OPTIMIZATION-DRIVEN EMERGENCE OF DEEP HIERARCHIES WITH
APPLICATIONS IN DATA MINING AND EVOLUTION

A Dissertation
Presented to
The Academic Faculty

Payam Siyari

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy in the
School of School of Computer Science

Georgia Institute of Technology

December 2018

Copyright (¢) Payam Siyari 2018

OPTIMIZATION-DRIVEN EMERGENCE OF DEEP HIERARCHIES WITH
APPLICATIONS IN DATA MINING AND EVOLUTION

Approved by:

Dr. Constantine Dovrolis, Advisor
School of Computer Science
Georgia Institute of Technology

Dr. Bistra Dilkina, Co-Advisor
School of Computational Science
and Engineering

Georgia Institute of Technology
Department of Computer Science
University of Southern California

Dr. Thad Starner
School of Interactive Computing
Georgia Institute of Technology

Dr. Duen Horng (Polo) Chau
School of Computational Science
and Engineering

Georgia Institute of Technology

Dr. Matthias Gallé
Senior Scientist
Naver Labs Europe

Date Approved: November 01, 2018

You are what you are in search of.

Rumi

To my family,

for their unconditional love and support.

ACKNOWLEDGEMENTS

I am indebted to many great people during the past 4 years at GeorgiaTech. I want to
take the opportunity and acknowledge their valuable contributions here.

First and foremost, I want to express my gratitude to Professor Constantine Dovrolis as
my advisor, and Professor Bistra Dilkina as my co-advisor for all their help, inspiration and
encouragement during my doctoral studies journey. I was fortunate to enjoy their academic
expertise as well as their warm-hearted support in my life.

I also want to deeply thank Dr. Matthias Gallé as a member of my PhD committee, and
as my mentor during my internship at Xerox Research Center Europe. Matthias is a very
smart and disciplined researcher and I am glad to know him as a colleague and as a friend.

Thanks to the other members of my committee, Dr. Thad Starner and Dr. Polo Chau,
for their cooperation in reading the thesis and providing useful feedback.

During my graduate studies, I got to know many amazing people whose company made
my PhD a much more enjoyable and exciting. Here, I try to remember as many of their
names as possible:

At GeorgiaTech, I want to thank Faryad Darabi Sahneh, Ashkan Golgoon, Mostafa
Faghih Shojaei, Amir Darabi, Amir Yazdanbakhsh, Amirhossein Afsharinejad, Amirhos-
sein Salahshoor, Amirreza Shaban, Ardavan Afshar, Arezoo Shirazi, Hanif Hosseini, Kaeser
M. Sabrin, Kamal Shadi, Mahdi Mahmoudzadeh, Maysam Nezafati, Mehrdad Farajtabar,
Mojdeh Faraji, Mostafa Raissi, Neda Tavakoli, Omid Elliyoun, Pouya Asrar, Saman Yarmo-
hammadi, Samaneh Ebrahimi, Shaghayegh Fathi, Shiva Bahrami and Yasaman Mohammad
Shahi. In Atlanta, I want to thank Ala Fard, Ali Namayandeh, Navid Darvishzadeh, Neda
Mohsenian and Shaghayegh Navabpour.

At Xerox Research Center Europe, I want to thank Vasu Sharma, Morteza Chehreghani,
Miguel Collete, Saumya Jetley, Kunal Suri and Paco Nieto.

At Uber Advanced Technologies Group, I want to thank Andrew Duberstein, Collin

Otis, Skanda Shridhar, Steffon Davis, Alborz Alavian and Frits Bigham.

Finally, my deepest appreciation goes to my family, specially my beloved mother Parvin
and my dearest father Davood. Despite the long distance, their love has always made me
push forward in life. Thank you Peyman, my twin brother, for always being there. Negar,
my dear sister, I can’t say how much I’m thankful that I had you here in US during this
journey. Masood, I owe you many things in my life, and I wish you the best and greatest in
your life. Mohsen, I am lucky to have such an awesome brother like you and I always will

be in debt for all you have done for me.

vi

TABLE OF CONTENTS

Acknowledgments i i ittt e e e e e e

Listof Tables v v i i e e e et e e e e e e e e e ettt

Listof Figures i i it ittt ittt ittt it nnns

Chapter 1: Introduction and Background
1.1 Hierarchical structure discovery over sequentialdata.
1.2 Extended search methods for inference of small hierarchical grammars . . .
1.3 Modeling framework for evolution of optimized hierarchical systems

1.4 Case-study of Evo-Lexis predictions on real-worlddata

Chapter 2: Lexis: An Optimization Framework for Discovering the Hierarchi-
cal Structure of Sequential Data

2.1 Introduction
2.2 Problem Statement Lo
221 Lexis-DAG
2.2.2 The Lexis Optimization Problem
223 Edgecost
224 Concatenation Costo

2.3 The Greedy Lexis algorithm

vil

2.4 Path-Centrality and the Core of a Lexis-DAG 18

2.5 Applicationsof Lexis 21
2.5.1 Optimized String Hierarchies 21

2.5.2 Structure Discovery Lo 24

2.53 CompressSion e e e e e e e 27

2.5.4 Feature Extraction 29

2.6 RelatedWork 32
277 Conclusion 34
Chapter 3: The Generalized Smallest Grammar Problem 35
3.1 Introduction 35
32 RelatedWork 36
33 Model 37
34 Algorithm e 40
3.4.1 Encoding the Grammars 40

3.4.2 Post-processing Algorithm 43

3.5 Experimental Results 43
3.5.1 Smaller Grammarso 45
3.5.2 Better Structure 46

3.6 Conclusion 49

Chapter 4: Emergence and Evolution of Hierarchical Structure in Complex Sys-
1) 11T 51

4.1 Introduction e e 51

viil

4.2 Evo-Lexis Framework and Metrics 56

4.2.1 Incremental Design Algorithm 56
4.2.2 Target Generation Models 59
423 KeyMetrics 63
4.3 Computational Results, 67
4.3.1 Parameter Values and Evolutionary Iteration 67
432 Results 68
4.4 Evolvability and the Space of Possible Targets 78
4.5 Major Transitions 80
4.6 Overhead of Incremental Design 84
4.7 Discussion and Prior Work oo o000 86
4.7.1 Modularity and Hierarchy 86
4.7.2 Hourglass Architecture 88
4.7.3 Interplay of Design Adaptation and Evolution 90
4.8 Conclusion 91

Chapter 5: A Case Study: Analysis of iGEM Synthetic Biology Sequences 93

5.1 Imtroduction 93
52 Dataset. e 94
5.2.1 Preliminaries 94
5.22 DataCollection 95
5.2.3 Considering Annual Batches of Targets 97
5.3 Analysis of iGEM Dataset in Evo-Lexis Framework 99

1X

5.3.1 Lexis-DAG Cost Analysis 99

5.3.2 Hourglass EffectiniGEM 103

5.3.3 Diversity among iGEM Targets 104

5.3.4 Core Stability in iGEM Lexis-DAGs 106

54 Conclusions L 110
Chapter 6: Limitations and Extensions0.0.... 112
6.1 Limitations e e 112
6.1.1 DataConsiderations 112

6.1.2 Further Characterization of Evolutionary Mechanisms 112

6.1.3 Parameter Space Analysis 112

6.1.4 Heuristic Algorithm Design 113

6.1.5 Additional Mechanisms in Evo-Lexis 113

6.2 EXtensions 113
6.2.1 Noisy Data and Approximate-Lexis 113

6.2.2 Scalable Methods for Hierarchy Inference 114

6.2.3 Other Application Domains for Lexis 115

6.2.4 More Realistic Extensions of Evo-Lexis Framework 116
Chapter 7: Conclusions ot i i it i it i ittt ittt nan 117
Appendices i it i e e e e e e e e e e e et e e e et e e e e e e 119

Appendix A: Example of difference of node selection order in G-LEXIS and G-
CORE e 120

References

X1

2.1

2.2

2.3

24

2.5

3.1

3.2

4.1

5.1

A.l

A2

LIST OF TABLES

Top-15 nodes with highest path-centrality in iGEM dataset’s Lexis-DAG . .
Comparison of compression ratio over NSF abstracts dataset
Description of 4 classes of NSF award abstracts
Word stems in the Lexis-DAG core of each class of NSF abstracts dataset. .

SVM classification accuracy over NSF abstracts dataset

Statistics of the the DNA corpus (left) and Canterbury dataset (right)

Size of the final grammars obtained with the different algorithms for pro-

ducing smaller grammars

Definition and parameter values of Evo-Lexis in following experiments . . .

Basic statistics on iGEM dataset during 15 years (2003-2017)

Order of the top-10 nodes identified in G-LEXIS (Numbers on the left show
the order the nodes is removed in the algorithm and bio-bricks represent the

string representation of the nodes removed)

Order of the top-10 nodes removed in G-CORE (Numbers on the left show
the order the nodes is removed in the algorithm and bio-bricks represent the

string representation of the nodes removed)

Xii

23

29

30

31

31

45

50

68

1.1

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

3.1

4.1

4.2

4.3

4.4

4.5

4.6

LIST OF FIGURES

Ilustration of the usage of Lexis framework onrealdata.

Example illustration of a Lexis-DAG

Difference in the inferred Lexis-DAGs with the edge-cost or concatenation-
COSE v v v v e

[lustration of G-LEXIS algorithm
Comparison of G-LEXIS with Longest Substring Replacement algorithm

lustration of the concepts regarding the core of a Lexis-DAG
Comparison of the Lexis-DAGs that result from the iGEM devices

Length and number of replacements for the intermediate nodes in the Lexis-
DAG of Yeast protein sequencedata

A small subgraph of the Lexis-DAG for 1,500 Yeast proteins

Structuring accuracy of the post-processing algorithm

A hierarchical system is represented as a directed-acyclic graph.
Overview of the study in Chapter4.
A diagram of the Evo-Lexis framework.
Mlustration of INC-LEXIS.
(Continued from Fig. 4.4) Illustration of INC-LEXIS.

IMustration of MRS Model

4.7 The difference of the new target acceptance probability for weak (5 = 1)
and strong (8 = 12) selection. 74

4.8 Normalized Cost, (average) Hierachical Depth, (average) Intermediate Node Length,
and Target diversity of Lexis-DAGs produced by various target generation models . 75

4.9 (Continued from Fig. 4.8) Core size, H-score, Robustness to core node removals,
and Core stability of Lexis-DAGs produced by various target generation models . . 76

4.10 Comparison of node length and path-centrality in Lexis-DAGs at the 5,000th
Ieration L. e e e e e 77

4.11 Visualizing the various properties of the generated hierarchies 78

4.12 CDF of MRS-over-MR per-batch cost-ratio and CDF of the target acceptance-
likelihood. L 79

4.13 Variability across successive iterations of the top-1 core node (measured
using the Levenstein distance) in the MRS model (both strong and weak

selection). e 81

4.14 Count of stasis periods (lasting at least 100 iterations) for two values of the
Levenshtein distance threshold, iy p, in Fig. 4.13. 82

4.15 Starting from three different stasis periods (with pp = 0.1), the top-1 and
top-2 core node does not stay the same in subsequent stasis periods. 83

4.16 Comparison between Incremental (INC) design and Clean-Slate (CS) de-

sign, in terms of four metrics and for different batch sizes. 84
5.1 The logo of iGEM competition [1] 94
5.2 Screenshot of the webpage for BBa_113507. 96
5.3 PDF and CDF of target lengths (2003-2017) 97
5.4 Statistics of iGEM dataset when considered as yearly batches 99
5.5 PDF of reuse of the sourcesperyear. 100

5.6 The cost reduction performance of the two stages of INC-LEXIS for each
batch (i.e.,year) e 101

5.7 Analysis of the source set of iGEM targets overyears 102

X1v

5.8 Depth and average node length in iGEM Lexis-DAGs 102

5.9 Cumulative fraction of paths covered by core nodes in each year of iGEM
data. 104

5.10 Core size and H-score in iGEM data over time (7 = 0.85 for core identifi-

CALIOM) v v o e e 105
5.11 Target diversity in iGEM dataoveryears. 106
5.12 Core stability over iGEM dataset. 107
5.13 Node length and path-centrality in selected years in iGEM dataset. 109

XV

SUMMARY

The aim of this thesis is to develop methods for the analysis and modeling of hierar-
chical structures in real-world systems. A hierarchical architecture may be the result of
the design or evolution of the system, and it may be chosen for meeting a criteria, such
as better abstraction, easier maintenance, or cost/redundancy optimization. In this thesis,
we aim to model hierarchical architectures that are shaped to optimize of the cost of the
system. Examples of such systems exist both in nature and technology. For instance in
software development, modular coding and reuse of previously built modules optimizes
the redundancy and complexity of the system so that it is easier to debug and maintain it.
Such cost optimization processes also take place in natural organisms, such as in energetic
cost minimizations in the sensorimotor system.

We present an optimization framework over string data, called Lexis!, that can be used
to model hierarchical structures driven by optimization. We first use it to apply data mining
tasks on a variety of string-represented datasets. We explore theoretical and algorithmic
properties of this optimization problem using its close ties to the Smallest Grammar Prob-
lem (SGP). Further, we build efficient heuristics, and show how we can leverage the Lexis
framework to gain insights about the structure of the sequential data.

We also study a generalization of the SGP. The SGP — the problem of finding the small-
est context-free grammar that generates exactly one given sequence — has never been suc-
cessfully applied in grammatical inference. We provide efficient algorithms that approxi-
mate the SGP for the class of non-recursive grammars, instead of straight-line grammars
(i.e., grammars with no recursion). Our empirical results show that we achieve smaller
models than the current best approximations to the SGP on standard benchmarks, and that
the inferred rules capture much better the syntactic structure of natural language. This re-

search is a first and important step towards expanding smallest grammar applications in

1< exis” means “word” in Greek.

XVi

structure discovery in natural language.

Next, we propose a modeling framework, referred to as Evo-Lexis, that provides insight
to some general and fundamental queries about evolving hierarchical systems. Evo-Lexis
models the most elementary modules of the system as symbols (“sources’) and the modules
at the highest level of the hierarchy as sequences of those symbols (“targets”). Evo-Lexis
computes the optimized adjustment of a given hierarchy when the set of targets changes
over time by additions and removals (a process referred to as “incremental design”). In
this research, we show that low-cost and deep hierarchies emerge when the population of
target sequences evolves through tinkering and mutation. Strong selection on the cost of
new candidate targets results in reuse of more complex (longer) nodes in an optimized
hierarchy. The bias towards reuse of complex nodes results in an “hourglass architecture”
(i.e., few intermediate nodes that cover almost all source-target paths). With such bias, the
core nodes are conserved for relatively long time periods although still being vulnerable to
major transitions and punctuated equilibria.

The predictions of the Evo-Lexis model should be tested using real data from evolving
systems in which the outputs can be well represented by sequences. One such system is
the iGEM synthetic DNA dataset [1]. Previous research has provided evidence on the hier-
archical organization of this library of sequences. We investigate the time series of iGEM
sequences, and whether the resulting iGEM hierarchies exhibit the qualitative properties
predicted by the Evo-Lexis framework. Contrary to Evo-Lexis, in iGEM the amount of
reuse decreases during the timeline of the dataset. Although this results in development
of less cost-efficient and less deep Lexis-DAGs, the dataset exhibits a bias in reusing spe-
cific nodes more often than others. This results in the Lexis-DAGs to take the shape of
an hourglass with relatively high H-score values and stable set of core nodes. Despite the
reuse bias and stability of the core set, the dataset presents a high amount of diversity (as

measured in this research) among the targets which is in line with modeling of Evo-Lexis.

CHAPTER 1
INTRODUCTION AND BACKGROUND

It is well known that many complex systems, both in technology and nature, exhibit mod-
ularity: independent modules, each of them providing a certain function, are combined
together to perform more complex functions [2]. Additionally, modular systems are also
organized in a hierarchical way: smaller modules are used within larger modules recur-
sively [3]. Examples of such systems exist in a wide range of environments: in natural
systems, it is believed that hierarchical modularity enhances evolvability (the ability of the
system to adapt to new environments with minimal changes) and robustness (the ability
to maintain the current status in the presence of internal or external variations) [4, 5]. In
the technological world, hierarchically modular designs are preferred in terms of design
and development cost, easier maintenance and agility (e.g., less effort in producing future
versions of a software), and better abstraction of the system design [6].

The presented research in this thesis aims to position itself in developing methods for
the analysis and modeling of hierarchical structures in real-world systems. Such hierar-
chical structure which is a result of the design or evolution of the system, might be cho-
sen for meeting a variety of criteria, such as better abstraction, easier maintenance, or
cost/redundancy optimization. In this thesis, we aim to model the hierarchical structures
that are shaped for optimization of the cost of the system. Examples of such systems ex-
ist both in nature and technology: in designing a software, modular coding and reuse of
previously built modules optimizes the redundancy and complexity of the system so that
it is easier to debug and maintain it. Such cost optimization processes do take place in
natural organisms too, such as in energetic cost minimizations in the sensorimotor system
[7]. From a modeling and evolutionary perspective, it has been shown that hierarchy and

modularity are two bi-products of the cost optimization in a design which allows reuse of

previously built modules [4, 8].

We present an optimization framework over string data, called Lexis!, that is the foun-
dation of our attempt for modeling hierarchical structures driven by optimization. The main
data structure of this framework is a Directed Acyclic Graph (DAG) that shows how a set
of top-level target strings can be constructed by reusing shorter and repeated substrings in
lower levels. Such DAG can be used to model the network organization of a hierarchically
modular system in which it is shown how higher level (and more complex) modules are
reusing simpler and lower level modules. An example might be a function call-graph of an
operating system. The following sections explain how we develop this framework and how
we use it in various contexts ranging from mining hierarchical structures over sequential

data to modeling the evolution of hierarchical systems.

1.1 Hierarchical structure discovery over sequential data

In both nature and technology, information is often represented in sequential form, as
strings of characters from a given alphabet [9]. Such data often exhibit a hierarchical struc-
ture in which previously constructed strings are re-used in composing longer strings [10].
In some cases this hierarchy is formed “by design” in synthetic processes where there are
some cost savings associated with the re-use of existing modules [11, 12]. In other cases,
the hierarchy emerges naturally when there is an underlying evolutionary process that re-
peatedly creates more complex strings from simpler ones, conserving only those that are
being re-used [10, 12]. For instance, language is hierarchically organized starting from
phonemes to stems, words, compound words, phrases, and so on [13]. In the biological
world, genetic information is also represented sequentially, and there is ample evidence
that evolution has led to a hierarchical structure in which sequences of DNA bases are first
translated into amino acids, then form motifs, regions, domains, and this process continues

to create many thousands of distinct proteins [14].

1“T exis” means “word” in Greek.

In the context of synthetic design, an important problem is to construct a minimum-cost
Directed Acyclic Graph (DAG) that shows how to produce a given set of “target strings”
from a given “alphabet” in a hierarchical manner, through the construction of intermediate
substrings that are re-used in at least two higher-level strings. The cost of a DAG should be
related somehow to the amount of “concatenation work™ that the corresponding hierarchy
would require. For instance, in de novo DNA synthesis [15, 16], biologists aim to construct
target DNA sequences by concatenating previously synthesized DNAs in the most cost-
efficient manner.

In other contexts, it may be that the target strings were previously constructed through
an evolutionary process (not necessarily biological), or that the synthetic process that was
followed to create the targets is unknown. Our main premise is that even in those cases it is
still useful to construct a cost-minimizing DAG that composes the given set of targets hi-
erarchically, through the creation of intermediate substrings. The resulting DAG shows the
most parsimonious way to represent the given targets hierarchically, revealing substrings of
different lengths that are highly re-used in the targets and identifying the dependencies be-
tween the re-used substrings. Even though it would not be possible to prove that the given
targets were actually constructed through the inferred DAG, this optimized DAG can be
thought of as a plausible hypothesis for the unknown process that created the given targets
as long as we have reasons to believe that that process cares to minimize, even heuristically,
the same cost function that the DAG optimization considers. Additionally, even if our goal
is not to reverse engineer the process that generated the given targets, the derived DAG can
have practical value in the applications such as compression or feature extraction.

Lexis produces an optimized hierarchical representation of a given set of farget strings.
The resulting hierarchy, Lexis-DAG, shows how to construct each target through the con-
catenation of intermediate substrings, minimizing the total number of such concatenations
or DAG edges. Fig. 1.1 shows an example usage of Lexis framework over discretized time

series data.

ccbbceedeegfddhjhhccbbfffggfddejehccbbceedeegfddijje
Hierarchy Mining: Lexis
Discretization: SAX

Patterns
Dependencies

Significance
Network analysis Insights

‘1
» | | ‘\ [

Knowledge
|

P | | |
02 \ |
A\ \ \ J} \
04 wa A w/\\,\'/\m,,),‘v“ Vol W\XV/J\M‘AW WA
o6
% o

00 200 300 %0

Figure 1.1: Illustration of the usage of Lexis framework on real data

SAX is a well-known discretization method for time series data. Nodes at the top and

bottom of the directed-acyclic-graph represent targets and sources, respectively. Edges

represent occurrence of the lower substrings in the upper ones. Note that direct edges
from sources to target nodes are not drawn for clarity.

After we prove the NP-hardness of the Lexis optimization problem, we propose an
efficient greedy algorithm for the construction of Lexis-DAGs. We also consider the prob-
lem of identifying the set of intermediate nodes (substrings) that collectively form the core
of a Lexis-DAG, which is important in the analysis of Lexis-DAGs. We show that the
Lexis framework can be applied in diverse applications such as optimized synthesis of
DNA fragments in genomic libraries, hierarchical structure discovery in protein sequences,

dictionary-based text compression, and feature extraction from a set of documents.

1.2 Extended search methods for inference of small hierarchical grammars

We explore the theoretical and algorithmic properties of the Lexis optimization problem
using its close ties to the classic computer science problem, the Smallest Grammar Prob-
lem (SGP). SGP is the optimization problem of finding a smallest context-free grammar
that generates exactly a given sequence. As such, it has some superficial resemblance to
Grammatical Inference (i.e., finding the generative grammar over strings), both because
of the choice of model to structure the data (a formal grammar) and because the goal of
identifying structure is explicitly called-out as a potential application of SGP [17, 18, 19].

However, concrete applications so far of the SGP to grammatical inference are either re-

markably absent in the literature, or have been reported to utterly fail [20]. The main
reason for this is that the definition of the SGP limits the inferred models to be straight-line
programs (i.e., grammars with no recursion) which have no generalization capacity.

We investigate the reasons and propose an extended formulation that seeks to mini-
mize non-recursive grammars, i.e., we remove the straight-line constraint over the inferred
grammars and allow for search over branching grammars. The main idea accounting for
the extension is the use of the repeated contexts as additional choices for the optimization
algorithm. Given these choices, we provide very efficient algorithms that approximate the
minimization problem of class of non-recursive grammars.

The proposed algorithm takes as input any straight-line grammar and infers additional
generalization rules, optimizing a score function inspired both by the distributional hy-
pothesis and regularizing through the Minimum Description Length (MDL) principle. Our
empirical evaluation shows that we are able to find smaller models than the current best
approximations to the Smallest Grammar Problem on standard benchmarks, and that the

inferred rules capture much better the syntactic structure of natural language.

1.3 Modeling framework for evolution of optimized hierarchical systems

The emergence and/or design of systems that simultaneously are optimized according to
a certain criteria, and evolve as their environment changes, has been a topic of significant
interest across multiple research areas. Following the initial motivations in this chapter,
we propose a modeling framework, referred to as Evo-Lexis, that provides insight to some
general and fundamental queries about evolving hierarchical systems. Evo-Lexis is built
over Lexis framework and models the system inputs as symbols (“sources”) and the outputs
as sequences of those symbols (“targets”). Evo-Lexis computes the optimized adjustment
of a given hierarchy when the set of targets changes over time by additions and removals
(a process referred to as “incremental design”). In general, a system interacts with its

environment in a bidirectional manner: the environment imposes various constraints on the

system and the system also affects its environment. To capture this co-evolutionary setting
in Evo-Lexis, we study how changes in the set of targets affect the resulting hierarchy but
also how the current hierarchy affects the selection of new targets (i.e., whether a new
candidate target is selected or not depends on its fitness or cost — and that depends on how
easily that target can be supported by the given hierarchy). By incorporating well-known
evolutionary mechanisms, such as tinkering (mutation), recombination, and selection, Evo-
Lexis can capture such co-evolutionary dynamics between the generation of new targets
and the hierarchy that supports them.

The main results of Evo-Lexis modeling can be summarized as follows:

Low-cost and deep hierarchies emerge when the population of target sequences evolves

through tinkering and mutation.

e Strong selection on the cost of new candidate targets results in reuse of more complex

(longer) nodes in an optimized hierarchy.

e The bias towards reuse of complex nodes results in an “hourglass architecture” (i.e.,

few intermediate nodes that cover almost all source-target paths).

e With such bias, the core nodes are conserved for relatively long time periods although

still being vulnerable to major transitions and punctuated equilibria.

e Finally, we analyze the differences in terms of cost and structure between incre-
mentally designed hierarchies and the corresponding “clean-slate” hierarchies which

result when the system is designed from scratch after a change.

1.4 Case-study of Evo-Lexis predictions on real-world data

The abstract modeling of Evo-Lexis is valuable because it can provide insights about the
qualitative properties of the resulting hierarchies under different target generation mod-

els. Having said that however, we also believe that the predictions of the Evo-Lexis model

should be tested using real data from evolving systems in which the outputs can be well
represented by sequences. One such system is the iGEM synthetic DNAs dataset [1]. The
target DNA sequences in the iGEM dataset collectively form a library of synthetic DNA
sequences and previous research has provided some evidence that these synthetic DNA
sequences are designed by reusing existing components, and as such, this library has a hi-
erarchical organization. We investigate the time series of iIGEM sequences, and whether the
resulting iGEM hierarchies exhibit the same qualitative properties we observed in this study
through the abstract modeling of Evo-Lexis. Although the analysis shows that the iGEM
Lexis-derived hierarchies are less cost-efficient and less deep than their Evo-Lexis coun-
terparts (mostly due to an expanding set of source nodes), iGEM exhibits the Evo-Lexis
bias to reuse certain nodes more often than others. This attribute results in hierarchies that
exhibit the hourglass effect with stable core nodes, which is consistent with the predictions

of the Evo-Lexis modeling framework.

CHAPTER 2
LEXIS: AN OPTIMIZATION FRAMEWORK FOR DISCOVERING THE
HIERARCHICAL STRUCTURE OF SEQUENTIAL DATA

2.1 Introduction

Data represented as strings abound in biology, linguistics, document mining, web search,
time series and many other fields. Such data often have a hierarchical structure, either
because they were artificially designed and composed in a hierarchical manner or because
there is an underlying evolutionary process that creates repeatedly more complex strings
from simpler substrings.

