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The bringing together of theory and practice leads to the most favorable results; not only

does practice benefit, but the sciences themselves develop under the influence of practice,

which reveals new subjects for investigation and new aspects of familiar subjects
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SUMMARY AND THESIS CONTRIBUTION

This thesis considers a problem in real algebraic geometry that is born out of many-

body physics. The latter is the study of the physical properties of a system consisting of

many particles, usually identical atoms. There is a natural, but not well appreciated con-

nection between many-body physics and polynomials. For instance, the quantum state of a

many-body system of atoms is represented by a multi-variate polynomial of degree equal

to the number of atoms and the variables in the polynomial are the so-called creation ope-

rators. The number of variables, in the polynomial is the number of states of existence of

each atom in the many-body system. Multiplication of two such polynomials corresponds

to merging of the two many-body states represented by the two polynomials into a larger

many-body system. The product of the two polynomials is the quantum state of the merged

many-body system. Experimentally, this process is called adiabatic merging. Factoring

a polynomial into two polynomials corresponds to splitting a many-body system into two

smaller many-body systems, also known as a mode split. The study of multi-variate po-

lynomial factorization, in particular, addressing questions such as which polynomials are

factorizable would help us answer questions such as which many-body quantum states can

be prepared by an adiabatic merger.

In a second thread of connection between polynomials and many-body physics, global

minima of polynomial functions over a compact set correspond to the so-called ground

states of many-body systems. The energy functional of a many-body system, also known as

mean-field energy, is usually a polynomial with a degree equal to the degree of interaction

i.e., quadratic terms correspond to two-body interaction, cubic terms correspond to three

body interaction etc. The variables in the polynomial are the degrees of freedom of one

atom and their domain is a compact set. The stable states of such a system are obtained by

minimizing the energy functional over the range of the variables, which is a compact set.

In a third thread of connection between many-body physics and polynomials, the pro-
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blem of determining whether a many-body state is entangled can be rephrased as a trun-

cated K-moment problem (TKMP). We provide a brief explanation of the two italicized

technical terms that appeared in the previous sentence.

We begin with the TKMP. The moment problem is the well-known problem of determi-

ning a probability distribution, i.e., a measure, starting from its moments. The truncated

moment problem is the problem of determining a measure starting from a truncated subset

of its moments. If the measure is defined over a compact set K, then the corresponding

truncated moment problem is called truncated K-moment problem.

A TKMP is closely related to non-negativity of polynomials over the compact set K. A

moment is the expectation value of a monomial under a measure. In convex analysis, the

bipolar theorem asserts that the closure of the cone of moments of measures over K is the

dual of the cone of polynomials containing the relevant monomials, that are non-negative

overK. Therefore, characterizing the moment cone is equivalent to characterizing the cone

of non-negative polynomials.

We next provide a brief discussion of entanglement and how it is related to TKMPs.

In a general setting, every physically observable parameter of a physical system is mo-

deled by a random variable. The experimentally measured value of the parameter would be

the first moment of the random variable. The set of of physical parameters of a many-body

system are modeled by a set of random variables, together with a joint measure.

Based on the nature of the joint measure we may identify two classes of quantum states

of a many-body system. If the joint measure can be factored into a product, then we say

that the constituents of the many-body system are uncorrelated. If the measure can not be

factored, we say that the constituents of the many-body system are classically correlated.

The reason behind the unexpected appearance of the prefix “classical” will be clear soon.

Quite intriguingly, there are some states of a many-body system that do not belong to

either of the classes mentioned above. The measured values of the parameters of such states

can not be described as moments of a measure. There can be no measure — factorizable or
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otherwise — whose moments are equal to the measured values of the parameters. They can

be described only by a signed measure. Accordingly, there states are perceived to possess

a higher level of correlations and are called quantum correlated states or entangled states.

One of the central problems in quantum entanglement is to show, using experimentally

measured values of a set of parameters, that the underlying quantum state is entangled.

Quite clearly, this problem is a TKMP — the objective is to determine whether the parame-

ters measured in the laboratory are moments of some measure. In this thesis we consider

an example of a TKMP that comes from a specific problem concerning entanglement in a

system consisting of N number of identical Bosons. The latter is a term used to describe

atoms that possess an exchange symmetry. That is, all physical properties of a system

of N identical Bosons are invariant under the action of the symmetric group SN . There-

fore, the corresponding moment cone would be dual to the cone of non-negative symmetric

polynomials.

This thesis is organized as follows. Chapter 1 provides an introduction to TKMP and

non-negative polynomials. Chapter 2 starts with a brief summary of quantum entanglement

and describes with examples how the problem of deciding whether a state is entangled or

not is a TKMP. Previous work in the fields on many-body entanglement and in non-negative

symmetric polynomials are summarized in Chapter 3. In Chapter 4, we summarize the

statement of the problem considered in this thesis. In Chapter 5, we discuss our results on

the exact characterization of the cone of symmetric polynomials that are non-negative over

the compact set relevant to a many-body system of Bosons. In Chapter 6, we discuss our

results on asymptotic characterization of the same cone, leading to an asymptotically tight

entanglement criteria, for large N . We also compare this criterion with previous work on

many-body entanglement. Finally, we discuss possible generalizations of the problem and

possible experimental application of the results in the thesis.
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CHAPTER 1

TKMP AND NON-NEGATIVE POLYNOMIALS

This chapter is a basic introduction to TKMP and is aimed at the non-expert audience who

might be drawn to this thesis because of its connection to many-body physics. We begin

with basic notations and definitions and briefly discuss the Bipolar theorem and explain

how TKMP is related to non-negative polynomials.

1.1 Introduction

Let x = (x1, x2, · · · , xk) ∈ Rk. Let N = (n1, n2, · · · , nk) ∈ Nk be a list of positive

integers. We denote the monomial xn1
1 x

n2
2 · · · x

nk
k by xN . The variables x1, x2, · · · , xk take

real values and we denote their domain by K ⊆ Rk. Let µ be a measure defined over K.

Corresponding to every monomial of the form xN , we may define a moment:

mN =

∫
K

xNdµ (1.1)

The truncated K-moment problem is concerned with the following question: givenK ⊂

Rk, a collection of indicies I = {N1,N2, · · · } ⊆ Nk, and a corresponding collection of

real numbers, {γ1, γ2, · · · }, is there a measure µ defined over K such that

γi = mi =

∫
K

xNi . (1.2)

In other words, can the numbers ai be recovered as the moments of some measure supported

on K? In general, K is assumed to be a compact set. However, in this chapter, we do

not impose such a restriction for the purpose of discussing a few general results. In the

extreme case when K = Rk and I = Nk, i.e., when all the moments are known, this
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problem reduces the the classic moment problem. The latter is the problem of recovering a

probability distribution (i.e., a measure) starting from the set of all of its moments. Indeed,

not every set of numbers represent moments of a legitimate measure. For instance, when

k = 1, the second moment is bounded below by the square of the first moment, i.e.,

(∫
xdµ

)2

≤
∫
dµ

∫
x2dµ. (1.3)

This follows from the Cauchy-Schwartz inequality. Therefore, this inequality is a necessary

condition for a set of numbers to be moments. In general, a set of numbers have to satisfy

multiple inequality criteria in order for them to represent moments of a measure. When

K = R, and I = N, the resulting moment problem is known as the Hamburger moment

problem. When K = [0,∞) and I = N, the resulting moment problem is known as the

Stieltjes moment problem. When K = [0, 1] and I = N the resulting moment problem is

called Hausdorff moment problem. All of the above three examples have complete solutions

[2]. However, the problem is more non-trivial when I ⊂ Nk, i.e., only a subset of the

moments are known, in which case the problem is called a truncated moment problem [3].

If K ⊂ Rk, it makes the problem much more non-trivial. A better formulation of this

problem can be constructed using the notion of a moment cone.

1.2 The moment cone

Henceforth, we restrict ourselves to the case where |I| = n <∞, which enables us to treat

the set of the moments as components of a vector, γ = (γ1, γ2, · · · , γn) ∈ Rn. Similarly,

the set of the relevant moments of a given measure can also be treated as the components

of a vector, m = (m1,m2, · · · ,mn), which we may refer to as the “moment vector”. The

TKMP would then be concerned with the question of whether this vector γ is in the set of

2



moment vectors. The latter, defined as

C =

{
m : m = (m1,m2, · · · ,mn) ∈ Rn, mi =

∫
K

xNidµ, for some measure µ
}
.

(1.4)

This set C is known as the moment cone corresponding to I and K. The TKMP can

be phrased as the question of inclusion of γ in C. Therefore the problem is reduced to

characterizing the set C.

In general, a setA ⊆ Rk is called a convex cone iff for every v1,v2 ∈ A and λ1, λ2 ≥ 0,

it follows that λ1v1 + λ2v2 ∈ A. The smallest convex cone containing a given set S ⊂ Rk

is known as the conical hull of S and is given by

conic.hull(S) = {λ1u1 + λ2u2 + · · ·+ λlul : λi ≥ 0, ui ∈ S} (1.5)

It is straightforward to see that the set of moments C is a convex cone and is known as

the moment cone. The study of the so-called dual cones provides a way to check inclusion

of a vector in a convex cone.

1.3 Dual cones and the bipolar theorem

In this section A ⊂ Rn represents a general convex cone.

Definition 1 (Dual of a cone): If A ⊂ Rn is a convex cone, its dual, A∗ ⊂ (Rn)∗ is defined

as

A∗ = {f : f ∈ (Rn)∗, f(v) ≥ 0 ∀ v ∈ A} (1.6)

Here, (Rn)∗ is the set of all linear functionals on Rn. We we illustrate this definition

with two examples.

Example-1: Let A = {(x, 0) : x ≥ 0} ⊂ R2. This is the positive half of the x-axis. By

definition, A∗ = {f : f ∈ (R2)∗, f(x, 0) ≥ 0 ∀ x ≥ 0}. A linear functional f on R2 is

also represented by a vector (a, b) and its action on R2 is by the inner product. Therefore,
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A∗ = {(a, b) : (a, b) ∈ (R2)∗, ax ≥ 0 ∀ x ≥ 0} = {(a, b) : a ≥ 0}. Therefore, A∗ is the

right half of (R2)∗.

