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An expert is someone who knows some of the worst mistakes that can be made in his

subject, and how to avoid them.
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SUMMARY

We observe various transitions in CaH+ and CaD+ by resonance enhanced

multiphoton photodissociation spectroscopy in a Coulomb crystal. We report the the

vibronic 11Σ v0 −→ 21Σ v’0,1,2,3,4 transitions of CaH+ and CaD+; rovibronic 11Σ v0,J

−→ 21Σ v’0,1,2,3,J’ transitions of CaH+; vibrational 11Σ v0 −→ 11Σ v’9,10 transitions of

CaH+. This system is ideal for performing high-precision molecular spectroscopy with

applications in astrochemistry and fundamental physics. These measurements are vital to

future quantum logic spectroscopy (QLS) experiments and for measuring rotational state

preparation of CaH+.

We used CaH+ co-trapped with Doppler cooled Ca+ to perform spectroscopy using

photodissociation. The Ca+ fluorescence served as a detector for dissociation rates. The

broad linewidth of the laser provided an advantage for the initial search for transitions, but

did not allow spectral resolution of rotational transitions. We use pulse shaping to spectrally

narrow the linewidth of the laser to obtain rotational constants for the rovibronic states.

We assign the observed peaks to the transition from the ground vibrational state using a

theoretical model based on previous theoretical predictions. The simulation method comes

in two flavors: simple and full simulations. The simple model that assumes instantaneous

dissociation after resonant excitation, while the full simulations uses a matrix ordinary

differential equation to account for all possibilities. Both methods convolute a tunable

laser with an underlying rovibronic spectrum to find corresponding transition rates.

Physical constants and information, such as transition frequency, transition dipole

moments, rotational constants, and dissociation pathway, come from fitting the simulated

spectrum to the experimental spectrum. The vibrational transitions matched theory well

when a thinner laser linewidth is assumed. The CaH+ vibronic peak assignments initially

match theoretical predictions well. Comparisons with CaD+ vibronic peak assignments

reveal a revised assignment of the CaH+ vibronic levels and a disagreement with CASPT2

xv



theoretical calculations by approximately 700 cm−1. Rovibronic peak assignments affirm

the predicted rotational and distortion constants. We will describe possible dissociation

paths through excited Σ and Π states.

xvi



CHAPTER 1

INTRODUCTION/BACKGROUND

There has been a recent push towards creating cold (<1 K) and ultracold (<1 mK)

molecular ions. At these cold temperatures, molecules and atoms possess a number of

unique properties. Firstly, they are trapped within the Lamb Dicke regime, which means

the motional modes are not only suppressed, but also decoupled from the internal

transitions [3]. This disconnection is important for maintain precise state control, control

of degrees of freedom, and manipulating state distribution [4]. Secondly, the de Broglie

wavelength grows larger, which enhances previously masked properties such as tunneling,

barrier reflection, scattering, interference, and more [5–8]. Next, the molecules have

increased sensitivity to interactions from long-range portions of the potential energy

surface [5, 7–9]. Finally, cold molecular ions form Coulomb crystals which are important

to maintain experimental conditions and detect the number of ions [4, 10]. These

properties make cold molecular ions ideal for a number of applications such as quantum

chemistry [3, 7, 11–19], cold chemistry [8, 11, 13, 15, 17, 20, 21], quantum information

[3, 10–19, 22–24], tests of fundamental physics [7, 12, 16], astrochemistry [3, 12],

collisional mechanisms/dynamics [3, 5–11, 17–19, 21, 22, 25–28], and precise

spectroscopy [3, 6, 10, 11, 14, 16, 17, 19].

This dissertation discusses recent efforts to obtain experimental spectroscopy

constants of CaH+, specifically transition frequencies, dissociation frequencies, various

electronic energy levels, and ro-vibronic constants. CaH+ is a molecule of interest due to

its extensive applications towards testing time variation of fundamental constants [2,

29–35] and astrochemistry [13, 21, 32, 35–37]. Other applications are thermometry, a

technique measuring temperature through the rotational distribution [38], testing quantum

theory and benchmarking quantum theoretical calculations [33, 39], molecular clocks

1
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Figure 1.1: A comparison of the X1Σ and A1Σ potential energy surface (PES) curves from
various theoretical studies of CaH+ [CondoluciJCP2017s, 2, 36, 42–44].

[13], and understanding transition metal bonding through comparisons with other XH+

species, where X is a variety of other atoms [27, 40, 41]. Extensive investigations on

theoretical CaH+, over the past 30 years, agree on the potential applications but differ on

the quantitative results, Figure 1.1 [1, 2, 27, 29–31, 36, 37, 40–45]. Furthermore, CaH+

experimental research is inadequate for these same applications. Hansen et al. used a

combination of photodissociation and nondestructive mass spectrometry to observe

reaction rates and reaction product branching ratios [46]. Mokhberi et al. demonstrated

sympathetic cooling of co-trapped + and CaH+ [47]. Chou et al. implemented

quantum-logic spectroscopy to prepare and detect CaH+ rovibronic states in order to

observe Rabi flopping and Ramsey fringes [35]. Okada et al. demonstrated trapping,

Coulomb crystal formation, and cooling in an ion trap [32, 48, 49]. We use a combination

of theoretical and experimental techniques (e.g. resonance-enhanced multi-photon

dissociation (REMPD) and matrix ordinary differential equations (ODEs)) to find these

spectroscopic properties. This introduction concentrates on motivations and applications

for the various experimental techniques, meanwhile the rest of the dissertation focuses on

theoretical work pertaining to CaH+.