In this chapter of the thesis, we propose an optimization framework, referred to as
Lexis,? that designs a minimum-cost hierarchical representation of a given set of target
strings. The resulting hierarchy, referred to as “Lexis-DAG”, shows how to construct each
target through the concatenation of intermediate substrings, which themselves might be
the result of concatenation of other shorter substrings, all the way to a given alphabet of
elementary symbols. We consider two cost functions: minimizing the total number of
concatenations and minimizing the number of DAG edges. The choice of cost function is
application-specific. The Lexis optimization problem is related to the smallest grammar
problem [22, 23]. We show that Lexis is NP-hard for both cost functions, and propose
an efficient greedy algorithm for the construction of Lexis-DAGs. Interestingly, the same

algorithm can be used for both cost functions. We also consider the problem of identifying

The research in this chapter has resulted in the following publication:
[21] P. Siyari, B. Dilkina, C. Dovrolis, “Lexis: An Optimization Framework for Discovering the Hierar-
chical Structure of Sequential Data”, Proceedings of ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD’16), pp. 1185-1194, Aug. 2016.
Lexis means “word” in Greek.

the set of intermediate nodes (substrings) that collectively form the “core” of a Lexis-DAG.
This core is the minimal set of DAG nodes that can cover a given fraction of source-to-target
paths, from alphabet symbols to target strings. The core of a Lexis-DAG represents the
most central substrings in the corresponding hierarchy. We show that the Lexis framework
can be applied in diverse applications such as optimized synthesis of DNA fragments in
genomic libraries, hierarchical structure discovery in protein sequences, dictionary-based

text compression, and feature extraction from a set of documents.

2.2 Problem Statement

2.2.1 Lexis-DAG

Given an alphabet .S and a set of “target” strings 7" over the alphabet S, we need to construct
a Lexis-DAG. A Lexis-DAG D is a directed acyclic graph D(V, E), where V is the set of
nodes and E the set of edges, that satisfies the following three constraints.?

First, each node v € V in a Lexis-DAG represents a string S(v) of characters from the
alphabet S. The nodes Vs that represent characters of S are referred to as sources, and they
have zero in-degree. The nodes V7 that represent target strings 7' = {t1,%s,...,t,,} are
referred to as fargets, and they have zero out-degree. V' also includes a set of intermediate
nodes V), which represent substrings that appear in the targets 7. So, V = Vs UV, U V.

Second, each node in Vj; U V7 of a Lexis-DAG represents a string that is the concate-
nation of two or more substrings, specified by the incoming edges from other nodes to that
node. Specifically, an edge e € E from node u to node v is a triplet (u, v, 7) such that the
string S(u) appears as substring of S(v) at index i (the first character of a string has index
1). Note that there may be more than one edges from node « to node v. The number of
incoming and outgoing edges for v is denoted by d;, (v) and d,,.(v), respectively. I(v) is
the sequence of nodes u that appear in the incoming edges (u, v,) of v, ordered by edge

index i. We require that for each node v in V); U V7 replacing the sequence of nodes in

3To simplify the notation, even though D is a function of S and T, we do not denote it as such.

abbbbbba

abbbbbba

abbbbbba

T

v

() (b) (©

Figure 2.1: Example illustration of a Lexis-DAG
For targets 7' = {abbbbbba} and sources S = {a, b}. Edge-labels indicate the occurrence indices:
(a) A valid Lexis-DAG having both minimum number of concatenations and edges. (b) An invalid
Lexis-DAG: two intermediate nodes are re-used only once. (¢) An invalid Lexis-DAG: the
top-layer string is not equal to the concatenation of its two in-neighbors (best viewed in color).

I(v) with their corresponding strings results in exactly S(v).
Third, a Lexis-DAG should only include intermediate nodes that have an out-degree of
at least two,

Vo € Vi, dowe(v) > 2. (2.1)

In other words, every intermediate node v € V), in a Lexis-DAG should be such that the
string S(v) is re-used in at least two concatenation operations. Otherwise, S(v) is either not
used in any concatenation operation, or it is used only once and so the outgoing edge from
v can be replaced by re-wiring the incoming edges of v straight to the single occurrence
of S(v). In both cases node v can be removed from the Lexis-DAG, resulting in a more
parsimonious hierarchical representation of the targets. Fig. 2.1 illustrates the concepts

introduced in this section.

2.2.2 The Lexis Optimization Problem

The Lexis optimization problem is to construct a minimum-cost Lexis-DAG for the given
alphabet S and target strings 7". In other words, the problem is to determine the set of

intermediate nodes V), and all required edges F so that the corresponding Lexis-DAG D

10

is optimal in terms of a given cost function C'(D).

min C(D)
(B,Var) (2.2)

s.t. D = (V, E) is a Lexis-DAG for S and T

The selection of an appropriate cost function is somewhat application-specific. A nat-
ural cost function to consider is the number of edges in the Lexis-DAG. In certain appli-
cations, such as DNA synthesis, the cost is usually measured in terms of the number of
required concatenation operations. In the following, we consider both cost functions. Note
that we choose to not explicitly minimize the number of intermediate nodes in V/;; mini-
mizing the number of edges or concatenations, however, tends to also reduce the number
of required intermediate nodes. Additionally, the constraint (2.1) means that the optimal
Lexis-DAG will not have redundant intermediate nodes that can be easily removed without
increasing the concatenation or edge cost. More general cost formulations, such as a vari-
able edge cost or a weighted average of a node cost and an edge cost, are interesting but

they are not pursued in this dissertation.

2.2.3 Edge cost

Suppose that the cost of each edge is one. The edge cost to construct a node v € V is
defined as the number of incoming edges required to construct S(v) from its in-neighbors,
which is equal to d;,(v). The edge cost of source nodes is obviously zero. The edge cost
E(D) of Lexis-DAG D is defined as the edge cost of all nodes, equal to the number of
edges in D:

E(D) = di(v) = |E| (2.3)

veV

11

2.2.4 Concatenation cost

Suppose that the cost of each concatenation operation is one. The concatenation cost to
construct a node v € Vj; U Vp is defined as the number of concatenations required to
construct S(v) from its in-neighbors, which is equal to d;,(v) — 1. The concatenation cost
C(D) of Lexis-DAG D is defined as the concatenation cost of all non-source nodes; it is
easy to see that this is equal to the number of edges in D minus the number of non-source

nodes,

C(D)= Y (di(v)—1)=|E| - [V\V§] (2.4)

UGV\VS
Theorem 2.2.1 The optimization problem in Eq. (2.2) is NP-hard for both the edge cost of

Eq. (2.3) and the concatenation cost of Eq. (2.4).

We prove that the Lexis problem is NP-hard through a reduction from the Smallest Gram-
mar Problem (SGP) [22].

Formally, The Smallest Grammar Problem for a string s is to identify a Straight-
Line Grammar (SLG) G* such that L(G*) = {s} and |G*| < |G| for any other G with
L(G) = {s}, where |G| denotes the size of grammar (. Charikar et al. [22] define
the size of a grammar as the cumulative length of the right-hand side of all rules, i.e.,
|G| = > 7 aca || Where |a| is the number of symbols appearing in the term o of a
grammar rule. Under this grammar size, Charikar et al. show that the Smallest Grammar
Problem is NP-hard [22].

Proof of Theorem 1: Let us first start with edge cost. Consider an instance of SGP in
which we are given string s and we are asked to compute an SLG G such that L(G) = {s}
and |G| < m, where |G| = >, A |@]. We reduce it to an instance of the Lexis problem
with a single target string 7' = {s}, in which we are asked to compute a Lexis-DAG D
with £(D) < m.

Given a grammar G = (3,I", S, A) as a solution to the SGP problem, we construct a

solution D for the reduced Lexis problem. For each symbol in > U I', construct a node.

12

For a non-terminal 7" € I', we refer to the corresponding node also as 7', and associate
that node with the string S(T) that is produced by expanding rule 7" according to grammar
G. Also, for each rule ' — « in G, we scan « and add an edge in D from every node
that corresponds to a terminal or nonterminal in « to the node that corresponds to 7" (along
with the corresponding index). It is easy to see that D is acyclic since G is a straight-line
grammar and that the number of edges in D is: £(D) = >, ca o] < m.

Conversely, consider a Lexis-DAG D = (Vg U Vi U Vi, E)) which is a solution to the
Lexis problem from our reduction above , i.e., it has a single target string s, and £(D) < m.
We can construct a corresponding grammar G' for the SGP as follows. For each source node
in Vg, construct a terminal in X. For each node v in VUV, construct a nonterminal N7'(v)
in I". For the single target node v in V7, designate N7T'(v) as the start symbol S. For each
node v in VU V), add a rule in A with the right-hand side listing the corresponding > U T’
symbols for all nodes in the sequence /(v) (i.e., ordered as their respective strings appear
concatenated in S(v)). The constructed grammar is straight-line, since every nonterminal
has one rule associated with it, and the grammar is also acyclic because the Lexis-DAG D
is acyclic. It is easy to see that |G| < m.

The NP-hardness proof of the Smallest Grammar Problem with grammar size defined
as |G| = > ;. aea | [22] can be adapted for a modified grammar size definition, i.e.,
Gl = > nea (o] =1) = (37 0ca lal) — |A]. We can then use the same reduction
from SGP to Lexis as in the case of edge cost to show that Lexis with concatenation cost is
also NP-hard. |

Note that the objective in Eq. (2.4) is an explicit function of the number of intermediate
nodes in the Lexis-DAG. Hence the optimal solutions for the concatenation cost can be
different than those for the edge cost. Fig. 2.2 illustrates an example that the Lexis-DAG,
when optimizing for the edge cost function, may be different than the Lexis-DAG optimized

for concatenation cost.

13

Figure 2.2: Difference in the inferred Lexis-DAGs with the edge-cost or concatenation-cost
For target T' = {abcdabcefcdgee} and sources S = {a, b, c,d, e, f, g} - (a) Lexis-DAG D; with
£(Dy) = 13 (optimal) and C(D;) = 11 (suboptimal). (b) Lexis-DAG D; with £(D3) = 14
(suboptimal) and C(D3) = 10 (optimal).

2.3 The Greedy Lexis algorithm

In this section, we describe a greedy algorithm, referred to as G-LEXIS, for both previous
optimization problems. The basic idea in G-LEXIS is that it searches for the substring &
that will lead, under certain assumptions, to the maximum cost reduction when added as a
new intermediate node in the Lexis-DAG. The algorithm starts from the trivial Lexis-DAG
with no intermediate nodes and edges from the source nodes representing alphabet symbols
to each of their occurrences in the target strings. Similar ideas to this algorithm have been
explored before in Nevill-Manning et al. [10] and Apostolico et al. [24].

Recall that for every node v € Vi U V), I(v) is the sequence of nodes appearing
in the incoming edges of v, i.e., the sequence of nodes whose string concatenation re-
sults in the string S(v) represented by v. The sequences /(v) can be interpreted as strings
over the “alphabet” of Lexis-DAG nodes. Note that every symbol in a string I(v) has a
corresponding edge in the Lexis-DAG. We look for a repeated substring & in the strings
Iron = {I(v)|v € Vp UV} that can be used to construct a new intermediate node. We
can construct a new intermediate node for &, create incoming edges based on the symbols
in £ (remember £ is a substring over the alphabet of nodes), and replace the incoming edges
to each of the non-overlapping repeated occurrences of £ with a single outgoing edge from
the new node.

Consider the edge cost first. Suppose that ¢ is repeated 7 times in the strings

14

Figure 2.3: Illustration of G-LEXIS algorithm
Given target T' = {aabcaabdaabc} and sources S = {a, b, ¢, d}. - (a) Initial Lexis-DAG: The
string passed to the suffix tree is I (aabcaabdaabe) = aabcaabdaabe. (b) Substring aab has

do
where o__, is the substring aab of the new intermediate node. We also have that I (aab) = aab.
The strings passed to the suffix tree are {/(aabcaabdaabc), I(aab)}. (¢) Substring o, , ¢ has
maximum SavedCost and is chosen for a new intermediate node. In this example, this iteration
would be the last.

maximum SavedCost. The target can be now written as I (aabcaabdaabc) = o, , co c

aab aab

L7y If these occurrences of £ are non-overlapping, the number of required edges would
be |£| Rrume. After we construct a new intermediate node for £ as outlined above, the
edge cost will be |£| + Rruae. So, the reduction in edge cost from re-using £ would be
(Rrume — 1)(J€] — 1) — 1. Under the stated assumptions about &, this reduction is non-
negative if £ is repeated at least twice and its length is at least two.

Consider the concatenation cost now. If these occurrences of ¢ are non-overlapping,
the number of required concatenations for all the repeated occurrences would be (|£| —
1) Rrunme- After we construct a new intermediate node for £ as outlined above, the concate-
nation cost will be || — 1. We expect a reduction in the number of required concatenations
by (Rrunme — 1)([€] — 1).

So, the greedy choice for both cost functions is the same: select the substring & that
maximizes the term SavedCost = (Rrunme — 1)(|€] — 1). For this reason, our G-LEXIS
algorithm can be used for both cost functions we consider. It starts with the trivial Lexis-
DAG, and at each iteration it chooses a substring of /75, in the Lexis-DAG that maximizes

SavedCost, creates a new intermediate node for that substring and updates the edges of the

15

Lexis-DAG accordingly. The algorithm terminates when there are no more substrings of
Iy with length at least two and repeated at least twice. The pseudocode for G-LEXIS is
shown in Algorithm 1. An example of application of the G-LEXIS algorithm is shown in

Fig. 2.3.

ALGORITHM 1. G-LEXIS

Input: Alphabet S, Targets 7" Output: Lexis-DAG D

1. Initialize V <— VyUVg and E, constructing each target in 7" from characters in S. Vyy < @.

2. Repeat:
@ Irup< {I(v)|v € (VP UVar)ks

(b) Select & with maximum (Rpyase —1)(|€] —1), where Ry ¢ is the number of repeats
of substring £ in ITyys; #GreedyChoice

(©) If (Rruare — 1)(|€] = 1) = 0, break;

(d) V<~V U {o¢}, where o¢ is the new intermediate node, and update £
accordingly; #Updatelexis-DAG

At each iteration of G-LEXIS, we need to find efficiently the substring of Iy, with
maximum SavedCost. We observe that the substring that maximizes SavedCost 1s a “max-
imal repeat.” Maximal repeats are substrings of length at least two, whose extension to
the right or left would reduce its occurrences in the given set of strings. Suppose that it is
not. Then, there is a substring &, which is not a maximal repeat, that maximizes Saved-
Cost. 1If we can extend o to the left or right we can increase its length without reducing
its number of occurrences. By doing so, we construct a new substring with higher Saved-
Cost than ¢, violating our initial assumption. So, the substring that maximizes SavedCost
is a maximal repeat. A suffix tree over a set of input strings captures all right-maximal
repeats, and right-maximal repeats are a superset of all maximal repeats [9]. To pick the
one with maximum SavedCost, we need the count of non-overlapping occurrences of these
substrings. A Minimal Augmented Suffix Tree [25] over I, can be constructed and used
to count the number of non-overlapping occurrences of all right-maximal repeats in overall

O(Llog L) time, where L is the total length of target strings. Using a regular suffix tree

16

#Greedy Choice
#Update Lexis-DAG

instead, this count can be achieved in only O(L) time; but the suffix tree may count over-
lapping occurrences. In our implementation we prefer to use regular suffix tree, following
related work [26] that has shown that this performance optimization has negligible impact
on the solution’s quality. So, the substring that is chosen for the new Lexis-DAG node is
based on length and overlapping occurrence count. We then use the suffix tree to iterate
over all occurrences of the selected substring, skipping overlapping occurrences. If a se-
lected substring has less than two non-overlapping occurrences, we skip to the next best
substring. Using the suffix tree, we can update the Lexis-DAG with the new intermediate
node, and with the corresponding edges for all occurrences of that substring, in O(L) time.
The maximum number of iterations of G-LEXIS is O(L) because each iteration reduces the
number of edges (or concatenations), which at the start is O(L). So, the overall run-time
complexity using suffix tree is O(L?). Technically, if the alphabet size grows significantly,
we should include the alphabet size in the complexity measure. However, Farach [27] pro-
poses a linear algorithm for creating a suffix tree over integer alphabet (i.e., arbitrarily large
alphabet) which makes the complexity claim for G-Lexis valid. Note that we do not use
this algorithm in our implementations, hence we expect longer runtimes.

We have also experimented with other algorithms, such as a greedy heuristic that selects
the longest repeat in each iteration of building the DAG, i.e., it chooses based on length
among all substrings that appear at least twice in the targets or intermediate node strings.
This heuristic can be efficiently implemented to run in only O(L) time [28]. Our evaluation
shows that G-LEXIS performs significantly better than the longest repeat heuristic in terms
of solution quality, despite some running time overhead. Running both algorithms on a
machine with an Intel Core-i7 2.9 GHz CPU and 16GB of RAM on the NSF abstracts
dataset (introduced in Section 5) of 2, 309 target strings with total length 245, 968 symbols
takes 562 sec for G-LEXIS and 408 sec for the longest repeat algorithm. The edge cost
with G-LEXIS is 169,060 compared to 183,961 with the longest repeat algorithm.

We compare G-LEXIS with an algorithm that greedily replaces the longest repeated

17

x10°

——GLexis ——GLexis
1.8} |—o—Longest —o—Longest

Edge Cost
-
Time (sec.)
@

8

0 20 40 60 80 10¢ 0 20 40 60 80 10¢
Percentage of Data Size Percentage of Data Size

(a) Cost Comparison (b) Runtime Comparison

Figure 2.4: Comparison of G-LEXIS with Longest Substring Replacement algorithm

substring, in terms of both runtime and cost. We implemented the latter, originally proposed
in Inenaga et al. [28] using suffix trees, using our own efficient linked-suffix array. We used
the NSF data described in the main text and ran the two algorithms on different fractions of
the total dataset, repeating the experiments 10 times and recording the average runtime and
edge cost. As seen in Fig. 2.4, the Longest Substring Replacement heuristic offers a better
runtime, but its cost becomes increasingly worse than G-LEXIS as the size of the dataset

grows. Also, G-LEXIS is still reasonably fast on all datasets we have analyzed so far.

2.4 Path-Centrality and the Core of a Lexis-DAG

After constructing a Lexis-DAG, an important question is to rank the constructed inter-
mediate nodes in terms of significance or centrality. Even though there are many related
metrics in the network analysis literature, such as closeness, betweenness or eigenvector
centrality [29], none of them captures well the semantics of a Lexis-DAG. In a Lexis-DAG,
a path that starts from a source and terminates at a target represents a dependency chain
in which each node depends on all previous nodes in that path. So, the higher the number
of such source-to-target paths traversing an intermediate node v is, the more important v
is in terms of the number of dependency chains in which it participates. More formally,

let Pp(v) be the number of source-to-target paths that traverse node v € V);; we refer to

18

Pp(v) as the path centrality of intermediate node v. The path centrality of sources and

targets is zero by definition. First, note that:

P(v) = Ps(v) Pr(v) 2.5)

where Pg(v) is the number of paths from any source to v, and Pr(v) is the number of
paths from v to any target. This formulation suggests an efficient way to calculate the path
centrality of all nodes in a Lexis-DAG in O(|E|) time: perform two DFS traversals, one
starting from sources and following the direction of edges, and another starting from targets
and following the opposite direction. The first DFS traversal will recursively produce Ps(v)
while the second will produce Pr(v), for all intermediate nodes.

Second, it is easy to see that Pr(v) is equal to the number of times string S(v) is used
for replacement in the target strings 7'. Similarly, Ps(v) is equal to the number of times
any source node is repeated in S(v), which is simply the length of S(v). Thus, the path
centrality P(v) of a node in a Lexis-DAG can be also interpreted as its “re-use count” (or
number of replaced occurrences in the targets) times its length. Thus, an intermediate node
will rank highly in terms of path centrality if it is both long and frequently re-used.

An important follow-up question is to identify the core of a Lexis-DAG, i.e., a set of
intermediate nodes that represent, as a whole, the most important substrings in that Lexis-
DAG. Intuitively, we expect that the core should include nodes of high path centrality, and
that almost all source-to-target dependency chains of the Lexis-DAG should traverse at
least one of these core nodes.

More formally, suppose K is a set of intermediate nodes and P~ (K) is the set of source-
to-target paths after we remove the nodes in K from D. The core of D is defined as

the minimum-cardinality set of intermediate nodes K such that the fraction of remaining

19

Figure 2.5: Illustration of the concepts regarding the core of a Lexis-DAG
For targets 7' = {abbbbbba, aabcaabdaabce}. Highlighted nodes are the core of the Lexis-DAG
when 7 = (0.75. There are a total of 20 paths in the Lexis-DAG and by selecting the nodes aab and
bbb, 15 paths (aab covers 9 paths and bbb covers 6 paths) will be covered.

source-to-target paths after the removal of K is at most 7:

min | K|
KEVar (2.6)

st |PT(K)| < 7|P (9)]
where |P~(2)] is the number of source-to-target paths in the original Lexis-DAG, without
removing any nodes.* Fig. 2.5 shows an example defining the concepts regarding the core
of a Lexis-DAG.

Note that if 7 = 0 the core identification problem becomes equivalent to finding the
min-vertex-cut of the given Lexis-DAG. In practice a Lexis-DAG often includes some
tendril-like source-to-target paths traversing a small number of intermediate nodes that
very few other paths traverse. These paths can cause a large increase in the size of the core.
For this reason, we prefer to consider the case of a positive, but potentially small, value of
the threshold 7.

The core identification problem is shown to be an NP-Hard problem in Sabrin [30] and
we solve this problem with a greedy algorithm referred to as G-CORE. This algorithm

adds in each iteration the node with the highest path centrality value to the core set, updates

“It is easy to see that |P~(@)| is equal to the cumulative length of all target strings L.

20

the Lexis-DAG by removing that node and its edges, and recomputes the path centralities
before the next iteration. The algorithm terminates when the desired fraction of source-to-
target paths has been achieved.

G-CORE requires at most O(|V|) iterations, and in each iteration we update the path
centralities in O(|E/|) time. So the run-time complexity of G-CORE is O(|V||E).

One might wonder whether the order of removal of the nodes in G-CORE can be the
same as the ones identified in G-LEXIS because of the similarities in the definition of path
centrality and the gain measure utilized in G-LEXIS. The obvious difference is that we can
consider removing sources in G-CORE while this selection is not possible in G-LEXIS. Our
experiments also show that since path centrality of the nodes gets updated in G-CORE, the
order of the nodes in these two algorithms are almost always different for the real datasets

we have analyzed. An example of this difference is shown in the appendix.

2.5 Applications of Lexis

We now discuss a variety of applications of the proposed framework. Note that in all
experiments, we use the library from [26] for extracting the maximal repeats and NetworkX

[31] as the graph library in our implementation.

2.5.1 Optimized String Hierarchies

Lexis can be used as an optimization tool for the hierarchical synthesis of sequences. One
such application comes from synthetic biology, where novel DNA sequences are created
by concatenating existing DNA sequences in a hierarchical process [16]. The cost of DNA
synthesis is considerable today due to the biochemical operations that are required to per-
form this “genetic merging” [16, 15]. Hence, it is desirable to re-use existing DNA se-
quences, and more generally, to perform this design process in an efficient hierarchical
manner.

Biologists have created a library of synthetic DNA sequences, referred to as iGEM

21

[1]. Currently, there are 787 elementary “BioBrick parts” from which longer composite
sequences can be created. Longer sequences are submitted to the Registry of Standard Bi-
ological Parts in the annual iGEM competition, then functionally evaluated and labeled. In
the following, we analyze a subset of the iGEM dataset. In particular, this dataset contains
1,375 composite DNA sequences that are labeled as iGEM devices because they have dis-
tinct biological functions; we treat these sequences as Lexis targets. The cumulative length
of the target sequences is 6,957 symbols. The 787 elementary BioBrick parts are treated
as the Lexis sources. The iGEM dataset also includes other BioBrick parts that are neither
devices nor elementary, and that have been used to construct more complex parts in iGEM;
we ignore those because they do not have a distinct biological function (i.e., they should
not be viewed as targets but as intermediate sequences that different teams of biologists
have previously constructed).

We constructed an optimized Lexis-DAG for the given sets of iGEM sources and tar-
gets. To quantify the gain that results from using a hierarchical synthesis process, we
compare the number of edges and concatenations in the Lexis-DAG versus a flat synthesis
process in which each target is independently constructed from the required sources. The
Lexis solution requires only 52% of the edges (or 56% of the concatenations) that the flat
process would require. The sequence with the highest path centrality in the Lexis-DAG
is BO010-B0012.> This part is registered as BOOI5 in the iGEM library, and it is the most
common “terminator” in iGEM devices. Lexis identified several more high centrality parts
that are already in iGEM, such as B0032-E0040-B0010-B0012, registered as E0240. In-
terestingly, however, the Lexis-DAG also includes some high centrality parts that have not
been registered in iGEM yet, such as B0034-C0062-B0010-B0012-R0062. A list of the
top-15 nodes in terms of path centrality is given in Table 2.1.

To explore the hierarchical nature of the iIGEM sequences, we compared the “Original”

Lexis-DAG, the one we constructed with the actual iGEM devices as targets, with “Ran-

> BioBricks start with BBa_ prefix that are omitted here.

22

Table 2.1: Top-15 nodes with highest path-centrality in iGEM dataset’s Lexis-DAG

Nodes shown in bold are already registered in the iGEM library.

B0010-B0012

B0034-E0040-B0010-B0012
B0032-E0040-B0010-B0012
B0034-E1010-B0010-B0012

B0034-1732006-B0034-E0040-B0010-B0012

B0030-E0040-B0010-B0012
K228000-B0010-B0012

E0040-B0010-B0012
B0034-C0062-B0010-B0012
B0034-C0062-B0010-B0012-R0062
B0034-E1010

B0034-C0062

R0010-B0034

R0040-B0034

C0051-B0010-B0012

4 O O
;| g0 o 6
g S 3 o &0 #
o é [o © ° O o
5 g § 8o] o 8. .,8% 995%3
g1 E 18 o R T
SN IR A

800
oo
o

o
8
°
o
.

100 L 100 L L
10° 10’ 1 10° 10’ 10%
Length Out-degree

(@) (b)

Figure 2.6: Comparison of the Lexis-DAGs that result from the iGEM devices
The size of each point represents the path-centrality of that node.

domized” Lexis-DAGs. “Randomized” Lexis-DAG is the result of applying G-LEXIS to
a target set where each iGEM device sequence is randomly reshuffled. We compare the
Original Lexis-DAG characteristics to the average Lexis-DAG characteristics over ten ran-
domized experiments. The Original Lexis-DAG has fewer intermediate nodes than the
Randomized ones (169 in Original vs 359 in Randomized), and its depth is twice as large
(8 vs 4.4). Importantly, the Randomized DAGs are significantly more costly: 44% higher
cost in terms of edges and 52% in terms of concatenations.

To further understand these differences from the topological perspective, Fig. 2.6 shows
scatter plots for the length, path centrality, and re-use (number of replacements) of each
intermediate node in the Original Lexis-DAG vs one of the Randomized Lexis-DAGs. With

randomized targets, the intermediate nodes are short (mostly 2-3 symbols), their re-use

23

is roughly equal to their out-degree, and their path centrality is determined by their out-
degree; in other words, most intermediate nodes are directly connected to the targets that
include them, and the most central nodes are those that have the highest number of such
edges. On the contrary, with the original targets we find longer intermediate nodes (up to
11-12 symbols) and their number of replacements in the targets can be up to an order of
magnitude higher than their out-degree. This situation happens when intermediate nodes
with a large number of replacements are not only used directly to construct targets but they
are repeatedly combined to construct longer intermediate nodes, creating a deeper hierarchy
of re-use. In this case, the high path centrality nodes tend to be those that are both relatively

long and common, achieving a good trade-off between specificity and generality.

