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SUMMARY 

Osteoarthritis (OA) is the leading cause of disability in the US and one in two 

people are expected to develop knee OA by age 85. OA is disease of the entire joint, 

affecting not only the cartilage, but also the bone and synovium. The avascularity, low 

cellularity, and slow proliferation of chondrocytes all limit the natural regenerative 

capacity of cartilage in addition to the chronic inflammation prevalent in the joint space.  

 Cell therapies, such as autologous chondrocyte implantation (ACI), offer promising 

options for treating persistent cartilage lesions, but the inability to expand chondrocytes to 

sufficient numbers without adversely affecting their phenotype remains a significant 

problem. While synthetic microcarrier culture can improve the scalability of chondrocyte 

expansion over conventional monolayer methods by providing a high surface area-to-

volume ratio, de-differentiation remains a problem for long-term expansion. Therefore, 

decellularized cartilage microcarriers (DC-µCs) that retain structural and biochemical cues 

of the native extracellular matrix (ECM) may provide an improved means to culture and 

deliver chondrocytes for ACI therapies. While ACI is promising, it is not indicated for 

cartilage damage associated with OA or other inflammatory diseases of the joint and is 

better for defects resulting from trauma. This lack of efficacy of cellular therapies is likely 

due to the inflammatory environment cells are exposed to upon implantation since multiple 

inflammatory mediators have been shown to play a pivotal role in the initiation and 

perpetuation of OA. Anti-inflammatory therapies with single molecular inhibitors do not 

effectively modulate the complex inflammatory environment presented in OA. Thus, novel 

therapies capable of modulating multiple signaling pathways and cell types are needed.  



 xxxi 

Mesenchymal stem cells (MSCs) are an adult multipotent stem cell population that 

can regulate multiple immune cells involved in innate and adaptive immunity, largely 

through paracrine mechanisms. Additionally, human amniotic membrane (AM) has 

emerged as a potential therapy for OA as it provides an abundant source of multiple 

immunoregulatory proteins, promotes stem cells proliferation, promotes pro-healing 

macrophage phenotype, and modulates cell secretion in vivo.  

Therefore, the objective of this proposal was to engineer an improved cartilage 

repair strategy by combining cells and ECM materials to address problems with both 

cartilage repair and OA-associated inflammation. In Chapter 3, we developed 

decellularized cartilage microcarriers that retain endogenous extracellular matrix proteins 

to both expand and deliver chondrocytes while retaining their phenotype. In Chapter 4, 

robust characterization of the influence of culture format, donor variability, and media 

composition demonstrated that aggregated MSCS have enhanced sensitivity to changes in 

the local microenvironment, which can be tailored to enhance immunomodulatory 

paracrine activity. Moreover, MSC single cells and spheroids reduced inflammation in 

activated synoviocyte cultures in a dose-dependent manner and reduced OA progression 

when delivered to a rodent model of OA. Finally, in Chapter 5, we investigated the 

interaction between MSCs and human amniotic membrane and the influence of cell-cell 

and cell-ECM therein on the modulation of inflammation, both in vitro and in vivo. Overall, 

this work broadens current understanding of cartilage tissue engineering and 

immunomodulation, providing valuable information that can be used to develop strategies 

to improve efficacy of osteoarthritis treatments.  
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CHAPTER 1. INTRODUCTION 

Articular cartilage defects due to degeneration or trauma are one of the most 

common causes of chronic pain, stiffness, and loss of joint movement in all age 

populations. Cell therapies, such as autologous chondrocyte implantation (ACI), offer 

promising options for treating persistent cartilage lesions, but the inability to expand 

chondrocytes to sufficient numbers without adversely affecting their phenotype remains a 

significant problem. While synthetic microcarrier culture can improve the scalability of 

chondrocyte expansion over conventional monolayer by providing a high surface area-to-

volume ratio, de-differentiation remains a problem for long-term expansion, which may be 

due to the lack of pro-chondrogenic properties within the system. Therefore, decellularized 

cartilage microcarriers (DC-µCs) that retain structural and biochemical cues of the native 

extracellular matrix (ECM) may provide an improved means to culture and deliver 

chondrocytes for ACI therapies.  

While ACI has good clinical outcomes when the defect repair is hyaline cartilage 

as opposed to fibrocartilage, ACI is not indicated for cartilage damage associated with 

osteoarthritis (OA) or other inflammatory diseases of the joint and is better suited for 

defects resulting from trauma. This lack of efficacy of cellular therapies may be due to the 

inflammatory environment cells are exposed to upon implantation since multiple 

inflammatory mediators have been shown to play a pivotal role in the initiation and 

perpetuation of OA. Although non-steroidal anti-inflammatory drugs are often 

administered for pain management in OA, they inhibit proteoglycan secretion and are not 

recommended for cartilage cell therapies. Other, more targeted, anti-inflammatory 
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therapies, including use of systemic and intra-articular biologic agents to inhibit TNF-α 

and IL-1β, have also proved disappointing and were unable to effectively modulate the 

complex inflammatory environment presented in OA. Thus, novel therapies that are 

capable of modulating multiple signaling pathways and cell types are an attractive 

alternative to address OA-associated inflammation that is currently unachievable with 

available drug treatment regimens.  

Mesenchymal stem cells (MSCs) are an adult multipotent stem cell population that 

can regulate multiple immune cells involved in innate and adaptive immunity, largely 

through paracrine mechanisms. Additionally, human amniotic membrane (AM) has 

emerged as a potential therapy for OA as it provides an abundant source of multiple 

immunoregulatory proteins, promotes stem cells proliferation, and promotes pro-healing 

macrophage phenotype in vivo.  

The overall objective of this proposal is to engineer an improved cartilage repair 

strategy by combining cells and ECM materials in order to address problems with both 

cartilage repair and OA-associated inflammation. The central hypothesis is that cartilage 

and amniotic membrane ECM-based materials will provide a matrix-specific 

microenvironment that will enhance cellular response in terms of stimulating an 

appropriate phenotype and cytokine production, respectively. The rationale for this 

hypothesis is that decellularized cartilage represents a structurally and functionally 

appropriate microenvironment to promote chondrogenesis and retention of cartilage-

specific phenotype, and amniotic membrane contains multiple cytokines that may have a 

synergistic effect on paracrine activity of MSCs. The central hypothesis will be tested with 

the following specific aims:   
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Specific Aim 1: Determine the ability of decellularized cartilage microcarriers (DC-µCs) 

to promote the phenotypic stability & ex vivo expansion of human chondrocytes. The 

working hypothesis for this aim was that ex vivo expansion of human chondrocytes on DC-

µCs would yield a more stable chondrogenic phenotype than tissue-culture treated 

polystyrene (plated) or gelatin CultiSpher-G microcarrier (CG-µC) expansion. DC-µCs 

were fabricated and characterized; and primary human chondrocytes were cultured on the 

DC-µCs, G-µCs, or plated up to 14 days. Cell viability, yield, and gene expression were 

analyzed and principal component analysis was performed. DC-µCs constructs were an 

effective method of expanding human chondrocytes while enhancing retention of their 

endogenous phenotype that could be suitable for direct implantation. 

Specific Aim 2: Characterize the effects of culture parameters on MSC immunomodulation 

of OA. The working hypothesis for this aim is that the MSC secretome can be manipulated 

by altering environmental conditions, such as three-dimensional aggregation to enhance 

inherent immunomodulatory activity. The impact of the culture format (2D monolayer or 

3D spheroids), donor variability, seeding density, and media composition on MSC 

immunomodulation was assessed by quantification of MSC paracrine factors and 

suppression of activated synoviocyte proliferation in co-culture and trans-well studies. 

MSC delivery as single cells and spheroids were then compared in the rat medial meniscal 

transection (MMT) rat model of OA and evaluated through histological analysis and 

equilibrium partitioning of an ionic contrast (EPIC) agent via µCT analysis.  

Specific Aim 3: Evaluate the ability of MSCs and amnion to modulate inflammation & 

OA progression. The working hypotheses is that amnion culture can modulate and enhance 

MSC paracrine activity and enhance immunomodulation. Amnion incorporated into 
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spheroids during formation was compared to co-delivering amnion with the spheroids and 

transwell culture of amnion and spheroids. MSC spheroids with or without amnion were 

also compared to amnion or amnion alone in transwell and co-culture studies with activated 

synoviocytes. Finally, MSCs with or without amnion were intra-articularly delivered to 

MMT rats and OA progression was evaluated via EPIC-µCT and semi-automated 

histopathological scoring. 

This project is innovative because it examines the ability to engineer the physical and 

biochemical elements of transplantable cell-ECM constructs to direct cell phenotype and/or 

modulate cytokine production. Through the completion of this project, we have addressed 

multiple shortcomings in current osteoarthritis therapies by both developing a novel tissue 

engineering strategy to replace damaged cartilage and combatting the complex 

inflammatory environment associated with OA. We constructed transplantable 

decellularized cartilage microcarriers capable of supporting chondrocyte expansion and 

sustaining the chondrogenic phenotype, laying the ground work for countless other 

applications of transplantable ECM microcarrier platforms. By characterizing an in vitro 

model using activated synoviocytes, we provide insights into the mechanisms governing 

OA-associated inflammation and developed a useful tool for screening potential therapies. 

Finally, the results of this project have yielded novel scientific insights into the mechanisms 

governing amniotic membrane particles, MSC paracrine activity, and their utility for 

osteoarthritis therapies.  
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CHAPTER 2. BACKGROUND 

2.1 Cartilage Biology 

Cartilage is the tough but flexible tissue that cushions bones, providing mechanical 

support to the joints, allowing bones to glide easily over one another. It differs from other 

tissues because it is avascular, has a low cell density, and contains specialized cells, 

chondrocytes, which produce large amounts of extracellular matrix. There are three types 

of cartilage tissue: fibrous, elastic, and hyaline. The meniscus and intervertebral discs are 

composed of fibrous cartilage that allows for higher stress than hyaline cartilage. This 

fibrous cartilage has mechanical properties more similar to ligaments and tendons [1]. 

Elastic cartilage, like the auricular cartilage found in the ear, has more elastin, allowing the 

tissue to deform more elastically but does not have the same compressive strength as 

articular cartilage. Hyaline cartilage is a type of cartilage found on many joint surfaces that 

is very strong but still flexible and elastic. The focus of articular cartilage repair treatments 

is to restore the surface of an articular joint's hyaline cartilage after osteoarthritis damage.  

In the developing embryo, chondrogenic cells arise primarily from the mesoderm, 

and cell-cell and cell-matrix interactions lead to differentiation of mesenchymal stem cells 

into chondroblasts and osteoblasts (bone forming cells). Chondrogenesis is marked by the 

expression of cartilage-specific proteins, the earliest and most important being 

transcription factor Sox9 [2, 3]. Sox9 then upregulates collagen type II and increases 

synthesis of aggrecan [3]. In response to biological and mechanical signals, the 

proliferating chondrocytes then undergo many mitotic divisions and align [3, 4]. As 

chondrocytes are further stimulated and mature, they progress away from proliferating 
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zone toward the middle zone and have a greater concentration of proteoglycans, are more 

spherical, and have an increased density of synthetic organelles indicating a greater role in 

matrix production [3, 4]. When chondrocytes stop dividing and begin to increase in size, 

they undergo hypertrophic differentiation, characterized by the expression of collagen type 

X, which induces calcification of the matrix [3]. The chondrocytes undergo apoptosis, 

allowing for subsequent osteogenesis causing the calcified cartilage to be replaced by 

subchondral bone and bone marrow in osteochondral bone formation [2]. Although 

cartilage has a low cell density of only 5-10% of the total cartilage tissue volume, 

chondrocytes are responsible for the production and maintenance of the dense extracellular 

matrix that provides the tissue its primary mechanical function [2, 4].   

2.2 The Extracellular Matrix  

The extracellular matrix of cartilage is composed mainly of water (60-87%) [5], 

collagens (10-30%), and proteoglycans (3-10%) [4]. Each type of cartilage has different 

compositions of collagens, proteoglycans, and other matrix components. Collagen 

complexes form the scaffold that gives cartilage its tensile strength. There are multiple 

types of collagens, which contribute to over 50% of the dry weight of cartilage. The major 

cartilage collagen is collagen type II, which accounts for 90-95% of the total collagen in 

most cartilage tissues [4, 5]. Collagen fibers are also important because of their ability to 

anchor proteoglycans in the cartilage matrix.  

Proteoglycans are macromolecules consisting of a core protein covalently attached 

to glycosaminoglycan chains. These proteoglycans allow cartilage to resist compressive 

load. The most abundant protein core in cartilage is aggrecan, a cartilage-specific, 
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aggregating proteoglycan. The disaccharide chains of proteoglycans are heavily sulfated, 

producing a negatively charged matrix that is able to hold large amounts of water [6]. 

Cartilage oligomeric matrix protein (COMP) is another important extracellular matrix 

component found in cartilage that is thought to be involved in cartilage differentiation, 

pathogenesis, and cartilage turnover [7].  The extracellular matrix also sequesters cellular 

growth factors, and acts as a local depot for them. Changes in physiological conditions can 

trigger protease activities that cause local release of growth factors and allow the rapid and 

local growth factor-mediated activation of cellular functions [8]. 

2.3 Osteoarthritis 

2.3.1 Prevalence 

Cartilage defect repair is extremely challenging due to the innate inability of 

cartilage tissue to regenerate properly [9].  Osteoarthritis (OA) is the degenerative joint 

disease characterized by joint pain, swelling, and stiffness due to cartilage loss. In 2006, 

an estimated 46 million in the US had doctor-diagnosed osteoarthritis [10]. Approximately 

80 to 90 percent of the population is afflicted with degenerative joint disease by age 65 and 

nearly 1 in 2 people are expected to develop symptomatic knee OA by age 85 [11, 12]. 

With a rapidly aging population and an increase in the prevalence of obesity, the number 

of patients afflicted with osteoarthritis is expected to grow to 67 million by 2030 [12]. The 

direct costs of OA treatment to US insurers and individuals is more than $185 billion 

annually [13]. In order to develop a treatment for osteoarthritis, causes and symptoms of 

the disease should be considered, along with problems with current treatment options.  
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2.3.2 Disease Progression 

 Osteoarthritis begins with damage and progressive degradation of articular hyaline 

cartilage structure and function [14]. Chondropenia is the early stage of degenerative joint 

disease and is defined by the loss of articular cartilage volume. As this chondropenia 

progresses, stress increases across the entire joint leading to further erosion of the cartilage. 

If OA progresses to full thickness cartilage loss, it results in abnormal remodeling of bone 

and the formation of osteophytes, or bone spurs that project along joints [14]. This 

progression may eventually lead to joint malalignment, which hastens structural 

deterioration of the joint by increasing localized loading forces [15]. The symptoms 

associated wish OA results from these abnormal stresses, which become worse and more 

frequent with increasing age [16].  

2.3.3 Types of Osteoarthritis 

 Osteoarthritis is categorized as primary (idiopathic) or secondary. Primary OA 

occurs with no apparent initial cause or abnormality and has a direct correlation with aging 

[16]. Secondary OA of the knee occurs as the result of trauma or repetitive motion or from 

congenital conditions and underlying diseases. While the initial causes of these categories 

of OA differ, this distinction does not alter clinical practices and therapeutic choices.  

2.3.4 Inflammation and Osteoarthritis 

Autologous chondrocyte implantation is the first and only FDA-approved cell 

therapy product used to repair articular cartilage injuries, but it is not approved for patients 

with OA or inflammatory diseases [17]. The lack of efficacy of cell therapies is due in part 
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to the inflammatory environment cells are exposed to upon implantation since multiple 

inflammatory mediators have been shown to play a pivotal role in the initiation and 

persistence of OA. OA chondrocytes express an array of cytokines, chemokines, alarmins, 

damage-associated molecular pattern molecules, and adipokines that act as paracrine 

factors and initiate cartilage degradation locally, but also reach the synovium to increase 

cytokine production by synovial macrophages and fibroblasts, which promote 

inflammation and further enhance cartilage damage [18].  

In fact, synovial inflammation precedes detectable structural changes and is an 

indicator of future medial cartilage loss [19-22]. Healthy synovium is normally two to three 

layers thick and lacks inflammatory cells, but the onset of inflammation is marked with 

hyperplasia of the lining cells and infiltration of macrophages, T and B cells [23], mast 

cells [24], and natural killer cells [25]. Although multiple tissues are involved in OA-

related inflammation, the synovium is a major site of gross and microscopic changes that 

occur early in disease progression [26]. These findings suggest that targeting the 

inflammatory process may be critical for improving the efficacy of disease-modifying OA 

therapies [27].  

Interleukin-1 beta (IL-1β) is one of the key cytokines involved in the pathogenesis 

of OA, capable of inducing inflammatory reactions and catabolic effects independently as 

well as being combined with other mediators. It interferes with chondrocyte synthesis of 

type-II collagen and aggrecan [28, 29] and increases chondrocyte synthesis of matrix 

metalloproteinases (MMPs) 1,3, and 13 [30-32]. In addition to inducing its own secretion 

in an autocrine manner, IL-β also stimulates synthesis of other inflammatory cytokines 

involved in OA including TNFα, IL-6, IL-8, and CCL5 [33-37].  
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Both IL-1β and TNFα are increased in the synovial fluid, synovial membrane, 

cartilage, and subchondral bone in OA, and the expression of TNF-R1 isotype membrane 

receptors are increased in fibroblast-like synoviocytes [38-43]. IL-1β and TNFα exposure 

also speed up chondrocyte aging and induces apoptosis [44-46]. More specifically, TNFα 

alone blocks chondrocyte synthesis of proteoglycan components, proteins binding 

proteoglycans, and type II collagen, and increases IL-6, IL-8, RANTES, VEGF, MMP-1, 

MMP-3, MMP-13, and ADAMTS-4 [34-36, 47-52].  

Although non-steroidal anti-inflammatory drugs (NSAIDs) are often administered 

for pain management in OA, they inhibit proteoglycan secretion and are not recommended 

for cartilage cell therapies [53]. Inflammation is a complex biological process involving 

many molecules and signaling pathways, thus current drug treatment regimens for immune 

diseases targeting a single molecule or pathway are often ineffective and insufficient to 

suppress chronic inflammation due to inherent compensatory pro-inflammatory pathways, 

causing patient success to vary greatly [54]. The inherent immunomodulatory capabilities 

of MSCs offer a potent alternative to conventional drug treatment regimens due to their 

ability to regulate multiple signaling pathways and cell types of innate and adaptive 

immunity.  
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2.4 Current Treatments for Osteoarthritis 

2.4.1 Non-surgical Treatments 

A number of non-surgical treatment options exist to alleviate pain and improve 

function for patients with osteoarthritis. Some of these treatments include exercise, weight 

loss, anti-inflammatory drugs, painkillers, and nutritional supplements like glucosamine 

and chondroitin [55-57]. Glucosamine is a precursor for the formation of 

glycosaminoglycans, proteoglycans, and glycolipid. Chondroitin sulfate is a 

glycosaminoglycan, which constitutes a major component of cartilage. A study by Clegg 

et al. tested the efficacy of glucosamine and chondroitin sulfate daily supplements in 

treating the pain symptoms of osteoarthritis. In patients with moderate to severe arthritis 

pain, the placebo yielded a patient reported improvement in pain or function of 54.3%, 

while combination therapy with glucosamine and chondroitin sulfate had a response of 

79.2% [56]. Though Clegg et al. showed improvement in self-reported patient pain and 

function, it is unknown if these compounds are able to localize to the area of osteoarthritis 

inflammation and are then incorporated to enhance cartilage formation. These non-surgical 

treatments for osteoarthritis aim to alleviate pain and improve function, but most treatments 

do not modify the natural history or progression of OA. When these treatments are 

ineffective, operative treatments are required [58].  

2.4.2 Surgical Treatments 

Some surgical procedures intend to repair or restore cartilage. Microfracture is one 

of the treatments of choice and involves drilling into the subchondral bone to cause 

bleeding to release progenitor cells and regenerative factors. The tissue formed, however, 
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is a scar-like fibrocartilage that is mechanically inadequate and often results in lesions 

reappearing [58].  

Allografts of healthy cartilage plugs with subchondral bone harvested from 

cadavers have also been used to repair cartilage defects. The implanted hyaline 

cartilage/bone is initially more stable than the fibrocartilage formed in the previous 

methods, but donor disease transfer, rejection, and integration are constant issues with 

allografts. Autografts from non-load bearing areas of the patient have also been used, but 

can also lead to donor site morbidity [58]. 

Autologous chondrocyte implantation (ACI), which involves transplanting a 

patients’ own chondrocytes after ex vivo expansion, is the most widely used cell-based 

surgical procedure for the repair of traumatic cartilage defects [59]. Large number of cells 

(1.6 million cells per cm2 defect) are typically needed due to the direct positive correlation 

between implanted cell density and the final clinical outcome [60]. Although ACI has good 

clinical outcomes for defect repairs resulting in hyaline cartilage, autologous chondrocyte 

repairs composed of fibrocartilage showed more morphologic abnormalities and became 

symptomatic earlier than patients requiring reoperations for other reasons and 72% of 

patients requiring reoperation due to macroscopically abnormal cartilage had chondral 

defects composed of fibrocartilage rather than hyaline cartilage [61]. Additionally, 

inadequate chondrocyte viability [62], inefficient cell retention [59], hypertrophic 

differentiation, delamination, and poor tissue integration [63] at cartilage defect sites 

following in vivo implantation of single chondrocyte suspension are impediments to 

successful outcomes of traditional ACI therapies. Therefore, the need for rapid and 
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efficient cell expansion while maintaining appropriate phenotype presents a predominant 

challenge for this regenerative medicine approach.  

These surgical attempts to repair or regenerate cartilage are often ineffective and 

the disease continues to progress. Pain relievers and anti-inflammatory drugs are used to 

alleviate pain until total joint replacement is required, 450,000 of which were performed 

annually in 2004 alone [12]. Although hip and knee replacement can improve quality of 

life [64-66], these major surgical procedures have multiple associated risks, can fail with 

wear and tear, often require revision surgeries throughout the lifetime of the patient [67, 

68]. There is especially a concern for long-term outcomes in younger patients [69, 70]. 

This overview of osteoarthritis demonstrates that even though many treatments exist to 

relieve the symptoms associated with OA, there is an increasing demand to find an effective 

source for disease modifying therapies before total joint arthroplasty is necessary.  