Example-2: Let A = conic.hull{u1,u2, · · · ,ul} ⊂ Rn. That is, A is the cone generated

by k linearly independent vectors u1,u2, · · · ,ul. It consists of vectors of the form λ1u1 +

λ2u2 + · · ·+λlul, where λi ≥ 0. We say that A is finitely generated. Denoting a functional

f on Rn by a vector v, the dual cone is defined as:

A∗ = {v : v ∈ Rn, v · uj ≥ 0 for j = 1, 2, · · · , l} . (1.7)

Note that if a vector v satisfies all of the inequalities v · ui ≥ 0, then it also satisfies

v ·u ≥ 0 for every u ∈ A. It is straightforward to see that A∗ is also finitely generated, and

its generators are the dual vectors of u1,u2, · · · ,ul, defined by the equations

ui · vj = δij (1.8)

Such vectors v1,v2, · · · ,vl exist because ui are linearly independent. To show that A∗ =

conic.hull{v1,v2, · · · ,vl}, note that any vector of the form v = λ1v1 + λ2v2 + · · ·+ λlvl

with λi ≥ 0 satisfies v · ui = λi ≥ 0. Further, any vector v can be written as a linear

combination of vi and the coefficients are given by v · ui. That is, v = (v · u1)v1 + (v ·

u2)v2 + · · ·+ (v · ul)vl ≥ 0. Therefore, if v ∈ A∗, then by definition, v · ui ≥ 0 and that

implies v is a superposition of the vi’s with non-negative coefficients and therefore, it is in

the conical hull of the set {v1, · · · ,vl}. Thus, A∗ = conic.hull{v1,v2, · · · ,vl}.

This example illustrates the utility of a dual cone. In this particular example. a vector

u can be checked for inclusion in A by verifying a finite number of inequalities. That is,

u ∈ C iff u · vi ≥ 0 for i = 1, 2, · · · , k. However, in general, the dual cone may not be

finitely generated. Nevertheless, dual cone of the moment cone is useful in solving TKMPs.

In theorem 1.4.1, we show that the dual of the moment cone is the cone of non-negative

polynomials after defining the latter and describing some of its properties.
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1.4 The cone of non-negative polynomials

Let I ⊂ Nk be a finite index set with n elements. Each element of I represents a monomial.

The space of all polynomials obtained by a superposition of these n monomials is an n

dimensional vector space. It includes only those polynomials that consist of monomials

that appear in I . Every such polynomial can be represented by an n dimensional vector.

That is, P (x) = P (x) = a1x
N1 + a2x

N2 + · · · + anx
Nn can be represented as the vector

a = (a1, a2, · · · , an). The subset of this vector space consisting of polynomials that are

non negative on K ⊆ Rk is a convex cone and is known as the cone of non-negative

polynomials, denoted by C ′.

C ′ =
{
P (x) : P (x) = a1x

N1 + a2x
N2 + · · ·+ anx

Nn , P (x) ≥ 0 ∀ x ∈ K
}
. (1.9)

To show that C ′ is a convex cone, consider two polynomials P1(x), P2(x) ∈ C ′ and two

non-negative real numbers λ1, λ2 ≥ 0. The polynomials P1(x) and P2(x) contain only

those monomials that appear in I and so does the polynomial λ1P1(x) + λ2P2(x). Further

more, for any x ∈ K, P1(x) ≥ 0 and P2(x) ≥ 0 and therefore, λ1P1(x) + λ2P2(x) ≥ 0.

Thus, the polynomial λ1P1(x) + λ2P2(x) is also in C ′. Theorem 1.4.1 asserts that the

closure of C ′ is the dual cone of the cone of moments C. Before proving this theorem, we

illustrate the cone of non-negative polynomials with two examples.

Example-3: Let us consider the simple case where k = 1, K = R and I = {0, 1, 2}. That

is, the relevant monomials are 1, x and x2. The resulting cone is the set of all globally

non-negative quadratics:

C ′ =
{
P (x) = a0 + a1x+ a2x

2 : P (x) ≥ 0 ∀ x ∈ R
}

(1.10)

A quadratic a0 +a1x+a2x
2 is globally non-negative iff a2 ≥ 0 and a21 ≤ 4a0a2. Therefore,

The cone C ′ is described by these two inequalities. Fig. 1 shows a cross section of this

5



cone at a0 = 1.

Example-4: Let us now consider the cone of non-negative multivariate quadratic polyno-

mials. For m > 1 let us assume I includes indices corresponding to monomials

{1, x1, · · · , xk, x21, x1x2, x1, x3, · · · , xixj, · · ·x2k}. That is, C ′ includes all polynomials of

the form P (x) = a0 + 2a1x1 + · · · + 2akxk + a11x
2
1 + 2a12x1x2 · · · + akx

2
k that are non-

negative on Rk. It convenient to arrange the coefficients in the form of a matrix A such that

P (x) = xAxT , where xT is the transpose of the row vector x and A is given by

A =



a0 a1 · · · ak

a1 a11 · · · a1k
... . . . ...

ak a1k · · · akk


. (1.11)

The cone C ′ = {A : xAxT ≥ 0 ∀ x ∈ Rk} is the set of all positive semidefinite matrices

A, also known as the PSD cone. This follows from the fact that xAxT ≥ 0 ∀ x ∈ Rk iff

all of the eigenvalues of A are non-negative.

We are now ready to state and prove theorem 1.4.1.

Theorem 1.4.1 For a given K ⊆ Rk and I ⊂ Nk, let C be the moment cone and C ′ be

the cone of non-negative polynomials. It follows that C∗ = cl.(C ′), where cl.(C ′) is the

closure of C ′.

Proof 1.4.1 We begin by showing that C ′ ⊆ C. Let P (x) = a1x
N1 + · · ·+ anx

Nn ∈ C ′. It

follows that P (x) ≥ 0 for each x ∈ K. Therefore, for any measure µ on K, it follows that∫
K
P (x)dµ = a1m1 + · · ·+ anmn ≥ 0 implying that the vector (a1, · · · , an) is in the dual

of C. Thus, C ′ ⊆ C∗.

Next, we show that C∗ ⊆ C ′. Let (a1, · · · , an) ∈ C∗. This means, for any measure

µ on K, a1
∫
K
xN1dµ + · · · + an

∫
K
xNndµ ≥ 0. We are to show that the corresponding

polynomial P (x) = a1x
N1 + · · · + anx

Nn is non-negative on K. For a point x0 ∈ K, we
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define the moment µx0 as

µx0(B) =


0 if x0 /∈ B

1 if x0 ∈ B
(1.12)

for B ⊆ K. Note that aj
∫
K
xNjdµx0 = x

Nj
0 . Therefore, P (x0) = a1

∫
K
xN1dµx0 + · · · +

an
∫
K
xNndµx0 ≥ 0. Thus, P (x) is non-negative on K and therefore, C∗ ⊆ C ′.

This result can be used to solve the TMP. In particular, the cone of non-negative po-

lynomials can be used to develop criteria to test whether a given vector is in the moment

cone. We illustrate this idea with two examples.

Example-5: Let us again consider the simple case where k = 1, K = R and I = {0, 1, 2}.

The resulting moment cone consists of all three dimensional vectors m = (m0,m1,m2)

such that for some measure µ, m0 =
∫
K
dµ, m1 =

∫
K
xdµ and m2 =

∫
K
x2dµ.

C = {m = (m0,m1,m2) : mi =

∫
K

xidµ}. (1.13)

The corresponding truncated moment problem is to determine whether a given vector γ =

(γ0, γ1, γ2) is in C. An obvious necessary condition comes from the Cauchy-Schwartz

inequality — γ is in C only if γ0γ2 ≥ γ21 . Below, we show, using theorem 1.4.1, that this

condition is also sufficient. The dual of C is the cone of non-negative quadratics discussed

in example-3:

C ′ = {a = (a0, a1, a2) : a2 ≥ 0 anda21 ≤ 4a0a2 } (1.14)

The extreme point of C ′ are precisely those vectors that satisfy a21 = 4a0a2 with a2 ≥ 0.

Therefore, C ′ can be written as the conical hull of its extreme points:

C ′ = conic.hull{a = (a0, a1, a2) : a2 ≥ 0 and a21 = 4a0a2 } (1.15)

Following theorem 1.4.1, a vector γ is in C iff γ0a0 + γ1a1 + γ2a2 ≥ 0 for each a in the

generating set of C ′, i.e., the criterion is γ0a0 +γ1a1 +γ2a
2
1/(4a0) ≥ 0 for every a0, a1 with
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a0 ≥ 0. In other words, γ is in C iff γ0 ≥ 0 and γ0γ2 ≥ γ21 .

Example-6: We next consider the multivariate generalization of the previous example. si-

milar to what was considered in example-4. For m > 1 and K = Rk, let us assume I inclu-

des indices corresponding to monomials {1, x1, · · · , xk, x21, x1x2, x1, x3, · · · , xixj, · · ·x2k}.

The correspondimg moments can be arranged into a matrix, similar to the matrix V in

example-4. Defining m0 =
∫
K
dµ, mi =

∫
K
xidµ and mij =

∫
K
xixjdµ, we may arrange

these moments in a matrix M

M =



m0 m1 · · · mk

m1 m11 · · · m1k

... . . . ...

mk m1k · · · mkk


. (1.16)

The moment cone C is the cone of all such matrices. The corresponding moment problem

is to determine if a given matrix Γ is in C. The dual of C is the cone of non-negative

polynomials described in example-4, i.e., the PSD cone. By theorem 1.4.1, Γ ∈ C iff

Tr(ΓA) ≥ 0 for each A ∈ C ′, i.e., for each positive semidefinite A. In particular, for an

arbitrary x ∈ Rk, xTx ∈ C ′, i.e., xTx is PSD and therefore, textTr(ΓxTx) = xΛxT ≥ 0

is a necessary condition for Γ to be in C. In other words, Λ has to be PSD. It follows

that this criterion is also sufficient, because Tr(V Γ) ≥ 0 when both A and Γ are PSD.

Therefore, the PSD cone is self dual.