2.5.2 Structure Discovery

As mentioned in the introduction, it is often the case that the hierarchical process that
creates the observed sequences is unknown. Lexis can be used to discover underlying hier-
archical structure as long as we have reasons to believe that that hierarchical process cares
to minimize, even heuristically, the same cost function that Lexis considers (i.e., number of
edges or concatenations). A related reason to apply Lexis in the analysis of sequential data
is to identify the most parsimonious way, in terms of number of edges or concatenations, to
represent the given sequences hierarchically. Even though this representation may not be
related to the process that generated the given targets, it can expose if the given data have
an inherent hierarchical structure.

As an illustration of this process, we apply Lexis on a set of protein sequences. Even
though it is well-known that such sequences include conserved and repeated subsequences
(such as motifs) of various lengths, it is not currently known whether these repeats form a
hierarchical structure. That would be the case if one or more short conserved sequences are
often combined to form longer conserved sequences, which can themselves be combined

with others to form even longer sequences, etc. If we accept the premise that a conserved

24

sequence serves a distinct biological function, the discovery of hierarchical structure in pro-
tein sequences would suggest that elementary biological functions are combined in a Lego-
like manner to construct the complexity and diversity of the proteome. In other words, the
presence of hierarchical structure would suggest that proteins satisfy, at least to a certain
extent, the composability principle, meaning that the function of each protein is composed
of, and it can be understood through, the simpler functions of hierarchical components.

Our dataset is the proteome of baker’s Yeast®, which consists of 6,721 proteins. How-
ever, this dataset includes many protein homologues. It is important that we replace each
cluster of homologues with a single protein; otherwise Lexis can detect repeated sequences
within two or more homologues. To remedy this issue, we use the UCLUST sequence clus-
tering tool [32], which is based on the USEARCH similarity measure (or identity search)
[33]. The Percentage of Identity (PID) parameter controls how similar two sequences
should be so that they are assigned to the same cluster. We set PID to 50%, which reduces
the number of proteins to 6,033. Much higher PID values do not cluster together some
obvious homologues, while lower PID values are too restrictive.” To reduce the running
time associated with the randomization experiments described next, we randomly sample
1,500 proteins from the output of UCLUST.

The total length of the protein targets is about 344K amino acids. The resulting Lexis-
DAG has about 151K edges and 5,171 intermediate nodes, and its maximum depth is 7. Fig.
2.7(a) shows a scatter plot of the length and number of replacements of these intermediate
Lexis nodes (repeated sequences discovered by Lexis).

Of course some of these sequences may not have any biological significance because
their length and number of replacements may be so low that they are likely to occur just
based on chance. For instance, a sequence of two amino acids that is repeated just twice in
a sequence of thousands of amino acids is almost certain (the distribution of amino acids is

not very skewed). To filter out the sequences that are not statistically significant, we rely on

Shttp://www.uniprot.org/proteomes/UP000002311
"http://drive5.com/usearch/manual/uclust_algo.html

25

http://www.uniprot.org/proteomes/UP000002311
http://drive5.com/usearch/manual/uclust_algo.html

the following hypothesis test. Consider a node that corresponds to a sequence with length
[and number of replacements 7 in the given targets. The null-hypothesis is that sequences
with these values of [and r will occur in a Lexis-DAG that is constructed for a random
permutation of the given targets. To evaluate this hypothesis, we randomize the given
target sequences multiple times, and construct a Lexis-DAG for each randomized sequence.
We then estimate the probability that sequences of length [and number of replacements r
occur in the randomized target Lexis-DAG, as the fraction of 500 experiments in which
this condition is true. For a given significance level @ = 0.1, we can then identify the pairs
(1,r) for which we can reject the null-hypothesis; these pairs correspond to the nodes that
we view as statistically significant.®

On average, the randomized target Lexis-DAGs have a smaller depth (5.0) and more
edges (155K) than the original Lexis-DAG. Fig. 2.7(b) shows the intermediate nodes of

the original Lexis-DAG that pass the previous hypothesis test.

2 H o Significant Nodeg

10°F 10°
2 2
g o g 2
£ £ 8
8 102 o 8 102 o
< s
53 ° g °
o o o o
bS] e k] e
2 ot o 8o S ol o380
Z 10 K 210 o

9 9
8o . 8o -
o 000 o o o o [} o
o000 ° 000 o
coomamO® 0 o o coooxm® 0 0 o
0 0
10 10
10° 10* 10% 10° 10° 10* 10° 10°
Length Length

Figure 2.7: Length and number of replacements for the intermediate nodes in the Lexis-
DAG of Yeast protein sequence data
The plot shows (a) before and (b) after we filter out the nodes that are not statistically significant.

Fig. 2.8 shows a small subgraph of the Lexis-DAG, showing only about 30 intermediate

nodes; all these nodes have passed the previous significance test. The grey lines represent

8 Another way to conduct this hypothesis test would be to estimate the probability that a specific sequence
of length [will be repeated r times in a permutation of the targets. The number of randomization experiments
would need to be much higher in that case, however, to cover all sequences that we see in the actual Lexis-
DAG, each with a given value of r. Regarding testing and keeping the statistics of recurrent sequence motifs
there has been research on efficient storage and retrieval of them [34, 35], however, we do not pursue them
as we are interested in analysis of appearance of substrings in Lexis-DAGs.

26

‘ TECTETESTSYVTPYVSSSTAAANY TSSESSSSEVCTECTETESTSTSTPY VISSSWSSS TECTETESTSYVTPYVSSSTAAANYTSSFSSSSEVCTECTETESTSTST

(33)

‘ NSSTNATTTASINVRTSATTTEST ‘ SDESS| STAAAVSQITDGQVQAAKST
|

u/ 52 \

s
G4 @2 6o

INATTTASINVRISATT | | NATTNSSTNATTTASTNVRTSATT ‘ AKSSSAAPSS ‘ ‘ PSSSAAPTSSAA ‘ AAAVSQITDGQVQAAK ‘
Q952 m a
NVRTSATT
5

@,15)

Figure 2.8: A small subgraph of the Lexis-DAG for 1,500 Yeast proteins
This plot only shows statistically significant nodes. Bold edges represent a direct connection
between two nodes, while grey edges represent indirect connections (through nodes that are not
shown in this plot). The label on top of each node shows the tuple (in-degree, number of
replacements).

indirect connections, going through nodes that have not passed the significance test (not
shown), while the bold lines represent direct connections. Interestingly, there seems to be
a non-trivial hierarchical structure with several long paths, and with sequences of several
amino acids that repeat several times even in this relatively small sample of proteins. De-
spite these preliminary results, it is clearly still early to draw any hard conclusions about the
presence of hierarchical structure in protein sequences. We are planning to further pursue

this question using Lexis in collaboration with domain experts.

2.5.3 Compression

Recent work has highlighted the connection between pattern mining and sequence com-
pressibility [36]. Data compression looks for regularities that can be used to compress the
data, while patterns are often useful as such regularities. In dictionary-based lossless com-
pression, the original sequence is encoded with the help of a dictionary, which is a subset of
the sequence’s substrings as well as a series of pointers indicating the location(s) at which
each dictionary element should be placed to fully reconstruct the original sequence. Fol-
lowing the Minimum Description Length Principle, one strives for a compression scheme
that results in the smallest size for the joint representation of both the dictionary and the

encoding of the data using that dictionary. The size of this joint representation is the total

27

space needed to store the dictionary entries plus the total space needed for the required
pointers. We assume for simplicity that the space to store an individual character and a
pointer are the same.

We now evaluate the use of a Lexis-DAG for compression (or compact representation)
of strings. To do so, we need to decide 1) how to choose the patterns that will be used for
compression, and 2) if a pattern appears more than once, which occurrences of that pattern
to replace. A naive approach is to simply use the set of substrings that appear in the Lexis-
DAG as dictionary entries, and compare them to sets of patterns found by other substring
mining algorithms. Given a set of patterns as potential dictionary entries, selecting the best
dictionary and pointer placement is NP-hard. A simple greedy compression scheme, that
we refer to as CompressLR, is to iteratively add to the dictionary the substring that gives the
highest compression gain when replacing all Left-to-Right non-overlapping occurrences of
that substring with pointers. We re-evaluate the compression gain of candidate dictionary
entries in each iteration. For a substring v with length |v| and number of left-to-right non-

overlapping occurrences R,, the compression gain is:

Ry x [v] = Ry — v = (Ry — 1) x (Jv] = 1) — 1 2.7)

We compare the substrings identified by Lexis with the substrings generated by a recent
contiguous pattern mining algorithm called ConSgen [37] (we could only run it on the
smallest available dataset). Additionally, we compare the Lexis substrings with the set of
patterns containing all 2- and 3-grams of the data. The comparisons are performed on six
sequence datasets: the “Yeast” and iGEM datasets of the previous sections, as well as four
“NSF CS awards” datasets that will be described in more detail in the next section.

Table 2.2 shows the comparison results under the headings: Lexis-CompressLR, 2+3grams-
CompressLR and ConSgen-CompressLR. These naive approaches are all on par with each

other. This comparison, however, treats G-LEXIS as a mere pattern mining algorithm. In-

28

stead, the G-LEXIS algorithm constructs a Lexis-DAG that puts the generated patterns in a
hierarchical context. One can think of the Lexis-DAG as the instructions in constructing a
hierarchical “Lego-like” sequence. The edges into the targets tell us how to place the final
pointers, i.e., which occurrences of a dictionary entry to replace in the targets. Further, the
rest of the DAG shows how to compress the patterns that appear in the targets using smaller
patterns. It is easy to see that using this strategy the compressed size becomes equal to the
number of edges in the DAG. Using this strategy that is encoded in the Lexis-DAG results in
an additional 2%-20% reduction in the compressed size over the CompressLLR approaches.

Table 2.2: Comparison of compression ratio over NSF abstracts dataset

(i.e., percentage of compressed data size over original data size)

Dataset | Lexis Lexis 2+3-gram ConSgen
DAG | CompressLR CompressLR CompressLR
Know&Cog 68.69 76.58 77.13 —
Networks 78.48 86.47 86.43 —
Robotics 73.19 80.62 79.69 —
Theory 79.41 81.89 82.63 —
Yeast 44.28 51.08 50.71 —
iGEM 47.86 67.47 67.75 67.47

2.5.4 Feature Extraction

The Lexis-DAG can also be used to extract machine learning features for sequential data.
The intermediate nodes that form the core of a Lexis-DAG, in particular, correspond to
sequences that are both relatively long and frequently re-used in the targets. We hypothesize
that such sequences will be good features for machine learning tasks such as classification
or clustering because they can discriminate different classes of objects (due to their longer
length) and at the same time they are general within the same class of objects (due to their
frequent occurrence in the targets of that class).

To test this hypothesis, we used Lexis to extract text features for four classes of NSF re-

29

search award abstracts during the 1990-2003 time period.” We pre-processed each award’s
abstract through Stopword removal and Porter stemming so that the noise regarding occur-
rences of the long but noncontagious repeats, or the different variations of a single root, is
reduced and they can be detected by G-LEXIS. The alphabet S is the set of word stems
that appear at least once in any of these abstracts. Table 2.3 describes this dataset in terms
of number of abstracts, cumulative abstract length, and average length per abstract for each
class.

Table 2.3: Description of 4 classes of NSF award abstracts

Class |7 L L/|T| |Vm|

Knowledge | 411 47,858 116 2,902
&Cog Sci
Networks | 836 74,738 89 3,730
Robotics | 496 56,481 113 4,560

Theory 566 66,891 118 4,247

We constructed the Lexis-DAG for each class of abstracts, and then used the G-CORE
algorithm to identify the core for each DAG. We stopped G-CORE at the point where 95%
of indirect paths in the Lexis-DAG are covered. The strings in each core are the extracted
features for the corresponding class of abstracts. Table 2.4 shows the 5 strings extracted by
G-CORE for each class. We create a common set of G-CORE features by taking the union
of the sets of core substrings derived for each class. The next step is to construct the feature
vector for each abstract. We do so by representing each abstract as a vector of counts, with
a count for each substring feature.

To assess how good these features are, we compare the classification accuracy obtained
using the Lexis features with more mainstream representations in text mining on NSF data:
“bag-of-words”, 2-gram, 3-gram, and two combinations of these representations. We use a

basic SVM classifier with an RBF kernel. We used the SVM implementation in MATLAB.

9

archive.ics.uci.edu/ml/machine-learning-databases/nsfabs-mld/
nsfawards.data.html

30

archive.ics.uci.edu/ml/machine-learning-databases/nsfabs-mld/nsfawards.data.html
archive.ics.uci.edu/ml/machine-learning-databases/nsfabs-mld/nsfawards.data.html

Table 2.4: Word stems in the Lexis-DAG core of each class of NSF abstracts dataset.

Knowledge & Cog Networks
machine learn request support nsf connect
knowledg base bit per second
natur languag two year
artifici intellig provide partial support
neural network high perform

Robotics Theory
comput vision comput scienc
first year real world
robot system complex class
object recognit complex theori
real time approxim algorithm

Table 2.5: SVM classification accuracy over NSF abstracts dataset

nonzeros is the number of nonzero elements in the term-document matrix with each feature set.
The accuracies and the parameters are fit based on 10-fold cross-validation for each feature set.

Method (# Features) | # Nonzeros (v,0) Accuracy

Bag-of-words (9,7k) 190,2k (0.0015,3) | 88.3% +2.7%
G-CORE (14,4K) 55,5k (0.02,1) 90.0% + 2.3%
2-Gram (124,9Kk) 228,0k (0.0015,3) | 91.3% +2.0%
3-Gram (186,3k) 234,5k (0.001,1) | 75.8% +5.6%
1+2-Gram (134,6k) 4182k (0.001,1) | 90.9% + 2.1%
1+2+3-Gram (321,0k) 652,8k (0.001,1) ' 89.2% + 2.5%

The accuracy results are similar to those with a KNN classifier that we tried with a Cosine
distance, and the accuracy is evaluated with 10-fold cross-validation.

Table 2.5 shows that the Lexis features result in a much sparser term-document matrix,
and so in smaller data overhead in learning tasks, without sacrificing classification accu-
racy. Lexis also results in a lower feature dimensionality (with the exception of the 1-gram
method but the accuracy of that method is much lower). Note that most Lexis features are
2-grams but the Lexis core (for 95% of path coverage) may also include longer n-grams.
Lexis becomes better, relative to the other feature sets, as we decrease the number of con-
sidered features. For instance, with 3, 000 features the accuracy with Lexis is 74%, while

the accuracy with the 1-gram and 2-gram features is 69% and 64%, respectively.

31

2.6 Related Work

Lexis is closely related to the Smallest Grammar Problem (SGP), which focuses on the
following question: What is the smallest context-free grammar that only generates a given
string? The constraint that the grammar should generate only one string is important be-
cause otherwise we could simply consider a X* as the generator of any string over Y. The
SGP is NP-hard, and inapproximable beyond a ratio of % [22]. Algorithms for SGP have
been used for string compression [38] and structure discovery [10] (for a survey see [26]).
There are major differences between Lexis and SGP. First, in Lexis we are given a set of
several target strings, not only one string. Second, Lexis infers a network representation (a
DAG) instead of a grammar, and so it is a natural tool for questions relating to the hierar-
chical structure of the targets. For instance, the centrality analysis of intermediate nodes or
the core identification question are well understood problems in network analysis, while it
is not obvious how to approach them with a grammar-based approach.

One can also relate Lexis to the body of work on sequence pattern mining, where one
is interested in discovering frequent or interesting patterns in a given sequence. Most work
in this area has focused on mining subsequences, i.e., a set of ordered but not necessarily
adjacent characters from the given sequence. In Lexis, we focus on identifying substrings,
also known as contiguous sequence patterns. A couple of recent papers develop algorithms
for mining substring patterns [37, 39], since sequence mining algorithms do not readily
apply to the contiguous case. However, they rely on the methodology of candidate gen-
eration (commonly used in sequence pattern mining), where all patterns meeting a certain
criterion are found, such as having frequency of at least two or being maximal. In the se-
quence mining literature, it has been recently observed that the size of the discovered set
of patterns as well as their redundancy can be better controlled by mining for a set of pat-
terns that meet a criterion collectively, as opposed to individually. This approach is useful

when these patterns are used as features in other tasks such as summarization or classifi-

32

cation. Algorithms for such set-based pattern discovery have been recently developed for
sequence pattern mining [36, 40]. Gallé [41] explores similar ideas of using key n-grams
for classification of textual documents. In particular, it shows how equivalence class of
largest-maximal repeats can obtain similar or better results than maximal repeats in choos-
ing n-grams for text classification tasks. In the context of substring pattern mining, Paskov
et al. [42] show how to identify a set of patterns with optimal lossless compression cost in
an unsupervised setting, to be then used as features in supervised learning for classification.
In a follow-up paper [43], DRACULA provides a “deep variant” of Paskov et al. [42] that
is similar to Lexis, in terms of the general problem setup. DRACULA’s focus is mostly on
complexity and learning aspects of the problem, while Lexis focuses on network analysis
of the resulting optimized hierarchy. For instance, DRACULA considers how to take into
account how dictionary strings are constructed to regularize learning problems, and how
the optimal Dracula solution behaves as the cost varies. We have shown that, although not
specifically designed for feature extraction or compression, the Lexis framework also re-
sults in a small and non-redundant set of substring patterns that can be used in classification
and compression tasks.

Optimal DNA synthesis 1s a new application domain, and we are only aware of the
work by Blakes et. al. [15]; they describe DNALD, an algorithm that greedily attempts to
maximize DNA re-use for multistage assembly of DNA libraries with shared intermediates.
Even though the Lexis framework was not specifically designed for DNA synthesis, the
Lexis-DAGs can be seamlessly used as solutions for this task. In our illustrative example
with the iGEM dataset, G-Lexis returns solutions with 11% lower synthesis cost (equivalent
to concatenation cost) than DNALD.

Structure discovery in strings has been explored from several different perspectives.
For example, the grammar-based algorithm SEQUITIR [10] presents interesting possible
applications in natural language and musical structure identification. In an information-

theoretic context, Lancot et al. [44] shows how to distinguish between coding and non-

33

coding regions by analyzing the hierarchical structure of genomic sequences.

2.7 Conclusion

Lexis is a novel optimization-based framework for exploring the hierarchical nature of
sequence data. In this chapter of the thesis, we stated the corresponding optimization prob-
lems in the admittedly limited context of two simple cost functions (number of edges and
concatenations), proved their NP-hardness, and proposed a greedy algorithm for the con-
struction of Lexis-DAGs. This research can be extended in the direction of more general
cost formulations and more efficient algorithms. Additionally, we have worked on an incre-
mental version of Lexis in which new targets are added to an existing Lexis-DAG, without
re-designing the hierarchy which will be covered in detail later in this thesis.

We also applied network analysis in Lexis-DAGs, proposing a new centrality metric that
can be used to identify the most important intermediate nodes, corresponding to substrings
that are both relatively long and frequently occurring in the target sequences. This network
analysis connection raises an interesting question: are there certain topological properties
that are common across Lexis-DAGs that have resulted from long-running evolutionary
processes? We have some evidence that one such topological property is that these DAGs
exhibit the hourglass effect [45].

Finally, we gave four examples of how Lexis can be used in practice, applied in opti-
mized hierarchical synthesis, structure discovery, compression and feature extraction. In
future work, we plan to apply Lexis in various domain-specific problems. In biology, in
particular, we can use Lexis in comparing the hierarchical structure of protein sequences
between healthy and cancerous tissues. Another related application is generalized phy-
logeny inference, considering that horizontal gene transfers (which are common in viruses

and bacteria) result in DAG-like phylogenies (as opposed to trees).

34

CHAPTER 3
THE GENERALIZED SMALLEST GRAMMAR PROBLEM

3.1 Introduction

Chapter 2 pointed to close connections between the Lexis optimization problem and the
Smallest Grammar Problem. This problem was formally introduced and analyzed in Charikar
et al. [18], and provides a theoretical framework for the popular Sequitur algorithm [17],
as well as the work around grammar-based compression [47]. The Smallest Grammar
Problem — the problem of finding the smallest context-free grammar that generates exactly
one given sequence — has never been successfully applied to grammatical inference. The
main reason for this is that the definition of the SGP constrains the inferred models to be
straight-line grammars which have no generalization capacity.

We present here an alternative definition which removes this constraint and design an

efficient algorithm that achieves at the same time:

e smaller grammars than the state-of-the-art, measured on standard benchmarks.

e generalized rules which correspond to the true underlying syntactic structure, mea-

sured on the Penntree bank.

We achieve this by extending the formalism from simple straight-line grammars to non-
recursive grammars. Our algorithm takes as input any straight-line grammar and infers ad-

ditional generalization rules, optimizing a score function inspired both by the distributional

The research in this chapter has resulted in the following publication:
[46] P. Siyari, M. Gallé, “The Generalized Smallest Grammar Problem”, Proceedings of International
Conference on Grammatical Inference (ICGI’16), PMLR 57, pp. 79-92, 2017.

35

hypothesis [48] and regularizing through the MDL principle. It is very efficient in practice

and can easily be run on sequences of millions of symbols.

3.2 Related Work

We take inspiration from three related areas: the work around the Smallest Grammar Prob-
lem, the use of Minimum Description Length principles in grammatical inference and con-
crete implementations of Harris substitutability theory [48].

The Smallest Grammar Problem is defined as the combinatorial problem of finding a
smallest context-free grammar that generates exactly the given input sequence. By reduc-
ing the expression power from Turing machines to context-free grammars it becomes a
computable (although intractable) version of Kolmogorov Complexity. This relationship
is also reflected in the interest of studying that problem: by finding smaller grammars, the
hope is not only to find better compression techniques but also to model better the redun-
dancies and therefore the structure of the sequence. The current state-of-the-art algorithms
that obtain the smallest grammars on standard benchmarks are based on a search space
introduced in Carrascosa et al. [49] which decouples the search of the optimal set of sub-
strings to be used, and the choice of how to combine these in an optimal parsing of the
input sequence. That parsing can be solved optimally in an efficient way, and the algo-
rithms diverge in how they navigate the space of possible substrings to be used, trading off
efficiency with a broader search. These algorithms include IRRMGP [50] — a greedy algo-
rithm —, ZZ [51] — a hill-climbing approach —, and MMAS-GA [52] — a genetic algorithm
—. Applications to grammar learning has been studied in Chapter 3 of Eyraud [20], which
concludes that the failure to retrieve meaningful structure is due to the fact that Sequitur
“est un algorithme dont le but est de compresser un texte a’ I’aide d’'une grammaire [. . .]
Or la fréquence d’apparition d’un motif n’est pas une mesure permettant de savoir si ce

motif est un constituant’?.

2+is an algorithm whose goal is to compress a text through a grammar [. ..] but the frequency of occur-
rences of a motif is not a signal to decide whether a motif is a constituent”

36

Algorithms to find smaller grammars focus on intrinsic properties of substrings (e.g.,
occurrences, length). However, in grammatical inference a primary focus is the context in
which a substring occurs in, a principle that traces back to Harris substitutability theory
[48]. Different class of substituable languages have been defined, which all start from
the intuition that if two words occur in the same context they should belong to the same
semantic class (be generated by the same non-terminal). Occurrences of strings wwv and
uw'v are therefore a signal that the words w and w’ are substituable one by the other (as
in “The car is fast” and “The bike is fast”, with w = car and w’ = bike). In recent years,
very good learnability results have been obtained with different variations of substituable
languages [53, 54, 55, 56], and those insights have long been the basis of unsupervised

learning algorithms applied to natural language text [57, 58, 59].

The Minimum Description Length (MDL) principle is a popular approach for model
selection, and states that the best model to describe some data is the one that minimizes
jointly the size of the model and the cost of describing the data given the model. This
principle has been applied often in tools targeted to discover meaningful substructure, in-
cluding grammatical inference [60, 61]. In this context, the grammars obtained through
the SGP are learning the data by heart as they do not perform any generalization. Instead

of this, we propose to extend this model and to control its generalization capacity through

MDL.

3.3 Model

By focusing on grammars that generate a single sequence only, the SGP limits itself to
straight-line grammars, which are context-free grammars who do not branch nor loop. We
propose here to relax the first of these constraints, allowing branching non-terminals. Such
“non-recursive grammars” have found use in natural-language processing, where several
applications have this characteristic [62], despite the fact that they are only able to generate

finite languages.

37

Definition 3.3.1 A non-recursive context free grammar is a tuple G = (X, N, S, P), with
terminals X5, non-terminals N starting symbol S and context-free production rules P such
that for any A, B € N not necessarily distinct, if B occurs in a derivation of A, then A

does not occur in a derivation of B.

Different from straight-line grammars, the language generated by non-recursive CFG
can be larger than a single string, although it is always finite. In the spirit of the smallest
grammar problem, we are still interested in encoding exactly one given string and have
therefore to specify which of all the strings in the language is the encoded one.

The size of such a grammar with respect to a specific sequence s — which we will then
try to minimize — will therefore be the sum of two factors: the size of the general grammar,

and the cost of specifying s:

Definition 3.3.2 Given a non-recursive context-free grammar G = (X, N'| S, P), the size

of G wrt s is defined as:

Gl = > (lal+1)+ cost(s|G)

N—a€eP
where cost(s—G) is the cost of expressing s given (G, and should be expressed in the
same unit that the grammar itself, namely symbols.

We are now ready to define our generalized version of the smallest grammar problem:

Definition 3.3.3 Given a sequence s, a smallest non-recursive grammar is a non-recursive

context-free grammar G such that s € L(G) and |G| is minimal.

Note that we do not put any restrictions on the language that the grammar could gen-
erate. A more general grammar (one that generates a larger language) may have less or
shorter production rules, but the decoding may be more expensive. This trade-off is a stan-

dard in any MDL formulation. The extreme case, where |L(G)| = 1 and cost(s|G) = 0,

38

reduces to the traditional smallest grammar problem. The goal of generalizing the defi-
nition is that by adding ambiguities, the grammar would end up having smaller size even
with some amount of cost being added for resolving the ambiguities.

Before we define cost(s|G), we need to introduce the mentioned type of ambiguity that
when introduced, is potential to lead us to smaller grammars. From a compression per-
spective, we are interested in capturing more flexible patterns than just exact repeats. In
that way, we are looking for non-terminals that generate words v and v/, where both words
are different although similar, so that disambiguating between them is cheap. Several such
similarities have been defined in the domain of inexact pattern matching [63], and a com-
mon practice is to start with seeds, which are exact repeats and then try to extend them
to enlarge their support (number of occurrences) while minimizing the added differences.
Such an idea has been used for DNA compression [19, 64]. The particular kind of inexact
motif we focus on is based on insights from theoretical and experimental results in gram-
matical inference. We assume that v and v’ share a common prefix and suffix, and that all
the changes are contained in the middle. That is, v = pws and v' = pw's, with w # w'.
This corresponds to typical distributional approaches which look for words v, v’ that occur
in the same context, and has been applied as such similarly in [57].

In Section 2.2 of Van Zaanen [65] argues that replacing unequal parts leads to smaller
grammars than replacing equal parts. However, the analysis there does not take into ac-
count that replacing unequal parts adds ambiguity, which — from a lossless compression
perspective — has to be disambiguated in order to retrieve the correct sequence. It is sur-
prisingly hard to define an encoding in such a way that replacing such motifs results in
grammars that are smaller than those that can be obtained by replacing exact repeats only,

as has been reported previously [66].

39

3.4 Algorithm

We propose to extend the greedy algorithm for inferring small straight-line grammars [24,
67] to take into account such inexact motifs. That algorithm (Greedy) chooses in each
iteration the repeat that reduces the current grammar the most. For an exact repeat u,
the gain f(u, G) is the the reduction in size of replacing all occurrences® of u in G by a
new non-terminal N and adding a rule N — wu. By encoding the grammar in a single
string, separating rules by special symbols*, it can easily be shown that f(u,G) = (|u| —
1) (occg(u) — 1) — 2, where occi(u) is the number of non-overlapping occurrences of u
in GG. Deducing such a formula for branching non-terminals is a bit more complicated, and

depend strongly on the specific encoding used.

