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SUMMARY 

Coral reefs are among the earth’s most biodiverse and productive ecosystems, but are 

undergoing precipitous decline due to coral bleaching and disease following thermal 

stress events, which are increasing in frequency and spatial scale.  These effects are 

exacerbated by local stressors such as overfishing and pollution, collectively causing an 

increasing number of reefs to shift from coral to macroalgal dominance.  These stressors 

can harm or kill corals through diverse mechanisms, including alterations in how corals 

interact with microorganisms.  By employing a variety of field sampling and field 

experimental approaches, I investigated consequences of local protection from fishing 

and coral versus macroalgal dominance of the benthos on coral survival, chemical 

defense, and microbiomes within paired algal dominated fished areas and coral 

dominated marine protected areas (MPAs) in Fiji. I demonstrate that i) coral larvae from 

a macroalgal dominated area exhibited higher pre-settlement mortality and reduced 

settlement compared to those from a coral dominated area, ii) juveniles planted into a 

coral dominated MPA survived better than those planted into a macroalgal dominated 

fished area and differential survival depended on whether macroalgae were immediately 

adjacent to juvenile coral, iii) corals possess chemical defenses toward the thermally-

regulated coral bleaching pathogen Vibrio coralliilyticus, but this defense is compromised 

by elevated temperature, iv) for a bleaching susceptible but ecologically important 

acroporid coral, anti-pathogen chemical defense is compromised when coral resides 

within macroalgal dominated reefs and this effect can be influenced by both the current 

and historic state of the reef. Effects on coral survival and chemical defense for 

individuals residing within coral versus macroalgal dominated areas largely coincided 

with nuanced differences in coral microbiomes (e.g., in microbiome variability and 

specific indicator bacterial taxa) but not with major shifts in microbiome composition. 
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These findings have implications for reef conservation and for understanding how coral-

microbe interactions will respond to the pressures of global change. 
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CHAPTER 1 
 

INTERGENERATIONAL EFFECTS OF MACROALGAE ON A REEF CORAL:  MAJOR 
DECLINES IN LARVAL SURVIVAL BUT SUBTLE CHANGES IN MICROBIOMES 
 
 
 

Abstract 

Tropical reefs are shifting from coral to macroalgal dominance, with macroalgae 

suppressing coral recovery, potentially via effects on coral microbiomes. Understanding 

how macroalgae affect corals and their microbiomes requires comparing algae- versus 

coral-dominated reefs without confounding aspects of time and geography. We 

compared survival, settlement, and post-settlement survival of larvae, as well as the 

microbiomes of larvae and adults, of the Pacific coral Pocillopora damicornis between an 

Marine Protected Area (MPA) dominated by corals versus an adjacent fished area 

dominated by macroalgae. Microbiome composition in adult coral, larval coral, and 

seawater did not differ between the MPA and fished area. However, microbiomes of 

adult coral were more variable in the fished area and Vibrionaceae bacteria, including 

strains most closely related to the pathogen Vibrio shilonii, were significantly enriched, 

but rare, in adult and larval coral from the fished area. Larvae from the macroalgae-

dominated area exhibited higher pre-settlement mortality and reduced settlement 

compared to those from the coral-dominated area. Juveniles planted into a coral-

dominated area survived better than those placed into a fished area dominated by 

macroalgae. Differential survival depended on whether macroalgae were immediately 

adjacent to juvenile coral rather than on traits of the areas per se. Contrary to our 

expectations, coral microbiomes were relatively uniform at the community level despite 

dramatic differences in macroalgal cover between the MPA (~2% cover) and fished 

(~90%) area. Reducing macroalgae may elicit declines in rare but potentially harmful 
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microbes in coral and their larvae, as well as positive intergenerational effects on 

offspring survival. 

Introduction  

Coral reefs support great biodiversity and provide critical ecosystem services 

(Cesar et al. 2003). They buffer coastal populations from storms, provide a primary 

source of protein for many island and coastal nations (Dalzell et al. 1996, Cesar et al. 

2003), and generate billions of dollars annually in tourism-related income (Cesar et al. 

2003). However, coral reefs are in rapid global decline, with coral cover decreasing by 

80% in the Caribbean since the 1970’s (Gardner et al. 2003, Jackson et al. 2014) and by 

>50% in the Pacific since the 1980’s (Bruno & Selig 2007, De’ath et al. 2012). Threats to 

reefs include overfishing, pollution, disease (Bellwood et al. 2004), thermal stress, and 

ocean acidification (Hoegh-Guldberg et al. 2007, Hughes et al. 2017). These stressors 

may directly harm corals, but may also indirectly lower coral health by allowing 

proliferation of competitive macroalgae (Hughes et al. 2010). Contact with algae has 

been linked to bleaching, disease, and tissue death in adult corals (Nugues et al. 2004, 

Rasher and Hay 2010), potentially harming coral through diverse mechanisms, including 

allelopathy, oxygen depletion, and destabilization of coral-associated microbial 

communities (microbiomes) (Rasher & Hay 2010, Barott & Rohwer 2012, Zaneveld et al. 

2016, Morrow et al. 2017). Furthermore, macroalgae can directly inhibit both settlement 

and survivorship of coral larvae (Kuffner et al. 2006, Hughes et al. 2007, Dixson et al. 

2014, Webster et al. 2015), often in a species-specific manner (Vermeij et al. 2009). 

Macroalgae may also disrupt microbiomes of coral larvae, but to our knowledge effects 

of macroalgae- versus coral-dominance of reefs on larval microbiomes or pre-settlement 

survival has not been investigated. Identifying the mechanisms and consequences of 
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coral-algae interactions is vital for understanding coral resilience under changing ocean 

conditions, as well as for creating effective conservation strategies.  

Coral microbiomes may play important roles in coral acclimation to variable 

ocean environments (Rosenberg et al. 2007, Krediet et al. 2013, Peixoto et al. 2017). 

For example, corals that maintain or acquire thermotolerant strains of the symbiotic alga 

Symbiodinium have a lower risk of bleaching and mortality in response to fluctuating 

water temperatures (Pettay et al. 2015), and disrupting coral microbiomes with 

antibiotics can increase tissue loss in response to temperature stress (Gilbert et al. 

2012). It is thus worrisome that microbial dysbiosis (i.e., a shift to higher abundances of 

harmful microbes or lower abundances of beneficial microbes) is becoming more 

common on degraded reefs (Dinsdale et al. 2008, Dinsdale & Rohwer 2011) and may 

render corals more susceptible to bleaching and mortality (Ritchie 2006, Harvell et al. 

2007, Rosenberg et al. 2007). 

Coral-macroalgae interactions on degraded reefs may drive dysbiosis, shifting 

the coral microbiome to an alternative state via mechanisms such as the production of 

algal allelochemicals (Morrow et al. 2012, Morrow et al. 2017), release of dissolved 

organic matter (Dinsdale & Rohwer 2011, Barott & Rohwer 2012, Haas et al. 2016), or 

transfer of harmful bacteria to corals interacting with algae (Nugues et al. 2004, Sweet et 

al. 2013, Pratte et al. 2017). Alternatively, changes in coral microbiomes in response to 

increasing algal cover could be a mechanism by which corals cope with algal 

competition or other biotic and abiotic stressors (Rosenberg et al. 2007).   

Comparisons of adjacent reef areas that vary in algal cover due to protection 

status provide unique opportunities to explore coral-algae-microbiome interactions in situ 

without the confounding effects of contrasts across large spatial or temporal scales. 

Marine Protected Areas (MPAs) that prohibit fishing are valuable conservation tools for 

maintaining or restoring reef health. Corals in “no take” MPAs benefit from enhanced 
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herbivore grazing that removes competing seaweeds (Mumby et al. 2007, Rasher et al. 

2013) or via reduced fishing-associated damage to corals that increases coral 

susceptibility to disease (Lamb et al. 2015, 2016). Healthy MPA corals may serve as a 

source of coral larvae to “rescue” degraded areas beyond reserve boundaries (Almany 

et al. 2009, McCook et al. 2010, Selig & Bruno 2010), but this rescue will depend upon 

survival of exported larvae during dispersal and on post-settlement survival if the larvae 

recruit to degraded reefs. Furthermore, ecosystem processes within MPAs, such as 

predation or herbivory, might also aid in conservation of microbiota required for coral 

health (Krediet et al. 2013), development (Vermeij et al. 2009, Tran & Hadfield 2011, 

Sneed et al. 2014), and ecosystem function (Ainsworth et al. 2010). By comparing 

islands that span ~2,000 km in the Pacific, reefs from populated islands were found to 

differ in reef fish biomass, abundances of fleshy algae, and benthic reef water 

microbiomes compared to reefs on unpopulated islands, suggesting that human use 

alters reef microbiomes (Dinsdale et al. 2008, Sandin et al. 2008, Kelly et al. 2014). 

Haas et al. (2016) also found positive correlations between fleshy algal cover and 

microbial abundance and community composition in benthic water across 60 reef sites 

spanning three ocean systems, while Zaneveld et al. (2016) found that herbivore 

exclusion plots had higher algal abundances and more variable coral microbiomes 

compared to plots with herbivores. However, to our knowledge, no studies have 

compared coral microbiomes in MPAs versus fished areas or investigated how 

microbiome composition may relate to survival of larvae produced from these areas. 

Such comparisons would help determine the extent to which coral microbiomes change 

across reefs dominated by corals versus macroalgae when not confounded by time or 

large distances.  

We evaluated the effects of differing macroalgal abundance (resulting from reef 

protection status) on coral microbiomes using reef areas separated by only 100 – 500 
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meters. We conducted experiments in long-term (>10 yr) MPAs and adjacent fished 

areas (two MPAs and two fished areas – one pair of sites for pre-settlement experiments 

and one pair of sites for post-settlement experiments) along the southwest coast of Viti 

Levu, Fiji. Corals within the fished areas experience 5 to 15-fold more frequent and 23 to 

67-fold more extensive algal contact (measured by proportion of colony perimeter in 

contact with macroalgae) than those in adjacent MPAs (Bonaldo & Hay 2014), allowing 

us to investigate how chronic interactions with macroalgae affect microbiomes of adult 

coral and their offspring under natural conditions and how this relates to juvenile coral 

survivorship. Specifically, we asked whether: 1) coral and seawater microbiome 

composition differed between a coral-dominated MPA and an adjacent fished area, 2) 

potentially harmful microbial taxa were less abundant in coral from the MPA compared to 

the fished area, 3) larvae from the MPA experience higher survivorship prior to 

settlement compared to larvae from the fished area, 4) post-settlement juvenile coral 

experience higher survivorship in an MPA compared to a fished area, and 5) higher 

juvenile survivorship depends on settlement on substrate free of macroalgae. 

Materials and Methods 

Study sites and focal coral 

We focused on the coral Pocillopora damicornis because it occurs commonly in 

both MPA and fished areas and produces brooded larvae that could be obtained easily. 

Our study sites were shallow back-reef lagoons of 1-3 m water depth within two, small 

(0.5 – 0.8 km2), locally managed MPAs and their adjacent fished areas at Vatu-o-lalai 

(18°12.26’ S, 177°41.26’ E) and Votua villages (18°13.08’ S, 177°42.59’ E) along the 

southwest coast of Viti Levu, Fiji. The MPA was established in 2002 at Vatu-o-lalai and 

in 2003 at Votua. These sites are approximately three kilometers apart and the MPA and 

fished area at each site experience similar physical regimes as judged by algal and coral 

growth rates when relieved of biotic pressures (Rasher et al. 2012, Dell et al. 2016, 
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Clements et al. 2018). All sites experience comparable flushing of reef water, with 

oceanic water flowing over the reef crest at high tide and washing out through deep 

channels at low tide. The MPAs have high coral cover (~57%) and low macroalgal cover 

(< 2%) on hard substrates; the fished areas have low coral cover (4-16%) and high 

macroalgal cover (50-90%) on hard substrates (Rasher et al. 2013). Consequently, coral 

contact with macroalgae is 5-15 times more frequent and 23-67 times more extensive in 

the fished areas than in the MPAs (Bonaldo & Hay 2014). MPAs also have 2-3 times 

higher diversity and 7-17 times higher biomass of herbivorous fishes than fished areas 

(Rasher et al. 2013). 

Coral collection and maintenance of coral larvae 

Between 29 October and 6 November 2014 (1-10 days before the full moon), 

portions from individual P. damicornis colonies were collected from the MPA and 

adjacent fished area at Votua village (12 colonies per area, collected with permissions 

from the Korolevu-i-Wai District Environment Committee). Collection locations for MPA 

versus fished area coral were separated by ~100 to 500 m. Each coral was placed in a 

separate bucket with approximately 19 liters of water from the respective collection site 

and monitored at dusk for larval release. Four colonies from the MPA and four from the 

fished area released larvae at dusk on the day they were collected. To characterize the 

microbiome of larvae from the MPA and fished area, we collected 10 larvae per colony 

upon release. Each larva was rinsed 3 times in 0.22 μm filter-sterilized (Corning 

disposable vacuum filter/storage systems 0.22 μm cellulose acetate 45 mm filter, 

ThermoFisher Scientific, Waltham, MA) seawater (FSW), preserved separately in 

RNAlater (ThermoFisher Scientific, Waltham, MA), and stored at -20º C. We 

simultaneously collected four clippings from each adult coral colony that released larvae 

and preserved these in the same manner.  
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Of the eight colonies used for microbiome analysis, four colonies from the MPA 

and three from the fished area produced sufficient numbers of larvae (> 100 per colony) 

for use in subsequent larval survival and settlement experiments (see text below and 

Figure A.1 for a diagram of the experimental design). These larvae were pooled by area 

(MPA or fished area) and maintained in 600 mL polystyrene plastic containers filled with 

400 mL of unfiltered water collected from a deep channel on the back reef that is open to 

the outer reef. Larvae of P. damicornis are packed with Symbiodinium and can remain 

viable for 100 days in the lab with water changes every 2-3 days (Richmond 1987, 

Isomura & Nishihira 2001). We changed water daily until the start of all experiments 

(which were all run simultaneously). Larval age at the start of experiments ranged from 

7-16 days due to larval release occurring on different days. Any inactive larvae that 

failed to exhibit swimming behavior after three gentle pipette aspirations in the plastic 

dish were not used in any experiments. All larvae were transferred with sterile wide bore 

pipette tips (Axygen 1000 µL universal pipette tips: wide bore, ThermoFisher Scientific, 

Waltham, MA).   

DNA extractions and amplicon sequencing of the 16S gene 

Sequencing of the 16S rRNA gene was used to compare microbiome 

composition between MPA and fished area coral and seawater. DNA was extracted from 

coral larvae and adults using the PowerSoil DNA extraction kit and from water samples 

(polyethersulfone filters) using the PowerWater DNA extraction kit (both kits from MoBio 

Laboratories, QIAGEN, Carlsbad, CA). To account for intra-colony variation, DNA from 

five larvae and four clippings of adult coral branches were extracted individually per 

colony. For the larval survival experiment (see below), DNA from two larvae per dish 

was extracted individually (with one exception when only one larva was alive at the end 

of the experiment). Additionally, for each sample, we centrifuged the residual RNAlater 

solution (10,000 rpm, 10 min) to collect any dissociated cells, re-suspended the resulting 
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pellet in solution C1 (MoBio Laboratories, QIAGEN), and added these cells to the power 

bead tube. PCR reactions were performed in triplicate with dual-barcoded primers (F515 

and R806) targeting the V4 region of the 16S rRNA gene, following standard protocols 

described in Kozich et al. (2013). PCR reactions included 45 μL of Platinum PCR 

SuperMix (Life Technologies, Thermo Scientific, Waltham, MA), 3 μL of template DNA 

(of 100 μL total DNA elution volume), and 1 μL each of forward and reverse primer. The 

thermal cycling protocol was as follows: initial denaturation at 94°C (3 min), followed by 

35 cycles of denaturation at 94°C (45 sec), primer annealing at 50°C (45 sec) primer 

extension at 72°C (90 sec), and a final extension at 72°C (10 min). Amplicons were 

cleaned and DNA concentrations were normalized using SequalPrep plates 

(ThermoFisher Scientific, Waltham, MA). Amplicons were then pooled at equimolar 

concentrations and sequenced on Illumina’s MiSeq platform using a 500 cycle kit (250 X 

250 nt paired end reads) spiked with 10% PhiX to increase nucleotide diversity. Raw 

sequence reads can be found under NCBI bioproject number PRJNA382809. 

Amplicon data analyses 

We used Trim Galore! 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) to demultiplex, trim 

(100 bp cutoff length), and filter low-quality reads (Phred score cutoff 25), and FLASH 

(Magoč & Salzberg 2011) to merge paired-end reads (read length 250 bp, fragment 

length 300, fragment standard deviation 30). QIIME (Caporaso et al. 2010) was used to 

assess community composition based on merged reads. Briefly, chimeric sequences 

were identified and removed in QIIME using USEARCH (Edgar 2010). Amplicons were 

clustered into Operational Taxonomic Units (OTUs) at 97% similarity using the UCLUST 

algorithm (Edgar 2010) in open-reference OTU picking. The Greengenes database 

(McDonald et al. 2012, Werner et al. 2012) was used to assign taxonomy to OTUs. 

Chloroplast-affiliated OTUs were removed from downstream analyses. A total of 
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1,066,315 sequences (from 6,012,330 originally) remained after quality filtering and 

removal of chimeras and chloroplast sequences. The number of sequences per sample 

ranged from 235 to 20,812 for the initial collection of coral larvae and adults, 970 to 

46,941 for coral larvae maintained in MPA or fished area water, and 31,816 to 59,734 for 

water samples. To avoid confounding sequencing depth with biological or environmental 

variables, as discussed recently in Weiss et al. (2017), diversity analyses were 

performed using a uniform sequence count identified as the highest count permitted 

without losing any replicates for a given experiment: 1,650 for coral larvae, coral adults, 

and water and 1,175 for larvae maintained in MPA or fished area water, and water 

samples. OTU abundances from each non-independent subsample were collapsed on 

the mean for a given independent replicate to avoid pseudoreplication (where coral 

colonies are spatially segregated and confounded within factor: area of origin) using the 

QIIME script collapse_samples.py. All of the following analyses were performed on the 

mean OTU abundance for each replicate. 

Primer E (Clarke 1993) was used to perform principal coordinates analysis 

(PCO) on Bray-Curtis dissimilarity matrices from OTU tables based on 97% similarity 

clusters of 16S rRNA gene sequences. Statistical significance of a priori groupings were 

tested with PERMANOVA and PERMDISPERSION within Primer E v 7. 

Two-factor ANOVA (factor 1: area of origin, factor 2: life stage), implemented via 

the aov function within the lm package in RStudio v 3.0, was used to test for differences 

in the relative abundances of microbial taxa among adult and larval coral using 

proportion data. When groups did not meet the parametric assumption of 

homoscedasticity, we applied a permutation ANOVA, via the aovp function within the lm 

package of RStudio v 3.0, on proportion data. We first included only those taxa (Family 

level) contributing to 2% or greater relative abundance within at least one sample group, 

using data from coral larvae and adults from the MPA and fished area, collected when 
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larvae were initially released. Taxa contributing < 2% were pooled to generate ‘Low 

Abundance Bacteria’ and ‘Low Abundance Archaea’ datasets that were also tested by 

two-factor permutation ANOVA (factor 1: area of origin, factor 2: life stage). A Bonferonni 

correction was implemented to account for multiple comparisons (critical p-value p < 

0.004). Upon detecting large differences between adult and larval coral microbial taxa, 

we chose to also conduct an additional evaluation of the effects of area of origin on 

relative abundances of taxa contributing to 2% or greater, ‘Low Abundance Bacteria’ 

pooled, and ‘Low Abundance Archaea’ pooled with a one-factor (area of origin) ANOVA 

or permutation ANOVA (if data were not homoscedastic) on proportion data for adult 

coral and larval coral separately. This additional testing increases our risk of a type one 

statistical error (discussed in the context of our findings in the results section below) but 

allowed us to examine our samples for any microbial taxa that may differ by area of 

origin within each coral life stage, while reducing the number of factors and contrasts 

involved in the analyses. 

We also tested for indicator OTUs of coral from the MPA and fished area, 

analyzing adult coral and larval coral separately with multi-level pattern analysis within 

the indicspecies package in RStudio v 3.0.  

Two-factor ANOVA was also used as above to test for differences in the relative 

abundances of potential pathogens among sample groups. OTU tables (species level) 

were screened for bacterial groups that have been described as coral pathogens, both 

those verified with Koch’s postulates and those that have not been verified (see the 

following reviews for described coral pathogens: Harvell et al. 2007, Rosenberg et al. 

2007, Rosenberg & Kushmaro 2011). We detected bacterial OTUs (97% similarity 

clusters) most closely related to Vibrio shilonii, a bacterium previously shown to cause 

disease in Oculina patagonica (Kushmaro et al. 2001) and closely related to bacterial 

strains that cause bacterial bleaching (Ben-Haim et al. 2003b, Harvell et al. 2007) and 
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white syndromes (Sussman et al. 2008) in P. damicornis and other coral species. These 

were the only OTUs closely affiliated with a known coral pathogen, with the exception of 

an OTU most closely related to Serratia marcescens (posited coral pathogen of coral 

species in the Caribbean, Harvell et al. 2007), which was present in only 1 adult sample 

at 0.06% relative abundance. We therefore tested for differences in the abundances of 

OTUs identified as belonging to the Vibrionaceae family, and to V. shilonii specifically 

(based upon Greengenes classification) in adults and larvae (factor 1: area of origin, 

factor 2: life stage).  