2.5 Tissue Engineering Strategies 

2.5.1 In vitro vs In Vivo 

Some tissue engineering approaches focus on creating tissue in vitro for later 

implantation into the body, while other areas of regenerative medicine focus on how to 

stimulate chondrogenesis in vivo. In vitro tissue engineering allows for greater control and 

alteration of the environment, is less expensive to study, and easier to measure. On the 

other hand, regenerative medicine strategies in vivo provide the complex biochemical and 

mechanical properties that are difficult to replicate in vitro. While both of these strategies 

have inherent difficulties and benefits, techniques that utilize aspects of both may have the 

most clinical relevance.  
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2.5.2 Cell Sources 

 Focus of cartilage tissue engineering and regenerative medicine strategies 

primarily relies on one or a combination of cells and scaffolds. A range of cell sources 

ranging from embryonic stem cells to differentiated adult chondrocytes, have been 

analyzed for their usefulness in cartilage regeneration. Each cell source has advantages and 

disadvantages. Adult chondrocytes are already the appropriate cell type, but harvesting 

these cells is difficult, can lead to increased donor site morbidity, and can have decreased 

proliferative capacity. Allogeneic cell sources from cadavers eliminate the problem of 

donor site morbidity but raise immunological obstacles. Stem cells have a more 

proliferative capacity, but these must be stimulated to become chondrocytes to produce the 

necessary cartilage matrix components. Many current efforts in regenerating cartilage 

involve treating adult mesenchymal stem cells with growth factors that stimulate 

chondrogenesis, like TGF-β and BMP [71-74]. Many chondrogenic growth factors 

stimulate both chondrogenesis and osteogenesis, however [73, 74]. Over time, 

mesenchymal stem cells that have been stimulated with these growth factors can undergo 

hypertrophy and calcification [75].  

2.5.3 Scaffolds 

Multiple synthetic and biological materials have been investigated for their 

usefulness as a scaffold to provide mechanical support and enhance cartilage tissue 

regeneration. Biomaterials evaluated for cartilage regeneration include sponges, hydrogels, 

electrospun fibers, and microparticles. Each of these materials provides unique properties 

for chondrogenesis, but few of them promote quick and functional cartilage 
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regeneration.[76] Scaffolds made of natural biomaterials (agarose, alginate, gelatin, 

collagen, silk, etc.) are biocompatible, but do not provide mechanical strength and degrade 

quickly in vivo.[77] Degradation rates are more controllable in synthetic polymers, and 

many of these have high mechanical strength, but cell integration is limited.[78] Some 

composite scaffolds of synthetic polymers and natural materials are currently on the 

market, but natural materials are still preferred.[76] Functional biomaterials that respond 

to changes in their environment are an attractive source for cartilage tissue engineering, 

but developing a functional biomaterial that resembles the mechanical and biochemical 

capabilities of cartilage is a complex obstacle.[76]  

2.5.4 Decellularized Matrices 

A new focus in regenerative medicine involves the use of extracellular matrix 

materials, typically from a xenogeneic source, for use as a scaffold.[79, 80] Cellular 

antigens from the tissues can be removed to avoid adverse immune responses while 

preserving ECM components, which are conserved among species [79, 81-86]. Acellular 

ECM materials have been used clinically for the regeneration of a range of different tissues 

and offer attractive strategies for regenerative purposes due to their 3D presentation of 

bioactive molecules capable of promoting tissue homeostasis and regeneration [87-98]. 

[99]. These ECM scaffolds are biocompatible, biodegradable, and provide varying 

amounts of mechanical support [82-85, 100]. Previous studies have also shown that 

decellularized scaffolds are able to recruit immune cells and promote endogenous tissue 

repair [101]. ECM materials have shown to significantly improve cell viability and 

retention at implantation sites [102].  
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Furthermore, results from studies using tissue-specific ECM have shown that cells 

exhibit a better cell retention and phenotype when seeded on decellularized matrices from 

the same origin as that from which the cells are isolated [103], indicating that decellularized 

articular cartilage ECM might be beneficial to the acute survival and longer-term 

integration of chondrocytes delivered to treat cartilage defects. Both allogeneic and 

xenogeneic cartilage ECM-based scaffolds have been shown to support chondrocyte 

phenotype and promote chondrogenic differentiation [104-106]. However, implantation of 

cartilage matrix alone fails to repair cartilage defects due to inadequate cellular infiltration 

and tissue integration [107]. Therefore, decreasing scaffold size and increasing the surface-

area-to-volume ratio via microcarrier fabrication may increase scalability of chondrogenic 

culture on decellularized cartilage matrix for the application of ACI. 

2.5.5 Microcarrier Culture 

Microcarriers (µCs) are commonly used for scalable culture of anchorage-

dependent cells because of their high surface- area-to-volume ratio [108, 109]. 

Microcarriers made from plastic [110, 111], dextran [110, 112], gelatin [113-116], or 

poly(lactide) and its co-polymers [117, 118] have been employed to expand chondrocytes 

and have shown more beneficial effects in terms of cell yield and chondrogenic phenotype 

compared to conventional 2D culture on tissue-culture polystyrene [110, 114, 115]. 

However, chondrocytes display a gradual decrease in synthesis of cartilaginous ECM after 

prolonged culture on microcarriers and fail to re-differentiate under chondrogenic culture 

conditions [112], suggesting that currently used microcarrier materials are not able to 

recapitulate the complex cartilage microenvironment seen in vivo by proliferating 

chondrocytes. Additionally, current microcarriers are often non-degradable or have limited 
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degradability, which poses another barrier for direct implantation of these cell-laden 

microcarriers in vivo [119]. Alternatively, expanded chondrocytes that need to be 

enzymatically harvested from microcarriers or monolayers before implantation separates 

the cells from the ECM they produce during in vitro culture [120] and can damage 

remaining ECM [121]. Therefore, the development of implantable microcarriers for 

chondrocyte expansion could significantly improve ACI-based cartilage regenerative 

applications.  

2.6 Immunomodulation 

2.6.1 MSC Immunomodulation 

MSC-secreted immunomodulatory paracrine factors (PGE2, IDO, TGFβ1, HGF, & 

IL-6) can affect multiple cell types, rendering MSCs an attractive cell therapy for 

regulating the complex pathogenesis of OA. Specifically, MSCs inhibit inflammatory 

cytokine secretion, promote anti-inflammatory M2 macrophages and tolerogenic dendritic 

cell phenotypes [122-124], regulate antigen presentation [125, 126], regulate B and T cell 

proliferation and cytokine secretion [127-129], and modulate the balance of inflammatory 

and regulatory T-helper cell phenotypes [130-132]. Furthermore, MSCs can prevent or 

resolve chronic inflammation by directing immune cells towards anti-inflammatory and 

tolerogenic phenotypes [122-124].  

MSC immunomodulation is regulated by the inflammatory state of their 

microenvironment, and inflammatory cytokines including interferon gamma (IFN-ɣ), 

tumor necrosis factor alpha (TNF-α), and interleukin 1 beta (IL-1β) can all activate MSC 

expression of immunomodulatory factors such as PGE2, IDO, and HGF [133-135]. 
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Ligands for toll-like receptors TLR3 and TLR4 can also regulate MSC immunomodulation 

by altering paracrine factor secretion of MSCs [136, 137].  

2.6.2 Three-dimensional Culture of MSCs 

Spheroidal aggregate culture of MSCs has been used to mimic the cell-cell and cell-

matrix interactions and 3D nature of the endogenous MSC niche.  Aggregation of MSCs 

through hanging drop, forced aggregation, or culture on non-adherent surfaces promotes 

self-assembly of MSC spheroids via cadherin binding [138-141]. Spheroid culture has been 

shown to maintain or even induce a more multipotent state of MSCs in comparison to 

monolayer cultures [142-144]. Spheroid delivery of MSCs in vivo has also improved cell 

retention and survival, yielding better engraftment and treatment in cardiac and skeletal 

muscle models, colitis models, as well as bone defects [139, 145-148]. Spheroid culture 

can increase paracrine factor production of multiple cytokines in vitro including VEGF, 

FGF-2, HGF, EGF, SDF-1, BMP2, TSG-6, PGE-2, and angiogenin in comparison to 

monolayer culture [149-154].  

The McDevitt lab has previously developed a 3-D MSC aggregate culture platform 

that enhances the immunomodulatory factor secretion of IDO, PGE2, and IL-6 in 

comparison to adherent MSCs [155]. Moreover, MSC spheroids subsequently co-cultured 

with lipo-polysaccharide (LPS) and IFN-γ activated macrophages for 24 hours (8:1 

macrophage-to-MSC ratio) enhanced suppression of macrophage TNFα production 

compared to adherent MSC monolayers [155]. Incorporation of IFN-γ-loaded heparin 

microparticles into MSC spheroids sustained immunomodulatory paracrine production and 

increased the polarization of co-cultured macrophages to a less inflammatory M2 



 19 

phenotype [156]. In this study, we propose to harness these anti-inflammatory properties 

of aggregating MSCs in order to treat OA.  

2.6.3 Amniotic Membrane 

In addition to cellular MSC therapies for modulating inflammation, some ECM 

materials contain immunomodulatory properties [157, 158]. The amniotic membrane is the 

innermost layer of the placenta and exhibits immunosuppressant and anti-inflammatory 

activity in order to protect the fetus and ensure acceptance by the mother's immune system. 

Micronized dehydrated human amnion/chorion membrane has been shown to be 

immunomodulatory and non-immunogenic [158, 159]; contains a number of beneficial 

growth factors, including platelet derived growth factor (PDGF), fibroblast growth factor 

(FGF), and transforming growth factor beta (TGF-β) [160, 161]; and improves 

maintenance of chondrocyte phenotype [162, 163]. The multiple factors eluted from the 

amnion can modulate stem cell paracrine activity and proliferation [164]. Cryopreserved 

amnion hastens macrophage infiltration and promotes a pro-healing phenotype in wounds 

of diabetic mice [165]. These properties are potentially beneficial in a treatment for the 

inflammatory, degenerated environment of an osteoarthritic joint and previous work in the 

Guldberg lab has demonstrated that intra-articular injection of micronized amnion 

attenuates osteoarthritis development in the medial meniscal transection (MMT) rat model 

of OA [166]. There are, however, a number of factors in the treatment of OA with amnion 

that have yet to be explored, including the effect of particles on MSC trophic factor 

production and cross-talk between cells and the amnion matrix, and efficacy of 

combinatorial MSC and amnion treatment in a therapeutic model of OA. 
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2.7 Medial Meniscal Transection (MMT) Model of OA 

The medial meniscal transection model (MMT) rat model is a well- accepted small 

animal model for evaluating new pharmacologic agents for post-traumatic OA. The medial 

collateral ligament is cut to expose the joint space and then the medial meniscus is 

transected at the narrowest point, which destabilizes the joint, resulting in fibrillation of 

the articular cartilage, proteoglycan loss, cartilage degeneration, and osteophyte 

development within 21 days [167, 168]. MMT also increases local expression of 

inflammatory genes, macrophage infiltration, synovial lining thickness, and joint swelling 

[169, 170]. In addition to using traditional methods to characterize the disease progression 

based on histology, the Guldberg lab has developed a technique to quantitatively assess 3D 

microstructural changes in the articular cartilage using contrast enhanced microcomputed 

tomography known as equilibrium partitioning of an ionic contrast agent via µCT (EPIC-

µCT). This technique is based on the principle that compared to healthy cartilage 

degenerated cartilage contains a lower proteoglycan content and, therefore, a higher 

concentration of a negatively charged contrast agent at equilibrium. With this technique, 

we have shown that we can quantify 3D changes in articular cartilage morphology, lesion 

volume, proteoglycan composition, subchondral bone thickening, osteophyte formation, 

and surface fibrillation and erosions [171].  

Histopathological scoring methods have also been utilized to assess changes in the 

MMT model. An Osteoarthritis Research Society International (OARSI) working group 

has developed a standardized scoring system based on six grades that reflect depth of the 

lesion and four stages assessing extent of OA over the joint surface [172]. In addition to 
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OARSI scoring, changes in the synovium are also quantifiable via immunohistochemical 

staining of inflammatory cells and measurement of the synovial lining [170].  
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CHAPTER 3. DECELLULARIZED CARTILAGE 

MICROCARRIERS SUPPORT EX VIVO EXPANSION OF 

HUMAN CHONDROCYTES  

3.1 Introduction 

Cartilage regeneration is limited by its avascularity, low cellularity, and the slow 

proliferation of chondrocytes [173]. Autologous chondrocyte implantation (ACI), in which 

chondrocytes are isolated and expanded and then re-implanted, is one of the only FDA 

approved treatments that aims to regenerate cartilage [174]. Current chondrocyte expansion 

procedures can take up to four weeks  on tissue-culture treated polystyrene, follow typical 

cell culture procedures, and utilize enzymatic release of attached cells [174]. 

Unfortunately, chondrocytes dedifferentiate rapidly using existing ex vivo expansion 

methods, marked by changes in collagen expression from a healthy collagen type II 

production to a more fibrotic collagen type I [175]. The dedifferentiation induced by ex 

vivo culture results in fibrocartilage formation upon re-implantation, calcification, and 

subsequent growth of bone in vivo instead of hyaline cartilage, resulting in additional pain 

and bone-on-bone contact [175]. Thus, new methods to expand chondrocytes while 

preserving their phenotype are needed, and may significantly decrease the cost and time of 

current expansion techniques, while improving physiological outcomes. 

 The need for a relatively large arthrotomy associated with traditional ACI as well 

as a desire to improve repair tissue have spurred the development of Matrix-induced ACI 

(MACI) membranes in which expanded chondrocytes are seeded onto a three-dimensional 
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scaffold that is directly implanted [176-178]. Various scaffolds derived from a porcine 

collagen I/III [179], collagen I-chondroitin-sulfate [180], hyaluronic acid [181], 

fibrin/PLA/PGA/PDO [182], or an agarose-alginate hydrogel [183] have been developed 

for MACI. Although seeding the cells in these three-dimensional scaffolds slightly 

improves their phenotype, chondrocytes are still expanded on plastic surfaces prior to 

scaffold seeding, and hypertrophy of the repair site, incomplete filling, and limited 

integration with surrounding normal cartilage continues to result in complications [184].  

 Like most cells, chondrocyte phenotype and function are influenced by exposure 

(or lack thereof) to various biochemical and biomechanical factors. Most chondrogenic 

culture strategies are unable to recapitulate the complex milieu of growth factors involved 

in chondrocyte homeostasis, and culture methods often promote either expansion or a 

chondrogenic phenotype in a mutually exclusive fashion. While the exact mechanisms of 

environmental parameters on the regulation of chondrocyte phenotype are not yet fully 

understood, both biochemical and physical components of the local cartilage 

microenvironment contribute to chondrocyte phenotype retention in vitro. Several studies 

have observed enhanced chondrocyte phenotype when cultured on decellularized cartilage 

[105, 185-187]. Decellularized cartilage matrix is quite dense, however, and sheets of the 

ECM exhibited a lack of successful tissue integration and cellular infiltration in chondral 

defects in vivo in an ovine model [107]. Therefore, reducing decellularized cartilage 

scaffold size may improve tissue integration and therapeutic applicability. 

 Microcarriers enhance proliferation when compared to monolayer culture due to 

their high surface area-to-volume ratio, which allows for culture of large amounts of cells 

with decreased requirements for space and nutrients. Manufactured microcarriers can be 
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produced with many different materials, and chondrocyte expansion has been 

demonstrated on polystyrene microcarriers, polymer-coated glass microcarriers, and 

gelatin based microcarriers [110].  Most of these materials are neither biodegradable nor 

manufactured for direct use, often requiring enzymatic harvest. Recently, some 

microcarriers have been used as delivery devices for cells or chemical compounds in vivo. 

Subcutaneous injection in a mouse model with chondrocytes seeded on gelatinous 

Cultispher-G microcarriers (CGµCs) resulted in higher glycosaminoglycan content than 

plated chondrocytes [110]. Although microcarriers enhance chondrocyte proliferation, 

synthetic microcarriers do not prevent dedifferentiation and gelatin microcarriers are 

composed primarily of denatured collagen I, which may contribute to a fibrocartilage 

phenotype and microenvironment.  

 Thus, microcarriers composed of decellularized cartilage (DC-µCs) that retain 

structural and biochemical cues of the native extracellular matrix (ECM) may provide an 

improved means to culture chondrocytes for MACI therapies in a delivery format. Herein, 

we present a method of fabricating decellularized cartilage microcarriers from porcine 

articular cartilage. Chondrocyte seeding, expansion, and phenotype on decellularized 

cartilage microcarriers was compared to gelatin microcarriers and tissue culture 

polystyrene. Additionally, principal component analysis of gene expression was performed 

to elucidate the effects of the different materials on chondrocyte phenotype. Overall, this 

study marks a first step in developing chondrocyte-laden microcarrier constructs as a 

versatile expansion platform for chondrocyte phenotype retention that could be used to fill 

chondral defects for ACI. 

3.2 Materials and Methods 
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3.2.1 Cartilage Decellularization 

 Fresh porcine cartilage was isolated from the interphalangeal joints in the feet of 

eight market weight pigs obtained from a local meat processor. Extraneous tissue was 

removed to expose the articular cartilage surface and care was taken to avoid removing 

subchondral bone during isolation of the articular cartilage. Cartilage was cut into small 

pieces (approximately 2 mm x 2 mm), rinsed in Dulbecco's phosphate-buffered saline 

(DPBS), and liquid was aspirated before cartilage samples were stored at -80C. The tissue 

phenotype was verified using haematoxylin and eosin (H&E) and safranin-O (Saf-O) 

stained sections of specimen biopsies according to histological staining methods described 

below.  

 Frozen cartilage pieces were thawed at room temperature and washed on a rotary 

orbital shaker at 250 RPM and 37C in 500 mL of a series of chemical and enzymatic 

washes. The decellularization protocol was similar to that of Reing et al. with modifications 

of TrypLE Express (a purified, recombinant cell-dissociation enzyme) in place of trypsin 

and the addition of a twenty-four hour DNase and RNase wash [188]. All decellularization 

solution was aspirated and decellularized cartilage was frozen at -80°C until further use. 

The final decellularization protocol is shown in Table 1. 

 To quantify decellularization, frozen cartilage pieces (roughly 2 mm x 2 mm) were 

lyophilized, digested in proteinase K (600 mAU/ml) according to the Quiagen® DNeasy 

protocol, and DNA was quantified with PicoGreen® reagent and DNA gel electrophoresis. 

Histological samples were also stained with H&E, DAPI, and SafO to show lack of visible 

nuclei and GAG retention as described in the following histological staining section. 
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Table 1. Decellularization Protocol 

 

 

 

 

 

 

 

3.2.2 Cartilage Microcarrier Formation and Characterization 

 The decellularized cartilage pieces were lyophilized, flash-frozen in liquid 

nitrogen, and milled with a Thomas Wiley Mini-Mill™ using a 400μm mesh screen. The 

milled cartilage was then sifted overnight at 4ºC to separate microcarriers by size in sieve 

meshes ranging from 180 μm – 250 μm and 250 μm – 400 μm. The dry weight of cartilage 

samples after each step was recorded to determine yield efficiency. After sieving, 3mg of 

each size microcarrier were stained with eosin for 15 minutes, washed five times with 0.1% 

TritonX-100 in D-PBS, and imaged with a confocal microscope (Zeiss 700 LSM). Size 

was quantified in ImageJ® by determining the largest and smallest cross-sectional 

distances, approximate diameter, and aspect ratio of each microcarrier. Commercially 

Wash Solution Time 

TrypLE Express 6 h 

Deionized water 15 min, 3x 

70% ethanol 15 h 

3% hydrogen peroxide 15 min 

Deionized water 15 min, twice 

1% Triton X-100 in EDTA/Trizma 6 h 

1% Triton X-100 in EDTA/Trizma 15 h 

Deionized water 15 min, 3x 

DNase/RNase Solution 24 h 

Deionized water 15 min, twice 

0.1% PAA/4% ethanol 2 h 

Sterile DPBS 15 min, 3x 
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available gelatin microcarriers, Cultispher-G were also stained and used as a control for 

comparison. 

3.2.3 Cell Seeding on Microcarriers 

 ATDC5 cells, a mouse teratocarcinoma cell line that mimics mesenchymal 

condensation and chondrogenic differentiation [189], was used for preliminary cell-loading 

experiments. ATDC5 cells were expanded in ATDC5 growth media consisting of 

DMEM/F-12 media with L-glutamine (Invitrogen) supplemented with 5% FBS (Atlanta 

biologics), 10 μg/mL transferrin (Invitrogen), and 3x10-8 M sodium selenite (Sigma-

Aldrich) at 3,250 cells/cm2. Cells were cultured at 37C in 5% CO2 and fed every 2-3 days 

until 90% confluent. 

 After trypsinization, ATDC5 cells were seeded at 5x104 cells/cm2 or 5x105 

cells/cm2 on the decellularized cartilage microcarriers through overnight incubation at a 

high cell density (500,000 cells/mL) in ATDC5 growth media in 50 mL conical tubes with 

5 mL of agarose to provide a flat bottom for microcarriers to settle without clumping. After 

overnight incubation, the media was collected after to determine seeding efficiency with a 

hemocytometer by counting unattached cells. The microcarriers were then transferred to 6-

well super-low attachment plates (Nunclon™Sphera™, ThermoFisher Scientific) and 

cultured on a rotary orbital shaker at 60 RPM for up to 7 days and samples were collected 

at Days 1, 4, and 7 for Live/Dead staining and histological analysis. 

3.2.4 Human Chondrocyte Isolation  

 Human cartilage was ethically obtained from distal end of adult femurs of diabetic 

patients (n=4) undergoing above knee amputations at Emory University Hospital (IRB No. 
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00051432). Briefly, articular cartilage was dissected and care was taken to exclude any 

areas of osteoarthritis. Cartilage was then cut into 2 mm x 2 mm pieces and sequentially 

digested with 1 mg/mL pronase (30 min) and 1mg/mL collagenase type 2 (overnight, ~15 

hours) at 37°C with slow agitation. The digested cartilage was filtered through a 70 μm 

mesh, and any pieces larger than the mesh were resuspended in fresh 1 mg/mL collagenase 

type II and digested for an additional night (~15 hours). Isolated primary chondrocytes 

were washed in growth media consisting of DMEM/F-12, 10% fetal bovine serum, 

50µg/mL L-ascorbic acid 2-phosphate, and penicillin-streptomycin-amphoteracin B (100 

U/mL, 100 U/mL, and .25 µg/mL). Chondrocytes were frozen in 80% media, 10% FBS, 

10% DMSO until microcarrier seeding except for a small portion from each donor that 

were seeded immediately on TCPS for endotoxin testing with the HEK-Blue LPS 

Detection Kit. Any vials from donors that tested positive for endotoxin were immediately 

disposed of (1 donor/4 donors total for a final n=3). Monolayer cultures on tissue culture 

treated polystyrene (plated) were used as a control for comparison with microcarrier culture 

and cells were seeded at 1x104 cells/cm2 in growth media and media changes were 

performed every 2-3 days. A total of 5 wells were also seeded in glass tissue culture plates 

1x104 cells/cm2 for live/dead staining and confocal microscopy. 