1.5 Semialgebraic sets

All examples of moment cones considered so far are characterized by polynomial inequa-

lities. That is, the criteria to determine whether a given set of numbers are moments have

always been a set of polynomial inequalities. In example-4, the criteria was γ0 ≥ 0 and

γ0γ2 − γ21 ≥ 0. In example-6, the criterion was Γ � 0, which can be rephrased as a set

of polynomial inequalities, each of which can be written as non-negativity of a polynomial

8



in the elements of Γ. The extreme points of such cones are defined by the zeros of these

polynomials.

Sets defined by non-negativity of a finite collection of polynomials are known as basic

semi-algebraic sets. Sets that can be described by unions, intersections and projections of

basic semi-algebraic sets for a larger class known as semi-algebraic sets.

In general, any cone of polynomials non-negative on a semi-algebraic set is semi-

algebraic. Further, duals of semi-algebraic sets are also semi-algebraic, which implies

that moments cones are semi-algebraic as well.
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CHAPTER 2

ENTANGLEMENT AND RELATION TO TKMP

Complimentary to the previous chapter, in this chapter, we provide an introduction to en-

tanglement, also aimed at the non-expert audience. This chapter also serves as a motivation

to the main problem considered in the thesis, which we define in the next chapter. In section

2.1 we develop the basic ideas of “states” and “observable parameters”. In section 2.2, we

describe the pivotal features of quantum mechanics that lead to the phenomena of entang-

lement. In section 2.3 we define entanglement and discuss how it is related to TKMPs.

Finally, in section 2.4, we discuss a standard example, illustrating the connection between

entanglement and TKMP.

2.1 Physical Systems and Observable Parameters

A physical system is characterized by experimentally measurable parameters. For example,

a pendulum has three experimentally measurable parameters – the x, y and z coordinates

of its bob. If the bob is hanging down via a rigid support of length R, the parameters

are constrained to a sphere of radius R, i.e., x2 + y2 + z2 = R2. If the bob hanging

down via a thread of length R, the parameters are confined to a ball of radius R, i.e.,

x2 + y2 + z2 ≤ R2. In general, an experimentally measurable parameter is represented by

a real number and a set of n parameters of a physical system is represented by a vector in

Rn. A physically reasonable assumption is that the domain D to which these vectors are

confined is compact. We use the symbols Γi to represent the name of a parameter and xi to

represent its measured value. For instance, in the above example of the pendulum, Γ1 would

represent “x-coordinate” and x1 would represent a measured value of the x-coordinate. This

sounds redundant, but in physics not every parameter is a physical coordinate; for instance

there are parameters such as “mass”, “charge”, “momentum” etc and therefore we need to
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distinguish between the name and the value.

One can assume that the space D indeed represents the set of configurations in which

the physical system can be prepared. This however, is not accurate within the framework

of quantum mechanics, because of the unique features of a measurement in quantum me-

chanics, which we describe in the following section.

2.2 Measurement in Quantum Mechanics

What sets aside quantum mechanics is the way in which the values xi of the parameters Γi

are obtained. Measurement in quantum mechanics involves a random event that also affects

the system’s configuration. If a system is initiated in some configuration and a parameter

Γi is measured, this measurement returns a random number γi and changes the system’s

configuration to a random configuration. The random event in the measurement results in

the random number γi and a random final configuration of the system. If the system is reset

into its original configuration, and the same parameter Γi is measured, we obtain a second

random number γ′i and the system gets put into another random configuration. In this

sense, measurement in quantum mechanics is “destructive” i.e., it demolishes the system’s

configuration. If this process is repeated ν times, while resetting the system to its original

configuration each time, we obtain a set of random numbers γi(1), γi(2), · · · , γi(ν). The

measured value, xi of the parameter Γi is defined as

xi = lim
ν→∞

1

ν

ν∑
k=1

γi(k) (2.1)

The measured value refers to this limit andD is the space of x = (x1, · · · , xn), where each

xi is defined as above.

We reiterate the two crucial features of this measurement process.

(i) Each coordinate of a point in D is the mean value of a large number of outcomes

obtained in independent measurements.
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(ii) Obtaining each outcome γi(k) demolishes the system’s configuration and therefore

allows for no subsequent measurement without resetting the system’s configuration.

The above features have strong consequences on the nature of the spaceD. For instance,

(i) implies that D is convex. If x,x′ ∈ D, we may include a random event in the process

of initiating the system, that prepares the system in the configuration corresponding to x

with probability λ and in the configuration corresponding to x′ with probability 1−λ. The

measured parameter values would then be λx+ (1−λ)x′. Therefore, D should be convex.

It can be viewed as the section of a cone C ⊂ Rn+1 defined as

C = {x = (x0, x1, · · · , xn) : x0 > 0 & (x1/x0, · · · , xn/x0) ∈ D} (2.2)

It will be clear later that it is convenient to use the cone instead of its section. We formulate

the rest of the ideas in terms of the cone C.

The consequences of (ii) are deeper. In particular, the correlations coming from the

random event in a measurement are inaccessible. For instance, one cannot measure the

correlations between Γi and Γj , i.e., 1
ν

∑
k γi(k)γj(k) is not a correlation, because there

is no correspondence between γi(k) and γj(k). They are the results of two independent

random events.

2.3 Non-locality and Entanglement

A fundamental question prompted by (ii) is, if a system is prepared in some configuration

and one measurement of Γi is made, resulting in an outcome γi(k) what can be said about

the corresponding value of parameter Γj for some j 6= i?

There are two possible propositions that answer this question:

Proposition A: The value of Γj corresponding to γi(k) is undefined.

Proposition B: The value of Γj corresponding to γi(k) is well defined but hidden, i.e., not

experimentally accessible.

12



The two propositions would lead to two different ways of modeling a measurement.

Under proposition A, we can model a measurement of Γi as a random process described by

a measure µi defined on πi (C), where πi : C → R is the projection to the i−th coordinate.

The outcome γi(k) ∈ πi (C) would be a random number whose distribution is given by

µi. Under this proposition, the measures µi, µj are in general unrelated — they do not

necessarily come from a common measure over C. Under proposition B, we can model a

measurement in a similar way using measures µi, with the additional condition that they all

come from a common measure µ defined on C. That is, there exists a measure µ defined on

D such that for every X ⊂ πi(C), µi satisfies µi(X) =
∫
π−1
i (X)

dµ.

A more fundamental difference between the two propositions is revealed when we

consider a composite system, consisting of two physically separate subsystems. Let us

consider two physical systems, whose parameters are Γ1,Γ2, · · · ,Γn and Σ1,Σ2, · · · ,Σm

and domains C1 and C2 respectively. We denote the coordinates of points in C1 as x =

(x0, x1, · · · , xn) and in C2 as y = (y0, y1, · · · , ym). We may consider each of the systems

as subsystems of a composite system, consisting of both of them. The parameters of this

composite system include Γ1,Γ2, · · · ,Γn,Σ1,Σ2, · · · ,Σm and the products ΓiΣj , whose

values are defined as limν→0
1
ν

∑
k γi(k)σj(k). The two systems may be physically sepa-

rated and therefore we can presume that Γi and Σj can be measured simultaneously. It is

convenient to introduce symbols Γ0 and Σ0 as placeholders for “no measurement” done

on the two systems respectively. This way, Γ0Σ1 would represent a measurement of Σ1

on the second system. Thus, the set of parameters of the composite system may be listed

as {ΓiΣj : i = 0, 1, · · · , n & j = 0, 1, · · · ,m}. Therefore the composite system has

(n+ 1)(m+ 1)− 1 parameters and the corresponding domain is a cone C12 ⊂ R(n+1)(m+1).

We denote the points in C12 as z = (z00, z10, z20, · · · , zn0, z01, · · · , z0m, z11, · · · , znm).

Here, zij is a measured value of ΓiΣj and z00 is the scale factor that appears in the cone

C12. A single measurement of the parameter ΓiΣj is described by a measure µij defined on

π−1i (C1)× π−1j (C2).
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Under proposition B, this domain has a simple characterization in terms of moments of

measures defined over C1×C2. If µ and µ′ are measures defined over C1×C2 we say that µ ∼

µ′ iff
∫
xiyjdµ =

∫
xiyjdµ

′ for i = 0, 1, · · · , n and j = 0, 1, · · · ,m. Under proposition

B, C12 can be constructed as the quotient of the space M(C1 × C2) of all measures µ over

C1 × C2:

C12 = M(C1 × C2)/ ∼ (2.3)

This follows from the fact that under proposition B, zij is the moment of µij and the latter

comes from a global measure µ on C1 × C2. Therefore, every set of measured values {zij}

must satisfy zij =
∫
C1×C2 xixjdµ for some measure µ.

Under proposition A, C12 ⊇ M(C1 × C2)/ ∼, simply because every measure µ defined

on C1×C2 has corresponding measured µij defined on πi(C1)×πj(C2), but not every set of

measures µij come from a common measure µ. Thus, proposition A and B imply different

domains of parameters of a composite system. A point z outside the cone M(C1 × C2)/ ∼

are significant in two ways. First, if observed experimentally, such points can invalidate

proposition B. Second, such points represent a new kind of correlation between the two

systems.

As we mentioned before, the whole process of initializing the system in a configuration

and measuring its parameters involves two random events — one during the initializing and

the other during measurement. Points inside the coneM(C1×C2)/ ∼ represent correlations

during the first random event and points outside this cone represent correlations during the

second random event.

More precisely, points inside M(C1 × C2)/ ∼ can be modeled by a global measure µ

defined over C1 × C2 that describes the first random event, i.e., the initialization and a pair

of local measures µ1 and µ2 defined over C1 and C2 that describe the second random event,

i.e., the measurement, thereby avoiding any correlation during the measurement. This way,

such points can be explained without postulating any correlation at the measurement stage.

However, points outside M(C1 × C2)/ ∼ can only be described by a measure µ defined
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over C1 × C2, describing the first random event and a set of measures µij defined over

πi(C1) × πj(C2) describing the second random event. It is in general, impossible to avoid

postulating a correlation during the measurement since this correlation is described by the

measures µij .

A correlation in the second random event, i.e., during the measurement, is counter in-

tuitive — it means that the act of measuring Γi on the first system can have a physical effect

on the second system, as described by µij . Note that no assumption has been made so far

regarding the physical separation between the two systems at the time of the measurement

— they may be separated by a very large distance, potentially in different parts of the world.