Larval survivorship in MPA or fished area water 

To test for the effect of water from the MPA versus fished area on larval 

survivorship before settlement, MPA and fished area larvae were aliquoted in a full 

factorial design into 600 mL polystyrene dishes with 400 mL unfiltered water collected 

~1-2 meters above the benthos daily from the MPA or fished area and used immediately 

in water changes. There were 10 replicate dishes per level of each factor (factor 1: larval 

area of origin; factor 2: water area of origin), dishes were randomly interspersed, and 

each replicate dish held 10 larvae. To maintain similar conditions between experiments 

and to reduce the influence of ‘home reef’ (i.e., enhanced larval preferences for or 

survival on or within substrates or water from the site where the parent coral was 

collected) effects on larval responses (survival or settlement), we collected water for 

both experiments from the MPA and fished area of Vatu-o-lalai village, approximately 3 

km from where adults that released these larvae were collected at Votua village. Water 

was collected approximately 1-2 meters above the benthos and changed daily for the 

first five days of the experiment. A 250 mL aliquot of this freshly collected water was 

filtered through a 0.22 μm polyethersulfone filter each day, and the filter was preserved 

in RNALater for microbiome analysis (i.e., non-filtered water was used to hold the larvae, 

but the filter was used to assess the water’s microbiome). No settlement substrate was 
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added during the experiment, and larvae avoid settling on the polystyrene surfaces of 

the dishes (KB Ritchie, personal communication). We recorded metamorphosis (on the 

dish or in the water column, which was rare) daily for six days and assessed survivorship 

at the end of the six-day experiment. Larvae were considered alive if they exhibited 

swimming behavior after three gentle pipette aspirations within the dish. Larvae alive at 

the end of the experiment were collected (n = 10 independent samples per level of each 

factor in our design, i.e., dishes considered independent, not individual larvae from 

within dishes), rinsed three times in filter-sterilized seawater, and preserved in RNAlater 

individually for microbiome analysis. Following DNA extraction and sequencing of the 

16S gene, MPA and fished area larvae maintained in MPA or fished area water were 

screened for potential coral pathogens. OTUs identified as V. shilonii were the only 

hypothesized coral pathogens detected in these samples. We tested for differences in 

the abundance of taxa identified as V. shilonii and Vibrionaceae with a two-factor 

ANOVA via the aov function within the lm package of RStudio v 3.0 (factor 1: larval area 

of origin, factor 2: water area of origin). Lastly, we tested for differences in the 

abundance V. shilonii and Vibrionaceae in water samples by a one-factor ANOVA 

(factor: water area of origin). Primer E (Clarke 1993) was used to perform principal 

coordinates analysis (PCO) on Bray-Curtis dissimilarity matrices from OTU tables based 

on 97% similarity clusters of 16S rRNA gene sequences. Statistical significance of a 

priori groupings were tested with PERMANOVA within Primer E v 7. 

Settlement behavior and post-settlement survivorship of MPA and fished area 

larvae offered MPA and fished area substrates 

To test for the effects of MPA vs. fished area substrates on larval settlement and 

survivorship, we set up a full-factorial experiment with MPA and fished area larvae 

offered coral rubble from either the MPA or the fished area. To prevent confounding 

home reef with MPA vs. fished area effects, we collected rubble pieces from the MPA 
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and fished area at Vatu-o-lalai village (approximately 3 km from sites where adult 

colonies were collected) and used these in settlement assays with larvae from the MPA 

and fished area at Votua village. Rubble pieces were similar in size and collected from 

haphazard locations throughout the MPA and fished area. All rubble collected from the 

MPA was naturally free of macroalgal fouling, whereas rubble collected from the fished 

area was either fouled with some macroalgae (characteristic of the benthos in the fished 

area - Rasher et al. 2013, Bonaldo & Hay 2014) or free of fouling. All three types of 

substrate were fouled with comparable amounts of CCA and short (< 0.5 cm) turf. 

Crustose coralline algae (CCA) may stimulate settlement of coral larvae; therefore, we 

also quantified CCA cover on rubble from each location. Photos of rubble collected from 

the MPA and fished area were analyzed with Coral Point Count Software (Nova 

Southeastern University, Kohler & Gill 2006). CCA abundances between the three types 

of rubble collected (MPA rubble without macroalgae, fished area rubble without 

macroalgae, and fished area rubble with macroalgae) were tested with a  one-factor 

ANOVA in JMP Pro 13 software (SAS Institute Inc.). Rubble fouled with macroalgae had 

short algal fronds ~0.5-4 cm in height. These pieces of rubble were used to test for the 

mean effect of naturally occurring multi-species assemblages of macroalgae on larval 

settlement and post-settlement survival. Water for these experiments was collected from 

the MPA and fished area at Vatu-o-lalai simultaneously with the rubble and then daily 

thereafter for use in the larval settlement experiments described below.  

         For the first settlement experiment, larvae from MPA and fished area adults were 

separately aliquoted to 600mL polystyrene plastic dishes (10 larvae per dish; n = 20 

dishes per level of each factor, dishes randomly interspersed) and offered only MPA 

substrate (without macroalgae) with 400 mL of unfiltered water from the MPA or only 

fished area substrate (with macroalgae) with 400 mL of unfiltered water from the fished 

area, with daily water changes. All water used in experiments was collected from ~1-2 
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meters above the benthos. These two substrates were chosen for the first experiment 

because they are typical of the MPA vs. fished area site differences (Rasher et al. 2013, 

Bonaldo & Hay 2014). Within each replicate, larvae could either settle on the added 

substrate or remain in the water column. Settlement was recorded at 24 and 48 h. After 

48 h, all non-settled larvae were removed and the settled coral were held on their 

substrate in the lab. The effect of settlement substrate on post-settlement survival was 

assessed on day four following the 48 h settling period; surviving juveniles were then 

out-planted to the reef. 

Juveniles on MPA rubble were out-planted to the MPA and juveniles on fished 

area rubble were out-planted to the fished area. To reduce the possibility of home reef 

effects confounding MPA vs. fished area effects, juvenile coral were out-planted to MPA 

and fished area sites at Vatu-o-lalai village approximately 3km from Votua, where the 

fragments of adult coral colonies had initially been collected. Zip-ties were used to attach 

the rubble to u-nails driven into the reef bottom, with each rubble piece containing 4-9 

juveniles at the time of out-planting. For each replicate, similarly sized pieces of control 

rubble (without any juvenile coral) were attached to the benthos in the same manner as 

above to test for natural coral recruitment to rubble (MPA rubble without macroalgae in 

the MPA and fished area rubble with macroalgae in the fished area) that might be 

confused with, and falsely increase survivorship rates of, our out-planted juveniles. 

Survivorship of out-planted juveniles and natural recruitment to control pieces of rubble 

were recorded after four and twenty-six days on the reef (when experimental coral were 

eight and thirty days post-settlement). Recruitment to control rubble was low in each 

area (0-0.1 recruit/replicate), and average recruitment to control rubble was deducted 

from the appropriate treatment before calculating the proportion of surviving juveniles at 

each time-point. Across all treatment combinations, nine replicates were lost due to 

rubble becoming unattached from the benthos over 26 days on the reef. 
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Differences between survivorship of juvenile coral on MPA substrate planted in 

the MPA vs. fished area substrate planted in the fished area could be due to differences 

in macroalgal abundance on the settlement substrate or due to other unrecognized 

physical or biotic differences between the MPA and fished area sites (hereafter referred 

to as ‘site’ effects). To test for a site effect vs. the effect of macroalgae on the settlement 

rubble, we performed a second experiment to test for settlement of MPA larvae (too few 

larvae remained from fished area adults to conduct this experiment with those larvae) on 

similarly sized rubble from either i) the MPA (without macroalgae), ii) the fished area but 

without macroalgae, or iii) the fished area but with macroalgae (n = 14 - 15 for each 

treatment). Experimental procedures were the same as in the settlement experiment. 

Briefly, larvae from MPA adults were aliquoted to 600 mL polystyrene plastic dishes with 

400 mL of unfiltered water and substrate from either the MPA or fished area (10 larvae 

per dish, dishes randomly interspersed). Water changes were performed daily with 

freshly collected unfiltered water from the MPA or fished area collected ~1-2 meters 

above the benthos. Settlement was assessed at 24 and 48 hours. Survivorship of newly-

settled-juvenile coral was assessed four days after the initial 48-hour settlement 

experiment. Juvenile coral that had settled on these substrates were then out-planted 

into the field (MPA rubble to the MPA site and fished area rubble to the fished area site) 

using the procedures described above. Again, natural recruitment to MPA or fished area 

control rubble at both sites was low (0.0-0.07 recruit/replicate) and was deducted before 

calculating the proportion of surviving juvenile coral. Four replicates planted in the MPA 

became detached and were lost by day 26. No replicates from the fished area were lost. 

Statistical analyses of larval behavior and recruit survivorship 

JMP Pro 12 (SAS Institute Inc.) was used to analyze larval metamorphosis, larval 

settlement, and larval and juvenile survivorship. Larval metamorphosis and survivorship 

were analyzed by a two-factor ANOVA on proportion data. Settlement was analyzed with 
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repeated measures ANOVA on square root transformed proportion data. Juvenile coral 

survivorship was analyzed with repeated measures ANOVA on proportion data. All data 

were homoscedastic; when needed, square root transformations were performed to 

improve normality. 

Results 

Coral and water microbiomes from coral-dominated Marine Protected Areas 

(MPAs) and macroalgae-dominated fished areas 

Microbiome community composition of adult coral, larvae, and water did not differ 

as a result of collection site (MPA or fished area), but did differ between sample types 

(Figure 1.1A PERMANOVA sample type p = 0.001, area of origin p = 0.426, sample type 

* area of origin p = 0.803). Water and larval microbiomes were more diverse than adult 

microbiomes (Figure 1.1B, number of OTUs: sample type p < 0.001, area of origin p = 

0.764, sample type * area of origin p = 0.909; Figure 1.1C, Shannon diversity index: 

sample type p < 0.001, area of origin p = 0.539, sample type * area of origin p = 0.282), 

despite under-sampling water microbial communities at a rarefaction depth of 1,650 (see 

rarefaction curve in supplementary Figure A.2). Findings were similar if water samples 

were excluded from the analyses; microbial community composition was dictated by life 

stage (adult or larvae), not by the area (MPA vs. fished area) (Figure A.3B, 

PERMANOVA life stage p = 0.001, area of origin p = 0.338, life stage * area of origin p = 

0.584). Findings were also similar whether based on the mean for each independent 

replicate colony or all subsamples from each independent colony (Figure A.3A and 

A.3B). However, differences detected with PERMANOVA are partially due to dispersion 

differences among groups, with microbiome composition exhibiting lower dispersion 

among MPA adults compared to dispersion among fished area adults, or to larvae from 

either area (Figure A.3B PERMDISP area of origin p = 0.743, life stage p = 0.002, area 

of origin * life stage p = 0.013, see Table A.1 for pairwise comparisons). We also tested 



 17 

for area of origin effects using adults alone and larvae alone and did not detect effects in 

either analysis (adults p = 0.246; larvae p = 0.588, Monte Carlo PERMANOVA, Figure 

A.3C-D).  

We also compared each common taxonomic group that comprised ≥ 2% relative 

abundance and the pooled group of uncommon bacterial and archaeal taxa (< 2% 

relative abundance) between MPA and fished area sites (Figure 1.1D, Table A.2.1 – 

A.2.2, and A.3.1 – A.3.2). None of these taxonomic groups differed significantly between 

MPA and fished area sites and this was true whether adults and larvae were tested 

together (2-factor ANOVA) or separately (1-factor ANOVA), despite biasing our analyses 

toward a higher probability of a false positive through multiple statistical tests on these 

data sets. In contrast, certain taxonomic groups differed notably in relative abundance 

between adults and larvae. Endozoicimonaceae were enriched 13-fold in adults 

compared to larvae (~ 90% vs ~ 7%; two-factor ANOVA source area p = 0.722, life stage 

p < 0.001, source area * life stage p = 0.113), whereas larvae contained 58-243 fold 

more Chromatiales (p < 0.001), Methylobacteriaceae (p = 0.001), Sphingomonadaceae 

(p < 0.001), Pseudomonadaceae (p = 0.003), and Helicobacteraceae (p = 0.002) (Table 

A.2.1 and A.2.2). Larvae were also enriched 8-fold in low abundance bacteria (p = 

0.001) and 90-fold in low abundance archaea (p = 0.002) compared to adult coral (Table 

A.2.1 and A.2.2).  

 

 

 

 

 

 



 18 

 

�>ÀÊ
V��Ê*À�}Ê-iÀÊxn�\Ê�Çq££{]ÊÓä£n£ä{

Lo
w

 a
bu

nd
an

ce
 b

ac
te

ria
 

Lo
w

 a
bu

nd
an

ce
 a

rc
ha

ea
V

ib
rio

na
ce

ae
P

se
ud

oa
lte

ro
m

on
ad

ac
ea

e
Th

io
ha

lo
rh

ab
da

ce
ae

P
se

ud
om

on
ad

ac
ea

e
M

or
ax

el
la

ce
ae

O
ce

an
os

pi
ril

la
ce

ae
H

al
om

on
ad

ac
ea

e
E

nd
oz

oi
ci

m
on

ac
ea

e
E

nt
er

ob
ac

te
ria

ce
ae

A
lte

ro
m

on
ad

ac
ea

e
C

hr
om

at
ia

le
s

H
el

ic
ob

ac
te

ra
ce

ae
C

om
am

on
ad

ac
ea

e
S

ph
in

go
m

on
ad

ac
ea

e
P

el
ag

ib
ac

te
ra

ce
ae

R
ho

do
ba

ct
er

ac
ea

e
M

et
hy

lo
ba

ct
er

ia
ce

ae
A

lp
ha

pr
ot

eo
ba

ct
er

ia
B

ac
ill

ac
ea

e
S

yn
ec

ho
co

cc
ac

ea
e

C
hi

tin
op

ha
ga

ce
ae

W
ee

ks
el

la
ce

ae
Fl

av
ob

ac
te

ria
ce

ae
C

ry
om

or
ph

ac
ea

e
A

ci
di

m
ic

ro
bi

al
es

U
na

ss
ig

ne
d 

ta
xa

A

B
A C

345 2 1 0

Number of OTUs

40
0

30
0

20
0

10
0 0

60
0

50
0

N
 =

 8
–1

3 
pe

r l
ev

el
 o

f e
ac

h 
fa

ct
or

  
S

am
pl

e 
ty

pe
 p

 <
 0

.0
01

 
A

re
a 

of
 o

rig
in

 p
 =

 0
.7

64
 

S
am

pl
e 

ty
pe

 *
 a

re
a 

of
 o

rig
in

 p
 =

 0
.9

09
 

A

B

C

6

Shannon diversity index

C

B

N
 =

 8
–1

3 
pe

r l
ev

el
 o

f e
ac

h 
fa

ct
or

  
S

am
pl

e 
ty

pe
 p

 <
 0

.0
01

 
A

re
a 

of
 o

rig
in

 p
 =

 0
.5

39
 

S
am

pl
e 

ty
pe

 *
 a

re
a 

of
 o

rig
in

 p
 =

 0
.2

82
 

80 60 40 20 0 

10
0

D

Relative abundance (%)

A
re

a 
of

 o
rig

in

M
PA

Fi
sh

ed
 a

re
a

A
re

a 
of

 o
rig

in

M
PA

Fi
sh

ed
 a

re
a

La
rv

ae
W

at
er

A
du

lt

La
rv

ae
W

at
er

A
du

lt
Fi

sh
ed

-a
re

a 
ad

ul
t

M
PA

la
rv

ae
Fi

sh
ed

-a
re

a 
la

rv
ae

M
PA

w
at

er
Fi

sh
ed

-a
re

a 
w

at
er

M
PA

ad
ul

t

W
at

er
W

at
er

–2
0

–4
0

–6
0

60

PCO2 (30.4% of total variation)

M
PA

 A
du

lt 
co

ra
l

La
rv

al
 c

or
al

Fi
sh

ed
 A

re
a

A
du

lt 
co

ra
l

La
rv

al
 c

or
al

20
0

40
–2

0
–4

0
–6

0
P

C
O

1 
(3

7.
7%

 o
f t

ot
al

 v
ar

ia
tio

n)

N
 =

 8
–1

3 
pe

r l
ev

el
 o

f e
ac

h 
fa

ct
or

  
S

am
pl

e 
ty

pe
 p

 =
 0

.0
01

 
A

re
a 

of
 o

rig
in

 p
 =

 0
.4

26
 

S
am

pl
e 

ty
pe

 *
 a

re
a 

of
 o

rig
in

 p
 =

 0
.8

03
 

02040

S
am

pl
e 

ty
pe

 

S
am

pl
e 

ty
pe

 
S

am
pl

e 
ty

pe
 a

nd
 a

re
a 

of
 o

rig
in

�
�}
°Ê£
°Ê­
�
®Ê*


"
Ê>
�
`
Ê*


,
�
�
 
"
6
�
Ê>
�
>�
ÞÃ
�Ã
Ê�
vÊ	
À>
Þ�


Õ
ÀÌ
�Ã
Ê`
�Ã
Ã�
�
��>
À�
ÌÞ
Ê�
>Ì
À�
ÝÊ
�v
ÊV
�À
>�
ÊP

oc
ill

op
or

a 
d

am
ic

or
n

is
�>
ÀÛ
>i
Ê>
�
`
Ê>
`
Õ
�Ì
ÃÊ
>�
`
ÊÜ
>Ì
iÀ
Ê�
�V
À�
L
��
�
iÃ
ÊvÀ
��
ÊÌ�
iÊ
�
*�

>�
`
Êv�
Ã�
i`
Ê>
Ài
>°
Ê­	
®Ê"
/
1
ÊÀ
�V
�
�
iÃ
ÃÊ
��
ÊV
�À
>�
Ê>
�
`
ÊÜ
>Ì
iÀ
ÊÃ
>�
«
�i
ÃÊ
­�
i>
�
Ế
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Indicator OTU analysis on coral from the MPA and fished area did not find any 

OTU that was enriched in MPA or fished area adults. However, two OTUs are indicative 

of fished area larvae. An OTU classified as Ruminococcus gnavus within the family 

Lachnospiraceae, and an unclassified OTU within the family Lachnospiraceae were 

found to have high specificity (100% and 91%, respectively, of the reads for each OTU 

were found in fished area larvae) and high fidelity (each of these OTUs were found in 

100% of fished area larvae). 

         OTUs classified as Vibrio shilonii (at 97% clustering; see discussion below 

regarding limitations of 16S-based classification of microbial species) were the only 

potential coral pathogens in more than one of our 16 coral replicates. We did not detect 

V. shilonii in any our MPA coral at a sampling depth of 1,650; however, it occurred at low 

(< 1%), but significantly higher, relative abundances in our fished area coral (Figure 

1.2A, Table A.4, two-factor ANOVA coral area of origin p = 0.009, life stage p = 0.116, 

coral area of origin * life stage p = 0.116). We also detected higher abundances of taxa 

within the Vibrionaceae family in fished area versus MPA coral, especially in larvae 

(Figure 1.2B, Table A.4, two-factor ANOVA coral area of origin p = 0.003, life stage p = 

0.041, coral area of origin * life stage p = 0.234). Vibrionaceae were not detected on 

MPA adults but were detected at low (mean + SE; 0.13 + 0.13%) abundances on their 

larvae. We detected low abundances of V. shilonii in both MPA (0.32 + 0.12%) and 

fished area (0.53 + 0.14%) water, with these values not differing significantly (Table A.4, 

p = 0.269, n = 5). The abundances of Vibrionaceae also did not differ significantly 

between MPA and fished area water (Table A.4, 2.08 + 0.66% vs. 0.93 + 0.39%, 

respectively, p = 0.898, n = 5). 
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Figure 1.2: Abundances and two-factor ANOVA analyses of Vibrio shilonii (A) and taxa 
within the family Vibrionaceae (B) in corals (adults and larvae) from the MPA and fished 
area.  
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Larval microbiomes, survivorship, settlement, and post-settlement survival 

Despite the similarity of coral microbiomes between the coral-dominated MPA 

and macroalgae-dominated fished sites, when held in the lab for six days in MPA or 

fished area water, survivorship of MPA larvae was 94% regardless of water source while 

survivorship of fished area larvae was significantly lower – only 26%, when in fished 

area water and 66% when in MPA water (Figure 1.3A; two-factor ANOVA, Tukey HSD 

post-hoc analysis; larval area of origin p < 0.001, water area of origin p = 0.008, larval 

area of origin * water area of origin p = 0.008). Larval metamorphosis (in the water 

column or on the plastic dish) did not bias these results, as < 1% of individuals 

underwent metamorphosis in any treatment, and this percentage did not differ 

significantly among treatments (two-factor ANOVA larval area of origin p = 0.332, water 

area of origin p = 0.332, larval area of origin * water area of origin p = 0.332). 

When comparing the microbiomes of larvae that survived the 6-day experiment, 

we did not detect differences among larvae from the fished area or the MPA when 

maintained in water from the fished area or from the MPA (Figure 1.3B: PERMANOVA 

larval area of origin p = 0.069, water area of origin p = 0.197, larval area of origin * water 

area of origin p = 0.492), nor between the MPA and fished area water in which the 

larvae were held (Figure 1.3C; p = 0.869). The only suggested coral pathogens found on 

larvae in this experiment were OTUs classified as Vibrio shilonii. The mean relative 

abundance (+ SE) of V. shilonii on MPA larvae was 0.0 + 0.0% for larvae held in MPA 

water and 0.01 + 0.01% for larvae in fished area water (Table A.4). V. shilonii 

abundance on fished area larvae was 4.16 + 4.14% for larvae in MPA water and 0.28 + 

0.17% for larvae in fished area water (Table A.4). These abundances did not differ 

significantly among treatments (two-factor ANOVA larval area of origin p = 0.177, water 

area of origin p = 0.551, larval area of origin * water area of origin p = 0.495). We 

detected low abundances of V. shilonii in both MPA (0.32 + 0.12%) and fished area 
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(0.53 + 0.14%) water (Table A.4), with these values not differing (p = 0.269, n = 5). 

