16 4
1359 10.9 8.0 28.1 22.9 8.68 6.01 3
1360 10.9 8.0 28.1 22.9 8.68 6.01 3
1361 10.9 8.0 28.0 22.9 8.67 6.00 5
1451 11.3 9.0 28.3 24.2 8.21 6.15 4
1834 10.3 7.6 31.6 22.3 9.24 6.18 4

tree is presented in Figure 4.19. We selected this algorithm over other options because

it offers similar performance in over prediction error to the physics-based model, while

significantly reducing under prediction error and maximum error in both the under and

over predicted cases.

This section showed how EMADE elevated the capabilities of standard genetic pro-

gramming techniques to produce solutions that outperformed human-generated algorithms.

We leveraged vector-based feature construction and machine learning functions as primi-

tives to improve the predictions made by a physics-based model, resulting in a safer algo-

rithm for determining how long a first responder can spend in a hazmat suit. This algorithm

will be distributed on mobile devices and deployed for use in pairing responders for tasks

in hazardous environments.

4.4 Time Series Regression: LIDAR

So far we have shown EMADE on a categorical classification problem (Section 4.1), a time-

series classification problem (Section 4.2), and a categorical regression problem (Section

4.3). The final application to complete this set is a time-series regression problem. This

section uses EMADE to design a bathymetric LIDAR ranging algorithm.

Bathymetric LIDAR presents a good application for EMADE for several reasons. First,

performance is extremely important. The tolerance on the entire LIDAR system must be
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on the order of decimeters, obeying the rule-of-thumb

Tolerence(d) =
√

0.52 + (0.013d)2 meters, (4.4)

where d is the depth in meters [55]. The error per sample of the ranging algorithm is

ErrorOPL = cwater ·
1

Fs
=

225, 000, 000 meters
1 second

· 1 second
1.6 · 109 samples

= .14
meters
sample

, (4.5)

where ErrorOPL is the error in optical path length. To convert this into a depth error we must

factor in the angle the beam enters the water,

ErrorDepth = cos 20◦ · ErrorOPL = .94 · .14
meters
sample

= 0.1315
meters
sample

. (4.6)

This error rate means that at our shallowest depths (i.e. d ≈ 0 m), we may only make an

error of three range bins before going over the error budget of our entire system.

Second, the multiple objective optimization is extremely useful for bathymetry appli-

cations. Understanding the trade-offs between under-prediction and the more dangerous

over-prediction (which can cause a ship to run aground) is essential. Another useful ob-

jective is the probability of miss, a non-linear function where a miss is categorized by any

error outside the tolerance defined in Equation 4.4.

Finally, this application has a well-documented algorithm to use to seed the evolution-

ary process known as the Interest Point Detection algorithm [56]. This algorithm consists of

three steps. The first is to condition the waveform using a Savitzky-Golay polynomial filter.

Second, we extract the peaks from the waveform. Finally, we use the peaks to conduct an

informed search, where we process small windows preceding the peaks for inflection points

by studying the zero crossings of the second derivative. We compute the OPL by finding

the difference in samples between the two inflection points representing the sea surface re-

flection and seafloor reflection. The inflection points are used instead of the peak locations
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Table 4.4: Parameter distribution for lidar waveform simulation

Parameter Distribution Units

Average laser power N (µ = 30, σ = 0.9) W
Full-width half-max N (µ = 1.7, σ = 0.133) ns
Off nadir angle N (µ = 20, σ = 0.0673) deg
Filter spectral width N (µ = 1.4× 10−9, σ = 0.004 67) nm
Scan angle 0.00197 ∗ U(lower = 0, upper = 183× 103) deg

PMT bias voltage N (µ = 550, σ = 9.167) V
Lowpass filter frequency N (µ = 6.14× 108, σ = 2.047) MHz

Latitude U(lower = 4, upper = 25) deg
Longitude U(lower = 104, upper = 124) deg
Water depth U(lower = 0.25, upper = 55) m
Height above sea level N (µ = 400, σ = 10) m
Seafloor reflectance U(lower = 0.01, upper = .25)
Seafloor tilt U(lower = −20, upper = 14) deg
Wind speed U(lower = 0, upper = 10) m

s

KD LogUniform(lower = 0.06, upper = 10) 1
m

βπ U(lower = 0.001, upper = 0.003) 1
m·sr

σβπ U(lower = 8× 10−5, upper = 4× 10−4) 1
m·sr

because the peaks are more susceptible to stretching, saturation, and noise effects than the

location of the inflection points. We translate the OPL directly to depth by multiplying by

the angle the beam enters the water as we did for error in Equation 4.6.

Before running the evolutionary process, we created a robust simulated bathymetric

LIDAR dataset using a simulator [57]. The dataset comprised various depths, turbidity,

noise levels, and wave speeds. A full cross section of parameters is shown in Table 4.4. The

dataset was meant to reflect the best estimate of the real-world environment. In this case,

the system parameters reflected a particular LIDAR configuration, and the environmental

parameters reflected the characteristics of the South China Sea. Figure 4.20 displays an

example LIDAR return produced by the simulator.

Next, to ensure we were able to seed the optimization with the current algorithm, we

broke down the interest point method into the following primitives:

• Cut data lead: This method removes a fixed amount of leading data, which is con-
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(a) Full bathymetric LIDAR waveform, including
pulse as beam exits the system.

(b) Zoomed to enhance region with sea surface and
seafloor peaks.

Figure 4.20: Example waveform produced by the bathymetric LIDAR simulator.

trolled by a parameter. This removes the large amount of the LIDAR return that

precedes the sea surface reflection.

• Rebase: Rebase removes the mean from the signal.

• Savitzy-Golay filter: This filter fits a moving window of data to a k-th order polyno-

mial. The window size and order of the filter are inputs.

• Peak detector: The peak detector looks for maxes (or mins) in the signal based off of

an input delta. This parameter controls how low (or high) the signal must move from

its peak before it is locked in as a local max. This reduces small peaks that occur

from noise.

• Informed search: The informed search consumes a signal, a set of locations to per-

form a search from, and a window to look at preceding each location. The informed

search computes the second derivative of each window and returns the zero crossing

locations.

• Depth estimate: This method consumes a set of locations and a sampling rate and

returns the distance in meters between the first and the last locations.

Each primitive was implemented with a set of input parameters that could be tuned to
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Figure 4.21: The interest point method for LIDAR signal processing implemented in an
EMADE tree structure to seed the optimization.

change the performance. The process of decomposing the seed and implementing its com-

ponents in EMADE enables the framework to have a set of problem-specific tools it can

leverage.

Figure 4.21 shows an example tree structure implementation of the interest point method

without the Savitzky-Golay filter included. This and several variants were used to seed the

optimization.

4.4.1 Optimization Strategy

Figure 4.22 shows how the training dataset was broken up by several factors. First, the

10,000 instances were filtered down by only selecting those where the productKD·Depth <

4. This is a well-established value in the community for conditions where a bottom return

should be visible. Of the 10,000 waveforms that comprised the original dataset, 2,298

remained in the training set. Next, the data was split yet again based on whether or not

the interest point method was able to successfully detect at least two peaks in the wave-

form, since if we include cases where the interest point currently fails, error quantification

87



Figure 4.22: Dataset partitioning for optimization.

becomes a challenging and somewhat arbitrary process. Of the 2,298 waveforms where

a bottom return should be detectable, the interest point method found a bottom in 1,783,

leaving 515 without predictions. From this data, we construct three different algorithm

types, to be used in a processing structure such as Code Listing 4.1.

Code Listing 4.1: Pseudo-code for algorithm processing pipeline.

if interest point method predicts bottom then:

return prediction using algorithm type 1

elif algorithm type 2 predicts K_D*Depth<4:

return prediction using algorithm type 3

else:

return "No bottom detected"

4.4.2 Primitives

We implemented the following methods from the literature as primitive functions in EMADE:

• Richardson-Lucy Deconvolution [58, 59]

• Gaussian Decomposition [60, 61, 62]

• Matched Filtering

• B-Spline [63]

• Supersampling

88



Figure 4.23: A seed algorithm that combines a processing algorithm from literature and
machine learning.

• Gaussian Fitting [64, 65]

• Lognormal Fitting [64, 65]

• Quadrilateral Fitting [66, 67]

4.4.3 Optimization 1 – Refining Interest Point Algorithm

Our first optimization was on the data where the interest point method currently succeeds.

We cross-folded the 1,783 instances in the dataset into five 80/20 train/test splits. EMADE

uses these splits to protect against overtraining. EMADE scores each algorithm based on

its average across all five splits. For each evaluation of an algorithm, the machine learning

models are fit on the training portion, while being scored against the testing portion.

We seeded the first optimization with the interest point algorithm along with a hand-

constructed algorithm that combines one of the LIDAR primitives (Supersampling) along

with a spectral representation and a gradient boosting regression machine learner. Figure

4.23 shows this hybrid seed algorithm.
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EMADE ran on a two-tiered dataset. The first tier was a small subset of one cross-

folded pair (100 training samples and 50 test samples) that was used as a litmus test to

determine if the algorithm would be successful. While an evaluation on the entire five

folds takes an average of 1359.93 seconds per individual, the smaller dataset takes only

an average of 64.5 seconds per individual. EMADE evaluated 11,902 individuals on the

smaller dataset without needing to promote them to the second tier, while choosing to fully

evaluate 2,455 algorithms on all five folds. In processing time, EMADE saved over four

thousand CPU-hours of computation at the expense of 43.99 CPU-hours of litmus testing

the successful individuals. EMADE minimized 8 objectives for this optimization:

• RMS Error

• Probability of Miss

• Percent Error

• Over Prediction Error

• Under Prediction Error

• False Negative Bottom

• Number of Invalid Individuals

• Number of Elements in Tree

EMADE used an initial population size and elite pool size of 514 individuals. The initial

population contained 2 seeded and 512 randomly initialized algorithms. Each generation,

EMADE produced 300 offspring. Table 4.5 shows the mating and mutation methods used,

along with the probabilities of application.

We harvested results after EMADE ran for 57 generations and in that time evaluated

over 14,000 individuals. Figure 4.24 shows the non-dominated frontier on two objectives.

Across all 8 objectives, 73 individuals were non-dominated solutions. One of EMADE’s
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Table 4.5: EMADE Mating and Mutation Rates.

Operation Operation Type Probability

Crossover Mating 0.5
Crossover Ephemeral Mating 0.5
Headless Chicken Crossover Mating 0.1
Headless Chicken Ephemeral Crossover Mating 0.1

Insertion Mutation 0.05
Insert Modify Mutation 0.05
Ephemeral Mutation 0.25
Uniform Mutation 0.05
Shrink Mutation 0.05

strengths is its ability to search this high-dimensional trade-off space to create algorithms

that can be used under a number of different circumstances depending on an a posterior

decision vector of objective importance. Figure 4.25 and Figure 4.26 show the gold and

cyan algorithms from Figure 4.24, respectively.

We further analyzed the algorithm in Figure 4.25 by evaluating the variance of opti-

cal path length estimation against water depth for a KD of 0.14 1/m. Figure 4.27 shows

the comparison of the evolved solution and the interest point method, with the EMADE

solution strongly outperforming the state of the art.

Both evolved solutions in Figure 4.25 and Figure 4.26 behave similarly. They evolved

around primitives in the EMADE toolbox from computer vision, erosion ellipse and erosion

cross. Both of these methods sharpen images, but here they instead are able to convert a

LIDAR return into a rectangle function because they treat the signal as a 1×N image. The

rectangle starts at the surface and ends at the seafloor. The orthogonal matching pursuit in

each algorithm correlates the area of these boxes to a depth. Because the boxes have fixed

heights from these methods, the area is directly proportional to the depth.
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Figure 4.24: Non-Dominated frontier after 57 generations with respect to under predic-
tion and over prediction errors. The stars show the performance of each non-dominated
algorithm on the held-out validation set.

Figure 4.25: An EMADE evolved solution with validated over prediction error of 0.30
meters and validated under prediction error of 0.28 meters.
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Figure 4.26: An EMADE evolved solution with validated over prediction error of 0.30
meters and validated under prediction error of 0.28 meters.

Figure 4.27: Variance vs Depth for evolved solution and interest point method.
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4.4.4 Optimization 2 – Classification of Detectability

If the interest point method fails to make a prediction, it is usually for one of two reasons.

Either it fails because the peak from the seafloor is indistinguishable from the peak of the

sea surface due to a shallow seafloor, or it fails beacuse the peak from the seafloor is too

small to be distinguished from noise due to the seafloor depth. In both of these cases,

we would like to know, prior to processing, if we should be able to see a bottom due to

the murkiness of the water. Our second optimization focused on classifying if waveforms

should be visible or not based on the KD ·Depth < 4 metric.

For this problem, we constructed a dataset by randomly sampling 500 instances where

KD · Depth < 4, along with 500 instances where KD · Depth ≥ 4. We constructed our

dataset this way so that our classes of 0 (≥ 4) and 1 (< 4) would be balanced. We again

used a two-tiered structure, the first tier being 200 waveforms, the second being 800. We

split the 200 waveforms into 150 for training and 50 for testing. We cross-folded the 800

waveforms into five 80%/20% partitions.

This optimization used three objectives: false positive rate, false negative rate, and the

number of the elements in the genome. A false positive in this context is a classification

that a waveform should be predictable but is not. A false negative is a classification that a

waveform should not be predictable when in fact it is. Figure 4.28 shows a classification

algorithm from the optimization. This algorithm had a false positive rate of 10% and a false

negative rate of 13.8%. The overall accuracy of the classifier is 88.1%.

4.4.5 Optimization 3 – Predictions Without Peaks

The final optimization we ran was the case where the interest point algorithm failed to

detect at least two peaks in the waveform, thus making depth prediction impossible. For the

third optimization, we cross-folded the 515 instances of the 10,000 where KD ·Depth < 4

and the interest point failed, using five folds with an 80%/20% split.