3.2.5 Chondrocyte Expansion on Microcarriers  

 The decellularized cartilage microcarriers (DCµCs) from the 180-250 micron sieve 

and Cultispher-G microcarriers (CGµCs) were rehydrated in chondrocyte growth media 

for 30 minutes before cell loading. Primary human chondrocytes pooled from 3 donors 

were then seeded at 1x104 cells/cm2, mixed with gentle pipetting with a wide-bore pipette, 

and then split in 12-well Nunclon™Sphera™ suspension plates. The monolayer and 
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suspension microcarrier culture plates were placed in the same incubator at 37C and 5% 

CO2. The microcarrier cell suspension was incubated under static conditions at 250,000 

cells/mL overnight, after which time the microcarriers were again mixed with gentle 

pipetting, allowed to settle, and then media was removed with any unattached cells. The 

microcarriers were supplemented with 1 mL/well of chondrocyte growth media and placed 

on a rotary orbital shaker at 80 RPM for the duration of the experiment. Media changes 

were performed every 3-4 days and samples were collected at days 1, 7, and 14 to assess 

viability, proliferation, and ECM deposition. 

3.2.6 Live/Dead staining 

 Samples from each group were collected at days 1, 3, 7, 11, and 14 to assess 

viability via Live/Dead staining. Microcarriers were pipetted using a wide bore 1000µL 

pipette, allowed to settle, and rinsed twice with DPBS. Glass-plated samples were aspirated 

and washed with DPBS before staining with 8µM calcein-AM and 8 µM ethidium 

homodimer-1 for one hour at 4ºC according to the protocol of Live/Dead™ 

Viability/Cytotoxicity Kit (Thermo Fisher) and imaged with a Zeiss 700B Laser Scanning 

Confocal Microscope.  

3.2.7 Histological and Immunofluorescent Staining 

 Histological samples were fixed in 10% neutral buffered formalin, embedded in 

1.5% agarose hydrogel, manually processed for histology, and embedded in paraffin. 

Samples were sectioned (5µm) for routine histology with hematoxylin and eosin (H&E) 

and safranin O/fast green (Saf O) staining. For immunofluorescent staining of collagen I 

and II, slides were deparaffinized and antigen retrieval was performed in 10mM sodium 
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citrate pH 6.0 at 60ºC overnight in a water bath. After blocking with 4% normal serum, 

samples were incubated with primary antibodies (Col2A1 mouse monoclonal antibody 

[1:200 SC-52658, Santa Cruz Biotechnology] and Col1 rabbit polyclonal [1:100 ab34710, 

Abcam]) overnight (~15 hours), washed in .05% Tween PBS (2x, 2 min), and then 

incubated with secondary antibodies for one hour (555 goat anti-mouse [1:200 4409S, Cell 

Signaling Technology] and AF488 goat anti-rabbit [1:200 4412, Cell Signaling 

Technology] in 4% normal serum) before washing 2x in .05% Tween PBS, rinsing once in 

water, and then mounting in SlowFade™ Gold Antifade Mountant with DAPI (Thermo 

Fisher) and imaging.  

3.2.8 Molecular Analysis 

 mRNA levels for signaling molecules and matrix proteins were measured in 

chondrocytes cultured on the various carriers to determine phenotypic stability. On Days 

1, 7, and 14, samples were washed in DPBS, collected in lysis buffer (Quiagen), and frozen 

at -80ºC. At the conclusion of the experiment, RNA and DNA were extracted using 

QIAzol, QIAshredders, DNeasy spin columns, and RNeasy MiniElute columns according 

to the manufacturer’s instructions (Quiagen). Briefly, samples were shredded in 

QIAshredders, run through DNeasy spin columns, and then the run through from the DNA 

columns was washed and run through the RNeasy spin columns to collect both RNA and 

DNA from each sample following Quiagen instructions for each. DNA was quantified with 

PicoGreen® analysis. RNA was quantified with Nanodrop (Thermo Scientific) and 270 ng 

RNA was reverse transcribed to cDNA (RNA to cDNA Conversion Kit 4387406, Thermo 

Scientific). Real-time quantitative polymerase chain reaction (PCR) was performed with 

gene-specific primers using the Fluidigm Biomark System using recommended TaqMan® 



 31 

Assay Primer/Probe Sets (Thermo Fisher Scientific). Levels of mRNA were measured for 

SRY (sex determining region Y)-box 9 (Sox9), aggrecan (Acan), cartilage oligomeric 

matrix protein (Comp), type-I collagen alpha 1 (Col1), type-II collagen alpha 1 (Col2), 

runt-related transcription factor 2 (Runx2), osteopontin (Opn/Spp1), type-X collagen 

(Col10), fibromodulin (Fmod), matrix metallopeptidase 13 (MMP-13), and insulin-like 

growth factor 1 (Igf-1). All genes are presented as 2-ΔΔC
T with ribosomal protein S18 

(Rps18) as the housekeeping gene and normalized to day 0 chondrocytes as the control 

[190].  

3.2.9 Statistical Analysis 

 All data are reported as mean ± standard deviation, with a minimum of N=4 

independent samples for each experimental group. Statistical significance was determined 

using one-way or two-way ANOVA, followed by Tukey’s post hoc analysis (GraphPad® 

Prism 7.0); p<0.05 was considered statistically significant. Otherwise Student's t-tests were 

performed with α=0.05 also using GraphPad® Prism 7.0 where appropriate. Gene 

expression tests for normality, principal component analysis, heat map generation, and 

cluster analysis was performed in JMP Genomics with SAS® analytics.   

3.3 Results 

3.3.1 Cartilage Decellularization 

 Native cartilage had many visible cellular nuclei while the decellularized cartilage 

showed no cells and lacunae remained vacant after decellularization (Figure 1 A&B). No 

residual DNA was visible by gel electrophoresis after decellularization and less than 2 
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percent of the original DNA content was detected by the PicoGreen assay (<.4 ng of 

DNA/mg dry weight) (Figure 1 C&D). Glycosaminoglycan content was almost completely 

removed by the decellularization process based upon Safranin O staining (Figure 1 E). 

 

 

 

Figure 1. Effective Decellularization of Porcine Articular Cartilage. Decellularization 

of porcine cartilage was verified via lack of visible nuclei after hematoxylin & eosin (H&E) 

(A&E) & Hoechst staining (B&F), lack of visible DNA after gel electrophoresis (C), and 

<2% of DNA remaining when quantified via PicoGreen® assay (G) (*p<0.05 vs Native 

Cartilage using Student’s t-test). Safranin-O staining shows decellularization also removes 

glycosaminoglycans (H). 

3.3.2 Cartilage Microcarrier Characterization 

 The dry weight of cartilage samples was recorded during each step of fabrication 

to determine microcarrier yield efficiency. Almost half of the staring mass of cartilage was 

lost due to decellularization (~49% of initial mass), whereas subsequent milling and sieving 

resulted in relatively little loss, 9% and 2% respectively. The remaining 40% of the initial 

mass was decellularized cartilage microcarriers; 15% of which in the 20-180 micron sieve, 
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16% in the 180-250 micron sieve, and 9% between the 250-400 micron sieves (Figure 2 

A). Size analysis was performed on DC and CG microcarriers using microscopy and image 

analysis with ImageJ. Hydrated CG µCs had a diameter around 250 microns while the 180-

250 sieved DC µCs were closer to 400 microns (Figure 2 B). The CG carriers were more 

spherical with an aspect ratio around 1.2 compared to 1.5 aspect ratio for DC µCs (Figure 

2 C&D). 

 

Figure 2. Characterization of Microcarriers. The final yield of the 180-250 and 250-400 

micron sieved DC-µCs was 15% and 16% of the initial weight of the cartilage pieces 

respectively and the majority of loss during processing was due to decellularization (A). 

The 180-250 micron sieved DC-µCs were larger in comparison to commercially available 

CG-µCs with hydrated diameters around 400 and 250 microns respectively based on 

ImageJ® analysis of the longest side, shortest side, and average diameters across µCs 

(n=105 and 97, respectively). Statistical significance was determined using ANOVA with 

post-hoc Tukey correction (@p<0.05 vs DC µCs) (B). DC-µCs and CG-µCs both varied 

in size with some clumping even in the absence of cells (C). The CG µCs were rounder 

than the DC µCs, resulting in an aspect ratio closer to 1 (@p<0.05 vs DC µCs using 

Student’s t-test) (D). All results graphed as mean±SD. 
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3.3.3 Microcarrier Seeding with ATDC5 Cells 

Initial cell seeding experiments were performed with ATDC5 cells, a chondrogenic 

mouse teratocarcinoma cell line. The size analyses were used to approximate microcarrier 

surface area and ATDC5 cells were seeded at 5x103 or 5x104 cells/cm2. Both densities 

achieved >70% loading efficiency, and proliferated over the 7-day culture period while 

maintaining high viability (Figure 3 A). Although the cells seeded at 5x104 cells/cm2 were 

more evenly distributed after seeding on day 1, confluence was varied and inconsistent 

Figure 3. Chondrogenic ATDC5 cells attach to and proliferate on decellularized 

cartilage microcarriers and maintain a high viability over 7 days of culture. The 

chondrogenic mouse teratocarcinoma ATDC5 cell line maintained a high viability and 

proliferated up to 7 days at both seeding densities although 5x103 cells/cm2 resulted in 

patchy seeding with some microcarriers still empty on Day 7 whereas 5x104 cells/cm2 

seeding resulted in near confluence at 7 days on some DC µCs (A-F). The cells 

proliferated on the surfaces/edges of the DC µCs, as seen by positive nuclei staining with 

H&E along the borders of the sectioned µCs (I). 
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over some µC surfaces after just 7 days. As expected, the cells did not infiltrate into the 

interiors of the DC µCs over the 7-day culture period and proliferated primarily on the 

surface/edges of the decellularized microcarriers (Figure 3 B). Consequently, human 

chondrocytes were seeded at an intermediate density of 1x104 cells/cm2 for subsequent 

studies since ATDC5 cells proliferate faster than chondrocytes but the lower density of 

5x103 had less consistent seeding [189].  

3.3.4 Human Chondrocyte Expansion 

Primary chondrocytes proliferated on all surfaces (DC µCs, CG µCs, and TCPS) 

over the 14-day culture period and maintained a high viability as determined by live/dead 

confocal imaging (Figure 4 A-D). Chondrocytes exhibited increased attachment to the DC 

microcarriers than the CG microcarriers or TCPS based on Day 1 DNA content (Figure 4 

C). Cell proliferation on all three of the surfaces led to progressive increases at day 7 and 

day 14. Both DC and CG microcarrier groups yielded higher expansion than plated groups 

on days 7 and 14 and CG carriers had significantly more DNA than DC carriers at Day 14 

(Figure 4 C). Positive safranin O staining of human chondrocytes on the surface of the DC 

µCs at 14 days indicated glycosaminoglycan presence (Figure 5 A, indicated by black 

arrow). CG chondrocyte constructs maintained high levels of collagen I over the culture 

and DC µCs had small amounts of collagen I localized to the lacunae and carrier surface. 

Chondrocytes cultured on CG carriers expressed little to no collagen II at any of the 

observed time points while DC carriers maintained collagen II similar to native cartilage 

(Figure 5 B). 
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Figure 4. Primary human chondrocytes attach to and proliferate on ECM 

microcarriers over 14 days. Primary human chondrocytes (A) isolated from the femurs 

(B) of diabetic patients were plated or seeded on gelatin Cultispher-G Microcarriers (CG 

µCs) or decellularized cartilage microcarriers (DC µCs) at 1x104 cells/cm2. Chondrocytes 

attached to DC µCs better than either of the other surfaces based on DNA content with 

PicoGreen® Assay after overnight seeding (C). Chondrocytes proliferated faster in 

suspension µC culture than plated culture, and fastest on the CG µCs over 14 days (C). 

Results are graphed as mean±SD and statistical significance was determined with 2-way 

ANOVA with post-hoc Tukey correction ($ vs Day 1 with same substrate, # vs day 7 same 

substrate, @ vs plated at same time point, & vs CG µCs at same time point) (C). Confocal 

imaging results after Live/Dead staining indicate cells maintain high viability while 

proliferating over all three surfaces (D).  
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Figure 5. DC µCs support chondrocyte GAG retention and retain collagen type II 

structure. Primary human chondrocytes expanded on DC µCs stained positively for 

glycosaminoglycans with Safranin O staining up to 14 days, as indicated by the black arrow 

(A). Immunofluorescent staining of collagens type I and II indicate CG µCs had little to no 

collagen type II over the 14 days of culture and retained their collagen I while DC µCs 

retained their collagen type II structure over 14 days similar to native cartilage (B). 

3.3.5 Gene Expression Analysis 

 Chondrogenic gene expression increased on both mirocarriers in comparison to 

plated monolayers. More specifically, chondrogenic transcription factor, SOX9, expression 

was higher in chondrocytes on the DC carriers at day 1 and increased on the CG carriers at 

day 7. SOX9 decreased on all surfaces at day 14, although DC carriers had higher SOX9 

than plated chondrocytes (Figure 6 A). Aggrecan expression increased at day 7 for 

chondrocytes on all three surfaces, but was greater on the DC µCs at days 7 and 14 (Figure 
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6 B). Cartilage oligomeric matrix protein (COMP) increased on both microcarriers at 7 

days, but was highest in the CG-cultured chondrocytes at day 7 (Figure 6 C). Collagen I 

expression increased on day 7 for the plated and CG µC chondrocytes, but was not 

significantly different from day 1 on day 7 for DC µC chondrocytes and was not 

statistically different on day 14 on any of the surfaces (Figure 6 D). Collagen II expression 

increased on all surfaces at day 7 in comparison to day 1, and to a higher extent for both 

microcarrier groups (Figure 6 E). Col II expression decreased on both carriers on day 14 

compared to day 7 (Figure 6 E). The ratio of collagen type II to type I was higher on both 

carriers at day 1 than the plated carriers but decreased on all surfaces at days 7 and 14 

(Figure 6 F).  Osteoblastic transcription factor, runt-related transcription factor 2, Runx2, 

increased on all surfaces at day 14 compared to day 1, but also increased on the CG carriers 

on day 7 (Figure 6 G). Bone sialoprotein, or osteopontin, expression increased for 

chondrocytes cultured on both carriers in comparison to plated chondrocytes, but decreased 

on days 7 and 14 (Figure 6 H). Collagen X expression decreased on all surfaces on days 7 

and 14 in comparison to day 1 (Figure 6 I). Fibromodulin expression increased on both 

carriers at day 7 (Figure 6 J). DC µC culture resulted in increased MMP-13 expression in 

comparison to plated and CG cultured chondrocytes (Figure 6 K). Insulin-like growth 

factor 1 expression increased on day 14 in comparison to days 1 and 7 for all groups Figure 

6 L).  

Principal component analysis (PCA) of the gene expression data resulted in 

clustering of fresh day 0 chondrocytes (yellow marker) with all day 1 samples (light pink, 

green, and blue markers) and day 7 chondrocytes (green marker) were clustered very   
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Figure 6. qRT-PCR gene expression of plated chondrocytes in comparison to CG and 

DC µC culture. PCR of chondrocytes using Fluidigm Biomark System with TaqMan® 

Primers for SRY (sex determining region Y)-box 9 (Sox9), aggrecan (Acan), cartilage 

oligomeric matrix protein (Comp), type-I and type-II collagen alpha 1 (Col1, Col2), the 

ratio of Col2/Col1, runt-related transcription factor 2 (Runx2), osteopontin (Opn/Spp1), 

type-X collagen (Col10), fibromodulin (Fmod), matrix metallopeptidase 13 (MMP-13), 

and insulin-like growth factor 1 (Igf-1). All genes are presented as 2-ΔΔC
T with 

housekeeping gene Rps18 and normalized to day 0 chondrocytes (relative expression=1). 

Data is graphed as mean±SD. 2-way ANOVA with Tukey correction ($ vs Day 1 same 

substrate, # vs day 7 same substrate, @ vs plated at same time, & vs CG µCs at same time). 
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closely along principal component 1, which accounted for 95% of the sample variability 

(Figure 7). All other day 7 samples clustered closer to the day 14 samples on the other end 

of PC1, apart from one day 14 DC µC sample (forest green marker, Figure 7). PC2 

captured variability between day 7 plated cultures from days 1 and 14, but did not 

distinguish differences in de-differentiation and captured less than 5% of the variability 

(Figure 7).

 

Figure 7. Day 7 DC µCs expanded chondrocytes cluster near day 0 and day 1 

chondrocytes based on principal component analysis of gene expression data. The first 

through third principal components from a principal component analysis of PCR gene 

expression data from all 12 genes of interest were compared for chondrocytes cultured on 

all three substrates. Principal component 1 (PC1) captured 94.8% of the variability while 

components 2 and 3 captured only 4.9% and .2% respectively. All day 1 samples clustered 

with day 0 chondrocytes (bright yellow marker) on all three PCs. All day 14 samples 

clustered together along PC1 along with day 7 plated samples and most day 7 CG µC 
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samples. Day 7 DC µC samples clustered with day 0 and 1 samples along PC1, but all but 

one of the day 14 DC µC samples clustered with the other de-differentiated day 14 samples. 

 

3.4 Discussion 

In this study, the ability of decellularized cartilage microcarriers to support 

chondrocyte expansion ex vivo was investigated. Cartilage microcarriers were effectively 

decellularized, retaining <2% of their original DNA content while retaining endogenous 

collagen II. Microcarrier culture enhanced chondrocyte proliferation over 14 days in 

comparison to traditional plated culture and DC µCs supported greater chondrocyte 

attachment. Microcarrier culture enhanced expression of chondrogenic genes, such as 

Sox9, aggrecan, collagen type II, and increased fibromodulin and MMP-13. Collagen I, 

runx2, and Igf-1 increased over time for all chondrocyte cultures, while collagen type X, 

osteopontin, and the ratio of collagen II to collagen I decreased. DC µC culture enhanced 

aggrecan and MMP-13 expression and reduced collagen I after 7 days in comparison to 

CG µCs. Moreover, PCA of gene expression results clustered day 7 DC µCs chondrocyte 

expression with that of day 0 chondrocytes while CG µCs and plated cultures at day 7 were 

more similar to other dedifferentiated day 14 samples. Overall, this study illustrates that 

decellularized cartilage microparticles retain native extracellular matrix molecules and 

support chondrocyte expansion with less de-differentiation for up to 7-days ex vivo.  

 Conventional chondrocyte expansion protocols for ACI typically involve culture 

on tissue-culture polystyrene and enzymatic harvest of the cells before implantation or 

seeding onto a biomaterial scaffold, such as collagen I/III [179], chondroitin-sulfate 

Panagopoulos, 2012 #395}, hyaluronic acid [181], PLA/PGA/PDO [182], or an agarose-
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alginate hydrogel [183]. While the use of implantable scaffolds reduces the number of cells 

required to fill the defect site, potentially reducing donor site morbidity and expansion time 

and costs, the inability of chondrocytes to proliferate in these scaffolds necessitates prior 

expansion. The lack of a scaffold that accurately mimics the cartilage microenvironment 

may also limit therapeutic efficacy, since type-I collagen is present in scar tissue and 

fibrocartilage and is associated with a dedifferentiated chondrogenic phenotype.  

 Previous studies have focused separately on the expansion of chondrocytes on 

either microcarriers or decellularized tissue, but both have their drawbacks. Current 

microcarrier platforms do not provide the same biochemical milieu of native cartilage 

ECM, and decellularized cartilage sheets failed when implanted in vivo due to their limited 

integration with chondral defects and low cellularity [107, 109, 191, 192]. By combining 

microcarrier expansion and decellularized cartilage tissue in this study, we created a novel 

microcarrier platform that promoted chondrogenic expansion and could serve as a delivery 

vehicle for cartilage cell-based therapies to treat chondral defects.   

 Type II collagen (col 2) is one of the most prominent collagens in cartilage ECM, 

making up 90 - 95% of the collagen in the ECM and providing major structural support in 

combination with proteoglycans [193]. Immunofluorescent staining of col2 revealed 

retention of the collagen II in DC µCs when compared to native cartilage, but a lack of col2 

in CG µC cultures (Figure 5 B). Col2 expression in human chondrocytes increased at day 

7 for all culture substrates and retained levels similar to freshly isolated chondrocytes over 

the 14 days of culture on the DC µCs (Figure 6 E). Col1, which is associated with a more 

de-differentiated phenotype of fibrocartilage, increased in the plated and CG µC groups at 
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days 7 and 14, but was less in DC µC groups after 7 days and not different than day 1 

expression (Figure 6 D).   

 Proteoglycans account for 10-15% of articular cartilage in wet weight and the most 

prevalent in cartilage is aggrecan [193]. DC µC culture promoted similar aggrecan 

expression to that of freshly isolated chondrocytes and was further increased at day 7. The 

chondrogenic transcription factor, Sox9, was increased on DC µCs at day 1 in comparison 

to CG µC culture, and was increased in CG µC groups in comparison to plated 

chondrocytes on day 7. Cartilage oligomeric matrix protein increased for CG µCs 

compared to plated groups at day 7, but not DC µCs.  

 While dedifferentiation is commonly thought to be reflected by the relative changes 

of collagen types II and I, dedifferentiation can also involve changes in the expression of 

chondrogenic and osteogenic factors, along with ECM components and matrix 

metalloproteinase. Many previous studies lack freshly isolated chondrocyte controls and 

compare changes in gene expression over passages 2 through 4, after which point 

dedifferentiation may already be critical. Our study demonstrates that significant changes 

occur over the first passage, and that changes are dependent on the culture surface and 

duration. For example, some osteogenic factors increased (ie. Runx2) over the culture 

duration while others decreased (Opn and Col10) over the 14-day culture period.  