Furthermore, the abundance of Vibrionaceae as a group did not differ significantly 

between MPA and fished area water (Table A.4, 2.08 + 0.66% vs. 0.93 + 0.39%, 

respectively, p = 0.898, n = 5).  
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Figure 1.3: A) Survival and two-factor ANOVA analysis of larvae (mean + SE) from the 
MPA and fished area maintained in MPA or fished area water for six days (n = 10 per 
level of each factor). Letters above bars indicate significant groupings by Tukey HSD 
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�*�Ê�ÀÊv�Ã�i`�>Ài>ÊÜ>ÌiÀ]ÊÃÕÀÛ�Û�ÀÃ��«Ê�vÊ�*�Ê�>À�
Û>iÊÜ>ÃÊ�{¯ÊÀi}>À`�iÃÃÊ�vÊÜ>ÌiÀÊÃ�ÕÀViÊÜ���iÊÃÕÀ�
Û�Û�ÀÃ��«Ê �vÊ v�Ã�i`�>Ài>Ê �>ÀÛ>iÊ Ü>ÃÊ Ã�}��v�V>�Ì�Þ
��ÜiÀp���ÞÊ ÓÈ¯Ê Ü�i�Ê ��Ê v�Ã�i`�>Ài>Ê Ü>ÌiÀÊ >�`
ÈÈ¯ÊÜ�i�Ê��Ê�*�ÊÜ>ÌiÀÊ­��}°ÊÎ�]ÊÓ�v>VÌ�ÀÊ� "6�]
/Õ�iÞ½ÃÊ�-�Ê«�ÃÌ���VÊ>�>�ÞÃ�ÃÆÊ�>ÀÛ>�Ê>Ài>Ê�vÊ�À�}��
« �Êä°ää£]ÊÜ>ÌiÀÊ>Ài>Ê�vÊ�À�}��Ê« rÊä°ään]Ê�>ÀÛ>�Ê>Ài>
�vÊ �À�}��Ê �Ê Ü>ÌiÀÊ >Ài>Ê �vÊ �À�}��Ê « rÊ ä°ään®°Ê �>ÀÛ>�
�iÌ>��À«��Ã�ÃÊ­��ÊÌ�iÊÜ>ÌiÀÊV��Õ��Ê�ÀÊ��ÊÌ�iÊ«�>ÃÌ�V
`�Ã�®Ê`�`Ê��ÌÊL�>ÃÊÌ�iÃiÊÀiÃÕ�ÌÃ]Ê>ÃÊ�£¯Ê�vÊ��`�Û�`Õ>�Ã
Õ�`iÀÜi�ÌÊ�iÌ>��À«��Ã�ÃÊ��Ê>�ÞÊÌÀi>Ì�i�Ì]Ê>�`ÊÌ��Ã
«iÀVi�Ì>}iÊ`�`Ê��ÌÊ`�vviÀÊÃ�}��v�V>�Ì�ÞÊ>���}ÊÌÀi>Ì�
�i�ÌÃÊ ­Ó�v>VÌ�ÀÊ � "6�\Ê �>ÀÛ>�Ê >Ài>Ê �vÊ �À�}��Ê « r
ä°ÎÎÓ]ÊÜ>ÌiÀÊ>Ài>Ê�vÊ�À�}��Ê« rÊä°ÎÎÓ]Ê �>ÀÛ>�Ê>Ài>Ê�v
�À�}��Ê�ÊÜ>ÌiÀÊ>Ài>Ê�vÊ�À�}��Ê« rÊä°ÎÎÓ®°
7�i�Ê V��«>À��}Ê Ì�iÊ ��VÀ�L���iÃÊ �vÊ �>ÀÛ>iÊ Ì�>Ì

ÃÕÀÛ�Ûi`ÊÌ�iÊÈÊ`ÊiÝ«iÀ��i�Ì]ÊÜiÊ`�`Ê��ÌÊ`iÌiVÌÊ`�vviÀ�
i�ViÃÊ>���}Ê�>ÀÛ>iÊvÀ��ÊÌ�iÊv�Ã�i`Ê>Ài>Ê�ÀÊÌ�iÊ�*�
Ü�i�Ê �>��Ì>��i`Ê ��Ê Ü>ÌiÀÊ vÀ��Ê Ì�iÊ v�Ã�i`Ê >Ài>Ê �À
vÀ��ÊÌ�iÊ�*�Ê­��}°ÊÎ	] *
,�� "6�\Ê�>ÀÛ>�Ê>Ài>Ê�v
�À�}��Ê« rÊä°äÈ�]ÊÜ>ÌiÀÊ>Ài>Ê�vÊ�À�}��Ê« rÊä°£�Ç]Ê�>ÀÛ>�
>Ài>Ê�vÊ�À�}��Ê�ÊÜ>ÌiÀÊ>Ài>Ê�vÊ�À�}��Ê« rÊä°{�Ó®]Ê��ÀÊLi�
ÌÜii�Ê Ì�iÊ�*�Ê>�`Ê v�Ã�i`�>Ài>ÊÜ>ÌiÀÊ ��ÊÜ��V�Ê Ì�i
�>ÀÛ>iÊÜiÀiÊ�i�`Ê­��}°ÊÎ
]Ê« rÊä°nÈ�®°Ê/�iÊ���ÞÊÃÕ}�
}iÃÌi`ÊV�À>�Ê«>Ì��}i�ÃÊv�Õ�`Ê��Ê�>ÀÛ>iÊ��ÊÌ��ÃÊiÝ«iÀ��
�i�ÌÊÜiÀiÊ"/1ÃÊV�>ÃÃ�v�i`Ê>ÃÊV. shilonii°Ê/�iÊ�i>�
Ài�>Ì�ÛiÊ>LÕ�`>�ViÊ­´-
®Ê�vÊV. shilonii ��Ê�*�Ê�>ÀÛ>i
Ü>ÃÊ ä°äÊ ´Ê ä°ä¯Ê v�ÀÊ �>ÀÛ>iÊ �i�`Ê ��Ê�*�ÊÜ>ÌiÀÊ >�`
ä°ä£ ´Êä°ä£¯Êv�ÀÊ�>ÀÛ>iÊ��Êv�Ã�i`�>Ài>ÊÜ>ÌiÀÊ­/>L�iÊ-{
��ÊÌ�iÊ-Õ««�i�i�Ì®°ÊV. shilonii >LÕ�`>�ViÊ��Êv�Ã�i`�
>Ài>Ê�>ÀÛ>iÊÜ>ÃÊ{°£ÈÊ´Ê{°£{¯Êv�ÀÊ�>ÀÛ>iÊ��Ê�*�ÊÜ>ÌiÀ
>�`Ê ä°ÓnÊ ´ä°£Ç¯Ê v�ÀÊ �>ÀÛ>iÊ ��Ê v�Ã�i`�>Ài>Ê Ü>ÌiÀ
­/>L�iÊ-{®°Ê/�iÃiÊ>LÕ�`>�ViÃÊ`�`Ê��ÌÊ`�vviÀÊ Ã�}��v��
V>�Ì�ÞÊ >���}Ê ÌÀi>Ì�i�ÌÃÊ ­Ó�v>VÌ�ÀÊ � "6�\Ê �>ÀÛ>�

£äÈ

La
rv

al
 s

ur
vi

va
l (

%
)

P
C

O
2 

(1
3.

8%
 o

f t
ot

al
 v

ar
ia

tio
n)

PCO1 (31.7% of total variation)

P
C

O
2 

(1
4.

6%
 o

f t
ot

al
 v

ar
ia

tio
n)

PCO1 (44% of total variation)

Larval area of origin

A

B

C

100

80

60

40

20

0
MPA MPA 

N = 10 per level of each factor 
Larval area of origin p < 0.001 
Water area of origin p = 0.008 
Larval area of origin *  
  water area of origin p = 0.008  

Water area of origin

MPA

Fished area

A A

B

C

Fished
area 

Fished
area 

N = 10 per level of each factor 
Larval area of origin p = 0.069 
Water area of origin p = 0.197 
Larval area of origin * 
  water area of origin p = 0.492  

 80
–60 –40 –20 0 20 40 60

20

0

MPA larvae

MPA water

Fished-area 
water

MPA water

Fished-area 
water

Fished-area larvae

N = 5 
Water area of origin p = 0.869 

20

0

–20

–40

–60

–20

–40

–60

–80

MPA water
Fished-area 
water

–60 –40 –20 0 20 40 60

��}°ÊÎ°Ê­�®Ê-ÕÀÛ�Û>�Ê­�i>�Ế Ê-
®Ê>�`ÊÓ�v>VÌ�ÀÊ� "6�Ê>�>�Þ�
Ã�ÃÊ�vÊV�À>�ÊPocillopora damicornis �>ÀÛ>iÊvÀ��ÊÌ�iÊ�*�Ê>�`
v�Ã�i`Ê>Ài>Ê�>��Ì>��i`Ê��Ê�*�Ê�ÀÊv�Ã�i`�>Ài>ÊÜ>ÌiÀÊv�ÀÊÈÊ`
­�ÊrÊ£äÊ«iÀÊ�iÛi�Ê�vÊi>V�Êv>VÌ�À®°Ê�iÌÌiÀÃÊ>L�ÛiÊL>ÀÃÊ��`�V>Ìi
Ã�}��v�V>�ÌÊ}À�Õ«��}ÃÊLÞÊ/Õ�iÞ½ÃÊ�-�Ê«�ÃÌ���VÊ>�>�ÞÃ�Ã°Ê­	®
*
"Ê >�`Ê *
,�� "6�Ê >�>�ÞÃ�ÃÊ �vÊ 	À>Þ�
ÕÀÌ�ÃÊ `�ÃÃ���Ê�
�>À�ÌÞÊ�>ÌÀ�ÝÊ�vÊ��VÀ�L���iÃÊvÀ��ÊÃÕÀÛ�Û��}Ê�>ÀÛ>iÊvÀ��ÊÌ�i
�*�Ê �ÀÊ v�Ã�i`Ê >Ài>Ê �>��Ì>��i`Ê ��Ê �*�Ê �ÀÊ v�Ã�i`�>Ài>
ÊÜ>ÌiÀÊv�ÀÊÈÊ`°Ê­
®Ê*
"Ê>�`Ê*
,�� "6�Ê>�>�ÞÃ�ÃÊ�vÊ	À>Þ

ÕÀÌ�ÃÊ`�ÃÃ����>À�ÌÞÊ�>ÌÀ�ÝÊ�vÊÜ>ÌiÀÊ��VÀ�L���iÃÊ vÀ��Ê Ì�i
�*�Ê >�`Ê v�Ã�i`Ê >Ài>]Ê ÕÃi`Ê Ì�Ê�>��Ì>��Ê �>ÀÛ>iÊ ��Ê Ì�iÊ �>LÊ

vÀ��ÊÌ�iÊ�*�Ê�ÀÊv�Ã�i`Ê>Ài>Êv�ÀÊÈÊ`



 24 

post-hoc analysis. B) PCO and PERMANOVA analysis of Bray Curtis dissimilarity matrix 
of microbiomes from surviving larvae from the MPA or fished area maintained in MPA or 
fished area water for six days. C) PCO and PERMANOVA analysis of Bray Curtis 
dissimilarity matrix of water microbiomes from the MPA and fished area, used to 
maintain larvae in the lab from the MPA or fished area for six days.  
 
 
         When larvae were offered rubble from either the MPA or fished area as 

settlement substratum in a no-choice experiment (i.e., larvae are given the option to 

settle on the type of rubble provided or remain in the water column), MPA larvae settled 

more rapidly than larvae from the fished area (Figure 1.4A, Table 1.1A larval area of 

origin * time interaction p < 0.001). For both MPA and fished area larvae, settlement was 

more rapid in response to MPA than to fished area substrate (Figure 1.4A, Table 1.1A, 

substrate type * time p = 0.010). For MPA larvae, 84-90% had settled by 24 h, whereas 

52-76% of fished area larvae settled in this time period. After 48 h of isolation with a 

particular substrate type, 85-93% of all larvae had settled regardless of larval origin or 

substrate type.  

         When recently-settled juvenile coral were out-planted to the sites from which their 

settlement substrates had been collected (i.e., MPA substrate to the MPA, fished area 

substrate to the fished area), survival was higher in the MPA than in the fished area 

regardless of larval area of origin (Figure 1.4B, Table 1.1B, substrate out-plant treatment 

* time p < 0.001). Survival on fished area substrate out-planted to the fished area was 

12-29% by day four and 5-8% by day 26. In contrast, survival on MPA substrate out-

planted to the MPA was 49-64% on day four and 22-39% on day 26. Surprisingly, given 

lower survivorship of fished area larvae pre-settlement (Figure 1.3A), larvae from fished 

area adults survived better as newly-settled juveniles when out-planted to the field than 

did those from MPA adults (Figure 1.4B, Table 1.1B, larval area of origin p = 0.007; 

larval area of origin * time p = 0.013). Greater post-settlement survivorship of fished area 

larvae was not due to selective pre-settlement mortality of less hardy individuals among 
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the fished area larvae. Mortality of larvae during the initial settlement experiment (48 h) 

was < 4% and did not differ among treatments (larval area of origin p = 0.336, substrate 

type p = 0.747, larval area of origin * substrate type p = 0.747). 

 

 
Figure 1.4: A) Settlement (mean + SE) of MPA and fished area larvae on rubble from the 
MPA without macroalgae and from the fished area with macroalgae at 24 and 48 h (n = 
20 per level of each factor; absolute percentages provided). See Table 1.1A for 
statistical analyses of repeated measures ANOVA on square root transformed proportion 
data. B) Survival (mean + SE) of newly settled MPA and fished area juvenile corals on 
MPA versus fished area substrates that were out-planted to their corresponding reef 
(MPA rubble planted in the MPA and fished area rubble planted in the fished area) when 
corals were four and 26 days old (n = 13 – 18 per level of each factor due to loss of zip-
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tied rubble on the reef over time). See Table 1.1B for statistical analyses of repeated 
measures ANOVA on proportion data. 
 
 
Table 1.1  Repeated measures ANOVA on A) square root transformed settlement of 
larvae (originating from the MPA or fished area) on substrate from the MPA (no 
macroalgae) or fished area with macroalgae and B) survival of recently settled juvenile 
corals over 26 days on the reef.  Juveniles that settled on MPA substrate were out-
planted to the MPA and juveniles that settled on the fished area substrate were out-
planted to the fished area. 

 
 
 

Lower survivorship of juvenile coral (regardless of larval area of origin) planted in 

the fished area versus the MPA could be due to larger-scale site differences, or smaller-

scale differences of the substrate used (i.e., differences in abundances of macroalgae or 

crustose coralline algae on rubble). CCA cover did not contribute to differences between 

MPA and fished area rubble. CCA cover was high and did not differ among treatment 

groups (ANOVA p = 0.308, 66% + 0.12 SE, 79% + 0.04, 84% + 0.03 on fished area 

rubble with macroalgae, fished area rubble without macroalgae, and MPA rubble, 

respectively). To assess the potentially confounding factors of site differences and 

macroalgal presence on rubble, we conducted a second, no-choice settlement 

experiment that ran simultaneously, but used only MPA larvae (due to insufficient larvae 

Source df F p 
A
Larval area of origin 1 15.75 <0.001
Substrate type 1 5.95 0.020
Time 1 31.62 <0.001
Larval area of origin x Substrate type 1 2.10 0.156
Larval area of origin x Time 1 14.26 <0.001
Substrate type x Time 1 7.40 0.010
Larval area of origin x Substrate type x Time 1 3.72 0.062

B
Larval area of origin 1 8.16 0.007
Substrate type 1 46.39 <0.001
Time 2 446.69 <0.001
Larval area of origin x Substrate type 1 0.77 0.387
Larval area of origin x Time 2 4.67 0.013
Substrate type x Time 2 22.53 <0.001
Larval area of origin x Substrate type x Time 2 1.15 0.322
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produced by fished area adults). In this experiment, larvae settled more rapidly (by 24 h) 

on rubble without macroalgae than rubble with macroalgae, even if both types of rubble 

originated from the fished area; this difference disappeared by 48 h (Figure 1.5A; 

substrate type * time p = 0.041). Mortality of larvae during the 48 h settlement 

experiment was low (<3%) and did not differ among treatments (substrate type p = 

0.841). When these juveniles were out-planted back to their respective field sites (MPA 

rubble to the MPA and fished area rubble to the fished area), survival of juveniles 

differed between treatment types (Figure 1.5B, substrate out-plant treatment p < 0.001), 

with the lowest survival occurring for juveniles on substrate fouled with macroalgae 

within the fished area. Coral on rubble not fouled by macroalgae survived similarly well 

whether placed in the MPA or fished area (Figure 1.5B, 43-51% survival on day four and 

22-28% on day twenty-six). In contrast, those on macroalgae-fouled rubble in the fished 

area experienced only 15% survival to day four and 9% to day 26 (Figure 1.5B). On day 

4 and 26 after out-planting, survival of juvenile coral in the fished area was ~190% and 

~150% higher, respectively, if on fished area rubble without macroalgae than on fished 

area rubble fouled with macroalgae. In contrast, survivorship of juvenile coral on non-

macroalgal fouled rubble was only ~20% to 30% higher when out-planted to the MPA 

compared to the fished area on day 4 and 26, respectively.  
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Figure 1.5:  A) Percent settlement (mean + SE) of MPA larvae on rubble from the MPA 
without macroalgae, the fished area without macroalgae, and the fished area with 
macroalgae at 24 and 48 hours (n = 15 with the exception of one lost replicate due to 
sloughing of macroalgae during the settlement experiment; absolute percentages 
provided). Repeated measures ANOVA was performed on square root transformed 
proportion data. B) Percent survival (mean + SE) of newly settled juvenile corals on 
rubble from the MPA without macroalgae, the fished area without macroalgae, and the 
fished area with macroalgae that were out-planted to their corresponding reef (MPA 
rubble planted in the MPA and fished area rubble planted in the fished area) when the 
juvenile corals were four days old. Repeated measures ANOVA was performed on 
proportion data (n = 11 - 15 due to loss of replicates planted on the reef over time). 
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N = 14–15 
Substrate type p = 0.426 
Time p < 0.001 
Substrate type * time p = 0.041

MPA larvae
MPA substrate
Fished-area substrate with macroalgae
Fished-area substrate 

N = 11–15 
Substrate out-plant treatment p < 0.001 
Time p < 0.001 
Substrate out-plant treatment * time p < 0.001

MPA juveniles
MPA substrate
Fished-area substrate with macroalgae
Fished-area substrate 
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Discussion 

Our experiments within an MPA dominated by corals and an adjacent fished area 

dominated by macroalgae allowed an assessment of how microbiomes of the coral 

Pocillopora damicornis are shaped by chronically (up to 12 years) higher macroalgal 

abundances and whether these habitat differences are correlated with changes in larval 

behavior or survivorship. By sampling coral from coral- versus macroalgae-dominated 

reefs that are only ~100-500 meters apart, we were able to examine microbiomes on 

degraded and healthy reefs that are not confounded in time or by large spatial scales. 

These study areas differ dramatically in the extent (23-67 fold greater) and frequency (5-

15 fold greater) of coral-macroalgae contact (Bonaldo & Hay 2014), and these 

differences have persisted for the 7+ years we have worked on these reefs (M.E. Hay, 

personal observation). 

Responses of coral microbial communities 

Despite the large difference in algal cover (primarily brown seaweeds 

[Sargassum, Turbinaria, Dictyota], and a lesser abundance of red and green seaweeds 

[Galaxaura, Amphiroa, Liagoria, and Halimeda], Rasher et al. 2013) between the fished 

area and MPA, the microbiome composition of adult and larval P. damicornis did not 

differ between the coral-dominated MPA and the macroalgae-dominated fished area. 

This result contrasts with evidence suggesting that macroalgae alter the physiochemical 

environment, the microbial load, and community composition in surrounding seawater 

(Wild et al. 2010, Haas et al. 2011, Nelson et al. 2013), and the microbiome of 

associated corals (Wild et al. 2010, Haas et al. 2011, Morrow et al. 2012, Thurber et al. 

2012, Morrow et al. 2013, Nelson et al. 2013, Morrow et al. 2017). Specifically, algae are 

predicted to affect corals through DOM release that promotes microbial growth in 

surrounding seawater, declines in local oxygen concentrations, and enrichment of 

copiotrophic and pathogenic microbes that may overwhelm the native coral microbiota 
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(Dinsdale & Rohwer 2011, Barott & Rohwer 2012). Algae may also release 

allelochemicals that alter coral microbial communities on contact (Morrow et al. 2011, 

2012, 2017), or act as vectors for pathogenic microbes (Nugues et al. 2004, Sweet et al. 

2013). All of these mechanisms may operate on relatively small spatial scales, exerting 

strongest effects in zones of direct algae-coral contact (Barott et al. 2009, Barott et al. 

2011). Here, our sampling did not assess microbiome variation relative to algal contact 

sites. Nonetheless, the similarity of microbiomes (both coral and water) from sites with ~ 

2% cover of macroalgae versus ~90% cover of high-biomass macroalgae (Rasher et al. 

2013) suggests that enhanced algal coverage at the reef scale does not systemically 

alter the microbiome of P. damicornis. Lack of differences in water microbiomes from our 

coral- and algae-dominated reefs may result from sampling water ~1-2 meters above the 

benthos, where reef water is readily exchanged with oceanic water flowing over the reef 

crest. The positioning of small protected areas within the larger background of fished 

areas may also facilitate dispersal and mixture of microbes at scales of hundreds of 

meters, helping to homogenize both coral and seawater microbiomes across degraded 

algae-dominated and protected coral-dominated reefs. However, if this is the case, it is 

not suppressing corals in the MPAs, where coral cover on hard substrates is nearly 60% 

(Rasher et al. 2013). Additionally, corals in the fished area grow as well as those in the 

MPA when macroalgae within 50 cm of the coral colonies are removed (Clements et al. 

in press). This suggests minimal effects of macroalgal DOM on growth of corals at the 

scale of > 50 cm.  

It is also possible that our results are specific to P. damicornis (but preliminary 

data for other corals from these sites suggest that this is not the case; D. Beatty 

unpublished data). Previous work has indicated that coral-algae interactions and their 

outcomes are often species-specific, with effects of macroalgae on coral microbiomes 

varying from undetectable to strong (Morrow et al. 2012, 2013, Thurber et al. 2012). 
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Here, in contrast to numerous non-Pocilloporid coral taxa, which decline in abundance at 

macroalgae-dominated sites, the abundance of Pocilloporid coral does not differ 

significantly between the MPA and fished areas at Votua village (Bonaldo & Hay 2014). 

This persistence may be due in part to the ability of Pocilloporids to maintain a stable 

microbiome in spite of drastic differences in benthic cover. In support of this hypothesis, 

we found similarly high relative abundances (>80%) of Endozoicimonaceae bacteria in 

adult P. damicornis coral from both healthy and degraded reefs. Recent evidence 

suggests that these bacteria are functionally important members of the healthy coral 

holobiont in multiple coral species (Meyer et al. 2014, Lee et al. 2015, Ding et al. 2016, 

Neave et al. 2016), including P. damicornis (Bayer et al. 2013). We also detected similar 

abundances of Endozoicimonacaeae (1-12%) on larvae from both the MPA and fished 

area, adding further support for the hypothesized importance of these bacteria in P. 

damicornis persistence. Adult corals were not maintained in filter-sterilized seawater 

(FSW) before larval release; therefore, we do not know if Endozoicimonaceae were 

rapidly acquired from the environment or vertically transferred to brooded larvae. 

However, larvae were rinsed in FSW three times before preservation, so it is unlikely 

that the presence of Endozoicimonaceae represents contamination from seawater 

because this group’s abundance was <0.5% in our seawater samples. 

         While we did not detect a significant community-level shift in coral microbiomes 

between our macroalgae-dominated and coral-dominated sites, we did detect 

differences in the abundances, although rare, of Vibrionaceae, with this bacterial family 

being significantly enriched in both adults and larvae from the macroalgae-dominated 

reef compared to those from the coral-dominated MPA. The enriched bacteria included 

OTUs classified, as Vibrio shilonii, a demonstrated coral pathogen (Kushmaro et al. 

2001). Caution should be taken when interpreting ecological function and pathogenicity 

when using the 16S rRNA gene for classification because bacterial strains identified as 
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the same species by this method can vary in genome size and functional gene content, 

including genes involved in pathogenicity (discussed in Franzosa et al. 2015, Land et al. 