Figure 4.29 shows our non-dominated frontier after 60 generations. We do not show

94



Figure 4.28: Binary classifier for predicting if KD ·Depth < 4.

performance of the state-of-the-art interest point algorithm here, because this is the data on

which it failed to predict and thus could not be scored. Figure 4.30 shows the algorithm

represented in cyan in Figure 10. Similar to the algorithm evolved in Optimization 1, this

algorithm uses an erosion function, but also combines this with a spectral representation

and a support vector machine to regress the depth. This algorithm averaged 0.359 meters

of over-prediction and 0.357 meters of under-prediction errors. While the performance

of these algorithms is lower than those from Optimization 1, these are inherently more

challenging waveforms.

4.4.6 Conclusions

This problem represents the first time-domain regression problem solved using a genetic

programming based autoML framework. The evolved solution is a simpler and more ele-

gant solution than what has been used in industry for decades. The three algorithms devel-

oped in this section afford a significant performance improvement over the interest point

method. Where the interest point method succeeded before, the evolved solution validated

to 0.30 meters of average over-prediction and 0.281 meters of under-prediction. On the

same dataset, the interest point method obtained an average over-prediction of 0.348 me-
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Figure 4.29: Non-dominated frontier for predicting depth where interest point method fails.

Figure 4.30: Evolved algorithm for predicting depth when interest point method fails, but
the binary classifier from Optimization 2 predicts KD ·Depth < 4.
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ters and an average under-prediction of 0.881 meters. Thus, the evolved algorithm achieved

a 13.8% reduction in over-prediction and a 68.1% reduction in under-prediction errors. The

variance versus depth is also significantly better.

In addition to improving performance where the current algorithm can detect a seafloor

return, we also evolved a solution that enables ranging where it was previously impossi-

ble, with a validated performance of 0.38 meters over-prediction and 0.366 meters under-

prediction. The evolved solution’s performance where the interest point method fails, com-

pared to the successes of the interest point method, is only 9.2% worse in over-prediction,

and 58.5% better in under-prediction.

Finally, through the evolution of the binary classifier in conditions where the interest

point method fails, we achieve an 88.1% accuracy in our ability to predict with this evolved

solution. Prior to this evolved classifier, the interest point method was failing to predict on

515 out of 2,298 instances, representing an accuracy of 77.6%. Thus, the evolved classifier

picks up 46% of possible improvement, i.e.

new− previous
1− previous

.

Overall, this section shows the power of autoML coupled with high-fidelity simulation

to outperform human-developed state-of-the-art. Our most substantial performance gains

came from non-ideal signals that the interest point method encountered, such as saturation

causing peaks to disappear (and thus making the detection of interest points fail), or spu-

rious noise peaks causing false seafloor returns, resulting in significant under-prediction.

The evolution found that the best way around these problems was to look at the overall

energy level of the signal until it fell below a certain threshold, ignoring the spurious or

saturated peaks that may fall between the sea surface and seafloor.
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4.5 Feature Classification: Titanic Dataset

We placed EMADE in direct competition with human researchers, leveraging the Titanic

dataset found on Kaggle.com, which Kaggle uses for its “introduction to data science”

tutorials. We gave 39 Georgia Tech students, enrolled in the Vertically Integrated Project

(VIP) class for Automated Algorithm Design, ranging from sophomores to seniors, one

week to develop algorithms to solve this problem. The students were grouped into small

teams and asked to submit co-dominant solutions, as a method to reinforce the concept of

multiple objectives. Figure 4.36 displays the results of the students’ efforts evaluated on

the validation data from Kaggle.

Similar to the adult dataset used in Section 4.1, the Titanic dataset is also feature data.

There are nine features used to predict a binary outcome: whether a passenger died or

survived the sinking of the Titanic. To prepare the data for EMADE, we preprocess the

same training data used by the students and cross-fold the set ten times using a 90%/10%

split for training and testing within EMADE. We use three optimization objectives: false

positives, false negatives, and the number of elements in the tree structure. To create the

truth data for this problem, we define a positive test case to be survival of the disaster. In

the unsplit training data, there are 342 positive test cases (i.e. survivors) and 549 negative

test cases (i.e. non-survivors).

We configure EMADE to run with a population size of 512 individuals and initialize

it with random genomes. We use four types of crossover and apply them independently,

with the rates of 50% for single-point, 50% for ephemeral, 10% headless chicken, and 10%

headless chicken ephemeral. For mutation, we use six methods, and also apply them each

independently. We use the rates of 5% insertion, 10% insert modify, 25% ephemeral, 5%

node replace, 5% uniform, and 5% shrink. For selection, we use NSGA-II on the combined

population of current offspring and non-dominated individuals.

We ran EMADE on a cluster of 14 Linux machines for an eight-day period, evaluating

98



Figure 4.31: Average evaluation time across all ten cross-folds of training data per genera-
tion.

88,785 individuals in total. EMADE completed 277 generations and found 1,915 unique

non-dominated individuals over the course of the optimization. At the end of generation

277, 336 individuals remained on the non-dominated frontier for all three objectives. The

total compute time, when aggregated across all workers, was approximately 5,295 compute

hours. The average evaluation across all ten folds of data lasted 214 seconds. Figure 4.31

presents a box plot of the evaluation times per generation of the same nature as in Section

4.1. We see from this plot that the average evaluation time increases as EMADE finds a

higher rate of successful individuals and more complex solutions with time.

Figure 4.32 shows the time between each generation during this optimization. This

problem deals with a relatively small amount of data, only 891 instances. For more typical

problems, we would expect these times to be much larger. Even on this small dataset,

however, we can see that there is plenty of time in which we can run our evolutionary loop
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Figure 4.32: Inter-generational time throughout the optimization.

to prepare the next generation. In general, we should take advantage of as much of this time

as possible to have a better probability producing successful offspring. Chapter 5 explores

novel methods to increase this probability.

We can analyze the results of EMADE and human experts with the area under the curve

(AUC) of the non-dominated frontier computed from false positives and false negatives

using Equation 4.1. Figure 4.33 plots the AUC computed from test data during the opti-

mization process. Figure 4.34 shows The AUC % reduction calculated using the equation

% Reduction = 100 · previous− new
previous

, (4.7)

for each generation. For both graphs, there is a large amount of activity in the initial 60

generations before it begins to taper off.

Figure 4.35 presents the number of non-dominated individuals at each generation. Given

that the population size for this optimization is 512, we see that our non-dominated frontier

never exceeded the size of our population. It did, however, continue to grow throughout

the optimization process. Considering that the AUC (computed on false positives and false
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Figure 4.33: Area under the curve for each generation of EMADE plotted on a log scale.

Figure 4.34: Percent reduction in area under the curve from one generation to the next.
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Figure 4.35: Number of non-dominated individuals present at each generation of the opti-
mization

negatives) was not decreasing at a high rate, a large contribution to the number of non-

dominated individuals is the number of elements present in the tree. This growth of the

non-dominated front informs us that we maintained some genetic diversity with multiple

methods of varying complexity computing similar objective scores.

After the evolutionary process, we evaluated 336 non-dominated individuals on the

held-out validation data. The validation data consists of 158 positive test cases (survivors)

and 260 negative test cases (non-survivors). Figure 4.36 shows the individuals that re-

mained Pareto-optimal on the objectives of false positives and false negatives and the re-

sulting non-dominated frontier.

The result of our optimization with EMADE was a non-dominated frontier that com-

pletely dominated all student-produced algorithms except for one. Ironically, upon further

investigation, the one remaining student had preprocessed his data in an unintentional way.

In both the training and the testing sets, there was one observation each with a particular

feature that was missing a value, he tried to drop both records from his algorithm, but in-
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Figure 4.36: Comparison between non-dominated frontiers found by Gerogia Tech students
and EMADE.

stead accidentally imputed a feature for the missing value. These two records happened to

be survivors, and the synthetic feature ended up linking these two samples together, result-

ing in a unique point that no other algorithm was discerning without picking up additional

false positives. While one could attribute this to luck, it does speak to the necessity of

more feature imputation methods within EMADE, as this student’s solution did not exist in

EMADE’s search space.

On the validation data set, EMADE achieved an AUC of 0.19, while the AUC from the

team of human experts was 0.32. This difference in AUC represents a reduction of 40.63%

in AUC as computed in Equation 4.7. The most substantial improvements came along the

boundaries of the Pareto frontier, as shown in Figure 4.36.

As a comparison, we ran TPOT using ten cross-folds, and its default evolutionary set-

tings: a population of size 100, a probability of crossover of 10%, and a probability of mu-

tation of 90% for 100 generations. TPOT uses multi-objective optimization, like EMADE;

however, unlike EMADE, it is limited to two objectives and one is always the complexity
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of the individual. This limited objective space means that the trade-off space is not fully

explored between types of errors. At the end of 100 generations, TPOT returned seven non-

dominated individuals. TPOT returns an export of the best individual by accuracy (choos-

ing to ignore the objective of complexity). We validated the performance of the optimized

pipeline for accuracy on the same validation set as EMADE and marked the result with

a star on Figure 4.36. The classifier produced by TPOT had an overall average accuracy

of 84.18% on the cross-folded data, but 75.60% on the held out validation data, pointing

toward some overtraining. Even though EMADE evaluated almost nine times more indi-

viduals than TPOT, the non-dominated frontier EMADE produced was less susceptible to

overtraining, because of the robustness of multiple objectives.

There is a danger of overtraining within EMADE. In some cases, we observed better

performance on validation data from earlier generations of EMADE than later generations.

This loss of performance informs us that on the cross-folded training data, we have found

individuals that have outperformed existing solutions in both objectives, knocking individ-

uals that were performing better on the validation data out of the non-dominated frontier.

This danger of EMADE illuminates our data as well; there are statistical differences

between our test set and our validation set. Problems like the Titanic data set are suscep-

tible to these issues. Naturally, machine learning should fair better on problems where the

features have a more correlated impact on the results, and because EMADE uses machine

learning, it has the same issues. EMADE is particularly problematic as many algorithms

have underlying random states that can virtually build a random number generator into

EMADE; theoretically, given enough time it can generate enough random individuals that

the exact correct sequence of predictions is generated without ever learning the features.

In conclusion, this demonstration shows EMADE’s ability to traverse the search space

of a feature classification problem efficiently, and outperform both human experts as well

as other automated machine learning platforms. The three leading enabling technologies

that allow EMADE to outperform are its use of multiple objectives to maintain a diverse
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population, as well as its high-level primitives and free-flowing tree structure.

4.6 Two-Dimensional Classification: Imagery

A large portion of Intelligence, surveillance, and reconnaissance (ISR) is the identifica-

tion of potential points, persons, or objects of interest in feeds of imagery. Screening this

imagery is a mundane and repetitive task currently handled by scores of analysts hand-

annotating image data. Machine learning can supplement the analysts by serving as a

prescreening tool, drawing attention to objects of interest. Because much of their burden is

relieved, an analyst can be more productive and less prone to errors.

Researchers from the fields of computer vision and deep learning have used image pro-

cessing techniques to detect, recognize, and identify objects of interest within overhead

imagery. However, as with all machine learning problems, researchers tend to have a lim-

ited scope of methods to apply (based on their background) and a limited amount of time

to tune their models.

This section details an object detection approach for the xView Detection challenge

(http://www.xviewchallenge.org), a machine learning competition by Defense Innovation

Unit Experimental (DIUx) and the National Geospatial-Intelligence Agency (NGA). The

dataset consists of 30cm satellite imagery with 60 object classes annotated with bounding

boxes, totaling over 1M object instances. The competition centers around new algorithms

to aid in national security and disaster response activities.

4.6.1 Adding Computer Vision Primitives

Section 3.5 showed a number of image processing techniques implemented from OpenCV;

however, most of these are not state-of-the-art features for object detection or recognition

within imagery. After a brief literature review, we implemented the following techniques

as primitives in EMADE:

• Histogram of oriented gradients (HOG) [68]
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• DAISY features [69]

• Grey level co-occurrence matrices (GLCM) [70]

• Batched stochastic gradient descent (SGD)

• Batched passive aggressive classifier

• Deep neural network classifier (DNN)

Capabilities like HOG, DAISY, and GLCM, are important for EMADE because they allow

traditional machine learning methods (i.e. non-DNN) to operate effectively on image data.

They can operate effectively because these techniques are able to find useful features within

images that are robust to scaling, translations, and rotations.

4.6.2 Processing Data

This section represents the first foray into creating machine learning algorithms for imagery

with EMADE. As such, we bounded the task to the creation of a binary classifier of image

chips. From the xView dataset, we created 224x224 pixel image chips. We chose this

size to support the implementation of pre-trained deep neural networks (that are configured

to these dimensions) as primitives. For each chip, we labeled the chips that contained

buildings as positive test cases and those that did not contain buildings as negative test

cases.

4.6.3 The Competition

The current leading algorithms for image classification from large datasets are deep neural

networks. To compare performance with DNNs, we trained a Resnet v2 101 model [71] on

an equal amount of building and background images. Since this a traditional classification

task, we did not have to make major modifications except for balancing the data, which is

important for effective learning with a DNN. This Resnet architecture achieved an accuracy
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Table 4.6: Resnet Confusion Matrix for Classifying Buildings

Not Building Building

Not Building 8455 648
Building 869 8228

of 91.6%, a true positive rate of 90.5%, and a precision of 92.6%. Table 4.6 shows the

confusion matrix for the trained Resnet architecture.

4.6.4 EMADE Results

We ran EMADE on a subset of the xView dataset to produce a binary classifier. We con-

structed a two-tiered dataset structure to allow the individuals to fail fast. The first tier

contained 300 training images and 100 testing images. The second tier contained 3200

training images and 800 testing images.