 The complex nature of these phenotypic changes lends itself well to principal 

component analysis where the differences between day 0 chondrocytes and plated day 14 

chondrocytes are easily distinguishable. Day 7 DC µC cultured chondrocytes clustered 

with all day 0 and day 1 groups while the plated day 7 samples clustered with all other day 
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14 samples on principal component 1, which accounted for 94.8% of the sample variance. 

Day 7 CG µC cultured chondrocytes had more variability on PC1, but most of the samples 

clustered with other de-differentiated day 14 samples. Our findings suggest that principal 

component analysis may provide a more thorough understanding of phenotypic changes 

that occur during dedifferentiation.  

3.5 Conclusions 

 This study demonstrates that decellularized cartilage microcarriers can be 

efficiently fabricated with nearly complete DNA removal while retaining their native 

collagen II structure, and that they can be used to expand human chondrocytes ex vivo to 

aid in retention of a chondrogenic phenotype. Decellularized cartilage microcarriers offer 

a versatile expansion platform for chondrocytes, as microcarrier constructs can be directly 

implanted into a tissue defect site, providing a physiologically relevant extracellular matrix 

while requiring fewer cells and eliminating the need for expansion on polystyrene and 

subsequent enzymatic cell harvesting. Consequently, decellularized cartilage microcarriers 

may be useful for direct in vivo tissue regeneration therapies such as MACI.   
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CHAPTER 4. CHARACTERIZING THE EFFECT OF CULTURE 

PARAMETERS ON MSC IMMUNOMODULATION OF OA 

4.1 Introduction 

Originally thought to be a disease specific to cartilage degeneration, osteoarthritis 

is now considered an inflammatory disease of the entire joint and multiple inflammatory 

mediators have been shown to play a pivotal role in the initiation and persistence of 

osteoarthritis (OA). In fact, synovial inflammation precedes detectable structural changes 

and is an indicator of future medial cartilage loss [19-22]. Healthy synovium is normally 

two to three layers thick and lacks inflammatory cells, but the onset of inflammation is 

marked with hyperplasia of the lining cells and infiltration of macrophages, T and B cells 

[23], mast cells [24], and natural killer cells [25]. OA chondrocytes express an array of 

cytokines, chemokines, alarmins, damage-associated molecular pattern molecules, and 

adipokines that act as paracrine factors and initiate cartilage degradation locally, but also 

reach the synovium to increase cytokine production by synovial macrophages and 

fibroblasts, which promote inflammation and further enhance cartilage damage [18].  

Although non-steroidal anti-inflammatory drugs (NSAIDs) are often administered 

for pain management in OA, they inhibit proteoglycan secretion and are not disease 

modifying or recommended for cartilage cell therapies [53]. Inflammation is a complex 

biological process involving many molecules and signaling pathways, thus current drug 

treatment regimens for immune diseases targeting a single molecule or pathway are often 

ineffective and insufficient to suppress the chronic inflammation involved in osteoarthritis 
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due to inherent compensatory pro-inflammatory pathways, causing patient success to vary 

greatly [54]. The inherent immunomodulatory capabilities of mesenchymal stem cells 

(MSCs) offer a potent alternative to conventional drug treatment regimens due to their 

ability to regulate multiple signaling pathways and cell types of innate and adaptive 

immunity.  

MSC immunomodulation is highly regulated by the inflammatory state of their 

microenvironment, and inflammatory cytokines tumor necrosis factor alpha (TNF-α) and 

interleukin 1 beta (IL-1β) (both of which are upregulated in OA) have also been shown to 

activate MSC expression of immunomodulatory factors such as PGE2, IDO, and HGF 

[133-135]. MSC-secreted immunomodulatory paracrine factors can affect multiple cell 

types, inhibit inflammatory cytokine secretion, promote anti-inflammatory M2 

macrophages and tolerogenic dendritic cell phenotypes [122-124], regulate antigen 

presentation [125, 126], and modulate the balance of B and T cell phenotypes and  

proliferation [127-129] [130-132].  

Interestingly, 3D aggregation of MSCs also enhances immunomodulatory 

paracrine factor secretion, including VEGF, FGF-2, HGF, EGF, SDF-1, BMP2, TSG-6, 

PGE-2, and angiogenin in comparison to monolayer culture [149-154]. The McDevitt lab 

has previously developed a 3-D MSC spheroid culture platform that both enhances the 

immunomodulatory factor secretion and the suppression of macrophage TNFα production 

compared to adherent MSC monolayers [155].  

Consistent positive patient responses in clinical trials involving MSC therapies 

have not been clearly demonstrated and has largely been attributed to inconsistent number 
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of MSCs at the sites of inflammation [194, 195]. Spheroid delivery of MSCs improves cell 

retention and survival, yielding better engraftment and treatment in cardiac and skeletal 

muscle models, colitis models, as well as bone defects [139, 145-148]. Additionally, 

discrepancies in processing, culture conditions, passage number, and donor characteristics 

have all contributed to variability in transplanted cell populations for clinical studies [196].  

While the exact mechanisms of the environmental regulation of MSC immunomodulation 

are not yet fully understood, it is clear that biochemical and physical culture parameters 

play important roles.  Understanding the specific effects of culture conditions regulating 

MSC immunomodulatory activity may provide new insights into components of the 

microenvironment that can be modulated to enhance success of MSC-based therapies for 

OA. 

Therefore, the objective of this study was to determine the roles of MSC culture 

condition and format on MSC paracrine activity and modulation of OA both in vitro and 

in vivo. Human MSCs from multiple donors and sources were cultured as adherent 

monolayers (single cells) or 3D aggregates (spheroids) under rotary and static culture and 

the effect of culture format and media composition on MSC secretome was analyzed. The 

ability of MSCs to modulate the inflammatory microenvironment of activated synoviocytes 

was characterized in vitro. Furthermore, the effect of MSC culture format on MSC 

retention and modulation of OA progression was evaluated in a rat medial meniscal 

transection model of OA. The results of this study demonstrate that culture format and 

conditions modulate MSC paracrine secretion and immunomodulation in a dose dependent, 

and donor dependent manner and provide a translatable approach to pre-condition MSCs 

to enhance their modulation of OA-associated inflammation. 
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4.2 Materials and Methods 

4.2.1 Cell Culture and Expansion  

Human bone marrow-derived MSCs were obtained from the Texas A&M College 

of Medicine Institute for Regenerative Medicine and expanded according to established 

protocols [197]. Approximately 1x106 cryopreserved MSCs were seeded onto a 15-cm 

tissue culture dish in 20 mL MSC growth medium (MSCGM, Minimal Essential Medium 

Alpha (MEMα, VWR, Radnor, PA) supplemented with 16.5% fetal bovine serum (FBS, 

Atlanta Biologicals, Atlanta, GA), 2mM L-glutamine (Corning cellgro, Manassas, VA), 

100 U/mL penicillin, 100 μg/mL streptomycin, .25 μg/mL amphotericin (Corning cellgro)). 

After overnight incubation, adherent MSCs were washed with phosphate-buffered saline 

(PBS, Invitrogen, Carlsbad, CA) and detached from the plate using 0.25% trypsin and 1 

mM EDTA in Hanks' Balanced Salt Solution (Corning cellgro). Dissociated cells were 

counted using a hemocytometer and plated onto 15-cm tissue culture dishes at a density of 

60 cells/cm2 in 20 mL MSCGM per dish. Media was completely exchanged every 3 days 

until cells reached approximately 70% confluence. Cells were trypsinized, counted, and 

either re-plated for monolayer expansion cultures or used for experiments at passage 4. 

MSCs from Texas A&M College of Medicine Institute for Regenerative Medicine were 

used for evaluation of MSC injectability and the pilot MMT animal model described below.  

Human bone marrow-derived MSCs from three male donors were also obtained 

from RoosterBio Inc. (Frederick, MD) and expanded according to the manufacturer’s 

protocols. Briefly, 107 cryopreserved MSCs were plated in twelve T225 flasks in 45 mL of 

RoosterBio High Performance Media and incubated at 37°C for 7 days in a humidified 5% 
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CO2 incubator. Media was exchanged after 4 days of culture. Cultures were passaged at 

80% confluency by washing with 10 mL PBS followed by incubation with 10 mL of 0.25% 

trypsin at 37ºC. An equal volume of RoosterBio High Performance Media was added to 

quench trypsin activity. Dissociated cells were then collected and centrifuged at 200xg. 

Cells were all frozen to similar passage doubling levels as recommended by the 

manufacturer (PDL 13±1.5). Cells were frozen in CryoStor CS5 cell cryopreservation 

media (STEMCELL Technologies, Vancouver, BC, Canada) prior to expansion for 

experiments. MSCs were expanded for one passages from frozen stocks by plating 1x106 

cells in 45mL MSCGM in T-175 tissue culture treated flasks. Media was exchanged every 

three days and cells were passaged at 80% confluency. MSCs from RoosterBio Inc. were 

used in immunomodulatory factor quantification, co-culture and transwell studies, and 

animal experiments described below. MSC phenotype up to PDL 18 in each donor was 

verified by flow cytometry for MSC markers CD90, CD73, and CD105 and compared to 

negative and isotype controls.  

4.2.2 Spheroid Formation and Culture  

Forced-aggregation of single cell suspensions of MSCs was used to generate MSC 

spheroids. Spheroids were formed overnight in 400 μm agarose microwells for a high 

throughput method of generating homogenous cell aggregates [198]. Briefly, 600,000 

MSCs pooled from three donors at similar population doubling levels (±1.5 PDL) were 

added to 24-well microwell inserts containing approximately 1,200 wells and centrifuged 

at 200xg for 5 min to force aggregation of spheroids with approximately 500 cells per 

aggregate. After 18h in the microwells, spheroids were removed and transferred to 

suspension culture in 100 mm bacteriological grade Petri dishes at 600,000 cells per plate. 
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Spheroids were cultured in suspension on a rotary orbital shaker for up to 4 days at 65 

RPM. Additionally, adherent MSC controls from the same donors and PDL were plated in 

24-well tissue culture treated polystyrene plates at a density of ~1300 cells/cm2. MSC 

spheroids and adherent controls were cultured in MSCGM. After 4 days of culture, MSCs 

and conditioned media were collected for cell counting (Countess II Automated Cell 

Counter, Thermo Fisher Scientific, Waltham, MA), immunomodulatory factor 

quantification, viability assays, and treatment in a rat model of OA.  

4.2.3 Assessing the Effect of Confluence & Rotary Culture on hMSC Secretome 

hMSCs from the same three RoosterBio donors described previously were pooled 

to compare the effect of rotary culture on monolayer hMSCs and compared to spheroid 

culture at the previous “normal” density of 1,300 cells/cm2 in 24-well plates. Additionally, 

because hMSCs in spheroid culture are inhibited by the contact of surrounding cells, 

monolayer single cells were also plated at ten times higher seeding density (13,000 

cells/cm2) in order to reach confluence in the first 24-36 hours of culture (Figure 13). 

Spheroids cultured on the rotary orbital shaker as described previously were used as 

controls for comparison.   

4.2.4 Influence of Media Composition on MSC Proliferation and Secretome  

Media comparisons of MSC secretome as single cells and spheroids were 

performed in MSCGM described previously and a defined, xeno-free serum-free culture 

medium, MSC NutriStem® XF medium with PLTMax ® human platelet lysate (Biological 

Industries, Cromwell, CT). For comparison of expansion, hMSCs from one RoosterBio 

donor (Lot 00141) were seeded at 2,222 cells/cm2 in T-75 flasks in 15mL of MSCGM 
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containing FBS or PLTMax containing human platelet lysate (PL). Media was replenished 

after 4 days of culture and cells were harvested at day 5. Conditioned media was collected 

and frozen as described previously and cells were trypsinized in .05% Trypsin-EDTA and 

cell count and size were quantified. hMSC secretome was then compared in single cells 

and spheroid culture following that expansion. Conditioned media was collected as 

described previously after 4 days of culture of single cells (plated at the normal density of 

1,300 cells/cm2 under static conditions) and spheroids.  

4.2.5 Cell Number and Immunomodulatory Factor Quantification  

MSCs cultured as monolayers or spheroids were cultured for 4 days in MSCGM 

and evaluated for total cell number and immunomodulatory factor secretion. The number 

of starting cells, final population, and cell size were quantified for each culture condition 

using Countess II Automated Cell Counter (Thermo Fisher) according to the 

manufacturer's protocol. Collected spheroids were trypsinized (0.25% trypsin, Corning) for 

5 minutes at 37°C and gently triturated with a 27G needle to form a single cell suspension 

to determine cell count for each sample. Conditioned media was collected and 

inflammatory cytokines were quantified using MILLIPLEX MAP Human 

Cytokine/Chemokine Magnetic Bead Panel – Immunology Multiplex Assay (EMD 

Millipore). Conditioned media was diluted 1:4 in MSCGM as our optimization has shown 

that this concentration is in the center of a linear range of signal vs cytokine concentration. 

Samples were then analyzed according to the kit protocol and normalized to the standard 

provided with the kit after subtracting background of MSCGM media alone. Only 

cytokines that had over 50% of samples in the detectable limit were reported. All samples 

were read out on a MAGPIX instrument (Luminex).  
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4.2.6 Synoviocyte Culture and Expansion 

Because the synovium is a major site of gross and microscopic changes that occur 

early in disease progression, an in vitro model of activated synoviocytes was used to model 

OA-associated inflammation [26]. Human fibroblast-like synoviocytes from three separate 

donors were purchased and cultured to passage 3 in proprietary Synoviocyte Growth Media 

(SGM) according to manufacturer’s instructions (Cell Applications, Inc, San Diego, CA). 

After expansion, synoviocytes were frozen in CryoStor® CS5 freezing media prior to 

experiments. After overnight recovery in SGM, synoviocytes were trypsinized, counted, 

and pooled from all three donors in equal amounts and seeded in a 96-well plate in SGM 

at 2500 cells/well (~8,300 cells/cm2). After 24 hours in SGM, synoviocytes were activated 

for 24 hours in one of the following medium.  

4.2.7 Synoviocyte Activation 

Multiple activation protocols were initially compared based on variation in prior 

literature. Activation was performed in either SGM or MSCGM in preparation for co-

culture studies with MSCs. Lipopolysaccharide (LPS)-induced synoviocyte activation was 

compared at a low, medium, and high dose of .1, 1, and 50 µg/mL in accordance with 

variances reported in prior synoviocyte studies [197-200]. Synoviocyte activation with 

human interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α) was also compared at 

.05, .5, and 5 ng/mL. SGM or MSCGM without cytokines was added to control unactivated 

wells for comparison. Activation medium was removed and fresh SGM or MSCGM was 

added after 24 hours. After four days, medium and cells were collected to quantify 

synoviocyte proliferation and inflammatory cytokine secretion via MILLIPLEX MAP 
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Human Cytokine/Chemokine Magnetic Bead Panel – Immunology Multiplex Assay (EMD 

Millipore).  

4.2.8 Synoviocyte and MSC Dosing Study 

To compare suppression of synoviocyte activation by adherent and spheroid MSCs, 

varying ratios of MSCs to synoviocytes were compared. Human fibroblast-like 

synoviocytes were plated in SGM overnight, activated in 5 ng/mL IL-1β and TNF-α in 

MSCGM for 24 hours as described previously. After 24 hours, activation media was 

removed and MSCs from individual RoosterBio donors or pooled from 3 donors as single 

cells or spheroids were added directly to the 96-well plate (co-culture) or separated with a 

5.0µm-pore-size transwell insert (Corning®, Corning, NY, USA) at ratios of 1:3, 1:9, or 

1:27 synoviocytes to MSCs. Conditioned media collected from monolayer single cells or 

spheroids cultures after 4 days and was compared to direct co-culture and transwell 

cultures. Single cells and spheroid MSCs alone were also cultured at the same densities to 

serve as controls for comparison for secretome analyses. Media was removed and 

immediately frozen after 4 days of culture and cells were collected for cell counting as 

described previously.  

4.2.9 MSC Spheroid Viability and Injectability  

An in vitro experiment was performed to test the effects of incubation time and 

injection through a syringe needle on cell morphology and viability. Human MSCs (Texas 

A&M) from two donors were first characterized and expanded to P3 and then frozen until 

use. After thawing, MSCs from both donors were plated overnight (recovery) and then 

pooled together before expanding for seven to ten days. To produce spheroids, hMSCs 
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were added to 24-well micro-well inserts, centrifuged to form aggregates (500 

cells/spheroid), and incubated overnight. The following morning, hMSCs (single cells or 

spheroids) were loaded into 1mL syringes in MEMα (Lonza) at a density of 1x106 

cells/50µL (the amount delivered per animal) with 150µL/syringe and incubated for up to 

4 hours at 4⁰C to simulate the time required to perform subsequent intra-articular injections 

of all animals if groups were randomized. MSCs were then injected through a 27 gauge 

needle into glass bottom plates and viability and morphology were evaluated using 

Live/Dead® viability assay (calcien-AM/Ethidium Homodimer-1 (EtD-1)) (n=3). 

4.2.10 MMT Animal Model and BLI Tracking 

A preliminary pilot study was performed to compare intra-articular injection of 

MSCs as single cells or as spheroids in the rat MMT model of OA. Human MSCs (Texas 

A & M) were pooled from two donors and lentivirally labeled for GFP/luciferase 

expression and then expanded for approximately 10 days before the MMT surgery. The 

Georgia Tech IACUC approved all animal studies (Protocol #A15019). Weight matched 

Lewis rats (275-300g) were acclimated for one week and then underwent sham or MMT 

in the left leg (n=3). Briefly, the animals were anesthetized with isoflurane, and the skin 

over the medial aspect of the left femoro-tibial joint was shaved and aseptically prepared. 

The medial collateral ligament (MCL) was exposed by blunt dissection and transected to 

reflect the meniscus toward the femur. The joint space was visualized, and a full thickness 

cut was made through the meniscus at its narrowest point. The skin was closed with 4.0 

Vicryl sutures and then stapled using wound clips. hMSCs were intra-articularly injected 

24 hours after MMT surgery (Day 1) in 40 mg/mL luciferin in MEMα using a 27-gauge 

needle. Bioluminescence intensity (BLI) was conducted on each animal at 1, 3, 7, 14, and 
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21 days using an IVIS® spectrum in vivo imaging system to track the hMSCs. Rats were 

anesthetized using isofluorane and 50µL luciferin (40 mg/mL in MEMα) was injected 

intra-articularly. Animals were positioned with the anterior side facing up and scanned at 

5, 10, 15, and 20 minutes post-luciferin injection (auto-exposure; 1.5cm subject height). 

BLI images were evaluated by selecting an elliptical region of interest (ROI) over the knee 

of the animal's left leg using Living Image® Software Version 3.2 (Caliper Life Sciences). 

BLI counts were normalized first by exposure time and ROI area and then to the 

corresponding day 1 value for each sample. All animals were euthanized at 3 weeks with 

CO2.  

4.2.11 µ-CT Analysis 

Animals were sacrificed after 21 days and joints were dissected, formalin fixed for 

3 days, and then scanned using a Scanco µCT 40 at 45 kVp, 177µA, 200 ms integration 

time, and a voxel size of 16 µm following equilibration in 30% Hexabrix™ 320 contrast 

agent (Covidien, Hazelwood, MO) in PBS without calcium and magnesium at 38°C for 30 

minutes. The EPIC-µCT images were reconstructed sagittally and coronally, manually 

contoured, and analyzed at suitable thresholding levels to separate the cartilage from bone 

and background. Scanco evaluation software was used to calculate cartilage attenuation, 

volume, and thickness for the medial third of the medial plateau. To quantify cartilage 

fibrillation, scanned sections of the medial tibial plateaus were exported as TIFF files, and 

a MATLAB® (MathWorks, Natica, MA) program was used to measure the cartilage 

surface roughness defined as the root-mean-square of differences between the 

representative and polynomial fit surfaces of the cartilage [201]. Osteophyte volume was 

determined with the rotated coronal images by manually contouring the medial-proximal 
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edge of the medial tibial plateau using the Scanco evaluation software and thresholds were 

used to separate osteophyte bone from cartilage and background (Figure 15 E). For focal 

lesion analysis, lesions were defined as cartilage defects extending to the subchondral 

surface. The lesion areas were manually contoured to create appropriate VOIs and within 

the VOI the cartilage volume was subtracted from the total volume to give lesion volume 

(Figure 15 F). 

4.2.12 Histological Analysis 

Following µ-CT, tibias of both surgerized legs and contralateral controls were 

dehydrated and routinely processed, transected sagittally along the load-bearing plane, and 

paraffin-embedded via vacuum infiltration with both load-bearing faces exposed for 

sectioning (n=6). Sagittal sections were cut at 5 μm thickness in strips of 12 (representing 

a total thickness of 120 microns) with 4 sections mounted to each slide. Sections were 

stained for sGAGs with a 0.5% Safranin-O (Saf-O) solution and a 0.2% aqueous solution 

of FastGreen as a counter-stain. Sections representing the most damage were imaged for 

each sample at 4x magnification with a Zeis LSM microscope and Mosaix color brighfield 

tile imaging.  

4.2.13 Partial Least Squares Regression Modeling 

PLSR modeling was conducted in MATLAB using the partial least squares 

algorithm by Cleiton Nunes available on the Mathworks File Exchange. Bio-Plex cytokine 

sample data was pre-normalized to appropriate control media also incubated for 4 days as 

discussed above. All secretome data was z-scored for heatmap representation, and then 

directly inputted to the algorithm. For each PLSR analysis, an orthogonal rotation in the 
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LV1-LV2 plane was used to choose a new LV1 that better separated cell phenotype/Y-

variable. LV1 and LV2 scores were then output in MATLAB for statistical comparisons 

with multi-way ANOVAs in JMP Genomics Pro as previously described [202].  

4.2.14 Statistics 

All data are reported as mean ± standard deviation and were analyzed using multi-

way ANOVAs with Bonferroni Correction with α=0.05 in JMP Genomics Pro with SAS® 

analytics (SAS, Cary, NC). Otherwise, t-test and one-way ANOVAs with Bonferroni post-

hoc tests α=0.05 were performed using GraphPad Prism® (GraphPad Software, Inc. 7.03, 

La Jolla, CA) whenever appropriate.  