2



The measurement of the time variation in fundamental constants is a recent area of

study for atoms and molecules. Many current physics models, e.g. the Grand Unification

Theorem (GUT), Einstein Equivalence Principle (EEP), and standard model, assume all

fundamental constants are independent of time and space. Confirming any time

dependence in constants disproves all of these theorems [29–31, 50–54]. The most

common constants measured are the mass ratio of an electron to proton, me/mp, or the

fine structure constant, α [13, 29–31, 51, 52, 55, 56]. Given sufficient accuracy, analyzing

this ratio or constant repeatedly over a period of years determines the proposed time

variation. Both molecules and atoms contain vibrational, rotational, and other transition

frequencies proportional to
√
me/mp and me/mp, respectively [13, 29–31, 45, 50–52, 55,

57, 58]. Ultimately, many considerations make molecules better adapted to time variation

studies over atoms. Molecular transitions respond with increased sensitivity to variation,

making changes in
√
me/mp easier to observe [29–31, 34, 51, 54, 55]. With the discovery

of sympathetic and Doppler cooling, molecules reach cooler temperatures than atoms [29,

31, 34]. Some molecules have large rotational constants, which decouples them from

blackbody radiation, and they stay trapped within the Lamb-Dicke regime for hours (i.e.

decoupling from external temperature affects on quantum state distribution) )[29–31, 34,

50, 56, 59–62]. Knowing diatomic hydrides generally have large rotational constants,

Koelemeij et al. provides empirical evidence of HD+ molecules offering enhanced results

over atoms, but did not provide sufficient sensitivity to yield an answer [39]. A proposed

two-ion-species technique, previously seen in precise atomic ion clocks [63, 64], may

increase precision for molecules [51]. Kajita et al. proposes experiments implementing

this technique with a CaH+ ion coupled with a Ca+ ion proffering sufficient accuracy to

observe variation [29–31]. Kajita et al. chose CaH+ over other molecules since the

expected uncertainty in frequency measurements are smaller than HD+, since they are

closer to the order of the predicted astronomical time variation [29–31, 34]. In addition,

the work from this dissertation prove that CaH+ and Ca+ have a known scheme to co-trap

3



CaH+ and Ca+, a known scheme to cool using sympathetically cooling, and no hyperfine

splitting. Due to lack of experimental data with the vibrational transition frequencies, no

CaH+ investigations on constant variation exist as of yet.

Interstellar media (ISM), stellar atmospheres, comets, and the sun contain various

ionic gases, atomic gases, molecular gases, dust, and cosmic rays at various temperatures.

These area contain many diatomic hydride cation species, formed through steller

evolution in warmer regions, which makes identifying other species present essential [36,

37, 43, 44]. These components generate stars and their chemistry plays a fundamental role

in star formation and determining star lifetimes. Without physical accessibility to these

sectors in space, the absorption and emission lines of atoms and molecules are the only

means by which to identify constituents. These frequencies are matched to total solar

irradiance (TSI) spectrum provided by various satellite experiments. While atoms do not

have temperature-depended rotation distributions, molecules require detailed information

of spectroscopic constants to map transition frequencies to interstellar temperatures, [36,

37]. High-precision spectroscopy of cold and ultracold molecules provides this

information with adequate precision, [65, 66]. CaH, Ca, and Ca+ exist in sun spots [36,

37, 67–69] and surface of stars [70], which indicates CaH+ should exist in space as well.

The presence of all four species leads to future investigations involving reaction chemistry

in sun spots. In addition, CaH+ has a low ionization potential similar to MgH+, which is

also present in space [37, 44]. If CaH+ appears in space, CaH+ act as a thermometer,

where measuring the rotational distribution indicates a temperature [38]. The lack of

experimental spectroscopic data stalls efforts to identify this species in the solar spectrum.

All further applications of CaH+ require measuring precise spectroscopic constants.

Experimental efforts center around co-trapping CaH+ and Ca+, cooling to an absolute

rovibronic state, and finally using high-precision spectroscopy to measure transition

frequencies. Ions traps both confine and co-trap multiple ionic species in the gas phase.

While mass spectrometry (MS) and time of flight (TOF) experiments are viable alternative
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methods, they experience low number density of ions and therefore weak absorption and

dispersion signals [71, 72]. Ion-traps are preferable due to longer trapping times and more

controlled environments [17, 73–75]. External cooling to the motional ground state and

internal cooling to state-select a rovibrational state ensures accuracy and reduces the risk

of misinterpreting the CaH+ spectrum. Different cooling techniques such as buffer-gas

cooling and electric field manipulation are popular but less effective within ion-traps [13].

CaH+ is co-trapped Ca+ to ease formation and detection methods. Due to this,

sympathetic cooling suits CaH+ best [13, 32, 33, 76, 77]. Many high-precision

spectroscopy schemes are available within an ion trap, e.g. REMPD [76], fluorescence

spectroscopy, and quantum logic spectroscopy (QLS) [63, 78]. Regrettably, many

fluorescence spectroscopy experiments are subjected to Doppler shifts and peak

broadening within ion traps. This dissertation concentrates on REMPD experiments,

which leads to possible QLS experiments in the future.

1.1 Ion Traps

Ion trap research and application advancements benefits high-precision spectroscopy by

providing stable experimental conditions. In particular, molecular ions are spatially

confined, co-trapped with other species, and well-isolated from stray fields and collisions

[53, 73–75, 79]. The longer potential confinement times benefit complex schemes which

require lengthy experimentation times, and the high-density of molecules aid precision

experiments by giving higher signals-to-noise ratios [13, 73–75]. Modern research

implements three main types of traps: Penning traps, Paul traps, and combination

magneto-optical traps (MOTs) with RF traps. Larson et al. demonstrated cooling using a

Penning trap, however the high density within the trap leads to Doppler shifts of the

spectroscopic lines [80]. Penning traps have limited magnetic field ranges available,

inhibiting many experiments [9]. MOTs combined with Paul traps, i.e. MOTION traps,

have high expectations, but are currently a work in progress [81–86]. Paul traps (i.e. radio
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frequency (RF) traps) are the most commonly used trap for ultracold molecular ions.