An evaluation on the first-tier dataset took EMADE on average 72.53 seconds, while

the second-tier averaged 522.31 seconds. Out of 5,270 candidate algorithms, EMADE

found 3053 that did not perform well enough to promote to the next tier. This means the

tiered dataset structure saved 381 CPU-hours of processing time at the expense of 44.66

CPU-hours of redundant computation on successful individuals. Over the course of the

optimization, EMADE ran for a total of approximately 430 CPU-hours. Without a tiered

structure, EMADE would have taken 765 CPU-hours. Therefore, the tiered dataset struc-

ture offered a savings of about 44 percent.

For the xView problem, we also compiled statistics on the success of the caching im-

plementation. Reuse of existing cached results from primitives saved 68 CPU-hours of

processing time. This savings came at a cost of initially storing the cached results, which

took 10 CPU-hours to process the 4000 images. Our caching implementation netted 58

hours, which represents about a 12% improvement overall in EMADE throughput.

Figure 4.37 shows the non-dominated frontier produced by EMADE after evaluating

over five thousand candidate algorithms. Note the Resnet DNN architecture described in

107



SVC(HOG(Canny))

RandForest(HOG(Canny))

SVC(HOG(openRect))

Resnet v2 101

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fa
lse

 N
eg

at
iv

e 
Ra

te

False Positive Rate

xView Dataset Building Classification

EMADE Front

Non-EMADE

Figure 4.37: Non-dominated frontier of xView binary classification for buildings in
EMADE.

Section 4.6.3 received a score of 0.0375 false positive rate and 0.0025 false negative rate.

This DNN outperforms a great deal of the more traditional computer vision techniques

in EMADE, and was co-dominant with five EMADE non-dominated solutions. The in-

corporation of DNN architectures as primitives in EMADE remains an avenue for future

work. In Figure 4.37, the green points were hand-crafted algorithms based on computer

vision techniques used to seed the optimization. Note that almost all of these techniques

are dominated (outperformed in both dimensions) by EMADE solutions.

Figure 4.38 shows one of the EMADE evolved solutions that was co-dominant with the

DNN. The evolved solution outperformed the DNN on false positive rate, while underper-

forming on true positive rate.
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Figure 4.38: An evolved solution produced by EMADE with false positive rate of 0.0285
and false negative rate of 0.0575

4.6.5 Conclusions

This work demonstrates EMADE’s capabilities on the important domain of image pro-

cessing for ISR applications. We showed the ability to combine and optimize high-level,

state-of-the-art techniques into new algorithms.

We improved EMADE by creating new primitives, developing seed algorithms, and

making changes to the infrastructure to support image data and increase throughput by

caching data on disk. Future work could look at how to better implement deep neural

networks into EMADE as primitives that can be trained during the evolutionary process.

One could also identify how to optimize not only the hyperparameters, but the architectures

(i.e. layers and configurations) of the deep neural networks as well.
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CHAPTER 5

EXPLORATION OF EVOLUTIONARY OPERATORS

Chapter 4 showed that EMADE can solve machine learning challenges across diverse do-

mains. However, EMADE required a significant amount of time between generations.

Figures 4.4 and 4.32 showed that this time can easily exceed an hour, even on a simple

problem such as the Titanic dataset.

The main focus of this chapter is to decrease the time it takes to run EMADE, namely,

converge to better solutions more quickly. Here, we define a lower area under the curve

of the Pareto frontier (for a minimization problem in two dimensions) of an evolutionary

process to be a “better solution.” In higher dimensions, this is a reduction of area under a

hypervolume. We define “More quickly” as fewer individuals requiring training and eval-

uation. To achieve these performance improvements, we are willing to suffer additional

computational time in the evolutionary loop, including selection, mating, and mutation,in

exchange for a higher probability of producing individuals that contribute more signifi-

cantly to evolutionary progress. We are willing to sacrifice some performance in the main

loop because evaluations of the high-level primitives used in EMADE are far more compu-

tationally intensive than traditional genetic programming. For example, evaluating on the

five folds of the 891 instances in the Titanic feature set took an average time of about 3.5

minutes.

To achieve this improved performance, we investigate two concepts in the evolution-

ary process: fuzzy selection and matchmaking. Fuzzy selection focuses on retaining more

statistical information in the selection process than traditional high-level objective scores.

Matchmaking focuses on a probabilistic method of pairing parents to generate more pro-

ductive children.
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5.1 Fuzzy Selection

5.1.1 Introduction

In the current age of big data, a new field of data science has been emerging, seeking

methods to automate the process of building machine learning algorithms through using

multiple-objective vector-based genetic programming [72, 73] or machine learning pipeline

optimization [74, 75]. There are two significant differences between these methods and tra-

ditional genetic programming. First, evaluations are extremely expensive when compared

to that of a scalar-based tree structure. Second, our objectives are all based on aggregate

statistics, such as true positive or false positive rates, computed from multitudes of test

cases.

While Chapter 4 showed that traditional selection methods such as NSGA2 or SPEA2

perform acceptably in evolving machine learning algorithms from these aggregate statis-

tics, these selection methods have been designed to be quick and efficient. In traditional

genetic programming, the selection algorithm is often the bottleneck of the evolutionary

process. However in our case, the evaluations take most of the processing time. We seek

to find selection methods that may take more processing time, but also take advantage of

the underlying statistical behavior of the machine learning algorithm to produce better so-

lutions (measured by area under the Pareto curve) more quickly (measured in number of

individuals evaluated).

This section details the concept of fuzzy selection, which focuses on estimating the

statistics of each solution in objective space from test cases, rather than a single point.

Using these statistical representations allows for dominance comparisons in terms of prob-

ability rather than a resolved state. For example, in a pairwise comparison using scalar

objectives, one individual would either be dominant to, dominated by, or co-dominant with

respect to the other. In a fuzzy paradigm, all of these cases have some probability of oc-

curring, based upon the distributions of the underlying test cases used to compute each
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objective score. We propose a method for computing a probability of selection based upon

a probability of Pareto-dominance, rather than using a resolved state of dominance between

coordinates in objective space. We estimate this probability through covariance estimation

combined with Markov chain Monte Carlo simulation. This probability is then used with

a roulette wheel selection method to directly tie the probability of Pareto-dominance to the

probability of selection. We will compare performance to the traditional selection methods

NSGA2 and SPEA2.

5.1.2 Related Work

Traditional Multi-Objective Selection Methods

One major component of any genetic algorithm is the selection of parent genomes to pro-

duce the next generation of individuals. In multi-objective optimization, most of these algo-

rithms use Pareto-optimality. Equation 1.1 showed the definition of Pareto-optimality. Sec-

tion 2.3 summarized the various common selection techniques that use Pareto-optimiallity,

including SPEA, SPEA2, NSGA-II, and PESA.

While methods based on Pareto-optimality have been shown to be successful, we con-

jecture there is more to be gained by exploring the underlying statistics of the scalar objec-

tives. For example, if on a particular objective of a binary classifier there are 100 test cases

used to compute a probability of detection, there are “100 choose 50” (more than 1 · 1029)

different individuals that give a 50% error rate. By collapsing these test cases to their aver-

ages to use traditional selection techniques, we lose information that could potentially help

steer the population to new and interesting solutions.

Test Case based problems

Traditionally, evolutionary machine learning is performed on aggregate scores of large

numbers of test cases. In recent years, focus has shifted toward vectorized information

on how a classifier or predictor performs on each test case. Some of these methods in-
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clude novelty search [14], discovery of search objectives by clustering [76], and discovery

of search objectives by non-negative matrix factorization [77]. The latter two of these ap-

proaches derive a small number of objectives from a large number of test cases via an

interaction matrix. The interaction matrix places each individual on a row, and the result

from each test case across the columns. They then use the traditional multi-objective ap-

proaches such as those described in the previous section on the derived objectives. While

these methods produce good results and isolate unique individuals, we believe they are still

limited by not capturing the statistics of the underlying objectives.

Novelty search removes the sense of objectives entirely, selecting based on the unique-

ness of the solution in behavioral space. For purposes of a binary classifier, this would be

the vector containing the predictions for each test case. The higher the distance between this

vector and the rest of the population, the higher the probability of selection. Novelty search

rewards this distance to increase phenotypic diversity. While this method more freely ex-

plores the behavior space, that does not guarantee the solution will quickly converge to

something that is objectively good. In fact, the search itself is, by design, divergent.

5.1.3 Motivation

Probability of Dominance

There are many selection techniques like NSGA2, SPEA2, MOEA/D. Each can be consid-

ered a black box that takes in a population, and using some probabilistic method, returns a

new population. In effect, all of these methods have control over the probability of selec-

tion per individual. In single-objective optimizations using a scalar objective score, such

as accuracy, a simple roulette selection provides a simple mapping from objective score

to probability of selection. In multi-objective methods, we desire a probability of selec-

tion that can be fed into a roulette wheel based on dominance relationships and crowding.

Instead, most multi-objective selection techniques rely on Pareto rankings and strengths

combined with sorting or tournaments.
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For real-world applications of evolved machine learning, we have scalar objectives

(e.g. an average error rate) computed from many observations that are fed to the machine

learning algorithm as test cases. Despite all of the statistical information that can be de-

rived from these performance vectors, we traditionally only use the aggregate scalar objec-

tive score. Instead, we can compute statistical information for each objective based on the

performance distribution of test cases, and compute a probability of dominance rather than

a resolved state based on the scalar.

We would like to feed “probabilities of dominance” into a roulette wheel. Given M

objectives and N individuals, the probability that Xi is non-dominated in a minimization

scheme is one minus the probability that it is dominated, which is the probability that there

is some individual Xj that is lower on each of the M objectives of individual Xi. Summed

up mathematically, the probability Xi is non-dominated is

P (Xi ≺ Xj=1...N,j 6=i) = 1−
⋃

j∈1...N,j 6=i

M⋂
m=1

P (Xj(m) < Xi(m)).

We refer to this as the probability of Pareto-dominance, or probability of dominance for

short. Unfortunately, many challenges exist when computing this probability. Given a

population of individuals, we do not have independence on the performance of test cases,

performance on aggregate scalar objectives, or performance on individuals. If this indepen-

dence were present, computing the probability of dominance would be a straightforward

multiplication. Since we do not have independence, rather than directly computing this

quantity, we use a Markov chain Monte Carlo approach to simulate a probability of domi-

nance that drives selection.
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5.1.4 Methods

Computing Covariance

To estimate a probability of dominance using Monte Carlo, we need to simulate potential

solutions in objective space from a population. Taking each objective per individual to be

a random variable, we use the result from each test case of an individual to represent an

observation on that random variable. We can construct an NM by K observation matrix,

where N is the number of individuals, M is the number of objectives, and K is the number

of test cases. In practice, however, it is rare to find a problem with an equal number of

test cases for each objective. For example, in a binary classification problem, we may

have more test cases for false positive error than we do for false negative error. To rectify

this, we group the test cases such that each objective has the same number of test case

groups, allowing us to form one-to-one relationships between our random variables. For

each group, the result is the average of the test cases in that group. We choose the number

of groups to be the minimum number of test cases that make up each objective; as a result,

at least one objective will have one test case per test case group. While these groups lose

some resolution on test case correlations, they offer significantly more information than the

higher-level aggregate objectives.

Once the observation matrix X has been constructed, we use it to compute the covari-

ance matrix Σ between our NM variables, resulting in an NM by NM matrix. Ideally,

this covariance matrix would be

Σij =
1

K

K∑
k=1

(Xik − E[Xi])(Xjk − E[Xj]).

However, an issue arises with the number of objectives and individuals typically found

in a multi-objective population based algorithm, where large covariance matrices become

ill conditioned. These covariance matrices are needed in the Markov chain Monte Carlo

simulation, but are not directly usable due to numerical precision issues in computing their
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inverses. To solve this issue, we use the Ledoit-Wolf method [78] as implemented in scikit-

learn [37], which results in a well-conditioned, invertible estimate of the covariance matrix.

Markov Chain Monte Carlo

Denote the estimate of the covariance matrix as Σ, and the expected value for each objective

for each individual as

µ = E [X1] , E [X2] , . . . , E [XNM ] .

We now draw samples from the distribution they represent. Following our binary classifier

example we use a truncated multivariate normal distribution on the range of [0,1]. This

is because false negative and false positive rates cannot fall outside those bounds. We

represent our distribution as

T N
(
µ,Σ

)
.

Drawing samples from a distribution can be as simple as drawing a random sample from

a uniform distribution on [0,1] and using it to sample the desired distribution’s cumulitive

distribution function (CDF). However, because a truncated multivariate normal distribution

has no closed-form solution for its CDF, we instead implement a Gibbs sampler prescribed

by Wilhelm [79].

To describe Wilhelm’s sampler, let j be the Monte Carlo trial number and i be our

position in the NM dimensional vector x. We draw a sample

xi.−i = µi.−i+

σi.−iΦ
−1
[
U

(
Φ

(
1− µi.−i
σi.−i

)
− Φ

(
0− µi.−i
σi.−i

))
+ Φ

(
0− µi.−i
σi.−i

)]
,

where the notation i. − i means sample i given all samples besides i, U randomly drawn
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from Uni(0, 1), and Φ is the CDF of a standard normal N (0, 1). Furthermore,

µi.−i = µi −H−1ii Hi,−i (x−i − µ−i) ,

and

σi.−i =
√
H−1ii .

H is the precision matrix

H = Σ−1.

Finally,

x−i = x
(j)
1 , . . . , x

(j)
i−1, x

(j−1)
i+1 , . . . , x

(j−1)
NM ,

and

µ−i = µ
(j)
1 , . . . , µ

(j)
i−1, µ

(j−1)
i+1 , . . . , µ

(j−1)
NM .