4.3 Results 

4.3.1 Spheroid Culture Enhances Immunomodulatory Cytokine Secretion 

To determine the impact of spheroid culture on the secretion of immunomodulatory 

factors, conditioned media was collected after four days of culture and analyzed from MSC 

pooled from 3 commercial donors (RoosterBio) using MILLIPLEX MAP Human 

Cytokine/Chemokine Magnetic Bead Panel – Immunology Multiplex Assay. When 

cultured as spheroids, MSCs secreted greater amounts of nearly all detectable cytokines in 

the array, with significant increases in G-CSF, Fractalkine, IFN-ɣ, IL-6, IL-7, GRO, MCP-

3, IL-8, IP-10, MCP-1, PDGF-AA, IL-1RA, MIP-1a, and VEGF (Figure 8).  
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Figure 8. Spheroid culture format enhances hMSCs immunomodulatory cytokine 

production. Human MSC were pooled from 3 commercial donors. After overnight 

formation, spheroids were cultured 4 days on rotary orbital shaker and media was collected 

and analyzed using a Milliplex® Human Cytokine/Chemokine Magnetic Bead Panel Kit 

and compared to static monolayer cultures. * α=0.05 vs monolayer single cells with 

Bonferroni Student’s t-test (n=5). Graphed as mean ± SD.   

4.3.2 Assessing Donor Variability 

Donor variability in hMSC secretome was assessed in three male donor lots from 

RoosterBio. In order to control for some changes in expansion rates between donors, rather 

than using cells from the same passage, cells were expanded to the same passage doubling 

level (±1.5). All donors maintained high purity over the culture up to PDL 18 as evidenced 

by >97% positive staining for CD73, 90, and 105 (Figure 9). Spheroids from all three  
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Figure 9. hMSCs maintain their phenotype up to passage doubling level (PDL) 18. 

hMSCs expanded from three male donor lots 37, 55, and 81 maintain their phenotype with 

greater than 97% positive for MSC markers CD73, CD90, CD105, and less than 4% 

positive in negative and isotype controls) up to PDL 18 ± 1). 

 

Figure 10. hMSCs from 3 donors (37, 55, & 81) maintain their morphology in both 

monolayer single cell and spheroid culture over 4 days.  
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donor lines maintained their morphology over the 4 days of culture at which time the 

conditioned media was collected and secretomes were compared for single cell and 

spheroid cultures (Figure 10). PLSDA analysis of z-scored secreted cytokines normalized 

to cell count exhibited separation between rotary and static culture on LV1 while LV2 

separated spheroid donors (Figure 11). Most cytokines were upregulated in spheroid rotary 

culture, but not in spheroids that plated down under static culture (Figure 12). Donor 

variability was more evident in spheroid culture format than monolayer single cells, 

although not significantly in different in LV2 scores (adjusted p-value of 0.053) (Figure 

12). Graphs of individual cytokine concentrations normalized to cell count show spheroid 

culture enhanced secretion of most quantified cytokines including IL-8, IL-7, IFN-ɣ, GRO, 

G-CSF, Fractalkine, VEGF, IP-10, IL-1a, MCP-3, PDGF-AA, and MCP-1. There were no 

significant differences between different donors cultured as single cells, but spheroid 

culture had significantly different donor variability in IL-8, GRO, IP-10, MCP-3, PDGF-

AA, and MCP-1. Spheroids pooled from all three donors cultured statically on tissue 

culture polystyrene behaved more similarly to pooled plated single cells and were only 

significantly different in MCP-1. Plated spheroids had reduced cytokines in comparison to 

the pooled spheroids cultured on rotary for multiple cytokines including IL-7, IL-8, IL-6, 

GRO, G-CSF, Fractalkine, MCP-3, and MCP-1. Altogether, rotary culture of MSC 

spheroids increases secretion of immunomodulatory cytokines in comparison to single 

cells and is dependent on rotary culture. Additionally, rotary spheroid culture amplifies 

differences due to donor source that were not evident in static single cell cultures.  
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Figure 11. hMSC secretome is increased in spheroid rotary culture, but not plated 

spheroids, and donor variability in secretome is more evident in spheroid culture than 

monolayer. hMSCs from 3 donors (lot #37, 55, and 81) were cultured or pooled (P) during 

monolayer or spheroid culture under rotary and static conditions. Conditioned media was 

collected after 4 days and immunomodulatory cytokines were quantified with using 

Milliplex® Human Cytokine/Chemokine Magnetic Bead Panel Kit. Heatmaps of the z-

scored data indicates relative cytokines levels (A). PLSDA analysis (B) of z-scored 

secreted cytokines exhibited separation of rotary and static culture on LV1 (C) while LV2 

varied among donors (D). LV signal plots detail which cytokines are weighted in the latent 

variables in the PLSDA separation (E&F). Significant differences between groups are 

based on multi-way ANOVA with Bonferroni correction and α=0.05. *vs SCs same donor; 

# vs 37, $ vs 55, @ vs 81 same culture format, and ^ vs P SPH.  
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Figure 12. Rotary spheroid culture enhances hMSC secretion of immunomodulatory 

factors not evident in static spheroid culture and donor variability is more evident in 

spheroid culture than single cells. Commercial hMSCs from RoosterBio from 3 male 

donors (lots 37, 55, and 81) were cultured separately or pooled (P) under static monolayer 

single cell (SC) culture or 3D aggregate (SPH) rotary culture or allowed to plate down 

under static culture (P Plated SPH). Conditioned media was collected after 4 days and 

immunomodulatory cytokines were quantified using Milliplex® Human Cytokine/ 

Chemokine Magnetic Bead Panel Kit. Most cytokines were upregulated in spheroid rotary 

culture, but not in plated spheroids and donor variability was more evident in spheroid 

culture format than monolayer single cells. Significant differences between groups are 

based on multi-way ANOVA with Bonferroni correction and α=0.05. *vs SCs same donor; 

# vs 37, $ vs 55, @ vs 81 same culture format, and ^ vs P SPH. 
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4.3.3 Effect of Confluence and Rotary Culture on MSC Secretome 

Since the enhancement of spheroid culture was dependent on rotary culture, an 

additional experiment was performed on hMSCs pooled from the same three donors to 

compare the effect of rotary culture on monolayer hMSCs cultured as single cells and 

compared to spheroid culture. Additionally, because hMSCs in spheroid culture are 

inhibited by the contact of surrounding cells, monolayer single cells were also plated at ten 

times higher seeding density (approximately 70% confluence) in order to reach confluence 

in the first 24 hours of culture (Figure 13). Conditioned media was collected from rotary 

and static cultures of single cells (normal density and 10x density) and spheroids after 4 

days. The single cells plated at 10x density were confluent by day 2 of culture and all single 

cell cultures had a much higher concentration of cells per mL of culture media and rotary 

culture had no effect on cell proliferation at the normal seeding density (Figure 13). PLSDA 

analysis of z-scored secreted cytokines exhibited separation of spheroid and single cell 

culture on LV1 while LV2 showed some separation of normal static culture from all other 

cultures of MSCs (Figure 14). Surprisingly, confluence in the 10x higher density groups 

did not increase the secretome of MSC single cells in comparison to normal density and 

there were no significant differences in any of the cytokines between single cells cultured 

in rotary or static or at higher densities (Figure 15). Rotary spheroid culture, on the other 

hand, continued to increase MSC secretion of multiple cytokines including IL-7, FGF-2, 

MCP-3, VEG-F, MCP-1, GRO, IL-8, IL-10, IFN-ɣ, MDC, G-CSF, PDGF-AA, 

Fractalkine, and IFN-α2 (Figure 15).  
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Figure 13. hMSC single cells plated at ten times higher cell density reach confluence 

between 24 and 36 hours. hMSC single cells were plated 10x higher cell density and 

culture statically or on a rotary orbital shaker for 4 days. Cell counts for single cells and 

spheroids were quantified after 4 days when conditioned media was collected and all single 

cells had a higher cell concentration per mL of conditioned media than spheroid culture.  
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Figure 14. Seeding density and rotary culture have little effect on hMSC single cell 

secretome in comparison to hMSC spheroid culture. hMSC single cells were plated 10x 

higher cell density (10x) and the normal density (N) and cultured statically (S) or on a 

rotary (R) orbital shaker for 4 days. Cytokines in the conditioned media were quantified 

with a Milliplex® Human Cytokine/Chemokine Magnetic Bead Panel Kit. Heatmaps of 

the z-scored data indicates relative cytokines levels (A). PLSDA analysis (B) of z-scored 

secreted cytokines exhibited separation of spheroid and single cell culture on LV1 (C) 

while LV2 showed some separation of normal static culture from all other cultures (D).  

LV signal plots detail which cytokines are weighted in the latent variables in the PLSDA 

separation (E&F). Significant differences between groups are based on multi-way ANOVA 

with Bonferroni and α=0.05. *vs SC S N. # vs SC S 10x, $ vs SC R N, % vs SC R 10x.  
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Figure 15. Seeding density and rotary culture have little effect on hMSC single cell 

secretome in comparison to hMSC spheroid culture. hMSC single cells were plated 10x 

higher cell density (10x) and the normal density (N) and cultured statically (S) or on a 

rotary (R) orbital shaker for 4 days. Cytokines in the conditioned media were quantified 

with a Milliplex® Human Cytokine/Chemokine Magnetic Bead Panel Kit. Only spheroid 

culture enhanced MSC secretion of immunomodulatory factors. Significant differences 

between groups are based on multi-way ANOVA with Bonferroni correction and α=0.05. 

*vs SC S N. # vs SC S 10x, $ vs SC R N, % vs SC R 10x. 
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4.3.4 Quantifying the Effect of Culture Media on MSC Proliferation and Secretion 

Multiple culture medias and formulations are commonly used for hMSC culture, 

but the most recent culture methodologies often utilize defined, xeno-free medias in 

preparation for transplantation. Therefore, we compared the more traditional MSC growth 

media containing FBS (MSCGM) to a commercially available xeno-free media containing 

human platelet lysate (PLTmax). After 5 days of expansion at the same seeding density, 

cells cultured in the PL containing media were smaller in size and expanded faster 

compared to MSCGM containing FBS (Figure 16).   

After expansion in each media type, MSCs were harvested and either replated as 

single cells or used to form spheroids as described previously. The single cells and 

spheroids were both formed and cultured in the two medias to assess the effect of media 

composition on MSC secretome. PLSDA analysis of z-scored secreted cytokines exhibited 

separation of media types on LV1 while LV2 showed separation of single cells and 

spheroids (Figure 17). There were no significant differences between media types in single 

cell cultures, but spheroid culture was significantly different between the media types in 

LV1 scores (Figure 17). Spheroid culture in FBS increased GRO, VEG-F, MDC, IL-8, Flt-

3L, IL-6, and Fractalkine but not in spheroids cultures in PL media (Figure 18). Spheroid 

culture in PL media significantly increased IL-4 compared to all other culture groups 

(Figure 18). Altogether, spheroid culture in FBS containing media enhances secretion of 

most quantified immunomodulatory cytokines and variations due to media composition are 

more evident in spheroid format.  
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Figure 16. hMSCs proliferate faster and are smaller in size in platelet lysate 

containing PLTmax media compared to MSC growth media containing FBS.  hMSCs 

were expanded in FBS containing MSCGM (A) or a defined, xeno-free media containing 

human platelet lysate (B). After 5 days of expansion at the same seeding density, cells 

cultured in the PL containing media were smaller in size (B vs D) and expanded faster (E) 

compared to MSCGM containing FBS.   
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Figure 17. Spheroid culture enhances the effect media composition has on MSC 

secretome. hMSCs were expanded in FBS containing MSCGM or PL containing xeno-

free media, passaged, and then cultured as single cells (A & B) or spheroids (C & D) for 4 

days. Cytokines in the conditioned media were quantified with a Milliplex® Human 

Cytokine/Chemokine Magnetic Bead Panel Kit. Heatmaps of the z-scored data indicates 

relative cytokines levels (E). PLSDA analysis (F) of z-scored secreted cytokines exhibited 

separation of media types on LV1 (G) while LV2 showed separation of single cells and 

spheroids (H).  LV signal plots detail which cytokines are weighted in the latent variables 

in the PLSDA separation (E&F). There were no significant differences in media type in 

single cell culture, but differences in media were significant between spheroid cultures for 

LV1 scores. Significant differences between groups are based on multi-way ANOVA with 

Bonferroni and α=0.05. *vs FBS SC, # vs PL SC, & @ vs FBS SPH.  
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Figure 18. The effect of media composition on MSC secretome is more pronounced in 

spheroid cultures and FBS cultured MSC spheroids have increased 

immunomodulatory secretion in comparison to PL cultured spheroids except for IL-

4. hMSCs were expanded in FBS containing MSCGM or PL containing xeno-free media, 

passaged, and then cultured as single cells (A & B) or spheroids (C & D) for 4 days. 

Cytokines in the conditioned media were quantified with a Milliplex® Human 

Cytokine/Chemokine Magnetic Bead Panel Kit. There were no significant differences in 

media type in single cell culture, but differences in media were significant between 

spheroid cultures. FBS media had higher concentrations for all detectable cytokines except 

for IL-4 which was significantly higher in PL spheroid cultures. Significant differences 

between groups are based on multi-way ANOVA with Bonferroni and α=0.05. *vs FBS 

SC, # vs PL SC, & @ vs FBS SPH.  

4.3.5 Validation of In Vitro Model of OA with Activated Synoviocytes  

Multiple groups have tested potential OA therapies in vitro using activated 

synoviocytes, but culture methodologies, techniques, and parameters for synoviocyte 

activation vary widely among groups [197-200]. In order to validate an in vitro model for 

OA-associated inflammation, changes in the inflammatory milieu secreted by activated  
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Figure 19. Comparison of Synoviocyte Activation Protocols for In Vitro Model of OA. 

Human synoviocytes cultured in synoviocyte growth medium (SGM) or MSC growth 

medium (MSCGM) were activated with a low, medium, and high dose of LPS (.1, 1, and 

50 µg/mL) or a combination of cytokines TNF-α and IL-1β (.05, .5, and 5 ng/mL). 24 hours 

after activation, media was changed to fresh MSCGM and conditioned media from the 

activated synoviocytes was characterized after 4 days using Milliplex® Human 

Cytokine/Chemokine Magnetic Bead Panel Kit. PLSDA analysis of z-scored secreted 

cytokines was used to visualize separation between doses and unactivated cytokines (A-

D). Heatmaps of the z-scored data also indicate which cytokines exhibited a dose-

dependent response to activation (E-H) and LV signal plots detail which latent variables 

(cytokines) are involved in the PLSDA separation (I-P). Cytokine activation in MSCGM 

(D) exhibited the clearest separation between unactivated and activated synoviocytes in 

LV1 with clear dose-dependent responses to activations in LV2. 
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synoviocytes was compared in both a proprietary synoviocyte growth medium (SGM) and 

MSCGM. A 24-hour activation at low, medium, and high doses of LPS or TNF-α and IL-

1β was compared after 4 additional days in fresh MSCGM without activation cytokines. 

PLSDA analysis of z-scored secreted cytokines revealed the clearest separation between 

unactivated and activated synoviocytes (on the LV1 axis) and a dose dependent response 

(on the LV2 axis) when synoviocytes were activated with a combination of TNF-α and IL-

1β (Figure 19 D). Heatmaps of the z-scored data indicate a dose-dependent response to 

activation, particularly for the cytokines weighted most highly in LV2 (Figure 19 H).  

4.3.6 Co-culture and Transwell Culture of Activated Synoviocytes & MSCs  

To compare suppression of synoviocyte activation by adherent and spheroid MSCs, 

varying ratios of MSCs to synoviocytes were compared. Human fibroblast-like 

synoviocytes were activated for 24-hours in 5 ng/mL IL-1β and TNF-α in MSCGM as 

described previously. After 24 hours, activation media was removed and MSCs pooled 

from 3 donors as single cells or spheroids were added directly to the 96-well plate (co-

culture) or separated with a 5.0µm-pore-size transwell insert at ratios of 1:3, 1:9, or 1:27 

synoviocytes to MSCs. Conditioned media collected from monolayer single cells or 

spheroids culture after 4 days was compared from direct and transwell cultures. PLSDA 

analysis of z-scored secreted cytokines shows separation of unactivated and activated 

synoviocytes on LV1 while LV2 showed separation of MSC concentration as single cells 

and spheroids (Figure 20). Synoviocyte activation increased GRO, IFN-ɣ, Eotaxin, IL-8, 

MIP-1a, IL-12p70, IL-12p40, IL-7, RANTES, TNF-α, IL-10, and IL-1β in comparison to 

unactivated synoviocytes (Figure 21). Most of these cytokines did not decease with MSC 

SC or SPH co-culture or conditioned media, although MIP-1a, IL-12p70, and IL-12p40 
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Figure 20. Co-culture of Activated Synoviocytes, MSC Single Cells, and Spheroids. 

hMSC single cells and spheroids pooled from 3 donors were co-cultured at ratios of 3:1 

and 9:1 with activated synoviocytes or with conditioned media treated synoviocytes for 4 

days. Cytokines in the conditioned media were quantified with a Milliplex® Human 

Cytokine/Chemokine Magnetic Bead Panel Kit. Heatmaps of the z-scored data indicates 

relative cytokines levels (A). PLSDA analysis (B) of z-scored secreted cytokines shows 

separation of unactivated and activated synoviocytes on LV1 (C) while LV2 showed 

separation of MSC concentration as single cells and spheroids (D).  LV signal plots detail 

which cytokines are weighted in the latent variables in the PLSDA separation (E&F). 

Significant differences between groups are based on multi-way ANOVA with Bonferroni 

and α=0.05. * vs uSYN, # vs aSYN, + vs cond med same format, $ vs 3:1 same format, & 

vs SC same dose, @ vs SPH same dose, % vs SC3, X vs SC9, = vs SPH3.  

 



 74 

 
Figure 21. Secretome of Activated Synoviocytes, MSC Single Cells, and Spheroid Co-

culture. hMSC single cells and spheroids pooled from 3 donors were co-cultured at ratios 

of 3:1 and 9:1 with activated synoviocytes or with conditioned media treated synoviocytes 

for 4 days. Cytokines in the conditioned media were quantified with a Milliplex® Human 

Cytokine/Chemokine Magnetic Bead Panel Kit. Significant differences between groups are 

based on multi-way ANOVA with Bonferroni and α=0.05. * vs uSYN, # vs aSYN, + vs 

cond med same format, $ vs 3:1 same format, & vs SC same dose, @ vs SPH same dose, 

% vs SC3, X vs SC9, = vs SPH3. 
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were not significantly different from activated or unactivated co-cultures and were between 

the two concentrations in aSYN:9SC co-cultures (Figure 21). IL-1β was significantly 

decreased in aSYN:9SC co-cultures and aSYN:3SC and aSYN:9SPH were between aSYN 

and uSYN values and not significantly different from either (Figure 21). MSC culture 

increased secretion of VEGF with or without the presence of aSYN. Co-culture of MSCs 

and aSYN stimulated secretion of G-CSF in both single cells and spheroids, GM-CSF in 

single cells and spheroid conditioned media, and MCP-3 in spheroid cultures (Figure 21). 

Altogether, co-culture of MSCs with activated synoviocytes was only able to significantly 

reduce activation-induced IL-1β production and did not affect most other cytokines 

upregulated by activation. There were some effects that required both aSYN and MSC co-

culture as single cells and spheroids to elucidate a change in cytokine concentrations. 

Surprisingly, MSC spheroid co-culture did not have many significant changes and actually 

induced fewer changes in activated synoviocyte co-culture than MSCs as single cells.   

 Transwell cultures of MSCs with aSYN at 3:1, 9:1, and 27:1 were also performed 

to determine if any effects from co-cultures were due to direct contact or soluble factor 

secretion. Unactivated and activated synoviocytes were separated along LV1 of the 

PLSDA plot and surprisingly, 9:1 and 27:1 SC:aSYN transwell cultures and 27:1 

SPH:aSYN cultures resulted in significantly lower LV1 scores than aSYN alone (Figure 

22). 9:1 and 27:1 SC:aSYN and 27:1 SPH:aSYN transwell cultures resulted in decreased 

IL-1β and the 27:1 SC:aSYN resulted in less IFN-ɣ and IL-12p70 that was not statically 

significant from aSYN or uSYN (Figure 23). Interestingly, 3:1 and 9:1 MSC:aSYN 

cultures all increased IL-12p40 concentrations, but not the 27:1 MSC:aSYN groups  
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Figure 22. Transwell Culture of Activated Synoviocytes, MSC Single Cells, and 

Spheroids. hMSC single cells and spheroids were cultured in transwells with activated 

synoviocytes at ratios of 3:1, 9:1 , or 27:1 for 4 days. Cytokines in the conditioned media 

were quantified with a Milliplex® Human Cytokine Magnetic Bead Panel Kit. Heatmaps 

of z-scored data indicates relative cytokines levels (A). PLSDA analysis (B) of z-scored 

secreted cytokines shows separation of unactivated and activated synoviocytes on LV1 (C) 

while LV2 showed separation of MSC concentration (D).  LV signal plots detail which 

cytokines are weighted in the latent variables in the PLSDA separation (E&F). Multi-way 

ANOVA with Bonferroni and α=0.05. * vs uSYN, # vs aSYN, $ vs 3:1 same format, ! vs 

9:1 same format, & vs SC same dose, @ vs SPH same dose, % vs SC9. 
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Figure 23. Secretome of Transwell Culture of Activated Synoviocytes and MSC Single 

Cell and Spheroids. hMSC single cells and spheroids were cultured in transwells with 

activated synoviocytes at ratios of 3:1, 9:1 , or 27:1 for 4 days. Cytokines in the conditioned 

media were quantified with a Milliplex® Human Cytokine Magnetic Bead Panel Kit. Only 

IL-1β was significantly reduced to levels similar to uSYN in aSYN:MSC transwell cultures 

and many other cytokines were no longer significantly different from aSYN. aSYN 

proliferation also increased in 27:1 SC:aSYN cultures (b). Multi-way ANOVA with 

Bonferroni and α=0.05. * vs uSYN, # vs aSYN, $ vs 3:1 same format, ! vs 9:1 same format, 

& vs SC same dose, @ vs SPH same dose, % vs SC9. 
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(Figure 23). MSC groups increased IFN-α2, IL-10, MCP-3, and VEG-F (Figure 23). MSCs 

also increased GM-CSF, RANTES, and G-CSF, but to a significantly less extent in SPH 

groups (Figure 23). Transwell culture at 27:1 SC:aSYN also increased synoviocyte 

proliferation in comparison to activated and unactivated synoviocytes alone, but co-

cultures at other cell concentrations had no significant differences (Figure 23).  

In order to understand the variance between the co-culture and transwell systems at 

the same aSYN:MSC ratios, a one-way ANOVA of co-culture and transwell studies was 

performed. The ANOVA showed that only responses to IL-1RA and PDGF-AA were 

significantly different, although the transwell culture did show more differences within 

multiple individual cytokines (Figure 24). IL-1RA had a large weight in LV1 scoring for 

both PLSDA models while the co-culture PLSDA model had little dependence on PDGF-

AA and the transwell model had high dependence on PDGF-AA concentrations. 