2015). However, it is interesting to note that the 16S rRNA gene of V. shilonii shares 

96.6% similarity with that of a P. damicornis pathogen (Vibrio coralliilyticus) that causes 

coral bleaching (Ben-Haim et al. 2003a) and with other Vibrio spp. that cause white 

syndromes in many Indo-Pacific coral species (Sussman et al. 2008). The overall 

abundance of taxa falling within the Vibrionaceae family was low (< 2%) and comparable 

to abundances (0-3%) found in healthy corals (Lee et al. 2017, Morrow et al. 2017, Tout 

et al. 2015), even in the macroalgae-dominated area, suggesting that the sampled P. 

damicornis were not in a ‘diseased’ state. Nevertheless, the differences in Vibrionaceae 

abundance may indicate that coral in the protected area are more resistant to 

colonization by potentially harmful bacteria, consistent with a recent investigation by 

Lamb et al. (2016) that found lower abundances of coral disease in no-take reserves. 

While our findings provide evidence of proportionally lower abundances of Vibrionaceae 

on coral in a no-take protected area compared to an adjacent fished reef, more work is 

needed to confirm a pathogenic role for the detected bacteria and the reproducibility of 

findings in other coral species and protected areas. Indeed, Vibrio species are also 

found in healthy corals (Chimetto et al. 2008, Raina et al. 2009) and may function as 

coral mutualists by providing fixed nitrogen (Ceh et al. 2013). We also found R. gnavus 

as an indicator species of fished area larvae. R. gnavus is an anaerobic gut microbe that 

has been implicated in human disease and is capable of breaking down mucins (Crost et 

al. 2013). Its impact on adult coral or their larvae is unknown.  

We also found that microbiomes of adult coral from the macroalgae-dominated 

fished area were more variable in community composition than those from the coral-

dominated MPA. This is consistent with Zaneveld et al. (2016) who found that corals in 

experimental plots where macroalgal cover increased due to the absence of fish grazing 
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exhibited greater microbial beta diversity. Thus, microbiome variance may be an early 

indicator of coral stress, but further investigations are needed to test this hypothesis. We 

also found that while adult MPA coral were less variable in their microbiome composition 

compared to their larvae, levels of inter-individual microbiome variability did not differ 

between adult and larval coral from the macroalgae-dominated fished area. Taken 

together, these patterns suggest that P. damicornis adults from the MPA have more 

constrained microbial communities than their adult counterparts from the fished area and 

than juveniles from both areas, adding support to the notion that coral-algae interactions 

may increase the variance (Thurber et al. 2012, Zaneveld et al. 2016) of coral 

microbiomes. However, greater inter-individual variability in coral microbiomes could 

indicate either 1) the loss of regulatory mechanisms within the coral holobiont, thereby 

predisposing corals to microbial dysbiosis (Krediet et al. 2013, Thompson et al. 2015), or 

2) the holobiont’s adaptive response to counter local biotic or abiotic stressors 

(Rosenberg 2007). To better understand our microbial community data in the context of 

coral fitness and health, we concurrently investigated how more frequent and chronic 

algal interactions (in the macroalgae-dominated fished area) affected larval behavior, 

and larval and juvenile survivorship. 

Effects of parentage, habitat, and substrate on larval survival 

Based on prior evidence showing that larvae of P. damicornis are packed with 

photosynthate providing Symbiodinium and that larvae can settle in under two hours or 

remain viable in the plankton for 100 days (Richmond 1987, Isomura & Nishihira 2001), 

we expected high larval survivorship over the short duration of our larval survival 

experiment. In contrast, we found rapid mortality within some treatments. During six 

days of exposure to MPA or fished area water without a choice of appropriate settlement 

substrates, larvae from MPA adults experienced only 6% mortality regardless of water 

source, while larvae from fished area adults experienced significantly higher, 74% and 
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34%, mortality in both fished area and MPA water, respectively (Figure 1.3A). Thus, 

larvae produced by adults in the fished area appear less robust than those produced by 

adults in the MPA. We failed to detect differences in the relative abundance of potentially 

pathogenic bacterial OTUs classified as Vibrio shilonii on coral larvae that experienced 

higher mortality. It is possible that Vibrio shilonii OTUs could have been at greater 

abundance on, and differentially impacted survivorship of, fished area larvae but that we 

failed to detect differences in bacterial relative abundances because we analyzed only 

the less infected, or most resistant, larvae living at the end of the six-day experiment. 

Microbiomes of dead larvae were not analyzed due to rapid shifts in microbial 

communities following mortality.  

Given that we were unable to document significant differences in potential 

pathogens or microbial community composition between MPA and fished area larvae or 

between MPA and fished area water (Figure 1.3B & 1.3C), it may be that differential 

mortality is due to differential larval provisioning by adults rather than microbial effects. 

Dense macroalgae, which is typical of the fished area, commonly suppress coral 

recruitment, growth, and survivorship (Hughes et al. 2007, Burkepile and Hay 2008, 

Thurber et al. 2012, Zaneveld et al. 2016). However, to our knowledge, this is the first 

documentation of negative intergenerational effects of algal dominance on coral.  

Experimental studies indicate that many species of macroalgae deter coral larval 

settlement (Kuffner et al. 2006, Vermeij et al. 2009, Diaz-Pulido et al. 2010, Dixson et al. 

2014). However, as reefs globally continue to degrade, larvae may not be able to avoid 

settlement near macroalgae. We found that both MPA and fished area larvae settled 

more rapidly on MPA substrate free of macroalgae than on fished area substrate fouled 

with macroalgae. However, by the end of the 48 h experimental period, almost all larvae 

had settled, regardless of substrate type. When newly-settled juvenile coral were out-

planted to the sites from where their substrates originated, juvenile survivorship was ~5 
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times greater in the MPA than the fished area (Figure 1.4B day 30), confirming a strong 

positive effect of the no-take MPA on juvenile coral survival. 

However, lower survivorship of juveniles in the fished area could have been due 

to macroalgae on the substrate onto which they settled, other differences between the 

MPA and fished area (site differences), or both. We therefore investigated the relative 

impact on juvenile survival of site and of macroalgal presence on the settlement 

substrate. Survivorship of juveniles in the fished area on day 4 and 26 was ~190% and 

150% higher, respectively, if on fished area rubble without macroalgae than on fished 

area rubble fouled with macroalgae (Figure 1.5B day 4 & 26). In contrast, the increase in 

survival due to site was modest (Figure 1.5B day 4 & 26, 20-30% higher). Thus, nearby 

macroalgae on the same piece of rubble–not general traits of the macroalgae-dominated 

area (i.e., site effects)–were largely responsible for reductions in juvenile survivorship in 

the fished area. 

Although pre-settlement larvae from MPA adults experienced greater survival 

than larvae from fished area adults, this relationship was reversed for post-settlement 

survivorship in the field. This pattern occurred regardless of settlement substrate type 

(MPA or fished area origin) or the site into which the coral were out-planted. This was 

not due to selective mortality of less hardy fished area larvae during the initial 48 h 

settlement experiment; in that period, mortality was low (< 4%) and did not differ 

between treatments. It is possible that degraded reefs have selected for hardier post-

settlement populations of P. damicornis, but this hypothesis is difficult to reconcile with 

the lower survival of fished area larvae during the pre-settlement period. If degraded 

reefs have selected for hardier coral, then these populations may become increasingly 

valuable as global change and other anthropogenic stressors continue to impact reefs. 

Conclusion 
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         The composition of P. damicornis microbial communities did not differ 

significantly between the MPA and fished area despite drastic differences in benthic 

cover between these sites and substantial differences in larval survivorship. However, 

adults within the coral-rich MPA exhibited lower variability in their microbial community 

composition than those from the macroalgae-dominated fished area. Additionally, larval 

and adult P. damicornis from the MPA had significantly lower abundances of 

Vibrionaceae and OTUs classified as the coral pathogen Vibrio shilonii. Taken together, 

our findings indicate that coral within a coral-dominated MPA with abundant and diverse 

herbivore populations and low abundances of macroalgae experience greater larval 

survivorship, reduced variability in their adult microbial community composition, and 

reduced abundances of rare but potentially harmful bacteria. However, overall microbial 

community composition remained relatively uniform despite reef protection status and a 

45-fold difference in macroalgal cover (~2% vs 90%) between these sites. Reproductive 

adults were only collected from one MPA and one fished area (following permitting 

guidelines). Further studies will be needed to understand how frequency of coral-algae 

interactions in natural reef environments affects coral microbiomes and coral fitness in 

other species of reef-building corals and if findings are reproducible among other coral- 

and algae-dominated areas. At present, our study suggests that investigating macroalgal 

impacts on coral health via alterations of their microbiomes may require understanding 

the importance of subtle microbiome alterations such as changes in rare taxa of potential 

pathogens or changes in variability of coral microbial communities rather than drastic 

differences in microbial community composition. 
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CHAPTER 2 
 

LOCAL MANAGEMENT TO SUPPRESS MACROALGAE ENHANCES CORAL 
CHEMICAL DEFENSE AGAINST A THERMALLY-REGULATED BLEACHING 

PATHOGEN 
 
 
 

Abstract 

Bleaching and disease are causing unprecedented declines of coral reefs, especially 

when warming promotes virulence in coral bleaching pathogens, such as Vibrio 

coralliilyticus.  We demonstrate that corals are chemically defended against V. 

coralliilyticus, but that defenses are compromised at elevated temperature.  For an 

ecologically sensitive species within the critical Acropora genus, its resistance to V. 

coralliilyticus is enhanced by ~75-154% if it occurs on coral-dominated reefs protected 

from fishing versus adjacent fished reefs dominated by macroalgae.  Increased anti-

Vibrio potency in Acropora was associated with less variable microbiomes and with a 

strain of Endozoicimonaceae, a bacterial family proposed as facultatively symbiotic with 

coral.  Defenses of an ecologically robust poritid coral and a weedy pocilloporid coral 

were not affected by macroalgal abundance. For some critical, but bleaching 

susceptible, corals like Acropora, local management to enhance fishes that suppress 

macroalgae may provide greater coral resistance to global stressors such as bacteria-

induced coral bleaching during warming events.   

Introduction  

Coral reefs are biodiverse and productive ecosystems upon which coastal 

societies rely for ecosystem services such as protection from storm surge, tourism-

generated revenue, and as a critical source of protein (Moberg and Folke 1999).  

However, reefs are declining worldwide, notably from a five-fold increase in the 

frequency of thermal stress events associated with atmospheric CO2 increases (Hughes 

et al. 2018a).  Coral decline is further exacerbated by other stressors, including ocean 
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acidification, disease, pollution, and increases of harmful macroalgae following removal 

of herbivorous fishes (Bellwood et al. 2004, Hughes et al. 2010).  These stressors can 

harm or kill corals through diverse mechanisms, including alterations in how corals 

interact with microorganisms (Rosenberg and Ben-Haim 2002, Ritchie 2006, Harvell et 

al. 2007, Krediet et al. 2013).  Determining how coral-microbe interactions change in 

response to stress, potentially either through loss of beneficial microbes or suppression 

of coral defenses against harmful microbes, is challenging, but may be vital for 

understanding and mitigating losses of coral in a changing ocean.     

A wealth of evidence suggests that coral health is affected by interactions with 

bacterial associates.  For example, bacterial mutualists can help corals obtain nutrients 

(Thompson et al. 2015) and may inhibit the growth of pathogens (Ritchie 2006, Krediet 

et al. 2013). Coral susceptibility to pathogens, such as bacteria of the genus Vibrio, 

increases when waters warm (Rosenberg and Ben-Haim 2002, Harvell et al. 2007), 

generating the hypothesis that temperature-related stress in corals may occur due to the 

shifts in the beneficial bacteriome at high temperature (Ritchie 2006, Harvell et al. 2007, 

Zaneveld et al. 2016).  Stressors other than temperature, including algal-induced blooms 

of virulent bacteria and direct toxicity from allelochemical-producing seaweed that 

becomes abundant on degraded reefs, are also hypothesized to operate by destabilizing 

the protective coral bacteriome (Barott and Rohwer 2012, Morrow et al. 2012).  Indeed, it 

has been suggested that corals regulate their microbiomes via production of 

antimicrobial peptides, sloughing of mucus, direct consumption of microbes, or by 

hosting predatory microbes that consume microbial pathogens (Krediet et al. 2013, 

Thompson et al. 2015, Welsh et al. 2015).  As thermal stress events become more 

frequent, and algal cover increases (Hughes et al. 2010, Hughes et al. 2018a), corals 

may lose the ability to regulate their microbiomes (McDevitt-Irwin et al. 2017, Peixoto et 
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al. 2017, Webster and Reusch 2017), and may lose chemical defenses produced by 

commensal microbes (Ritchie 2006). 

Microbial dysbiosis (the loss of beneficial, or increase of harmful, microbes) is 

common on reefs with abundant macroalgae (Dinsdale et al. 2008).  Macroalgae are 

suggested to disrupt coral microbiomes via transfer of allelochemicals (Morrow et al. 

2012) or microbes (Nugues et al. 2004, Sweet et al. 2013, Pratte et al. 2017), or release 

of dissolved organic carbon that affects microbial growth (Barott and Rohwer 2012). 

Indeed, bacterial density and virulence gene abundance are significantly enriched in the 

benthic water (within ~25 cm of the reef surface) of algal-dominated compared to coral-

dominated reefs (Kelly et al. 2014, Haas et al. 2016).  Furthermore, coral microbiomes of 

algal-dominated sites can be more variable than those of coral-dominated sites 

(Zaneveld et al. 2016, Beatty et al. 2018).  These patterns suggest that algal overgrowth, 

like high temperature, may impair a coral’s ability to regulate its microbiome (Zaneveld et 

al. 2016, Zaneveld et al. 2017) and possibly the ability of the coral, or it's microbiome, to 

control pathogen adhesion and persistence (Krediet et al. 2013).   

The hypothesis that macroalgae may suppress coral chemical defense can be 

explored through comparisons among coral-dominated and macroalgal-dominated areas 

of closely adjacent reefs – thus avoiding contrasts across large spatial scales and 

differing physical regimes that could confound results.  We utilized paired reefs that 

differed in benthic community composition as a result of local management for 10-12 

years prior to our study (during that period, fishing was prohibited, herbivory increased 

by 3-6 fold, and macroalgae was reduced by 75-95% in protected versus fished areas) 

(Rasher et al. 2013, Bonaldo and Hay 2014, Bonaldo et al. 2017).  We tested for a 

mechanism (chemical defense) by which coral may inhibit the thermally-regulated coral 

bleaching pathogen Vibrio coralliilyticus and assessed whether the potency of coral 

chemical defense differed between coral-dominated marine protected areas (MPAs; 
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fishing prohibited) and adjacent macroalgal-dominated areas (fishing allowed).  We also 

evaluated whether changes in algal cover and coral chemical defense correlated with 

changes in coral microbiomes that would be suggestive of a microbial role in antibiotic 

production, as observed in a diversity of other invertebrates (including insects, isopods, 

shrimp, bryozoans, and tunicates; reviewed in (Lopanik 2014)). 

V. coralliilyticus is an ecologically realistic assay pathogen because it targets 

diverse coral groups (Agaricids, Acroporids, and Pocilloporids), is distributed worldwide 

(Kimes et al. 2012), becomes virulent under elevated temperatures (Ben-Haim et al. 

2003, Kimes et al. 2012), and causes coral bleaching and mortality throughout the Indo-

Pacific (Ben-Haim et al. 2003, Sussman et al. 2008, Bourne et al. 2014).  Moreover, the 

bacterium is congeneric with other species that cause coral bleaching (Bourne et al. 

2014), and therefore may be useful for exploring coral response to warming in general.   

On our study reefs, coral and algal cover differed dramatically between adjacent 

fished and MPA areas due to differences in the abundance of herbivorous fishes 

(Rasher et al. 2013, Bonaldo and Hay 2014), and these fished and MPA areas were 

replicated (n = 3) and interspersed.  This framework facilitated tests in the absence of 

confounding physical variables between sites. We found that the inhibitory effects of 

coral water (obtained via 20 sec agitation of coral fragments in reef water and hereafter 

called “coral water”; see methods) against V. coralliilyticus differed significantly based on 

temperature, coral species, and inoculum density of the pathogen. We also found that 

reef state (algal- versus coral-dominated sites) altered chemical defense for a coral of 

the genus Acropora, one of the major reef-building coral groups worldwide.  Differences 

in reef state and chemical defense coincided with differences in key indicator bacterial 

strains and with variation in microbiome stability.  We discuss these findings as 

potentially linked to subtle changes in the beneficial microbiome or to microbiome-

independent chemical changes in the coral holobiont. 
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Material and Methods 

Sites and species 

We investigated how reef state affects coral microbiomes and chemical defense against 

the coral pathogen Vibrio coralliilyticus (ATCC BAA-450) using the common corals 

Porites cylindrica, Acropora millepora, and Pocillopora damicornis. Corals were collected 

haphazardly throughout three small (0.5-0.8km2), no-take MPAs and their adjacent 

fished reefs at Namada (18°11.30’ S, 177°37.10’ E), Vatu-o-lalai (18°12.26’ S, 

177°41.26’ E) and Votua (18°13.08’ S, 177°42.59’ E) villages along the southwest coast 

of Viti Levu, Fiji between October and December of 2014 (8-12 December; 21-24 

October; 25-29 October, respectively at each village).  Protection of reef herbivores 

within the MPAs in the decade before our study resulted in benthic communities differing 

drastically between MPAs and fished areas at each village (Rasher et al. 2013, Bonaldo 

and Hay 2014, Bonaldo et al. 2017).  MPAs have 38-56% coral cover and <3% 

macroalgal cover, while fished areas have only 4-16% coral cover but 50-90% 

macroalgal cover on hard substrates (Rasher et al. 2013).  

We collected 2 to 3 individuals for each coral species from MPAs and adjacent 

fished areas each day to assure that samples across species and between MPA and 

fished areas were interspersed in time, and we repeated this over multiple days at each 

village until acquiring a total of 10 individuals of each species from each area at each 

village. This allowed testing for differences in coral traits between MPAs and fished 

areas. We could not collect from all villages at the same time; thus, village and time are 

confounded and should be interpreted cautiously. 

Antipathogen activity of corals 

As many marine invertebrates harbor microbes that may produce chemical 

defenses (Lopanik 2014), we investigated anti-pathogen activity in corals and evaluated 

how this related to changes in the coral’s microbiome.  In most previous studies of 
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marine chemical defenses, entire organisms have been exhaustively extracted in strong 

solvents over long periods of time [i.e., multiple rounds of extraction that can last 

upwards of 24 hours (Paul and Fenical 1986, Pawlik et al. 1995, Hay et al. 1998)]. These 

extracts are then concentrated away from the solvents and tested against enemies.  In 

contrast to these exhaustive methods, we simply agitated coral samples in reef water for 

20 seconds and used this water to assess its effects on the coral pathogen Vibrio 

coralliilyticus. We collected 50 ml displacement volume of coral per colony (n = 10 

colonies per species per site) within each of the three MPA and three fished area sites). 

Each coral sample was volumetrically displaced in a 1:1 ratio with reef water collected 

adjacent to each colony and agitated in a glass jar for 20 sec. This “coral water” (reef 

water containing coral mucus, and anything else released during agitation, such as 

antibacterial compounds (Geffen and Rosenberg 2005)), was decanted into a 50 mL 

sterile polystyrene tube and frozen at -20°C.  This procedure should generate a 

conservative sample of the coral’s anti-pathogen activity because a pathogen landing 

on, or present within, coral tissues would likely experience the full concentration of the 

coral’s mucus or any chemicals associated with the host or symbiotic dinoflagellates, 

while our samples were mostly washed from the surface and were diluted with 50 ml of 

seawater.  

As the seawater we used from each site to generate the coral water sample 

might itself contain anti-pathogen traits, we also collected 50 mL of reef water adjacent 

to each colony (frozen as above) as a control for our bioassays with V. coralliilyticus. A 

random subset of three coral water samples and three reef water (control) samples from 

each of the three MPAs and each of the three fished areas (i.e., n = 9 samples per 

species per area type) were selected for bioassays against V. coralliilyticus.  
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For the bioassay, 100 µL of coral water, or adjacent reef water (the control), was 

aliquoted per well in sterile 96-well round bottom plates, lyophilized on a freeze dryer, 

and UV-radiated for 90 sec to kill any microbes that survived lyophilization. This 

procedure allows a test of the coral water chemical traits without any confounding 

biological interactions.  However, this should produce a conservative estimate of the 

holobiont’s chemical defense against V. coralliilyticus because it introduces a single, 

diluted dose (see above) that may degrade or be metabolized during the assay; in 

nature, the holobiont would presumably be continuously producing chemical defenses. 

To the samples of dried coral water in the bottom of each well, we then added 100 µL of 

V. coralliilyticus bacterial cell suspension.  These inoculum cultures were grown in 

Marine Broth (DifcoTM 2216) and added to the wells to span a gradient of cell densities, 

from 103-101 cells per mL (with additional concentrations of 106-104 cells per mL for 

Acropora millepora only).  

Assays were conducted at temperatures of 24°C and 28°C.  These temperatures 

are near the upper and lower limits of the seasonal means in Fiji and represent 

temperatures at which V. coralliilyticus is less (24°C) versus more (28°C) virulent (Kimes 

et al. 2012).  Tetrazolium chloride (TTC) was added (0.05 µg/µl final concentration) to 

each well and the plates were incubated for 24 h.  Reduction of TTC by cellular 

respiration produces a red compound, triphenylformazan, allowing a direct measurement 

of metabolic activity. We used this method rather than measuring turbidity associated 

with cell density or direct cell counts because density assesses both live and dead, 

healthy and unhealthy cells, whereas this method assesses only those cells that are 

metabolically active.  Reduction of TTC by V. coralliilyticus was quantified by 

absorbance at 490 nm using a BioTek ELx800 absorbance reader.  Background 

absorbance was measured in blanks containing lyophilized and UV-radiated coral water 
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or reef water reconstituted in Marine Broth with TTC but without bacteria. Blank-

corrected measurements were used to determine relative V. coralliilyticus metabolism, 

expressed as a ratio of metabolism in the coral water compared to the control (reef water 

collected adjacent to the coral).  Values >1 indicate that coral water is stimulatory, and 

values <1 indicate that coral water is inhibitory (confirmed by comparing coral water to 

reef water with functions aov or aovp in package lm v 2.1.0 implemented within RStudio3 

with false discovery rate [FDR] corrections for multiple comparisons; Table B.1.1 & 

B.1.2). Linear mixed effects models within package nlme v 3.1-137 implemented within 

RStudio 3 were implemented with Akaike Information Criterion (AIC) for model selection 

for each species to determine how area of origin (MPA or fished area), temperature 

(24°C or 28°C), and bacterial inoculum concentration (cells per mL) influenced each 

species antipathogen activity (via relative metabolism of TTC by V. coralliilyticus).  