This sampling is the slowest part of this proposed selection algorithm by several orders of

magnitude, and scales with the number of objectives, individuals, and trials. The time to

perform the sampling is not dependent on the number of test cases, which would impact

the evaluation time of an individual’s objective scores.

Now that we have J samples of NM variables, we use this matrix to compute a proba-

bility of non-dominance. We can iterate through each NM dimensional sample and dein-

terlace it to form N vectors of M elements each. Each of these N vectors represents a

possible location in objective space for an individual given by the M elements. Because

we draw the vector simultaneously, the correlations between the individuals and their ob-

jective scores are respected. We compute the non-dominated set of the N individuals for

each sample, and maintain a 1 by N histogram of the number of times each individual was

found to be non-dominated throughout the J samples. This histogram is then normalized

such that the sum is 1. The value Ni is the probability that individual i is a non-dominated

solution. These probabilities drive a roulette wheel selection with replacement, such that
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the values in the histogram truly represent a probability of selection.

5.1.5 Experiment

To test our proposed fuzzy selection technique, we work a binary classification problem

from the Physical Activity Monitoring Data Set (PAMAP2) [80]. This data was collected

from nine subjects, each wearing three inertial measurement units and a heart rate monitor

while performing 12 different activities. Prior to feature construction, we cleaned the time

series data from the sensors as prescribed by Baldominos et al. [81]:

1. A boolean mask for the 54 (Indexed [0-53]) time series sensor data columns is cre-

ated.

(a) Column 0 is marked for removal, corresponding to the time stamp of the data.

We remove this column because we do not want to train on the time of an

activity.

(b) Columns 16-19, 33-36, and 50-53, which represent orientation data that should

not be used as features, are marked for removal as indicated in [80].

2. Remove all columns marked for removal above in step 1.

3. Due to differing sampling rates of the sensors, there are missing data points in the

data. Fill all the missing data by propagating samples forward.

4. At this point, there may be some leading data points that are missing. Fill these by

propagating backward.

5. Because we do not know what behaviors were occurring during transient activities

(rows with class label 0), we do not want to train on or classify these behaviors.

Remove all rows with class label 0.

Once the data has been cleaned, features are constructed from the 40 remaining time

series columns as prescribed by Baldominos [81]:
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1. Each column is transformed using a sliding fast Fourier transform (FFT) of size 512

samples, which represents 5.12 seconds of 100 Hz data.

2. From each of set of the 512 coefficients (257 real, 255 imaginary broken out from

the first half of the FFT), 7 statistical features are extracted: mean, median, standard

deviation, max, min, and first and third quartiles.

3. The resulting feature matrix is N windows by 280 features (7 statistics on each of the

40 columns).

We step by 6.25% (1/16th of the window, or 0.32 seconds) to generate our feature matrix.

We experimented with different step sizes and found them to have little impact on the

results.

Given the feature matrix, we select a single activity to classify from the 280 features.

For the example, if we select the activity of vacuuming, which is class label 16 in the

data set, all instances of class 16 are replaced with a 1, while all other instances’ class

labels are replaced with a 0. For vacuuming, this produces 701 true positive samples, and

6,888 false positive samples. This unbalanced data set is an excellent candidate for multi-

objective optimization, where driving by accuracy alone would quickly favor suppressing

false positives. We repeat this partitioning on each of the eight activities carried out by all

subjects: lying, sitting, standing, walking, ascending stairs, descending stairs, vacuuming,

and ironing.

The goal is to understand how using the statistical nature of the underlying test cases

(of which there are 7,589 for vacuuming) to compute a probability of dominance compares

with traditional multi-objective approaches that use only the false negative and false posi-

tive error rates. We compare with a linear boolean genome of length 280, which serves as

a selection mask for our feature matrix prior to training a naive Bayes classifier. We chose

this machine learning method for its quick training and evaluation time to run through gen-

erations more quickly, in addition to its deterministic results when implemented in scikit-
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learn.

Most evolutionary settings we used matched those used by Baldominos [81]. We added

elitism to the optimization to push the optimization along faster. The evolutionary settings

were:

• Population size 512

• Single-point crossover rate 35%

• Mutation bit flip

– 8.333% per individual

– 8.333% per gene in the individual

• Elitism: Every generation selection is performed from the Pareto frontier + current

offspring

• Genome: 280 boolean attributes

• Fuzzy Pareto method uses 10, 000 Monte Carlo trials

5.1.6 Results

Comparison to Traditional Methods

To analyze the performance of the fuzzy selection method, three optimizations were cre-

ated, where the only variable was the selection method used, being the proposed fuzzy

selection, NSGA2, and SPEA2. Results of running this optimization are shown in Figure

5.1 for the binary classifier of the vacuuming activity. The top plot compares the proposed

fuzzy selection with SPEA2, while the bottom shows the same fuzzy selection against

NSGA2. In both cases, fuzzy selection outperforms both traditional methods on the av-

erage case, best case, and worst case. We repeated the experiment for the seven other
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Figure 5.1: Average area under the curve (AUC) of the Pareto frontier of 30 trials of 100
generations during the evolution of a binary classifier for vacuuming. Shading shows ±
one standard deviation. Dashed lines show max and mins. AUC is shown on a log scale to
emphasize the later generations.
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Table 5.1: Results on 30 trials of 100 generations optimizing a binary activity classifier.
Note that µ and σ of AUC are computed over the trials, and the subscripts represent gener-
ations. Best and worst represent the minimum and maximum over the trials.

Activity Method µ0 µ99 σ99 µgen ≤ 1
2
µ0 Best99 Worst99

Lying
Fuzzy 8.66 · 10−2 4.87 · 10−2 2.98 · 10−3 ≥ 100 3.62 · 10−2 5.28 · 10−2

SPEA2 8.84 · 10−2 5.29 · 10−2 1.32 · 10−3 ≥ 100 5.04 · 10−2 5.76 · 10−2

NSGA2 8.77 · 10−2 5.32 · 10−2 1.33 · 10−3 ≥ 100 5.16 · 10−2 5.76 · 10−2

Sitting
Fuzzy 4.55 · 10−1 2.72 · 10−1 9.92 · 10−2 ≥ 100 1.19 · 10−1 3.51 · 10−1

SPEA2 4.54 · 10−1 2.34 · 10−1 9.63 · 10−2 ≥ 100 9.54 · 10−2 3.28 · 10−1

NSGA2 4.47 · 10−1 2.25 · 10−1 1.01 · 10−1 ≥ 100 1.10 · 10−1 3.35 · 10−1

Standing
Fuzzy 8.54 · 10−2 5.39 · 10−3 7.00 · 10−3 14 1.18 · 10−3 3.65 · 10−2

SPEA2 8.43 · 10−2 1.61 · 10−3 2.74 · 10−3 13 6.25 · 10−4 1.63 · 10−2

NSGA2 8.37 · 10−2 2.62 · 10−3 2.64 · 10−3 18 9.50 · 10−4 1.49 · 10−2

Walking
Fuzzy 8.51 · 10−2 5.50 · 10−2 7.82 · 10−3 ≥ 100 4.31 · 10−2 7.24 · 10−2

SPEA2 8.77 · 10−2 3.77 · 10−2 1.50 · 10−3 39 3.54 · 10−2 3.98 · 10−2

NSGA2 8.37 · 10−2 3.70 · 10−2 1.84 · 10−3 48 3.25 · 10−2 3.98 · 10−2

Ascending
Stairs

Fuzzy 1.15 · 10−1 4.98 · 10−2 2.23 · 10−3 35 4.35 · 10−2 5.28 · 10−2

SPEA2 1.14 · 10−1 5.49 · 10−2 4.59 · 10−3 91 4.62 · 10−2 6.43 · 10−2

NSGA2 1.15 · 10−1 5.90 · 10−2 5.19 · 10−3 ≥ 100 4.97 · 10−2 6.93 · 10−2

Descending
Stairs

Fuzzy 1.42 · 10−1 6.23 · 10−3 7.14 · 10−3 12 3.24 · 10−3 3.70 · 10−2

SPEA2 1.43 · 10−1 1.96 · 10−2 8.78 · 10−3 35 5.32 · 10−3 4.09 · 10−2

NSGA2 1.44 · 10−1 2.10 · 10−2 7.29 · 10−3 41 1.26 · 10−2 4.22 · 10−2

Vacuuming
Fuzzy 1.58 · 10−2 3.22 · 10−4 1.87 · 10−4 5 2.10 · 10−5 7.45 · 10−4

SPEA2 1.59 · 10−2 5.40 · 10−4 2.65 · 10−4 9 1.73 · 10−4 1.19 · 10−3

NSGA2 1.69 · 10−2 6.90 · 10−4 3.07 · 10−4 9 3.24 · 10−4 1.35 · 10−3

Ironing
Fuzzy 2.25 · 10−2 2.37 · 10−3 2.04 · 10−4 8 1.89 · 10−3 2.78 · 10−3

SPEA2 2.31 · 10−2 3.13 · 10−3 5.02 · 10−4 19 2.21 · 10−3 4.37 · 10−3

NSGA2 2.21 · 10−2 3.30 · 10−3 6.32 · 10−4 25 2.51 · 10−3 4.81 · 10−3
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Figure 5.2: Average area under the curve (AUC) of the Pareto frontier of 30 trials of 100
generations during the evolution of a binary classifier for walking. Shading shows ± one
standard deviation. Dashed lines show max and mins. AUC is shown on a log scale to
emphasize the later generations.

activities in the protocol from PAMAP2: lying, sitting, standing, walking, ascending stairs,

descending stairs, and ironing. Results of all experiments are shown in Table 5.1.

Although fuzzy selection outperforms the two standard methods for ascending stairs,

descending stairs, vacuuming, and ironing on all measured metrics, fuzzy selection is not a

silver bullet. Fuzzy selection underperforms on some or all metrics for lying, sitting, stand-

ing, and walking. To illustrate some of the indicator characteristics that may suggest fuzzy

selection will perform well, we compare vacuuming, where fuzzy selection outperformed

on all metrics, and walking, where fuzzy selection underperformed on all metrics.

Figure 5.2 shows the 30 trial average area under the curve of the Pareto frontier as a

function of generation number for the evolution of the walking classifier. This evolution
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Figure 5.3: Four generation snapshots into the evolution of a vacuuming classifier. Each
point plots the average true positive error rate vs. false positive rate for a genome. Color
shows the expected number of selections for the next generation per genome from blue (0
selections) to red (more than 2 selections).

behaves differently than that of the vacuuming classifier shown previously in Figure 5.1.

The fuzzy selection for the walking classifier, while starting out faster than SPEA2 and

NSGA2, quickly levels out around generation 10, in contrast to continuously decreasing as

it did in the vacuuming evolution. However, SPEA2 and NSGA2 both continue to decrease

for the walking classifier. This highlights some systematic issue in the fuzzy selection

method.

Population Simulation

To better understand the successes and failures of fuzzy selection, we look at the behavior of

fuzzy selection over the course of the evolution. Figure 5.3 shows scatter plots of objective
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Figure 5.4: Four generation snapshots into the evolution of a walking classifier. Each
point plots the average true positive error rate vs. false positive rate for a genome. Color
shows the expected number of selections for the next generation per genome from blue (0
selections) to red (more than 2 selections).
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space for four of the 100 generations evaluated for the vacuuming classifier, while Figure

5.4 shows the same generational snapshots for the walking classifier. The y-axis of each

plot shows the false negative rate, i.e., the probability the classifier predicted a vacuuming

sample as not vacuuming. The x-axis of each plot shows the false positive rate, i.e., the

probability the classifier predicted a non-vacuuming sample as vacuuming. Each point on

the plot represents the expected error rates for each of the two objectives computed over all

test cases. The color of each point illustrates the individual’s expected number of selections

per generation, ranging from blue (zero selections) to red (more than two selections).

Starting at generation zero, the initial results of the random population are evaluated,

and the probability of selection draws towards the origin as expected. This is true for both

the vacuuming classifier and the walking classifier. By generation 10, the distribution of

individuals in objective space begins to form an L, and probability of selection is highest

for the points closest to the edges. This trend continues through the evolution as shown

in generation 25 and the final generation, 99. The differences between the vacuuming and

walking evolutions become apparent in the plot for generation 25. At this point, the vac-

uuming classifier still has a high probability of selection near the origin, but the walking

classifier has a lower probability of selection there than it does rising up the axis corre-

sponding to false negative error rates.

A benefit of fuzzy selection is its implicit handling of crowding. If there are many so-

lutions in one section of objective space, they naturally split the probability of dominance

between them, especially if those solutions are highly correlated. On the other hand, solu-

tions that do not have many neighbors are be more likely to be Pareto-optimal when they

generate strong results from their random trials. This is observed in the scatter plots; points

far behind the Pareto frontier often have a stronger probability of selection than those that

are closer to the frontier, but also have more neighbors.

Some regions in objective space are crowded, but have particular individuals with high

expected selections. These are individuals that capture unique solutions relative to their
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Figure 5.5: Visualization of cumulative distribution function of a truncated normal in a
single dimension from an underlying Bernoulli random variable.

neighbors, i.e. their means are similar on both objectives, but their performance on the

underlying test cases is not highly correlated.

Due to higher variances of the underlying test cases, individuals along the axes may

produce similar probabilities of selection to those that are closer to the origin. This is due

to the underlying Bernoulli random variable, where the variance for each objective is

σ2 = p(1− p),

where p is the probability the event occurred. This is maximized when an objective is at

0.5 and falls off as p increases or decreases.