These traps are simplistic and are compatible with a large range of optical lasers [86]. The

number of poles within the trap changes depending on the set-up and experimental needs.

The later cited applications use 4-pole, 8-pole, or 22-pole typically; this dissertation

focuses on quadrupole since they linearize easier [87], Figure 1.2. Linear Paul traps may

eliminate the motional mode in the z direction, which reduces the required complexity in

the cooling scheme [88]. Paul traps have additional applications, outside the ones

mentioned above, in polarization experiments [53], state-selection scheme development

[89, 90], molecular clocks [91], spectroscopy [28, 63, 73, 74, 79, 92–97], cooling scheme

development [4, 10, 16, 20, 76, 77, 98], observing chemical reactions [8, 25, 32],

detecting molecules [99–102], and state detection [103–105], and quantum control [88].
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Figure 1.2: An example of a simple RF trap used in this work.

Cold ions in Paul traps yield ordered ion arrangements called Coulomb crystals, which

provide many supplementary benefits [9, 11, 17, 19, 87]. Coulomb crystals are near-still

ordered structures of ions [4, 10, 13, 17, 19]. This close proximity provides a higher

density with less ions and a large spatial localization [10, 11, 17, 106]. The ions are within

range of weak Coulomb forces, which aids sympathetic cools and possible elimination of

the motional modes, which may lead to removing Doppler broadening [39, 106]. By

definition, these crystals are at ultracold temperatures which contributes to immaculate

testing environments and longer ion storage times [10, 11, 17, 106, 107]. Coulomb

crystals reduce Dopplers shift and allow measurement of narrow electronic transitions or

allow access to previously forbidden/obscured transitions [38, 39, 79, 98, 106, 107].
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Furthermore, they are molecular detectors through fluorescence, since Ca+ has an optical

fluorescence and CaH+ does not [19, 47, 106], as seen in Figure 1.3. Exciting over Ca+’s

optical transition indicates the presence and quantity of CaH+ [19, 76, 106]. Coulomb

crystals have other applications in reaction dynamics [8, 9, 11, 17, 19, 21, 25, 27, 28], cold

chemistry [8, 11, 17, 20, 21], non-linear dynamics, testing quantum jumps, quantum

information, quantum simulations, mass-to-charge ratios, state-detection, etc. [11, 14, 17,

19].

Figure 1.3: A Coulomb crystal containing Ca+, the lit areas and CaH+, the darker areas in
the center [108].

1.2 Ion State-Selection/Cooling

Ions traps are ideal experimental setups for quenching the external degrees of freedom and

cooling to the ground motional state [11, 17, 20, 32, 38, 80, 86, 107]. State-selection to

the ground motional state includes cooling and sideband cooling [76, 77]. Basic molecular

cooling techniques reduces the external degrees of freedom, which in turn cools the ions

to cold (<1 K) and ultracold (<1 mK) temperatures. Including sideband cooling reduces

the motional modes which minimizes the first and second-order Doppler shifts [11, 17, 56,

57, 73–75, 79, 107]. In general, cooling has additional applications in quantum

computing, quantum simulations, and cold chemistry [8, 11, 13, 15]. Atoms are generally

easier to cool, since molecules lack the necessary closed internal transitions [11, 103, 109,

110]. For example, Ca+ is easily cooled using direct laser cooling [32, 76]. However,

molecules may potentially reach lower temperatures [76]. Both atomic and molecular
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cooling centers around a few modern techniques such as cryogenic cooling, molecular

beam deceleration, cavity-enhanced laser cooling, direct laser cooling [13, 79, 91, 104,

109], Doppler cooling [11, 38, 77, 82, 88, 105, 110, 111], sympathetic cooling [9, 13, 16,

20, 25, 28, 32, 47, 76, 77, 80, 86, 88, 90, 92, 99–101], and buffer gas cooling [83, 86, 94,

98, 103]. Doppler cooling may induce Doppler shifts during spectroscopy, and is

subjected to the Doppler cooling limit [11]. Cavity-enhanced laser cooling only applies to

solids, while cryogenic cooling applies to liquids. Both of these methods cannot achieve

ultracold temperatures [11, 83]. Buffer gas cooling requires an external collision beam

and molecular beam deceleration requires an external field, which may interfere with

ongoing experimentation or push ions out of the trap [107]. CaH+ not only lacks a closed

optical transition but also has a rich rovibronial structure at room temperature, which

eliminates direct laser cooling, since it would require a number of repumping lasers which

interferes with fluorescence detection. Ultimately, sympathetic cooling of CaH+ uses

co-trapped Ca+ as a coolant to cools the external degrees of freedom below mK

temperatures through the Coulomb interaction. CaH+ has a known cooling scheme to the

motional ground state [32, 47, 76], and large vibrational spacing which means a majority

population will be the ground vibrational state at room temperature.

Cooling to the ground motional state is insufficient state-selection for high-precision

spectroscopy of molecules. State-selecting the rovibronic state of CaH+ is necessary to

reduce cross-talk interference within measurements. In addition, internal cooling

promotes cooling to even colder temperatures than pure external cooling, since external

cooling depends on the proportion of a damping force stimulating the absorption-emission

cycle. While cooling external degrees of freedom is well-known, cooling the internal

degrees of freedom in molecules is a much more complex process. Sympathetic cooling

leaves the internal temperature at the same temperature of the surrounds. The same weak

Coulomb interactions between neighboring ions, which make sympathetic cooling

possible, make molecules susceptible to heating of the rovibrational distribution due to
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stray fields such as blackbody radiation excitations [17, 19, 33, 38, 86, 98, 103]. Internal

cooling must compete against blackbody radiation heating to maintain any state-selection.