DNA extractions and sequencing of the 16S gene to test for differences in coral or 

benthic reef microbiomes  

Fragments of coral (~1 g) from the same colonies used to obtain coral water 

were preserved in RNAlaterÒ (QIAGEN) in the field and stored at -20°C until DNA 

extraction. Our previous analyses at these sites demonstrated that water collected from 

~1 m above the benthos did not differ in microbiome community composition (Beatty et 

al. 2018) but previous studies at other reefs found microbiome differences in water 

collected from within ~25 cm of the reef surface on macroalgal- versus coral-dominated 

reefs (Kelly et al. 2014). Thus, we collected benthic water samples from each habitat 

type to evaluate whether microbiome contrasts on our study reefs differed in some 

fundamental way from those observed in previous studies. Benthic water samples (n =10 

per site) from within 1 cm of the benthos were collected haphazardly at each site using a 

240 mL syringe. Water was filtered through a 0.22 μm polyethersulfone filter (total 
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volumes ranged 100-240 mL depending on filter clogging), which was then preserved in 

RNAlaterÒ and frozen at -20°C.  

We performed Illumina sequencing of the 16S rRNA gene to characterize the 

microbial community in our samples. DNA was extracted from approximately 250 mg of 

coral using the MoBio PowerSoil Kit and from water filters using the MoBio PowerWater 

kit (MoBio Laboratories, QIAGEN, Carlsbad, CA). For each sample, residual RNAlaterÒ 

solution was centrifuged at 10,000 rpm for 10 minutes to pellet dissociated microbial 

cells.  This pellet was re-suspended with C1 solution and added to the powerbead tube 

(MoBio Laboratories, QIAGEN). Dual-barcoded primers (F515 and R806) appended with 

Illumina sequencing adapters  (see Kozich et al. 2013 (Kozich et al. 2013)) were used to 

amplify the V4 region of the microbial 16S rRNA gene.  PCR reactions were carried out 

in triplicate. Total reaction volume was 50 μL, containing 45 μL of Platinum PCR 

SuperMix (Life Technologies, Thermo Scientific, Waltham, MA), 1 μL each of forward 

and reverse primer, and 3 μL of template DNA. Thermal cycling involved initial 

denaturation at 94°C (3 min), 35 cycles of denaturation at 94°C (45 sec), primer 

annealing at 50°C (45 sec), primer extension at 72°C (90 sec), and final extension at 

72°C (10 min). SequalPrep plates (ThermoFisher Scientific, Waltham, MA) were used to 

remove impurities and normalize DNA concentrations across samples.  Pooled 

amplicons were sequenced on an Illumina MiSeq using a 500-cycle kit (250 X 250 nt) 

spiked with 10% PhiX to introduce sequence diversity. Raw sequence reads were 

deposited at NCBI (bioproject number PRJNA476581). 

Microbiome data analyses 

TrimGalore! (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) was used 

to demultiplex and trim (100 bp cutoff length) sequence reads, and to remove low quality 

reads (Phred score cutoff 25). FLASH (Magoč and Salzberg 2011) was used to merge 
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paired-end reads using the criteria: read length >250 bp, fragment length >300 bp, 

fragment standard deviation <30 bp).  Chimeras were identified and removed with 

USEARCH (Edgar 2010) in QIIME (Caporaso et al. 2010).  Remaining sequences were 

then clustered into Operational Taxonomic Units (OTUs) with 97% similarity clusters 

using the UCLUST algorithm (Edgar 2010), followed by open-reference picking to assign 

taxonomy based on the Greengenes database (McDonald et al. 2012, Werner et al. 

2012).  After quality filtering 12,057,258 sequences remained from 21,520,596 

sequences generated by the MiSeq run, with per-sample counts ranging from 44 - 

131,802 for benthic water samples and 1,191 - 216,258 for coral samples.  Microbiome 

analyses were performed on OTU tables after rarefaction to a uniform sequence count of 

7700 for coral samples and 17700 for water samples (Figure B.6).  

Alpha (number of OTUs, Shannon Diversity) and beta diversity (Bray Curtis 

dissimilarity) were calculated in QIIME (Caporaso et al. 2010).  Aov or aovp functions in 

package lm v 2.1.0 implemented within  RStudio 3 were used to test for differences in 

alpha diversity between coral or water samples from MPAs or fished areas by a two-

factor ANOVA or permutation ANOVA if data were heteroscedastic (factor 1: area of 

origin, factor 2: village, where village is confounded in time).  Upon detecting differences 

in A. millepora microbiome alpha diversity among villages, we subsequently tested for 

differences in A. millepora microbiome alpha diversity between MPA and fished areas 

independently at each village using a one-factor ANOVA.  Principal coordinate analysis 

(PCO) and corresponding tests for differences in microbiome composition 

(PERMANOVA) and variability (PERMADISPERSION) were implemented in Primer E 

(Clarke 1993) for coral and water samples via two factor tests (factor one: area of origin, 

factor two: village).  Upon detecting differences in microbiome composition in A. 

millepora among villages, we independently tested for area of origin effects via a one 

factor PERMANOVA test at each village.  Coral OTU tables were also filtered to obtain 
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only Endozoicimonaceae OTUs (via QIIME script filter_otus.py) and tested for 

differences in Endozoicimonaceae OTU communities for each coral species via two-

factor (area of origin and village) PERMANOVA and PERMADISPERSION in Primer E. 

Multi-level pattern analysis was implemented within the indicspecies package v 1.7.6 

implemented within  RStudio 3.0 to test for MPA or fished area indicator OTUs for coral 

species and water samples.  OTUs were considered as indicators if their fidelity value 

was 0.50 or greater.  

Results 

We tested how sterilized coral water from the abundant reef building corals 

Acropora millepora, Porites cylindrica, and Pocillopora damicornis affected the metabolic 

activity of Vibrio coralliilyticus as a function of temperature (24°C and 28°C), inoculum 

concentration of the pathogen, and whether corals came from coral-dominated MPAs or 

algal-dominated fished areas.  Coral water significantly altered V. coralliilyticus activity, 

with the effect varying considerably based on coral species, temperature, and the 

concentration of the V. coralliilyticus inoculum (Figure 2.1 and Table B.1.1 – B.1.2; linear 

mixed effect model for each species).  P. cylindrica inhibited activity by 94-98% at 24°C 

and 35-94% at 28°C; A. millepora inhibited activity by 61-87% at 24°C and 22-68% at 

28°C; and P. damicornis inhibited activity by 8-19% at 24°C, but stimulated activity by 6-

12% at 28°C.  Suppression of V. coralliilyticus declined with increasing inoculum 

concentration for all corals, but especially for P. cylindrica at 28°C.   
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Figure 2.1:  Mean (+SE) activity of coral water relative to reef water against V. 
coralliilyticus at 24°C and 28°C for Porites cylindrica (A-B), Acropora millepora (C-D), 
and Pocillopora damicornis (E-F).   The dashed line at 1.0 is the expected value if there 
is no effect. P-values are from linear mixed effects models implemented with Akaike 
Information Criterion (AIC) for model selection (n = 9).  Factors remaining for each 
species’ model after the model selection process are provided.  O, T, and C represent 
origin (MPAs or fished areas), temperature, and concentration of pathogen inoculum, 
respectively.  Dots indicate individual data points.  One data point with negative values 
(after reduction of the optical density of sterilized coral water, see methods for 
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information on data reduction) is not depicted in each of C (data point value is -0.040) 
and in D (data point value is -0.078) for the 10 cells per mL concentration MPA samples.   
 
 

For A. millepora, inhibition differed significantly between individuals from coral- 

dominated MPAs versus macroalgae- dominated fished areas (Figure 2.1C & D, linear 

mixed effect model), especially at the higher temperature.  At 28°C, coral water of A. 

millepora from MPAs was 1.8-2.5 times more inhibitory than that from individuals in 

fished areas (Figure 2.1D & Figure B.1.B); this effect persisted across pathogen 

inoculum densities (Figure B.1.B).  At 24°C, patterns were similar but less dramatic 

(Figure 2.1C & B.1.A).  

Composition of coral microbiomes differed significantly among coral species 

(PERMANOVA p = 0.001), but not between conspecifics from MPAs and fished areas 

(Figures 2.2 & B.2).  The large difference in anti-pathogen potency of A. millepora from 

MPAs versus fished areas was not paralleled by a significant difference in the coral’s 

microbiome between areas. There were no between-habitat type differences in the 

composition of A. millepora microbiomes whether all A. millepora samples were tested 

together via two-factor analysis (Figure 2.2B PERMANOVA Origin p = 0.101) or 

independently at each village by one-factor analysis (PERMANOVA on factor Origin at 

Namada, p = 0.679; at Vatu-o-lalai, p = 0.111; at Votua, p = 0.132). Microbiome 

composition of A. millepora differed among villages (Figure 2.2B PERMANOVA Village p 

= 0.001), but collections across villages were taken at different times, making it 

impossible to distinguish location versus time effects. However, in A. millepora (where 

anti-Vibrio activity was weaker in fished areas), dispersion (variance) in microbiome 

composition was significantly higher in fished areas compared to MPAs (Figure 2.2B 

PERMADISPERSION Origin p = 0.013), and also elevated in comparison to the other  
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Figure 2.2: Principal coordinate analysis with PERMANOVA and PERMDISPERSION 
tests of microbial community compositio and dispersion on operational taxonomic unit 
(OTU) tables rarefied to a uniform sequencing depth of 7,700 sequences per sample.  
(A) Porites cylindrica (n = 28, 30 for MPA and fished area coral), (B) A. millepora (n = 29, 
28 for MPA and fished area coral), (C) Pocillopora damicornis (n = 26, 23 for MPA and 
fished area coral).  Abbreviations O and V represent factors origin (MPA or fished area) 
and village, respectively.  
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two coral species (Table B.2.B & C).  For P. cylindrica and P. damicornis, dispersion did 

not differ between areas (Figure 2.2A and 2.2C).   

Alpha diversity (operational taxonomic unit [OTU] richness and Shannon 

diversity) did not differ between coral microbiomes from MPAs and fished areas, except 

for P. damicornis, which exhibited higher OTU richness in fished areas (78-135 OTUs) 

compared to MPAs (68-90 OTUs; Figure B.3E).  This difference was not associated with 

a difference in P. damicornis anti-Vibrio potency between corals from MPAs versus 

fished sites. The microbiomes of all three coral species were characterized by >80% 

relative abundance of OTUs in the Endozoicimonaceae (Gammaproteobacteria, 1,404 

total OTUs across datasets; Figure B.2, Table B.3), with each species harboring a 

unique Endozoicimonaceae community (PERMANOVA coral species p = 0.001 overall, 

and for each pairwise test p = 0.001).  Indicator analyses identified Endozoicimonacae 

OTU (987) as an indicator of A. millepora from MPAs (specificity 85.9%, fidelity 55.2%), 

making it a candidate for production of Vibrio suppressive compounds. OTU (922761) of 

the Enterobacteriaceae (Gammaproteobacteria) was an indicator of fished area A. 

millepora (specificity 89.7%, fidelity 50.0%), and OTU (823476) of the genus 

Alteromonas (Gammaproteobacteria) was an indicator of fished area P. damicornis 

(specificity 97.7%, fidelity 82.6).  Significant indicator OTUs were not detected for P. 

cylindrica.  

Despite the lack of intraspecific differences in community composition of coral 

microbiomes between coral- versus macroalgal-dominated sites, the taxonomic 

composition of microbiomes from benthic water (water from within 1 cm of hard bottom 

surfaces) did differ significantly between MPAs and fished areas, as well as between 

villages (Figure B.4, PERMANOVA Origin p = 0.001, Village p = 0.001, Origin*Village p = 

0.001).  We identified 269 OTUs as indicators of MPA benthic water, and 502 OTUs as 

indicators of fished area water.  OTU richness was greater in fished areas (3215-3488 



 60 

OTUs) than MPAs (2875-2986 OTUs) (Figure B.5A, two-factor permutation ANOVA 

Origin p = 0.018).  The lack of differences in microbiome composition with reef state for 

all three corals, despite the large differences in microbiome composition of benthic 

water, suggests that corals are regulating their microbiomes in spite of considerable 

biotic differences in their surroundings. Shannon diversity and among-sample dispersion 

in microbiome composition of benthic water did not differ based on reef state or village 

site (Figure B.4 & B.5B, permutation two-factor ANOVA).  

Discussion 

 Coral reefs are undergoing precipitous decline, with functionally and 

evolutionarily critical species, such as acroporids, often exhibiting the greatest losses 

(Marshall and Baird 2000, Hughes et al. 2018b).  Previous studies have suggested that 

coral microbiomes are critical in protecting corals from pathogenic microbes and may be 

compromised by elevated temperatures (Ritchie 2006, Krediet et al. 2013, Zaneveld et 

al. 2016), and that macroalgae may chemically destabilize and fundamentally alter coral 

microbiomes (Barott and Rohwer 2012, Morrow et al. 2012).  Here, we show that: i) all 

three corals we tested possessed a chemical defense against a coral-bleaching 

pathogen, ii) this defense was more effective at 24°C than at 28°C, iii) high abundances 

of seaweeds compromised the chemical defense of the ecologically important coral 

genus, Acropora, but not the resistant genus Porites (one of the most persistent genera 

on degraded reefs) or the weedy genus Pocillopora, and iv) the variance in potency of 

coral water from Acropora collected from macroalgal- versus coral-dominated areas 

coincides with different indicator strains (within Endozoicimonaceae and 

Enterobacteriaceae) and with declines in microbiome stability, rather than with large-

scale changes in microbiome community composition.  
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  All corals suppressed the pathogen V. coralliilyticus at 24°C, but suppression 

was compromised to varying degrees at 28°C. As we tested the effects of chemistry 

from sterilized coral water rather than effects of the living coral or its living microbiome, 

this suggests that chemical defenses are compromised at elevated temperatures.  This 

might occur due to compound degradation at elevated temperatures, or to more rapid 

growth of Vibrio at elevated temperatures and the single dose of compound(s) being 

bound to, or degraded by, these more abundant cells.  

Although the potency of P. cylindrica and P. damicornis defenses was unaffected 

by reef state (coral versus macroalgal domination), coral water of A. millepora from 

algal-dominated reefs exhibited a 43-61% decline in inhibition compared to conspecifics 

from coral-dominated reefs and this decline was greater at elevated temperature. The 

decline of an acroporid coral’s chemical defense against a thermally regulated coral 

pathogen on algal-dominated reefs is especially worrisome given that thermal stress 

events have increased in frequency by five-fold over the last 40 years (Hughes et al. 

2018a), and that acroporids are disproportionately important in generating structure on 

reefs (Kerry and Bellwood 2015), are associated with increased diversity of other critical 

reef species such as fishes (Bellwood et al. 2017), and have suffered high losses 

associated with ocean warming and disease (Marshall and Baird 2000, Harvell et al. 

2007). It is equally interesting that the potency of P. cylindrica defenses were high and 

unaffected by reef state; this genus is commonly one of the most persistent on degraded 

reefs (Green et al. 2008, Adjeroud et al. 2009).   

Despite not differing in community composition, A. millepora within algal-

dominated areas did exhibit an increase in microbiome compositional variability 

(dispersion) relative to conspecifics in the MPAs. This is consistent with increased 

variability of host microbiomes in response to stressors in a variety of species, including 
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corals, mice, chimpanzees, and humans (Zaneveld et al. 2017).  The increased 

variability of A. millepora microbiomes within fished areas could indicate a decline of 

regulatory mechanisms that constrain the coral microbiome (Krediet et al. 2013, 

Zaneveld et al. 2017).  In support of this hypothesis, A. millepora from fished areas were 

relatively depleted in an indicator bacterium of the Endozoicimonaceae, a family 

hypothesized to play mutualistic roles in coral health (McDevitt-Irwin et al. 2017).  In 

contrast, fished area A. millepora were enriched in an indicator bacterium of the family 

Enterobactericeae, a ubiquitous bacterial family with members previously associated 

with coral disease (Sunagawa et al. 2009, Daniels et al. 2015).  The functional 

significance of these nuanced shifts in OTUs between MPA and fished area corals are 

unknown, but are consistent with recent investigations (Beatty et al. 2018, Ramirez et al. 

2018) suggesting that minor alterations in microbiome composition may lead to large 

biotic consequences.  

Unlike A. millepora microbiomes, those of P. cylindrica and P. damicornis did not 

differ in variability between macroalgal-dominated fished areas and coral-dominated 

MPAs.  This lack of change for P. cylindrica may help explain its common persistence on 

degraded reefs (Green et al. 2008, Adjeroud et al. 2009).  P. damicornis is a rapidly 

colonizing weedy species; microbiomes from fished areas had higher OTU richness 

compared to conspecifics from MPAs.  Elevated microbiome diversity and richness in 

response to stressors is common (McDevitt-Irwin et al. 2017) and could reflect a decline 

of regulatory mechanisms or attempts to adjust to changing conditions via alterations in 

the protective microbiome.   

 Despite drastic differences in benthic algal abundances (Rasher et al. 2013) and 

benthic seawater microbiome composition (Figure B.4), we did not detect community-

level differences in coral microbiome composition between MPAs and fished areas for 

any of the species investigated (though a few differences in dispersion or indicator OTUs 
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were detected).  This result contrasts with previous work indicating that coral-seaweed 

interactions cause the microbiome to shift towards one enriched in copiotrophic and 

virulent bacteria (Barott and Rohwer 2012, McDevitt-Irwin et al. 2017) or become more 

similar to seaweed microbiomes upon direct seaweed-coral contact (Pratte et al. 2017).  

We did not test for responses to direct seaweed contact, but our results indicate that 

dramatic differences in macroalgal abundance and in the surrounding microbial 

community may have more nuanced effects (e.g., on indicator taxa and dispersion) 

within coral microbiomes, while dominant community members (Figure B.2) appear to 

persist, even under even strongly diverging field conditions.  

 Reef state impacts corals in species-specific ways.  For an acroporid coral from 

macroalgal-dominated areas, we detected a decline in chemical defense against a coral 

bleaching pathogen, loss of a potentially beneficial symbiont in the Endozoicimonaceae, 

and increases in microbiome variability.  In contrast, chemical defense and microbiome 

variability did not differ in P. damicornis and P. cylindrica between fished areas and 

MPAs, suggesting greater resistance to algal-induced stress.  Regardless of collection 

site, the microbiomes of all three corals were dominated by Endozoicimonaceae, with 

each coral harboring a distinct Endozoicimonaceae community. Host-specific 

Endozoicimonaceae compositions may therefore play a role in coral resistance to 

pathogens.  Only nine Endozoicimonaceae occurred at >1% average abundance, 

making them likely candidates for tests of their functional roles in coral microbiomes.  

OTU987 was an indicator of A. millepora from MPAs; it may be linked to the elevated 

antipathogen activity of A. millepora from MPAs.   

It is presently uncertain whether the antibiotic effects documented for all three 

corals, or the variable effects for A. millepora from MPAs versus fished areas, are host, 

or symbiont, produced.  The compound(s) involved are unidentified, but our assays are 

likely conservative in terms of documenting potency due to our collection method, which 
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involved dilution of the coral products with 50 mL of seawater.  Additionally, live 

organisms often produce chemical defenses continuously; our tests were run using a 

single dose (the chemicals present at the time of collection) that likely declined as it was 

metabolized or degraded over the course of storage and deployment in the experiment.  

Thus, the antipathogen effects observed in vitro may be diminished compared to those 

in corals on the reef.  Determining the compounds responsible for these effects, as well 

as their concentration and potency in situ and across other host taxa, would be useful. 

Conclusion 

 Processes like ocean warming, overfishing, pollution, and other anthropogenic 

stresses not only suppress corals and advantage seaweeds, but also create positive 

feedbacks that suppress coral reef resilience (Mumby and Steneck 2008).  Acroporid 

corals are disproportionately important for reef recovery.  They provide the critical 

topographic complexity (Kerry and Bellwood 2015) that facilitates diversification of 

numerous groups of reef fishes (Bellwood et al. 2017), and their rapid growth and high 

abundance make them critically important for maintaining reef accretion through time.  

These corals are also among the most threatened, and rapidly declining, due to 

bleaching and disease (Marshall and Baird 2000, Harvell et al. 2007).  Here, Acropora 

millepora exhibited a decline in defense against Vibrio coralliilyticus when collected from 

algal-dominated, fished reefs. At our study sites, recovery of herbivores and declines in 

macroalgae following protection from fishing (Rasher et al. 2013, Bonaldo et al. 2017) 

were associated with coral water from A. millepora being 75-154% more inhibitory to V. 

coralliilyticus at 28°C. This suggests that local management to suppress macroalgae 

may benefit reefs in the face of global pressures by promoting chemical defense against 

climate induced coral pathogens for critical acroporid species during warming events.  
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CHAPTER 3 

 
ACCLIMATIZATION OF CORAL ANTI-PATHOGEN CHEMICAL DEFENSE IN 

RESPONSE TO RAPID SHIFTS BETWEEN CORAL AND MACROALGAL 
DOMINATED REEFS 

 
Abstract 

 
 
 

Coral reefs are undergoing precipitous decline due to coral bleaching and disease 

following warming events, often causing shifts from coral to macroalgal reef dominance. 

We reciprocally transplanted three coral species between spatially paired coral 

dominated marine protected areas (MPAs) and algal dominated fished areas to test for 

the effects of reef origin (historical) and current reef (acclimatization) on coral chemical 

defense toward the common coral bleaching pathogen Vibrio coralliilyticus.  For an 

ecologically sensitive acroporid species, both historical reef state and current reef state 

influenced the potency of chemical defense, but for an ecologically hardy poritid coral or 

a weedy pocilloporid coral, chemical potency was not altered. Acropora millepora that 

originated from, or were transplanted into, coral dominated MPAs exhibited 46% and 

36% increase, respectively, in inhibition of V. coralliilyticus relative to those that 

originated from, or were transplanted into, macroalgal-dominated fished areas. A. 

millepora also exhibited historical reef effects on their microbial community composition, 

notably by persistently higher relative abundances of Vibrionaceae among individuals 

that originated from macroalgal dominated fished areas compared to individuals that 

originated from coral dominated MPAs. For some ecologically important but bleaching 

susceptible species like acroporids, macroalgal dominated reefs may suppress coral 

chemical defense against Vibrio bleaching pathogens and facilitate blooms of Vibrio 

bacteria that may harm corals following periods of stress.   

Introduction 
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 Coral reefs are among Earth’s most biodiverse ecosystems.  Despite covering 

only 0.2% of the ocean floor (Cesar et al. 2003), coral reefs contain ~ 2,800 species of 

reef fishes in the IndoPacific (Mora et al. 2003) and ~570 in the Caribbean (Weigt et al. 