3.4.1 Encoding the Grammars

In order to provide a fair comparison with the straight-line grammars, we will model care-
fully the way the grammar is encoded. It should be done in such a way that the target
sequence can be retrieved unambiguously from that encoding alone. This choice will then
guide the optimization procedure to minimize it, and as we will see, it influences heavily
the resulting grammar.

We first chose to encode all the possible branchings sequentially, separated by a special
separator symbol (|, where | ¢ (X U N)). Before encoding the final grammar, the non-
terminal are sorted by their depth in the parsing trees. For this, we define depth(N) for
N € N as the maximal depth over all parse trees of all sequences s € L(G), and have the

following:

Proposition 3.4.1 If G is a non-recursive grammar, then depth(N) is well-defined.

which comes directly from the absence of recursion in these grammars.

3 Actually, a maximal set of non-overlapping occurrences.

4So that the size of a grammar is just Z lo + 1
N—acP

40

In the most general setting, we are interested in motifs of the form w.*v, which matches
any substring of the form wwv with w € (X + N)*. Searching for such general motifs is
computationally expensive but feasible, by considering all pairs of repeats.

As an example, consider the following sequence:

s =
Alice was beginning to get very tired .
Alice was getting very tired .

Alice is very tired .
Alice will be very tired .

Alice was getting very tired .

where we assume the alphabet to be the set of English words. Consider now the following

grammar (¢ generating s:

S — N.N.N.N.N.

N — Alice V very tired (3.1)

V' — was beginning to get | was getting | is | will be | was getting
which would be encoded as “N;./N;.N;.N1.N; # Alice N, is very tired # was beginning
to get | was getting | is | will be | was getting #”. Note that the expansion “was getting”
is repeated twice. There is unnecessary redundancy in this case; an alternative solution
would be to provide a list of occurrences. In addition, if this repeat represents a significant

loss (because it occurs many times, or it is very long), it should have been captured by a

non-branching rule. For such an encoding, cost(s—G) is the same for all s and is included

in the encoding of the grammar. For this example, |G| = 32.

Unfortunately, this choice of general motifs and encoding proves to be unfit to compete
against single repeats. It can be shown that the reduction in the grammar size achieved by
replacing one such motif is always bounded by the gain obtained of replacing both exact

repeats u and v.

41

The reason is the additional overhead from the separator symbols (|). A standard strat-
egy in data compression to get rid of separators is to focus on fixed-length words. We
adapted this strategy by restricting the inside part of the motif to be of fixed size. That
is, we search for motifs of the form u.*v, which matches any substring of the form wwwv
with w € (3 UN)*. While more restrictive in what they can capture, those motifs allow a
more efficient encoding. An example grammar (G that represents language L and uses the

knowledge of fixed-length motifs is:

S— 0.

Alice was beginning to get very tired .

Alice is very tired . (3.2)
O — Alice [very tired

I — was getting | will be | was getting

which would be encoded as “Alice /V; very tired . Alice was beginning to get very tired .
Alice is very tired # was getting | will be was getting”. Only one separator symbol is now
needed for the non-terminal Ny, as it indicates the length of the inside rule (which may vary
across different non-terminals). The length of the expansion until that point, together with
the number of occurrences of N; indicates the end of that rule without need of providing
an additional end-of-rule symbol. The total size of G5 is then 25.

We can now deduce the gain introduced by replacing a motif u.*v with non-terminals

O and I:

[k, G) = ((Ju] + [v]) occq(u.Fv))
—occq(u.fv) — (Ju| +] +14+1) = (1+1) =

((Jul + |v] = 1) (occa(urv) —1)) =5 (3.3)

42

This procedure results in the algorithm NRGreedy;,given in Alg. 2. G,y refers to
the grammar where all occurrences of the string w are replaced by the new non-terminal
N and N — w is added to the productions. Similarly, G, s,,¢ is the grammar where
all realizations of u.*v are replaced by the new non-terminal O, and the rules are extended
with O — ulv and I — w for all w such that uwwv occurs in G.

While a smallest possible fixed-length non-recursive grammar is obviously smaller
than a smallest straight-line grammar (because it is more general), our experiments (see
Sect. 3.5) show that the final grammars obtained with NRGreedy.;, are actually larger

than those obtained by minimizing the size of straight-line grammars only.

3.4.2 Post-processing Algorithm

We finally report the results of a simple but effective method that starts from any straight-
line grammar, and infers branching rules from it (Alg. 3). This work is reminiscent of
efforts done to generalize the output of the Sequitur algorithm [68, Chapter 5].

The algorithm starts from any proposal for the smallest grammar problem. We then
search for fixed-lengths motifs u.*v, replace them greedily one by one until no further
compression can be achieved starting with the one that achieves the highest compression.
Note that, because the algorithm starts from a straight-line grammar with no positive-gain
repeats left, all repeated left and right contexts are of length one®, therefore reducing greatly

the execution time.

3.5 Experimental Results

We compared the effectiveness of our proposed algorithm with algorithms that approximate
the smallest grammar problem in two areas. The first is the direct goal of SGP, namely, to
find small grammars that encode the data. We show how the more expressive grammar

can lead to consistently smaller grammars, and considerably so in sequences with a large

SWhich could of course be a non-terminal.

43

ALGORITHM 2. GREEDY ALGORITHM NRGREEDY.;,TO COMPUTE SMALL NON-
RECURSIVE GRAMMAR GENERATING s

Input: String s Output: non-recursive grammar G such that s € L(G)

1. G« (3(s), {5}, 5. {S — s}):
2. while true do:

G);
@) w e wer(%%}ﬁ/’)* f(w’)

b) u.Fv « a F ,G);
®) utv u,ve(é{lJN%*,keNf(u v)

() if f(w,G) <OA f(urv,G) <0:
(d) then return G,
(e) elseif f(w,G) > f(u.Fv, Q) then:
1. N is a fresh non-terminal;
. G+ Guon;
() else:

i. O, I are fresh non-terminals;
ii. G+ Gu‘kaO,I;

ALGORITHM 3. POST-PROCESSING ALGORITHM TO COMPUTE SMALL NON-
RECURSIVE GRAMMAR GENERATING s§

Input: String s, SGP algorithm sgp Output: non-recursive grammar G such that s € L(G)

l. G < sgp(s)
2. while true do:

k k
a) u."v <« max u."v, G);
() u,vE(ZUN)*7k€Nf(’)

(b) if f(u.fv, G) <0 then:
i. return G;

(c) else:
i. O, I are fresh non-terminals;
ii. G+ Gurpsors

44

number of fixed-size motifs. We also report results on qualitative measures of the obtained

structure, using a linguistic corpus annotated with its syntactic tree structure.

3.5.1 Smaller Grammars

In this section, we compare the compression performance of our algorithm with four SGP
solvers: Greedy [24, 67], IRRMGP, ZZ [50] and MMAS-GA [52]. We report the results on
two datasets widely used in data compression: a DNA corpus® and the Canterbery corpus’.
Details about these corpora are in Table 3.1.

Table 3.1: Statistics of the the DNA corpus (left) and Canterbury dataset (right)

We report length, number of different symbols and the number of repeats normalized by length.

sequence |s| [X(s)[[R(s)[/]s] sequence |s X)) [R(s)I/1s]
chmpxx 121,024 4 0.82 alice29.txt 152,089 74 1.45
chntxx 155,844 4 0.77 asyoulik.txt 125,179 68 1.22
hehcmv 229,354 4 1.46 cp.html 24,603 86 4.32
humdyst 38,770 4 0.77 fields.c 11,150 90 5.03
humghes 66,495 4 13.77 grammar.lsp 3,721 76 343
humhbb 73,308 4 9.01 kennedy.xIs 1,029,744 256 0.08
humhdab 58,864 4 1.21 Icet10.txt 426,754 84 2.00
humprtb 56,737 4 1.07 plrabnl2.txt 481,861 81 1.02
mpomtcg 186,609 4 1.36 pttS 513,216 159 194.74
mtpacga 100,314 4 0.97 sum 38,240 255 17.44
vaccg 191,737 4 2.21 xargs.1 4,227 74 1.77

The results on the final sizes are reported in Table 3.2. As pointed out before, we did
not achieve to obtain smaller grammars by incorporating branching-rules inference during
the main process (algorithm NRGreedy¢;). The final grammars were consistently larger
than the simplest baseline (Greedy), often considerably so (see for instance humhdab,
alice29.txt). However, the same idea of inferring fixed-motifs proved to be successful

when applied as a post-processing. Moreover, this strategy can be applied to any straight-

Shttp://people.unipmn.it/~manzini/dnacorpus/historical/
"http://corpus.canterbury.ac.nz/

45

http://people.unipmn.it/~manzini/dnacorpus/historical/
http://corpus.canterbury.ac.nz/

line grammar and can therefore be used after any SGP algorithm. Under the columns #Ctx
we give the number of branching rules that are inferred. The number of occurrences of
these rules is of course much higher in general.

While the reduction in size is small, it applies consistently throughout all the SGP al-
gorithms we tried®. The better the original algorithm, the smaller the gain. While this may
point towards a convergence of the possible redundancy that can be extracted, it should
be noted that our approach runs much faster than the more sophisticated algorithms (ZZ,
MMAS-GA). Moreover, our best result in Table 3.2 become the new state-of-the-art in sev-
eral cases, and we would expect an even better improvement if starting from the final gram-
mars output by MMAS-GA.

We analyzed separately the huge difference in the gain obtained on the kennedy . x1sx
file. This binary file encodes a large spreadsheet (347 x 228, in Excel format) containing nu-
merical values, many of which are empty. Most of the gains over the straight-line baselines
seem to come from the way these numbers are getting encoded, with a common prefix and
suffix and a fixed-length field for the specific value. These fields are therefore ideal candi-
dates for our branching-rule inference. We were able to recreate those results by generating
random Excel tables, obtaining improvements of 6 to 33% (relative to the original size of

IRRMGP) depending on the number of non-zero entries the table had.

3.5.2 Better Structure

Following the original motivation for closing the gap between the structures found in SGP
and the structures that are sought in grammatical inference, we evaluated the obtained
branching rules by their capacity for unsupervised parsing. We benchmarked our method
in the task of unsupervised parsing, the problem of retrieving the correct tree structure of a
natural language text. We took the standard approach in the field, starting from the Part-of-

Speech (POS) tags of the Penn Treebank dataset [69]. Current supervised methods achieve

8We did not have access to the final grammars of MMAS-GA

46

a performance above 0.9 of F; measure [70]. As expected, unsupervised approaches report
worse performance, around 0.8 [59]. These are in general very computationally intense
methods and performance is only reported on top of WSJ10, sentences of size up to 10. We
diverge from that, reporting results on all 49,208 sentences’. For evaluation we used pre-
cision over the set of brackets, together with the percentage of non-crossing brackets [71],
a standard practice for which we relied on the EVALB tool'? which removes singleton and
sentence-wide brackets. While precision is the percentage of correctly retrieved brackets,
non-crossing brackets is the percentage over the retrieved brackets that do not contradict a
gold bracket and give an idea on how not-incorrect the results are (as opposed to correct).
Our focus is on comparing the quality of the brackets of the branching rules with those
of the non-branching rules. We furthermore distinguish the brackets covering a context,
and the one covering an inside. For the rules {O — aIf3,I — 71|12}, the inside brackets
cover y; and 7, while the context rules cover oy, and ay,/3. The number of context

brackets is always the same as the number of inside brackets.

As before, we are mainly interested in comparing the additional rules added by non-
recursive grammars. The Greedy algorithm creates around 950,000 brackets, of which
only 21% are correct. The proposed post-processing adds another 792 brackets, but with
a much higher precision (50.48%) and mostly consistent (85%). In order to evaluate the
sensitivity of these results, and to see if they generalize if more brackets are retrieved, we
stopped the Greedy algorithm earlier: this creates larger grammars, with more options for
the creation of branching rules. The final results are summarized in Fig. 3.1. Because of the
small number of brackets (Fig. 3.1c) we do not report recall. While the numbers of correct
and consistent brackets decreases with increasing number of branching rules, they do so
very gently and are much higher than the accuracy of non-branching rules. Furthermore,
a stark difference appears between context and inside brackets: while context brackets are

much more often correct (reaching almost 60%), they are less consistent than inside brack-

9Excluding sentence 1855, for which EVALB evaluation tool we used had trouble processing.
Unip.cs.nyu.edu/evalb/

47

nlp.cs.nyu.edu/evalb/

~=— context+inside
=+ context 055 o
«- Greedy e

0.45

°
3

precision

035"

non-crossing brackets

.

‘ ‘
0.4 0.20
10000 15000 20000 25000 30000 35000 10000 15000 20000 25000 30000 35000
iterations # iterations

(a) Percentage of non-crossing brackets (b) Bracketing precision

7000
6000
5000
4000

3000

number of brackets

2000

1000

0
10000 15000 20000 25000 30000 35000
iterations

(c) Number of brackets of branching rules.

Figure 3.1: Structuring accuracy of the post-processing algorithm

x-axis is the number of iterations when we stopped the Greedy algorithm.
ets (which have a non-crossing percentage of 90%). These results get their whole meaning
when compared to the brackets obtained by just considering the straight-line grammars.
Their accuracy varies very little over the iterations, and are always extremely low (around

22%).

Finally, the drop around 20,000 iterations belongs to a point where highly frequent
context patterns'! stop being captured by branching rules and are modeled by repeats. This
result also means that the good performance at the end is not due to these easy to model

constituents.

As said, reported values on unsupervised parsing of this dataset focuses on sentences

of length up to 10, which only represents less than 10% of the total corpus. On these

""Most notably opening/closing quotation and parentheses

48

sentences, the context brackets obtain a precision of 80%, considerably higher than other
reported results, although this is not a fair comparison as the number of retrieved brackets
is low. But it is worth to highlight that parsing the longer sentences did not pose any
problems at all in our (not optimized) implementations: in fact the algorithm was run on

the concatenation of the overall set (over 1.3M tokens).

3.6 Conclusion

In this chapter of the thesis, we provide a first step towards applying the results around
the Smallest Grammar Problem for grammatical inference. We identify a probable reason
for past failures, and show how to extend the work inferring small straight-line grammars
towards non-recursive ones. In order to keep up comparison with standard benchmarks in
the SGP, we design an encoding of this grammar that allows for efficient algorithms. Those
algorithms consistently improve over the current state-of-the-art, substantially so in one
case (kennedy . x1s sequence). One direction of future work could focus on formalizing
the phenomena exhibited by that sequence and where else it occurs.

With respect to the original motivation of structuring the sequences, the additional rules
of our algorithm have a much higher precision than other methods for unsupervised parsing,
without explicitly trying to optimize for it. Recall is much lower, due to the few rules
that are actually inferred. However, we believe that our results show the potential of this
generalized smallest grammar problem for this task and we are considering on how to build

on the efficient algorithms developed in the field to capture more such rules.

49

Table 3.2: Size of the final grammars obtained with the different algorithms for producing

smaller grammars

SGP algorithms (non-bold numbers) generate straight-line grammars, while NRGreedy¢; ,and the

+Post columns infer non-recursive grammars. Green/Red down-/up-ward arrows show a

reduction/increase in the grammar size with respect to the output of the reference algorithm in each

section, and = shows no change. #C'tx is the number of branching rules detected by the

post-processing algorithm. In the cases with -, either the final grammar or the output of ZZ

algorithm was not available. The results for MMAS-GA are taken from Benz et al. [52].

Grammar Size

Data Greedy NRGreedy:;, +Post #Ctr | IRRMGP +Post #C'tx 77 +Post #C'tr | MMAS-GA
chmpxx 28,704 29,477+ 28,534 64 27,683 27,584 27 | 26,024 26,024 0 25,882
chntxx 37,883 38,212+ 37,703 71 36,405 36,285 25| 33,942 33,942 0 33,924
hehcmyv 53,694 54,451+ 53,398 113 51,369 51,242 30 - - - 48,443
humdyst 11,064 11,166 + 11,017 19 10,700 10,680 6| 10,037 10,037 0 9,966
humghcs 12,937 13,655+ 12,908 14 12,708 12,708 = 0| 12,033 12,023 5 12,013
humhbb 18,703 18,8931 18,614 36 18,133 18,060 20 | 17,026 17,024 1 17,007
humhdab 15,311 19,736 + 15,242 27 14906 14,879 8| 13,995 13,995 0 13,864
humprtb 14,884 17,122+ 14,817 26 14,492 14,451 11| 13,661 13,661 — 0 13,528
mpomtcg 44,175 45,018+ 43,930 89 42,825 42,658 40 | 39,913 39911 1 39,988
mtpacga 24,556 24,878 1 24,408 58 23,682 23,608 16 | 22,189 22,189 0 22,072
vaccg 43711 44,261+ 43,445 99 41,882 41,778 29 - - - 39,369
alice29.txt 41,001 50,777 + 40,984 7 40,218 40,218 = 0| 37,702 37,662 12 37,688
asyoulik.txt 37,475 45,520 1 37,464 4 36,910 36,905 1| 35001 34,953 16 34,967
cp.html 8,049 8,310 ¢ 8,003 6 7,974 7,971 1 7,768 1,747 9 7,746
fields.c 3,417 3,681 ¢ 3,380 7 3,385 3,381 1 3312 3,285 13 3,301
grammar.Isp 1,474 1,475+ 1,458 2 1,472 1,472 0 1,466 1,462 1 1,452
kennedy.xls | 166,925 - 99915 1,233 166,810 98,479 1,174 | 166,705 98,258 1,161 166,534
Icet10.txt 90,100 115,625+ 89,998 33 88,778 88,750 9 - - - 87,086
plrabnl2.txt | 124,199 165,122 + 124,009 58 120,770 120,760 2 - - - 114,960
ptts 45,135 - 45118 7 44,129 44,123 3 - - - 42,661
sum 12,207 14,722+ 11,761 52 12,127 11,868 34 - - - 12,009
xargs.1 2,006 2,092+ 2,006 = 0 1,993 1,990 1 1,973 1,948 3 1,955

50

CHAPTER 4
EMERGENCE AND EVOLUTION OF HIERARCHICAL STRUCTURE IN
COMPLEX SYSTEMS

4.1 Introduction

In this chapter, we present Evo-Lexis, a modeling framework for the emergence and evo-
lution of hierarchical structure in complex modular systems. There are many hypotheses
in the literature regarding the factors that contribute to either the hierarchy or modularity
properties. Local resource constraints in social networks and ecosystems [72], modularly
varying goals [8, 73, 74], selection for more robust phenotypes [75, 76], and selection for
lower connection costs in a network [4] are some of the mechanisms that have been previ-
ously explored and shown to lead to hierarchically modular systems. The main hypothesis
that we follow in this chapter is along the lines of Mengistu et al. [4], which assumes that
systems in both nature and technology care to minimize the cost of their interconnections
or dependencies between modules.

An additional focus of our work is the hourglass effect in hierarchical systems. Across
many fields, such as in computer networking [77], deep neural networks [78], embryoge-
nesis [79], metabolism [80], and many others [5], it has been observed that hierarchically
modular systems often exhibit the architecture of an hourglass. Informally, an hourglass
architecture means that the system of interest produces many outputs from many inputs
through a relatively small number of highly central intermediate modules, referred to as the

“waist” of the hourglass (Fig. 4.1). The waist of the hourglass (also referred to as “core”

The research in this chapter has resulted in the following publication:
P. Siyari, B. Dilkina, C. Dovrolis, “Emergence and Evolution of Hierarchical Structure in Complex
Systems”, Accepted as a book chapter in Dynamics On and Of Complex Networks vol. II1, Springer, 2018.

51

Outputs (targets)

. »Core modules
7
e 2
1
I .
’ Intermediate

modules

Increasing Complexity

==

Inputs (sources)

Figure 4.1: A hierarchical system is represented as a directed-acyclic graph.

Each module is shown as a node, and the dependencies from more elementary modules to
more complex modules are shown as upward edges. The hourglass effect occurs when the
system of interest produces many outputs from many inputs through a relatively small
number of intermediate core modules (here, highlighted nodes with transparent

surroundings) [5].
in Sabrin et al. [5] as well as in this thesis) includes critical modules of the system that
are also sometimes more conserved during the evolution of the system compared to other
modules [77, 5]. Despite recent research on the hourglass effect in different types of hi-
erarchical systems [5, 77, 81, 82], one of the questions that is still open is to identify the
conditions under which the hourglass effect emerges in hierarchies that are produced when
the objective is to minimize the cost of interconnections.

To develop Evo-Lexis, we extend the previously proposed optimization framework
Lexis in Chapter 2. Lexis models the most elementary modules of the system as sym-
bols (“sources”) and the modules at the highest level of the hierarchy as sequences of those
symbols (“targets”). Evo-Lexis is a dynamic or evolving version of Lexis, in the sense that
the set of targets changes over time through additions (births) and removals (deaths) of tar-
gets. Evo-Lexis computes an (approximate) minimum-cost adjustment of a given hierarchy
when the set of targets changes over time (a process we refer to as “incremental design”).

For comparison purposes, Evo-Lexis also computes the (approximate) minimum-cost hier-

archy that generates a given set of targets from a set of sources in a static (non-evolving)

52

setting (referred to as “clean-slate design”). The premise behind the incremental design
approach is that in practice systems are rarely designed from scratch — instead, they are
incrementally modified over time to accommodate the changes (e.g., provide new outputs
and potentially to support new inputs every time there is a change).

The questions we focus on are:

1. How do key properties of the emergent hierarchies, e.g., depth of the network, reuse
or centrality of each module, complexity (or sequence length) of intermediate mod-
ules, etc., depend on the evolutionary process that generates the new targets of the

system?

2. Under what conditions do the emergent hierarchies exhibit the so called “hourglass

effect?” Why are few intermediate modules reused much more than others?

3. Do intermediate modules persist during the evolution of hierarchies? Or are there

“punctuated equilibria” where the highly reused modules change significantly?

4. Which are the differences in terms of cost and structure between the incrementally

designed and the corresponding clean-slate designed hierarchies?

We develop the optimization framework, evolutionary target generation processes, and
evaluation metrics needed to study these questions. Fig. 4.2 presents an overview of how
well-known evolutionary mechanisms such as tinkering, mutation, selection and recombi-
nation play a role for the Lexis-DAGs to evolve certain properties such large depth, and the
hourglass architecture.

The structure of this chapter is as follows: In Section 4.2, we present the components
of the Evo-Lexis framework, along with the metrics that we use for the analysis of evolving
hierarchies. In Section 4.3, we evaluate the evolution of hierarchies under different target
generation models. Sections 4.4 and 4.5 present further analysis regarding the evolvability

and major transitions in hierarchies produced using the most full-fledged (MRS) target

53

generation model. Finally, Section 4.6 focuses on the comparison between clean-slate and
incremental design in terms of cost and structure. In Section 4.7, we review related work
in the context of Evo-Lexis. Section 4.8 discusses the results and presents some future

research possibilities.

54

Lexis framework
Design optimal hierarchies
over a set of targets
from a given alphabet of sources

Targets

R N

Evo-Lexis framework
Co-evolution of
targets and hierarchy

Selection based on
target structure and
current Lexis-DAG contents

Sources Increasing
node complexity

(sequence length)

1. Initial Lexis-DAG

e Cost=2 v

2. New targets generated (births)/

Old targets removed (deaths) 3. Incrementally adjusted Lexis-DAG

Target Generation Models and Resulting Hierarchies

MRS Model

V' 1- Low-cost hierarchy
V' 2- Deep hierarchy
v 3- Reuse of complex nodes

- Remove Recombination
(i.e. Mutations+Selection Model)
v/ 1- Low-cost hierarchy
V' 2- Deep hierarchy
V' 3- Reuse of complex nodes

- Remove Selection
(i.e. Mutation Model)
v 1- Low-cost hierarchy
V' 2- Deep hierarchy
V' 3- Reuse of complex nodes

o
o
3
(=]
<
3
(}]
m
<
o
c
=3
(=]
3
Q
<
<
o
(2]
=
Q
3
=
3
wn

(i.e. Random Model)
X 1- Low-cost hierarchy
X 2- Deep hierarchy
X 3- Reuse of complex nodes

(i.e. Mutations+Recombination+ Selection Model)

- Remove Mutation (Random Targets)

v 4- Hourglass property
V' 5- Target diversity

v 4- Hourglass property
X 5- Target diversity

X 4- Hourglass property
X5- Target diversity

X 4- Hourglass property
X5- Target diversity

Figure 4.2: Overview of the study in Chapter 4.

The Evo-Lexis modeling framework captures the process of incrementally designing
optimized hierarchies for a time-varying set of targets. Hierarchies are modeled as
Lexis-DAGs. We focus on key properties of the resulting hierarchies (e.g., cost, depth,
reuse of intermediate components) and on how these properties depend on the
evolutionary mechanisms that generate new targets. By focusing on well-known
evolutionary mechanisms such as mutations, recombination and selection, we analyze
how each of them affects the structure and evolution of the resulting hierarchies.

Blue, green and red nodes show source

, intermediate and target nodes, respectively.

Colored dots represent an instance of a source node and are used to show the extent of
diversity among target nodes.

55

4.2 Evo-Lexis Framework and Metrics

The Evo-Lexis framework includes a number of components that are described below. A

general illustration of the framework is shown in Fig. 4.3.

o Lexis-DAG: The network that encodes the system’s architecture at a given point in
time. The inputs of the system are the sources of the DAG and the outputs are the

targets.

e Target Generation Model: This model specifies the evolutionary process that cre-
ates new targets. For simplicity, we consider the addition of only new targets, not new
sources. The generation of new targets can be either independent of the current hier-
archy (exogenous target generation) or it can depend on that hierarchy (endogenous

target generation).

o Target Removal Model: Models the removal of older targets. The total number of

targets remains constant during the evolution of the network.

e Hierarchy Design Algorithm: This is how the Lexis-DAG is adjusted whenever we
introduce new targets. This procedure can be as simple as building a Lexis-DAG
from scratch (by running the G-LEXIS algorithm) on the set of existing targets. We
refer to this approach as Clean-Slate design. On the contrary, the algorithm can
be incremental, starting with the previously constructed hierarchy and incorporating
new targets in a way that minimizes the adjustment cost. We refer to this algorithm

an Incremental design, and it is described next.

4.2.1 Incremental Design Algorithm

The Evo-Lexis algorithm generates an optimized hierarchy for the given set of targets in
every evolutionary iteration. As mentioned previously, the Clean-Slate design approach is

to discard the existing hierarchy and redesign from scratch a new Lexis-DAG for the given

56

Target

Generation
Initial Lexis-DAG Model Expansion Phase

Evo-Lexis
Incremental Design

Removal of batch
of old targets

Oud
targets
removal (one batch)

Pruning Phase

Final Lexis-DAG

Figure 4.3: A diagram of the Evo-Lexis framework.

In every iteration, the following steps are performed: (1) A batch of new targets is
generated via a target generation model. (2) In the “expansion phase”, the new targets are
added incrementally to the current Lexis-DAG by minimizing the marginal cost of adding

every new target to the existing hierarchy. (3) If the number of targets that are present in
the system has reached a steady-state threshold, we also remove the batch of oldest targets
from the Lexis-DAG. During this “pruning phase,” some intermediate nodes may also be
removed because every intermediate node in a valid Lexis-DAG should have an
out-degree of at least two.

set of targets using the G-LEXIS algorithm. Such a design methodology is not realistic
however in either technological or natural evolution. A more realistic approach is to adjust
the existing Lexis-DAG incrementally, as described below 2.