Therefore such correlations are not bound by physical proximity. They are known as non-

local correlations. Configurations of the two systems that allow for non-local correlations

are called entangled states.

To summarize, proposition A naturally leads to counter-intuitive non-local correlations,

while under proposition B, we can maintain locality in all of the correlations. The inevitable

appearance of non-local correlation under proposition A is also known as EPR paradox,

named after Einstein, Podolsky and Rosen, who pointed it out in a well known paper [4].

Quantum mechanics favors proposition A, while Albert Einstein favored proposition B,

quoting the EPR paradox as a reason to discard proposition A. In the same paper, he also

proposed that quantum mechanics can be expanded by appending variables which tell us

the values Γj after a measurement of Γi and the resulting theory would favor proposition

B and will therefore restore locality of correlations. The appended variables are known as

hidden variables a theory that expands out quantum mechanics this way is called a local

hidden variable theory.

The straightforward verification of Einstein’s proposal is to check if C12 = M(C1 ×

C2)/ ∼ under quantum mechanics. In [5] in 1961, J. S. Bell derived the first necessary

criterion for membership in the cone M(C1 × C2)/ ∼ for a simple system consisting of

a pair of two-level atoms, also known as Bell inequality. He showed that according to
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quantum mechanics, there is at least one point in C12 that violates Bell inequality, i.e., is not

included in M(C1 × C2)/ ∼, thus invalidating proposition B and Einstein’s proposal. The

first experimental test was conducted by Alian Aspect in 1981 [6], where, an experimentally

obtained set of measured values was shown to represent a point outside the cone M(C1 ×

C2)/ ∼. Such experiments are called Bell test experiment.

A typical Bell test experiment would involve (i) preparing a set of two (or more) sys-

tems in a configuration that is expected to be entangled. (ii) Experimentally measuring a

set of parameters z of the composite system. And (iii) Proving that the measured set of

parameters z, is point outside the cone M(C1 × C2)/ ∼. The last step involves a charac-

terization of the moment cone M(C1 × C2)/ ∼. While such tests have been performed on

multiple systems, the practical utility of such non-local correlations has not been fully ex-

plored. Theoretically, such correlations have found applications in quantum computation[],

quantum communication and quantum metrology.

In this work, we consider a system consisting of N subsystems and characterize the

corresponding cone M(C1 × C2 × · · · × CN)/ ∼, thereby deriving membership criteria for

this cone. The results in this work will enable demonstrating non-local correlations among

N subsystems.

2.4 Example

In this section we illustrate the ideas presented in the previous three sections using the

simple case of a pair of two level atoms. The purpose of this section is to show, to the

physics audience how the model described above applies to physical systems and formulate

the well known problem of bipartite mixed state entanglement as a truncated K-moment

problem. This section assumes prior knowledge of density matrices.

We consider a composite system of a pair of two-level atoms. A general mixed state

of such a system is represented by a 4 × 4 density matrix. We use superscripts A and

B to indicate the two subsystems and we use ρAB to represent the density matrix of the
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composite system.

A mixed state represented is said to be separable, iff the corresponding density matrix

ρABS can be written as an incoherent superposition of product states:

ρABS =
n∑
i=1

wiρ
A
i ⊗ ρBi (2.4)

The subscript S is used to indicate that the state is separable. ρAi and ρBi are 2 × 2 density

matrices representing mixed states of the subsystems A and B respectively. wi > 0 are

weights satisfying
∑n

i=1wi = 1. A density matrix that does not admit such a resolution is

called an entangled state.

A 2 × 2 density matrix is represented by a point inside the Bloch ball, B. The later is

the unit ball in R3. Indeed, a 2 × 2 density matrix can be written as a superposition of the

Pauli matrices

ρ =
1

2
(1 + u · σ) =

1

2
(1 + uxσx + uuσy + uzσz) (2.5)

Here, u = (ux, uy, uz) is a point in B. The 2× 2 identity matrix is represented by 1. σx, σy

and σz are the Pauli matrices defined as

σx =

 0 1

1 0

 ; σy =

 0 −i

i 0

 ; σx =

 1 0

0 −1

 (2.6)

Therefore the definition of a separable state can be expressed as

ρABS =
1

4

n∑
i=1

wi(1 + ui · σA)⊗ (1 + vi · σB) (2.7)

σA and σB are the Pauli pseudo vectors corresponding to subsystems A and B respectively.

An equivalent definition of separable states is obtained by replacing the sum by an integral

and the weights wi by a measure µ defined over B×B. That is, a state is separable iff there

exists a measure µ defined over B× B such that the corresponding density matrix ρABS can
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be written as

ρABS =
1

4

∫
B×B

dµ(1 + u · σA)⊗ (1 + v · σB) (2.8)

The integral is carried out over (u,v) ∈ B× B.

The Pauli basis for 2 × 2 density matrices can be extended to 4 × 4 density matrices.

Indeed every 4× 4 density matrix can be written as

ρAB =
1

4

(
1⊗ 1 + p · σA ⊗ 1 + 1⊗ σB · q +

∑
α,β=x,y,z

tαβσ
A
α ⊗ σBβ

)
(2.9)

Here, p,q ∈ R3 represent the vector polarization and t is a 3 × 3 matrix representing the

correlations. Indeed, the components of p = (px, py, pz) , q = (qx, qy, qz) and t are the

expectation values of the respective observables.

pα =Tr(ρABσAα ⊗ 1)

qβ =Tr(ρAB1⊗ σBβ )

tαβ =Tr(ρABσAα ⊗ σBβ )

(2.10)

For α, β = x, y, z. Every 4 × 4 density matrix is uniquely characterized by this set of

observable expectation values. The definition of a separable state can be formulated in

terms of these expectation values. A state ρAB with parameters p, q and t is separable iff

there exists a measure µ defined over B× B such that

pα =

∫
B×B

uαdµ

qβ =

∫
B×B

vβdµ

tαβ =

∫
B×B

uαvβdµ

(2.11)

where uα are the components of the vector u ∈ B and vβ are the components of the vector

v ∈ B, that are integrated over. In other words, the state ρAB is separable iff p, q and t are
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the moments of some measure µ defined on B×B. This follows from the following simple

observation:

(1 + u · σA)⊗ (1 + v · σB) = 1⊗ 1 + u · σA ⊗ 1 + 1⊗ σB · v +
∑

α,β=x,y,z

uαvβσ
A
α ⊗ σBβ .

(2.12)

Therefore, the problem of deciding whether a given density matrix ρAB is separable or

entangled can be reformulated as a truncated k-moment problem. In the language of the

previous section, uα’s are the xi’s , vβ’s are the yi’s — they are the parameters of the

two systems. The observables σAα ’s correspond to Γi’s and σBβ ’s correspond to Σi’s. The

parameters pα, qβ and tαβ correspond to the zij’s. This particular example has a complete

solution and is known as the positive partial transpose criterion [7]. In fact this criterion

can be recovered by characterizing the relevant cone of non-negative polynomials.
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CHAPTER 3

THE PROBLEM STATEMENT

In this chapter, we state the main problem considered in this work together with a brief

discussion of the specific physical system by which this problem is inspired.

The physical system of relevance for this problem consists of n atoms, which in a

typical experiment takes values between 500 and 105. However, the specific value of n is

not important in this problem. The domain D of parameters for each atom is a unit ball

B = {x : x ∈ R3 & ||x|| ≤ 1} in R3. We consider the TKMP that is equivalent to the

problem of detecting entangled states of this system. As discussed in the previous chapter,

the relevant “K” in this TKMP is the set B × B × · · · × B. We would be studying the

moment cone generated by measures defined over this set.

An additional feature of the system under consideration is that their physical properties

remain invariant under the permutation of the n atoms. Such atoms are called Identical

Bosons and the specific system of n Bosons that we are considering is called a Bose-

Einstein Condensate (BEC). Therefore, we restrict ourselves to the moment cone generated

by measures over B×B×· · ·×B that are invariant under the action of the symmetric group

Sn. Also, an experimental limitation is set on the order of accessible moments. We restrict

ourselves to quadratic moments.

We now formulate the problem inspired from the above described physical system. Let

Dd ⊂ Rd be the closed unit ball in a d dimensional Real space. That is, Dd = {x : x ∈

Rd, ||x|| ≤ 1}. We define Kd
n as the product of n such unit balls:

Kd
n = Dd × · · · ×Dd ⊂ Rnd

It is a compact, full dimensional subset of Rnd. For the specific physical system described
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above, d = 3. However, we let d be a variable in the rest of the thesis. Points in this

space can be represented by a n-tuple of d−dimensional vectors (x1,x2, · · ·xn), where,

xi = (xi,1, xi,2 · · ·xi,d) ∈ Dd. The symmetric group Sn(i.e., the group of all permutations

of the set {1, 2, · · ·n}) acts on Kd
n by permuting the vectors xi. For σ ∈ Sn, its action

on Kd
n is given by σ ◦ (x1,x2, · · ·xn) = (xσ(1),xσ(2), · · ·xσ(n)). We refer to a measure µ

defined on Kd
n as a symmetric measure if it is invariant under the action of Sn. That is, if

A ⊂ Kd
n,

µ(A) = µ(σ ◦ A), ∀ σ ∈ Sn.

In this work, we consider the Truncated K-moment problem for symmetric measures over

Kd
n. Moments of symmetric measures are also invariant under coordinate permutations.

Let Vn,d the vector space of real square-free polynomials in d·n variables x1, . . . , . . . ,xn,

xi = (xi,1, . . . , xi,d) which is spanned by the following symmetric polynomials:

1, sα =
n∑
i=1

xi,α, 1 ≤ α ≤ d

and

sαα =
∑

1≤i<j≤n

xi,αxj,α, 1 ≤ α ≤ d.

The dimension of Vn,d is therefore 2d+ 1.

We use m0,mα and mαα to denote the corresponding moments:

m0 =

∫
Kd
n

1 dµ, mα =

∫
Kd
n

sα dµ, mαα =

∫
Kd
n

sαα dµ.

The moment sequence m = (m0,mα,mαα) lies in R2d+1. We define Cn,d ⊂ R2d+1 to

be the set of all moment sequence coming from measures on Kd
n. Observe that Cn,d is a

closed convex cone because Kd
n is compact. The dual cone, C∗n,d consists of all symmetric
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polynomials in Vn,d non-negative on Kd
n:

C∗n,d =
{
Q ∈ Vn,d : Q(x) ≥ 0 for all x ∈ Kd

n

}
.