Literature contains several methods for other molecules, most of which are modifications

of external cooling techniques: state-selective photoionization [4, 17, 90, 106, 110], laser

cooling [59–61, 109], optical pumping [17, 33, 60, 89, 110, 112, 113], buffer gas cooling

[62, 83], probabilistic state preparation [35], sympathetic cooling with laser-cooled atoms

[63, 86], molecular collisions [83], cryogenic cooling [66], and quantum logic

spectroscopy [35, 78, 104]. As with external cooling, laser cooling, optical pumping,

buffer gas cooling, molecular collisions, and cryogenic cooling are not possible with

CaH+ due to various experimental limitations. State-selective photoionization occurs

before trapping, which is experimentally difficult for CaH+. Probabilistic state

preparation, quantum logic spectroscopy, and sympathetic cooling require detailed

spectroscopic knowledge. Selecting a specific scheme for CaH+ requires preliminary

knowledge the specific transitions excited [107], which currently does not exist.

1.3 High-Precision Spectroscopy of Ions

All of CaH+’s potential applications (e.g. astrochemistry, molecular clocks, rovibronic

state-selection, quantum logic spectroscopy, and fundamental constant measurements)

require high-precision measurements of its transition frequencies and energy levels [15].

Molecules have a variety of laser-based spectroscopic techniques available to them:

photodissociation [83], resonance enhanced multiphoton dissociation (REMPD) [11, 17,

33, 38, 39, 75, 89, 90, 93, 95, 103, 114], resonance enhanced multiphoton ionization

(REMPI) [11, 106], quantum logic spectroscopy (QLS) [35, 38, 63, 78, 79, 91, 104], light

induced charge transfer (LICT) [90], quantum jump spectroscopy [50, 104], Laser-cooled

fluorescence mass spectrometry (LCFMS) [99–102, 114], and laser-induced fluorescence

[32, 73, 74]. Photodissociation does not provide the required transition frequencies.

REMPI and LICT require changing the charge of CaH+, which would remove it
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completely from the trap. Recreating the Coulomb crystal for every data point is

unrealistic. Laser-induced fluorescence requires a second detector for the non-optical

CaH+ emissions and longer/more photon pulses to achieve adequate signal to noise ratios

[102]. Laser-cooled fluorescence mass spectrometry determines the charge-to-mass ratio

of the target ion, but works best with only two atoms, not Coulomb crystals. This

dissertation executes [1 + 1’] REMPD on CaH+ since the process can be easily detected

through fluorescence in a Coulomb crystal [76]. The exact dissociation scheme is

unknown at the time of writing, which leads to many potential difficulties when

interpreting spectra.

Unlike dissociation, quantum logic spectroscopy is a non-destructive approach which

measures changes in motional energy through fluorescence of a control ion to obtain a

spectrum. This process is precise than REMPD experiments, since it amplifies weak

signals and transitions that are experimentally obscured. Schmidt et al. introduced

quantum logic spectroscopy using a logical Be+ ion to measure transitions in the hard to

cool spectroscopic Al+ ion [63]. Koelemeij et al. proposed a procedure using one

molecular ion and clock ion, CO+, for blackbody radiation thermometry using modulated

optical dipole force (MODF) [38]. Chou et al. used a logical Mg+ ion to measure the

transitions of Al+ to apply to optical clock [91]. Hume et al. worked with a logical Mg+

ion to detected the clock states of Al+ [104]. Wan et al. employed a logical Mg+ ion to

precisely measure transitions in Ca+ with an amplified signal [79]. Wolf et al. utilized a

logical Mg+ ion to distinguish rotational states in MgH+ [78]. Chou et al. implemented a

procedure with a logical Ca+ to help prepare and detect quantum states in CaH+ [35].

QLS requires good estimations of the transitions before hand, however, the CaH+

transitions, especially for excited electronic states, have never been experimentally

measured before this collective work. The results from this dissertation will hopefully

lead to future QLS experiments.
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1.4 Dissertation Layout/Organization

The rest of the thesis is organized as follows: chapter 2 characterizes the theoretical

methodology; chapter 3 presents initial data on the 11Σ −→ 21Σ vibronic transitions;

chapter 4 describes efforts to distinguish rovibronic transitions withing the previously

found vibronic transitions; chapter 5 reports other applications of the model to CaH+

experiments; chapter 6 recounts a divergent project involving quantifying errors for

quantum information; and chapter 7 outlines the main conclusions and various future

experiments.

Table 1.1: Full Constants Table

Constant Meaning

ε0 Vacuum permittivity in C2

Jm

h Planck’s constant in Js

c Speed of light in m/s

k Boltzmann’s constant in J/K

T Temperature in Kelvin

Na Avogadro’s number

n Electronic quantum number

v Vibrational quantum number

J Rotational quantum number

E(n, v, J) Zero point total energy for state n, v, J in cm−1 Equation 2.1

T (n) Zero point electronic energy for state n in cm−1

Gn(v) Zero point vibrational energy for state n, v in cm−1 Equation 2.1

Fn,v(J) Zero point rotational energy for state n, v, J in cm−1 Equation 2.1

ωn Harmonic constant for state n in cm−1

ωχn Anharmonicity for state n in cm−1

Bn,v Rotational constant for state n, v in cm−1
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Table 1.1: (continued)