Altogether, culture of MSCs as single cells and spheroids with activated synoviocytes was 

unable to change many cytokines involved in activation, but there was a dose dependent 

response to some cytokines in which SCs co-culture and transwell resulted in less 

activation than SPH cultures at the same concentrations.  
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Figure 24. Transwell and co-culture are only significantly different for IL-1RA and 

PDGF-AA cytokine concentrations. Volcano plot for one-way analysis of variance 

(ANOVA) between co-culture and transwell aSYN:MSC studies with the same ratios (1:3 

and 1:9) show only IL-1RA and PDGF-AA are significantly different between co-culture 

and transwell format.  

4.3.7 Assessing Injectability of MSC Single Cells and Spheroids 

A preliminary in vitro experiment was performed to test the effects of incubation 

time and injection on cell morphology and viability. Spheroids and single cells at 1x106 

cells/50µL MEMα (the amount delivered per animal) were loaded into syringes at 

150µL/syringe.  Spheroid morphology and viability was maintained after injection through 

the 27 gauge needle and four hours of incubation, but the single cells had some clumping 

and cells in the centers of those clusters were often dead after incubation (Figure 25). Based 

on these results, syringes were prepared immediately before injection and order of injection 

was sorted by treatment group to minimize incubation time.  
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Figure 25. hMSC single cells & spheroids (n=3) maintain viability after injection up 

to 4h after syringe preparation. 1x106 hMSCs in 50µL of MEMα (Lonza) were incubated 

at 4⁰C for 4 h and injected through a 27G needle into a glass bottom plate to assess viability 

& morphology. Spheroids maintained their morphology over 4 hours with relatively little 

clumping (D), but single cells had more clumps after 4 hours of incubation (D). 

4.3.8 hMSCs Remain in the MMT Joint Less Than 1 Week 

To determine if spheroid formation can enhance MSC retention and homing in the 

joint space, human MSCs lenti-virally labeled for GFP/luciferase expression were intra-

articularly injected one day after MMT surgery and tracked with IVIS imaging with 

injections of luciferin on days 1, 3, and 7. The BLI signal decreased to around 60% of the 

initial signal by day 3 and less than 1% of the signal was evident after 1 week (Figure 26). 

There were no significant differences between MSCs delivered as single cells and 

spheroids.  
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Figure 26. hMSC single cells & spheroids (n=3) remain in the MMT joint for less than 

1 week.  In both single cell and spheroid groups, lenti-virally labeled hMSCs had 

normalized bioluminescent signals that decreased ~40% in the first 48 hours following 

injection, with <1% of the cells remaining after 7 days. One-way ANOVA showed no 

significant differences between single cell and spheroid groups.  

4.3.9 MSCs Reduce OA Progression in the OA Model 

MSCs spheroids and single cells pooled from 3 donors were injected one day after 

medial meniscal transections in the rat MMT model to determine the efficacy of MSC 

spheroids in treating OA. Saggital sections representing the area of largest lesion or damage 

for each sample showed little differences in the healthy, smooth surfaces of the sham 

animals and those treated with single cells following MMT (Figure 27). Cartilage thickness 

maps of the entire tibial plateau shows that the MMT alone group has more damage and 

MSC treatment with single cells and spheroids seems to attenuate that progression (Figure 

28 A). There are some lesions and abrasions in the spheroid treated group, but qualitatively 

appear to be less extensive and smaller than the MMT only group. Surface roughness 

corresponding to cartilage surface fibrillation was significantly increased in MMT samples 

but not MSC treated groups (Figure 28 D).  There were no significant changes in cartilage 
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Figure 27. Representative image of EPIC-µCT images isolating erosion and lesions. 

Animals were harvested 21 days after sham (A) or MMT (D) surgery treated with spheroids 

(B) or single cells (C) on day 1. Lesions (white arrows) and erosions (red arrow) were 

observed in all MMT groups, although animals that underwent MMT alone appeared to 

have the most damage.  

 

Figure 28. hMSC single cells & spheroids reduce OA progression in the rat MMT 

model of OA. There was fibrillation and thinning of the medial third of the tibial cartilage 

(A) and an increase in cartilage lesion volume (C), surface roughness (D), and subchondral 

bone thickness (E) 21 days after MMT surgery, but treatment with MSCs delivered as 

single cells or spheroids reduced lesion volume (C) and surface roughness (D) to levels 

similar to animals that underwent sham surgery. Treatment with spheroids had less 

subchondral bone thickening than single cells (E). All animals that underwent MMT 

surgery had cartilage thickening (red arrow) and some GAG depletion as evidenced by lack 

of Safranin O staining (black arrow) on the tibial plateau, but hMSC treatment with single 

cells or spheroids reduced GAG depletion and lesion volume (F). There were also fewer 

osteophytes formed in hMSCS treated animals. Statistical significance based on ANOVA 

with Bonferroni Correction *p<0.05 vs Sham, #p<0.05 vs Spheroid.   
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attenuation (Figure 28 B).  Treatment with spheroids had less subchondral bone thickening 

than single cells (Figure 28 E). All animals that underwent MMT surgery had cartilage 

thickening (red arrow) and some GAG depletion as evidenced by lack of Safranin O 

staining (black arrow) on the tibial plateau, but hMSC treatment with single cells or 

spheroids reduced GAG depletion and lesion volume (Figure 28 F). There were also fewer 

osteophytes formed in hMSCS treated animals (Figure 28). 

4.4 Discussion 

MSCs are the most commonly used cell type in clinical trials for various 

applications. Despite promising in vitro and in vivo pre-clinical data, however, there have 

been numerous failures of MSC trials to demonstrate efficacy in several therapeutic 

applications. Limited consistency in clinical outcomes utilizing MSCs therapies is often 

attributed to lack of sufficient cell number and variation due to donors and culture 

methodologies. Our results demonstrate that 3D aggregation of MSCs increases 

endogenous immunomodulatory factor secretion that is more sensitive to donor variability, 

culture format, and media composition in comparison to traditionally cultured single cells. 

No changes in MSC secretome were detectable in multiple MSC donors cultured as single 

cells, but spheroid culture differentially enhanced the paracrine profiles of the same donors 

elucidating more variation in donor secretome and potential therapeutic functionality. 

Therefore, spheroid culture that mimics the cell-cell and cell-matrix interactions and 3D 

nature of the endogenous MSC niche may be a better predictor of cellular responses and 

efficacy upon transplantation.  
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Expansion and culture in a defined, xeno-free media containing platelet lysate 

resulted in faster expansion and smaller cells than FBS containing growth media, but 

resulted in reduced immunomodulatory secretion in spheroid format. This media-

dependent response for MSC aggregates is consistent with previous findings [155]. Thus, 

medias optimized for MSC growth may not be the best suited for culture for therapies that 

are dependent on the immunomodulatory capacity of MSCs.  

Increased cell-contact dependent Notch signaling and intercellular adhesions such 

as E-cadherin have previously been implicated in the enhancement of paracrine activity of 

MSC aggregates [139, 203, 204]. Surprisingly, increasing cellular contact of single cells in 

monolayer by altering their seeding density and time to confluence resulted in reduced 

paracrine activity in comparison to single cells seeded at a lower density. Additionally, 

rotary altering the hydrodynamic environment through rotary orbital culture plated cells 

also reduced single cell paracrine activity. Thus, although the mechanisms responsible for 

increased paracrine activity of MSCs cultured as spheroids still need to be elucidated, 

aggregation is a simple, yet effective means to not only enhance immunomodulatory 

cytokine production, but also sensitivity to culture conditions.  

The increase in the secretory profile in spheroid culture in comparison to monolayer 

culture is consistent with previous findings [149-154]. Furthermore, culturing MSCs in an 

inflammatory environment that models OA-inflammation can modulate the MSC 

secretome. Surprisingly, spheroid culture format did not improve the suppression of 

activated synoviocytes in comparison to single cells. A previous study by our group has 

shown that a greater number of MSC as spheroids is required to suppress T-cell 

proliferation in CD3/CD28 activated PBMCs when MSCs were aggregated and that MSC 
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immunomodulation of T-cell proliferation was partially contact mediated. Alternatively, 

comparisons of our transwell and co-culture models demonstrate no contact-dependence 

on MSC modulation of activated synoviocytes and transwell culture enhanced therapeutic 

response. An alternative hypothesis is that since MSC modulation of their secretome is 

dependent upon the environment and inflammation enhances their immunomodulatory 

response, spheroid culture may alter the inflammatory milieu exposed to the cell surface. 

Another study on hMSC aggregates in hanging drops resulted in a time-dependent increase 

in the number of apoptotic cells, and cellular stress signaling via NFκB and caspase was 

required for PGE2 production and reduction in macrophage inflammation by hMSC 

spheroids [154]. A more thorough understanding of cytokine production in spheroid 

culture, particularly in spatially different locations (surface vs interior) correlating the 

secretome and cellular environment may provide better insight into the mechanisms of 

MSC immunomodulation and elucidate ways to better engineer beneficial therapeutic 

outcomes. A computational modeling strategy developed to investigate heterogeneous 

regulation of transcriptional and endogenously secreted factors in embryoid body (EB) 

morphogenesis may also be useful in determining the spatiotemporal modulation of MSC 

paracrine activity in spheroid cultures [205].  

Previous studies have shown that spheroid delivery of MSCs in vivo has also 

improved cell retention and survival, yielding better engraftment and treatment in cardiac 

and skeletal muscle models, colitis models, as well as bone defects [139, 145-148]. 

Surprisingly, this study demonstrated no significant differences in MSC retention with 

spheroid delivery and all MSCs decreased to 60% after 48 hours with less than 1% 

remaining after 7 days. Unlike most of these tissues, the knee joint space is considered 
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immunoprivileged as clinical evidence of tissue rejection is rare [206], but the joint space 

does have rapid clearance of small molecules and clearance is increased with disease 

severity [207, 208]. Our findings of rapid clearance within the first were similar to those 

of other studies of MSCs delivered as single cells delivered to ACL (anterior cruciate 

ligament)- transected rat knees [209].   

The ultimate objective of this study was to quantitatively assess the efficacy of 

MSC spheroids as a disease modifying intervention for osteoarthritis. Using the post-

traumatic rat medial meniscal transection (MMT) model of OA, single injections of MSCs 

as single cells and spheroids were compared to MMT and sham MCL transected knees 21 

days after surgery. EPIC-μCT image analysis showed MSCs delivered as single cells or 

spheroids reduced lesion volume and surface roughness to levels similar to animals that 

underwent sham surgery. Surface fibrillation and erosion, as measured by surface 

roughness, are some of the hallmarks of OA progression and are one of the earliest 

indicators detectable via µ-CT analysis. Treatment with spheroids had less subchondral 

bone thickening than single cells. All animals that underwent MMT surgery had cartilage 

thickening and some GAG depletion on the tibial plateau, but hMSC treatment with single 

cells or spheroids reduced GAG depletion and lesion volume. There were also fewer 

osteophytes formed in hMSCS treated animals although changes were not significantly 

different between treatments.   

Reduction of OA progression with MSCs as single cells is consistent with previous 

studies of MSCs delivered to rat models of OA [210, 211]. Other studies suggest the 

relatively short treatment window and residence time of injected cells may be insufficient 

to modulate OA progression, particularly if allowed to progress to later stages [209]. 
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Weekly intra-articular injections of MSCs in ACL-transected rat knees resulted in 

significantly reduced OA progression and attenuated synovitis compared to control limbs 

at 8 and 12 weeks, but there were no significant differences in single injection or weekly 

injections at their earliest time point of 4 weeks.  

The MSC-synoviocytes co-culture and transwell studies were a better predictor for 

the observed in vivo response than analyzing the secretome of MSC single cells and 

spheroids alone. While the spheroid format may enhance MSC paracrine secretion in vitro, 

functional assays with relevant cell types may aid in predicting efficacy of MSC therapies 

upon transplantation.  

4.5 Conclusion 

OA is a complex disease involving inflammation of multiple tissues and 

involvement of multiple signaling pathways. MSCs offer a promising approach for cell-

based immunomodulation of OA due to their ability to modulate multiple cell populations. 

Because MSC therapies have yielded variable results, developing robust culture conditions 

to enhance MSC paracrine productivity may improve therapeutic outcomes. Our results 

suggest that environmental parameters, including spheroid culture, media composition, and 

donor source can modulate the secretion of anti-inflammatory molecules by MSCs. 

Spheroid culture can elucidate variances due to alterations in the microenvironment, media 

formulation, and donors that may be masked in monolayer culture. Both MSCs delivered 

as single cells and spheroids resulted in improvements in early stage OA progression in a 

rat model, and further studies are needed to elucidate the effect of delivery format as a 

potential disease modifying OA therapy.   
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CHAPTER 5. INVESTIGATING THE EFFECT OF AMNION ON 

MSC IMMUNOMODULATION 

5.1 Introduction 

Osteoarthritis (OA) is the leading cause of disability in the US and involves cartilage 

degradation and chronic inflammation in the entire joint. In fact, inflammation precedes 

detectable structural changes and is an indicator of future medial cartilage loss [19-22]. 

Thus, therapeutic strategies targeting OA-associated inflammation are likely essential in 

developing a disease modifying therapy. Current treatment options focus on symptomatic 

management via pain relievers or surgical intervention; both with clear limitations [212]. 

Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used to treat OA-

associated pain, but have strong side-effect including gastro-intestinal complications and 

negatively effecting chondrocyte proteoglycan synthesis [53, 213]. Clinical trials have 

tested a number of potential disease modifying OA drugs (DMOADs), including matrix-

metalloproteinase inhibitors (MMPis), cytokine blockers, inhibitors of inducible nitric 

oxide synthase (iNOS), and doxycycline; however, none have shown a clear therapeutic 

benefit to date [214]. Current drug treatment regimens for immune diseases targeting a 

single molecule or pathway are often ineffective and insufficient to suppress the chronic 

inflammation involved in osteoarthritis due to the inherent compensatory pro-

inflammatory pathways and multiple cell-types involved [18, 26, 27]. OA remains a 

pervasive and burdensome condition with limited effective clinical options. 
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MSCs secrete multiple immunomodulatory cytokines and can modulate multiple cell 

types involved in both innate and adaptive immunity, making them an attractive therapeutic 

option for OA. MSC immunomodulation is highly dependent on the local cytokine milieu 

and the efficacy of MSC therapies is dependent on the microenvironment upon 

implantation [215]. Although high concentrations of inflammatory cytokines are involved 

in acute injuries, chronic cases generally exhibit lower levels of inflammatory cytokines. 

In fact, the relatively low concentration of inflammatory cytokines in OA in comparison to 

rheumatoid arthritis is responsible for the initial misconception that it was not an 

inflammatory disease [40].  

3D aggregation of MSCs enhances immunomodulatory paracrine factor secretion 

and improves retention and therapeutic outcome in cardiac and skeletal muscle models, 

colitis models, as well as bone defects in comparison to single cells [139, 145-148].  MSCs 

can be pre-conditioned with inflammatory cytokines before implantation to amplify their 

secretory profile and IFN-γ pre-treated MSCs have exhibited improved resolution of 

inflammation in models of colitis [246] and graft-versus-host disease [247] compared to 

non-treated MSCs. Despite the enhancement of MSC immunomodulation, the transient 

effects of pre-treatment may limit the potential of MSCs to modulate immune responses 

for more than a few days, particularly in environments that do not expose the cells to high 

concentrations of IFN-γ [156]. The McDevitt lab has shown that incorporation of IFN-γ-

loaded heparin microparticles into MSC spheroids sustained immunomodulatory paracrine 

production and increased the polarization of co-cultured macrophages to a less 

inflammatory M2 phenotype [156].  Strategies involving treating chronic inflammation 

with any pro-inflammatory cytokines are often met with apprehension however, since 
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altering the natural ebb and flow of pro- and anti-inflammatory cytokine may result in 

further inflammation with sustained stimulation.  

Alternatively, the multiple factors eluted from dehydrated amnion can also modulate 

stem cell paracrine activity and proliferation [164]. The amniotic membrane is the 

innermost layer of the placenta and exhibits immunosuppressant and anti-inflammatory 

activity that protects the fetus and ensures acceptance by the mother's immune system. 

Micronized dehydrated human amnion/chorion membrane has been shown to be non-

immunogenic [158, 159]; contains a number of beneficial growth factors, including platelet 

derived growth factor (PDGF), fibroblast growth factor (FGF), and transforming growth 

factor beta (TGF-β) [160, 161]; and improves maintenance of chondrocyte phenotype [162, 

163]. Previous work in the Guldberg lab has demonstrated that a single intra-articular 

injection of micronized amnion attenuates osteoarthritis development in the medial 

meniscal transection (MMT) rat model of OA [166].  

 To address the transient effects of pre-treatment, we hypothesized that ECM-based 

presentation of cytokines within spheroidal MSC aggregates may provide a means of 

locally concentrating and sustaining presentation of bioactive cytokines capable of 

potentiating MSC immunomodulatory activity. Previous work from our group has 

demonstrated the use of microparticles to deliver growth factors and small molecules 

throughout stem cell aggregates [248–251].  This study will investigate the effect of 

amnion particles on MSC trophic factor production and immunomodulatory activity both 

in vitro and in vivo.  
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The working hypothesis for this aim is that co-delivering MSCs and amnion will 

have a synergistic effect on suppressing inflammation and decreasing OA progression. The 

effect of amnion incorporation and co-culture on MSC spheroid secretome was quantified 

in direct (co-culture) vs indirect (transwell) systems to evaluate cross-talk between MSCs 

and the amnion matrix. Modulation of the inflammatory microenvironment with the 

combinatorial approach was also characterized in vitro in co-cultures with activated 

synoviocytes. Furthermore, the OA progression after combinatorial treatments with 

amnion and MSCs was evaluated in a rat medial meniscal transection model of joint 

degeneration. The results of this study demonstrate that engineering the biochemical and 

physical components of MSC constructs can modulate MSC paracrine secretion and 

immunomodulation which can be tailored to better treat OA.  

5.2 Materials and Methods 

5.2.1 Preparation of Amnion 

Amnion was prepared using the proprietary PURION® process and AmnioFix 

Injectable was used for all the studies (MiMedx Group, Inc. Marietta, GA). To account for 

donor to donor variations, five different batches of each formulation, each from a different 

donor, were pooled before use by aseptically mixing equal weights in the dry powder form 

and thoroughly mixing the pooled donors on a rotisserie for 30 minutes. Dried, pooled 

amnion particles were stored at 4ºC and the same batch of pooled amnion was used for all 

subsequent studies.  

5.2.2 Fluorescent Tagging of Amnion to Evaluate Spheroid Incorporation 
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Pooled amnion suspended at 1mg/mL in 50mM sodium bicarbonate buffer and 

VivoTag® 680XL (Perkin Elmer, Inc, Waltham, MA, USA) suspended at 10mg/ml in 

dimethyl sulfoxide were added to the amnion suspensions at a ratio of 1 mg dye to 20 mg 

amnion. The suspensions were mixed for an hour at room temperature then centrifuged and 

washed two times in saline to remove excess dye. The tagged amnion was then suspended 

in MSC growth media at 80 mg/mL in preparation for spheroid incorporation. 

5.2.3 Cell Culture and Expansion  

Human bone marrow-derived MSCs from three male donors were obtained from 

RoosterBio Inc. (Frederick, MD) and expanded according to the manufacturer’s protocols. 

Briefly, 107 cryopreserved MSCs were plated in twelve T225 flasks in 45 mL of 

RoosterBio High Performance Media and incubated at 37°C for 7 days in a humidified 5% 

CO2 incubator. Media was exchanged after 4 days of culture. Cultures were passaged at 

80% confluence by washing with 10 mL PBS and then incubated with 10 mL of 0.25% 

trypsin at 37ºC. An equal volume of RoosterBio High Performance Media was added to 

quench trypsin activity. Dissociated cells were then collected and centrifuged at 200xg. 

Cells were all frozen to similar passage doubling levels (PDL 13±1.5) in CryoStor CS5 cell 

cryopreservation media (STEMCELL Technologies, Vancouver, BC, Canada) prior to 

expansion for experiments. MSCs were expanded for one passages from frozen stocks by 

plating 1x106cells in 45mL MSCGM in T-175 tissue culture treated flasks. Media was 

exchanged every three days and cells were passaged at 80% confluence.  

5.2.4 Spheroid Formation and Culture  
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Forced-aggregation of single cell suspensions of MSCs was used to generate MSC 

spheroids. Spheroids were formed overnight in 400μm agarose microwells for a high 

throughput method of generating homogenous cell aggregates [198]. Briefly, 600,000 

MSCs pooled from three donors at similar population doubling levels were added to 24-

well microwell inserts containing approximately 1,200 wells and centrifuged at 200xg for 

5 min to force aggregation of spheroids with approximately 500 cells per aggregate. For in 

vitro studies, amnion was incorporated into spheroids by adding 2.4, .8. and .26 mg/well 

of amnion rehydrated in MSCGM to each insert. After 18h in the microwells, spheroids 

were removed and transferred to 96-well tissue culture treated plates with or without 

activated synoviocytes at ratio of 1:9 synoviocytes to MSCs. After 4 days of culture, MSCs 

and conditioned media were collected for cell counting (Countess II Automated Cell 

Counter, Thermo Fisher Scientific, Waltham, MA). Only .26 mg/well of amnion was 

incorporated into MSC spheroids for subsequent co-culture and in vivo studies and 

syringes were prepared immediately upon spheroid extraction from microwell inserts.  