2012), with about three billion humans depending upon a subset of these fishes as a 

critical source of protein (Cesar et al. 2003). Coral reefs also provide a diversity of other 

ecosystem goods and services including protection from storm surge, tourism-generated 

revenues, and potential drugs from marine organisms (Cesar et al. 2003).  Goods and 

services provided by coral reefs are valued at >$30 billion USD per year globally 

(Spalding et al. 2017), but are threatened by thermally-induced bleaching events (Chen 

et al. 2015) that have increased in frequency by 5-fold over the last four decades owing 

to increases in anthropogenic CO2 (Hughes et al. 2018a). Consequently, reefs are 

undergoing rapid decline, largely due to the loss of critical reef building species within 

the family Acroporidae following bleaching events (Marshall and Baird 2000, Hughes et 

al. 2018b).  The relative roles of coral loss from direct heat stress versus complex 

interactions among heat stress and disease, or other factors, is unclear, but coral-

bacterial interactions are postulated to play an important role in coral decline or 

persistence in response to climate change (Harvell et al. 2007, Krediet et al. 2013, 

McDevitt-Irwin et al. 2017, Peixoto et al. 2017). 

 It is becoming increasingly clear that corals host beneficial microbes within their 

microbiomes that provide nutrients to their host, may protect the coral against harmful 

bacteria, and appear critical for host health and persistence (Ritchie 2006, Krediet et al. 

2013, Thompson et al. 2015). Corals regulate their microbiome via mechanisms 

including: sloughing of mucus, consumption of microbes, production of antimicrobial 

peptides, and via hosting predatory bacteria that may selectively prey on pathogenic 

bacteria within the coral microbiome (Krediet et al. 2013, Thompson et al. 2015, Welsh 

et al. 2015). Thus, it is concerning that warming may alter these regulatory processes, 
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resulting in loss of beneficial bacterial associates and of their protective roles (Ritchie 

2006, Zaneveld et al. 2016).  

Bacterial dysbiosis (loss of beneficial bacteria or increases in harmful bacteria) is 

occurring with increasing frequency on degraded reefs (Dinsdale et al. 2008) and 

increasing abundances of macroalgae on these reefs are hypothesized to be a driver of 

coral dysbiosis (Barott and Rohwer 2012, Morrow et al. 2012, McDevitt-Irwin et al. 

2017). Algae may harm corals via multiple mechanisms, including direct toxicity (Morrow 

et al. 2012), releasing dissolved organics that lead to blooms of virulent bacteria in 

surrounding waters (Barott and Rohwer 2012, Haas et al. 2016), and by vectoring algal 

bacteriomes to corals following contact (Pratte et al. 2017). In some cases algae may 

vector pathogenic microbes to corals, though additional stressors are likely to play a 

critical role in disease initiation and progression (Nugues et al. 2004, Sweet et al. 2013).  

Increases in the frequency of warming events and interactions with algae on degraded 

reefs may lead to irreversible changes to corals’ beneficial bacteriome and to corals’ 

ability to withstand various stressors. 

 Recent work indicates that coral-dominated reefs resulting from protection status 

can bolster an acroporid coral’s chemical defense toward a thermally-regulated coral 

bleaching pathogen, Vibrio coralliilyticus, compared to fished reefs dominated by 

macroalgae (Beatty et al. chapter 2).  Enhanced chemical defense coincided with 

decreased microbiome variability and increases in a putative beneficial bacterium in the 

family Endozoicomonaceae (Beatty et al. chapter 2).  However, it is unclear how coral 

chemical defense may change in response to rapid shifts in reef state (e.g. changes 

from coral to macroalgal dominance) that can occur after disturbances such as heat 

generated bleaching events, damaging cyclones, or disease-related coral die-offs. 

Understanding how corals respond to rapid changes in reef state may be helpful for 

predicting reef trajectories under current and future climate scenarios. 
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 By reciprocally transplanting three coral species between replicated pairs of 

adjacent coral versus macroalgal dominated reefs, we investigated how coral 

bacteriomes and coral chemical defense toward the thermally-regulated bleaching 

pathogen, V. coralliilyticus, responded to rapid changes in benthic community 

composition.  We utilized two pairs of marine protected areas (MPAs) and adjacent 

fished areas that differed in benthic community composition as a result of local 

management.  Prohibiting fishing in marine protected areas for 10-12 years prior to this 

study resulted in 2 to 5 fold increases in herbivory, 75-95% reductions in algal cover, a 3 

fold increase in coral recruitment, and 2 to 10 fold more coral cover (Rasher et al. 2013, 

Bonaldo et al. 2017). These reefs are interspersed along the southwestern coast of Viti 

Levu, Fiji and allow for tests of benthic community composition on coral chemical 

defense without confounding physical or oceanographic features.   

V. coralliilyticus is an ecologically realistic assay pathogen because it is 

distributed globally (Kimes et al. 2012), targets diverse groups of corals (pocilloporids, 

agaricids, and acroporids (Sussman et al. 2008, Bourne et al. 2015), and becomes more 

virulent under elevated water temperatures causing bleaching and mortality of corals 

across the IndoPacific (Ben-Haim et al. 2003, Sussman et al. 2008, Kimes et al. 2012).  

An acroporid coral transplanted from macroalgal to coral dominated areas exhibited 

enhanced potency of its chemical defenses against V. coralliilyticus after 28 days, 

compared to those transplanted from coral to macroalgal reefs. However, 28 days after 

transplanting, historical reef state (reef of origin) also continued to influence this coral’s 

chemical defense.  We discuss these findings in relation to changes in this coral’s 

bacteriome and in comparison to a resistant poritid and a weedy pocilloporid coral 

whose anti-Vibrio chemical defenses did not change in response to experimentally-

induced shifts in reef state following reciprocal transplantation between coral and algal 

dominated reefs. 



 74 

Material and Methods 

Coral species and sites 

We investigated how historical (origin) and the current (transplant area) reef state 

impact coral microbiomes and coral chemical defense against the coral pathogen Vibrio 

coralliilyticus by reciprocally transplanting corals between coral-dominated marine 

protected areas (MPAs) and algal-dominated fished areas. We utilized three common 

corals, Porites cylindrica, Acropora millepora, and Pocillopora damicornis, that were 

reciprocally transplanted between adjacent pairs of MPAs and fished areas at two 

villages, Vatu-o-lalai (18°12.26’ S, 177°41.26’ E) and Votua (18°13.08’ S, 177°42.59’ E), 

along the southwest coast of Viti Levu, Fiji. MPAs were coral-dominated and macroalgae 

depauperate (38-56% live coral cover and <3% macroalgal cover), while fished areas 

were algal-dominated and coral poor (4-16% live coral cover and 50-90% macroalgal 

cover).  Differences in coral versus macroalgal dominance resulted from local 

management that prohibited fishing for 10-12 years prior to our study, resulting in 6 – 16 

fold greater biomass of herbivorous fishes, 2 – 5 fold greater herbivory, and 75 -95% 

reductions in cover of macroalgae (Rasher et al. 2013, Bonaldo and Hay 2014, Bonaldo 

et al. 2017).  

Coral was collected haphazardly from each reef (n =10 colonies per species per 

MPA or fished area at each village), fragmented into ~30-50g clones (six per colony), 

and planted in plastic bottle tops with Emerkitâ epoxy (following methods of (Clements 

and Hay 2015).  Briefly, inverted lids of the bottle were attached to the reef substrate by 

driving a nail through the lid’s center; corals epoxied into the sawed-off top of a plastic 

bottle could then be attached to the benthos by screwing the bottle top into the bottle lid.  

After fragmenting and epoxying corals into bottle tops, corals were attached to lids on 

the benthos of their reef of origin and allowed to recover for 28 days.  After this recovery 

period, corals were reciprocally transplanted between MPAs and fished areas at each 
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village.  This occurred on 21-24 October 2014 at Vatu-o-lalai village and 25-29 October 

2014 at Votua village, with equal numbers of each species planted each day.  

Ten spatially blocked sites for transplantation were located haphazardly within 

each reef area, with blocks separated by ~4-5m and corals within a block separated by 

20-50cm.  Treatments within each block consisted of origin (MPA or fished area) 

crossed with transplant area (MPA or fished area), such that half of the fragments for 

each species stayed on their reef of origin and half moved to their adjacent paired reef at 

each village.  To maintain equal handling of corals among treatments, at the end of the 

recovery period all corals were unscrewed from the benthos, attached to boards used to 

transfer corals between sites, and treated to equivalent movement patterns before 

reattachment to the benthos in their various treatment sites.  These procedures allowed 

investigation of how area of origin (historical reef) and transplant area (current reef) 

influence coral microbiomes and anti-pathogen chemical defense.  Corals were sampled 

28-29 days after transplanting, with equal numbers of each species and treatment 

sampled each day. Approximately one-gram samples from each coral were preserved in 

RNAlaterÒ (QIAGEN) and frozen at -20°C until DNA extraction and sequencing to 

assess composition of the microbiome.  Additionally, ~50 mL volumetric displacement of 

each coral was collected to assess the coral’s anti-pathogen chemical defenses (see 

below).  

Antipathogen activity of corals 

 To test for coral chemical inhibition of the thermally regulated pathogen Vibrio 

coralliilyticus (ATCC BAA-450), each coral was volumetrically displaced in a 1:1 ratio 

with seawater collected from the reef and agitated in a glass jar for 20 seconds (as 

performed in chapter 2). The resulting “coral water” containing coral mucus and any 

other material, such as antibacterial compounds released during agitation (Geffen & 

Rosenberg 2005), was decanted into a sterile polystyrene tube and frozen at -20°C. We 
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screened coral water against V. coralliilyticus, using artificial seawater (Instant Oceanâ) 

as a control. Artificial seawater does not differ from seawater collected from the reef (n = 

27 permutation ANOVA p = 1.0) when tested against V. coralliilyticus using methods 

listed below. 100 µL of coral water or artificial seawater was aliquoted into wells of sterile 

96-well round bottom plates, frozen and dried under vacuum. We then sterilized the 

dried material by UV-radiation for 90 seconds to assure that we were testing chemical 

traits without biotic interactions among live microbes confounding results. Sterilized and 

dried coral water or artificial seawater was reconstituted in 100 µL Marine Broth (DifcoTM 

2216) containing 100 cells per mL of V. coralliilyticus. Tetrazolium chloride (TTC, final 

concentration 0.05 µg/µl) was supplemented to each well as an indicator of pathogen 

growth; microbial metabolism reduces tetrazolium chloride (colorless) to 

triphenylformazan (red pigment) which can be quantified via absorbance.  We chose this 

method over cell counts or measures of turbidity because these latter methods assess 

both live and dead or active and inactive cells, while this method measures only 

metabolically active cells. Plates were incubated at 28°C for 16 hours. We selected 28°C 

for the incubation temperature because V. coralliilyticus upregulates virulence at 27°C 

and higher. 28°C is also commonly experienced during the summer months along the 

reefs in Fiji and this temperature is effective for detecting variance in coral chemical 

defense among differing environments (chapter 2).  We measured absorbance of 

triphenylformazen at 490 nm a BioTek ELx800 absorbance reader. To determine 

absorbance due solely to bacterial metabolism, background absorbance of lyophilized 

and UV-radiated coral water or artificial seawater supplemented with TTC but without 

bacteria was deducted from each well containing bacteria. These blank-corrected values 

were compared statistically via ANOVA or permutation ANOVA in RStudio3 package lm 

perm v 2.1.0 to determine if coral water altered microbial metabolism compared to 
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artificial seawater. Relative V. coralliilyticus metabolism, expressed as a ratio of 

microbial metabolism in response to coral water relative to artificial seawater was utilized 

to test for differences due to the historical reef state (origin),  current reef state 

(transplant area), and village via a three factor ANOVA or permutation ANOVA in 

RStudio3 within package lm perm v 2.1.0.  Values greater than 1 in relative metabolism 

indicate the coral water is stimulatory and values less than 1 indicate the coral water is 

inhibitory. 

DNA extraction and sequencing of the 16S rRNA gene  

DNA extraction and sequencing of the 16S rRNA gene from the frozen coral 

chips was utilized to characterize the microbial communities associated with each coral 

sample. Corals preserved in RNAlaterÒ (QIAGEN) were subjected to DNA extraction 

with MoBio PowerSoil kits (MoBio Laboratories, QIAGEN, Carlsbad, CA). We pelleted 

any dissociated microbial cells in the RNALater solution by centrifugation at 10,000 rpm 

for 10 minutes. We reconstituted the pellet with solution C1 and added this to the 

powerbead tube with approximately 250mg of coral (MoBio Laboratories, QIAGEN). 

Dual-barcoded Illumina Nextera fusion primers F515 and R926 were used to amplify the 

V4-V5 region of the 16S gene as described in Comeau et al. (2017). Briefly, 25 µL PCR 

reactions were carried out in duplicate using high-fidelity polymerase and 2 µL of 

template DNA. Thermal cycling involved initial denaturation at 98°C (30 s), 30 cycles of 

denaturation at 98°C (10 s), primer annealing at 55°C (30 sec), primer extension at 72°C 

(30 sec), and final extension at 72°C (4:30 min). PCR products verified on an Invitrogen 

96-well E-gel, amplicons were then cleaned and normalized on Invitrogen SequalPrep 

96-well plates. Amplicons were sequenced on an Illumina MiSeq at the Centre for 

Comparative Genomics and Evolutionary Bioinformatics at Dalhousie University.  

Microbiome Data Analyses 
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TrimGalore! (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) 

was implemented to trim sequence reads, removing Nextera adapters (100 bp minimum 

read length) and to filter reads with low quality scores (Phred score cutoff 25). Trimmed 

read-pairs were merged using FLASH with the criterion of >250bp input read length and 

>300 bp merged fragment length, with standard deviation of <30 bp. Merged reads were 

imported in QIIME2 using a manifest file. Deblur (Amir et al. 2017) was implemented 

within QIIME2 to remove erroneous sequences, trim sequences to 120bp, and remove 

chimeras. We extracted reads from SILVA 99% similarity consensus taxonomy with our 

primer pair (F515 & R926), trimmed to 120bp, and trained sequences with a Naïve 

Bayes model within QIIME2. This classifier was implemented to classify our sequence 

variants with single nucleotide resolution. After quality filtering, 1,434,438 sequences 

remained from 6,694,241 sequences generated by the MiSeq run, with per-sample 

counts ranging from 30-65,514 sequences per sample. Sequence variant tables were 

rarefied to a uniform depth of 1,185 sequences per sample to avoid confounding 

sequencing depth with a biological signal (Weiss et al. 2017).  

Alpha diversity (number of sequence variants and Shannon Diversity) and beta 

diversity (Bray Curtis) were calculated in PrimerE (Clarke 1993). We tested for 

differences in alpha diversity within RStudio3 package lm perm by a three factor ANOVA 

or permutation ANOVA if data were not homoscedastic (factors: origin, transplant area, 

village). We tested for differences in beta diversity by PERMANOVA and 

PERMDISPERSION on log transformed [Log(x+1)] in PrimerE by three factor analysis 

(factors: origin, transplant area, village). Indicator species analysis (multilevel pattern 

analysis) was performed within RStudio3 indicspecies package to determine indicator 

sequence variants (single nucleotide changes are classified as unique sequence 

variants) among groupings of origin crossed with transplant area. Sequence variants are 

considered indicators if their fidelity scores were 0.50 or greater (i.e. occurrence in > 
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50% of corals from a treatment group). We implemented random forest analysis, a 

supervised machine learning classifier, within QIIME2 (command line: sample-classifier 

classify-samples) to determine taxa that are predictors of sample groupings (origin x 

transplant area). Briefly, the sequence variant table was first collapsed at the family 

level, randomly split into training and test groups (0.80 & 0.20, respectively), trained with 

100 decision trees using a random forest algorithm and validated with a stratified k-fold 

cross-validation scheme. Following identification of predictive taxa by random forest 

analysis, we tested these predictive taxa by a two factor ANOVA or permutation ANOVA 

in RStudio3 package lm perm for differences between origin and transplant area.  

Results 

Antipathogen activity 

 Coral water from P. cylindrica, A. millepora, and P. damicornis inhibited V. 

coralliilyticus by 46-67%, 18-46%, and 0-29%, respectively, relative to controls (Figure 

3.1A-C, permutation ANOVA p < 0.001 for each species comparing coral water to 

artificial seawater).  Inhibition did not differ between origin or transplant area for P. 

cylindrica (Figure 3.1A, ANOVA Origin p = 0.742, Transplant Area p = 0.940, Village p = 

0.486) or P. damicornis (Figure 3.1C, permutation ANOVA Origin p = 0.332, Transplant 

Area p = 0.745, Village p = 0.060).  In contrast, both origin and transplant area 

influenced A. millepora chemical defense against V. coralliilyticus (Figure 3.1B, ANOVA 

Origin p = 0.002, Transplant Area p = 0.009, Village p = 0.568, Origin*Transplant Area p 

= 0.758).  A. millepora that originated from, or were planted into, coral-dominated MPAs 

exhibited 46% and 36% higher, inhibition of V. coralliilyticus, respectively, relative to 

those that originated from or were planted into macroalgal-dominated fished areas.  
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Figure 3.1:  Mean (+SE) activity of coral water relative to artificial seawater against V. 
coralliilyticus at 28°C for Porites cylindrica (A), Acropora millepora (B), and Pocillopora 
damicornis (C).  The dashed line at 1.0 is the expected value if there is no effect. P-
values are from ANOVA or permutation ANOVA (n = 20 per level of each factor).  
Significant factors for each species’ are provided.  O, TA, and V represent origin (MPAs 
or fished areas), transplant area (MPAs or fished areas), and village, respectively.  Dots 
indicate individual data points.   
 

Microbiomes 

 When we investigated if coral microbiomes correlated to anti-pathogen activity, 

we found that Porites cylindrica, whose anti-pathogen activity did not differ across 

treatments, also did not differ across treatments in microbiome community composition. 

Neither origin, transplant area, nor village influenced P. cylindrica microbiome 

composition or dispersion (Figure 3.2A, PERMANOVA Origin p = 0.360, Transplant Area 

p = 0.755, Village p = 0.279; PERMDISP p = 0.418, Transplant Area p = 0.782, Village p 

= 0.353). The anti-pathogen activity of A. millepora varied as a function of both origin 

and transplant area, but its microbiome varied only as a function of origin and village, not 

as a function of transplant area despite that treatment’s significant effect on anti-

pathogen activity (Figure 3.2B, PERMANOVA Origin p = 0.042, Transplant Area p = 

0.210, Village p = 0.001, Origin*Transplant Area p = 0.211, Origin* Village p = 0.172, 

Transplant Area*Village p = 0.913, Origin*Transplant Area*Village p = 0.321). 

Differences between A. millepora microbiomes at each village were due in part to 

greater variability among A. millepora microbiomes at Vatu-o-lalai village compared to 

Votua village (PERMDISP Origin p = 0.153, Transplant Area p = 0.733, Village p = 

0.003).  Although the anti-pathogen activity of P. damicornis did not differ across 

treatments, origin, transplant area, and the interaction between these factors significantly 

influenced the composition of its microbiome (Figure 3.2C, PERMANOVA Origin p = 

0.033, Transplant Area p = 0.001, Village p = 0.064, Origin*Transplant Area p = 0.038, 

Origin* Village p = 0.205, Transplant Area*Village p = 0.113, Origin*Transplant 
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Area*Village p = 0.502). Differences in P. damicornis microbiomes between transplant 

areas, occurred in part due to greater variability among P. damicornis microbiomes 

planted in MPAs compared to fished areas (PERMDISP Origin p = 0.091, Transplant 

Area p = 0.018, Village p = 0.326). 
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Figure 3.2: Principal coordinate analysis with PERMANOVA tests of microbial 
community composition on sequence variant tables rarefied to a uniform sequencing 
depth of 1,185 sequences per sample.  (A) Porites cylindrica (n = 25-29 per village), (B) 
A. millepora (n = 32-34 per village), (C) Pocillopora damicornis (n = 21-33 per village).  
Abbreviations O, TA, and V represent origin (MPAs or fished areas), transplant area 
(MPAs or fished areas), and village, respectively.   
 

Microbiomes of all three coral species were characterized by high abundances of 

Endozoicimonaceae (ranging 33-99% of community composition), with each species 

harboring a unique Endozoicimonaceae community (Figure 3.3A-C, Table C.1). Four, 

eight, and four unique sequence variants comprised the dominant (>2%) 

Endozoicimonaceae for Porites cylindrica (Endozoicimonaceae abundance 78-96%), 

Acropora millepora (Endozoicimonaceae abundance 66-99%), and Pocillopora 

damicornis (Endozoicimonaceae abundance 33-53%), respectively. P. damicornis 

microbiomes were also characterized by high abundances of Gammaproteobacteria (23-

46%) and Vibrionaceae (0.17-37.75%; Figure 3.3C; Table C.2). Alpha diversity (number 

of sequence variants) or Shannon diversity did not differ with origin or transplant area for 

any species, with the exception of P. damicornis having higher Shannon diversity when 

planted into MPAs (Figure C.1F, permutation ANOVA Origin p = 0.961, Transplant Area 

p = 0.012, Village p = 1.000, Origin*Transplant Area p = 0.066, Origin*Village p = 0.941, 

Transplant Area*Village p = 0.540, Origin*Transplant Area*Village p = 1.000).  
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Figure 3.3: Microbial community composition for the three corals species.  Taxa of <2% 
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 Although microbial community composition did not change appreciably with 

changes in coral anti-pathogen activity, it is still possible that changes in particular 

microbes could explain the differences in potency.  We conducted random forest 

analyses to assess this possibility.  This analysis indicated that Endozoicimonaceae, 

Bacteroidia, Vibrionaceae, Alphaproteobacteria, Alteromonadaceae, and 

Flavobacteriaceae best predicted origin and transplant area for A. millepora (Figures 

C.2, C.3, importance scores: 0.098, 0.077, 0.073, 0.071, 0.050, 0.048, respectively, 

overall predictive accuracy 64%). Four predictive taxa occurred in higher relative 

abundances in coral from fished areas (Figure C.3, Bacteroidia, 13.73 times higher, O p 

< 0.001, TA p = 0.064, O*TA p = 0.015; Vibrionaceae 10.85 times higher, O p = 0.004, 

TA p = 0.182, O*TA p = 0.062;  Alteromonadaceae 8.75 times higher, O p < 0.001, TA p 

= 0.368, O*TA p = 0.256; and Flavobacteraceae 4.13 times higher, O p < 0.022, TA p = 

0.510, O*TA p = 0.074; Figure 3.3B, C.3). In contrast, Alphaproteobacteria were found in 

higher abundances in A. millepora planted into fished areas (2.74 times higher, O p = 

0.667, TA p = 0.009, O*TA p = 1.0; Figure C.3). Endozoicimonaceae occurred in higher 

abundances for A. millepora from the MPA compared to those from fished area, but only 

when planted into fished areas (Figure C.3, 1.29 times higher, O p = 0.139, TA p = 

0.439, O*TA p = 0.016).  