Figure 5.5 visualizes a cumulative distribution function for a one-dimensional truncated
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Figure 5.6: Expected number of selections, and average number of selections, per gener-
ation of Pareto and non-Pareto individuals during the evolution of a binary classifier for
vacuuming.

normal distribution with µ = p and σ2 = p(1− p). The color shows the value of the CDF

for each possible value of µ across the bounded region 0 ≤ x ≤ 1. As µ increases, the

horizontal band representing the 10th percentile (i.e., x=0.1) has a slow rate of increase in

P (x) ≤ x. For instance, an individual with an average objective score of µ = 0.4 has

a similar probability to produce a solution of x < .1 as an individual with an objective

score of µ = 0.2. Individuals that are significantly closer to the origin, are not necessarily

more likely to produce non-dominated individuals, especially when factoring in multiple

objectives.

Consider the expected number of selections per generation of Pareto and non-Pareto

individuals (where the Pareto optimality of an individual is determined by its average ob-
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Figure 5.7: Expected number of selections, and average number of selections, per gener-
ation of Pareto and non-Pareto individuals during the evolution of a binary classifier for
walking.
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jective score across all test cases). Figure 5.6 shows that in the evolution of a vacuuming

classifier, fuzzy selection is appropriately favoring Pareto individuals, selecting Pareto in-

dividuals on average twice as likely than non-Pareto individuals. The favoritism is higher

in earlier generations when the Pareto solutions are larger drivers, but as the population

tightens towards the end, the ratio begins to decline. This is due to a number of factors,

including the increase of Pareto individuals in the population over time. Both the num-

ber of Pareto individuals and the expected number of selections of Pareto individuals grow

over time, leveling off at about 80% of the population size of 512. There are always more

expected selections of Pareto individuals than there are Pareto individuals, which implies

Pareto individuals are being selected more than once each. This contrasts with the perfor-

mance of the walking classifier shown in Figure 5.7. Here, the number of Pareto individuals

and expected Pareto selections have a much noisier characteristic over the course of the op-

timization. The average number of non-Pareto selections crosses that of Pareto selections

at about the same generation the area under the Pareto front starts to level off in Figure

5.2. The expected number of Pareto individuals selected in the walking classifier evolu-

tion levels off at approximately 6% of the population, in contrast with the 80% expected in

the evolution of the vacuuming classifier. For this dataset, favoritism of Pareto selections

to non-Pareto selections is an indicator as to whether or not fuzzy selection will perform

successfully.

5.1.7 Conclusions

Fuzzy selection can offer significant improvements over traditional multi-objective ap-

proaches by taking into consideration the statistical nature of the objective performance.

In our relative best case, which was the classifier for ascending stairs, we achieved a reduc-

tion of 68.21% in final area under the curve from SPEA2. We also showed a speedup of

291.66% in reaching the generation that halves the initial area under the curve.

However, fuzzy selection is also sensitive to the underlying statistics of test cases, and
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in some cases underperforms when compared to those same traditional approaches. In our

relative worst case, optimizing a standing classifier, we converged to a final area under the

curve that was an increase of 234.78% over SPEA2, but only suffered a slowdown of 7.69%

to reach the generation that halves the initial area under the curve.

Fuzzy selection takes several orders of magnitude longer to perform for a 10, 000 trial,

two objective, 512 individual population than the traditional selection methods. This is by

design, as the selection process still takes less than one typical evaluation of a reasonably

challenging machine learning data set. For smaller populations, fewer trials are needed,

and we can achieve faster performance.

Although we have found indicators as to when fuzzy selection may perform success-

fully, such as favoring the selection of Pareto individuals over non-Pareto individuals, fur-

ther work is necessary to understand the underlying mechanism that causes fuzzy selection

to outperform or underperform traditional multi-objective techniques. Ideally, one would

look for a set of problem features that is well suited to fuzzy selection, and a systematic

method to correct the fuzzy selection procedure to improve performance on problems that

are currently not well suited for this method.

Finally, we would like to demonstrate success on additional problems, including the

benchmarking suite used to analyze the performance of the non-negative matrix factoriza-

tion technique by Liskowski and Krawiec. We would like to compare the performance of

a corrected fuzzy selection method against various test case based methods including: the

NMF search drivers, novelty search, and online discovery of search objectives (DISCO).

5.2 Crossover Improvement

5.2.1 Introduction

Because evaluations of individuals is expensive, we want to achieve our best solutions in

the fewest number of evaluations. To this end, we seek evolutionary operations that can

be used to improve performance. In this section, we analyze the pairing of parents before
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crossover. The current standard procedure following selection in conventional algorithms

(such as SPEA2[12] and NSGA2[9]) is a random choice of parents.

Some newer algorithms introduce crossover restriction to increase performance through

techniques such as locality (as in MOEA/D[15]) or dominance restrictions (as in [82]). We

think of these techniques as point solutions in the full space of pairing algorithms we wish

to investigate.

We take a more abstract approach and assume that we can design a matchmaking algo-

rithm, whose role is to take a list of parents and return unique pairs that should produce the

highest probability of generating successful offspring. Assuming this hypothetical match-

maker exists, this section asks: what sort of increase of the probability of generating suc-

cessful offspring is required to affect a statistically significant performance increase in the

evolutionary process?

The first part of this section deals with methods for comparing evolutionary algorithms.

Next, we define two different notions of what makes a crossover successful or unsuccessful.

We then outline some expectations and present a simulated approach to the evolutionary

process, which functions without a genome. We apply this simulation to understand how

the probability of successful crossover impacts the area under the non-dominated frontier.

Finally, we use these results as an aid in designing experiments for a potential matchmaking

algorithm.

5.2.2 Comparing Results of Evolutionary Algorithms

We require a method of comparing two evolutionary processes, a difficult task for stochas-

tic, multiple-objective problems. There has been a significant amount of research into the

comparison of evolutionary methods, both qualitative and quantitative.

For qualitative methods, Zitzler et al. [83] performed a comparative case study of multi-

objective evolutionary algorithms. They focused their efforts on understanding the types of

solutions that could be reached by each algorithm and reported results based on pairwise
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comparisons of final frontiers, rather than looking at an area under the curve. Zitzler et

al. [84] later looked at many different metrics for comparing algorithm performance on

multiple objectives qualitatively, but did not use statistical tests to empirically show that

one performs better than another.

Quantitative methods use repeated trials to capture the stochastic nature of evolution-

ary algorithms and apply statistical tests to determine the likelihood that different methods

return the same results. Derrac et al. [85] present a survey of statistical methods for compar-

ing the performance of evolutionary algorithms. Garcia et al. [86] provide a similar study

of non-parametric tests for comparing results across a variety of datasets. Ali et al. [87]

show a variety of techniques for visualizing results of stochastic algorithms.

For comparisons, we use a Mann-Whitney U test [88], a non-parametric method for

comparing two independent sample groups without requiring assumptions of samples be-

ing normally distributed (as a t-test does). However, despite the lack of assumption of

normality, it has only 5% efficiency loss (efficiency here is the quality of the estimator)

compared to the t-test on normally distributed data, and far more efficient than the t-test

when we draw the data from a non-normal distribution. The test determines the likelihood

that one group of samples of a random variable A is stochastically less than another group

of samples of a random variable B:

Pr(A > x) ≤ Pr(B > x) ∀x ∈ (−∞,∞). (5.1)

5.2.3 How to Define a Successful Crossover

Uy et. al. [89] define a constructive crossover between two parents as one where both

offspring produce fitnesses better than their parents. On a variety of benchmark problems,

they find these rates to be between 4% and 12%. In a multi-objective environment, this is a

bit harder to define, so we invert the problem and define what an unsuccessful crossover is.

In a multi-objective search, we use Pareto-optimality to rank our individuals in the
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population as a measure of fitness. In this context, we define an unsuccessful crossover

between two parents is one where at least one parent strictly dominates each child. We

define a successful crossover as one that is not unsuccessful, meaning at least one child is

non-dominated by the parents. We refer to this definition of success and failure as parent-

based. Code for implementing this definition of an unsuccessful crossover is shown in

Code Listing 5.1, while the implementation for a successful case is shown in Code Listing

5.2. We use these implementations to perform an evolutionary simulation in Section 5.2.5.

Code Listing 5.1: Implementation of an Unsuccessful Mating Parent-Based

def unsuccessful_crossover(ind1, ind2):

"""

Produces two children that are each dominated

by at least one parent

"""

worse_children = []

while len(worse_children) < 2:

x = ind1.mate(ind2)

if dominates(ind1, x) or dominates(ind2, x):

worse_children.append(x)

return worse_children

Code Listing 5.2: Implementation of a Successful Mating Parent-Based

def successful_crossover(ind1, ind2):

"""

Not unsuccessful_crossover, meaning

at least one child is at least codominant

"""

not_worse_children = []

# In this case we need to generate just one

# individual that violates our constraint

while len(not_worse_children) < 1:
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x = ind1.mate(ind2)

if not (dominates(ind1,x) or dominates(ind2,x)):

not_worse_children.append(x)

# Once we have our one good child,

# we can get any other random child

not_worse_children.append(ind1.mate(ind2))

return not_worse_children

We can compare this to another method of classifying success of crossover that is

population-based. Rather than looking only at parents and children, we can also examine

the rest of the population at the time of crossover. In this context, in a minimization scheme,

a failed crossover is one in which both children appear at a higher (worse) Pareto rank than

that of the better parent (or both if the parents are of the same rank). A successful crossover

is one in which the parents produce at least one child at the same Pareto rank as, or lower

than, the better parent. While this definition is more computationally expensive to simu-

late (i.e., it requires computing dominance interactions across multiple individuals rather

than just the parents), it captures the time-varying and population-relative aspect of the

evolutionary process. Example code for the implementation of an unsuccessful crossover

for this population-based criteria is shown in Code Listing 5.3, and the implementation for

successful crossover is shown in Code Listing 5.4. Both of these code segments assume

that ranks are computed for the population before we use these functions.

Code Listing 5.3: Implementation of an Unsuccessful Mating Population-Based

def unsuccessful_crossover_pop(ind1, ind2, population):

"""

Produces two children that are of worse pareto rank

than parents

"""

# First let’s find the better rank of the parents

target_rank = min(ind1.rank, ind2.rank)
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# Now let’s extract the front fitness array

# from the population

target_front_fitness = np.array([

ind.fitness for ind in population \

if ind.rank == target_rank])

worse_children = []

while len(worse_children) < 2:

x = ind1.mate(ind2)

# Compute a dominance array, this will tell if

# any individual in the front dominates the child

dominance = \

np.all(target_front_fitness<=x.fitness,axis=1)\

&np.any(target_front_fitness<x.fitness,axis=1)

# If any individual in this front dominates the

# child, it is unproductive

if np.any(dominance):

worse_children.append(x)

return worse_children

Code Listing 5.4: Implementation of a Successful Mating Population-Based

def successful_crossover_pop(ind1,ind2,population):

"""

Not unsuccessful_crossover, meaning at least one

child is at the same rank or better with the parents

"""

# First let’s find the better rank of the parents

target_rank = min(ind1.rank, ind2.rank)

# Now let’s extract the front fitness

# array from the population

target_front_fitness = np.array([

ind.fitness for ind in population \

if ind.rank == target_rank])
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not_worse_children = []

# In this case we need to generate just one

# individual that violates our constraint

while len(not_worse_children) < 1:

x = ind1.mate(ind2)

# Compute a dominance array, this will tell if

# any individual in the front dominates the child

dominance = \

np.all(target_front_fitness<=x.fitness,axis=1)\

&np.any(target_front_fitness<x.fitness,axis=1)

# If no individual dominates this child,

# it is productive

if not np.any(dominance):

not_worse_children.append(x)

# Once we have our one good child,

# we can get any other random child

not_worse_children.append(ind1.mate(ind2))

return not_worse_children

5.2.4 Performance of the Optimization

For a two-objective problem, we can measure the performance of the evolutionary process

by tracking the area under the curve (AUC) of the non-dominated frontier over the genera-

tions of the optimization. This methodology extends into higher dimensions by computing

hypervolumes under a non-dominated hypersurface. Equation 4.1 showed this definition in

a two-dimension minimization problem.

In the case of the population-based definition of failure and success, AUC only de-

creases in one of two ways as the evolution proceeds:

1. There is a successful crossover, and at least one of the parents was a Pareto individual.

In this case, there is always an AUC improvement.
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2. There is a successful crossover with two non-Pareto parents, but the random child

they produce happens to be a Pareto individual.

To track the stochastic nature of the evolutionary process, we can repeat the optimiza-

tion over many trials, each trial yielding a different AUC curve over time. We can then

compare these populations to each other. In the case of this population-based definition,

we can expect the average AUC across these trials to perform as follows:

At generation i, let Ai be the AUC and Pi be the number of parental pairs containing a

Pareto individual. Assume we have an initial AUC A0 and initial count of P0 parental pairs

containing at least one Pareto individual.

After generation 1, our AUC can be given an expected upper bound (in minimization)

by subtracting out expected improvements:

A1 = A0 − P0Pr(success)αA0 = A0(1− P0Pr(success)α),

where we let αAi be expected AUC contribution at generation i when there is a decrease

in AUC. Because we assume our standard deviation shrinks as our objectives shrink, the

AUC contribution is not a constant; each improvement contributes a constant proportion of

the AUC.

Continuing this process,

Ai = Ai−1(1− Pi−1Pr(success)α),

so,

A2 = A1(1− P1Pr(success)α) = A0(1− P0Pr(success)α)(1− P1Pr(success)α).
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We can, therefore, rewrite Ai as

Ai = A0

i−1∏
k=0

(1− PkPr(success)α). (5.2)

Hence, Ai results in an exponential decay in AUC as generations increase. We also

expect that probability of success is proportional to the rate of decay, and thus a linear

change in the probability of success has an exponential impact on AUC.

The parent-based criteria should behave similarly; however, a crossover success on

a Pareto individual does not guarantee an AUC improvement, because another existing

individual may dominate the resulting child in the population. We can think of this as

another probability, Pr(non-dominated) being multiplied by the PkPr(success)α, which

will result in a slower decay.