Dn,v Rotational distortion constant for state n, v in cm−1

νn′,v′,J ′←n,v,J Transition frequency in m−1 Equation 2.2

Ω Dissociation cross section in m2 Equation 2.17

Γn′,v′,J ′←n,v,J Transition rate in s−1 Equation 2.10

An′,v′,J ′←n,v,J Einstein A in s−1 Equation 2.4

Bn′,v′,J ′←n,v,J Einstein B in s
kg

kg
s2

Equation 2.6

p(n, v, J) Probability of being in state n, v, J in J
m3

Nn,v,J Population of state n, v, J

µn′,v′,J ′←n,v,J Transition/permanent dipole moment in Cm

g(νn′,v′,J ′←n,v,J) Laser intensity in J/m2 Equation 2.11

f0 Laser center frequency in cm−1

I0 Peak laser intensity in J/m2

FWHM Laser linewidth (full width at half maximum) in cm−1

σ Laser linewidth (variance) in cm−1
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CHAPTER 2

THEORETICAL MODEL

The theoretical model imitates experiments by applying lasers on and off, detecting

throughout, and fitting to an exponential rate. Three different versions of the dissociation

software currently exist: a simple model, a full simulation model, and a Hamiltonian

model. The simple model is best suited to quick estimations and optimization calculations

due to it’s simplicity and efficiency. The full-simulation model accounts for competing

reactions within the system, but takes significantly longer due to the matrix ordinary

differential equation (ODE). The Hamiltonian model calculates dissociation directly from

the potential energy surface (PES) curves and dipole moment curves. While this method is

the most commonly used method in literature, this dissertation does not implement

Hamiltonians due to incorrect CaH+ PES curves.

2.1 Calculating Transition and Dissociation Rates

Within the simple and full-simulation models, transitions rates illustrate intra-molecule

state transitions, while dissociation rates signify transitions from CaH+ to Ca+ + H.

Transitions rates (e.g. spontaneous emission, black-body radiation stimulated transitions,

laser induced transitions, etc.) indicate absorption or emission of photons due to numerous

energy sources (e.g. black-body radiation, lasers, etc.). Dissociation rates (e.g. laser

induced dissociation) depict absorption of photons from a laser, only. Both of these rate

types represent a change of the population of a particular quantum state at each time step.

The theoretical model must account for all possible rates and all possible states depending

on the laser frequency, Figure 2.1. The quantitative rates originate from various sources

such as LEVEL [115], BCONT [116–118], and the formulas listed below.
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N0 = 11Σ

N1 = 21Σ

N2 = 31Σ

N3 = 21Π

λ=
372 nm

λ=
394 nm

λ=
406 nm

λ=
372 nm

λ=
394 nm

λ=
406 nm

Figure 2.1: A three level diagram for CaH+ with two bound states (11Σ and 21Σ) and two
dissociative states (31Σ and 21Π). A laser tunes from 370nm to 420nm, which excites the
molecule from the ground state to a transition state, and eventually to a dissociation state.

The models designate each energy level using quantum numbers (i.e. n, v, J) and

physical constants, Equation 2.1. The Born-Oppenheimer approximation separates the
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electronic energy, T (n), from the internal energy, Gn(v) + Fn,v(J):

E(n, v, J) = T (n) +Gn(v) + Fn,v(J), (2.1)

where

Gn(v) = ωn(v +
1

2
)− ωχn(v +

1

2
)2 +O((v +

1

2
)3),

and where

Fn,v(J) = Bn,v(J(J + 1))−Dn,v(J(J + 1))2 +O((J(J + 1))3).

The rotational constants depend on the vibronic quantum numbers, which accounts for

internal crossing from rovibrational affects. Representing the vibrational and rotational

energy terms as individual Taylor series means storing less information, the simulations are

more efficient, and the potential energy surface can be derived from experimental constants.

However, this representation loses accurate with fewer terms, and any initial guesses must

come from theoretical PES curves. Typically, LEVEL calculates an all initial guesses for

these physical constants [115], but some constants emanate from previous literature [1, 2,

27, 43, 44].

2.1.1 Transitions

The strength of a transition depends on two main factors: the frequency shift and the dipole

moment [119–121]. When molecules shift from one bound state to another, the energy

change produces a photon corresponding to the difference in frequency:

νn′,v′,J ′←n,v,J = |E(n′, v′, J ′)− E(n, v, J)|. (2.2)

Due to the anharmonicity in the potential well, there are no selection rules for vibrational

transitions. Rotational transitions still follow the J ′ = J ± 1 rule, in these models. For
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a diatomic molecule, J ′ = J is not allowed. In this dissertation, LEVEL [115] calculates

λ = T (n′) + Gn′(v
′) − T (n) − Gn(v) from PES curves provided by Abe et al. [2]. Abe

et al. provide additional initial ground-state frequencies (n = 0) in an early paper [1].

The dipole moment (e.g. permanent dipole or transition dipole) represents the overlap

between two quantum states and the probability of transitions from one state to another.

Transitions occurring within the same electronic state use the permanent dipole moment,

while transitions occurring between electronic states use a transition dipole moment. These

dipole moments originate from various literature sources [2, 27]. To calculate transition

rates, the last factor needed is the absorption/gain coefficient from the stimulation source

(e.g. black-body radiation, lasers, etc.) [119–121].

Spontaneous emission is the process whereby a molecules decays from a higher

energy level to a lower energy level by spontaneously emitting a photon [119–122].

LEVEL directly calculates the spontaneous emission transition rate, i.e. Einstein A,

without the rotational dependence [115], and this Einstein A directly relates to the change

in state population [38, 119–125]:

dNn′,v′,J ′

dt
= An′,v′,J ′←n,v,JNn,v,J . (2.3)

To include the rotational dependence, the model manually determines each Einstein A

dependent on the transition dipole moment, µ, [119–122, 126]. The exact formula

depends on whether the angular momentum is higher or lower in the final state, which is

described by the Hönl-London factor [127]:

An′,v′,J−1←n,v,J =
16π3J

3ε0h(2J + 1)
ν3
n′,v′,J−1←n,v,Jµ

2, (2.4)

or

An′,v′,J+1←n,v,J =
16π3(J + 1)

3ε0h(2J + 1)
ν3
n′,v′,J+1←n,v,Jµ

2.
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This rotational factor accounts for the degenerate populations of J .