In incremental design, given a Lexis-DAG D, with a set of targets 7j, a set of new

targets 7', to be added, and a set of old targets 7" to be removed, the problem is to construct

a Lexis-DAG D'™C that supports the set of targets {7y U T’y — T"_}, and that minimizes the

%In Gallé et al. [83], the authors have looked into computing repeats incrementally, and in particular in
measuring the gap with respect to the real repeats. The scenario that we are investigating is different in Evo-
Lexis in the sense that we are looking for reuse of specific nodes in previous Lexis-DAGs in the current ones,
and the calculation of repeats per se are not in focus.

57

cost difference with respect to D:

minDINc {E (DINC) - & (Do)}
4.1)
s.t. D' is a Lexis-DAG for {To UT, — T}

If Dy = ¢ (i.e., there is no initial Lexis-DAG), T = ¢, and 7T is the entire target
set, the incremental design problem becomes equivalent to the original Lexis Optimization
Problem in Eq. (2.2).

The incremental design problem is NP-Hard (as the original Lexis design problem in
which Dy = ¢ and T = ¢), and so we rely on a heuristic that we refer to as INC-LEXIS.
The algorithm proceeds in two phases: first, in the “expansion phase,” it adds the set of new
targets 7', attempting to reuse as much as possible existing intermediate nodes. Second, in
the “pruning phase”, the algorithm removes the set of old targets 7", and it also removes
any intermediate nodes that are left with zero or one outgoing edges.

In more detail, the expansion phase of INC-LEXIS consists of two stages: in stage-1,
we reuse intermediate nodes present in D, to cover 7 with minimum cost. In stage-
2 of the expansion phase, we further optimize the hierarchy that supports the targets in
T, by building an optimized Lexis-DAG for them using G-LEXI1S. The resulting new
intermediate nodes and edges are added in the existing DAG.

Note that stage-1 relates to the well-known Optimal Parsing problem, which is: given a
set of target strings 7, a set of substrings M and the corresponding alphabet .S, what is the
minimum number of substrings and letters that can construct 7" from the elements of M US?
The optimal parsing problem can be formulated as a shortest-path problem in directed
graphs [84]. If the length of the targets is V, it can be optimally solved in O(N + |M U S|)
as the corresponding directed acyclic graph has N nodes and O(N + |M U S|) unweighted
edges.

In the pruning phase, we remove the oldest batch of targets. We also ensure that there is

no redundant node in the Lexis-DAG, as implied by the constraint: Vv € Vs, doy(v) > 2.

58

This ensures that the Lexis-DAG does not include two types of redundancies: nodes with
zero out-degree and nodes that are only reused once.
Figures 4.4 and 4.5 give an example of how INC-LEXIS adjusts a hierarchy, given a set

of targets to be added and a set of targets to be removed.

4.2.2 Target Generation Models

The targets are generated through well-known evolutionary mechanisms, such as tinker-

ing/mutation, recombination and selection:

e The generation of new targets from minor changes in earlier targets is similar to Tin-
kering/Mutation. Tinkering is common in technological evolution: small “upgrades”
in a software or hardware artifacts are the most common example of this process. In
biological systems, it is well-known that mutation is basically “the engine of evolu-
tion” [85]. In Evo-Lexis, tinkering/mutation is performed by replacing one character

of a given target with a randomly chosen character.

e In the technological world, Recombination is known to be one of the central mecha-
nisms for the creation of new technologies [86]. Technological design is often con-
sidered to be a search over a space of combinatorial possibilities [87]. In fact, many
breakthroughs in the history of technology were in fact just a new combination of
existing modules. A recent example is the first version of the iPhone in 2007, which
was introduced to be “a phone, an internet communicator and an iPod.” In biology,
it is well known that recombination and crossover is essential as it produces highly

diverse genotypes, compared to mutations.

e Selection is an essential mechanism in evolution. In natural systems, selection deter-
mines whether a new genotype can survive the competition with existing genotypes
(i.e., the incumbents) by evaluating the phenotypic fitness of the former relative to the

latter. In the technological world, selection is the process of evaluating the function-

59

ality and cost of a new product, perhaps during an R&D cycle [88]. In the Evo-Lexis
framework, selection is performed to decide whether a candidate target can be ac-
cepted, by evaluating the cost of adding that target in the current hierarchy. In other
words, selection creates an endogenous target generation process in which the exist-
ing hierarchy determines the cost of the potential new targets and thus, whether each

new target is cost-competitive compared to the targets it evolved from.

MRS Model

The main target generation model we consider is based on Mutation, Recombination and
Selection, thus called MRS model. The mechanism for this model is illustrated in Fig. 4.6.

In detail:

1. Two distinct targets ¢, and t,, (referred to as “seeds”) are chosen randomly from
the existing set of targets. Their cost is denoted by C'(t5,) = din(ts,) and C(ts,) =
din(ts,), respectively, and it is equal to the number of incoming edges that form ¢

from the intermediate nodes in the current Lexis-DAG.

2. A randomly chosen “crossover index” 1 < ¢ < k — 1 is chosen (recall that k is the
length of the targets) and the following recombinations are generated:
o ti =ty [l:i—1]+c+t,li+1:k|
oty =t,[l:i—1]+c+t,[i+1:k]
o ti=ty,li+1:kl+c+1ts[l:i—1]
o th =t i+ 1:kl+c+1ts,[l:i—1]
where the numbers in braces show string indices, and ¢ is a randomly chosen char-

acter that represents the mutated element. In other words, each recombination also

includes a single-character mutation.

60

3. For each of the four recombinations, we calculate its cost when it is added as a new
target to the current Lexis-DAG. This cost can be seen as the marginal overhead that
t> introduces when added to the current hierarchy Dj:

C(t5) = € (D"(Dy, {£2})) — E(Dy) (4.2)

T

where D™¢(Dy, {t*}) is the new hierarchy after adding ¢ to Dy using the INC-Lexis

algorithm.

4. The model selects a newly generated recombination ¢, if it satisfies the following

selection constraint:

e Suppose t; is formed by recombining the fragments ¢,, (from ¢,) and ¢,, (from
ts,), where the length of these target fragments are |t,, | and [t,,].

The selection ratio is defined as:

C(t;)

R:
[ta, | X C(ts,) + |tay| X Clts,)

4.3)

o If R <1, we definitely accept t;.

e If R > 1, we accept t* probabilistically with selection probability p = e=?(F=1),

5. If none of the recombinations passes the previous selection constraint, the target gen-
eration process is repeated. However, if one or more recombinations pass the selec-
tion constraint, the model chooses one of them randomly and adds it as an accepted

target in the batch of new targets.

B determines how strongly the current hierarchy influences the selection of new targets.
The larger the parameter [is, the less likely it becomes that a new target that is more costly
than its seeds (i.e., R > 1) will be selected. For large (3, we get Strong Selection and refer

to the model as MRS-strong. A small 3 implies Weak Selection, and the model is referred

61

to as MRS-weak. We use 5 = 1 and 8 = 12 for weak and strong selection, respectively.

Fig. 4.7 shows the difference of the two [values for typical values of R (when R > 1).
To analyze the effect of each evolutionary mechanism, we also consider target genera-

tion models by removing certain elements from the MRS model — hence the name “ablation

study.”

MS Model

The MS model is derived from MRS by removing recombination (hence the name Mutations+Selection

Model or MS Model). The model generates new targets as follows:

1. A target seed ¢, is chosen from the existing set of targets. Suppose the cost of ¢, is

C(ts) = din(ts) in the current Lexis-DAG D.
2. The seed i1s mutated (single character mutation), as in MRS model, to ¢.

3. We calculate the cost of adding ¢? to the current Lexis-DAG. This cost can be seen as

the marginal overhead that ¢} introduces when it is added to the current Lexis-DAG:

C(tr) = € (D™(Dy, {t:})) — E(Dy) (4.4)

s

4. The model will select the newly generated target ¢7 if it satisfies the following con-

straint:

_)
° B=7qy

o If R <1, accept ;.

e if R > 1, accept t* probabilistically where selection probability p = e~ #(F=1),

Otherwise, the newly generated target is rejected and the target generation repeats.

62

M Model

This is derived from the MS model by removing the Selection constraint. Note that with
this change the target generation process is not influenced by the current Lexis-DAG and it
operates “exogenously” to the hierarchy. This model is referred to as Mutation Model (or

M Model) and it generates targets as follows:

1. Among the targets that exist in the current Lexis-DAG, a seed target ¢ is chosen

randomly.
2. The seed target ¢, is mutated to ¢7 through a random single character mutation.

3. If the newly generated target ¢} is a duplicate of one of the existing targets, the new
target is rejected and the target generation repeats. If not, the generated target is

added to the batch of new targets.

RND Model

We also consider a random target generation process, referred to as RND, where tinker-
ing/mutation are removed from Mutation model. In this model, a new target is randomly

generated using k£ random and independent choices among the sources.

4.2.3 Key Metrics

Cost Metrics

Normalized Cost: This is the cost of the Lexis-DAG D (the Lexis-DAG for the target
set 1") normalized by the total length of the targets, L. We denote the normalized cost by
Cn(Dr):

E(Dr)

0 <Ca(Dr) = C

<1 4.5)

63

Penalty of Incremental Design (PID): This measure evaluates the cost overhead of

incremental design relative to a clean-slate design:

_ &5
PIDr = Zhes (4.6)

where DINC is the incremental design for the target set 7', and DS is the clean-slate design

for the same set of targets. The value of PID is bounded as follows:

Lr
1< PIDp < —+— 4.

because an incremental design cannot be more efficient than a clean-slate design (at least
when the two design problems are optimally solved), and the maximum cost of incremental

design is L7).

Topological Metrics

Average Depth: This metric is an indicator of how deep a Lexis-DAG hierarchy is. For
each target ¢, we calculate the average length of all source-target paths ending on that target:

d(t). The average across all ¢ is defined as the average depth of the hierarchy:

D(Dr) = % (4.8)

Core Stability: We have already defined the core size and the H-score. Here we define
an additional metric, related to the stability of the core across time.

We track the stability of the core set by comparing two core sets at two different times.
A direct comparison of the core sets via the Jaccard index leads to poor results. The reason
is that often the strings of the two sets are similar to each other but not completely identical.

Thus, we define a generalized version of Jaccard similarity that we call Levenshtein-

Jaccard Similarity:

64

e The Levenshtein distance LD(s,t) between two strings s and ¢ is the number of
deletions, insertions, or substitutions required to transform one string to another. The
higher the number of required operations, the more distant two strings are from each

other [89].

e Suppose we aim to compute the similarity of two sets A and B of strings. We define
the mapping A — B where every element a € A is mapped to the most similar
element b € B. We also define the mapping B — A from every element b € B to

the most similar element a € A:

A— B={(a,b)st.ac A&be B&b=argmaz,epSim(a,z)}

4.9)
B—-A={(bya)st.ac A&kbe B&a=argmazrycaSim(b,x)}
where Sim(a,) is the similarity of a to b and is calculated as:
LD(a,b
Sim(a,b) =1 — (a,b) (4.10)

maz(|al, [b])

Notice that maz(|al,|b|) is the maximum value of Levenshtein distance between a
and b. This consideration ensures that if a = b then Sim(a,b) = 1, and if a and b

have the maximum distance then Sim(a, b) = 0.

e Considering both A — B and B — A, we get the union of the two mappings and

define the Levenshtein-Jaccard similarity as follows:

> (apyeasn Sim(a,b) + 3 yepya Sim(b, a)

LevJac(A, B) = (AT 1B))

4.11)

We can see that if A = B (all weights are equal to one) then LevJac(A, B) = 1.
Also if none of the elements in A are similar to B (all the element pairs take zero

similarity value), then LevJac(A, B) = 0.

65

For example, suppose that A = {abc, cdef, fgh} and B = {abcd, cgef, zyh}. The

similarity of the most similar pairings is shown next:

¢

A — B = {(abe,abcd), (cdef, cgef), (fgh, zyh)}
where: Sim(abc, abed) = %, Sim(cdef,cgef) = %, Sim(fgh,xyh) = %
= D (apyeap Sim(a,b) = 1.83

B — A = {(abed, abe), (cgef, cdef), (xyh, fgh)}

where: Sim(abed, abe) = 2, Sim(cgef, cdef) = 3, Sim(zyh, fgh) = 3

= 2 (bayensa Sim(b,a) = 1.83
(4.12)

Hence, we have:

Y(A—=B)+>(B—A) 183+183
|A| + | B] 343

LevJac(A, B) = =0.61 (4.13)

Target Diversity Metric

Suppose we have a set of strings 7' = {1, t, ..., t, }. The goal is to provide a single number

that quantifies how dissimilar these elements are to each other.

o We first identify the medoid M within the set T, i.e., the element that has the lowest

average distance from all other elements. We use Levenshtein distance:

My = arg min,cr Z LD(t,m) (4.14)

teT
e To compute how diverse the elements are with respect to each other, we average the
distance of all elements from the medoid. We call this measure o, the Diversity
of set 7". The bigger the diversity metric, the more diverse the set of strings is (be-

cause the distance of each target from the medoid is the number of single-character

66

operations needed to convert any element within the set to the medoid):

_ Sier LD My]
o

ar

(4.15)

4.3 Computational Results

4.3.1 Parameter Values and Evolutionary Iteration

We can summarize an evolutionary iteration of the Evo-Lexis framework as follows:

1. Initially, we start with a small number s of randomly constructed targets. Each target
has the same length k, and the number of possible sources is n. An initial Lexis-DAG

is constructed using the G-LEXIS algorithm.

2. In every evolutionary iteration, the following steps are performed:

(a) A new batch of b targets is generated via a target generation model.

(b) In the Incremental Design approach, the Evo-Lexis algorithm adjusts the ex-
isting hierarchy minimizing the marginal cost of adding each new target in the

existing hierarchy.

(c) If the total number of targets that are present in the system have reached a
steady-state (the number of targets is 7%), we also remove the oldest batch of b
targets from the Lexis-DAG. This target removal process may also trigger the
removal of intermediate nodes that are not reused by at least two other nodes
in the hierarchy. The total number of targets remains constant (7) because the

number of target additions is equal to the number of removals (b).

(d) The evolutionary process is repeated for a user-specified number of iterations.
The parameters n, k and b do not change during this process. We run each
model ten times for a total of 5,000 iterations. We take the mean value of each

metric.

67

The parameters used in the following experiments are presented in Table 4.1.

Table 4.1: Definition and parameter values of Evo-Lexis in following experiments

Parameter Definition Value
s Number of initial targets 10
n Number of sources 100
k Target length (characters) 200
b Batch size for new targets birth/old targets death 10
T Steady-state number of targets present in Lexis-DAG 100

4.32 Results

Emergence of low-cost hierarchies due to tinkering/mutation and selection In Fig. 4.8a
and 4.8b, we observe a significant reduction in the normalized cost between the RND model
and all other models. The main reason for this reduction is that in all other models, we gen-
erate targets that are similar to earlier targets and not randomly constructed. Further, we
observe that endogenous models (MS-strong and MRS-strong) further reduce the cost of
the resulting hierarchies. The reason is the large bias for selecting targets that can be con-
structed with lower (or comparable) cost than the seed targets they evolved from. Thus,
introducing tinkering/mutation and selection both contribute to the emergence of more ef-

ficient hierarchies in the Evo-Lexis framework.

Low-cost design resulting in deeper hierarchies and reuse of more complex modules
Having a lower cost hierarchy also means that intermediate nodes are reused more fre-
quently and/or that those intermediate nodes are more complex (i.e., longer strings). We
observe this across models in Fig. 4.8c, 4.8e, 4.8d and 4.8f — models with lower normalized
cost have deeper Lexis-DAGs and higher intermediate node length. These longer re-used
nodes further decrease the cost of the hierarchy. Hence, tinkering/mutation and selection
also develop deeper hierarchies with longer intermediate nodes. These two outcomes are
ubiquitously observed in both natural and technological systems. Examples include call-

graphs and metabolic networks. For instance, for the OpenSSH call-graph and the monkey

68

metabolic network, it has been reported that the underlying dependency networks have an

average depth of 10.4 and 8.1, respectively [5].

The recombination mechanism creates target diversity Realistic hierarchies should sup-
port a diverse set of requirements or outputs. For example, in network protocol stacks,
many different functionalities at the top level of the hierarchy (application layer) are sup-
ported by the same hierarchical infrastructure. In our framework, this translates to having a
set of targets with high diversity. In Fig. 4.8g and 4.8h, we show the target diversity across
different models. The RND model produces the highest target diversity as there are no cor-
relations among the generated targets. In Fig. 4.8h, we observe that the tinkering/mutation
in the M model results in 50% to 70% decrease in target diversity. Strong selection in
the MS-strong model further decreases the diversity to the point that the targets are almost
identical, with only minor variations of the same main string. Such low target diversity is
not realistic in natural and technological systems. The reason that the MS-strong model
behaves in this manner is that it generates new targets only through single-character muta-
tions and only when the resulting mutants can be constructed using the existing intermedi-
ate nodes (otherwise they would have much higher cost and they would not be selected).
Hence, the set of accepted new targets gets very narrow and quite similar to its seed targets.

In biological systems, the evolution of complex species required recombination and
sexual reproduction (i.e., crossover). Similarly in the Evo-Lexis framework, the addition
of recombination in the MRS model results in increased target diversity (Fig. 4.8g) while
keeping the earlier properties of the Lexis-DAGs (i.e., low-cost, large depth, long interme-

diate nodes).

Reuse of complex modules in the core set by strong selection 1Looking at the contents of
the core at the 5,000th iteration of all models in Fig. 4.10, shows that in models without
selection, or with weak selection, the core includes only a small number of intermediate

nodes. The reason is that random mutations make the reuse of longer intermediate nodes

69

unlikely. Note that this does not mean that long intermediate nodes do not exist in Lexis-
DAGs under the M & MS-weak & MRS-weak models — such nodes are less likely, however,
to be reused often. As a result, shorter nodes and mostly sources are more likely to appear
in the new targets, and end up in the core set.

On the other hand, models with strong selection (MS and MRS) limit the locations
where the seed(s) can be mutated when generating new targets. This constraint results
in reusing longer intermediate nodes. Thus, selection creates a bias towards the reuse of
longer intermediate nodes. In the long run, this results in some long nodes dominating the

core set in the MS-strong and MRS-strong models (Fig. 4.10d & 4.10f).

Emergence of hourglass architecture due to the heavy reuse of complex intermediate
modules in models with strong selection Appearance of longer and heavily reused inter-
mediate nodes in the models with strong selection means that the architecture exhibits the
hourglass effect. Indeed, we observe in Fig. 4.9a & 4.9b that the core size gets significantly
smaller in the presence of strong selection (MS and MRS models). Additionally, Fig. 4.9¢c
& 4.9d show that the MS-strong and MRS-strong models also result in higher H-score val-
ues (0.4 and 0.65 on average, respectively). Lexis-DAGs with high H-score values have
a small core size with respect to the equivalent flat Lexis-DAG whose core is made up of
sources and targets only.

Overall, the reuse of longer intermediate nodes caused by selection results in hierarchies
with an hourglass architecture. This observation is consistent with a mechanism (known as
Reuse-Preference [5]) that was proposed earlier for the emergence of the hourglass effect

in general dependency networks.

Stability of the core set due to selection Selection also promotes the stability of the core
set, as shown in Fig. 4.9h for the MS-strong model. We see an increase in core stability
(i.e., similarity of the core during evolution) compared to the MS-weak and M models

whose cores mostly consist of sources. Similarly, a stable core is also observed in the MRS-

70

weak and MRS-strong models in Fig. 4.9g. We have already seen that long intermediate
nodes appear more often in the core set of models with strong selection. Hence the core
stability results show that selection not only contributes to the emergence of a small core,
consisting of few highly reused intermediate nodes, but it also promotes the conservation of
these core nodes during evolution. This observation is in agreement with the properties of
several systems in which the waist of the hourglass architecture includes critical modules of
the system that are highly conserved [77, 5]. We return to this point later, where we further
show that this core stability is occasionally interrupted by major transitions and punctuated

equilibria.

Fragility caused by stronger selection Fig. 4.9e and 4.9f show how the generated hi-
erarchies perform in terms of robustness, when we remove the most central nodes in the
system, i.e., the members of the core. Robustness generally relates to the ability to maintain
a certain function even when there are internal or external perturbations [5]. Fig. 4.9f and
4.9e show how the removal of one or more core nodes, in order of importance, contributes
to cutting source-target paths in each of the Lexis-DAGs produced (at the 5,000th iteration
of each model).

In hourglass architectures (MS-strong and MRS-strong model), core nodes contribute
much more significantly to the overall hierarchy by covering many more source-target
paths. Hence, such architectures are fragile if the core nodes are perturbed. This obser-
vation is similar to the concept of removal of hub nodes in scale-free network [90]. Weak-
ening selection, reduces the H-score (as in Fig. 4.9¢) and, hence, reduces the contribution
of core nodes in covering source-target paths.

Fig. 4.11 summarizes the properties of the hierarchies that emerge in the models we

described in this section.

71

2424143142 2424143442 2423143442

/]
N

2424143142 2424143442

‘

2424143142

C2AB=2422143442

AB=143442

(©)

Figure 4.4: Illustration of INC-LEXIS.
(a) Initial Lexis-DAG Dg with T = {2424143142, 2424143442, 2423143442},
S ={1,2,3,4} and M = {2424143, 442,242,143, 42}. (b) The new targets are

T, ={0424143442, 2424143242, 2422143442} . In the first stage of INC-LEXIS, the
substrings in M U S are reused to construct 7'.. Red edges show the reuse of substrings in
T', . Node labels show the representation of each node using the extended alphabet formed

by intermediate nodes. This representation is used in the second stage of the expansion

phase to run G-LEXIS on 7. (c¢) The Lexis-DAG after running G-LEXIS on the set 7', in

its extended alphabet form. The green nodes and edges are the results of this stage.

(Continued in Fig. 4.5)

72

2424143142 2424143442 2423143442 C4AB=2424143442 C2AB=2422143442

()

2423143442

C2AB=2422143442

AB=143442

(b)

Figure 4.5: (Continued from Fig. 4.4) Illustration of INC-LEXIS.

(a) The target nodes 2424143142 and 2424143442 are removed during the pruning phase.
All incoming edges (dashed and shown in yellow) will also be removed, which leaves the
node D = 2424143 with zero out-degree. (b) The final Lexis-DAG after removal of
targets and intermediate nodes with zero and one out-degree.

73

abcdefghijk| |d35kib| |pqrstuvwxy|— Random seed targets

) Select random
choice

index Mutation %
ts

fuvwxy
- _——p abcdefghljk
><lecombmatlon-:f5 hijk
*
tsy Clts) = din(ts) L t5
e
., -

Add only one selected Mutation
recombination to .
the batch (if not a duplicate) Compute selection probabilities
=, recombinations based on
Repeat process if no R (selection ratio) value
recombination was selected

Figure 4.6: Illustration of MRS Model

1.0t
Weak Selection

£ 0.8} e (R
2 Bt
3 0.6
o
: .
2 0.4¢ Strong Selection
s 12 (R-1)
o 0.2 e -
» B=12

0.0t

1.00 1.05 1.10 1.15 1.20 1.25 1.30
R (Selection Ratio)

Figure 4.7: The difference of the new target acceptance probability for weak (6 = 1) and
strong (8 = 12) selection.
R 1s the ratio between the cost of the new candidate target and the cost of the targets it
evolved from. In MRS-weak, the probability of accepting the new target is high. However,
this probability quickly drops in the MRS-strong model.

74

0.9 0.9
0.8 0.8
.07 .07
8 3
So6 S 06
s =
Sos 205
® w®
Eoa E o4
2 2
03 03
02 02
01 01
0 0
0 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Evolution Iterations Evolution Iterations
(a) Normalized Cost (b) Normalized Cost
10 10
9 9
8 8
7 7
< =
a6 26
a -]
g s g
S 4 g 4
E H
3 3
2 2
1 10
0 0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Evolution Iterations

(c) Average Depth

Evolution Iterations

(d) Average Depth

25 25
g £
i

§20 g2
P o
3 3
2 2

v 15 Z 15
8 3
3 H
£ E

g1 g0
z E
° i
) &
by ¥

g 5 g5
] g
H E]

0 0

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Evolution Iterations Evolution Iterations
(e) Node Length (f) Node Length

1 1

0.9 0.9

0.8 0.8

0.7 0.7
Z Z

2 0.6 706
g g

05 gos

804 S04
& &

“o3 03

0.2 0.2

0.1 0.1

0 0

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Evolution Iterations

(g) Target Diversity

Evolution Iterations

(h) Target Diversity

—RND Model —M Model — MS-weak Model —MS-strong Model
—MRS-weak Model ——MRS-strong Model
Figure 4.8: Normalized Cost, (average) Hierachical Depth, (average) Intermediate Node Length,

and Target diversity of Lexis-DAGs produced by various target generation models
(weak selection models: 8 = 1, strong selection models: 5 = 12). (Continued in Fig. 4.9)

75

%0 %0
80 80
70 70
2 2 ®
% 50 p 50
s s
© 40 © 40
30 30
20 20
10 10
0 0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Evolution Iterations Evolution Iterations
(a) Core Size (b) Core Size
1 1
0.9 0.9
08 08
0.7 07
0.6 06
® o
Sos g 0.5
* o4 Toa
03 03
02 02
01 01
0 0 . Al
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Evolution Iterations Evolution Iterations

(c) H-Score (d) H-Score

0 [
[20 40 60 80 100 [20 40 60 80 100
Number of Nodes Removed Number of Nodes Removed
(e) Robustness Analysis (f) Robustness Analysis
1 1
0.9 0.9
0.8 0.8
0.7 0.7
Zo6 Zos
3 4
Sos Sos
2
504 5 0.4
0.3 0.3
0.2 0.2
0.1 0.1
[] 0
[500 1000 1500 2000 [500 1000 1500 2000
Evolution Iterations Evolution Iterations

(g) Core Stability (h) Core Stability

—RND Model —M Model —MS-weak Model —MS-strong Model
—MRS-weak Model = ——MRS-strong Model

Figure 4.9: (Continued from Fig. 4.8) Core size, H-score, Robustness to core node removals, and
Core stability of Lexis-DAGs produced by various target generation models
(weak selection models: 8 = 1, strong selection models: 5 = 12). For core selection, we set
7 = 0.85. For core stability, a sliding window equal to the size of 10 batches is used to track
changes in the core set.

76

10000 10000

z 1000 Z 1000 °
i 0 £ ' i 1hitins s
5 100 3 100 I' e " .
= = H B
& 5 .==- -~ L
10 ! - 10 S o e
. .
1 1
1 10 100 1 10 100
Length Length
(2) RND Model (b) M Model
10000 10000

()
> 1000 > 1000 .
i 2 QNI Ita Tt
& 100 II a0, 0 & 100 [' .: "'.o..o‘-..
£ lipe—e < £ 1 R ¥ =il
S 10 : -t Ll S 10, E . :" .
: ° L] ! . .
1 1
1 10 100 1 10 100
Length Length
(c) MS-weak (d) MS-strong
10000 10000
8, egge® o ®
> 1000 > 1000 o @t Ny
= °® 2 £ 0 o3n’
[i ’.ﬁ':‘ 5 5 * |".:!';!" 35’1..-
& 100 I P35 e & 100 . |!':'l'¢ N P,
K l...«-’.-"” H b .ig!:.- . -
g | Elie Y R
. L] L] . : L]
1 10 100 1 10 100
Length Length
(e) MRS-weak Model (f) MRS-strong Model

® Intermediate Nodes © Core Nodes

Figure 4.10: Comparison of node length and path-centrality in Lexis-DAGs at the 5,000th
iteration
(for weak selection model 8 = 1 and for strong selection model S = 12). For core
selection, we set 7 = 0.85.