In this work, we are concerned with the characterization of the cone Cn,d and/or its dual

cone C∗n,d.
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CHAPTER 4

EXACT RESULTS

In this chapter, we provide some exact results to characterize the cone C∗n,d of non-negative

polynomials. Kd
n is a compact, n·d dimensional manifold with boundary. Therefore, testing

for membership of a quadratic form Q in C∗n,d would involve, by definition, checking for

its non-negativity over an n · d dimensional manifold. In this chapter, we show that for

n ≥ 2d, there is a 2d(d− 1) dimensional submanifold in Kd
n such that a quadratic form Q

is non-negative on Kd
n if and only if it is non-negative on this submanifold. We refer to the

sub-manifold as a test manifold, indicating that it can be used to check for membership of

a quadratic in C∗n,d. This is the main result of this chapter and is summarized in Theorem

5.2.1. Note that the dimension of the test manifold is independent of n. We also show

that this theorem is tight, in the sense that there can not be a test manifold that is a smaller

submanifold, for the special case with d = 2. The reduction in the dimension of the test

manifold comes from the symmetry of the problem. We begin by illustrating this ides for

the case of d = 1.

4.1 One Dimensional Case d = 1

As a simple first step we characterize the cones Cn,1 and C∗n,1. The relevant unit ball

is D1 = [−1, 1]. A point in K1
n is represented by (x1, x2, · · · , xn) where xi ∈ [−1, 1].

Quadratic form Q ∈ Vn,1 is of the form:

Q = A0 + A1s1 + A11s11.

Note that Q has only linear terms in each variable xi. Therefore, extreme values of Q

occur when xi = ±1. In other words, Q is non-negative on K1
n iff it is non-negative on the
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hypercube Hn = {−1,+1}n. For a point x = (x1, . . . , xn) ∈ Hn with k entries −1’s and

n− k entries +1’s we have s1(x) = n− 2k and s11(x) = (n− 2k)2 − n. We immediately

obtain the following Proposition:

Proposition 4.1.1 A polynomial Q = A0 + A1s1 + A11s11 ∈ C∗n,1 iff

A0 + A1(n− 2k) + A11((n− 2k)2 − n) ≥ 0,

holds for k = 0, 1, · · · , n.

We see from the above that C∗n,1 is a polyhedral cone. Figure 4.1 shows cross sections

of C∗n,1. It is straightforward to show that all of the n + 1 inequalities shown above are

necessary to define C∗n,1. Each inequality represents a side of the polygon shown in Figure

4.1. The dual cone Cn,1 of moment sequences coming from measures is also a polyhedral

cone defined by n+1 inequalities. The defining inequalities ofCn,1 follow from Proposition

4.1.1:

Corollary 4.1.2 A vector m = (m0,m1,m11) ∈ Cn,1 iff

m0(n− 1 + (n− 1− 2k)2)−m1(n− 1− 2k) +m11 ≥ 0,

holds for k = 0, 1, · · · , n.

Thus, when d = 1, Cn,1 and C∗n,1 are both basic semi-algebraic, and are completely charac-

terized by n+ 1 linear inequalities.

4.2 General Dimension

When d > 1, Cn,d is the conical hull of a semi-algebraic set. Indeed,

Cn,d = Conic.Hull
{

1, s1(x), · · · , sd(x), s11(x), · · · , sdd(x) : x ∈ Kd
n

}
.
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Figure 4.1: Cross sections of C∗n,1.

Kd
n is a basic semi-algebraic set and therefore, its image under a polynomial function is

semi-algebraic. A polynomial Q ∈ C∗n,dis linear in each of its arguments and therefore, it

is non-negative on Kd
n iff it is non-negative on its boundary, ∂Kd

n = Sd−1 × · · · × Sd−1.

Therefore, membership of a polynomialQ in C∗n is validated by verifying its non-negativity

on an n(d − 1) dimensional manifold. However, in the following theorem, we show that

it suffices to verify its non-negativity on finitely many copies (O(n2d−1)) of a 2d(d − 1)

dimensional manifold. This theorem is an analogue of the degree principle [8, 9]. See also

[10] and [11] for related results.

Theorem 4.2.1 Q ∈ Vn,d is non-negative on Sd−1×· · ·×Sd−1 if and only ifQ(x1, · · · ,xn)

is non-negative for all sets of n points x1, · · · ,xn on Sd−1 with only 2d of them distinct.

Proof 4.2.1 We will prove this Theorem using an elementary application of Lagrange mul-

tipliers. Recall that Q ∈ Vn,d has the form

Q = A0 +
n∑

α=1

Aαsα + Aααsαα.

Let x∗ = (x∗1, · · · ,x∗n) be a global minimum of Q on
(
Sd−1

)n and let x∗i = (ξi,1, · · · , ξi,d).
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Since the global minimum is a critical point, it satisfies the following Lagrange multiplier

equations:

Aα + Aααsα(x∗) = λi + Aααξi,α, (4.1)

where λi are the Lagrange multipliers. Define

Rα = Aα + Aααsα(x∗).

There are nd Lagrange multiplier equations, and for a fixed i, there are d of them. We

eliminate λi, ξi,2, · · · , ξi,d and obtain:

ξi,α =
Rαξi,1

R1 + (Aαα − A11)ξi,1
. (4.2)

for α = 2, · · · , d. This expresses all the coordinates ξi,α in terms of one of them, ξi,1.

Furthermore, the point x∗i lies on Sd−1. Therefore,

d∑
α=1

(
Rαξi,1

R1 + (Aαα − A11)ξi,1

)2

= 1

This can be viewed as a polynomial of degree 2d in ξi,1. Indeed this polynomial is:

P (t) =
d∏

α=1

(R1 +(Aαα−A11)t)
2

d∑
α=1

(
Rαt

R1 + (Aαα − A11)t

)2

−
d∏

α=1

(R1 +(Aαα−A11)t)
2.

(4.3)

We observe that P (t) is a polynomial of degree 2d and clearly, ξi,1 is a root for each

i = 1, · · · , n. Therefore, only 2d of ξi,1s can be distinct and in view of (4.2), only 2d of

{x∗1, · · · ,x∗n} can be distinct.

Definition 4.2.2 Let Q ∈ Vn,d and let x∗ be a global minimum of Q on
(
Sd−1

)n. We call

polynomial P (t) of (4.3) the characteristic polynomial of the global minimum (x∗1, · · · ,x∗n).

Remark 4.2.3 There are
(
n+2d−1

n

)
distinct ways of populating a set {x1, · · · ,xn} using 2d
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distinct points on Sd−1. Therefore, this theorem reduces the search space of non-negativity

of Q from an n(d− 1) dimensional manifold to
(
n+2d−1

n

)
copies of a 2d(d− 1) dimensional

manifold.

We now address the question of whether the bound of Theorem 4.2.1 on the number of

distinct coordinates is tight. Proving tightness of this bound can be accomplished by pro-

ducing an example of a polynomial which attains a global minimum only at points with at

least 2d of {x1, · · · ,xn} distinct. It is straightforward to see that if there is such an example

with n > 2d, then one can construct such an example with n = 2d. Therefore, it suffices

to restrict ourselves to the case n = 2d in the search for such polynomials. Lemma 4.2.4

below, provides a useful insight on zeroes of nonnegative polynomials with n = 2d.

Lemma 4.2.4 A polynomial Q ∈ V2d,d has at most one critical point up to permutations

with all of {x∗1 · · · ,x∗2d} distinct.

Proof 4.2.2 We will use the characteristic polynomial introduced in Definition 4.2.2. If

(x∗1, · · · ,x∗2d) is a global minimum with all of {x∗1, · · · ,x∗2d} distinct, then the coordinates

{ξ1,1, ξ2,1, · · · , ξ2d,1} are the roots of (4.3). Therefore their sum, and the sum of their

products taken two at a time are given by the second and third leading coefficients of the

characteristic polynomial:

2d∑
j=1

ξj,1 = −2R1

2d∑
α=2

1

Aαα − A11

=⇒
2d∑
j=1

ξj,1 =
−A1

∑2d
α=2

1
Aαα−A11

1
2

+ A11

∑2d
α=2

1
Aαα−A11

(4.4)

The last implication follows from R1 = A1 + A11

∑2d
j=1 ξj,1. In the characteristic polyno-

mial, only Rα depends on the coordinates ξi,α. However, the above equation shows that

Rα depend only on Q, and are the same for each stationary point with all of {x∗1, · · · ,x∗2d}

distinct. Therefore, every such critical point has the same characteristic polynomial and

therefore, there can be at most one critical point up to permutation with all of {x∗1 · · · ,x∗2d}

distinct. We refer to this point as the fundamental critical point and the corresponding cha-

racteristic polynomial as the fundamental polynomial of Q and denote it by P0(t).
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Note that while the fundamental stationary point may not always exist, the fundamental

polynomial is always well defined. The former exists iff the all of the roots of the latter are

real. In the light of this lemma, we are to search for values of the coefficients Aα and Aαα

for which the the fundamental stationary point is also the unique global minima. Theorem

4.2.5 below produces such an example for d = 2.

Theorem 4.2.5 For d = 2, the bound of Theorem 4.2.1 is tight.

Proof 4.2.3 Let us define

Q = A0+A1

4∑
j=1

xj,1+A2

4∑
j=1

xj,2+

(
1− ∆

2

)∑
i<j

xi,1xj,1+

(
1 +

∆

2

)∑
i<j

xi,2xj,2 (4.5)

We show that for sufficiently small, positive values of ∆, the fundamental stationary point

of Q is also its unique global minimum. The fundamental polynomial of Q is

P0(t) = t4 + t3A1 + t2
(
A2

1 + A2
2

4
− 1

)
− tA1 −

A2
1

4
(4.6)

Using the fundamental polynomial, we can evaluate Q at its fundamental stationary point.