5.2.5 Evolutionary Simulation

Because we are after a relationship between crossover success rates and AUC convergence,

we choose not to implement an underlying genome. Instead, we rely solely on the pheno-

type (expression) of that genome in objective space. Our definitions of success and failure

from the previous section are based only on objective scores; therefore, we can set rates of

success and failure and draw samples from assumed distributions to simulate the crossover

process. This abstract process should yield more general results than relying on a specific

genome, crossover operator, and evaluation function.

In this simulation, we make several assumptions:

1. Objective scores are continuous.

2. The objective scores of a child are normally distributed around the centroid of the

objective scores of its parents.

3. To simulate the convergence of the evolutionary process, we use a standard deviation

proportional to the mean of the normal distribution.
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4. Objective scores are bounded on [0, 1], effectively creating a truncated normal through

rejection sampling of those objectives that lie outside of these bounds.

5. Each pair of parents produce exactly two children during the crossover operation.

Because we do not have an evaluation function, our evolutionary simulation only con-

sists of selection and mating. For selection, we chose the non-dominated sorting genetic

algorithm (NSGA), which involves sorting the combined N parents and N children by

Pareto ranking and selecting the top N individuals to be the parents for the next generation,

where N is the population size. We chose this method for its inherent elitism benefits, i.e.,

as long as there are less than N Pareto individuals, the Pareto frontier is preserved from

generation to generation.

We perform the crossover operator as follows. For each pair of individuals (randomly

chosen without replacement), a random number is generated uniformly on [0,1]. If the

random number is less than the given probability of failure pi, then the prescription for an

unsuccessful crossover is used (either Code Listing 5.1 or Code Listing 5.3). Likewise,

if the random number is greater than pi, then a successful crossover is performed (Code

Listing 5.2 or Code Listing 5.4).

We do not use any mutation in our evolutionary simulation due to the lack of an under-

lying genome. Instead, we assume the statistical nature of our crossover operator captures

the variations a mutation operator would offer.

Code Listing 5.6 shows our definitions for an individual and its mating operator.

5.2.6 The Experiment

We set up a two-objective problem, with our objectives as being independently distributed

from an initial normal distribution with a mean of 0.5 and standard deviation of 0.1.

We construct a mating operator that produces children with objective scores from a

normal distribution centered at the mean of the parents and a standard deviation equal to

140



one-fifth of the mean. We simulate a truncated normal, since our objectives are bounded

on [0,1] by regenerating any solutions that fall outside that range.

We use a population size of 128 individuals, each with their objectives drawn from

the initial distribution. The evolution runs for 100 generations and is repeated 50 times

for each probability of unsuccessful crossover from (30%-80%). For each probability of

unsuccessful crossover p, the probability of a successful crossover is 1− p.

Code Listing 5.5: Fitness Generation Through Rejection Sampling

def gen_fitness(mu, sigma):

continuous = []

# Begin rejection sampling

while len(continuous) < 2:

i = len(continuous)

# Generate objective score sample i

test_var = sigma[i]*np.random.randn(1) + mu[i]

# Test to see if within objective bounds

if test_var[0] < 1 and test_var[0] > 0:

continuous.append(test_var[0])

continuous = np.array(continuous)

return continuous

Code Listing 5.6: Class definition of an Individual

class Individual:

def __init__(self, mu=np.array([0.5, 0.5])):

sigma = mu/5.

self.fitness = gen_fitness(mu, sigma)

self.rank = None

def mate(self, other):

avg = (self.fitness+other.fitness)/2

return Individual(mu=avg)
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5.2.7 Results
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(a) Population-based success criteria
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(b) Parent-based success criteria

Figure 5.8: Log plots of the area under the non-dominated frontier at each generation aver-
aged over 50 trials, where each line is a difference in unsuccessful crossover percentage.

Figure 5.8 shows the AUC of the non-dominated frontier averaged over 50 trials for

each probability of failure. We only plot every 3% for clarity. We also chose a log-plot

to show that each 50-trial experiment has a decaying exponential response over the course

of the 100 generations, and the 3% differences in unsuccessful crossover probability are

roughly linearly spaced, suggesting this probability has an exponential effect on conver-

gence for both success criteria. The stricter population-based criteria creates a faster re-

sponse than the more relaxed parent-based criteria, which is more clearly illustrated in

Figures 5.9 and 5.10.

Figure 5.9 uses box and whiskers plots to capture the full range of the stochastic pro-

cess. We can see the exponential characteristic of the median (solid orange line) of each

probability of failure. The population-based success criterion decays more quickly than the

parent-based criteria as the rate of unsuccessful crossover decreases. Figure 5.10 illustrates

that the slopes of the log plots change with the probability of crossover failure. The stricter

criteria enforce a faster convergence. We can also clearly see the exponential relationship

between probability of success and failure and convergence of the optimization.

Figure 5.11 compares the ability of the population-based and parent-based definitions
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(b) Parent-based success criteria

Figure 5.9: Box and whisker plots of the final AUC at generation 100 by crossover failure
percentage. Each box and whisker represents the results of 50 trials. The effect of crossover
success is an exponential response on AUC. Orange solid lines show medians, green dashed
lines show means.

of success to improve AUC over a generation in terms of probability of failure. We compute

the probability of improvement by loading all trials for a given experiment and counting the

number of times the AUC changes from one generation to the next, out of all generations

and all trials for the probability of failure.

Figure 5.12 shows the number of generations required for a probability of failure to

have a statistically significant impact on AUC for a given number of trials. We simulate

each probability of failure for the full 100 generations and 50 trials; we call each of these

an experiment at a given failure level. Of the 50 trials per experiment, 15, 20, and 25

are chosen randomly to observe the impact that the number of trials has on the statistical

significance. Next, we iterate through each potential separation of the probability of failure

from 1% to 20%. This separation represents the percent improvement one crossover has

over another.

For each possible separation, we use a Mann-Whitney U test for each of the 100 gen-

erations to compare the k trials of one probability to the k trials of the other. The 100

comparisons of k trials create a p-value curve for each possible delta that we then average.

For example, if our delta is 2, we start creating p-value curves for 80 vs. 78, then 79 vs. 77,
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Figure 5.10: Slope of AUC log plot vs. the probability of failure of crossover. The
population-based criteria show a faster rate of decay of the AUC, and responds more
quickly to changes in probability of failure.

through to 32 vs. 30. This yields 49, 100-point p-value curves for our chosen separation.

We ran 51 full experiments, with each separation δ yielding 51 − δ curves to average. We

now average all the curves for a given separation and number of trials. Figure 5.13 shows

an example of these average p-value curves for a static 30 trials per comparison and sepa-

rations of crossover success rates between 1 and 10. The final step is to compute the final

generation at which the average p-value falls below and stays below the critical threshold,

set at 0.025, representing a one-tailed 97.5% confidence rate that one distribution has a

lower mean than the other. The generation that the last crossover occurs at is the number

of generations that a given separation needs to have a statistically significant impact (at the

97.5% level).
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Figure 5.11: Probability of an AUC improvement from one generation to the next.

Figure 5.14 compares the impact of the two different success criteria side-by-side.

These plots are meant to be decision aids for designing experiments, i.e., for a known

amount of crossover improvement and generations of the evolutionary process, these plots

show a minimum number of trials required to have a statistically significant impact on

AUC. While the two criteria behave similarly, the stricter population-based success crite-

ria have a significant impact sooner, showing improvement in AUC with 2% difference in

crossover success and approximately 40 generations. On the other hand, the parent-based

success criteria requires a 3% difference in crossover success and about 30 generations to

show improvement. Population-based crossover also sees the number of required trials fall

off more quickly than the parent-based criteria.

The plots in Figure 5.14 were generated similarly to those of Figure 5.12, but rather than

use a fixed number of trials and generations, we begin with the full 50 trials for each δ and
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(b) Parent-based success criteria

Figure 5.12: Comparison of how many generations a given change in probability of success
will take to have a statistically significant impact on AUC, for three different numbers of
trials.

number of generations. We compute the average p-value across all experiments separated

by δ, reducing the number of trials until the p-value is no longer below the critical value

of 0.025. The last number of trials before this happens is the minimum number of trials

required to generate a statistically significant separation of AUC for a given number of

generations and crossover improvement.

5.2.8 Conclusion and Future Work

From our results, it is clear that the statistical power of a crossover operator on AUC

improvement depends on the number of trials, generations per trial, and the amount of

crossover improvement. The impact of choosing NSGA (or any mechanism with elitism)

for selection in the case of the population-based definition of success is that the inherent

elitism strongly affects the amount of AUC improvement in each generation, due to the

independent probabilities of selecting a non-dominated individual and generating a suc-

cessful child. Anytime both these events occur, there is an AUC improvement. Therefore,

as the non-dominated front grows, so will the amount of AUC improvement in each gener-

ation.

In Appendix A, we design a “matchmaker” operator to improve crossover. The objec-
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Figure 5.13: Average p-value for the Mann-Whitney U test at each separation of failure
probability for a constant 30 trials, where each line indicates a difference in probability of
failure rate. This particular plot is done using the data from the population-based success
criteria.

tive is to replace the random shuffling of parents into pairs with a learned strategic pairing

methodology. The results in the previous section inform our design of experiments.

As an example, take Figure 5.14a, which shows results with the population-based suc-

cess criteria. If a matchmaker can increase the probability of a successful crossover by

3%, and we would like to run no more than 30 trials of our evolution, Figure 5.14a shows

we would need to run each trial for 44 generations before we would observe a statistical

improvement in AUC. On the other hand, if the matchmaker can achieve as much as a 6%

improvement in success, we can see statistical improvement of the evolutionary process

measured by AUC in only 13 generations in the same number of trials. For the parent-

based criteria, these we would require 66 and 14 generations respectively, using the same
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(a) Population-based success criteria
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(b) Parent-based success criteria

Figure 5.14: Design of experiment plots showing the number of trials required for critical
p-value to show significant difference in AUC for a given number of generations and %
improvement of crossover.

two probability improvements and the number of trials.

For some problems, especially those that are more easily solved by an evolutionary

algorithm, knowledge of this dependence on generations is helpful. For instance, if train-

ing this matchmaker takes data from a certain number of generations before it performs

accurately, the number of generations to show improvement represents the number of gen-

erations at which we observe a reward for using a matchmaker. If the percent improvement

is low enough, or the problem is easy enough that the evolutionary algorithm can solve it,

the matchmaker may never be able to have an impact on the process.

In addition to using the results of this simulation as an informative tool, there is potential

future work in improving the simulation itself, including:

• Experimenting with other statistical properties when executing a crossover, such as

correlated objectives or varying distributions and parameters.

• Increasing the resolution that the simulation is run over (better than 1% step size in

improvement).

• Implementing other definitions of success and failure, such as a child contributing to

AUC improvement as a metric.
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5.3 Summary

This chapter aimed to improve the selection and mating steps of the evolutionary process.

The algorithms for these steps have historically favored fast performance due to the evolu-

tionary operators taking a significant amount of the processing time during the optimiza-

tion. Due to EMADE ’s high-level primitives increasing evaluation time, we investigated

these new methods in hopes that we could create better performing operators in terms of

number of successful children produced at the cost of some idle time in the evolutionary

loop.

The selection method we investigated used a novel concept of probabilistic dominance

based on individual test-case performance. This was moderately successful, although that

success appeared to depend on balance of distributions of the gene pool for its objectives.

Future work could follow this thread and perhaps alter some of the assumptions, such as

the truncated normal distribution we applied through Markov-chain Monte Carlo.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

We introduced EMADE as a powerful autoML tool. EMADE differentiates itself from

the rest of this emerging field through its use of bio-inspired processes to combine proven

techniques from the areas of machine learning and signal processing. In this thesis we

demonstrated how these bio-inspired processes are able to evolve human-competitive so-

lutions on challenging problem sets. EMADE supports the generation of algorithms for

imagery and time-domain problems, a capability not found in the rest of the autoML space.

A concept of tiered datasets allowed us to process computationally expensive datasets

without sacrificing the ability to evaluate large numbers of individuals. The tiered dataset

approach allowed autoML to cross into new domains, such as imagery with the xView

dataset or signal processing with bathymetric LIDAR simulations.

We demonstrated success across a suite of problems covering feature data and stream

data for both classification and regression. The key to solving these problems is to contin-

uously grow the capabilities of EMADE by adding new primitives from the literature and

better understanding what drives the evolutionary process.

Finally, with a paradigm shift of long evaluation times, we explored new ways to exploit

our wait time for the main evolutionary loop to increase our probability of success from

matings and mutations. In particular, the fuzzy selection with probabilistic dominance

showed promise.

One of the most powerful examples on how the contributions in this dissertation come

together is in the bathymetric LIDAR application from Section 4.4. For this problem,

we started with a high-fidelity simulation and industry standard algorithm for processing
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LIDAR returns, and evolved a significantly better solution. What is most illuminating about

the solution discovered by EMADE is that it was not only simpler, but it used techniques

from an entirely different domain, i.e. image processing. This novelty speaks to EMADE’s

ability to grow over time as more primitives and data types are added to the code base from

a variety of domains, as well as its ability to dispassionately pursue non-traditional ideas

that might not even occur to researchers in narrow fields.

6.2 Future Work

As of Fall 2008, Georgia Tech supports a Vertically Integrated Project course in automated

algorithm design, almost fifty students actively applying and modifying the EMADE code

base to solve new problems that interest them and improve understanding of the tool.

We wish to continue down important areas of research with EMADE, including imple-

mentation of many objective techniques (i.e. much greater than three), exploring speciation

and novelty techniques, and using EMADE as a platform for other thoughts on evolutionary

computation.