77

Intermediate
Node
Average Length

Efficiency Average

M et
M Model
MS-weak
MS-strong
MRS-weak
MRS-strong

Target
Diversity

Figure 4.11: Visualizing the various properties of the generated hierarchies
(excluding the RND model). The MRS model produces all properties. This figure shows
an approximate value for each metric at the 5,000th iteration of evolution. We define
Efficiency = 1 — Normalized Cost.

4.4 Evolvability and the Space of Possible Targets

As shown in the previous section, the MRS-strong model leads to hourglass hierarchies,
maintaining at the same time significant target diversity. In this section, we further show
that hourglass architectures have two important properties. On the positive side, they are
more evolvable in the sense that new targets can be constructed at a low cost, mostly reusing
the intermediate modules in the core of the hierarchy. On the negative side however, hour-
glass architectures only accept a small fraction of the candidate new targets, restricting
what a biologist would refer to as the “phenotypic space” of the system. This interplay be-
tween evolvability and the space of feasible system phenotypes or functions is an important
issue in both biological and technological systems (e.g., Internet architecture [91]).

We first look at the cost of targets produced with and without selection. For this pur-

78

pose, we compare two models: one is the MRS-strong model that acts as an “endogenous”
target generation process. The other is a variation of MRS without selection that we call
MR model (only mutations and recombination) — this model is an “exogenous” target gen-
eration process that does not depend on the current state of the hierarchy. The MR model
allows us to examine how selection affects the cost and space of acceptable targets with
and without the selection constraint.

In Fig. 4.12, we calculate the ratio between the average cost of accepted targets per
batch in the MRS-strong model over the corresponding cost in the MR model — we re-
fer to this as MRS-over-MR per-batch cost-ratio. The average and median values of this
ratio are 0.53 and 0.52, respectively. This observation suggests that the targets generated
under stronger selection are of much lower cost (around half) compared to the targets gen-
erated without selection. So, the presence of strong selection allows the system to construct
new targets at a much lower cost because those selected targets can be constructed mostly

reusing the intermediate nodes present in the hierarchy.

.
% 0.8 0.8
O
E‘ 0.6 06
- [N
;4 [a)
O O
g 0.4 041
B
Q
Qo2 02}
‘ ‘ ‘ 0Lk ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Per-Batch Cost-Ratio Acceptance Likelihood
(a) CDF of Per-Batch Cost-Ratio Values of (b) CDF of Target Acceptance-Likelihoood
MRS Model Values in MRS Model

—©— MRS-weak Model —#=MRS-strong Model

Figure 4.12: CDF of MRS-over-MR per-batch cost-ratio and CDF of the target acceptance-
likelihood.
(a) CDF of MRS-over-MR per-batch cost-ratio, the ratio between the average cost of
targets per batch in the MRS model (weak or strong selection) over the average cost of
targets per batch in the MR model. (b) CDF of the target acceptance-likelihood, i.e., the
number of accepted targets generated per-batch in the MRS model divided by the total
number of generated targets per batch with the same model.

79

As a result of strong selection, the acceptance-likelihood of new targets generated by
the MRS-strong model is much lower than that with the MR model. Specifically, the
acceptance-likelihood in Fig. 4.12b is defined as the fraction of accepted targets gener-
ated per-batch. The mean and median of this likelihood in the MRS-strong model are equal
to 0.2. In other words, about 80% of the new targets generated through mutations and re-
combination are not selected because their cost, given the existing architecture, would be
prohibitively high.

It should be also noted that the MRS-weak model behaves quite similar to the MR
baseline in terms of both the MRS-over-MR cost ratio and the target acceptance likelihood.

Overall, the results in this section show that despite having the benefit of lower cost new
targets, and thus higher evolvability, selection restricts significantly the phenotypic space of
accepted new targets. Given that the MRS-strong model generates hourglass architectures,
we can summarize as follows: hourglass-like hierarchies under the MRS-strong model
allow the construction of new functions (accepted targets) at a low cost, by mostly reusing
core modules, but at the same time such architectures significantly restrict which of these
functions can be supported. Targets that are quite different than the intermediate modules

of the existing hierarchy would most likely not be selected.

4.5 Major Transitions

Major transitions have been an important and interesting phenomenon in both natural and
technological evolution. Such transitions create significant shifts in evolutionary trajecto-
ries, ecosystems and “keystone species” [92]. There are many examples of such events in
natural systems, such as the “invention” of sexual reproduction and evolution of multicel-
lularity [93]. In technological evolution, innovations occasionally lead to the emergence
of disruptive new technologies, such as the steam engine in the 19th century or air trans-
portation in the 20th century. In the context of computing, the evolution of programming

languages has gone through punctuated equilibria, interrupted by new languages that were

80

developed by tinkering or combining different structural components of older languages

[94].

0090050000
oRNWDULWLOIN LR

Normalized Levenshtein Distance

0 I 1000l 200 I 3000 | 4000l s5doo
I I quutionar‘ Iteration I I I

| | | | | | |
(a) MRS-strong Model

o:1 ' ‘ ‘ H ‘||
£ . i 1L |

il 11

2000 3000
I Evolltionary Iteratiln I I

I I I I |
(b) MRS-weak Model

Figure 4.13: Variability across successive iterations of the top-1 core node (measured using
the Levenstein distance) in the MRS model (both strong and weak selection).
The highlighted iterations illustrate some of the stasis periods, in which the top-1 core
node remains identical for many iterations.

The results of Fig. 4.9g suggest that the structure of the core is locally stable, when
comparing core nodes in adjacent iterations. To further investigate the stability of the core
during evolution, we focus on the most central node in the core of the Lexis-DAGs, i.e., the
core node that covers the largest fraction of source-target paths. We refer to this node of

the Lexis-DAG as top-1 core node.

81

(5]

S

w

N

=

Count of Stasis Period

o

100 140 180 220 260 300 340 380 420 460 500 540 580 620 660 700 740 780 820 860 900

Length of Stasis Period
(@ prp =0.1

Count of Stasis Period
= N w IS (0}

o

100 140 180 220 260 300 340 380 420 460 500 540 580 620 660 700 740 780 820 860 900
Length of Stasis Period

(b) prp = 0.2
MRS-weak M MRS-strong

Figure 4.14: Count of stasis periods (lasting at least 100 iterations) for two values of the
Levenshtein distance threshold, iy p, in Fig. 4.13.
Strong selection leads to longer and more frequent stasis periods.

First, we track the variability of this node locally, by comparing its normalized Leven-
shtein distance to the top-1 core node in the next iteration. Fig. 4.13 shows the results of
this analysis for both MRS-strong and MRS-weak. In the MRS-strong model, we observe
that in most iterations the top-1 core node does not change significantly. Even though there
are some spikes in which the Levenshtein distance is larger than 0.2, in 82.6% of the evo-
lutionary iterations the variability of the top-1 core node is less than that. Further, there
are several stasis periods in which the top-1 core node is practically the same (Levenstein
distance lower than 0.1 or even 0). In Fig. 4.13 we highlight with red vertical lines a
small number of stasis periods in which the top-1 core node remains exactly the same for
tens of hundreds of iterations. On the other hand, the MRS-weak model has significantly

higher variability in the top-1 core node, and fewer/shorter stasis periods. This suggests

82

AL
0.8 AN
0.6
0.4

0.2

Normalized Levenshtein Distance
Normalized Levenshtein Distance

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Evolutionary Iteration Evolutionary Iteration
(a) Top-1 Core Node Changes in MRS-strong (b) Top-2 Core Node Changes in MRS-strong

Figure 4.15: Starting from three different stasis periods (with pupp = 0.1), the top-1 and
top-2 core node does not stay the same in subsequent stasis periods.
The normalized Levenstein distance between the top-1 and top-2 node at the start of each
curve and at successive stasis periods is close to 1, suggesting that these nodes have
changed. We observed similar results for other core nodes.

that selection is the key factor in generating these long periods of stability in the core of the
hourglass architecture.

To further quantify this point, we focus on stasis periods that last at least 100 iterations
(recall that the entire evolutionary paths in these results consist of 5000 iterations). Fig.
4.14 shows that there are fewer and shorter stasis periods in MRS-weak model than in

478

MRS-strong. The fraction of iterations that account for stasis conditions is 55 ~ 0.095

in MRS-weak, and 2325 ~ (0.585 in MRS-strong, when the minimum Levenshtein distance

is urp = 0.1 (also % ~ 0.209 in MRS-weak and % ~ (0.826 in MRS-strong when
prp = 0.2).

The presence of stasis periods under strong selection suggests that the most central in-
termediate nodes at the waist (or core) of the hourglass architecture can be quite stable and
time-invariant. What happens however across different stasis periods? Does that stability
persist across different stasis periods, or does the architecture exhibit major transitions and
punctuated equilibria?

To answer this question, we focus again on the top-1 core node and measure its vari-

ability across successive stasis periods. In Fig. 4.15, we consider three different stasis

periods (one curve for each initial stasis period), and calculate the normalized Levenstein

83

distance between the top-1 core node in its initial stasis period and the top-1 core node
in subsequent stasis periods. Note that the top-1 core node changes significantly across
stasis periods. In fact, the Levenshtein distance is so high (often close to 1), suggesting
that these are completely different core nodes. This observation gives more evidence that
the top contributors to the core can lose their importance during evolutionary time scales,
causing major transitions in both the core set and, consequently, in the overall hierarchy.
We have confirmed that this is even more common for lower centrality core nodes too, and

it is certainly even more true under weak selection.

4.6 Overhead of Incremental Design

o
©

£

Q
19 508
g Zo7
17 3 Zos
£1s Z@0s
N 3 5 To04
13 T L E go3
@ R02

1 § 0.1 l_’—rl { {
0.9 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Batch Size Batch Size
(a) Penalty of Incremental Design (b) Core Similarity

=

Depth
O R NWHRUON®WOO

|
08
— 07 ~+
906 1
§ 05

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Batch size Batch Size

(c) Average Hierarchy Depth (d) H-Score
<INC =CS
Figure 4.16: Comparison between Incremental (INC) design and Clean-Slate (CS) design,
in terms of four metrics and for different batch sizes.

For each batch size, the MRS-strong model is run for 5,000 iterations and an average of
each metric is taken over 50 distinct iterations. The considered batch sizes are: 1, 5, 10,

25.

In this section, we compare the cost and structural characteristics of Incremental design

(INC) relative to Clean-Slate (CS) design, i.e., the ideal case in which a new Lexis hierarchy

84

1s designed from scratch every time the set of targets is changed. Of course such clean-
slate designs are rare or infeasible in practice, especially in biological evolution. CS design
is still valuable however as a baseline for evaluating the cost efficiency of INC, and the
hierarchy that is produced by the latter.

In the Evo-Lexis framework, a key factor that quantifies the difference between INC
and CS design is the batch size. If the batch size b is equal to the total number of targets in
steady state 7, INC and CS are equivalent because the set of targets completely changes
in each iteration. At the other extreme, if the batch size is only one target and 7 > 1, INC
performs a minimal adjustment of the hierarchy to support the new target while CS still
redesigns the complete hierarchy. In other words, the fraction b/7 controls the degree of
change in each evolutionary iteration. Both in natural and technological systems, evolution
proceeds rather slowly — for this reason we only consider the lower range of this ratio,
between 1/100 and 25/100.

In the following we only consider the MRS-strong model (based on the results of the
earlier sections). Fig. 4.16 compares INC and CS in terms of four key metrics. The first
metric relates to cost: recall that the Penalty of Incremental Design (PID) is the ratio of
the cost of an evolving INC hierarchy over the cost of the corresponding CS hierarchy for
the same set of targets. With the exception of the minimum possible batch size (b=1), it
is interesting that INC does not lead to much less efficient hierarchies than CS. The PID
metric shows that INC is typically around 30% more costly than CS for a wide range of
batch sizes, suggesting that INC is able to often reuse intermediate nodes in constructing
the given targets, despite the fact that it cannot redesign the complete hierarchy. The PID is
substantially higher when b=1 however. The reason is that when the INC-Lexis algorithm is
given only one new target in every iteration, it is unlikely to identify segments of that single
target that repeat more than once. Thus, when =1, INC rarely adds new intermediate nodes
in the hierarchy even though successive targets can be quite similar. CS, on the other hand,

exploits the similarity of the set of targets in each iteration constructing more intermediate

85

nodes, and reducing cost through their reuse.

Interestingly, even when the INC and CS designs have similar costs, they are very
different in terms of the nodes that form the core. This observation can be made in Fig.
4.16b: the similarity of the two cores according to the Levenshtein-Jaccard similarity is
around 0.1. This result implies that the two design approaches lead to substantially different
architectures in terms of the actual intermediate nodes they reuse.

Additionally, the average hierarchical depth of CS architectures is larger (see Fig.
4.16¢) because this design approach is able to identify more and longer intermediate nodes
that can be reused to construct the entire set of targets. INC, on the other hand, is con-
strained to not adjust the existing portion of the hierarchy, and it can only form new inter-
mediate nodes when it detects fragments in the set of new targets that are repeated more
than once. So, the INC hierarchies are typically not as deep as those in CS.

Despite their differences, both design approaches lead to hourglass architectures when
the targets are created with the MRS-strong model. This observation can be made in Fig.
4.16d, and it suggests that even though INC is constrained, as described above, it is still
able to identify few intermediate nodes that can be reused many times to construct the

time-varying set of targets.

4.7 Discussion and Prior Work

The Evo-Lexis model is primarily related to three research themes: first, the emergence
of modularity and hierarchy in complex systems; second, the hourglass architecture in
hierarchical networks; and lastly, the comparison between offline (or “clean slate”) design

and online (or incremental) design.

4.77.1 Modularity and Hierarchy

The modeling framework of “Modularly Varying Goals”, by Kashtan and Alon, is a plausi-

ble explanation for the emergence of modularity [73, 74]. By applying incremental changes

86

in logic circuits and evolving neural networks for pattern recognition tasks, they show that
modularity in the goals (what we refer to as “targets”) leads to the emergence of modu-
larity in the organization of the system, whereas randomly varying goals do not lead to
modular architectures. Similarly, Arthur et al. focus on the evolution of technology using
a simple model of logic circuit gates [95]. Each designed element is a combination of sim-
pler existing elements. Their simulation model results in a modularly organized system, in
which complex functions are only possible by first creating simpler ones as building blocks.
These models are similar to Evo-Lexis in the following way: when the system targets are
not randomly constructed but they are generated through an evolutionary process that in-
volves mutations, recombination and selection, the target functions are computed through
deep hierarchies that reuse common intermediate components.

Clune et al. show that modularity is a key driver for the evolvability of complex sys-
tems [8]. The authors demonstrate that selection mechanisms that minimize the cost of
connections between nodes in a networked system result in a modular architecture. This
result is shown by evolving networks that solve pattern recognition tasks and Boolean logic
tasks. The inputs sense the environment (e.g., pixels) and produce outputs in a feed-forward
manner (e.g., the existence of patterns of interest). In other words, the networks that have
evolved for optimizing both performance (accuracy in recognition) and cost (network con-
nections) are more modular and evolvable (in the sense of being adaptable to new tasks)
than those optimized for performance only. In a follow-up study by Mengistu et al. in [4],
it is shown that the minimization of the cost of connections also promotes the evolution
of hierarchy, the recursive composition of sub-modules. When not modeling the cost of
connections, even for tasks with hierarchical structure (e.g., a nested boolean function), a
hierarchical structure does not emerge. These modeling frameworks are similar to Evo-
Lexis because the latter also aims to minimize the number of connections in the resulting
hierarchical network, and it is this cost minimization that provides the incentive for reuse

of intermediate components.

87

At the empirical side, prior work has established that technology evolves similarly to
biological evolution, through tinkering, new combinations of existing components, and se-
lection. For instance, a study of USPTO data gives evidence for the combinatorial evolution
of technology [87]. The authors find that the rate of new technological capabilities is slow-
ing down but a huge number of combinations allows for a “practically infinite space of
technological configurations.” By considering technology as a combinatorial process, [96]
uses USPTO data to investigate the extent of novelty in patents. They propose a likelihood
model for assessing the novelty of combinations of patent codes. Their results show that
patents are becoming more conventional (rather than novel) with occasional novel combi-

nations.

4.7.2 Hourglass Architecture

A property of many hierarchical networks is the hourglass effect, which means that the
system receives many inputs and produces many outputs through a relatively small number
of intermediate modules that are critical for the operation of the entire system [5]. This
property is also one of the main themes investigated in our work.

Akhshabi et al. studied the developmental hourglass which is the pattern of increasing
morphological divergence towards earlier and later embryonic development [81]. The au-
thors conclude that the main factor that drives the emergence of the hourglass architecture
in that context is that the developmental gene regulatory networks become increasingly
more specific, and thus sparser, as developmemt progresses. Earlier, the same authors in
[77] were inspired by the hourglass-resemblence of the Internet protocol stack in which the
lower and higher layers tend to see frequent innovations, while the protocols at the waist
of the hourglass appear to be “ossified.” The authors present an abstract model, called
EvoArch, to explain the survival of popular protocols at the waist of the protocol stack. The
protocols which provide the same functionality in each layer compete with each other and,

just as in Akhshabi et al. [81], the increasing specificity and sparsity is what causes the

88

network to have an hourglass architecture. The Evo-Lexis model is neither layered, nor
probabilistic, and so it is fundamentally different than EvoArch, but it also generates hier-
archies in which the nodes that represent shorter strings (equivalent to lower-layer nodes in
EvoArch) are reused more frequently and so they have a higher out-degree.

Friedlander et al. focus on layered networks that perform a linear input-output trans-
formation [82] and show that in such systems the hourglass architecture emerges when
that transformation is compressible. In their model, this concept is interpreted as rank-
deficiency of the input-output matrix that describes the function of the system. A further
requirement is that there should be a goal to reduce the number of connections in the net-
work, similar to Evo-Lexis. This rank-deficiency in the input-output matrix resembles the
case in which Evo-Lexis targets are not constructed independently but through an evolu-
tionary process that generates significant correlations between different targets.

The hourglass architecture has been also investigated in general (non-layered) hierar-
chical dependency networks, similar to Evo-Lexis, by Sabrin et al. [5]. That analysis is
based on identifying the core of a dependency network, as the minimum set of nodes that
cover at least a fraction 7 of all source-to-target dependency paths. We have adopted that
approach, as well as the hourglass metric proposed in Sabrin et al. [S]. Their study shows
the presence of the hourglass property in various technological, natural and information
systems. The authors also present a model called Reuse-Preference, capturing the bias of
new modules to reuse intermediate modules of similar complexity instead of connecting
directly to sources or low complexity modules.

Despite this prior work, the interplay between the emergence of hourglass architectures
and cost optimization in hierarchical networks has not been explored in previous research.
Evo-Lexis identifies the conditions under which the hourglass property emerges in opti-

mized dependency networks.

89

4.7.3 Interplay of Design Adaptation and Evolution

A main theme in our study is the interplay between changes in the environment (the targets
that the system has to support) and the internal architecture of the system.

Bakhshi et al. investigate a network topology design scenario in which the goal is to
design a valid communication network between a set of nodes [97]. The authors formulate
and compare the consequences of two different optimization scenarios for that goal: incre-
mental design in which the modification cost between the two last snapshots of the design
is minimized, and optimized design in which the total cost of the network is minimized
in every increment. Focusing on the case of ring networks, even though the incremental
designs are more costly, the relative cost overhead is shown to not increase as the network
grows. In a follow-up study, focused on mesh networks, the same observation is made and
further, the incremental design is shown to be producing larger density, lower average delay
and more robust topologies [98].

Incremental design approaches are also considered in other contexts, such as in deep
neural networks (DNNs). Specifically, an important problem in machine learning is how to
transfer learned features of a deep network from one task to another [99]. Transfer learning
can be considered analogous to the way in which new targets are added in an Evo-Lexis
hierarchy: new targets (output functions) are incrementally included in the Lexis-DAG
(incrementally learned), by re-using previously constructed intermediate nodes (features of
intermediate complexity) and then optimizing the part of the DAG between those nodes and
the new targets (learning the weights between the existing features and the new outputs).

The incremental design policies that we consider in this chapter are studied in computer
science under the umbrella of online algorithms [100]: an online algorithm finds a sequence
of solutions based on the inputs it has seen so far, without knowing the entire input sequence
in advance. The main emphasis of research in online algorithms is to perform competitive
analysis, i.e., to derive worst-case theoretical bounds between of the quality (or cost) of the

solution of an online algorithm relative to its offline counterpart that knows the entire input

90

sequence [101]. The Incremental Design approach in Evo-Lexis is an online algorithm
but our focus is quite different: we compare empirically the cost and topological structure
of the hierarchies produced by incremental design relative to an optimized (“clean-slate”)
algorithm that designs a minimum-cost hierarchy for the input sequence that has been seen

so far.

4.8 Conclusion

We presented Evo-Lexis, an evolutionary framework for modeling the interdependency
between an incrementally designed hierarchy and a time-varying set of output functions,
or targets, constructed by that hierarchy. We leveraged the Lexis optimization framework,
proposed in earlier work [21], which allows the design of an optimized hierarchical network
for a given set of sequences.

We developed the optimization framework, evolutionary target generation processes,
and evaluation metrics needed to study the emergence and evolution of optimized hierar-

chies. We summarize the results of our study as follows:

1. Tinkering/mutation in the target generation process is found to be a strong initial
force for the emergence of low-cost and deep hierarchies. The presence of selection,

however, intensifies these properties of the emergent hierarchies.

2. Selection is also found to enhance the emergence of more complex intermediate mod-
ules in optimized hierarchies. The bias towards reuse of complex modules results in
an hourglass architecture in which almost all source-to-target dependency paths tra-

verse a small set of intermediate modules.

3. The addition of recombination in the target generation process is essential in provid-

ing target diversity in optimized hierarchies.

4. Hourglass-shaped optimized hierarchies are found to be fragile if the core nodes (i.e.,

91

nodes with highest centrality) are perturbed, similar to the concept of removal of hub

nodes in scale-free networks.

. We show that an hourglass architecture introduces a trade-off between the cost of
introducing new targets and the diversity between selected targets: hourglass archi-
tectures are evolvable in the sense that they allow the introduction of new targets at
a low cost but they only explore a small part of the “phenotypic space” of all possi-
ble targets. These are targets that can be constructed at a low cost reusing the larger

intermediate modules in the hierarchy.

. Our results suggest the existence of major transitions and punctuated equilibria in the
evolutionary trajectory of hourglass-shaped hierarchies. The “extinction” of central

modules is found to be the main factor behind this effect.

. The comparison between incremental design and clean-slate shows that although the
former is much more constrained, it has similar cost and it also exhibits the hourglass
effect under the proposed evolutionary scenarios. Despite these similarities, each of

these design policies results in a very different set of core modules.

92

CHAPTER 5
A CASE STUDY: ANALYSIS OF IGEM SYNTHETIC BIOLOGY SEQUENCES

5.1 Introduction

The Evo-Lexis model is quite general and abstract, and it does not attempt to capture any
domain-specific aspects of biological or technological evolution. As such, it makes several
assumptions that can be criticized for being unrealistic, such as the fact that all targets
have the same length, or their length stays constant, or the fitness of a sequence is strictly
based on its hierarchical cost. We believe that such abstract modeling is still valuable
because it can provide insights into the qualitative properties of the resulting hierarchies
under different target generation models. However, we also believe that the predictions of
the Evo-Lexis model should be tested using real data from evolving systems in which the
outputs can be well represented by sequences.

One such system is the iGEM synthetic DNA dataset [1]. The target DNA sequences
in the iGEM dataset are built from standard “BioBrick parts” (more elementary DNA se-
quences) that collectively form a library of synthetic DNA sequences. These sequences are
submitted to the registry of standard biological parts in the annual iGEM competition. Pre-
vious research in [15, 21] has provided some evidence that these synthetic DNA sequences
are designed by reusing existing components, and as such, it has a hierarchical organiza-
tion. In this chapter, we investigate how to apply the Evo-Lexis framework in the time
series of IGEM sequences, and whether the resulting iGEM hierarchies exhibit the same
qualitative properties we observed in Chapter 4 which was solely based on abstract target
generation models.

The questions we try to answer in this chapter are:

1. How can we analyze the iGEM dataset using the evolutionary framework of Evo-

93

Lexis? How are the batches of targets formed? What properties of the iGEM batches

are different than Evo-Lexis’s setting?

2. When formed incrementally over the iGEM dataset, which are the architectural prop-
erties of Lexis-DAGs, and why?
e Are they cost-efficient? Are they deep hierarchies?

e Do they present small cores, i.e., the hourglass effect? What causes them to

have this property?

e [s the core set stable in these DAGs? Do major transitions in the core set happen

during the time period in which iGEM has been evolving?

5.2 Dataset

5.2.1 Preliminaries

The International Genetically Engineered Machine (1iIGEM)
is an annual worldwide synthetic biology competition. The
competition is between students from diverse backgrounds

including biology, chemistry, physics, engineering, and com- @

puter science to construct synthetic DNA structures with

novel functionalities. Figure 5.1: The logo of
Every year at the beginning of the summer, there is a “Dis- 1GEM competition [1]

tribution Kit” handed to teams which includes interchange-

able parts (so called “BioBricks”) from the Registry of Standard Biological Parts com-

prising various genetic components such as promoters, terminators, reporter elements, and

plasmid backbones. Then, the teams try to use these parts and the new standardized parts

of their own in order to build biological systems. Then, they will have them operational in

living cells.

94

The teams can build on previous projects or create completely new parts. At the end of
the summer, all teams add their new BioBricks to the registry for further possible reuse in
the next year. In each year, the submitted parts are judged based on the quality of synthesis
and other rubrics (e.g., for 2018 the rubrics can be found here: http://2018.1igem.
org/Judging/Rubric). According to the iGEM portal, “successful projects produce
cells that exhibit new and unusual properties by engineering sets of multiple genes together
with mechanisms to regulate their expression”.

The iGEM Registry (i.e., the dataset we are working with) includes a set of standard
biological parts. A [biological] part is a DNA sequence which encodes a biological func-
tion, e.g., a promoter or protein coding sequence. These biological parts are standardized
to be easily assembled together and reused with other standardized parts in the registry.
A “basic part” is a functional unit of a synthesized DNA that cannot be subdivided into
smaller component parts. BBa_R0051 is an example of a promoter basic part. Basic parts
have the role of sources in the Lexis setting. A “composite part” is a functional unit of
DNA consisting of two or more basic parts assembled together. BBa 113507 is an example
of a composite part, consisting of four basic parts “BBa_B0034 BBa_E1010 BBa_B0010
BBa_B0012”. The corresponding webpage for BBa_113507 shows basic information about
the part, such as its history, composition, reuses in other parts and the actual sequence of
the part (Fig. 5.2).

The dataset we analyze is the set of all composite parts submitted to the registry from
2003 to 2017. In this dataset, the composite parts are represented by the string of their basic
parts (i.e., a non-dividing representation). The sequence of iIGEM composite parts can be

considered as a sequence of target strings over a set of sources (i.e., basic parts).