We denote it by f0:

f0 = A0 −
A2

1 + A2
2

2
− 2 (4.7)

Note that this is independent of ∆. This means that this particular stationary value of Q

is independent of ∆. We are to show that for sufficiently small positive values of ∆, every

other critical value of Q is higher than f0. Using (x1i )
2 + (x2i )

2 = 1, we may rewrite Q, in

terms of X = x1,1 + x2,1 + x3,1 + x4,1 and Y = x1,2 + x2,2 + x3,2 + x4,2 as:

Q = A0+
1

2
(X+A1)

2+
1

2
(Y +A2)

2−A
2
1 + A2

2

2
−2+

∆

2

∑
i<j

xi,2xj,2−
∆

2

∑
i<j

xi,1xj,1 (4.8)

Quite clearly, when ∆ = 0, f0 is the global minima of Q and is attained at several sta-

tionary points, including the fundamental one. Let {x∗1(∆),x∗2(∆),x∗3(∆),x∗3(∆)} be any
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stationary point other than the fundamental one. Note that there can be only three distinct

x∗i (∆)s. The corresponding stationary value, using x∗i (∆) = (ξi,1(∆), ξi,2(∆))T , is:

f(∆) =A0 +
1

2
(ξ1,1(∆) + ξ2,1(∆) + 2ξ3,1(∆) + A1)

2 +
1

2
(ξ1,2(∆) + ξ2,2(∆) + 2ξ3,2(∆) + A2)

2

−A
2
1 + A2

2

2
− 2 +

∆

2

∑
i<j

ξi,2(∆)ξj,2(∆)− ∆

2

∑
i<j

ξi,1(∆)ξj,1(∆)

(4.9)

If this is not a local minimum, then f(0) > f0. If it is a local minima, f(0) = f0 and there-

fore it suffices to show that f ′(0) > 0(because f0 is independent of ∆). It is straightforward

to see that,

f ′(0) =
1

2

(∑
i<j

ξi,2(0)ξj,2(0)−
∑
i<j

ξi,1(0)ξj,1(0)

)
(4.10)

Here we have used the fact that at ∆ = 0, ξ1,1 + ξ2,1 + 2ξ3,1 + A1 = 0 and ξ1,2 + ξ2,2 +

2ξ3,2 + A2 = 0. Hereafter, we use ξi,α instead of ξi,α(0). We compute f ′(0) by solving the

equations:

ξ1,1 + ξ2,1 = A1 − 2ξ3,1

ξ1,2 + ξ2,2 = A2 − 2ξ3,2

(ξi,1)
2+(ξi,2)

2 = 1

(4.11)

We eliminate ξi,α for i = 1, 2 and α = 1, 2 to obtain the value of f ′(0):

f ′(0) = (3(ξ3,1)
2−3(ξ3,2)

2 +2ξ3,1A1 +2ξ3,2A2)(A
2
1 +A2

2 +4−4ξ3,1A1−4ξ3,2A2) (4.12)

ξ1,23 are free parameters, constrained only by (ξ3,1)
2 + (ξ3,2)

2 = 1 and their range of values

covers all local minima excluding the fundamental stationary point. It is quite easy to see

that this quantity is strictly positive for any choice of ξ3,α, when 0 < A2 << A1.

29



CHAPTER 5

ASYMPTOTIC RESULTS

As noted in the previous chapter, while the dimension of the test manifold is independent

of n, the number of copies of it scales as nd, leading to the number of inequality criteria

that check for membership of a point in C∗n,d also scaling as nd. However, quite often, one

can find a convex cone characterized by a finite number of inequality criteria (independent

of n) that asymptotically approximates C∗n,d, leading to an asymptotically tight criteria to

determine membership of a point in C∗n,d. In this chapter, we develop such asymptotic

criteria. Before we begin, we illustrate this idea with a simple example.

Let Pn be the cone with an n-sided regular polygon as the cross section, defined as:

Pn = conic.hull
{(

cos

(
k

2π

n

)
, sin

(
k

2π

n

)
, 1

)
: k = 0, 1, · · · , n− 1

}
(5.1)

Figure 5.1 shows a cross section of this cone. A point (x, y, z) is in Pn if and only if it

satisfies n linear inequalities:

y−mkx− ck ≤ 0; k = 0, 1, · · · , n− 1

mk =
sin(2π(k + 1)/n)− sin(2πk/n)

cos(2π(k + 1)/n)− cos(2πk/n)

ck =
sin(2π/n)

cos(2π(k + 1)/n)− cos(2πk/n)

(5.2)

Although it is apparent that the number of inequalities grow linearly with n, one can find

an asymptotically tight criterion whose complexity is independent of n. Note that the cir-

cumcircle of the polygon defines a cone that containsPn: C = {(x, y, z) : z2 − x2 − y2 ≥ 0} ⊇

Pn and therefore provides a necessary condition for inclusion in Pn. Moreover, the incircle

of the polygon defines a cone inside Pn, i.e., {(x, y, z) : cos2(π/n)z2 − x2 − y2 ≥ 0} ⊆
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Figure 5.1: (a) shows the cross sections of cones Pn for n = 4 (green), n = 5 (blue),
n = 10 (red) and n = 22 (red). (b) shows the cross section of P5 (red), its incircle (blue)
and circumcircle (black).

Pn and provides a sufficient criterion. In other words (x, y, z) ∈ Pn if cos2(π/n)z2− x2−

y2 ≥ 0 and only if z2 − x2 − y2 ≥ 1. Note that these two conditions approach each other

in the limit of large n. In other words, the necessary condition is asymptotically sufficient

and the sufficient condition is asymptotically necessary.

In this chapter, we identify a cone G∗n,d, characterized by a fixed number of inequalities

that asymptotically approximates C∗n,d, in the sense that G∗n,d ⊆ C∗n,d and when scaled up

by a small amount it includes C∗n,d. That is, for some ε > 0, (1 + ε)G∗n,d ⊇ C∗n,d and ε→ 0

as n → ∞. In this sense, we obtain an asymptotically tight criterion for membership in

C∗n,d, which we use to develop asymptotically tight criterion for membership in Cn,d.

5.1 The Limiting Cone

The cones C∗n,d are nested, i.e., C∗n,d ⊂ C∗n−1,d. This follows from the simple observation

that any polynomial P ∈ C∗n−1,d can be written as

P (x1,x2, · · ·xn−1) = Q(x1,x2, · · · ,xn−1,0) (5.3)
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with Q ∈ C∗n,d. Since the cones C∗n,d are nested, the limiting cone is expected to be their

intersection: ∩nC∗n,d. However, this intersection is rather small, as shown in Figure 5.2.

The lemma below states it more precisely:

Lemma 5.1.1 The limit cone, ∩nC∗n,d is the cone of all constant polynomials:

∩nC∗n,d = {A0 : A0 ≥ 0} .

Proof 5.1.1 Consider a polynomial Q = (A0, A1, · · ·An, A11, · · ·Add) ∈ ∩nC∗n,d. We can

show that Q the only non-zero coefficient of Q is A0 by evaluating Q on a simple collection

of points.

Let n be any positive integer. By definition, Q ∈ C∗2n,d. Let x(k) = (x1(k), · · ·x2n(k)) be

a point in Kd
n defined as:

xi(k) =


(1, 0, . . . , 0) ∈ Dd when i = 1, 2 · · · k

(−1, 0, . . . , 0) ∈ Dd when i = k + 1, k + 2, . . . , 2n

where, 0 ≤ k ≤ 2n is some integer. The evaluation of Q at v(k) is given by:

Q(x1, · · ·x2n) = A0 + A1(2k − 2n) + A11(2(k − n)2 − n)

When k = n, we have Q(v(n)) = A0 − nA11 ≥ 0 for all n. It follows that A11 = 0.

Further, when k = 0, we have Q(x(0)) = A0 − 2nA1 ≥ 0. Therefore, A1 = 0. Using

similar arguments, it follows that Aα = Aαα = 0 for α = 1, 2, . . . , d. Thus, ∩nC∗n,d is the

cone of constant polynomials.

In the following, we show that after a suitable rescaling of the cones, the limiting cone
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is a non-trivial semi algebraic set. Let us define the rescaled cones as:

C̃∗n,d =
{

(A0,
√
nA1,

√
nA2, · · ·

√
nAd, nA11, nA22, · · ·nAdd)T : (A0, A1, · · ·An, A11, · · ·Add)T ∈ C∗n,d

}
(5.4)

That is, we rescale the linear coefficients by
√
n and the quadratic coefficients by n. The

rescaled cones are no longer nested. However, their intersection, ∩nC̃∗n, is non-trivial is it

is a limit of the the cones. We begin with the simple case of d = 1.

5.1.1 The One Dimensional Case d=1

Membership of a quadratic Q = (A0, A1, A11) in C∗n,1 can be checked by the n + 1 ine-

qualities in proposition 5.1.1. That is, (A0, A1, A11) ∈ C∗n,1 if and only if A0 + A1(n −

2k) + A11((n − 2k)2 − n) ≥ 0 hold for k = 0, 1, · · · , n. Let B0 = A0, B1 =
√
nA1 and

B11 = nA11 be the rescaled coefficients. It follows that Q = (B0, B1, B11) ∈ C̃∗n,1 iff

B0 −B11 +B1

(
n− 2k√

n

)
+B11

(
n− 2k√

n

)2

≥ 0 (5.5)

holds for k = 0, 1, · · · , n. Introducing X =
(
n−2k√

n

)
and polynomial P (X) = B0 −

B11 + B1X + B11X
2, we may re-write the above conditions as P (X) ≥ 0 for X =

−
√
n,−
√
n + 2/

√
n, · · · ,+

√
n. In other words, Q ∈ C∗n,1 iff P (X) ≥ 0 on n + 1

evenly spaced points in [−
√
n,
√
n]. Given that the spacing 2/

√
n approaches zero an

n approaches infinity, we are prompted to define the following cone:

G̃∗n,1 =
{

(B0, B1, B11) : P (X) ≥ 0 ∀ X ∈ [−
√
n,
√
n]
}

(5.6)

Clearly, the sets G̃∗n,1 are nested, i.,e., G̃∗n,1 ⊆ C̃∗n,1. Moreover, G̃∗n,1 ⊇ G̃∗n+1,1 and∩nG̃∗n,1 =

G̃∗ is the space of all non-negative polynomials P (X) on R.