One particular area in much need of attention is the field of deep learning. Due to high

computation expense, deep neural network support in EMADE is currently limited. We

would like to further explore this area and find clever ways to incorporate this powerful

machine learning tool into EMADE’s space of primitives, and apply evolutionary concepts

to the black art of neural network architecture as we have applied these evolutionary con-

cepts to the greater space of machine learning.

Other potential areas for improvement include bloat removal, speed improvements

through identification of bottlenecks in EMADE, and leveraging hardware such as GPUs,

as well as other concepts to speed up the evaluation times. One concept that could con-

siderably speed up evaluation times in EMADE is the implementation of a co-evolutionary

process to select test cases from the dataset for computing objective scores against, rather

than use the full dataset for the entire optimization. The co-evolution would allow the sec-
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ond evolutionary process to find the smallest set of test cases that best approximate the

performance of the full dataset. Another interesting thread of research could be the ex-

ploration of how to best use the information gained from analyzing statistics on objective

scores across the cross-folded datasets in EMADE. For example, rather than only using

averages, we could integrate the use of variances across aggregate scores of an individual

to get a better measure of the tendency of an algorithm to overtrain. Identifying algorithms

that have large swings in objective scores across folds could also help terminate evaluation

early, instead of evaluating across all folds.
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APPENDIX A

MATCH MAKING

All evolutionary algorithms rely on the concept that making small changes to successful in-

dividuals yields better individuals over time. A principal operator in an evolutionary algo-

rithm is a crossover or mating operator that can exchange information between individuals

to construct new ones. A problem in which crossover aids convergence is particularly well-

suited to the evolutionary process because selecting successful individuals and exchanging

information yields better individuals. However, most evolutionary algorithms randomly

pair individuals in the population after selecting a set of parents. There must be a more

intelligent manner to pair individuals to increase the probability of producing successful

offspring. For example, humankind has managed to produce all varieties of domesticated

dog breeds in the last 14,000 years through selective breeding, a relatively brief amount of

time on the evolutionary timeline. Section 5.2 showed that if we can improve the probabil-

ity that at least one child is non-dominated by its parents, we can outperform the traditional

random pairings of parents.

This section explores the concept of matchmaking to strategically pair parents. We

introduce a machine learner into the evolutionary process after selection. The machine

learner is responsible for the pairing of parents before crossover.

A.1 Features of Crossover

Ideally, we design the matchmaker to be a black box that predicts whether or not a crossover

will be successful from a number of features. To best capture crossover dynamics, we

select features that cover both phenotypic and genotypic similarities and differences of the

parents. We designed all features to be symmetric, meaning crossover(parent1, parent2)

has the same set of features as crossover(parent2, parent1). We looked at a two-objective
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problem (which defines a subset of phenotypic features that we may exploit). The genotypic

features we use are:

• Height difference: The absolute value of the difference in heights of the trees repre-

senting each parent.

• Similarity: A measure of similarity of the two parents. This score counts the number

of elements the parents have in common, starting at the root of the tree of each parent.

• Difference in number of elements: The absolute value of the difference between the

number of elements in both of the parents.

• Primitive similarity: A histogram is constructed for each parent with one bin for

each primitive in the primitive set. Each histogram represents how many times each

primitive appears in the tree of the parent. The feature is theL2 norm of the difference

between the histograms of the parents.

• Total primitives: With histograms constructed in the same manner as for primitive

similarity, “total primitives” is computed as the L2 norm of the sum of the histograms

of the parents.

• Edit distance: This is the most expensive feature we implemented. It represents the

number of changes needed to change one parent into another. This was computed by

the zss python package, which implements the Zhang and Shasha tree edit distance

[90].

• Vectorized histogram differences: Here we construct N features, where N is the

number of primitives in the primitive set. This set of features is the absolute value of

the difference between each parent’s count of each primitive.

The Phenotypic features we use are:
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• Fitness difference: The L2 norm of the difference between vectors of objective scores

for the two parents.

• Fitness difference X: The squared difference of the first objective score.

• Fitness difference Y: The squared difference of the second objective score.

• Test case covariance: For the next several features, let u be the vectorized test case

predictions of parent 1 and v be the vectorized test case predictions of parent 2. The

test case covariance is the correlation coefficient of the vectorized test case predic-

tions of the two parents.

• Test case difference: The L2 norm of the difference of the vectorized test case pre-

dictions of the two parents, ||u− v||2.

• Cosine difference: The cosine distance measure computed from the vectorized test

case predictions of the two parents:

1− u · v
||u||2||v||2

.

• Barycurtis difference: ∑
|ui − vi|∑
|ui + vi|

.

• Canberra difference: ∑
i

|ui − vi|
|ui|+ |vi|

.

• Chebyshev difference:

max
i
|ui − vi|.

• Cityblock difference: Also known as the Manhattan distance

∑
i

|ui − vi|.
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• Minkowski difference:

||u− v||p = (
∑
|ui − vi|p)1/p.

(∑
wi(|(ui − vi)|p)

)1/p
.

• Square Euclidean difference:

||u− v||22.

• Sum of distance to origin: The L2 norm of the sum of the vectors of objective scores

for the two parents.

• Age difference: The difference in the generations in which each parent first appeared.

A.2 In Situ Learning

To produce a matchmaking algorithm, we experimented with a number of different machine

learners to identify which would be appropriate. The next subsection explores the use of an

XGBoost machine learning algorithm configured to perform a logistic binary classification.

Section A.4 explores using EMADE to optimize the algorithm for matchmaking.

For in situ learning that the next section explores with various test problems, we use a

machine learner as follows. First, each evolutionary trial begins without matched crossover

for Nprime generations. During these generations, individuals crossover randomly, as they

normally would. As each crossover occurs, the features from Section A.1 and outcome

of the crossover (success for at least one child that is not dominated by both parents) are

logged in a database. After Np generations, we train the classifier for the first time on the

features produced during those generations. The matchmaker updates every Nm genera-

tions, and optimizes with a grid search every Ng generations. The grid search uses the

parameters n estimators , varying across {10, 20, 50, 100, 150, 170, 180}, learning rate ,

varying across {0.01, 0.1, 0.3, 0.5, 0.8, 1.0}, and max depth, varying across {3, 6, 9}. This

parameter space represents 126 possible XGBoost classifiers, from which we select the
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best configuration.

After the learner is trained for the first time, we use the learner after selection and

prior to mating to order the population. We create an M × M matrix C, where M is

the size of the population, to represent the probabilities of all potential crossovers. We

compute the features of the current population and feed them to the machmaker to predict

a probability of success for each possible crossover in the population. We set Cij to be the

probability that the crossover of individuals i and j produces a child that is non-dominated

with i and j, which the matchmaker predicts. Next a greedy approach pairs the population.

We sum across each row in C to create a vector measuring the utility of each individual.

The individual corresponding to the highest value in this vector is expected to have the

highest overall probability of producing a non-dominated child, and the lowest value should

correspond to the individual we least expect to produce a non-dominated child. We sort the

individuals in descending order by these values. Next, we intitialize a list of elligible mates

as the entire population, and a list of matched individuals as empty. Starting with the first

individual in the sorted list, we adjust the corresponding row of C by a fixed baseline

probability pb. We then normalize the row by dividing by its sum. We use this resulting

vector to perform a weighted random choice of an individual with which to pair. We remove

both individuals from the elligible mates list and add them to the list of matched individuals.

We repeat this process until the elligible mates list is empty. Each time we extract the row

from C, we choose only the columns that correspond to elligible mates prior to performing

the normalization and random choice.

This greedy matching procedure should give the parents most likely to produce non-

dominated offspring the first preference of mates, while still incorporating some of the

randomness that evolution requires. The next subsection shows that despite this match-

ing procedure, performance of the evolutionary procedure does not improve. Section A.4

investigates some of the reasons this procedure does not succeed.
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Table A.1: Primitive Set for the Word Count Problem

Logical Arithmetic String List

and add split length
or subtract strip concatenate
less than multiply replace
greater than concatenate
not upper
less than or equal lower
greater than or equal capitalize
equal center
not equal count
exclusive or

A.3 Test Problems

We explored several test problems with our matchmaking framework. These problems

were: the parity problem, an eight bit comparator problem, PNP uniform length and uni-

form frequency [91], and a word count problem. In each problem, the matchmaking algo-

rithm failed to improve performance over the random pairing of individuals. This section

walks through the word count problem to understand why the performance suffers.

For the word count problem, we used the full text of Romeo and Juliet from Project

Gutenberg. Each line of text becomes a test case, where the number of words on that line

serve as the truth data. Table A.1 shows the functions that constitute the primitive set. The

terminal set comprises each character in the alphabet (upper and lowercase), the digits 0-

9, quotes, apostrophes, backslash, comma, period, newline, pound sign, true, false, and an

empty set. To avoid the optimization solving the problem too quickly, we exclude the space

character from the terminal set.

To score the word count problem, we use two objectives: mean absolute error and

variance of error. Error is measured as the difference between the predicted and actual

word count of each line. For selection, we use a traditional NSGA-II procedure. We chose

a population size of 128 individuals, a probability of crossover of 90%, and a probability
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Figure A.1: Average AUC curves for standard, headless, and matched crossover over 30
trials. The shaded area represents ±σ, the dashed lines represent the best and worst case
AUC at each generation.

of mutation of 10%. We run 30 trials of 50 generations each for the cases of standard

crossover, headless crossover, and matched crossover. The headless crossover is where all

crossovers occur with randomly created trees; we include this to demonstrate the benefit of

crossover. For the matched crossover trials, the in situ matchmaker used the parameters of

Np = 5, Nm = 5, Ng = 10, and pb = 0.01.

Figure A.1 shows the performance of the three methods of crossover. Each line traces

the average AUC over 30 trials that the non-dominated individuals create on the objectives

of mean absolute error and variance. The shaded area around each line represents plus

or minus one standard deviation, and the dashed lines represent the best and worse AUC

for each generation. Both standard and matched crossover outperform headless crossover,

which means the evolutionary process benefits from the mating operator. Theoretically, we

require crossover to be beneficial for a matchmaker to function properly. However, we also

see that the standard and matched crossover have nearly identical AUC curves.
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Figure A.2: Box and whisker plot of distribution of AUC at generation 50 over 30 trials.

Figure A.2 contains box and whisker plots for standard, headless, and matched crossover

performance respectively at the end of the 50th generation. Again, both standard and

matched crossover outperform headless crossover. Although the interquartile range be-

tween standard and matched are similar, the whiskers of matched crossover extend farther

in each direction, indicating a more variable process. In general, we prefer tighter perfor-

mace characteristics, which indicates more reliability.

Figure A.3 shows the probability at each generation that matched and standard, as well

as headless and standard, have different distributions. We compute these p-values with the

same Welch’s t-test used in Section 5.2. We can reject the null hypothesis that headless and

standard come from the same distribution at more than the 99% confidence level. On the

other hand, we cannot reject the null hypothesis that standard and matched crossover yield

different distributions.
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Figure A.3: P-Values from a Welch’s t-test to reject the hypothesis that the distributions of
AUC at each generation are equal.

A.4 Evolving a Matchmaker

This section explores whether the classifier is the source of the difficulties found in the

previous section. We allowed the classifier to train on accuracy in the in situ method, which

favors the surpression of false positives, because crossover is more often unsuccessful than

successful. If false positives are surpressed, the classifier is more likely to predict false

negatives. A false negative during the evolutionary process could be far more detrimental

to the performance of the search because it represents an unexplored solution. Given that

we observed that the parent-based success rates hovered between 10 and 20 percent, we

hypothesized that we could create a classifier with EMADE, trained on a large number

of crossovers generated from different trials, which has a better accuracy than the naı̈ve

random pairing approach (which has a low accuracy, high false positive rate, and false

negative rate of 0), while still maintaining a low false negative rate.

We tested our theory by tracking these features through 60 trials of an evolutionary ex-
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periment of 50 generations each. The population size was set to 128. With a 90% crossover

rate, we expect to generate E[x] = 0.9 · 128
2
· 50 · 60 = 172, 800 crossovers with which we

can study and build predictive models. Because our goal is to develop a binary classifier

for success and failure of crossover, we supervised this dataset with the parent-based defi-

nitions of success and failure shown in Code Listings 5.2 and 5.1, respectively. We chose

this because both parent-based and population-based definitions showed improvement in a

similar number of trials, but from a machine learning perspective, parent-based definitions

result in more common successes. While the dataset is still unbalanced in favor of fail-

ures, the successes result in significantly more observable positive instances, and allows a

classifier to have a larger false positive rate at the same positive predictive value.

We produced two datasets from eight trials: a set for developing matchmaking algo-

rithms in EMADE, and a set for validating the algorithms EMADE produced. The training

set consisted of two trials, and the validation set consisted of six trials. We broke down

each set further by cross-folding them into five training and testing pairs of ratio 80% to

20%, respectively. While normally we do not split validation data, in this experiment, we

are interested in both applying the fit and optimized algorithm, as well as identifying if the

algorithm can be retrained on new data. We created each of the eight trials from a pop-

ulation size of 128 individuals run for 300 generations. The data comprises information

about each crossover that occurred in each trial, including the descriptive features of the

crossover that Section A.1 enumerated, as well as the supervised information as to whether

or not the crossover was successful, according to Code Listing 5.2.