Stimulated emission and absorption is the process of a simulation sources changing

the molecular energy level by stimulating decaying or growing from one energy level to

another using a photon [119–125]. Black-body radiation (BBR) stimulated

emission/absorption transition rates, i.e. Einstein B, is the simulated rate using photons

originating from BBR. Many texts write the stimulated rate as

Bn′,v′,J ′←n,v,Jρ(νn′,v′,J ′←n,v,J)Nn,v,J where ρ(νn′,v′,J ′←n,v,J) is energy density per unit

angular frequency interval [119–125]. For simplification, this dissertation uses

Bn′,v′,J ′←n,v,J , where the energy density of the simulation source is combined with the

Einstein B [119–122]:
dNn′,v′,J ′

dt
= Bn′,v′,J ′←n,v,JNn,v,J . (2.5)

There are two types of Einstein Bs: stimulated emission from a higher level to a lower level

[38, 119–126] :

Bn′,v′,J ′←n,v,J = An′,v′,J ′←n,v,J
1

exp(
chνn′,v′,J′←n,v,J

kT
)− 1

, (2.6)

and stimulated absorption from a lower level to a higher level [38, 119–122]:

Bn,v,J←n′,v′,J ′ = An′,v′,J ′←n,v,J
1

exp(
chνn′,v′,J′←n,v,J

kT
)− 1

2J + 3

2J + 1
. (2.7)

The simulations calculate all Einstein Bs within the program, and sample rates are shown

in Figure 2.2.
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v' = 0

v' = 1

v' = 2

v' = 3

21Σ

ΓBBR=1.96 s-1

ΓBBR=4.09 s-1

ΓBBR=6.20 s-1

Figure 2.2: Example of Black Body Radiation stimulated absorption rates for the 21Σ state
of CaH+.

Laser stimulated transition rates are similar to Einstein Bs, but the simulation source is

a laser instead of BBR [123, 124, 128]:

dNn′,v′,J ′

dt
= Γn′,v′,J ′←n,v,JNn,v,J . (2.8)

Unlike before, stimulated emission is equivalent to stimulated absorption, regardless of

the rotational population. The transition rate depends on a convolution between the laser

profile (g(νn′,v′,J ′←n,v,J)) and the transitions profile (f(νn′,v′,J ′←n,v,J)) [124, 129]:

Γn′,v′,J ′←n,v,J =
An′,v′,J ′←n,v,J

8π~cν3
n′,v′,J ′←n,v,J

∫
g(νn′,v′,J ′←n,v,J)f(νn′,v′,J ′←n,v,J)dν. (2.9)

If one of spectral lines is significantly smaller than the other, the rate simplifies. In the case

of this dissertation, the laser linewidth is much wider than any transition linewidth, which

simplifies the rate [123, 124, 128]:

Γn′,v′,J ′←n,v,J =
An′,v′,J ′←n,v,Jg(νn′,v′,J ′←n,v,J)

8πhc2ν4
n′,v′,J ′←n,v,J

. (2.10)
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The experiments, in this dissertation, use a Gaussian laser to describe the laser profile [123,

124, 128, 130]:

g(νn′,v′,J ′←n,v,J) = I0

2
√

ln(2)

πFWHM
exp

(−4ln(2)(νn′,v′,J ′←n,v,J − f0)2

FWHM

)
. (2.11)

Since these rates change based on the frequency of the laser, the exact rates are recomputed

for each data point in the spectrum.

While not relevant to any experiment in this dissertation, multi-photon laser induced

transitions may occur. Karr et al. defines two-photon transitions where a0 is the Bohr

radius, Γf is instrumental transition width, µ2ph is the two-photon transition matrix element

[93, 95]:

Γ2ph =
64π2a6

0

~cΓf
µ2

2phI
2
0 . (2.12)

Ketterle et al. defines the transition differently, where A2ph is the two-photon rate:

Γ2ph =
8π3

~4c2
A2phg(νn′,v′,J ′←n,v,J). (2.13)

The calculation of µ2ph or A2ph depends on the proximity to an intermediate transition

state. Off-resonance transitions involve transitioning to ghost state, while on-resonance

transitions use an already existing state. Formulas alone are not sufficient to calculate these

transitions. The calculations involve integrating the overlap between PES curves, multiple

dipoles, and a dependence on the laser profile.

2.1.2 Dissociation

The dissociation process utilizes a photon to separate a molecule into its atomic

comportments. As with transitions, dissociation rates depend on the dissociation

frequency and dipole moment. In CaH+, the electron excites to a weakly-bound state and
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dissociates to Ca+ and H:

ν∞←n,v,J = |ECa + EH − E(n, v, J)|. (2.14)

The exact quantum states of the individual Ca+ and H are currently unknown. Each

dissociative state has either no potential well or a small one, therefore dissociation is

continuous and can occur anywhere within scope of the electronic state. This removes the

need to dissociate to a particular rovibrational state. Since dissociation occurs at the

electronic transition level, the dipole moment is always a transition dipole moment. As

before, literature contains all of the necessary dipoles [2, 27]. The dissociation

simulations assumes BBR cannot dissociate without help from the laser, and that no

association process is re-forming CaH+.