Although we did not detect differences in P. damicornis chemical defense with 

reef state, its microbiome did change significantly as a function of reef state, which could 

best be explained by abundances of Vibrionaceae, Gammaproteobacteria, 

Arcobacteraceae, Endozoicimonaceae, Alteromonadaceae, Flavobacteraceae (Figure 

C.4, Random Forest Analysis importance scores: 0.105, 0.080, 0.073, 0.069, 0.044, 

0.040, respectively, overall predictive accuracy 82%). Endozoicimonaceae occurred in 

higher abundances in corals from MPAs (Figure C.5, 1.24 times higher, O p = 0.008, TA 

p = 0.079, O*TA p = 0.319). Gammaproteobacteria occurred in higher abundances for P. 
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damicornis coral from MPAs, with the effect most pronounced for coral planted back into 

MPAs (Figure C.5, 1.79 times higher for coral from MPAs planted into MPAs compared 

to corals from fished areas planted into MPAs, O p = 0.002, TA p = 0.014, O*TA p = 

0.011). Arcobacteraceae and Alteromonadaceae occurred in higher abundances in P. 

damicornis coral planted into MPAs regardless of their reef of origin (Figure C.5, 

Arcobacteraceae, 157.72 times higher, O p = 0.980, TA p < 0.001, O*TA p = 0.667; 

Alteromonadaceae, 3.82 times higher, O p = 0.706, TA p < 0.001, O*TA p = 0.564). 

Vibrionaceae occurred in higher abundances in corals from fished areas with the effect 

most pronounced for coral planted into MPAs (Figure C.5,  Table C.2, 8.18 times higher 

in fished area coral planted into MPAs compared to MPA coral planted into MPAs, O p < 

0.001, TA p < 0.001, O*TA p < 0.001).  

  P. cylindrica did not differ with reef state in either microbial community 

composition or potency of chemical defense, and microbial taxa were not good 

predictors of reef state by Random Forest Analysis (overall predictive accuracy 27%). 

Indicator species analysis provided a second approach to addressing whether 

specific sequence variants were associated with the variable anti-pathogen activity of A. 

millepora with reef state.  This analysis found a Bacteroidia sequence variant with high 

fidelity (53%) and specificity (86%) for A. millepora coral that originated from macroalgal 

dominated fished areas and were planted back into these fished areas. An 

Alphaproteobacteria sequence variant also occurred with high fidelity (50%) and 

specificity (86%) for A. millepora coral that were planted into fished areas (originating 

from both MPAs and fished areas). There were also differences in indicator sequences 

variants occurring with reef state in P. damicornis, a species that also exhibited 

microbiome shifts but not differences in anti-Vibrio activity with reef state. Nine Vibrio 

sequence variants were found with high fidelity (ranging 50-100%) and specificity 

(ranging 79-100%) in P. damicornis originating from fished areas transplanted into 
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MPAs. An Algicola sequence variant and an Arcobacter sequence variant were also 

found with high fidelity (50 & 70%, respectively) and specificity (89 & 81%, respectively) 

for P. damicornis from fished areas transplanted into MPAs. One Vibrio sequence 

variant was an indicator of P. damicornis originating from MPAs or fished areas 

transplanted into MPAs (fidelity 71%, specificity 99%). Relative abundances of indicator 

sequence variants are provided in table C.3. There were no indicator sequence variants 

for P. cylindrica from MPAs and fished areas.   

Discussion 

 Thermally-induced bleaching of corals has increased in frequency by 5-fold over 

the last 40 years (Hughes et al. 2018a), resulting in unprecedented losses of acroporid 

corals, which can be catastrophic for reefs due to the central role that acroporids play in 

building reef structural complexity and providing habitat for other species (Kerry and 

Bellwood 2015, Bellwood et al. 2017, Hughes et al. 2018b). While the relative roles of 

coral loss from direct heat stress versus complex interactions among heat stress and 

disease, or other factors, is often unclear, a recent investigation by Beatty et al. (see 

chapter 2) indicates that an acroporid coral’s chemical defense toward a Vibrio bleaching 

pathogen may be compromised by increased macroalgal abundance, which is a 

common trait of degraded reefs. However, it is uncertain if coral chemical defenses can 

acclimate, and likewise, if historical reef state will continue to influence coral chemical 

defense following rapid changes in reef state (e.g., from coral to macroalgal dominance 

following severe stress events such as bleaching or cyclone impact). Here we 

demonstrate that i) an acroporid coral demonstrated significant acclimatization to its 

current reef state within 28 days, via enhanced chemical defense toward a Vibrio 

bleaching pathogen for individuals planted into a coral dominated MPA compared to a 

macroalgal dominated fished area, ii) historical reef state also impacted this acroporid 

coral’s chemical defense 28 days after transplanting, exhibited by reduced anti-Vibrio 
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chemical defenses for individuals that originated from algal dominated fished areas, iii) 

chemical defenses of a resistant poritid coral and a weedy pocillorid coral were not 

impacted by the historical or current reef state, and iv) declines in the acroporid coral’s 

anti-Vibrio chemical defense coincided with persistently higher relative abundances of 

Vibrionaceae for individuals that originated from reefs with higher algal cover regardless 

of the current reef state. 

Previously (Beatty et al. – see chapter 2) and again here, we found that all three 

corals we investigated possessed chemical defenses against V. coralliilyticus, but that 

potency varied among species. Chemical defenses for P. cylindrica and P. damicornis 

were unaffected by reef state in Beatty et al. (chapter 2) and this is also true for P. 

cylindrica and P. damicornis following fragmentation, acclimation for 28 days on their 

reef of origin, and reciprocal transplantation between coral- and algal-dominated reefs 

(Figure 3.1A & C). In contrast to the chemical defensive traits of P. damicornis, we did 

detect differences in microbiomes of reciprocally transplanted P. damicornis colonies 

with reef state (Figure 3.2C) that we did not detect previously (chapter 2).  It is possible 

that fragmentation (despite 28 days of recovery on their reef of origin) generates a 

degree of susceptibility to microbiome alterations in response to reef state that does not 

occur for corals naturally occurring within our sites.  This may also be true of A. 

millepora, where previously we detected only changes in microbiome variability with reef 

state (chapter 2), but here, document shifts in A. millepora microbiome composition with 

historical reef state (Figure 3.2B).  Chapter 2 experiments and those here were also 

performed a month apart, thus, we cannot exclude the possibility that differences 

between findings may be due to differing field conditions during the time of 

experimentation. 

 By experimentally generating rapid changes in reef state via reciprocally 

transplanting corals between coral and macroalgal dominated reefs, we detected both 
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historical and current (within 28 days) reef effects on anti-pathogen chemical defenses of 

A. millepora.  A. millepora from macroalgal dominated areas exhibited greater anti-Vibrio 

chemical defense if planted into coral dominated areas; the opposite occurred for corals 

planted into macroalgal dominated areas (Figure 3.1B). A. millepora also retained anti-

Vibrio traits from their reef of origin, indicating that historical reef state can continue to 

impact coral chemical defense for >28 days after a rapid shift in reef state.  These 

findings suggest that acroporid corals may be more susceptible than other groups to 

thermally-induced pathogens on degraded reefs; this increased susceptibility could 

further exacerbate the direct stress of heat during, or following, periods of warming.  

Reef of origin (historical reef) effects on A. millepora chemical defense coincided 

with differences in coral microbiomes (e.g. beta diversity and relative abundances of 

bacterial taxa), notably by a 10-fold increase in relative abundances of Vibrionaceae 

among coral that originated from macroalgal dominated fished areas. Additionally, A. 

millepora originating from coral dominated MPAs maintained higher relative abundances 

of putative beneficial Endozoicimonaceae bacteria compared to A. millepora originating 

from fished areas when both were planted in macroalgal dominated fished areas. 

However, we did not detect significant shifts in A. millepora microbial community 

composition (i.e. changes in beta diversity) in response to transplant area.  

 The legacy effects of reef of origin on A. millepora microbiomes may, in part, 

reflect persistent bacterial infections or presence of nuisance bacteria that established 

while the coral resided within degraded, macroalgal dominated reefs. After colonization 

by harmful or nuisance bacteria, it may prove more difficult to clear these bacterial 

residents, even after coral are removed from degraded reefs and placed in healthier, 

coral dominated reefs. Further, bacterial associates may only become pathogenic under 

certain conditions (e.g. warming water temperatures that promote growth or virulence of 

bacteria, (Ben-Haim et al. 2003, Kimes et al. 2012) or when corals experience additional 
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stressors (Harvell et al. 2007)). Indeed, V. coralliilyticus upregulates virulence in 

response to temperature, increasing pathogenicity at 27°C and higher (Ben-Haim et al. 

2003, Kimes et al. 2012). While V. coralliilyticus did not show up in our sequence variant 

tables, 16S gene analyses may be unreliable for taxonomic identification at the bacterial 

species level (strains identified as the same species by 16S can differ in both genome 

size and functional gene content as discussed in (Franzosa et al. 2015) and (Land et al. 

2015)). Additionally, caution should be taken when interpreting these findings, as Vibrio 

bacteria can be found in healthy corals, with some strains playing beneficial roles by 

providing fixed nitrogen to the coral (Chimetto et al. 2008, Ceh et al. 2013). 

In contrast to A. millepora, P. cylindrica and P. damicornis did not differ in their 

chemical defense against V. coralliilyticus between individuals from coral versus 

macroalgal dominated reefs. P. cylindrica exhibited the most potent chemical defense 

(46-67% inhibition) against V. coralliilyticus. Poritid corals are among the most persistent 

coral genera on degraded reefs and are often resistant to thermally-induced bleaching 

(Marshall and Baird 2000, Adjeroud et al. 2009, Adjeroud et al. 2018).  Lack of decline in 

chemical defense or changes to microbiomes among poritid corals may, in part, facilitate 

their persistence on degraded reefs and their resistance to bleaching.  P. damicornis 

exhibited the weakest chemical defense (0-29% inhibition) against V. coralliilyticus, and 

this did not vary as a function of reef state despite this coral exhibiting the greatest 

changes in microbiome composition (i.e. beta diversity) between coral and macroalgal 

dominated reefs (both origin and transplant area impacted microbiomes, Figure 3.2C). In 

addition to shifts in P. damicornis microbiomes with reef state, P. damicornis corals from 

macroalgal dominated fished areas exhibited a decline in relative abundances of 

putative beneficial Endozoicimonaceae and increases in Vibrionaceae. While 

pocilloporids are bleaching susceptible, they often rapidly recolonize reefs following 

disturbances and exhibit faster growth rates after warming events that may allow for their 
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recovery and persistence on degraded reefs (Berumen and Pratchett 2006, Glynn et al. 

2014, Tortolero-Langarica et al. 2017, Adjeroud et al. 2018). This life strategy may 

lessen the need for anti-pathogen chemical defenses, as the coral may rely more on 

rapid growth following non-lethal bleaching episodes or larval dispersal to new habitats 

rather than defense within its current habitat, though further work is needed to test this 

hypothesis.  

 Although we found that only A. millepora varied in its chemical defense against a 

bleaching pathogen as a function reef state, macroalgal effects within the Acropora 

genus alone could still strongly impact the structure and function of Pacific reefs 

because acroporids are the dominant reef-building species upon which much of reef 

biodiversity depends (Kerry and Bellwood 2015, Bellwood et al. 2017).  As examples, 

congruence in the fossil record suggests that Acropora played a critical role in the rapid 

diversification of several lineages of reef fishes (Bellwood et al. 2017) and present-day 

studies indicate that the structures produced by acroporid corals are critical for 

numerous fishes on modern reefs (Kerry and Bellwood 2015).  Consequently, if other 

species of Acropora respond similarly to rapid changes in reef state, losses due to 

bleaching will impact not only these corals, but also a host of other reef species.  

The limits to chemical defense under heating are not known, but under modest 

levels of warming, acroporids on coral dominated reefs may be more resistant to 

bleaching than those on macroalgal dominated reefs.  Beyond certain thermal 

thresholds, e.g. the 3-4° heating-weeks observed on the Great Barrier Reef during the 

2016 heat wave (Hughes et al. 2018b), benefits of herbivory and reductions in algal 

cover will likely prove insufficient for coral resistance to bleaching. At this time, it is 

unclear whether the observed chemical defense in this study is produced by the coral 

animal or its prokaryotic or microeukaryotic symbionts.  However, previous investigators 

have suggested that antibiotic defenses may arise from the coral’s microbiome (Ritchie 
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2006, Krediet et al. 2013) and this seems reasonable given that microbes associated 

with numerous marine and terrestrial invertebrates produce metabolites that defend the 

host against natural enemies (Lopanik 2014, Van Arnam et al. 2018).  It is unclear how 

warming may impact the anti-Vibrio defenses if these are produced by the coral animal 

itself, its bacteriome, its dinoflagellate symbionts, or any combination of these 

components. 

Our findings are consistent with a growing body of evidence that algal contact 

can induce shifts in coral microbiomes, often in a species-specific manner (Morrow et al. 

2012, Thurber et al. 2012, Morrow et al. 2013). However, we only detected shifts in A. 

millepora microbiomes with historical reef state (differing for those originating from coral 

vs. macroalgal dominated reefs) but not with current reef state (after 28 days). It is 

possible that greater time must transpire to detect differences in A. millepora 

microbiomes following a rapid change in reef state. However, this was not the case for 

P. damicornis; this species exhibited microbiome differences within 28 days of a rapid 

change in reef state, but these changes did not coincide with changes in the potency of 

its anti-pathogen defenses. Several hypotheses have emerged to explain shifts in coral 

microbiomes following contact with algae. These include algal vectoring of microbes 

upon contact (Nugues et al. 2004, Pratte et al. 2017), direct toxicity of algal 

allelochemicals (Morrow et al. 2012), and algal release of dissolved organic carbon that 

stimulates bacterial growth and virulence genes in the surrounding seawater (Barott and 

Rohwer 2012, Haas et al. 2016).  Indeed, benthic water microbiomes differ from 

macroalgal and coral dominated reefs (chapter 2 & (Haas et al. 2016)).  However, 

despite drastically different benthic community composition in both macro ((Rasher et al. 

2013, Bonaldo and Hay 2014) and microorganisms (chapter 2) at our sites, we found 

that certain species, e.g. P. cylindrica, are unimpacted by reef state in both their anti-

Vibrio chemical defense and microbiomes. Even for corals that did exhibit differences in 
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their microbiomes in response to reef state, e.g. A. millepora and P. damicornis, 

dominant sequence variant community members (i.e. Endozoicimonaceae sequence 

variants) largely maintained similar relative abundances (Figure 3.3, Table C.1) 

regardless of reef state. Thus, differences may be resulting from changes in lower 

relative abundance taxa or rare community members rather than in dominant community 

members.  

Conclusion 

Coral reefs are losing functionally important reef building coral species within the 

Acroporidae family at unprecedented rates due to thermally-induced bleaching events 

(Marshall and Baird 2000, Hughes et al. 2018b) and disease (Aronson and Precht 2001).  

We found that an acroporid coral was able to acclimate to its current reef state via 

enhanced chemical defense toward a Vibrio bleaching pathogen within 28 days of 

planting into coral dominated MPAs compared to adjacent macroalgal dominated fished 

areas. However, A. millepora’s reef of origin continued to influence chemical defense 28 

days after transplanting via reductions in chemical defense and persistently higher 

relative abundances of Vibrionaceae for individuals that originated from macroalgal 

dominated fished areas.  In contrast, we did not detect differences in anti-Vibrio chemical 

defenses for a weedy pocilloporid coral or a resistant poritid coral in response to rapid 

shifts in reef state.  These findings will help inform our understanding of reef resilience 

as corals continue to face stress from rising algal abundances and increasing frequency 

of warming events. 
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APPENDIX A 
 

Supplemental figures and tables for chapter 1 
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Pocillopora damicornis  
X 12 colonies  
collected from the fished 
area 

4 of 12 colonies 
produced larvae

4 of 12 colonies 
produced larvae
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Figure S1 Diagram of A) coral collection, preservation, and maintenance and B) experimental design (1-3) 

Remaining larvae pooled by 
area of origin for use in 1 of 3 
experiments below  

MPA larvae (from n = 4 colonies) Fished area larvae (from n = 3 
colonies, 1 colony produced too few 
larvae to be used in subsequent 
experiments) 
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Figure A.1
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Mean	distance	
from	centroid

Standard	
error

MPA	adult 2.426 0.327
Fished	area	adult 22.453 7.065
MPA	larvae	 36.181 2.214
Fished	area	larvae 40.614 1.084

Pairwise	comparisons
Group	1	 Group	2 p(perm)
MPA	adult Fished	area	adult 0.037
MPA	adult MPA	larvae	 0.026
MPA	adult Fished	area	larvae 0.015
MPA	larvae	 Fished	area	adult 0.247
MPA	larvae	 Fished	area	larvae 0.083
Fished	area	adult Fished	area	larvae 0.179

Table	S1	PERMDISPERSION	distance	from	
centroid	means	and	pairwise	comparison	
permutation	p	values	

Table A.1
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A.	Taxa	enriched	in	adult	coral
Average	relative	proportion	abundance	in	
adult	corals	(MPA	+	fished	area	adults)

Average	relative	proportion	abundance	in	
coral	larvae	(MPA	+	fished	area	larvae)

Fold	change	in	relative	proportion	
abundance	(adult/larvae)

Endozoicimonaceae 0.90202 0.06656 12.55
Pseudoalteromonadaceae 0.01092 0.00231 3.73
Alteromonadaceae 0.04658 0.02022 1.30

B.	Taxa	enriched	in	coral	larvae
Average	relative	proportion	abundance	in	
coral	larvae	(MPA	+	fished	area	larvae)

Average	relative	proportion	abundance	in	
adult	coral	(MPA	+	fished	area	adults)

Fold	change	in	relative	proportion	
abundance	(larvae/adults)

Helicobacteraceae 0.01953 0.00008 243.13
Methylobacteriaceae 0.02044 0.00014 145.00
Thiohalorhabdaceae 0.01708 0.00013 130.38
Comamonadaceae 0.01783 0.00015 117.87
Low	abundance	archaea* 0.02087 0.00023 89.74
Sphingomonadaceae 0.02270 0.00033 67.79
Chromatiales** 0.35638 0.00595 58.90
Pseudomonadaceae 0.08598 0.00147 57.49
Moraxellaceae 0.06503 0.00270 23.09
Oceanospirillaceae 0.02707 0.00127 20.31
Low	abundance	bacteria* 0.22581 0.02555 7.84
Unassigned	taxa 0.01331 0.00249 4.35
Bacillaceae*** 0.01887 0.00000

C.	Taxa	enriched	in	MPA	corals
Average	relative	proportion	abundance	in	
MPA	corals	(adults	&	larvae)

Average	relative	proportion	abundance	
fished	area	coral	(adults	&	larvae)

Fold	change	in	relative	proportion	
abundance	(MPA/fished	area)

Oceanospirillaceae 0.02386 0.00448 4.33
Unassigned	taxa 0.01211 0.00369 2.28
Thiohalorhabdaceae 0.01263 0.00458 1.76
Comamonadaceae 0.01140 0.00658 0.73
Methylobacteriaceae 0.01211 0.00847 0.43
Helicobacteraceae 0.01124 0.00836 0.34
Low	abundance	archaea* 0.01201 0.00909 0.32
Chromatiales** 0.20548 0.15684 0.31
Endozoicimonaceae 0.49837 0.47021 0.06

D.	Taxa	enriched	in	fished	area	corals
Average	relative	proportion	abundance	in	
MPA	corals	(adults	&	larvae)

Average	relative	proportion	abundance	
fished	area	coral	(adults	&	larvae)

Fold	change	in	relative	proportion	
abundance	(MPA/fished	area)

Bacillaceae*** 0.01870 0.00017 109.00
Pseudoalteromonadaceae 0.01284 0.00039 31.92
Alteromonadaceae 0.05239 0.01441 2.64
Sphingomonadaceae 0.01674 0.00629 1.66
Moraxellaceae 0.04155 0.02618 0.59
Pseudomonadaceae 0.05182 0.03563 0.45
Low	abundance	bacteria* 0.13365 0.11771 0.14

Table	S2B	Two-Factor	ANOVA	or	permutation	ANOVA	p	values

Permutation	ANOVA	p	values	are	provided	for	taxa	that	are	not	homoscedastic.	Taxa	that	are	not	homoscedastic	are	in	italics.
Area	of	origin	 Life	stage Area	of	origin	*	Life	stage

Low	Abundance	Archaea 0.8431 0.0018 0.6863
Low	Abundance	Bacteria 0.6667 0.0006 0.9020
Unassigned	 0.5102 0.1901 0.0727
Bacillaceae 0.3220 0.3140 0.3220
Methylobacteriaceae 0.6230 0.0010 0.6429
Sphingomonadaceae 0.2927 0.0002 0.2508
Comamonadaceae 0.5389 0.0386 0.5142
Helicobacteraceae 0.6154 0.0024 0.5811
Alteromonadaceae 0.3820 0.5400 0.2160
Chromatiales	 0.3438 0.0004 0.3223
Endozoicimonaceae 0.7220 <0.0001 0.1130
Moraxellaceae 0.3300 0.0042 0.7255
Pseudomonadaceae 0.5102 0.0026 0.6545
Oceanospirillaceae 0.3380 	0.209 0.3060
Thiohalorhabdaceae 0.1343 0.0040 0.0808
Pseudoalteromonadaceae 0.164 0.325 0.3

In	bold	type	font	are	taxa	that	significantly	differ	between	adults	and	larvae
*	taxa	contributes	to	less	than	2%	of	the	community
**	classified	up	to	order
***	only	present	in	coral	larvae

Table	S2A	Fold	Changes	in	Relative	Abundances

In	bold	type	font	are	taxa	that	significantly	differ	between	adults	and	larvae	(p	<	0.004	for	statistical	significance	with	Bonferroni	correction	for	multiple	comparisons).