5.2.2 Data Collection

We have acquired the iGEM data from https://github.com/biohubx/igem-data.

All the BioBrick parts were crawled until Dec 28th 2017. We extracted the “.info” files for

95

http://2018.igem.org/Judging/Rubric
http://2018.igem.org/Judging/Rubric
https://github.com/biohubx/igem-data

00 < (em] parts.igem.org/Part:BBa_l13507 ¢ 0 B O M 2 |5

IGEM wiki tools search PRODUCTION 2017 SERVER login =
Registry of Standard Biological Parts
:@1 tools catalog repository assembly protocols help search [Er— [}

main page design experience information part tools Site Navigation

e Released HQ 2013 -
Part:BBa_113507 Composite Sample In stock 0 DD
L : = News Archive
Designed by: jkm Group: MIT (2005-05-31) 7 1 Registry Star « Safety
137 Uses » Videos
10 Twins = New Features
Screening plasmid intermediate Get This Part = Report Bugs
» Request Features

Built by Josh as an intermediate in screening plasmid construction. = Registry API
Sequence and Features

Subparts | Ruler | SS | DS Length: 861 bp View plasmid) Get part sequence.

mREPY

B0034 E1010 B0010 BOO12

Assembly Compatibiity: 10| [12] [21] [23] [25] [1000
[edit]

Parameters Categories
Ilclassiclcomposite/uncategorized

Figure 5.2: Screenshot of the webpage for BBa_113507.
It shows basic information about the part, such as its history, its composition, its reuses in
other parts and the actual sequence of the part.
each part, then used the “subparts” field for forming the target strings and finally, used the
year in “creation_date” field for ordering the targets.
The targets are presented in the span of the years 2003 to 2017. In Table 5.1 and Fig.5.3,

the preliminary statistics about the dataset can be found.

Table 5.1: Basic statistics on iGEM dataset during 15 years (2003-2017)

Sources | # Targets | Total Length | Min/Max Target Length
7,889 18,394 107,022 2 /100

96

081 081

0.6 0.6

PDF
CDF

0.4 0.4

% \/\\x i
L L L L L —

0 0
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

Target Length Target Length

(a) PDF (b) CDF

Figure 5.3: PDF and CDF of target lengths (2003-2017)

As observed in Fig. 5.3, the dataset mostly presents targets of small length. The top 5
categories having the highest fraction of the targets belongs to those of length 5, 2, 3, 4 and
6, accounting for more than 70% of the dataset. Less than 10% of the targets have a length

of more than 10.

5.2.3 Considering Annual Batches of Targets

The iGEM competition is conducted annually. Hence, it is reasonable to consider the se-
quences of targets as annual batches of targets arriving each year. This consideration is in
line with the incremental design process in Evo-Lexis.

To show some differences between iGEM and Evo-Lexis, in Fig. 5.4 and 5.5, we
can see how the number of sources, the number of targets, the total length of the targets,
length statistics and source reuse statistics change over time. We can make the following

observations by looking at these figures:

1. The number of sources increases over time (while it was constant in Evo-Lexis).

2. In the first four years, the number of targets per year is noticeably small. Later on,

the number of targets increases up to 2,000 and then fluctuates around 1,000 to 1,300

97

targets per year. The total length of the targets follows a similar trend as the number
of targets. In Evo-Lexis, the number of targets per batch is constant and they all have

the same length.

3. The mean and median of target lengths stay in the same range (€ [5, 7]) during all 15

years.

4. The reuse of sources (except for the beginning years) is extremely skewed in all
years: few sources are used much more often than most of the sources (Fig. 5.5). In

Evo-Lexis, all sources are equally likely.

In the following sections, we show that how these differences between iGEM dataset

and Evo-Lexis cause differences between the resulting Lexis-DAG hierarchies.

98

2500 14000
Il Targets
Y [l sources 12000 -
g 2000 -
5 10000
5 £
2,: 1500 g 8000 -
3 =
© L
‘5 1000 ° 6000
- =
(3]
Qo 4000 [
£
> 500
2000 [
0 0
2002 2004 2006 2008 2010 2012 2014 2016 2018 2002 2004 2006 2008 2010 2012 2014 2016 2018
Year Year
(a) Number of sources and targets per year (b) Total length of targets per year

14

—3rd Quantile
——Mean

—— Median

— 1st Quantile

12r

10

Length

ol NIZAN

0 . . .)
2000 2005 2010 2015 2020
Year

(c) Aggregate statistics of length of targets per year

Figure 5.4: Statistics of iGEM dataset when considered as yearly batches

5.3 Analysis of iGEM Dataset in Evo-Lexis Framework

5.3.1 Lexis-DAG Cost Analysis

In this section, we observe how cost efficient the Lexis-DAGs over the iGEM dataset are.
We consider an incremental setting similar to Evo-Lexis: In the first year, a clean-slate
Lexis-DAG 1is constructed over the targets of that year. For the targets of the subsequent
years, an incremental Lexis-DAG is constructed. Fig. 5.6 shows how the normalized cost

of the Lexis-DAGs varies over the years on iGEM. We observe major differences with

99

——2007
——2008
——2009
——2010
--2011
—-2012
--2013
---2014
——2015

2016

0.0005 2017
Number of reuse

0.5 10 100 ~2%03
2004
2005
\ 2006
%

0.005

Figure 5.5: PDF of reuse of the sources per year .
Number of reuse is the number of times a source appear in a target in each year.
Evo-Lexis; in Evo-Lexis the normalized cost remains almost constant.

To investigate the reasons for the above observations, in the same Fig. 5.6, we also
track the cost reduction performance of the two stages of INC-LEXIS for each batch (as a
reminder, in stage-1, we reuse intermediate nodes from previous Lexis-DAG and in stage-
2, we further optimize the hierarchy using G-LEXIS). This experiment is done due to our
interest in seeing how much stage-1 of INC-LEXIS contributes to the cost reduction on

1GEM. There are two observations that we can make:

1. In most batches, more than 50% of the cost reduction is achieved by the stage-1, i.e.,
reuse stage. The contribution of stage-2 of INC-LEXIS is roughly constant through-
out years. This suggests that iGEM targets reuse a significant amount of sequences

from previous years in their own submissions.

2. There is an increasing trend in the normalized cost after stage-1. This observation
means that the contribution of the reuse stage in INC-LEXIS decreases over the years.
As mentioned, the contribution of stage-2 stays mostly constant. Hence, we can
relate the increasing trend of the normalized cost to the fact that the amount of reuse

reduces from year to year.

We can find the root-cause of the decrease of reuse over time on iGEM to the increase

100

— After stage-1 of Inc-Lexis
— After stage-2 of Inc-Lexis
0.8r
7
o
006
S
o}
N
©
E04r
o
Z
0.2F

0 L L L L L L |
2002 2004 2006 2008 2010 2012 2014 2016 2018
Year

Figure 5.6: The cost reduction performance of the two stages of INC-LEXIS for each batch
(i.e., year)

of the size of the set of sources. We have observed in Fig. 5.4a that there are many new
sources that get introduced over the years. One of the requirements for reuse from one
batch to another in Evo-Lexis is the fact that the set of sources does not drastically change
(in fact it is constant in the Evo-Lexis framework). To investigate whether this is true in
1GEM, we check the ratio of the sources from one year to the next that remain the same.
Specifically, if we have y» = y; + 1, and if S, & .S, are the set of sources in year y; & ¥

respectively, we check the ratio below:

Sy NSy |

(5.1
5,1)

This ratio, i.e., year-by-year similarity, is the fraction of sources that remain from the
previous year. Fig. 5.7a shows how this ratio changes from year to year. By year 2008,
the ratio drops significantly to a value around 0.2 which means around 80% of the sources

from the previous year are not reused. This reduces the amount of reuse that is possible in

101

the iGEM dataset. The introduction of new sources is also propagated in individual targets.
As Fig. 5.7b shows, we can observe that there is an increase in using new sources per target
in each year. As time progresses, there is a higher probability to use more than X number
of new sources per target. This observation is a further obstacle for reuse, especially given

that the targets in iGEM are often short (5-7 subparts).

1 03,
——2008
——2011
0.25 2013
J08r —2015
= ——2018
8 02|
Eos
z a
8 Q 0.15
> @]
>0.4
e}
@ 0.1
U]
>
0.2 —
0.05
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0
2002 2004 2006 2008 2010 2012 2014 2016 2018 0 5 10 15 20
Year Number of new sources per target
(a) Source set similarity between years (b) C-CDF of new sources reuse per target

Figure 5.7: Analysis of the source set of iGEM targets over years

Following the increase of the normalized cost, Fig. 5.8 shows that the DAGs get less

deep and have lower average node length as time progresses.

5 10

4 8

3 6r
= £

a o
8 ks

2 4l

1 2r

o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
2002 2004 2006 2008 2010 2012 2014 2016 2018 2002 2004 2006 2008 2010 2012 2014 2016 2018

Year Year
(a) Depth (b) Average Node Length

Figure 5.8: Depth and average node length in iGEM Lexis-DAGs

102

Overall, the results of this section show a number of differences between iGEM and the

Evo-Lexis framework of Chapter 4:

1. In iGEM, the set of sources in each year has low similarity to the previous years,
while in Evo-Lexis the source set is constant. The high amount of churn in the set
of sources is the primary reason for the lower reuse in iGEM data compared to Evo-
Lexis. The fact that the targets are shorter is another contributing factor to a lower

potential for reuse of longer intermediate nodes in iGEM.

2. The normalized cost, depth and average node length are all lower in iGEM due to the

reduced reuse potential as discussed above.

5.3.2 Hourglass Effect in iGEM

The output of core identification (sequence of most central nodes removed from a Lexis-
DAG, see Section 2.4) gives us a good measure of how many intermediate nodes are heavily
reused in iGEM. Fig. 5.9 shows the fraction of paths that are covered by the core nodes in
each year. This figure shows that in all years, there is a small number of core nodes in the
iGEM Lexis-DAGs.

Fig. 5.10 shows that such a small core makes the topology of Lexis-DAGs consistent
with an hourglass organization (high H-score values - more than 0.6 in Fig. 5.10c). In Evo-
Lexis, we observe similar values of H-score for DAGs constructed using synthetic data. As
observed, although the core size increases in iGEM over time, we see a steeper increase in
the size of the flat DAG’s core mostly due to the increase in set of sources. In Evo-Lexis,
the core size shows a decreasing trend while the size of the core of the flat DAG does not
significantly change, reflecting similarly high H-score values as in iGEM.

Overall, we can see that the topology of the Lexis-DAGs in iGEM data is in line with
the Evo-Lexis model, although the bias in selection of cost-saving nodes is not sufficiently

large to cause a non-increasing normalized cost.

103

— 2003
—— 2004

2005
— 2006
— 2007

2008
— 2009
— 2010
—2011

2012
—2013
——2014

2015
—2016
— 2017

Fraction of Paths Removed

0 0.2 0.4 0.6 0.8 1
Fraction of Nodes Removed from DAG

Figure 5.9: Cumulative fraction of paths covered by core nodes in each year of iGEM data.

5.3.3 Diversity among iGEM Targets

Another question is the degree of diversity among the targets of iGEM over time. Since
the length of the targets in iGEM is not constant, we need to modify the definition of the
diversity metric in Chapter 4 (Eq. (4.15)). We define the concept of Normalized Diversity
as follows:

Suppose we have a set of strings 7" = {t1,%,...,t,}. The goal is to provide a single

number that quantifies how dissimilar these elements are to each other.

e We first identify the medoid Mt of the set T, i.e., the element that has the lowest
average distance from all other elements. We use Levenshtein distance as a measure

of distance between targets:

Mrp = arg min,er Z LD(t,m) (5.2)

teT
e To compute how diverse the elements are with respect to each other, we average

104

1000 1000

800 - 800 -

600 - 600 -

Core Size

400 400

Core Size of Flat DAG

200 - 200 -

2002 2004 2006 2008 2010 2012 2014 2016 2018 2002 2004 2006 2008 2010 2012 2014 2016 2018
Year Year
(a) Core Size (b) Flat Lexis-DAG Core Size

1.

0.8

80.6

o

(8]

®

Toat

0.2

0)
2002 2004 2006 2008 2010 2012 2014 2016 2018
Year

(c) H-score
Figure 5.10: Core size and H-score in iGEM data over time (7 = 0.85 for core identifica-
tion)
the normalized distance of all elements from the medoid (distance is normalized by
the maximum length of the two sequences in question). We call this measure o,
the Normalized Diversity of set T'. The bigger the metric, the more diverse a set of
strings is (because the distance of each target from the medoid can be considered as
the number of single-character operations needed to convert any element within the

set to the medoid):
Z _LD[t,Mr]
teT max(|t],[Mr])

7]

or =

(5.3)

Notice the difference of this metric with the diversity metric in Eq. (4.15).

105

Fig. 5.11 shows that the normalized diversity metric has a value of more than 0.5
throughout time and reaches up to 0.8 (this means that on average 50% to 80% of a target
should be changed so that a target is converted to another in the set of targets in each year).
Although such values of diversity are in line with Evo-Lexis, it is understandable that the
diversity in iGEM is also partially impacted (towards higher values) by the introduction of

new sources discussed in Section 5.3.1.

7

o o o
IS o e

Normalized Diversity

o
N

0
2002 2004 2006 2008 2010 2012 2014 2016 2018
Year

Figure 5.11: Target diversity in iGEM data over years.

5.3.4 Core Stability in iGEM Lexis-DAGs

As the results in Fig. 5.12 show, the core set in iIGEM DAGs have relatively high values of
the core stability measure (Eq. (4.11)), close to the values we observed in Evo-Lexis. This
means that the core nodes stay similar across time, and there are no sudden changes in the
content of the core set. One reason for this stability is that the set of core nodes includes
several sources, and many of core sources get transferred to the next year. Fig. 5.13 shows
the length and path centrality of the core nodes among all nodes of the Lexis-DAGs in
selected years. We observe that more than 50% of the core nodes in the selected years are

sources.

106

O
o

o
o

\/\—\/\/x

Core Stability
o
N

O©
N

0
2002 2004 2006 2008 2010 2012 2014 2016 2018
Year

Figure 5.12: Core stability over iGEM dataset.

Additionally, every year the focus of the iGEM designers is on specific parts, most of
which are of high path centrality. For example, “BBa_B0010 BBa_B0012” (the most widely
used “terminator” part) and “BBa_B0034” are almost always the top-2 central nodes (with
the exception of year 2011). Also, some sources such as “BBa_R0011”, always appear in
the top-20 nodes in the core set. Remember that Fig. 5.5 shows that the reuse distribution
of sources is highly skewed. To further quantify the stability of higher centrality nodes,
we investigate the stability of the top central core nodes. As a final note, in terms of the
analysis for major transitions that we did in Section 4.5, the DAGs do not show a major
transition in iGEM. We can relate this to the short time frame that iGEM has been around
in comparison to the setting of Evo-Lexis. Specifically, we used the same core stability
metric and measured the stability of the top-20 nodes, i.e., central set 1-20, and the next
20 central nodes (in core identification, the nodes ranked from 21st to 40th), i.e., central
set 21-40. The median stability for central set 1-20 and central set 21-40 are 0.707 and
0.248, respectively. Overall, the higher centrality core nodes over the years remain stable
and similar to previous years in iGEM data despite the fact that the set of sources changes
significantly. This also explains why the size of the core size does not increase drastically in

Fig. 5.10a (as opposed to the size of the core of the flat Lexis-DAG in Fig. 5.10b which is a

107

result on the expanding set of sources). In summary, the stability of the core set in iGEM is
caused by the same reason with Evo-Lexis, which is the bias and selectivity towards using

a specific set of nodes in consecutive years.

108

10000

10000

Ayjenua) yied

Ayjenua) yied

Anjenua) yied

g g g
.
®)
.
< % < w e o < w
. B O . B O o ® B o
g ¥y g o° 5§ A
a% s- 5 o 0ot s- 5 ‘ot ER
g i3 g Y 5
. «=soee o Y @ o ® Y () Y
oo o ~ . . ~ © oo @O o
oaesem anse o I{D\ o o0 wa@@u@r o m o(em (@ ine@® ~—~
o0 o wsemumes o ¢ afescmes s o o 9o @EEED
eom @mumes o ® o @ GugEdyes © ©oo «@ERese 8
© CEED—o o - ® TR o ~ O T
8 8 S 8 8 8 S - 8 8 8 =1 -
g 8 g & 8 g & 3 .
Anjenua) yied Anjenua) yied Anjenua) yied ®
®
£
D
o @
- @860
g g g ©
® o
3 o
. g g
. -
Ayjenua) yied
[sa} . 0 o g
®*°° c o c O « O <
. %8 W O o8 w O @-o h) % 0 m
g o v g o ¢ 4 §
jume = 5 L3 == 5 % = 5
o LRI XX [} . [15}
v > - >~ SZ3 -
o eame o0 ~ [COREY Y —TY] ~ © » @Ede [
ccoamme o /nla\ eoem s comamme s w\ o0 0f) {@REERO w\
e0e o emoo . eecx 1 mmen e o emescanide
® @ smeee © o+ @me@mane ® co@eagmee
® G- - - @ CEEED——. s - R
o) o -)) -
I g g & ¢ g g & ¢

Length

(g) Year 2017

Figure 5.13: Node length and path-centrality in selected years in iGEM dataset.
For core selection, we set 7 = 0.85. This figure shows that the core sets include a high

number of sources.

109

5.4 Conclusions

1GEM is a dataset that satisfies the basic assumption of Evo-Lexis framework: a sequence
of target strings with potential temporal reuse of previously introduced substrings. Because
of this compatibility, we chose to use this dataset in a case-study and contrast its qualitative
properties with Evo-Lexis. We can summarize the answers to the questions posed in the

beginning of this chapter as follows:

e We observe that although incremental design can build efficient hierarchies over the
1GEM targets, the normalized cost increases over time. This is due to the fact that
the amount of reuse from previous years decreases mainly due to the frequent intro-
duction of new sources over time. The small length of the targets in iGEM is also
an additional factor for lowering the potential of reuse of the previously constructed

parts in iGEM.

e The increasing normalized cost causes the Lexis-DAGs to become less deep and to
contain shorter nodes on average as time progresses. This is different than Evo-Lexis.
In addition, there is a high fraction of very short targets in each year in comparison

to Evo-Lexis.

e Another important observation in iGEM data is that the Lexis-DAGs present a bias
in reusing specific nodes more often than the other nodes. This biased reuse results
in the Lexis-DAGs to take the shape of an hourglass with relatively high H-score
values and a stable set of core nodes over time. This observation is consistent with

the Evo-Lexis modeling results.

e The core sets over the years remain stable and similar to previous years in iGEM data
despite the fact that the set of sources changes significantly. Most of the stability is
contributed by a small set of central sources and central intermediate nodes that are

heavily reused throughout the iGEM registry over time.

110

e Despite the reuse bias and stability of the core sets, the dataset presents a high de-
gree of diversity among the targets in each year, which is in line with the Evo-Lexis

modeling results.

e In the limited temporal span of the iGEM dataset, we do not observe major transitions

in the core sets.

111

CHAPTER 6
LIMITATIONS AND EXTENSIONS

6.1 Limitations

6.1.1 Data Considerations

Lexis, as currently formulated, is only considering strings as the main objects. Also, the
framework’s specification only considers the concatenation of substrings. However, strings
can be the result of many other operators such as those used in measuring Levenshtein
distance (e.g., letter removals, substitutions, additions etc.). This limitation implies that
generation and modeling of some parts of a dataset may not be captured by Lexis. Further-

more, considering only concatenations makes Lexis more prone to noise in the data.

6.1.2 Further Characterization of Evolutionary Mechanisms

Our modeling allowed us to identify a number of mechanisms within the settings of Evo-
Lexis that are sufficient to produce the presented results in this thesis (e.g., the way selection
is responsible for hourglass organization). However, it is important to note that we can not
be certain whether these mechanisms are also necessary for these qualitative results. We
believe that most likely they are not necessary mechanisms (e.g., we can probably come up

with other mechanisms for generating an hourglass architecture).

6.1.3 Parameter Space Analysis

By design, there is a large parameter space considered for Evo-Lexis simulation (e.g.,
length of targets, number of targets, etc.). We have already tested empirically that the
presented results do not vary significantly with random initialization (i.e., via testing each

result with multiple runs). However, systematic exploration of the Evo-Lexis parameter

112

space is difficult, and it is not clear with high accuracy what the boundaries of this space
are and how the qualitative results of Evo-Lexis are sensitive to different choices of the

parameters.

6.1.4 Heuristic Algorithm Design

The Lexis optimization problem and the core identification problem are NP-Hard problems
for which we have designed greedy heuristics. While these algorithms serve the purpose
of the studies in this research, this thesis does not cover an analysis of the approximation

ratio or possibilities for improvement on the runtime of these algorithms.

6.1.5 Additional Mechanisms in Evo-Lexis

Evo-Lexis mainly considers widely accepted mechnisms, namely mutation, recombination
and selection as the “forces” on evolution of hierarchies. However, there are many mech-
anisms that are not modeled by Evo-Lexis such as invention of new sources, expansion
or reduction in the number of targets, competition effects between different architectures

(hierarchies), etc.

6.2 Extensions

6.2.1 Noisy Data and Approximate-Lexis

In practice, symbolic sequences are always noisy. For instance, a symbolic representa-
tion may be “abcde” in one instance, “abbcde” in another instance, and “abced” in a third
instance. Lexis, as formulated in this thesis, cannot handle such noise because it lacks
the generalization capability to identify that all three sequences are very similar. One can
propose to extend the basic Lexis framework so that it can successfully perform such gen-
eralizations — we refer to this framework as Approximate-Lexis or A-Lexis.

We first need a metric for quantifying the similarity between two symbolic sequences.

The Levenshtein distance LD(s,t) between two strings s and ¢ is the number of deletions,

113

insertions, or substitutions required to transform one string to another. The higher the
number of required operations, the more distant two strings are from each other [89]. The
Levenshtein distance can be normalized by the length of the longer string so that it is
always between 0 and 1. Based on a user-specified threshold y for this metric, we can then
determine whether two sequences are sufficiently similar to each other or not.

The next step is to generalize the semantics of vertices and edges in the Lexis-DAG. In
the A-Lexis framework, a vertex does not represent a single sequence — instead it represents
the centroid of a set of sequences, all of which are within p from the centroid in terms of
Levenstein distance. In other words, each vertex represents a cluster of similar sequences.

Suppose now that that we often see sequences of the form A; A, A3, where each A; can
be any sub-sequence in the cluster with centroid A;. In the A-Lexis DAG, this centroid can
be represented with a new vertex, say B, with label B = A; A5 Aj, i.e., the concatenation
of the three centroid sequences. B however is also the centroid of a new cluster, capturing
any variations that are within y from the sequence A; A As. For instance, if the threshold
1 allows for single-character “mutations”, the vertex B would also capture the sequence
AyzA5 A5 (wWhere z is an individual character).

A major task in future research will be to further develop these preliminary ideas and
create efficient and robust algorithms for the construction of A-Lexis DAGs as well as for

the analysis of these hierarchies.

6.2.2 Scalable Methods for Hierarchy Inference

The Lexis optimization problem is NP-hard, hence heuristic approaches need to be em-
ployed. We have developed a greedy algorithm, called G-LEXIS, which starts from the
trivial Lexis-DAG with edges from the alphabet source nodes to each of their occurrences
in the target strings, and iteratively searches for the substring that leads to the maximum
cost reduction when added as a new intermediate node in the Lexis-DAG. Even with effi-

cient suffix tree data structures, G-LEXIS has quadratic run-time complexity O(L?), which

114

is prohibitive for very large datasets.

Faster algorithms can be designed, but they perform worse in terms of cost minimiza-
tion. In particular, we can leverage the algorithms that have been previously designed
for the Smallest Grammar Problem because it is easy to map a straight-line grammar to
a Lexis-DAG. For instance, Galle et al. have proposed two heuristics (namely REPAIR
and Longest-First-Substitution) that have a linear-time complexity for inferring a straight-
line grammar, but they perform much worse than SGP algorithms with quadratic run-time
complexity [19]. An open research question that we will focus on is: Can we design an al-
gorithm that runs in faster than quadratic-time (e.g., O(nlogn)), while performing almost
the same in terms of cost as quadratic-time algorithms?

In future research, one can investigate how to parallelize the data structures (such
as suffix arrays) used in the Lexis inference algorithms. Specifically, the research in
[102] presents parallel algorithms for distributed memory construction of suffix arrays and
longest common prefix (LCP) arrays. A detailed technical survey on parallel suffix arrays

can be found at http://snnynhr.github.io/ParallelSuffixArrays/.

6.2.3 Other Application Domains for Lexis

In the future, we are aiming to provide broader application contexts for the developed
methods in this thesis, especially in the area of analysis of time series for rule discovery
and anomaly detection. Recent research shows promising results on structure discovery
over discrete representation of time series data, such as SAX [103, 104, 105]. Further, the
hierarchical structure is shown to be inherent in such data. What needs to be noted is that
there are a few number of works in the literature that focus on hierarchical representations
of time series data, and they concern anomaly discovery [103], feature extraction for time
series classification [104], and analysis of spatial trajectory data [105]. All of these ref-
erences rely on, first, symbolic discretization to detect patterns, and second, inference of

pattern relationships using SEQUITUR-inspired algorithms [10]. The result is a grammar

115

http://snnynhr.github.io/ParallelSuffixArrays/

representation of the original sequence, which offers insights into its lexical structure [10].
Although a grammar can be represented as a hierarchy of grammar rules, none of these
papers exploits such a hierarchical structure to analyze it from a graph mining perspective.
A major difference between Lexis and grammar-based methods is that Lexis produces a
network representation (a DAG) of the given sequences instead of a grammar. A network
representation is preferable because it allows us to apply a large toolbox of graph mining
techniques on the discovered network structure, such as various vertex or edge centrality
metrics to identify the most important components of the hierarchy or core-periphery anal-
ysis methods to identify subsets of intermediate nodes that can capture collectively almost

all of the source-to-target (or input-output) relationships [5, 106].

6.2.4 More Realistic Extensions of Evo-Lexis Framework

As mentioned, several assumptions made in Evo-Lexis framework may be unrealistic or
inconsistent with real systems. For example, in the case of the analysis of iGEM via Evo-
Lexis, it is shown that there are specific dynamics that are not included in the modeling of
Evo-Lexis. The increase/decrease of the set of sources is found to have an effect in effi-
ciency and reuse of previously built modules throughout the years of iGEM competition.
Introducing such dynamics in the model can be both insightful in the analysis of iGEM
(e.g., quantifying the reduction of reuse in iGEM yearly batches), and more realistic mod-
eling in Evo-Lexis (e.g., further what-if scenarios such as how the increase/decrease of the
source set affects the hourglass property). However, it should be noted that iGEM is only
one dataset and such generalizations of Evo-Lexis must be accompanied and verified with

different datasets as well.

116

CHAPTER 7
CONCLUSIONS

The foundation of this thesis is Lexis, an optimization-based framework for revealing the
hierarchical structure of sequence data. In Chapter 2, we motivated the use of Lexis in the
analysis of hierarchical structure of sequential data by presenting its use-cases on devel-
oping optimized string hierarchies (an immediate use-case is in DNA synthesis), structure
discovery over protein data, and feature extraction from textual data.