Unlike C̃∗n,1, G̃
∗ and G̃∗n,1 do not need n inequalities. In particular, G̃∗ is defined one
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Figure 5.2: (a) shows the cross sections of C∗n,1 for n = 2 to n = 6. (b) shows the cross
sections of the rescaled cones C̃∗n,1 for n = 2 to n = 20 in blue and the cross section of the
limiting cone G̃∗ in red. (c) shows C̃∗5,1 in blue and the corresponding approximation, G̃∗5,1
in red. The expanded cone, G̃∗5,1,ε, for ε = 1/4 is shown in black.

inequality. (B0, B1, B11) ∈ G̃∗ iff

B2
0 −B2

1 − (2B11 − 1)2 ≥ 0 (5.7)

This defines an ellipse, shown in red in Figure 5.2(b). This already provides a necessary

condition for inclusion in C̃∗n,1. It can be seen from Figure 5.2(b) that this condition is

asymptotically sufficient. Using G̃∗n,1, moreover, one can find stronger conditions for in-

clusion in C̃∗n,1. The former includes polynomials of three kinds

(i) B11 > 0, both zeros of the polynomial P (X) greater than
√
n, or both lesser than

−
√
n.

(ii) B11 > 0, both zeros of the polynomial P (X) complex (i.e., not real).

(iii) B11 < 0, one of the zeros of P (X) less than −
√
n and the other greater than +

√
n.

It is straightforward to check for inclusion in G̃∗n,1, based on the above ideas. This also

involves a fixed number of inequalities. The cross section of G̃∗n,1 can be understood by

considering its extreme points. Four classes of extreme points may be easily identified:

(i) B11 > 0, one zero equal to
√
n and the other greater than

√
n. That is, P (X) =

B11(X −
√
n)(X − α) for α ≥

√
n.
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(ii) B11 > 0, one zero equal to −
√
n and the other less than −

√
n. That is, P (X) =

B11(X +
√
n)(X + α) for α ≥

√
n.

(iii) B11 < 0, two zeros at ±
√
n respectively. That is, P (X) = B11(X

2 − n).

(iv) B11 > 0, a common root at α ∈ [−
√
n,
√
n]. That is, P (X) = B11(X − α)2,

α ∈ [−
√
n,
√
n].

Based on the above set of extreme points, it is straightforward to construct the cross section

of G̃∗n,1, as shown in Figure 5.2(c) in red. To show that the necessary conditions obtained

by inclusion in G̃∗n,1 are asymptotically sufficient, we consider the following cone:

G̃∗n,1,ε =
{

(B0, B1, B11) : ((1 + ε)B0, B1, B11) ∈ G̃∗n,1
}

(5.8)

This cone is obtained by slightly expanding G̃∗n,1. We show, in the below lemma, that

when ε ≥ 1/(n − 1), this expanded cone contains C̃∗n,1 and therefore provides a sufficient

condition. In the limit of large n, the necessary and sufficient conditions converge.

Proposition 5.1.2 For ε ≥ 1
n−1 , G̃∗n,1 ⊆ C̃∗n,1 ⊆ G̃∗n,1,ε

Proof 5.1.2 We show that all the extreme points in C̃∗n,1 are in G̃∗n,1,ε. Let (B0, B1, B11) ∈

C̃∗n,1 be an extreme point. It follows that the corresponding polynomial P (X) takes a zero

value at two consecutive points in the set {−
√
n,−
√
n + 2/

√
n, · · · ,+

√
n}. The zeros of

P are therefore separated by 2/
√
n. Consequently, the minimum value of P is −B11/n. It

follows that P + B11/n is non-negative on [−
√
n,
√
n] and so is P + B0/(n − 1). Thus,

P ∈ G̃∗n,1,ε.

The dual cones of G̃∗n,1 and G̃∗n,1,ε , which we refer to as G̃n,1 and G̃n,1,ε respectively satisfy

G̃n,1,ε ⊆ C̃n,1 ⊆ G̃n,1 (5.9)

providing necessary and sufficient criteria for membership in the moment cone Cn,1. We

now proceed to define and characterize G̃∗n,d for arbitrary d.
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5.1.2 General Dimension

We proceed along similar lines as for the d = 1 case to obtain a necessary and asymp-

totically sufficient condition for membership in C̃∗n,d. Following the intuition gained in

the d = 1 case, we rewrite the quadratic form Q = (A0, Aα, Aαα) in the scaled variables

B0 = A0, Bα =
√
nAα and Bαα = nAαα:

Q(x) = P (X, Y ) = B0 +
d∑

α=1

BαXα +
n− 1

n

d∑
α=1

BααX
2
α −

d∑
α=1

BααY
2
α (5.10)

where the variables Xα and Yα are defined as

Xα =
n∑
i=1

xi,α√
n

Yα =

√√√√ n∑
i=1

x2i,α
n
− X2

α

n

(5.11)

defined for x = (x1, · · · ,xn) and xi = (xi,1, · · · , xi,d). Note that the Cauchy-Schwartz

inequality ensures that Yα are well defined real numbers. The variables Xα and Yα satisfy∑
α Y

2
α + X2

α/n = ||Y ||2 + 1
n
||X||2 ≤ 1 and this follows from the conditions ||xi|| ≤ 1.

Although the above mentioned conditions on X and Y are weaker than what is implied

from ||xi|| ≤ 1, taking a cue from the case of d = 1, we define the cone G̃∗n,d:

G̃∗n,d =

{
(B0, Bα, Bαα) : P (X, Y ) ≥ 0 ∀ X, Y s.t ||Y ||2 +

1

n
||X||2 ≤ 1

}
(5.12)

Clearly, G̃∗n,d ⊆ C̃∗n,d, providing a necessary condition for membership in the latter. This

necessary condition can be expressed as a linear matrix inequality using the S-lemma. We

return to the exact criteria in the next chapter. Similar to the d = 1 case, it is straightforward

to see that G̃∗n+1,d ⊆ G̃∗n,d and therefore, we define G̃∗d = ∪nG̃∗n,d, that also provides an

albeit weaker, necessary condition.

In the following, we prove that the necessary condition provided by G̃∗n,d is asympto-
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tically sufficient, following the same line of arguments as before. For ε > 0, we define

G̃∗n,d,ε, by expanding G̃∗n,d:

G̃∗n,d,ε = {(B0, Bα, Bαα) : ((1 + ε)B0, Bα, Bαα) ∈ G̃∗n,d} (5.13)

We show that for ε ≥ 1
n−1 , C̃∗n,d ⊆ G̃∗n,d,ε and therefore it provides a sufficient condition.

Furthermore, the necessary and sufficient conditions asymptotically approach each other,

showing that the former is asymptotically sufficient. Theorem 6.1.4 is the main result of

this chapter and it is a direct generalization of proposition 6.1.2. To prove this theorem, we

need a technical lemma, which we prove at the end of this chapter:

Lemma 5.1.3 Let n ∈ N andX = (X1, · · · , Xd) ∈ Rd such that ||X||2 = X2
1+· · ·+X2

d ≤

n. There exists x = (x1, · · · ,xn) ∈ Kd
n with xi = (xi,1, · · · , xi,d) such that:

n∑
i=1

xi,α√
n

= Xα for α = 1, 2, · · · , d

n∑
i=1

x2i,α
n
− X2

α

n
= 0 for α = 1, 2, · · · , d− 1∣∣∣∣∣

(
n∑
i=1

x2i,d
n
− X2

d

n

)
−
(

1− ||X||
2

n

)∣∣∣∣∣ ≤ 1

n

(5.14)

We defer the proof of this lemma to the end of this chapter. We are now ready to state and

prove theorem 6.1.4.

Theorem 5.1.4 For ε ≥ 1
n−1 , it follows that

G̃∗n,d ⊆ C̃∗n,d ⊆ G̃∗n,d,ε (5.15)

Proof 5.1.3 The first inclusion follows trivially from the definition of G̃∗n,d. To show the

second inclusion, let Q = (B0, Bα, Bαα) ∈ C̃∗n,d. Recall that the polynomial P (X, Y ) was
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defined as

P (X, Y ) = B0 +
d∑

α=1

BαXα +
n− 1

n

d∑
α=1

BααX
2
α −

d∑
α=1

BααY
2
α (5.16)

In order to show that P + εB0 ≥ 0 whenever ||Y ||2 + 1
n
||X||2 ≤ 1, we pick a point (X, Y )

that satisfies the latter condition and approximate it using x = (x1, · · · ,xn) with the help

of lemma 5.1.3.

If Bαα ≤ 0 for α = 1, 2, · · · , d, we choose xi = X√
n

. The condition ||Y ||2 + 1
n
||X||2 ≤ 1

ensures that x ∈ Kd
n. It follows now that

P (X, Y ) ≥ B0 +
d∑

α=1

BαXα +
n− 1

n

d∑
α=1

BααX
2
α = Q(x) ≥ 0 (5.17)

The last inequality follows fromQ ∈ C̃∗n,d. IfBαα > 0 for atleast one α, we assume without

loss of generality that Bdd ≥ Bαα for α = 1, 2, · · · d − 1. It also follows that Bdd > 0.

Clearly,

P (X, Y ) ≥ B0 +
d∑

α=1

BαXα +
n− 1

n

d∑
α=1

BααX
2
α −Bdd

(
1− ||X||

2

n

)
(5.18)

We now use lemma 5.1.3 to pick x = (x1, · · · ,xn) such that

X ′α =
n∑
i=1

xi,α√
n

= Xα for α = 1, 2, · · · , d

Y ′2α =
n∑
i=1

x2i,α
n
− X2

α

n
= 0 for α = 1, 2, · · · , d− 1

∣∣∣∣Y ′2d − (1− ||X||
2

n

)∣∣∣∣ =

∣∣∣∣∣
(

n∑
i=1

x2i,d
n
− X2

d

n

)
−
(

1− ||X||
2

n

)∣∣∣∣∣ ≤ 1

n

(5.19)
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The above equations enable us to evaluate Q(x) and we thus obtain

Q(x) = B0 +
d∑

α=1

BαXα +
n− 1

n

d∑
α=1

BααX
2
α −BddY

′2
d (5.20)

Finally using equation 5.18, we obtain

P (X, Y ) +
Bdd

n
≥ Q(x) ≥ 0 (5.21)

It follows from the d = 1 case that Bdd ≤ n
n−1B0 and therefore, P + εB0 ≥ 0 whenever

ε ≥ 1
n−1 .