We extracted two non-dominated solutions from the optimization on the development

data. One was a balanced solution, meaning the false positive rates and false negative

weights were nearly equal; the other was a false negative optimized solution, meaning it

had one of the lowest false negative rates without being a trivial solution. We hypothesized

that driving the false negative rate to be as low as possible while suppressing as many false

positives as permissible would lead to the best performance of the matchmaker in terms of
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Table A.2: Balanced individual test scores

Fold Accuracy FP Rate FN Rate NFP NFN Naı̈ve Accuracy

Fold 1 72.44% 27.77% 25.14% 6328 533 7.77%
Fold 2 73.27% 26.43% 30.38% 6341 520 7.58%
Fold 3 73.14% 26.72% 28.60% 6326 535 7.80%
Fold 4 72.32% 27.79% 26.31% 6344 517 7.54%
Fold 5 72.80% 27.52% 22.97% 6369 492 7.17%

Table A.3: False negative optimized individual test scores

Fold Accuracy FP Rate FN Rate NFP NFN Naı̈ve Accuracy

Fold 1 27.07% 78.86% 2.63% 6328 533 7.77%
Fold 2 26.41% 79.40% 2.69% 6341 520 7.58%
Fold 3 25.46% 80.73% 1.31% 6326 535 7.80%
Fold 4 26.03% 79.85% 1.74% 6344 517 7.54%
Fold 5 26.42% 79.13% 1.63% 6369 492 7.17%

fastest and greatest AUC reduction. We constructed this hypothesis based on the idea that a

false negative is more dangerous than a false positive for the optimization, i.e. suppressing

an algorithm that would have been a successful exploration of the search space is more

detrimental to performance than allowing the evaluation of something that would not help

the evolution.

Tables A.2 and A.3 show the results of applying the balanced and false negative opti-

mized algorithms, respectively, that EMADE produced on the testing partition of the devel-

opment data during the optimization process. On the five folds of this dataset, the average

accuracy of a naı̈ve algorithm of assuming every crossover is successful is 7.8%. The nav̈e

solution is, in effect, the traditional mating strategy, i.e. randomly pair all individuals. This

accuracy is equivalent to the occurrence rate of successful crossovers out of all crossovers.

In comparison with the naı̈ve solution, both the balanced and false negative optimized al-

gorithms greatly improve upon the accuracy achieved by the traditional approach.

Of course, to understand the performance of algorithms, we need to apply them to val-

idation data not presented to them during the optimization. Performance on the validation

data shows whether or not the algorithms are overtrained. Tables A.4 and A.5 show the

results of applying the balanced and false negative algorithms EMADE produced, respec-
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Table A.4: Balanced individual validation scores

Fold Accuracy FP Rate FN Rate NFP NFN Naı̈ve Accuracy

Fold 1 59.95% 39.75% 41.98% 17756 2780 13.54%
Fold 2 60.91% 38.59% 42.26% 17727 2809 13.68%
Fold 3 57.95% 42.55% 38.83% 17773 2763 13.45%
Fold 4 60.97% 38.44% 42.67% 17670 2866 13.96%
Fold 5 57.57% 42.87% 39.73% 17692 2844 13.85%

tively, on the testing partition of the validation data. We partitioned this data so that we

could refit our models on data from the same trials to understand the abstractness of the

algorithms themselves. Performance significantly degrades on both individuals. However,

the objective scores for the balanced individual remain balanced, and the objective scores

for the false negative optimized individual remain strongly favoring false negatives. On

the validation trials, the naı̈ve classification performs nearly twice as well on the validation

data than on the development data. This means that the validation data has a rate of success

that is nearly twice that of the development data.

The high variability from trial to trial indicates several issues with the matchmaking

algorithm. First, the variability indicates that it is difficult to use a model trained on one

set of trials and apply it to another. This lack of transferability means that we cannot train

a matchmaker using a feature set chosen for past data and apply to future optimizations.

Second, the variability shows that not only are the the mappings from feature to rates of

success inconsistent, but from trial to trial, the rates of success themselves can be drasti-

cally different. These wide differences between trials means that applying the concepts of

crossover improvement from Section 5.2 is difficult, because the success rate can rise or fall

so dramatically we cannot know apriori how much better or worse our matched crossover

will be.

Since our trained matchmaking algorithms did not have transferable results, we inves-

tigated whether the untrained algorithms could be useful for online learning during a new

optimization. To simulate this in situ retraining, we refit the balanced and false negative

optimized algorithms on the training portion of the validation data. Tables A.6 and A.7
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Table A.5: False negative optimized individual validation scores

Fold Accuracy FP Rate FN Rate NFP NFN Naı̈ve Accuracy

Fold 1 23.25% 86.99% 11.33% 17756 2780 13.54%
Fold 2 24.17% 86.00% 11.64% 17727 2809 13.68%
Fold 3 21.07% 89.86% 8.61% 17773 2763 13.45%
Fold 4 24.07% 86.55% 10.43% 17670 2866 13.96%
Fold 5 22.67% 88.06% 10.55% 17692 2844 13.85%

Table A.6: Balanced individual retrained on validation scores

Fold Accuracy FP Rate FN Rate NFP NFN Naı̈ve Accuracy

Fold 1 63.68% 35.44% 41.98% 17756 2780 13.54%
Fold 2 62.89% 36.86% 38.66% 17727 2809 13.68%
Fold 3 62.33% 37.51% 38.69% 17773 2763 13.45%
Fold 4 64.01% 34.80% 43.30% 17670 2866 13.96%
Fold 5 63.90% 35.26% 41.35% 17692 2844 13.85%

show the results for retraining the balanced and false negative algorithms, respectively,

and scoring them on the testing portion of the validation data. Unfortunately, this leads

to unpredictable results where our balanced algorithm now slightly favors reducing false

positives. The false negative optimized algorithm yields results that vary wildly from fold

to fold, which is an extremely undesirable characteristic for a machine learning algorithm.

The conclusion we draw from this poor refitting performance is that extracted algorithm

pipelines, developed on the chosen feature set and success criteria on one trial, are not

useful for retraining in situ on another trial.

Table A.7: False negative optimized retrained on validation scores

Fold Accuracy FP Rate FN Rate NFP NFN Naı̈ve Accuracy

Fold 1 74.96% 16.85% 77.37% 17756 2780 13.54%
Fold 2 20.92% 90.68% 5.84% 17727 2809 13.68%
Fold 3 40.53% 62.34% 41.01% 17773 2763 13.45%
Fold 4 86.55% 1.23% 88.80% 17670 2866 13.96%
Fold 5 27.88% 81.21% 15.54% 17692 2844 13.85%
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A.5 Conclusions and Future Work

Section 5.2 showed that we can quantify an expected improvement in the area under the

curve during an optimization if we could understand an increase in probability of success

of an individual crossover. However, when we applied this to a strategic mating operator

called a matchmaker, we saw that we could not affect positive change during an optimiza-

tion. Diving deeper into the problem using EMADE, we saw that the matchmaker could

improve performance drastically against the naı̈ve approach of assuming all pairings pro-

duce successful crossover. However, these improvements were only available on the trial

data for which we optimized the algorithms. The trained models were not applicable to new

trials, and their performance was not consistent when retrained on new data. Future work

could explore the concept of a co-evolution paradigm, where matchmakers are evolved dur-

ing an optimization, allowing machine learning algorithms with low false negative rates to

be evolved to the uniqueness of the evolutionary trial at hand.

167



REFERENCES

[1] J. H. Holland, Adaptation in natural and artificial systems: An introductory analysis
with applications to biology, control, and artificial intelligence. U Michigan Press,
1975.

[2] C. Darwin, “On the origins of species by means of natural selection,” London: Mur-
ray, 1859.

[3] J. R. Koza, “Survey of genetic algorithms and genetic programming,” in WESCON/’95.
Conference record.’Microelectronics Communications Technology Producing Qual-
ity Products Mobile and Portable Power Emerging Technologies’, IEEE, 1995, p. 589.

[4] L. Davis, “Genetic algorithms and simulated annealing,” 1987.

[5] D. J. Montana, “Strongly typed genetic programming,” Evolutionary computation,
vol. 3, no. 2, pp. 199–230, 1995.

[6] J. R. Koza, Genetic Programming: vol. 1, On the programming of computers by
means of natural selection. MIT press, 1992, vol. 1.

[7] C. M. Fonseca and P. J. Fleming, “An overview of evolutionary algorithms in multi-
objective optimization,” Evolutionary computation, vol. 3, no. 1, pp. 1–16, 1995.

[8] N. Srinivas and K. Deb, “Muiltiobjective optimization using nondominated sorting
in genetic algorithms,” Evolutionary computation, vol. 2, no. 3, pp. 221–248, 1994.

[9] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective
genetic algorithm: Nsga-ii,” IEEE transactions on evolutionary computation, vol. 6,
no. 2, pp. 182–197, 2002.

[10] D. Corne, J. Knowles, and M. Oates, “The Pareto envelope-based selection algo-
rithm for multiobjective optimization,” . . . Problem Solving from Nature PPSN VI,
no. Mcdm, 2000.

[11] D. Corne and N. Jerram, “PESA-II: Region-based selection in evolutionary multiob-
jective optimization,” Proceedings of the . . ., 2001.

[12] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improving the strength pareto evo-
lutionary algorithm,” 2001.

168



[13] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: A comparative
case study and the strength pareto approach,” Evolutionary Computation, IEEE Trans-
actions on, vol. 3, no. 4, pp. 257–271, 1999.

[14] J. Lehman and K. O. Stanley, “Exploiting Open-Endedness to Solve Problems Through
the Search for Novelty,” Artificial Life XI, pp. 329–336, 2008.

[15] Q. Zhang and H. Li, “Moea/d: A multiobjective evolutionary algorithm based on
decomposition,” IEEE Transactions on evolutionary computation, vol. 11, no. 6,
pp. 712–731, 2007.

[16] N. Beume, B. Naujoks, and M. Emmerich, “SMS-EMOA: Multiobjective selec-
tion based on dominated hypervolume,” European Journal of Operational Research,
vol. 181, no. 3, pp. 1653–1669, 2007.

[17] J. Bader and E. Zitzler, “HypE: an algorithm for fast hypervolume-based many-
objective optimization.,” Evolutionary computation, vol. 19, no. 1, pp. 45–76, 2011.

[18] G. Rohling, “Multiple objective evolutionary algorithms for independent, computa-
tionally expensive objective evaluations,” PhD thesis, Georgia Institute of Technol-
ogy, 2004.

[19] K. Dolan, Genetic programming source.

[20] L. Beadle and C. G. Johnson, “Semantically driven crossover in genetic program-
ming,” in Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on
Computational Intelligence). IEEE Congress on, IEEE, 2008, pp. 111–116.

[21] H. Ishibuchi and Y. Shibata, “Mating Scheme for Controlling the Diversity-Convergence
Balance for Multiobjective Optimization,” in Genetic and Evolutionary Computa-
tion–GECCO, Springer Berlin Heidelberg, 2004, pp. 1259–1271.

[22] H. Guo, L. Jack, and A. Nandi, “Feature generation using genetic programming with
application to fault classification,” Systems, Man, and Cybernetics, . . ., vol. 35, no. 1,
pp. 89–99, 2005.

[23] K. Holladay and K. Robbins, “Evolution of signal processing algorithms using vec-
tor based genetic programming,” Digital Signal Processing, 2007 . . ., pp. 2–5, 2007.

[24] C. D. Vera, E. Alfaro-cid, K. Sharman, and A. I. Esparcia-alc, “Genetic Program-
ming and Serial Processing,” vol. 22, no. 2, pp. 265–285, 2014.

[25] J. Streater, “Genetic Programming for the Automatic Construction of Features in
Skin-Lesion Image Classification,” inf.ed.ac.uk, 2010.

169



[26] L. Guo, D. Rivero, J. Dorado, C. R. Munteanu, and A. Pazos, “Automatic feature ex-
traction using genetic programming: An application to epileptic eeg classification,”
Expert Systems with Applications, vol. 38, no. 8, pp. 10 425–10 436, 2011.

[27] H. Al-Sahaf, A. Song, and M. Zhang, “Hybridisation of Genetic Programming and
Nearest Neighbour for classification,” in 2013 IEEE Congress on Evolutionary Com-
putation, IEEE, Jun. 2013, pp. 2650–2657, ISBN: 978-1-4799-0454-9.

[28] K. Bache and M. Lichman, UCI machine learning repository, 2013.

[29] Y.-S. Lee and L.-I. Tong, “Forecasting time series using a methodology based on
autoregressive integrated moving average and genetic programming,” Knowledge-
Based Systems, vol. 24, no. 1, pp. 66–72, Feb. 2011.

[30] P. Ravisankar, V. Ravi, and I. Bose, “Failure prediction of dotcom companies us-
ing neural network–genetic programming hybrids,” Information Sciences, vol. 180,
no. 8, pp. 1257–1267, Apr. 2010.

[31] D. Zhang, M. Hifi, Q. Chen, and W. Ye, “A Hybrid Credit Scoring Model Based on
Genetic Programming and Support Vector Machines,” in 2008 Fourth International
Conference on Natural Computation, Ieee, 2008, pp. 8–12, ISBN: 978-0-7695-3304-
9.

[32] J. Sherrah, R. Bogner, and A. Bouzerdoum, “The evolutionary pre-processor: Au-
tomatic feature extraction for supervised classification using genetic programming,”
Genetic Programming, 1997.

[33] R. Hassan and B. Cohanim, “A comparison of particle swarm optimization and the
genetic algorithm,” . . . design optimization . . ., pp. 1–13, 2005.

[34] S. S. Skiena, The algorithm design manual: Text. Springer Science & Business Me-
dia, 1998, vol. 1.

[35] P. V. Laarhoven and E. Aarts, Simulated annealing. Springer Netherlands, 1987.

[36] R. S. Olson, R. J. Urbanowicz, P. C. Andrews, N. A. Lavender, L. C. Kidd, and
J. H. Moore, “Applications of evolutionary computation: 19th european conference,
evoapplications 2016, porto, portugal, march 30 – april 1, 2016, proceedings, part
i,” in, G. Squillero and P. Burelli, Eds. Springer International Publishing, 2016,
ch. Automating Biomedical Data Science Through Tree-Based Pipeline Optimiza-
tion, pp. 123–137, ISBN: 978-3-319-31204-0.

[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-

170



peau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in
Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[38] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné, “DEAP:
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