In Chapter 3, the research over the Lexis framework was expanded and explored by
considering another related area of analysis of sequences. The connection of Lexis to
the Smallest Grammar Problem (SGP) motivated us to present a generalization of SGP
formulation and to develop corresponding algorithms for the newly introduced problems.
In addition to meeting new boundaries in compression capabilities of lossless grammar-
based codes, such generalization was found to be useful in unsupervised parsing of the
structure of natural language.

In Chapter 4, we utilized the Lexis framework in the evolutionary modeling of hier-
archical systems. Our proposed model, namely Evo-Lexis, is an attempt to explain the
dynamics of such systems in an abstract and general framework. The emergence and evo-
lution of the hourglass property and its relation to the optimization objective of a hierar-
chical system is one of the main types of analyses that is possible via the proposed model.
Evo-Lexis also predicts major transitions in the evolution of both real technological and
biological systems.

In the last research effort of this thesis, we analyzed a real dataset from synthetic biol-
ogy, namely iGEM, in order to identify the strengths and weaknesses of Evo-Lexis mod-
eling approach. Although the analysis shows that Lexis-DAGs on the iGEM data are less

cost-efficient and less deep, the dataset exhibits a bias in reusing specific nodes more often

117

than others. This bias results in the Lexis-DAGs to take the shape of an hourglass with
relatively high H-score values and stable set of core nodes, which are consistent with the
predictions of Evo-Lexis modeling.

Overall, we first presented an alternative perspective on sequential data. We consid-
ered forming optimized graphical structures over such data which enables us to use the
rich framework of graph analytics as a proxy for sequential data analysis. We showed
such analytical framework can have several promising extensions in sequential data anal-
ysis. In addition to these data analysis aspects, we used the same framework in order to
provide insights on some general and fundamental queries about evolving hierarchical sys-
tems. Our abstract modeling predicts realistic phenomena over hierarchical systems, e.g.,
hourglass effect and major transitions. We showed that aside from answering general mod-
eling questions, we can use the framework in order to gain insight on evolution of realistic

hierarchical systems.

118

Appendices

119

APPENDIX A: EXAMPLE OF DIFFERENCE OF NODE SELECTION ORDER IN
G-LEXIS AND G-CORE

This example is run on the targets that are submitted during the first year of iGEM dataset

(details of the dataset can be found in Chapter 5 of this thesis).

Table A.1: Order of the top-10 nodes identified in G-LEXIS (Numbers on the left show the
order the nodes is removed in the algorithm and bio-bricks represent the string representa-
tion of the nodes removed)

1| BBa_B0010 BBa_B0012
2| BBa_B0032 BBa_C0040 BBa_B0O010 BBa_B0012 BBa_R0040 BBa_B0032 BBa_C0012
BBa_B0010 BBa_B0012 BBa_R0010 BBa_B0032 BBa_C0051 BBa_B0010 BBa_B0012
BBa_R0063 BBa_B0030 BBa_C0062 BBa_B0010 BBa_B0012
3| BBa_B0030 BBa_C0061 BBa_B0010 BBa_B0012 BBa_R0010 BBa_B0030 BBa_C0060
BBa_B0010 BBa_B0012 BBa_R0040 BBa_B0030 BBa_E0022 BBa_B0010 BBa_B0012
BBa_R0040 BBa_B0030 BBa_E0032 BBa_B0010 BBa_B0012
4| BBa_B0034 BBa_C0040 BBa_B0010 BBa_B0012 BBa_R0040
5| BBa_-B0034 BBa_C0012 BBa_B0010 BBa_B0012 BBa_R0010 BBa_B0034 BBa_C0051
BBa_B0010 BBa_B0012
6| BBa_B0034 BBa_C0061 BBa_B0010 BBa_B0012 BBa_R0063 BBa_B0034 BBa_C0062
BBa_B0010 BBa_B0012 BBa_R0011 BBa_B0034 BBa_C0060 BBa_B0010 BBa_B0012
BBa_R0040 BBa_B0034 BBa_E0032 BBa_B0010 BBa_B0012

7| BBa_B0012 BBa_B0011

8| BBa_I0500 BBa_B0034 BBa_E0022 BBa_B0010 BBa_B0012 BBa_10500 BBa_B0034

9| BBa_B0034 BBa_C0012 BBa_B0010 BBa_B0012 BBa_R0011
10| BBa_B0034 BBa_C0051 BBa_B0010 BBa_B0012

120

Table A.2: Order of the top-10 nodes removed in G-CORE (Numbers on the left show the
order the nodes is removed in the algorithm and bio-bricks represent the string representa-
tion of the nodes removed)

10

BBa_B0010 BBa_B0012

BBa_B0034

BBa_B0032 BBa_C0040 BBa_B0010 BBa_B0012 BBa_R0040 BBa_B0032 BBa_C0012
BBa_B0010 BBa_B0012 BBa_R0010 BBa_B0032 BBa_C0051 BBa_B0010 BBa_B0012
BBa_R0063 BBa_B0030 BBa_C0062 BBa_B0010 BBa_B0012

BBa_B0012 BBa_B0011

BBa_R0040

BBa_B0030 BBa_C0061 BBa_B0010 BBa_B0012 BBa_R0010 BBa_B0030 BBa_C0060
BBa_B0010 BBa_B0012 BBa_R0040 BBa_B0030 BBa_E0022 BBa_B0010 BBa_B0012
BBa_R0040 BBa_B0030 BBa_E0032 BBa_B0010 BBa_B0012

BBa_C0012

BBa_C0051

BBa_R0011

BBa_C0040

121

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

REFERENCES

“Igem.org/main_page.”

C. Y. Baldwin and K. B. Clark, Design rules: The power of modularity volume 1.
Cambridge, MA, USA: MIT Press, 1999, 1SBN: 0262024667.

E. Ravasz and A.-L. Barabasi, “Hierarchical organization in complex networks,”
Phys. Rev. E, vol. 67, p. 026 112, 2 2003.

H. Mengistu, J. Huizinga, J.-B. Mouret, and J. Clune, “The evolutionary origins of
hierarchy,” PLOS Computational Biology, vol. 12, no. 6, pp. 1-23, Jun. 2016.

K. M. Sabrin and C. Dovrolis, “The hourglass effect in hierarchical dependency
networks,” Network Science, vol. 5, no. 4, pp. 490-528, 2017.

C. R. Myers, “Software systems as complex networks: Structure, function, and
evolvability of software collaboration graphs,” Phys. Rev. E, vol. 68, p. 046 116, 4
2003.

N. Séanchez, S. Park, and J. M. Finley, “Evidence of energetic optimization during
adaptation differs for metabolic, mechanical, and perceptual estimates of energetic
cost,” Scientific Reports, vol. 7, no. 1, p. 7682, 2017.

J. Clune, J.-B. Mouret, and H. Lipson, “The evolutionary origins of modularity,”
Proceedings of the Royal Society of London B: Biological Sciences, vol. 280, no.
1755, 2013.

D. Gusfield, “Algorithms on strings, trees, and sequences: Computer science and
computational biology,” Cambridge Univ. Press, 1997.

C. Nevill-Manning and 1. Witten, “Identifying hierarchical structure in sequences:
A linear-time algorithm,” J. Artif. Int. Res., vol. 7, no. 1, pp. 67-82, 1997.

J. Kleinberg, “Bursty and hierarchical structure in streams,” in KDD, Edmonton,
Alberta, Canada, 2002, pp. 91-101, 1SBN: 1-58113-567-X.

H. Mengistu, J. Huizinga, J. Mouret, and J. Clune, “The evolutionary origins of
hierarchy,” CoRR, vol. abs/1505.06353, 2015.

S. Miyagawa, R. Berwick, and K. Okanoya, “The emergence of hierarchical struc-
ture in human language,” Frontiers in Psychology, vol. 4, no. 71, 2013.

122

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

W. Dubitzky, M. Granzow, and D. P. Berrar, Fundamentals of data mining in ge-
nomics and proteomics. Springer Science & Business Media, 2007.

J. Blakes, O. Raz, U. Feige, J. Bacardit, P. Widera, T. Ben-Yehezkel, E. Shapiro,
and N. Krasnogor, “Heuristic for maximizing DNA re-use in synthetic DNA library
assembly,” ACS Synthetic Biology, vol. 3, no. 8, pp. 529-542, 2014.

D. Densmore, T. Hsiau, J. Kittleson, W. DeLoache, C. Batten, and J. Anderson,
“Algorithms for automated DNA assembly,” Nucleic Acids Res., vol. 38, no. 8§,
pp. 2607-2616, 2010.

C. G. Nevill-Manning and I. H. Witten, “Identifying hierarchical strcture in se-
quences: A linear-time algorithm,” J. Artif. Intell. Res.(JAIR), vol. 7, pp. 67-82,
1997.

M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A.
Shelat, “The smallest grammar problem,” Information Theory, IEEE Transactions
on, vol. 51, no. 7, pp. 2554-2576, 2005.

M. Gallé, “Searching for compact hierarchical structures in DNA by means of the
smallest grammar problem,” PhD thesis, Université Rennes 1, 2011.

R. Eyraud, “Inférence grammaticale de langages hors-contextes,” PhD thesis, uni-
versité Jean Monnet, 2006.

P. Siyari, B. Dilkina, and C. Dovrolis, “Lexis: An optimization framework for dis-
covering the hierarchical structure of sequential data,” in Proceedings of the 22Nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, ser. KDD ’16, San Francisco, California, USA: ACM, 2016, pp. 1185-1194,
ISBN: 978-1-4503-4232-2.

M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A.
Shelat, “The Smallest Grammar Problem,” IEEE Trans. on Inf. Theory, vol. 51, no.
7, 2005.

J. Kieffer and E. Yang, “Grammar based codes: A new class of universal lossless
source codes,” IEEE Trans. on Inf. Theory, vol. 46, p. 2000, 2000.

A. Apostolico and S. Lonardi, “Off-line compression by greedy textual substitu-
tion,” Proceedings of the IEEE, vol. 88, no. 11, pp. 1733-1744, 2000.

G. Brodal, R. Lyngso, A. Ostlin, and C. Pedersen, “Solving the string statistics
problem in time o(n log n).,” in ICALP, 2002, pp. 728-739.

123

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

M. Gall¢, “Searching for compact hierarchical structures in DNA by means of the
Smallest Grammar Problem,” PhD thesis, Université Rennes 1, 2011.

M. Farach, “Optimal suffix tree construction with large alphabets,” in Proceedings
38th Annual Symposium on Foundations of Computer Science, 1997, pp. 137-143.

S. Inenaga, T. Funamoto, M. Takeda, and A. Shinohara, “Linear-time off-line text
compression by longest-first substitution,” in String Processing and Information
Retrieval, 2003, pp. 137-152.

M. Newman, Networks: An introduction. Oxford University Press, Inc., 2010, ISBN:
0199206651, 9780199206650.

K. M. Sabrin, “The hourglass effect in source-target dependency networks,” PhD
thesis, Georgia Institute of Technology, 2018.

A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure, dynam-
ics, and function using NetworkX,” in Proceedings of the 7th Python in Science
Conference, 2008, pp. 11-15.

“DriveS.com/usearch/manual/uclust_algo.html.”

R. C. Edgar, “Search and clustering orders of magnitude faster than BLAST,”
Bioinformatics, vol. 26, no. 19, pp. 2460-2461, 2010.

A. Apostolico, M. E. Bock, and S. Lonardi, “Monotony of surprise and large-scale
quest for unusual words,” in Proceedings of the Sixth Annual International Confer-
ence on Computational Biology, ser. RECOMB ’02, Washington, DC, USA: ACM,
2002, pp. 22-31, ISBN: 1-58113-498-3.

F. Cunial, Analysis of the subsequence composition of biosequences. Georgia Insti-
tute of Technology, 2012.

H. T. Lam, FE. Morchen, D. Fradkin, and T. Calders, “Mining compressing sequen-
tial patterns,” Statistical Analysis and Data Mining, vol. 7, no. 1, pp. 34-52, 2014.

J. Zhang, Y. Wang, C. Zhang, and Y. Shi, “Mining contiguous sequential generators
in biological sequences,” IEEE/ACM Transactions on Computational Biology and
Bioinformatics, vol. PP, no. 99, pp. 1-1, 2015.

N. Larsson and A. Moffat, “Offline dictionary-based compression,” in Data Com-
pression Conference, 1999. Proceedings., 1999, pp. 296-305.

J. Zhang, Y. Wang, and D. Yang, “CCSpan: Mining closed contiguous sequential
patterns,” Knowledge-Based Systems, vol. 89, pp. 1 —13, 2015.

124

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

N. Tatti and J. Vreeken, “The long and the short of it: Summarising event sequences
with serial episodes,” in KDD, 2012, pp. 462—470, 1ISBN: 978-1-4503-1462-6.

M. Gallé, “The bag-of-repeats representation of documents,” in ACM SIGIR Con-
ference, ACM, 2013.

H. S. Paskov, R. West, J. C. Mitchell, and T. Hastie, “Compressive feature learn-
ing,” in NIPS, 2013, pp. 2931-2939.

H. S. Paskov, J. C. Mitchell, and T. J. Hastie, “Data representation and compression
using linear-programming approximations,” in /CLR, 2016.

J. Lanctot, M. Li, and E. Yang, “Estimating DNA sequence entropy,” in ACM-SIAM
Symposium on Discrete Algorithms, 2000.

S. Akhshabi and C. Dovrolis, “The evolution of layered protocol stacks leads to an
hourglass-shaped architecture,” in Dynamics On and Of Complex Networks, Volume
2, Springer, 2013.

P. Siyari and M. Gall, “The generalized smallest grammar problem,” in Proceedings
of The 13th International Conference on Grammatical Inference, S. Verwer, M. van
Zaanen, and R. Smetsers, Eds., ser. Proceedings of Machine Learning Research,
vol. 57, Delft, The Netherlands: PMLR, 2017, pp. 79-92.

J. C. Kieffer and E. Yang, “Grammar-based codes: A new class of universal lossless
source codes,” Information Theory, IEEE Transactions on, vol. 46, no. 3, pp. 737-
754, 2000.

Z. S. Harris, “Distributional structure,” Word, vol. 10, no. 2-3, pp. 146-162, 1954.
R. Carrascosa, F. Coste, M. Gallé, and G. Infante-Lopez, “The smallest grammar
problem as constituents choice and minimal grammar parsing,” Algorithms, vol. 4,

no. 4, pp. 262-284, 2011.

——, “Searching for smallest grammars on large sequences and application to
DNA,” Journal of Discrete Algorithms, vol. 11, pp. 62-72, 2011.

——, “Choosing word occurrences for the smallest grammar problem,” in Lan-
guage and Automata Theory and Applications, 2010, pp. 154-165.

F. Benz and T. Kotzing, “An effective heuristic for the smallest grammar prob-

lem,” in Proceedings of the 15th Annual Conference on Genetic and Evolutionary
Computation, ser. GECCO ’13, Amsterdam, The Netherlands, 2013, pp. 487—-494.

125

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

R. Yoshinaka, “Identification in the limit of k, l-substitutable context-free lan-
guages,” in Grammatical Inference: Algorithms and Applications, Springer, 2008,
pp- 266-279.

A. Clark and R. Eyraud, “Polynomial identification in the limit of context-free sub-
stitutable languages,” Journal of Machine Learning Research, vol. 8, pp. 1725—
1745, 2007.

F. M. Luque and G. Infante-Lopez, “Pac-learning unambiguous k, I-NTS languages,”
in Grammatical Inference: Theoretical Results and Applications, 2010, pp. 122-
134.

F. Coste, G. Garet, and J. Nicolas, “Local substitutability for sequence generaliza-
tion,” in International Conference on Grammatical Inference, vol. 21,2012, pp. 97—
111.

M. Van Zaanen, “ABL: Alignment-based learning,” in International Conference on
Computational Linguistics, 2000.

Z. Solan, D. Horn, E. Ruppin, and S. Edelman, “Unsupervised learning of natural
languages,” Proceedings of the National Academy of Sciences, 2005.

J. Scicluna and C. De La Higuera, “Pcfg induction for unsupervised parsing and
language modelling.,” in EMNLP, 2014, pp. 1353-1362.

D. J. Cook and L. B. Holder, “Substructure discovery using minimum descrip-
tion length and background knowledge,” Journal of Artificial Intelligence Research,
pp- 231-255, 1994.

B. Keller and R. Lutz, “Evolving stochastic context-free grammars from examples
using a minimum description length principle,” in 1997 Workshop on Automata
Induction Grammatical Inference and Language Acquisition, Citeseer, 1997.

M. Nederhof and G. Satta, “Parsing non-recursive context-free grammars,” in Pro-
ceedings of the 40th Annual Meeting on Association for Computational Linguistics,

2002, pp. 112-119.

G. Navarro, “A guided tour to approximate string matching,” ACM computing sur-
veys (CSUR), vol. 33, no. 1, pp. 31-88, 2001.

X. Chen, S. Kwong, and M. Li, “A compression algorithm for DNA sequences,”
IEEE Engineering in Medicine and Biology, vol. 20, no. 4, pp. 61-66, 2001.

M. Van Zaanen, “Bootstrapping structure into language: Alignment-Based Learn-
ing,” phd, University of Leeds, Leeds, UK, 2002.

126

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

F. Dorr and F. Coste, “Compressing (genomic) sequences grammar inference,” IN-
RIA, Tech. Rep., 2014.

C. G. Nevill-Manning and I. H. Witten, “On-line and off-line heuristics for inferring
hierarchies of repetitions in sequences,’ Proceedings of the IEEE, vol. 88, no. 11,
pp- 1745-1755, 2000.

C. G. Nevill-Manning, “Inferring sequential structure,” PhD thesis, University of
Waikato, 1996.

M. Marcus, G. Kim, M. Marcinkiewicz, R. MacIntyre, A. Bies, M. Ferguson, K.
Katz, and B. Schasberger, “The Penn Treebank: Annotating predicate argument

structure,” in Proceedings of the Workshop on Human Language Technology, ser.
HLT ’94, Plainsboro, NJ, 1994, pp. 114-119.

O. Vinyals, L. Kaiser, T. Koo, S. Petrov, 1. Sutskever, and G. Hinton, “Grammar as
a foreign language,” in Advances in Neural Information Processing Systems, 2015,

pp. 2755-2763.

D. Klein, “The unsupervised learning of natural language structure,” PhD thesis,
Stanford University, 2005.

W. Miller, “The hierarchical structure of ecosystems: Connections to evolution,”
Evolution: Education and Outreach, vol. 1, no. 1, pp. 16-24, 2008.

N. Kashtan and U. Alon, “Spontaneous evolution of modularity and network mo-
tifs,” Proceedings of the National Academy of Sciences of the United States of
America, vol. 102, no. 39, pp. 13773-13 778, 2005.

N. Kashtan, E. Noor, and U. Alon, “Varying environments can speed up evolution,”
Proceedings of the National Academy of Sciences, vol. 104, no. 34, pp. 13711-
13716, 2007.

W. Callebaut and D. Rasskin-Gutman, Modularity: Understanding the development
and evolution of natural complex systems, ser. Vienna series in theoretical biology.
MIT Press, 2005, 1SBN: 9780262033268.

G. P. Wagner, M. Pavlicev, and J. M. Cheverud, “The road to modularity,” Nature
Reviews Genetics, vol. 8, 921 EP —, 2007, Review Article.

S. Akhshabi and C. Dovrolis, “The evolution of layered protocol stacks leads to
an hourglass-shaped architecture,” in Proceedings of the ACM SIGCOMM 2011
Conference, ser. SIGCOMM 11, Toronto, Ontario, Canada: ACM, 2011, pp. 206—
217, 1SBN: 978-1-4503-0797-0.

127

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks,” Science, vol. 313, no. 5786, pp. 504-507, 2006.

T. Casci, “Hourglass theory gets molecular approval,” Nature Reviews Genetics,
vol. 12, 76 EP —, 2010.

R. Tanaka, M. Csete, and J. Doyle, “Highly optimised global organisation of metabolic
networks,” IEE Proceedings - Systems Biology, vol. 2, no. 4, pp. 179—-184, 2005.

S Akhshabi, S Sarda, C Dovrolis, and S Yi, “An explanatory evo-devo model for the
developmental hourglass [version 1; referees: 1 approved, 2 approved with reserva-
tions],” F1000Research, vol. 3, no. 156, 2014.

T. Friedlander, A. E. Mayo, T. Tlusty, and U. Alon, “Evolution of bow-tie archi-
tectures in biology,” PLOS Computational Biology, vol. 11, no. 3, pp. 1-19, Mar.
2015.

M. Galle and M. Tealdi, “Xkcd-repeats: A new taxonomy of repeats defined by
their context diversity,” Journal of Discrete Algorithms, vol. 48, pp. 1 —16, 2018.

T. C. Bell, J. G. Cleary, and 1. H. Witten, Text compression. Upper Saddle River,
NJ, USA: Prentice-Hall, Inc., 1990, ISBN: 0-13-911991-4.

R. Hershberg, “Mutation—-The Engine of Evolution: Studying Mutation and Its
Role in the Evolution of Bacteria,” Cold Spring Harb Perspect Biol, vol. 7, no.
9,a018077, 2015.

W. B. Arthur, The nature of technology: What it is and how it evolves. Free Press,
2009.

H. Youn, D. Strumsky, L. M. A. Bettencourt, and J. Lobo, “Invention as a combina-
torial process: Evidence from us patents,” Journal of The Royal Society Interface,

vol. 12, no. 106, 2015.

J. Schot and F. W. Geels, “Niches in evolutionary theories of technical change,”
Journal of Evolutionary Economics, vol. 17, no. 5, pp. 605-622, 2007.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algo-
rithms, third edition, 3rd. The MIT Press, 2009, 1ISBN: 0262033844, 9780262033848.

A. Barabasi and M. Posfai, Network science. Cambridge University Press, 2016,
ISBN: 9781107076266.

J. Rexford and C. Dovrolis, “Future internet architecture: Clean-slate versus evolu-
tionary research,” Commun. ACM, vol. 53, no. 9, pp. 3640, Sep. 2010.

128

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

S. Jain and S. Krishna, “Large extinctions in an evolutionary model: The role of in-
novation and keystone species,” Proceedings of the National Academy of Sciences,
vol. 99, no. 4, pp. 2055-2060, 2002.

J. Smith and E. Szathmary, The major transitions in evolution. OUP Oxford, 1997,
ISBN: 9780198502944.

S. Valverde and R. V. Sol¢, “Punctuated equilibrium in the large-scale evolution of
programming languages,” Journal of The Royal Society Interface, vol. 12, no. 107,
2015.

W. B. Arthur and W. Polak, “The evolution of technology within a simple computer
model,” Complexity, vol. 11, no. 5, pp. 23-31, 2006.

D. Kim, D. B. Cerigo, H. Jeong, and H. Youn, “Technological novelty profile and
invention’s future impact,” EPJ Data Science, vol. 5, no. 1, p. 8, 2016.

S. Bakhshi and C. Dovrolis, “The price of evolution in incremental network design
(the case of ring networks),” in Bio-Inspired Models of Networks, Information, and
Computing Systems: 6th International ICST Conference, BIONETICS 2011, York,
UK, December 5-6, 2011, Revised Selected Papers. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 1-15, ISBN: 978-3-642-32711-7.

S. Bakhshi and C. Dovrolis, “The price of evolution in incremental network design:
The case of mesh networks,” in 2013 IFIP Networking Conference, 2013, pp. 1-9.

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features
in deep neural networks?” In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume 2, ser. NIPS’ 14, Montreal,
Canada: MIT Press, 2014, pp. 3320-3328.

A. M. Sharp, “Incremental algorithms: Solving problems in a changing world,”
AAI3276789, PhD thesis, Ithaca, NY, USA, 2007, 1ISBN: 978-0-549-19843-7.

A. Borodin and R. El-Yaniv, Online computation and competitive analysis. New
York, NY, USA: Cambridge University Press, 1998, ISBN: 0-521-56392-5.

P. Flick and S. Aluru, “Parallel distributed memory construction of suffix and longest
common prefix arrays,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC ’15, Austin,
Texas: ACM, 2015, 16:1-16:10, 1SBN: 978-1-4503-3723-6.

P. Senin, J. Lin, X. Wang, T. Oates, S. Gandhi, A. P. Boedihardjo, C. Chen, and S.

Frankenstein, “Time series anomaly discovery with grammar-based compression,
in Proc. of International Conference on Extending Database Technology, 2015.

129

[104]

[105]

[106]

X. Wang, J. Lin, P. Senin, T. Oates, S. Gandhi, A. P. Boedihardjo, C. Chen, and S.
Frankenstein, “RPM: representative pattern mining for efficient time series classi-

fication,” in Proc. of International Conference on Extending Database Technology,
2016.

T. Oates, A. P. Boedihardjo, J. Lin, C. Chen, S. Frankenstein, and S. Gandhi, “Motif
discovery in spatial trajectories using grammar inference,” in Proc. of ACM Inter-
national Conference on Information & Knowledge Management, 2013.

V. Ishakian, D. Erdos, E. Terzi, and A. Bestavros, “A framework for the evaluation

and management of network centrality,” in STAM International Symposium on Data
Mining, 2012.

130

	Title Page
	Acknowledgments
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction and Background
	Hierarchical structure discovery over sequential data
	Extended search methods for inference of small hierarchical grammars
	Modeling framework for evolution of optimized hierarchical systems
	Case-study of Evo-Lexis predictions on real-world data

	Lexis: An Optimization Framework for Discovering the Hierarchical Structure of Sequential Data
	Introduction
	Problem Statement
	Lexis-DAG
	The Lexis Optimization Problem
	Edge cost
	Concatenation cost

	The Greedy Lexis algorithm
	Path-Centrality and the Core of a Lexis-DAG
	Applications of Lexis
	Optimized String Hierarchies
	Structure Discovery
	Compression
	Feature Extraction

	Related Work
	Conclusion

	The Generalized Smallest Grammar Problem
	Introduction
	Related Work
	Model
	Algorithm
	Encoding the Grammars
	Post-processing Algorithm

	Experimental Results
	Smaller Grammars
	Better Structure

	Conclusion

	Emergence and Evolution of Hierarchical Structure in Complex Systems
	Introduction
	Evo-Lexis Framework and Metrics
	Incremental Design Algorithm
	Target Generation Models
	Key Metrics

	Computational Results
	Parameter Values and Evolutionary Iteration
	Results

	Evolvability and the Space of Possible Targets
	Major Transitions
	Overhead of Incremental Design
	Discussion and Prior Work
	Modularity and Hierarchy
	Hourglass Architecture
	Interplay of Design Adaptation and Evolution

	Conclusion

	A Case Study: Analysis of iGEM Synthetic Biology Sequences
	Introduction
	Dataset
	Preliminaries
	Data Collection
	Considering Annual Batches of Targets

	Analysis of iGEM Dataset in Evo-Lexis Framework
	Lexis-DAG Cost Analysis
	Hourglass Effect in iGEM
	Diversity among iGEM Targets
	Core Stability in iGEM Lexis-DAGs

	Conclusions

	Limitations and Extensions
	Limitations
	Data Considerations
	Further Characterization of Evolutionary Mechanisms
	Parameter Space Analysis
	Heuristic Algorithm Design
	Additional Mechanisms in Evo-Lexis

	Extensions
	Noisy Data and Approximate-Lexis
	Scalable Methods for Hierarchy Inference
	Other Application Domains for Lexis
	More Realistic Extensions of Evo-Lexis Framework

	Conclusions
	Appendices
	Appendix A: Example of difference of node selection order in G-Lexis and G-Core

	References