Laser induced dissociation uses a Gaussian laser to dissociate CaH+ from a transition

state to a dissociate state:
dN∞
dt

= Γ∞←n,v,JNn,v,J . (2.15)

The exact rate depends heavily on the dissociation cross section, Ων :

Γ∞←n,v,J =
Ων

hc
. (2.16)

The cross section integrates the overlap between two states, which is calculated through

BCONT. The BCONT program calculates molar extinction coefficient spectra, εs(ν), using

PES and dipole moment curves [116–118]. This coefficient gives the dissociation cross

section which in turn provides the overall dissociation rate, Equation 2.16 [131, 132]:

Ων =
log(10)

10Na

∫
εs(ν∞←n,v,J)g(ν∞←n,v,J)

ν∞←n,v,J
dν∞←n,v,J . (2.17)

Since dissociation is continuous over the entire laser range, the rate is a convolution of the

extinction coefficient spectrum with the laser profile.
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While possible in some CaH+ experiment, multi-photon laser induced dissociation is

not included in the simulations, as of yet. As with single photon transitions, two-photon

transitions depend on a dissociation cross section, Equation 2.16 [131, 132]. This constant

depends transition matrix element which comes from the overlap between multiple PES

curves. As these elements have a dependence on the laser profile and are not yet available

in literature, these dissociation rates have been excluded from simulations. As with multi-

photon transitions, multi-photon dissociation can be either on-resonance or off-resonance.

On-resonance dissociation will make peaks in the spectrum wider or double-peaked, while

off-resonance dissociation will provide new peaks previously unaccounted for. This means

multi-photon dissociation will appear as unaccounted for data in the spectrum.

2.2 Full - Simulation Model

The full-simulation method uses a transition rate matrix, i.e. a continuous-time Markov

chain, to coalesce information about the probability of a molecules shifting between

quantum states at each time step. This implies all states are discrete from each other.

Equation 2.18 shows the rate matrix M affecting the population vector, P , as a matrix

ordinary differential equation (ODE):

dP
dt

= M P. (2.18)

M contains all rates previous mentioned in Section 2.2, and the simulations assume that

there are no other unaccounted rates occurring. The initial P assumes all CaH+ molecules

start in the ground vibronic state, but in a thermally distributed rotational state. As later

results will prove false, the models assumes the potential well for each PES curve matches

theory predictions from Abe et al. [2].
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2.2.1 Forming Transition Rate Matrix

The matrix is formed by mapping all possible transitions to a transformation in the matrix.

The simulation accounts for and summates all cross-competing reactions. Two examples

of all rates that affect a single population are listed below. The first example only includes

rotational rates, without vibrational or electronic transitions. The second example includes

the previous rates plus possible vibrational transitions.

dNv,J

dt
+ = Av,J+1→v,JNv,J+1 +Bv,J+1→v,JNv,J+1 −Bv,J→v,J+1Nv,J

−Av,J→v,J−1Nv,J −Bv,J→v,J−1Nv,J +Bv,J−1→v,JNv,J−1 (2.19)

dNv,J

dt
+ =

∑
v2>v

Av2,J+1→v,JNv2,J+1 +
∑
v2>v

Bv2,J+1→v,JNv2,J+1 +∑
v2>v

Av2,J−1→v,JNv2,J−1 +
∑
v2>v

Bv2,J−1→v,JNv2,J−1 −∑
v2>v

Bv,J→v2,J+1Nv,J −
∑
v2>v

Bv,J→v2,J−1Nv,J +∑
v1<v

Bv1,J+1→v,JNv1,J+1 +
∑
v1<v

Bv1,J−1→v,JNv1,J−1 −∑
v1<v

Av,J→v1,J+1Nv,J −
∑
v1<v

Bv,J→v1,J+1Nv,J −∑
v1<v

Av,J→v1,J−1Nv,J −
∑
v1<v

Bv,J→v1,J−1Nv,J (2.20)

The program will always check that the constructed matrix for simulations is

mathematically sound. The diagonal of the matrix should contain only non-positive

numbers, 0 ≤ −Mii ≤ ∞, ∀ i. All other elements of the matrix should be non-negative,

0 ≤ Mij ∀ i, j where i 6= j. Each row must summate to zero,
∑

jMij = 0 ∀ i, which

implies that the entire matrix should also add to zero,
∑
Mij = 0 ∀ i, j. The last rule is

that the diagonal element in each row should be equal to all other elements,
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−Mii =
∑

jMij, where i 6= j. The last two rules present a problem in modern

computers. Each memory slot can only store a finite number of decimal places, which

changes depending on the computer resources. If two rates of greatly different magnitudes

are added together, then the smaller number would be rounded out. Therefore, the

simulation excludes transition rates smaller than a specified threshold. For our CaH+

experiments, the laser rate is relatively high, therefore this limitation removes all

black-body radiation transitions and majority of the spontaneous emission transitions.

2.2.2 Extracting Fluorescence Curve

Experiments detect the percentage of dissociated CaH+ by the amount of fluorescing Ca+.

These experiments determine the rate from fitting the fluorescence vs. time curve to a

first-order rate equation. The transition rate matrix reproduces this same curve through

numerical integration:

Intensity(t) = N∞(t). (2.21)

Integrating the matrix ODE gives, P(t), changes in state population over time, but due to

the complexity of the matrix, this cannot be done efficiently analytically. Numerical

integration provides the same information without complex SVU decompositions and

boundary-condition problems. This procedure requires two factors: a time step, dt, and a

numerical integrator.

The time-step is carefully chosen to produce the spectrum accurately and efficiently. To

ensure that the total population stays normalized at each time step, dt must be less than the

largest matrix element:
1

dt
≤ max(−Mii) ∀ i. (2.22)

To ensure more than one point on the fluorescence curve, the time step should be less than

the experiment time:

dt ≤ tmax
100

.