Table A.2.1  Fold changes in relative abundances

Table A.2.2 Two-factor ANOVA or permutation ANOVA p value 
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Area	of	origin
Low	Abundance	Archaea 0.537
Low	Abundance	Bacteria 0.243
Unassigned	 0.153
Bacillaceae Not	present	in	adult	coral
Methylobacteriaceae 0.246
Sphingomonadaceae 0.143
Comamonadaceae 0.356
Helicobacteraceae 0.356
Alteromonadaceae 0.293
Chromatiales	 0.348
Endozoicimonaceae 0.265
Moraxellaceae 0.315
Pseudomonadaceae 0.344
Oceanospirillaceae 0.104
Thiohalorhabdaceae 0.237
Pseudoalteromonadaceae 0.239

Area	of	origin
Low	Abundance	Archaea 0.634
Low	Abundance	Bacteria 0.835
Unassigned	 0.141
Bacillaceae 0.342
Methylobacteriaceae 0.57
Sphingomonadaceae 0.266
Comamonadaceae 0.538
Helicobacteraceae 0.576
Alteromonadaceae 0.501
Chromatiales	 0.439
Endozoicimonaceae 0.255
Moraxellaceae 0.534
Pseudomonadaceae 0.614
Oceanospirillaceae 0.341
Thiohalorhabdaceae 0.159
Pseudoalteromonadaceae 0.339

Table	S3A	One-Factor	(area	of	origin)	ANOVA	or	permutation	ANOVA	p	values	for	
adult	coral	

Permutation	ANOVA	p	values	are	provided	for	taxa	that	are	not	homoscedastic.	
Taxa	that	are	not	homoscedastic	are	in	italics.

Table	S3B	One-Factor	(area	of	origin)	ANOVA	or	permutation	ANOVA	p	values	for	
larval	coral	
Permutation	ANOVA	p	values	are	provided	for	taxa	that	are	not	homoscedastic.	
Taxa	that	are	not	homoscedastic	are	in	italics.

Table A.3.1  One-factor (area of origin) ANOVA or permutation ANOVA p values 
for adult coral

Table A.3.2  One-factor (area of origin) ANOVA or permutation ANOVA p values 
for larval coral
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Table	S4	Relative	Abundances	of	Vibrionaceae	

MPA	adult MPA	larvae Fished	area	adult Fished	area	larvae
mean	 0.00 0.00 0.15 0.02
standard	error 0.00 0.00 0.07 0.01

MPA	water Fished	area	water
mean	 0.32 0.53
standard	error 0.12 0.14

MPA	larvae	
maintained	in	
MPA	water

MPA	Larvae	
maintained	in	

fished	area	water

Fished	area	larvae	
maintained	in	MPA	

water

Fished	area	larvae	
maintained	in	

fished	area	water
mean	 0.00 0.01 4.16 0.28
standard	error 0.00 0.01 4.14 0.17

MPA	adult MPA	larvae Fished	area	adult Fished	area	larvae
mean	 0.00 0.13 0.29 1.33
standard	error 0.00 0.13 0.15 0.64

MPA	water Fished	area	water
mean	 2.08 0.93
standard	error 0.66 0.39

MPA	larvae	
maintained	in	
MPA	water

MPA	Larvae	
maintained	in	

fished	area	water

Fished	area	larvae	
maintained	in	MPA	

water

Fished	area	larvae	
maintained	in	

fished	area	water
mean	 0.75 0.51 4.37 1.65
standard	error 0.66 0.46 4.30 0.89

Relative	abundance	(%)	of	Vibrio	shilonii	 in	adults	and	larvae	at	time	point	of	larval	release

Relative	abundance	(%)	of	Vibrio	shilonii	 in	water	
collected	from	the	MPA	or	fished	area

Relative	abundance	(%)	of	Vibrio	shilonii	 in	larvae	maintained	in	MPA	or	fished	area	water	
for	six	days

Relative	abundance	(%)	of	Vibrionaceae	 in	adults	and	larvae	at	time	point	of	larval	release

Relative	abundance	(%)	of	Vibrionaceae	 in	water	
collected	from	the	MPA	or	fished	area	

Relative	abundance	(%)	of	Vibrionaceae	 in	larvae	maintained	in	MPA	or	fished	area	water	for	
six	days

Table A.4 Relative abundance of Vibrionaceae
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APPENDIX B 
 

Supplemental figures and tables for chapter 2 
 

 
Figure B.1:  Mean (+SE) activity of coral water relative to reef water against V. 
coralliilyticus at 24°C and 28°C for Acropora millepora as a function of pathogen 
inoculum concentration.  The dashed line at 1.0 is the expected value if there is no 
effect. P-values are from a linear mixed effects model implemented with Akaike 
Information Criterion (AIC) for model selection (n = 9).  Factors remaining after the 
model selection process are provided.  O, T, and C represent origin (MPAs or fished 
areas), temperature, and concentration of pathogen inoculum, respectively.  Dots 
indicate individual data points.  One data point with negative values (after reduction of 
the optical density of sterilized coral water, see methods for information on data 
reduction) is not depicted in each of A (data point value is -0.040) and in B (data point 
value is -0.078) for the 10 cells per mL concentration MPA samples.   
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Figure B.2:  Microbial community composition for the three corals samples.  Taxa of <2% 
relative abundance were pooled by domain and depicted as ‘low abundance bacteria’ 
and ‘low abundance archaea’.  Endozoicimonaceae are depicted at the OTU level for 
taxa contributing to 1% or greater composition, with all remaining Endozoicimonaceae 
OTUs pooled to generate ‘Low abundance Endozoicimonaceae’.  
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Figure B.3: Graphs on left show operational taxonomic unit (OTU) richness and on right 
show Shannon diversity (mean + SE) for (A-B) Porites cylindrica (n = 28, 30 for MPA 
and fished area coral), (C-D) A. millepora (n = 29, 28 for MPA and fished area coral), (E-
F) Pocillopora damicornis (n = 26, 23 for MPA and fished area coral).  Analyses by two 
factor ANOVA or permutation ANOVA.  O indicates origin (MPA or fished area) and V 
represents village.  Dots show the individual data points. One (off the graph) data point 
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is not depicted in C and D above for Namada fished area (600 OTUs and 4.583 
Shannon diversity). 
 
 

 
Figure B.4: Principal coordinate analysis with PERMANOVA and PERMDISPERSION 
tests of microbial community composition and dispersion for benthic water samples on 
operational taxonomic unit (OTU) tables rarefied to a uniform sequencing depth of 
17,700 sequences per sample (n = 27, 18 for MPA and fished area samples).  O and V 
represent origin and village, respectively, with village confounded by time (i.e., samples 
in different villages were taken on different dates). 
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Figure B.5:  OTU richness (A) and Shannon diversity (B) for benthic water samples (n = 
27, 18 for MPA and fished area samples).  Analyses by two factor permutation ANOVA.  
Abbreviations O and V represent factors origin and village, respectively, with village 
confounded by time. 
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Figure B.6:  Rarefaction curves (mean + SEM) for Porites cylindrica (n = 28, 30 for MPA 
and fished area coral), A. millepora (n = 29, 28 MPA and fished area coral), Pocillopora 
damicornis (n = 26, 23 MPA and fished area coral) at each village (left graphs) and for 
benthic water (n = 27, 18 MPA and fished area samples) from each village (right 
graphs). 
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Table S1A: Comparisons of treatment (coral water) to control (reef water) at 24C
Coral Species: Acropora millepora Coral Species: Pocillopora damicornis Coral Species: Porites cylindrica
Area: MPA Area: MPA Area: MPA
Temperature: 24 Celsius Temperature: 24 Celsius Temperature: 24 Celsius
Concentration 

of Vibrio 
coralliilyticus 

cells/mL

ANOVA or permutation 
ANOVA FDR-corrected p 
value (coral water 
compared to seawater)

Concentration 
of Vibrio 

coralliilyticus 
cells/mL

ANOVA or permutation 
ANOVA FDR-corrected p 
value (coral water 
compared to seawater)

Concentration of 
Vibrio 

coralliilyticus 
cells/mL

ANOVA or permutation 
ANOVA FDR-corrected p 
value (coral water 
compared to seawater)

1000000 <0.001 1000 0.192 1000 <0.001
100000 <0.001 100 <0.001 100 <0.001

10000 <0.001 10 0.001 10 <0.001
1000 <0.001

100 <0.001
10 <0.001

Coral Species: Acropora millepora Coral Species: Pocillopora damicornis Coral Species: Porites cylindrica
Area: Fished Area Area: Fished Area Area: Fished Area
Temperature: 24 Celsius Temperature: 24 Celsius Temperature: 24 Celsius
Concentration 

of Vibrio 
coralliilyticus 

cells/mL

ANOVA or permutation 
ANOVA FDR-corrected p 
value (coral water 
compared to seawater)

Concentration 
of Vibrio 

coralliilyticus 
cells/mL

ANOVA or permutation 
ANOVA FDR-corrected p 
value (coral water 
compared to seawater)

Concentration of 
Vibrio 

coralliilyticus 
cells/mL

ANOVA or permutation 
ANOVA FDR-corrected p 
value (coral water 
compared to seawater)

1000000 <0.001 1000 0.092 1000 <0.001
100000 <0.001 100 0.038 100 <0.001

10000 <0.001 10 0.192 10 <0.001
1000 <0.001

100 <0.001
10 <0.001

permutation p values are in bold

Table S1B: Comparisons of treatment (coral water) to control (reef water) at 28C
Coral Species: Acropora millepora Coral Species: Pocillopora damicornis Coral Species: Porites cylindrica
Area: MPA Area: MPA Area: MPA
Temperature: 28 Celsius Temperature: 28 Celsius Temperature: 28 Celsius
Concentration 

of Vibrio 
coralliilyticus 

cells/mL

ANOVA or permutation 
ANOVA FDR-corrected 
p value (coral water 
compared to seawater)

Concentration 
of Vibrio 

coralliilyticus 
cells/mL

ANOVA or permutation 
ANOVA FDR-corrected 
p value (coral water 
compared to seawater)

Concentration 
of Vibrio 

coralliilyticus 
cells/mL

ANOVA or permutation 
ANOVA FDR-corrected 
p value (coral water 
compared to seawater)

1000000 <0.001 1000 <0.001 1000 <0.001
100000 <0.001 100 <0.001 100 <0.001

10000 <0.001 10 0.063 10 <0.001
1000 <0.001

100 <0.001
10 <0.001

Coral Species: Acropora millepora Coral Species: Pocillopora damicornis Coral Species: Porites cylindrica
Area: Fished Area Area: Fished Area Area: Fished Area
Temperature: 28 Celsius Temperature: 28 Celsius Temperature: 28 Celsius
Concentration 

of Vibrio 
coralliilyticus 

cells/mL

ANOVA or permutation 
ANOVA FDR-corrected 
p value (coral water 
compared to seawater)

Concentration 
of Vibrio 

coralliilyticus 
cells/mL

ANOVA or permutation 
ANOVA FDR-corrected 
p value (coral water 
compared to seawater)

Concentration 
of Vibrio 

coralliilyticus 
cells/mL

ANOVA or permutation 
ANOVA FDR-corrected 
p value (coral water 
compared to seawater)

1000000 0.014 1000 <0.001 1000 <0.001
100000 0.008 100 0.002 100 <0.001

10000 0.011 10 0.251 10 <0.001
1000 0.011

100 <0.001
10 <0.001

permutation p values are in bold

Table B.1.1

Table B.1.2
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A. PERMANOVA pairwise tests t p (permutation)
Porites cylindrica - Acropora millepora 14.69 0.001
Porites cylindrica - Pocillopora damicornis 20.12 0.001
Acropora millepora -  Pocillopora damicornis 7.89 0.001

B. PERMADISPERSION Averages
Average distance 

from centroid Standard Error
Acropora millepora 36.79 2.07
Pocillopora damicornis 21.57 2.88
Porites cylindrica 12.86 1.32

C. PERMADISPERSION pairwise tests t p (permutation)
Porites cylindrica - Acropora millepora 9.79 0.001
Porites cylindrica - Pocillopora damicornis 2.90 0.015
Acropora millepora -  Pocillopora damicornis 4.38 0.002

Table S2: PERMANOVA and PERMADISPERSION results for coral microbial 
community composition and dispersion
Table B.2

Table B.1.2

Table S3: Coral Microbial Community Composition 

MPA Fished Area MPA Fished Area MPA Fished Area
Amoebophilaceae 0.01 0.01 0.55 0.70 2.50 4.87
Chroococcales 0.10 3.24 0.01 0.71 0.00 0.00
Rhodobacteraceae 0.17 0.18 0.35 2.28 0.64 0.68
Low abundance Endozoicimonaceae 3.31 7.32 0.41 5.19 3.83 0.90
Endozoicimonaceae 370251 17.17 23.11 1.63 5.21 0.10 0.07
Endozoicimonaceae 164076 2.25 2.11 0.51 0.69 0.12 0.05
Endozoicimonaceae 739464 0.03 0.04 0.02 0.02 1.02 1.16
Endozoicimonaceae 221108 2.78 1.43 0.10 0.13 0.25 0.22
Endozoicimonaceae 555869 4.33 3.80 0.99 1.17 85.28 82.75
Endozoicimonaceae 109431 0.10 0.16 24.67 21.22 0.12 0.06
Endozoicimonaceae 347784 30.10 22.76 60.13 53.62 0.86 0.08
Endozoicimonaceae 585094 3.54 2.83 0.02 0.03 0.58 0.60
Endozoicimonaceae New Reference OTU101 31.81 25.53 0.20 0.18 0.08 0.07
Unassigned Taxa 0.32 0.45 0.26 0.52 0.16 0.80
Low Abundance Archaea 0.28 0.28 0.51 0.18 0.06 0.13
Low Abundance Bacteria 3.69 6.74 9.63 8.16 4.39 7.56

Acropora Pocillopora Porites
Relative Abundances (%) 

Table B.2

Table B.3
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Supplemental figures and tables for chapter 3 
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Figure C.1: Graphs on left show sequence variant richness and on right show Shannon 
diversity (mean + SE) for (A-B) Porites cylindrica (n = 25-29 per village), (C-D) A. 
millepora (n = 32-34 per village), (E-F) Pocillopora damicornis (n = 21-33 per village). 
Analyses by three factor ANOVA or permutation ANOVA, with p-values provided for 
significant factors.  Abbreviations O, TA, and V represent origin (MPAs or fished areas), 
transplant area (MPAs or fished areas), and village, respectively.  Dots show the 
individual data points. 
 
 

 
Figure C.2: Random forest analysis on Acropora millepora on feature table collapsed to 
family level. A) & B) predictive accuracy of the consensus model in predicting treatment 
groups (origin*transplant area), as proportion (A) and heatmap (B) from bacterial family 
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or class groups. C) Taxa ranked according to their predictive performance in the 
consensus model (higher scores are better predictors).   
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Figure C.3: Relative abundances of predictive taxa from random forest analysis on 
Acropora millepora on feature table collapsed to family level. Significant factors from a 
two factor ANOVA or permutation ANOVA on relative abundances are provided. 
Abbreviations O, and TA represent origin (MPAs or fished areas), and transplant area 
(MPAs or fished areas). Dots show the individual data points. 
 
 

 
Figure C.4: Random forest analysis on Pocillopora damicornis on feature table collapsed 
to family level. A) & B) predictive accuracy of the consensus model in predicting 
treatment groups (origin*transplant area), as proportion (A) and heatmap (B) from 
bacterial family or class groups. C) Taxa ranked according to their predictive 
performance in the consensus model (higher scores are better predictors).   
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Figure C.5: Relative abundances of predictive taxa from random forest analysis on 
Pocillopora damicornis on feature table collapsed to family level. Significant factors from 
a two factor ANOVA or permutation ANOVA on relative abundances are provided. 
Abbreviations O, and TA represent origin (MPAs or fished areas), and transplant area 
(MPAs or fished areas). Dots show the individual data points. 
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Table S1: Relative abundances of dominant (>2% contribution) and rare (<2%) Endozoicomonaceae

Origin: MPA FA MPA FA MPA FA MPA FA
Transplant Area: 

Endozoicomonas sp. s.v.1 23.37 20.78 18.99 24.83 22.28 26.23 25.69 21.63
Endozoicomonas sp. s.v.7 28.21 28.55 23.63 27.95 22.53 25.65 29.04 23.88
Endozoicomonas sp. s.v.10 22.70 20.70 19.82 21.38 18.62 22.81 22.51 20.63
Endozoicomonas sp. s.v.12 17.95 17.11 15.59 19.95 19.12 18.71 18.74 18.05
Rare Endozoicomonaceae summed 0.00 0.08 0.00 0.00 0.08 0.00 0.00 0.00
Total Endozoicomonaceae abundance 92.24 87.23 78.03 94.11 82.63 93.40 95.98 84.19

Origin: MPA FA MPA FA MPA FA MPA FA
Transplant Area: 

Endozoicomonas sp. s.v.2 2.56 1.73 2.40 0.89 12.29 14.00 11.65 6.87
Endozoicomonas sp. s.v.3 3.14 1.23 2.07 0.73 8.72 7.75 9.39 5.62
Endozoicomonas sp. s.v.4 17.36 17.60 19.72 13.56 11.38 13.50 14.33 14.06
Endozoicomonas sp. s.v.5 14.79 25.58 23.86 19.81 11.38 15.75 12.49 16.38
Endozoicomonas sp. s.v.6 3.97 1.81 2.24 0.97 10.63 8.92 10.39 6.37
Endozoicomonas sp. s.v.9 2.73 1.64 2.07 0.89 10.05 9.83 11.48 5.96
Endozoicomonas sp. s.v.13 13.31 17.60 20.13 15.26 13.62 12.83 11.99 15.47
Endozoicomonas sp. s.v.14 14.38 14.31 16.24 12.01 9.88 11.25 10.98 13.40
Rare Endozoicomonaceae summed 6.12 2.96 4.31 1.79 5.48 2.58 6.54 1.08
Total Endozoicomonaceae abundance 78.35 84.46 93.04 65.91 93.44 96.42 99.25 85.19

Origin: MPA FA MPA FA MPA FA MPA FA
Transplant Area: 

Endozoicomonas sp. s.v.8 20.05 13.14 21.97 26.43 23.46 13.42 21.36 21.95
Endozoicomonas sp. s.v.11 23.03 25.29 29.60 24.24 25.54 19.83 31.14 24.77
Endozoicomonas sp. s.v.15 2.07 0.00 0.41 0.00 0.00 0.00 0.00 0.00
Endozoicomonas sp. s.v.16 2.07 0.00 0.25 0.00 0.00 0.00 0.00 0.00
Rare Endozoicomonaceae summed 3.56 0.00 0.33 0.00 0.00 0.00 0.08 0.00
Total Endozoicomonaceae abundance 50.79 38.44 52.57 50.67 49.00 33.25 52.59 46.72

Porites cylindrica

Acropora millepora

Pocillopora damicornis

Vatuolalai village Votua village

Vatuolalai village Votua village

MPA FA MPA FA

MPA FA MPA FA

MPA FA MPA FA

Vatuolalai village Votua village

Table C.1
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Table S2: Relative abundances of dominant (>2% contribution) and rare (<2%) Vibrionaceae

Origin: MPA FA MPA FA MPA FA MPA FA
Transplant Area: 

Rare Vibrionaceae summed 0.00 0.08 0.33 0.00 0.33 0.67 0.50 0.00

Origin: MPA FA MPA FA MPA FA MPA FA
Transplant Area: 

Rare Vibrionaceae summed 0.41 5.76 0.58 0.73 0.50 0.92 0.08 1.82

Origin: MPA FA MPA FA MPA FA MPA FA
Transplant Area: 

Vibrio  sp. s.v.1 0.58 2.08 0.08 0.00 0.67 2.75 0.08 0.00
Vibrio  sp. s.v.2 0.17 2.00 0.00 0.00 0.00 0.00 0.00 0.00
Vibrio  sp. s.v.3 0.08 0.25 0.00 0.00 0.92 5.25 0.00 0.00
Vibrio  sp. s.v.4 0.00 0.08 0.00 0.00 0.08 2.83 0.00 0.00
Vibrio  sp. s.v.5 0.08 0.17 0.00 0.00 0.58 4.50 0.00 0.00
Vibrio  sp. s.v.6 0.33 0.75 0.08 0.00 0.08 2.50 0.00 0.00
Vibrio sp. s.v.7 0.50 2.41 0.00 0.08 0.25 3.50 0.08 0.00
Vibrio  sp. s.v.8 0.00 0.08 0.00 0.00 0.00 3.83 0.00 0.00
Vibrio  sp. s.v.9 0.66 2.00 0.00 0.00 1.08 3.00 0.08 0.08
Rare Vibrionaceae summed 1.66 10.48 0.17 0.08 1.33 9.58 0.74 0.17
Total Vibrionaceae abundance 4.06 20.30 0.33 0.17 4.99 37.75 0.99 0.25

In bold are sequence variants that are indicators of origin and transplant area groupings

Pocillopora damicornis
Vatuolalai village Votua village

MPA FA MPA FA

Vatuolalai village Votua village

MPA FA MPA FA

MPA FA MPA FA

Acropora millepora

Porites cylindrica
Vatuolalai village Votua village

Table C.2
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Table S3: Relative abundances (%) of indicator sequence variants 

Origin: MPA FA MPA FA MPA FA MPA FA
Transplant Area: 

Vibrio  sp. s.v.1 0.58 2.08 0.08 0.00 0.67 2.75 0.08 0.00
Vibrio  sp. s.v.3 0.08 0.25 0.00 0.00 0.92 5.25 0.00 0.00
Vibrio  sp. s.v.5 0.08 0.17 0.00 0.00 0.58 4.50 0.00 0.00
Vibrio  sp. s.v.6 0.33 0.75 0.08 0.00 0.08 2.50 0.00 0.00
Vibrio sp. s.v.7 0.50 2.41 0.00 0.08 0.25 3.50 0.08 0.00
Vibrio  sp. s.v.8 0.00 0.08 0.00 0.00 0.00 3.83 0.00 0.00
Vibrio  sp. s.v.9 0.66 2.00 0.00 0.00 1.08 3.00 0.08 0.08
Vibrio  sp. s.v.10 0.00 0.33 0.00 0.00 0.00 0.67 0.00 0.00
Vibrio  sp. s.v.11 0.00 0.58 0.08 0.00 0.00 0.67 0.00 0.00
Vibrio  sp. s.v.12 0.08 0.75 0.00 0.00 0.25 0.42 0.08 0.08
Algicola  sp. s.v.1 0.08 1.16 0.00 0.00 0.08 0.08 0.00 0.00
Arcobacter  sp. s.v.1 0.08 0.42 0.00 0.00 0.17 0.25 0.00 0.00

Origin: MPA FA MPA FA MPA FA MPA FA
Transplant Area: 

Bacteroidia s.v.1 0.00 0.00 0.08 0.24 0.00 0.08 0.00 0.33
Alphaproteobacteria s.v.1 0.08 0.08 0.50 0.24 0.08 0.08 0.08 0.17

In bold are sequence variants that are found at > 2% in at least one origin and transplant area grouping

Acropora millepora
Vatuolalai village Votua village

MPA FA MPA FA

Pocillopora damicornis
Vatuolalai village Votua village

MPA FA MPA FA

Table C.3