5.2.5 Synoviocyte Culture and Expansion 

Activated synoviocytes were used as an in vitro model of OA-associated 

inflammation since the synovium is a major site of gross and microscopic changes that 

occur early in disease progression [26]. Human fibroblast-like synoviocytes from three 

male donors were purchased and cultured to passage 3 in proprietary Synoviocyte Growth 

Media (SGM) according to manufacturer’s instructions (Cell Applications, Inc, San Diego, 

CA). After expansion, synoviocytes were frozen in CryoStor® CS5 freezing media prior 

to experiments. After overnight recovery in SGM, synoviocytes were trypsinized, counted, 

and pooled from all three donors in equal amounts and seeded in a 96-well plate in SGM 
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at 2500 cells/well (~8,300 cells/cm2). After 24 hours in SGM, synoviocytes were activated 

for 24 hours in 5 ng/mL human interleukin-1β (IL-1β) and 5 ng/mL tumor necrosis factor 

α (TNF-α) in MSCGM. MSCGM without cytokines was added as a control for unactivated 

synoviocytes. Activation medium was removed and fresh MSCGM was added after 24 

hours along with MSC and/or amnion. Spheroids and amnion were added directly to the 

synoviocytes in 96-well plates (co-culture) or separated with a 5.0µm-pore-size transwell 

insert (Corning®, Corning, NY, USA) at ratios of 1:9 synoviocytes to MSCs. Spheroid 

MSCs and amnion alone were also cultured at the same densities to serve as controls for 

comparison for secretome analyses. After four days of co-culture, conditioned medium was 

immediately frozen at -80°C and cells were counted using Countess II Automated Cell 

Counter (Thermo Fisher) according to the manufacturer's protocol.  

5.2.6 Immunomodulatory Factor Quantification  

Conditioned media was collected and inflammatory cytokines were quantified 

using MILLIPLEX MAP Human Cytokine/Chemokine Magnetic Bead Panel – 

Immunology Multiplex Assay (EMD Millipore). Conditioned media was diluted 1:2 in 

MSCGM and samples were analyzed according to the kit protocol and normalized to the 

standard provided with the kit after subtracting background of MSCGM media. All samples 

were read out on a MAGPIX instrument (Luminex).  

5.2.7  MMT Animal Model and BLI Tracking 

Intra-articular injections of MSC spheroids with and without amnion were 

compared in the rat medial meniscal transection (MMT) model of OA. The Georgia Tech 

IACUC approved all animal studies (Protocol #A15019). Weight matched Lewis rats (250-
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300g) underwent sham or MMT in the left leg as described previously [168]. Briefly, the 

animals were anesthetized with isoflurane, and the skin over the medial aspect of the left 

femoro-tibial joint was shaved and aseptically prepared. The medial collateral ligament 

(MCL) was exposed by blunt dissection and transected to reflect the meniscus toward the 

femur. The joint space was visualized, and a full thickness cut was made through the 

meniscus at its narrowest point. The skin was closed with 4.0 Vicryl sutures and then 

stapled using wound clips. hMSC spheroids and/or amnion was intra-articularly injected 

24 hours after MMT surgery (Day 1) using an insulin syringe with 1 million MSCs and/or 

.5mg of amnion (AmnioFix Injectable, MiMedx Group, Inc. Marietta, GA) suspended in 

50µL MEMα.  All animals were euthanized at 3 weeks with CO2 and legs were harvested 

for cryohistology or micro-CT and paraffin histology. Whole joints were fixed in sucrose 

and frozen for cryo histology (n=3) or dissected, formalin fixed for 4 days, decalcified with 

Immunocal® (StatLab, McKinney, TX ) for 7 days, and then scanned for micro-CT before 

histological analysis.  

5.2.8 EPIC µ-CT Analysis of Articular Cartilage 

Decalcified tibias were incubated in Conray® contrast agent (Guerbet Group, 

Villepinte, France) for 24 hours at 37ºC. Legs were scanned using a Scanco µCT 40 at 45 

kVp, 177µA, 200 ms integration time, and a voxel size of 16 µm. The EPIC-µCT images 

were reconstructed sagittally and coronally, manually contoured, and analyzed at suitable 

thresholding levels to separate the cartilage from bone and background. Scanco evaluation 

software was used to calculate cartilage attenuation, volume, and thickness for the medial 

plateau. To quantify cartilage fibrillation, scanned sections of the medial tibial plateaus 

were exported as TIFF files, and a MATLAB® (MathWorks, Natica, MA) program was 
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used to measure the cartilage surface roughness, defined as the root-mean-square of 

differences between the representative and polynomial fit surfaces of the cartilage [201]. 

For focal lesion analysis, lesions were defined as cartilage defects extending through at 

least 50% of the cartilage thickness along the subchondral surface. The lesion areas were 

manually contoured to create appropriate VOIs and within the VOI the cartilage volume 

was subtracted from the total volume to give lesion volume. 

5.2.9 Histological Staining 

Following µ-CT, tibias of both surgerized legs and contralateral controls were 

dehydrated, routinely processed, and transected sagittally along the load-bearing plane. 

Samples were paraffin-embedded via vacuum infiltration with both load-bearing faces 

exposed for sectioning (n=6). Sagittal sections were cut at 5 μm thickness in strips of 12 

(representing a total thickness of 120 microns) with 4 sections mounted to each slide. Slides 

were stained with toluidine blue and the sample representing the most significant cartilage 

damage was imaged at 4x magnification for automated histological scoring.  

For whole joint histology, surgerized legs and contralateral controls (n=3) fixed in 

sucrose were cryoembedded with OCT freezing medium. Care was taken to preserve the 

synovium, meniscus and femoro-meniscal connective tissue. Joints were sagittally 

sectioned from the posterior joint surface to the load-bearing surface consistent with the 

paraffin embedded samples and recommended OARSI scoring methodologies. 10-micron 

sections were collected (CryoStar NX70 Cryostat, Thermo Fisher Scientific, Waltham, 

MA). Cryotape was used to preserve and transfer samples during sectioning and sectioned 

samples remained frozen at -80°C until staining. Samples were stained in toluidine blue 



 97 

and slides with the most significant cartilage damage were imaged at 4x magnification 

consistent with paraffin embedded samples. Care was taken to include the synovial lining 

in images of the entire joint capsule for automated histological scoring.  

5.2.10 Automated Histological Scoring 

Prior to grading, the histological images were all rotated so that the medial side was 

on the right and randomized to blind the grader. A semi-automated graphic user interface 

(GUI) for the evaluation of knee OA in rodents was previously developed and characterized 

by collaborators at the University of Florida [216]. Specifically, a MATLAB® GUI was 

designed for image analysis of toluidine blue stained rat knees using the OsteoArthritis 

Society International (OARSI) histopathology initiative’s recommendations for 

histological assessments of osteoarthritis in the rat [172].  The user was prompted to select 

areas of measurement for (1) the entire medial plateau, (2) the area of total cartilage 

damage, (3) areas with significant (>50%) cartilage damage, (4) a contour of any existing 

lesions, (5) a contour of the cartilage-bone interface, (6) subchondral bone thickness on the 

medial and lateral sides of the medial plateau, (7) osteophyte thickness, and (8) the synovial 

lining thickness on the medial side. From these inputs and a pixel to micron conversion, 

the GUI function measures the degeneration widths of total and significant degeneration, 

osteophyte size, subchondral bone thickening, lesion width and depth, joint capsule 

thickness, and systematically calculates cartilage degeneration scores along the lateral, 

central, and medial thirds of the medial plateau. The synovial lining thickness was only 

quantified in cryo-embedded samples and is not necessary for the other automated 

measurements for scoring.  
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5.2.11 Partial Least Squares Modelling 

PLSR modelling was conducted in MATLAB using the partial least squares 

algorithm by Cleiton Nunes available on the Mathworks File Exchange. Bio-Plex cytokine 

sample data was pre-normalized to control media. All secretome data was z-scored for 

heatmap representation, and then directly inputted to the algorithm. For each PLSR 

analysis, an orthogonal rotation in the LV1-LV2 plane was used to choose a new LV1 that 

better separated cell phenotype/Y-variable consistent with previous studies [202]. LV1 and 

LV2 scores were then output in MATLAB for statistical comparisons with multi-way 

ANOVAs in JMP Genomics Pro.  

5.2.12 Statistical Analysis 

All data are reported as mean ± standard deviation and were analyzed using multi-

way analysis of variance (ANOVA) with Bonferroni Correction for post-hoc analysis with 

α=0.05 in JMP Genomics Pro with SAS® analytics (SAS, Cary, NC). Otherwise, t-test and 

one-way ANOVAs with Bonferroni Correction with p<0.05 or α=0.05 were performed in 

GraphPad Prism® (GraphPad Software, Inc. 7.03, La Jolla, CA) whenever appropriate.  

5.3 Results 

5.3.1 Amnion Incorporation in MSC Spheroids 

To establish optimal amnion-loading conditions within MSC spheroids, we first 

incorporated amnion at multiple doses. Previous studies investigating MSC delivery to the 

MMT model have used 106 cells per injection in a volume of 50µL saline. Additionally, 

the Guldberg lab has previously delivered 50µL of saline or 80mg/mL of amnion in saline 
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according to the product insert, for a total of 4mg/animal. Therefore, a ratio of 4mg amnion 

to 106 cells was investigated as the highest dose, corresponding to 2.4mg and .6x106 

cells/insert. Three and nine-fold lower doses of amnion to MSCs were also investigated 

with .8 and .26 mg of amnion per insert with .6x106 MSCs. Both the 2.4 and .8 mg/inserts 

yielded large, heterogenous clumps of MSCs and amnion that led to clumping and difficult 

injections through a 27-gauge needle. The .8 mg/insert dose of amnion allowed for 

consistent incorporation and spheroid formation (Figure 29).  

 

Figure 29. Amnion Incorporation within hMSC Spheroids. Tagged amnion was added 

to dissociated MSCs from adherent cultures and thoroughly mixed before forced 

aggregation to entrap particles within microwells. Amnion was incorporated at .26, .8, and 

2.4 mg/insert with 600,000 human MSCs. After overnight incubation, the .26mg/insert (B) 

yielded spheroids similar in size and structure to those with hMSCs alone (A) while higher 

doses yielded heterogenous clumping and inconsistent incorporation (C&D).  

5.3.2 Culture with Amnion Modulates the MSC Spheroid Secretome 

In order to determine if amnion and hMSCs have synergistic effects, amnion was 

cultured in direct and indirect contact with spheroids and the secretory profile was 

quantified. All wells had the same amount of MSCs or amnion in the same volume of media 

and MSCs and amnion were separated by a transwell (AtSPH), co-cultured by adding both 

to the wells (SPH+AM), or amnion was incorporated into MSC spheroids during formation 

(SPHwAM). Conditioned media was collected after 4 days and immunomodulatory 
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cytokines were quantified with Milliplex® Human Cytokine/Chemokine Magnetic Bead 

Panel Kit. Heatmaps of the z-scored data indicate relatively low cytokines levels of amnion 

compared to all MSC groups (Figure 30 A). PLSDA analysis of z-scored secreted cytokines 

separated amnion alone from all MSC spheroid containing groups on latent variable 1 

(LV1) (Figure 30 B&C) while LV2 exhibited significant differences from amnion-MSC 

transwell culture from all other MSC groups (Figure 30 B&D). Transwell culture of MSCs 

with amnion had the largest effect with increased IL-6, MCP1, G-CSF, MCP-3, IL-8, and 

GRO; and decreased IFN-a2, EGF, IL-12p40, IL-4, sCD40L in comparison to spheroids 

with amnion pre-incorporated (SPHwA) (Figure 31).  

5.3.3 Co-culture and Transwell Culture of Activated Synoviocytes, MSCs, and Amnion 

Co-cultures with activated synoviocytes were conducted for 4 days and 

immunomodulatory cytokines were quantified in the conditioned media to investigate 

synergies in therapeutic efficacy in vitro. Spheroids appeared more dense and showed less 

spreading when amnion was incorporated in comparison to spheroids alone after 24 hours 

of co-culture (Figure 32D,H, & L).  
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Figure 30. Transwell culture with amnion but not incorporation or co-culture alters 

MSC spheroid secretome. Amnion (A) and spheroids (SPH) were added to 96-well plates 

and separated by a transwell (AtSPH), co-cultured (SPH+AM), or amnion was 

incorporated into MSC spheroids (SPHwAM). All wells had the same amount of MSCs 

(22,500/well) or amnion (9.75 µg/well) in 200µL MSCGM. Conditioned media was 

collected after 4 days and immunomodulatory cytokines were quantified with a Milliplex® 

Magnetic Bead Panel Kit. Heatmaps of the z-scored data show relative cytokines levels 

(A). PLSDA analysis of z-scored secreted cytokines (B) separated amnion alone from all 

MSC spheroid containing groups on LV1 (C) while LV2 exhibited significant differences 

in amnion-MSC transwell culture from all other MSC groups (D). LV signal plots detail 

cytokine weight in each latent variable (LV) (E&F). Bars represent significant differences 

using multi-way ANOVA with Bonferroni correction and α=0.05.  
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Figure 31. Transwell culture with amnion alters MSC secretome more than co-culture 

or spheroid incorporation. Amnion (A) and spheroids (SPH) were added to 96-well 

TCPS plates in MSCGM and separated by a transwell (AtSPH), co-cultured (SPH+AM), 

or amnion was incorporated into MSC spheroids during formation (SPHwAM). All wells 

had the same amount of MSCs (22,500/well) or amnion (9.75 µg/well) in 200µL MSCGM. 

Conditioned media was collected after 4 days and immunomodulatory cytokines were 

quantified with a Milliplex® Magnetic Bead Panel Kit. Bars represent significant 

differences based on multi-way ANOVA with Bonferroni correction and α=0.05. 
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Figure 32. Amnion and hMSC Spheroid Co-cultures with Activated Synoviocytes. 

Amnion (A) and hMSC spheroids (SPH) were added together (SPH+A) or spheroids with 

amnion incorporated (SPHwA) were co-cultured with unactivated (uSYN) or activated 

synoviocytes (aSYN). Images taken at 4x magnification on day 1 show changes in spheroid 

density and slower spreading in spheroids with amnion incorporated (D,H, & L).  

5.3.4 Synoviocyte Co-cultures of Spheroids and Amnion 

Synoviocyte co-cultures and transwell cultures were used to model OA-associated 

inflammation in vitro. Amnion (A) and spheroids (SPH) were added together (SPH+A), or 

spheroids with amnion incorporated (SPHwAM) were added directly to activated 

synoviocytes (aSYN). Activation was separated on LV1 with PLSDA analysis  
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Figure 33. Co-cultures of MSC spheroids with aSYN is better at reducing the 

inflammatory environment than amnion but has limited efficacy. Amnion (A) and 

spheroids (SPH) were added together (SPH+AM) or spheroids with amnion incorporated 

(SPHwAM) were added directly to activated synoviocytes (aSYN). Immunomodulatory 

cytokines in conditioned media collected after 4 days were quantified with a Milliplex® 

Magnetic Bead Panel Kit. Heatmaps of the z-scored data show relative cytokine levels (A). 

PLSDA analysis of z-scored cytokines (B) separated activated from unactivated culture on 

LV1 where spheroid culture reduced activation-associated inflammation (C) while LV2 

separated SPH cultures (D). LV signal plots detail cytokine weight in each latent variable 

LV) (E&F). Significant differences based on multi-way ANOVA with Bonferroni 

correction and α=0.05. * vs uSYN, # vs aSYN, @ vs aSYN+A, %vs aSYN+SPH. 
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Figure 34. Co-cultures of spheroids and amnion have little effect on inflammatory 

cytokine production from activated synoviocytes and spheroids are more effective at 

reducing the inflammatory environment than amnion alone. Amnion (A) and spheroids 

(SPH) were added together (SPH+AM) or spheroids with amnion incorporated (SPHwAM) 

were added directly to activated synoviocytes (aSYN). Immunomodulatory cytokines in 

conditioned media collected after 4 days were quantified with a Milliplex® Magnetic Bead 

Panel Kit. Activation upregulated a number of cytokines (graphs sorted based on LV1), but 

only G-CSF was significantly reduced by spheroid co-culture in comparison to aSYN 

alone. Spheroid co-cultures increased GM-CSF, VEG-F, and MCP-3 in comparison to 

synoviocytes alone. Significant differences based on multi-way ANOVA with Bonferroni 

correction and α=0.05. * vs uSYN, # vs aSYN, @ vs aSYN+A, %vs aSYN+SPH. 

 

where spheroid culture reduced activation-associated inflammation, and LV2 separated 

SPH cultures (Figure 33). Activation increased synoviocyte IL-7, IL-6, RANTES, IL-8, 

IFN-ɣ, G-CSF, MDC, Fractalkine, GM-CSF, and GRO (Figure 34). Spheroid treatment 

alone and the combination of spheroid and amnion added reduced G-CSF and increased 

IFN-α2, Flt-3L and eotaxin, but not spheroids incorporated with amnion (Figure 34). All 

treatments were reduced but not significantly different from either activated or unactivated 

cultures for MDC while only amnion or the combination of spheroids and amnion were not 

significantly different from uSYN or aSYN for GRO (Figure 34). All co-culture treatments 

increased GM-CSF and spheroid culture increased VEGF and MCP-3 (Figure 34). 

Altogether, co-culture with spheroids had little effect on reducing the inflammatory 

environment of activated synoviocyte.  

 Transwells with the same concentrations of MSCs and amnion were also compared 

to determine the dependence of contact on MSC and amnion immunomodulation (Figure 

35). Transwell culture of spheroids significantly decreased MDC, Fractalkine, IFN-ɣ in 

comparison to aSYN and reduced IFNα-2 to levels not significantly different from aSYN 

or uSYN (Figure 36). Transwell culture with amnion also significantly reduced IFNα-2  
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Figure 35. Transwell culture of spheroids reduces activated synoviocytes 

inflammatory secretome. Amnion (A) and spheroids (SPH) were added in transwells 

together (SPH+AM) or spheroids with amnion incorporated (SPHwAM) with activated 

synoviocytes (aSYN). Immunomodulatory cytokines in conditioned media collected after 

4 days were quantified with a Milliplex® Magnetic Bead Panel Kit. Heatmaps of the z-

scored data show relative cytokines levels (A). PLSDA analysis of z-scored cytokines (B) 

separated activated from unactivated culture on LV1 where spheroid culture reduced 

activation-associated inflammation (C) and LV2 separated all treatments from uSYN and 

aSYN (D). LV signal plots detail cytokine weight in each latent variable (LV) (E&F). 

Significant differences based on multi-way ANOVA with Bonferroni correction and 

α=0.05. * vs uSYN, # vs aSYN, @ vs aSYN+A, %vs aSYN+SPH. 
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Figure 36. Transwell culture with spheroids or amnion reduces activated synoviocytes 

inflammatory secretome, but they do not have a synergistic effect. Amnion (A) and 

spheroids (SPH) were added in transwells together (SPH+AM) or spheroids with amnion 

incorporated (SPHwAM) with activated synoviocytes (aSYN). Immunomodulatory 

cytokines in conditioned media collected after 4 days were quantified with a Milliplex® 

Magnetic Bead Panel Kit. Both amnion and spheroids alone had some effectiveness in 

reducing aSYN secretion of inflammatory cytokines, but not in combination with each 

other. Significant differences based on multi-way ANOVA with Bonferroni correction and 

α=0.05. * vs uSYN, # vs aSYN, @ vs aSYN+A, %vs aSYN+SPH. 

and MDC was not significantly different from aSYN or uSYN (Figure 36). Flt-3L and 

GM-CSF was not significantly different with any treatment compared to aSYN or uSYN,  

Figure 37. Transwell cultures with spheroids and amnion yields significantly different 

immunomodulation of activated synoviocytes secretome than co-culture. One-way 

analysis of variance (ANOVA) comparing co-culture and transwell cultures of activated 

synviocytes with amnion and MSC spheroids shows significant differences between 

multiple immunomodulatory cytokines. 
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but was increased in aSYN compared to uSYN (Figure 37). Similar to co-culture studies, 

all spheroid cultures had increased MCP-3 and VEG-F (Figure 37). 

Surprisingly, transwell culture of amnion or spheroids alone more effectively 

reduced OA-associated inflammation in activated synoviocyte cultures than combinatorial 

approaches with MSCs and amnion. A one-way ANOVA comparing co-culture to 

transwells showed significant differences in a number of cytokines including G-CSF, GM-

CSF, IL-4, IL-12p40, Flt-3L, EGF, Eotaxin, sCD40-L, IFNα2, MCP-1, and IL-8 (Figure 

37). Altogether, there was no synergistic effect observed in vitro combining MSC 

spheroids with amnion, but both modulated inflammation in this in vitro model. The 

efficacy of both treatments was reduced in direct contact with activated synoviocytes via 

co-culture in comparison to transwell cultures.  

5.3.5 Investigation of Amnion and MSC Spheroids in Rat Model of OA 

A rat post-traumatic model of osteoarthritis involving medial meniscal transection (MMT) 

was used to test the therapeutic efficacy of MSC spheroids and single cells with and without 

amnion or with amnion-loaded MSC spheroids. RoosterBio MSCs were used for all 

amnion containing studies, but single cells and spheroids of both RoosterBio and Texas 

A&M cells were used as controls for comparison since pilot studies of MSCs were 

performed with Texas A&M cells. Single injections of MSCs at day 1 resulted in few 

changes in tibial cartilage. The only differences in quantitative EPIC-µCT analysis of 

cartilage between sham and MMT control groups were in the surface roughness of the 

medial and central thirds of the tibial plateau (Figure 38). MMT control groups exhibited  
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Figure 38. EPIC-µCT data depicting the therapeutic effect of MSC single cells and 

spheroids and amnion in MMT joints compared to controls. MSC single cells (SC) or 

spheroids (SPH) from RoosterBio or Texas A&M were intra-articularly injected 24-hours 

after MMT and animals were sacrificed 21 days after surgery. Thickness maps of the tibial 

plateau show few lesions in treatment or control groups. Only amnion treated rats or those 

treated with MSC SC or SPH from Texas A & M didn’t have increased surface roughness 

in the medial (B) or central (C) thirds of the medial plateau. There was no significant 

difference in the medial cartilage thickness (D) or lesion volume (E) in any group.  

Significant difference from sham depicted with * for ANOVA with Bonferroni and α=0.05.  
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Figure 39. Semi-automated histological scoring to quantify the effect of MSCs and 

amnion in MMT joints compared to controls. A MATLAB GUI was used to score 

toluidine blue stained tibial plateaus (A) using measurements of the entire medial plateau 

(black line), total cartilage degeneration width (aqua line), significant cartilage width (blue 

line), the cartilage-bone interface (bold yellow line), medial subchondral growth plate 

thickness (magenta lines), osteophyte size (thin yellow line) and synovial lining thickness 

of whole joints (not pictured). There were no significant differences in the cartilage 

degeneration scores in the medial (C) or central thirds (D), joint capsule thickness (H), or 

growth plate thickness in the medial (I) or lateral (J) thirds. All MMT surgerized joints had 

increased total cartilage degeneration width (E) and osteophyte size (G) in comparison to 

sham. Only RoosterBio spheroids or single cells from Texas A&M did not have increased 

significant cartilage degeneration widths (F). *vs Sham. ANOVA with Bonferroni.α=0.05. 
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few lesions and degeneration did not significantly progress beyond early fibrillations 

quantified by surface roughness in most samples (Figure 38). 