Proof 5.1.4 (Proof of Lemma 5.1.3) We construct a point x ∈ Kd
n with the claimed pro-

perties. Let

xi =



(
X1√
n
, X2√

n
, · · · Xd−1√

n
,

√
1−

∑d−1
α=1

(
Xα√
n

)2)
for i = 1, 2, · · · k(

X1√
n
, X2√

n
, · · · Xd−1√

n
,−
√

1−
∑d−1

α=1

(
Xα√
n

)2)
for i = k + 1, k + 2, · · ·n− 1(

X1√
n
, X2√

n
, · · · Xd−1√

n
, z
)

for i = n

(5.22)

We make an appropriate choice of k and z in the following. It follows that

√√√√1−
d−1∑
α=1

(
Xα√
n

)2

≥ |Xd|√
n

(5.23)

Each xi,d is equal to ±
√

1−
∑d−1

α=1

(
Xα√
n

)2
and k is the number of them with a + sign. We

may choose k in such a way that the sum of all the xi,d’s is closest to
√
nXd. That is,

∣∣∣∣∣√nXd −
n−1∑
i=1

xi,d

∣∣∣∣∣ ≤
√√√√1−

d−1∑
α=1

(
Xα√
n

)2

≤ 1 (5.24)
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Let us now choose z =
(√

nXd −
∑n−1

i=1 xi,d
)
. It follows from the above inequality that this

is a valid choice for a point on Kd
n. It also follows that

∑
i x
α
i√
n

= Xα for α = 1, 2, · · · , d. It

remains to show the last inequality in the lemma. Explicitly,

∑
i x

2
i,d

n
−

(∑
i

xi,d
n

)2

=

(
1− 1

n
||X||2

)
− 1

n

(
1− ||xn||2

)
(5.25)

5.2 Necessary and sufficient criteria for moments

In this section, using the cones G̃∗n,d and G̃∗n,d,ε, we develop a necessary condition and

a sufficient condition for membership of a vector (y0, y1, · · · , yd, y11, y22, · · · , ydd) in the

moment cone Cn,d. We also show that these two conditions approach each other, i.e., the

necessary condition is asymptotically sufficient and the sufficient condition is asymptoti-

cally necessary. Let us define the cones C̃n,d by rescaling Cn,d:

C̃n,d =
{
z0, z1, · · · , zd, z11, · · · , zdd : (z0,

√
nz1, · · · ,

√
nzd, nz11, · · · , nzdd) ∈ Cn,d

}
Let us also define G̃n,d,ε as the dual of G̃∗n,d,ε. It follows from Theorem 5.1.4 that

G̃n,d ⊇ C̃n,d ⊇ G̃n,d,ε for ε ≥ 1

n− 1
(5.26)

Thus, membership in G̃n,d is a necessary condition and membership in G̃n,d,ε is a sufficient

condition for membership in C̃n,d. In the following we develop inequality criteria to check

for membership in G̃n,d,ε and G̃n,d, expressed as Linear Matrix Inequalities (LMI).
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5.2.1 Characterizing the cone G̃∗n,d,ε

Note that G̃n,d = G̃n,d,ε=0. Therefore, we begin with a characterization of G̃∗n,d,ε. By

definition,

G̃∗n,d,ε =

{
(B0, Bα, Bαα) : Pε(X, Y ) ≥ 0 ∀ X, Y s.t ||Y ||2 +

1

n
||X||2 ≤ 1

}
(5.27)

Where the polynomial Pε is defined as Pε(X, Y ) = (1+ε)B0+
∑

αBαXα+n−1
n

∑
αBαα(Xα)2−∑

αBαα(Yα)2. It can be expressed in terms of a 2d + 1 × 2d + 1 matrix B′ and a 2d + 1

dimensional vector X′ as P = X′TB′X′ where,

B′ =



(1 + ε)B0
B1

2
· · · Bd

2
0 0 · · · 0

B1

2
n−1
n
B11 0 0 0 0 · · · 0

... 0
. . . 0 0 0 · · · 0

Bd
2

0 · · · n−1
n
Bdd 0 0 · · · 0

0 0 · · · 0 −B11 0 · · · 0

0 0 · · · 0 0 −B22 0 0

...
... · · · ...

... 0
. . . 0

0 0 · · · 0 0 0 · · · −Bdd



(5.28)
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And

X′ =



1

X1

X2

...

Xd

Y1

Y2
...

Yd



(5.29)

The constraint ||Y ||2 + 1
n
||X||2 ≤ 1 can also be written in terms of a matrix X′TM′X′ ≤ 0,

where

M′ =



n 0 · · · 0 0 0 · · · 0

0 −1 0 0 0 0 · · · 0

... 0
. . . 0 0 0 · · · 0

0 0 · · · −1 0 0 · · · 0

0 0 · · · 0 −n 0 · · · 0

0 0 · · · 0 0 −n 0 0

...
... · · · ...

... 0
. . . 0

0 0 · · · 0 0 0 · · · −n



(5.30)

We may now define G̃n,d,ε as {B′ : X′TB′X′ ≥ 0 whenever X′TM′X′ ≤ 0}. By the

S-lemma, it follows that B′ ∈ G̃n,d,ε iff ∃ λ ≥ 0 such that B′+λM′ � 0. The inconvenient

condition that that λ ≥ 0 can be eliminated by the following trick. Let us define M and B

as

B =

 B′ 0

0 0

 ; M =

 M′ 0

0 1

 (5.31)
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It now follows that B ∈ G̃n,d,ε iff ∃λ ∈ R such that B + λM � 0. To express this cha-

racterization in a more concise way, let us define the space of relevant positive semidefinite

2d+ 2× 2d+ 2 matrices, V+

V+ =


 A1 0

0 A2

 : A1, A2 ∈ Sd+1

 (5.32)

Where Sd+1 is the PSD cone of d + 1 × d + 1 matrices. It is straightforward to see that

V+ is self dual. The condition B + λM � 0 implies that B ∈ V+ ⊕ span(M). However,

B is any 2d+ 2× 2d+ 2 matrix. It belongs to a 2d+ 1 dimensional subspace spanned by

E0, E1, · · ·Ed, E11, · · · , Edd defined as

E0(ε) =



1 + ε 0 0 · · · 0

0 0 0 · · · 0

...
...

... . . . ...

0 0 0 · · · 0


; Eα =



0 · · · 1
2

0 · · · 0

...
... 0 0 · · · 0

1
2

0 0
... · · · 0

0 0 · · · · · · · · · 0

...
... · · · · · · · · · 0

0 0 · · · · · · · · · 0


(5.33)

And

Eαα =



0 0 · · · 0 0 0 · · · 0

0 n−1
n

0 0 0 0 · · · 0

... 0
. . . 0 0 0 · · · 0

0 0 · · · 0 0 0 · · · 0

0 0 · · · 0 −1 0 · · · 0

0 0 · · · 0 0 0 0 0

...
... · · · ...

... 0
. . . 0

0 0 · · · 0 0 0 · · · 0



(5.34)
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We may now write B = B0E0(ε) + B1E1 + · · ·BdEd + B11E11 + · · · + BddEdd. Let

U = span(M) and L = span{E0(1 + ε), Eα, Eαα}. It is now straightforward to show that

G̃∗n,d,ε = ΠL ((U ⊕ L) ∩ V+) (5.35)

Where ΠL is the projection to the subspace L. The projection can be re-written, in terms

of the orthogonal complement L∗ of L as

G̃∗n,d,ε = L ∩ ((U ⊕ L) ∩ V+ ⊕ L∗) (5.36)

The inclusion in G̃∗n,d,ε is straightforward to check via an LMI, i.e., B ∈ G̃∗n,d,ε iff (B⊕U ∩

V+) 6= ∅. In the next section, we characterize the dual of G̃∗n,d,ε and develop necessary and

sufficient conditions for inclusion of a given point, in Cn,d.

5.2.2 The dual of G̃∗n,d,ε

It now follows, from Eq. 5.36 that the dual, G̃n,d,ε is given by

G̃n,d,ε = L∗ ⊕ L ∩ ((L∗ ∩ U∗)⊕ V+) (5.37)

This provides a criterion for membership of a vector (y0, y1, · · · , yd, y11, y22, · · · , ydd) in

Cn,d. It is equivalent to check for membership of the rescaled vector, (y0, y1/
√
n, · · · , yd/

√
n, y11/n, y22/n, · · · , ydd/n)

in C̃n,d. Corresponding to the basis elements E0(ε), Eα, Eαα of L, we define a dual set of

basis {F0, Fα, Fαα} satisfying Tr(EiFj) = δij . It is straightforward to see that

F0(ε) =
1

(1 + ε)2
E0(ε)

Fα = 2Eα

Fαα =
n2

2n2 − 2n+ 1
Eαα

(5.38)
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Corresponding to a vector (y0, y1, · · · , yd, y11, y22, · · · , ydd) we may define a 2d+2×2d+2

matrix

Yε = y0F0(ε) +
1√
n
y1F1 + · · ·+ 1√

n
ydFd +

1

n
y11F11 + · · ·+ 1

n
yddFdd ∈ L (5.39)

It follows that Tr(YεB) = B0y0+
1√
n

∑
αBαyα+ 1

n

∑
αBααyαα Indeed, C̃n = (C̃∗n)∗. From

the bipolar theorem, it follows that Tr(YεB) ≥ 0 for all B ∈ G̃∗n,d,ε iff Yε ∈ G̃n,d,ε. Noting

that Yε ∈ L and following Eq 5.37, it follows that Yε ∈ G̃n,d,ε iff Yε ∈ V+ ⊕ (L∗ ∩ U∗).

Thus, the following theorem on necessary and sufficient conditions follows:

Theorem 5.2.1 A vector (y0, y1, · · · , yd, y11, y22, · · · , ydd) ∈ Cn,d if

Yε=1/(n−1) ∈ V+ ⊕ (L∗ ∩ U∗)

and only if

Yε=0 ∈ V+ ⊕ (L∗ ∩ U∗)

The above two conditions are both expressed as LMIs and can be checked using semi-

definite programming. Note that as n → ∞, the necessary and sufficient conditions con-

verge. The above results generalize the results in [12, 13].
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