Semi-automated scoring of microscope images was also conducted on the surgerized 

tibias following Toluidine Blue staining.  There were no significant differences in the 

systematically determined cartilage degeneration scores in the medial or central thirds, 

joint capsule thickness, or growth plate thickness. Total cartilage degeneration width, 

which quantified the difference for any cartilage damage including surface fibrillations, 

decellularization, or GAG loss was increased in all surgerized joints compared to sham 

controls. Osteophyte size, as determined by chondral thickening on the medial edge of the 

tibial pleateau was also increased in all MMT joints. Only RoosterBio spheroids or single 

cells from Texas A&M did not have increased significant cartilage degeneration widths in 

the medial or tibial thirds in comparison to the sham. Altogether, there was little effect of 

any treatment group and although MMT legs were significantly different than sham 

controls, progression of MMT-induced damage was slower than previous experiments in 

terms of lesion volume and cartilage thickness.  

5.4 Discussion 

 There is an unmet clinical need for disease modifying OA therapies that can address 

the complex chronic inflammation associated with osteoarthritis. While previous studies 

with hMSCs have been promising, variability in clinical outcomes demonstrate the 

necessity of robust translatable approaches to optimize MSC therapeutic efficacy. Multiple 

studies using MSCs in various disease models have demonstrated that the cells act 

primarily through paracrine mechanisms rather than directed differentiation [217]. In this 
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study, we evaluated a strategy to locally present naturally-derived amniotic membrane 

matrix within MSC constructs to augment MSC immunomodulatory activity.  

 The MSC secretome is highly dependent on the cellular microenvironment and 

clinical studies of MSC-based therapies have been most effective in treating acute 

inflammatory diseases rather than chronic inflammation [218-221]. Treating MSCs with 

IFN-ɣ enhanced therapeutic efficacy in multiple models [222, 223], and sustained 

presentations via IFN-γ-loaded heparin microparticles in MSC spheroids enhanced 

immunomodulatory paracrine production and polarization of macrophages towards an M2 

phenotype [156].  Strategies involving treating chronic inflammation with any pro-

inflammatory cytokines are often met with apprehension, however, due to the fear of 

amplifying the disease state.  

Alternatively, previous studies by MiMedx Group have demonstrated that multiple 

factors eluted from dehydrated amnion can also modulate stem cell paracrine activity, 

enhancing MSC production of SCF, FH, IL-6, IL-1ra, FGF-1, and ICAM-1 [164]. 

Surprisingly, in this study amnion incorporation into MSC spheroids did not alter the 

cytokine profile in comparison to MSC spheroids alone, but transwell culture of amnion 

and spheroids increased IL-6, MCP-1, G-CSF, MCP-3, IL-8, and GRO; and decreased EGF 

in comparison to spheroids alone. The variance between co-culture and transwell could be 

due to a multitude of factors. The extracellular matrix has multiple functions, one of which 

is to differentially modulate cytokine presentation through preferential binding and 

sequestration of ligands [224]. Amnion retains natural structural components, such as 

collagens (types I, III, IV, V, VI), fibrinogen, laminin, nidogen and proteoglycans capable 

of binding cytokines [161]. Binding of some ligands is influenced by proximity and 
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contact, and the amnion may be acting as a sink for cytokines that could otherwise be 

upregulated. Future studies should determine if amnion depletes immunomodulatory 

cytokines in MSC conditioned media to elucidate this potential mechanism of action.  

Hyaluronic acid is also present in amnion and acts as a ligand for the CD44 receptors 

expressed by MSCs [225]. CD44 is a cell-surface glycoprotein involved in cell-cell and 

cell-adhesion interactions and has an inverse correlation with E-cadherins [226]. 3D 

aggregation of MSCs was found to upregulate E-cadherin expression, which in turn was 

responsible for enhanced vascular endothelial growth factor (VEGF) secretion via the 

ERK/AKT signaling pathway [139]. Thus, balanced function of CD44 and E-cadherin may 

be essential for spheroid functionality.  

Amnion also contains multiple anti-inflammatory cytokines, including IL-1Ra, a 

receptor antagonist for IL-1; and two anti-inflammatory elastase inhibitors – secretory 

leukocyte proteinase inhibitor (SLP1) and elafin [225, 227]. Since MSC 

immunomodulation is directly dependent on the levels of inflammatory cytokines [126, 

128], combinatorial approaches of MSCs and ECM with endogenous anti-inflammatory 

properties may reduce MSC-mediated paracrine activity.  

Alternatively, direct contact with MSCs may enhance amnion degradation, 

potentially reducing its efficacy over the four days of culture. Future temporal studies of 

co-cultures and transwells of amnion and MSCs could aid in elucidating the mechanistic 

differences between contact-induced changes.  

Similar dependence on contact, or lack thereof, was observed in transwell and co-

culture of amnion and MSCs with activated synoviocytes. More differences were observed 
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in transwell cultures and both amnion and spheroids individually reduced inflammation 

due to synoviocyte activation, but combinations of amnion and spheroids were less 

effective (Figure 36). The only significant difference amnion incorporation into spheroids 

had was significantly decreasing MSC secreted monocyte chemotactic protein, MCP-3. 

Although MCP-3 has been detected in the synovium of RA patients, its role in both OA 

and RA remain unclear [228]. Combinations of this study and the previous transwell study 

with MSC spheroids and activated synoviocytes described in aim 2 suggests that amnion 

and spheroids modulate synoviocyte inflammation through different mechanisms since 

MSCs had a dose dependent improvement in reducing inflammation at higher 

concentrations and adding amnion reduced the efficacy of spheroid modulation (Figure 

36).  

Delivery of MSCs and amnion to an osteoarthritic rat model did not significantly 

reduce OA degeneration at 21 days post-surgery (Figure 38 & Figure 39). Previous work 

in the Guldberg lab has demonstrated that a single intra-articular injection of micronized 

amnion at 4mg/animal attenuates osteoarthritis development in the medial meniscal 

transection (MMT) rat model of OA when evaluated at 21 days [166]. The amnion 

delivered in this study was at approximately one ninth of that dose since that was the 

maximum concentration that could effectively be incorporated into 106 MSCs delivered as 

spheroids. A recent study in ACL-transected rats showed that single injections of MSCs 

was insufficient to modulate OA progression, but that weekly injection of MSCs 

significantly reduced OA progression [209]. The same study also found that alterations in 

OA progression were not significantly different between treatments at what they deemed 

an early time point of 4-weeks, but treatments showed significant improvements and 
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reduction in cartilage degeneration at 8 and 12 weeks [209]. The results of this study 

showed no clear advantage or disadvantage with amnion and MSC co-delivery, but 

differences in therapeutic potential may be more evident with weekly injections and longer 

study duration.  

5.5 Conclusion 

The results of this study demonstrate that both cell and ECM-mediated 

immunomodulation are affected by cell-cell and cell-ECM contact in activated synoviocyte 

cultures. While both amnion and MSC spheroids individually enhanced suppression of 

inflammatory cytokines secreted by activated synoviocytes in vitro, combinatorial 

approaches were less effective. Overall, understanding the mechanisms involved in both 

MSC spheroid and amnion immunomodulation may aid in the development of novel 

strategies capable of reducing OA-associated inflammation. Although very few changes in 

treatment were evident in our animal study, further investigation of weekly injections taken 

out to longer periods may elucidate potential interactions of amnion and MSC therapies. 

Altogether, our findings suggest that both amnion and MSC spheroids have therapeutic 

benefits in reducing OA-associated inflammation, and that harnessing the capabilities of 

both may be best augmented with separate or sequential treatments rather than 

combinatorial approaches.  
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CHAPTER 6.  CONCLUSIONS & FUTURE CONSIDERATIONS 

Taken together, the data presented in this dissertation establish novel approaches to 

both improve cartilage regeneration and address the chronic inflammation associated with 

osteoarthritis. In Chapter 3, culture of primary chondrocytes on decellularized cartilage 

microcarriers was found to both support expansion and enhance retention of a chondrocytic 

phenotype. Furthermore, the culture platform with native cartilage ECM does not require 

trypsinization, allowing for ECM proteins to be retained during culture before direct 

implantation into chondral defects.  In Chapter 4, the immunomodulatory capabilities of 

MSCs were investigated for their ability to modulate OA-associated inflammation. Robust 

characterization of the influence of culture format, donor variability, and media 

composition demonstrated that aggregated MSCS have enhanced sensitivity to changes in 

the local microenvironment, which can be tailored to enhance immunomodulatory 

paracrine activity. Moreover, MSC single cells and spheroids reduced inflammation in 

activated synoviocyte cultures in a dose-dependent manner and transwell rather than direct 

co-culture improved this response. Surprisingly, although paracrine activity was 

upregulated in spheroid culture, more MSCs spheroids were required to result in the same 

therapeutic outcomes as MSCs delivered as single cells, but both groups exhibited 

reduction in OA progression when injected in a 3-week rodent model of OA. Finally, in 

Chapter 5, combinatorial approaches with amnion and MSCs did not enhance 

immunomodulation of OA inflammation in vitro or in vivo, and only transwell culture of 

amnion with MSCs altered the secretory activity.  

6.1 Contributions to the Field 
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This two-fold approach aimed to improve current OA therapies by (1) creating novel 

ECM-microcariers for chondrocyte expansion and delivery; (2) investigating MSCs and 

amnion as sources for immunomodulation of OA. Thus, this work presents significant 

contributions to areas of research in cartilage tissue engineering, biomaterial design, 

immunoengineering, and the translation of cell-based therapeutics, as described below.  

6.1.1 Fabrication of ECM Microcarriers 

Decellularized cartilage scaffolds fail to repair cartilage defects due to inadequate 

cellular infiltration and tissue integration [107]. By milling decellularized cartilage, this 

work resulted in the creation of novel ECM microcarriers that (1) allow for additional cell-

ECM contact, (2) support cell proliferation and chondrogenic phenotype, and (3) retain 

endogenous ECM components. While many synthetic microcarriers have been 

characterize, most are not suitable for direct implantation and do not provide the tissue 

specific cues found endogenously in the cartilage ECM. Turner and Flynn previously 

described the fabrication of decellularized adipose ECM microcarriers [229]. Pepsin-

digested adipose ECM was combined with sodium alginate and microbeads were 

crosslinked through calcium chloride (to cross-link alginate) and rose bengal (to crosslink 

ECM) before aliginate was removed with sodium citrate [230]. In a later study by Flynn, 

decellularized adipose microbeads were formed via electrospraying digested adipose 

tissue, which eliminated the need for chemical cross-linking [231]. Although ECM digests 

retain some bioactivity, solubilizing ECM via pepsin digests causes a loss of native 

collagen structure, molecular integrity, and native mechanical properties [101, 232]. By 

directly using milled ECM as microcarriers, our approach reduces loss of native tissue 

integrity and the biochemical microenvironment.  



 120 

In addition to expansion of primary cells, decellularized tissues can stimulate 

differentiation of stem cells for a multitude of applications, including chondrogenesis 

[233]. While many groups have milled decellularized tissues to form specific geometries, 

incorporate into other biomaterials, add directly to cell cultures, or implant into tissue 

defects, ours is the first study demonstrating the direct use of decellularized ECM as 

microcarriers [80, 100, 103, 105, 157, 233]. Overall, we expect that the novel, facile 

approach to fabricate ECM microcarriers developed in this study can be easily integrated 

to a variety of tissues and cell types, demonstrating the vast versatility of this system.  

6.1.2 Characterization of In Vitro Model of Synovial Inflammation 

Fibroblast-like synoviocytes in the synovial lining are key effectors in both OA and 

rheumatoid arthritis (RA) by producing proteases and cytokines that degrade cartilage and 

recruit other inflammatory cells, both amplifying and perpetuating inflammation [234]. 

Multiple groups have used synoviocytes to test OA therapeutics, but there is no consistent 

activation protocol to stimulate synoviocyte inflammation, and multiple cytokines and 

chemokines have been reported at a large array of concentrations [197-200, 235, 236]. By 

comparing activation with various cytokines at multiple concentrations in different medias, 

we thoroughly characterized in vitro activation of synoviocytes and their dose dependent 

response through analyzing the synoviocyte secretome. Twenty-four-hour activation of 

primary synoviocytes with 5ng/mL IL-1β and 5ng/mL TNF-α consistently resulted in 

detectable inflammation after 4 days of culture in fresh media. Reduction of inflammation 

with multiple therapeutics (MSCs and amnion) at various doses was also detectable with 

this platform in both direct (co-culture) and in-direct (transwell) contact.  This robust 

analysis may aid in standardization for testing disease modifying OA therapies in vitro.  
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6.2 Clinical Translation 

The ultimate goal of this thesis is to characterize the phenotype of cells in response 

to culture parameters and ECM materials in order to engineer transplantable cell constructs 

to improve OA therapies. To date there are no disease modifying OA therapies that can 

prevent disease progression, but by addressing the limited regenerative potential of 

cartilage and the complex inflammatory environment of OA, findings in this thesis may 

help improve therapeutic efficacy.  

6.2.1 Development of A Novel ACI Therapy 

Current autologous chondrocyte implantation strategies require a massive number of 

cells (1.6 million cells per cm2 defect) [60]. In order to obtain these substantial numbers, 

chondrocytes from non-load bearing areas must be expanded for 14-21 days, over which 

period many cells lose their phenotype, de-differentiate, and form fibrocartilage upon 

implantation [61]. By filling the defect site with chondrocyte-laden microcarriers, the 

approach developed in Chapter 2 of this thesis could provide physiologically relevant ECM 

and require fewer cells, shortening the expansion time and loss of nascent ECM production 

during culture by eliminating the need for trypsinization. Culture on our DC-µCs also 

decreased de-differentiation over 7 days of culture and reduced hypertrophic 

differentiation, two major impediments to successful outcomes of traditional ACI therapies  

[63]. Additionally, multiple other decellularized tissues have already been approved for 

clinical use, which will help pave the way for navigating the regulatory requirements by 

the FDA for decellularized microcarriers [237].  Thus, the decellularized cartilage 

microcarriers developed in this thesis have promising clinical applicability as a readily 
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translatable delivery vehicle with low adoption barriers for both cell culture technicians 

and orthopedic surgeons.  

6.2.2 Approaches to Address OA Inflammation 

The complex nature of inflammation in OA lends itself to combinatorial, multi-

faceted approaches. In vitro assays in this project suggest both MSCs and amnion modulate 

OA inflammation through multiple signaling pathways. Although combinatorial 

approaches with amnion and MSCs at the tested doses used herein did not result in 

synergistic enhancement of immunomodulation, future studies in this area could 

investigate more frequent injections over a longer period to elucidate potential interactions 

of amnion and MSC therapies. Altogether, our findings suggest that both amnion and MSC 

spheroids have therapeutic benefits in reducing OA-associated inflammation, and that 

harnessing the capabilities of both may be best augmented with separate or sequential 

treatments rather than combinatorial approaches. The dose dependent improvement with 

both amnion and spheroids in cultures with activated synoviocytes also suggests that 

increased injection frequency and concentration may enhance therapeutic efficacy of both 

treatments.  

6.2.3 Screening Cellular Therapies 

Discrepancies in processing, culture conditions, passage number, and donor 

characteristics have all contributed to variability in transplanted cell populations for  

multiple clinical studies [196]. While three-dimensional aggregate culture has long been 

utilized to mimic cell-cell and cell-matrix interactions of in vivo physiology, more recently 

3D cultures have emerged as a new tool for early drug discovery and therapeutics[238]. 
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Our studies comparing donor variability, seeding densities, culture platforms, and media 

composition all demonstrate that spheroid format is more sensitive to these changes than 

2D monolayer by exhibiting an altered secretory profile. These findings suggest that 

spheroid culture may not only be advantageous as a screening tool for drugs, but also an 

effective means to compare cell sources for multiple clinical applications. By evaluating 

changes in MSC spheroid secretome due to donor variability or responses to disease 

relevant microenvironments, we may better predict therapeutic potential of cell sources. 

This could reduce the cost and time required to test sources that were otherwise 

indistinguishable in monolayer culture. Thus, the approach described in Chapter 3 could 

better characterize cell therapy manufacturing processes, improving quality-control, 

efficiency, and reproducibility for clinical use.    

6.3 Future Directions 

Altogether, the findings of this work motivate further studies to evaluate the 

transplantation of chondrocyte ECM-microcarrier constructs in vivo and to better 

characterize the mechanisms involved in immunomodulation in both ECM and cell-based 

therapies.  

6.3.1 Screening models to evaluate chondrocyte and ECM transplantation 

Animal studies are critical for the development of effective treatments for cartilage 

injuries. Evaluation of chondrocyte implantation therapies requires direct implantation of 

expanded cells into chondral defects. While multiple animal models of osteoarthritis exist, 

many do not recapitulate the local environment, repair processes, or relative defect size 

needed to model human autologous chondrocyte transplantation.   
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Direct injury to articular cartilage, including creation of focal defects, joint 

destabilization, or injection of chondrotoxic agents are common methods to induce 

cartilage loss and osteoarthritis in animal models [239-242]. Focal defects are necessary to 

investigate the incorporation of cell-ECM constructs mimicking ACI and MACI therapies. 

Although both joint destabilization and chondrotoxic agents lead to variability in defect 

size, location, and volume, they may aid in mimicking an OA environment prior to 

formation of focal defects. Alternatively, trauma accounts for approximately 12% of 

osteoarthritis and chondral defects progress to osteoarthritis with time [243, 244].  

Rodent models are cost effective and their genetic backgrounds have been well 

characterized, but their joints are small with thin cartilage which is difficult to consistently 

surgerize. A custom-built device has improved consistency in trochlear defect size in rats, 

but defects spontaneously regenerated the surfacing articular cartilage [245]. Larger animal 

models with thicker articular cartilage permit study of both partial thickness and full 

thickness chondral repair, as well as osteochondral repair. Lapine models are attractive 

because of their relatively low cost, increased cartilage thickness, and genotypically similar 

subjects are available [246]. Although the thin cartilage is likely easier to damage and 

repair than human cartilage, intrinsic repair is limited in the larger 3-4 mm defects that are 

commonly used [247]. Although these larger defects penetrate the subchondral bone, lapine 

models are still practical for early-stage pre-clinical evaluation [246]. Larger animal 

models with dogs, goats, pigs, and horses exhibit load-bearing, chondral thickness, and 

limited regeneration potential more similar to human OA, but their cost is prohibitive for 

early-stage therapeutic investigations. Therefore, future investigation of integration and 
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repair of osteoarthritic defects with the chondrocyte-laden decellularized cartilage 

microcarriers should be conducted in a lapine defect model of OA.  

6.3.2 Mechanisms to Quantify Inflammation in the Synovial Fluid of Small Animal 

Models 

The in vitro co-culture and transwell studies of MSCs and activated synoviocytes 

demonstrates that MSCs can modulate OA-associated inflammation through multiple 

pathways. This characteristic lends itself to further characterization of OA-inflammation 

in vivo. Understanding the molecular mechanisms of OA-associated inflammation could 

allow for better therapeutics tailored to the specific microenvironment. Synovial fluid 

biomarkers including cartilage degradation products, catabolic enzymes, inflammatory 

mediators, chemokines, and other molecules have been used to characterize OA disease 

state and severity [248]. Additionally, monitoring temporal changes in inflammatory 

cytokines during therapeutic evaluations would not only yield a better understanding of the 

disease state, but could also be used to modulate treatments based on differentiation for 

responders/non-responders.   

Synovial fluid extraction in rodent models of OA is difficult due to the small volume 

available. Lavage, a process of washing the joint with saline prior to fluid extraction, 

significantly dilutes the biomarkers. A previous study performed by the Guldberg lab using 

lavage of rat knees detected changes in MCP-1 concentration in the synovial fluid between 

MMT and amnion treated knees, but the other 9 cytokines that were quantified in the 10-

panel ELISA kit were undetectable in either the treatment or control groups [166].   
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Recently, a promising approach to detect synovial cytokines in rodents was 

developed using a magnet to capture superparamagnetic nanoparticles conjugated to 

antibodies specific to cartilage degradation product CTXII (c-terminus telopeptide of type 

II collagen) [248]. Rats with monoiodoacetate (MIA) induced OA were sacrificed after 30 

days. Particles were then injected to the knee joint, allowed to equilibrate for 2 hours, and 

then collected using insertion of a magnetic rod through a catheter. Particles were then 

released by washes with a diamagnetic supernatant and biomarker and targeting molecules 

were disrupted using heat, change in pH, and enzymatic cleavage. Magnetic particles were 

then separated using a magnetic and CTXII was quantified via an ELISA. Although 

magnetic capture was significantly more sensitive than lavage, there are many limitations 

to the multiple wash and release steps required which may reduce ELISA binding and 

sensitivity.  

Alternatively, the beads used in the MILLIPLEX MAP Cytokine/Chemokine 

Magnetic Bead Panel Kits are already developed for magnetic isolation and capture, are 

sensitive to low concentrations and changes therein, have ligands for multiple cyotokines 

already conjugated, and would eliminate the wash steps previously necessary for ELISA 

quantification. Therefore, future studies should determine the ability to capture 

MILLIPLEX beads following intra-articular injection, the concentration of beads 

necessary to quantify changes in rodent models of OA, and investigate if beads could be 

used in longitudinal survival studies. These studies could elucidate a comprehensive 

screening tool to provide dynamic feedback to both measure and treat OA inflammation 

and disease progression.  
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6.4 Conclusions 

The results of this dissertation provide a basis for future exploration of the clinical 

potential of matrix-assisted autologous chondrocyte implantation with chondrocyte-laden 

decellularized cartilage microcarriers. Future studies evaluating the integration, retention, 

and effect on OA progression in a rabbit chondral defect model could provide valuable 

information for the translation of ECM-microcarrier culture and subsequent transplantation 

for multiple diseases in addition to OA applications. The increased sensitivity of MSC 

spheroids to variations in culture conditions and donor-dependent responses could be 

useful in screening cell sources for translational applications and may better illustrate the 

variability in therapeutic outcomes that are masked in single cell monolayer culture.  While 

in vitro and in vivo models of OA-associated inflammation provided some insight into both 

MSC and amnion mediated immunomodulation, monitoring temporal changes in 

inflammatory cytokines during therapeutic evaluations would not only yield a better 

understanding of the disease state, but could also be used to tailor treatments to optimize 

outcomes for osteoarthritis therapies.   
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