24



The simulations use Runga-Kutta (RK4) as the numerical integrator due to its

robustness and easy of implementation. This integrator is implemented step-wise through

a C++ library called ODEINT [133]. While numerical integration gives P(t), only the last

element in the vector, N∞(t), is the true fluorescence curve. This implies that the majority

of P(t) is not stored in memory, which reduces overall resource costs.

rk.do_step(Eq. 1, P, start time, dt)

2.2.3 Determining Dissociation Rate

After generating the fluorescence curve, the next step is extracting the overall dissociation

rate. Experiments fit the fluorescence curve to an exponential decay equation, therefore

simulations strive to imitate this strategy:

Intensity(t) = N∞(t) = 1.0− exp(−Γt). (2.23)

Since dt is inversely proportional to the laser intensity, large intensities consume amplitude

computing resources. To ensure dissociation, experiments use high intensities, beyond

the computing capabilities of simulations. Studying regimes will reveal procedures that

produce equivalent results without wasting resources. The simulations consider multiple

procedures for extracting the overall rate such as fitting, expectation value formulas, and

stochastic procedures.

Regimes studies analyze different methods and ensure accuracy compared the simple

model, Section 2.3. At very low laser intensities, laser-induced transitions are weaker

than competing Einstein As and Bs. In a spectrum, this would appear as a negligible

peak. Based on theoretical studies for CaH+, this regime is typically <1.0e9 W
m2 . At

intermediate intensities, laser transitions are directly competing with Einstein As and Bs,

which gives no guarantee on peak shape. Theory puts this regime between 1.0e9 and 1.0e14

W
m2 . With very high intensities, the laser renders the Einstein As and Bs negligible due to
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the large difference in magnitudes. This is the case and peak shape seen in experiments,

and therefore the simple model is based of this assumption. Theoretical estimations place

this regime at >1.0e14 W
m2 .

The most true to form method to find the dissociation rate would involve fitting the

fluorescence curve to the same exponential as experiments:

N∞(t) = A−B exp(−Γt). (2.24)

In this equation, A and B are additional fitting parameters to account for the initial

fluorescence and the limited experiment time. This method properly predicts the peak

shape and behavior at all regimes, Figure 2.3. Since it implements the same method as

experiments, any discrepancies will be consistent in both experiments and simulations.

While low intensities do not predict all behavior correctly, the intermediate and high

intensities produce equivalent results. However, this method presents a big disadvantage:

the fitting step. To preform regression, the entire fluorescence curve must be stored locally

and then optimized, which is resource and time intensive. Due to this fact, the method is

worthless at high intensities, and untimely at intermediate intensities.
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Figure 2.3: Single dissociation peak generated using Equation 2.23. Three different view
points of the same data are provide. a) A contour plot where the bluer areas of the contour
plot indicate a higher rate. b) A side-view of contour plot where each line in the side-
view plot is a different laser positions (ranging from 370 nm to 380 nm). c) A standard
spectrum with scaled low intensity, middle intensity, highest intensity, and simple model
rates, Equation 2.41. tmax = 4.0e-3 s, σ = 1.1074 nm.
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An alternative to fitting is the expectation value for time of dissociation. In this case,

the rate is inversely proportional to the average lifetime:

1

Γ
=< t >=

t=max time∑
t=0

tP∞(t). (2.25)

This expectation value comes from treating N∞(t) as a cumulative distribution function

(CDF). The probability distribution function (PDF) at any time, t, is the derivative of the

CDF, P∞(t). Unlike before, this method does no require any addition resources since the

rate can be computed as the fluorescence curve is generated. Regrettably, the peak shape

does not match the simple model at any regime, Figure 2.3. The rates are inversed at low

intensities, the peak is a double peak at intermediate intensities, and the peak is right shifted

at high intensities. This method is ineffective at all regimes.
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Figure 2.4: Single dissociation peak generated using Equation 2.25. Three different view
points of the same data are provide. a) A contour plot where the bluer areas of the contour
plot indicate a higher rate. b) A side-view of contour plot where each line in the side-
view plot is a different laser positions (ranging from 370 nm to 380 nm). c) A standard
spectrum with scaled low intensity, middle intensity, highest intensity, and simple model
rates, Equation 2.41. tmax = 4.0e-3 s, σ = 1.1074 nm.

Another alternative is the expectation value for rate of dissociation. The rate is

proportional to average dissociation rate:

Γ =
t=max time∑

t=dt

1.0

t
P∞(t). (2.26)
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As with the other alternative method, this method requires no addition computing

resources. Fortunately, the peak shape and behavior matches both the simple model and

the fitting method at intermediate and high intensities, Figure 2.3. Similar to the fitting

method, the peak behavior does not match perfectly at low intensities. There is also a

small scale factor between this method and the fitting method.
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Figure 2.5: Single dissociation peak generated using Equation 2.26. Three different view
points of the same data are provide. a) A contour plot where the bluer areas of the contour
plot indicate a higher rate. b) A side-view of contour plot where each line in the side-
view plot is a different laser positions (ranging from 370 nm to 380 nm). c) A standard
spectrum with scaled low intensity, middle intensity, highest intensity, and simple model
rates, Equation 2.41. tmax = 4.0e-3 s, σ = 1.1074 nm.

The last alternative is a stochastic method to iterate through the transition rate matrix.

In this process, the simulations use a number of iterations, max i, to stochastically average

the overall rate:

Γ =
1.0

max i

i=max i∑
i=0

1.0

Γi
. (2.27)

Each iteration moves from quantum state to quantum state depending on the probability of

transition, i.e. transversing through a Markov chain:

P (i← j) =
Mij∑k=max

k=0 Mik∀i 6= k
. (2.28)
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The final rate depends on the summation of all of these individual probabilities:

Γi =
∑ 1.0

Mij

. (2.29)

This method produces similar results to the fitting method, even though the method does

not technically produce a florescence curve. Since the stochastic process defines the

number of total iterations, the resource usage is small relative to fitting. In addition, the

method is less susceptible to errors due a ill chosen adding threshold. Other methods will

produce un-normalized florescence curves if the adding threshold is too small. Due to

these reasons, the stochastic method is the only process suitable for any three-photon

dissociation experiments.

Comparing all four methods based on peak behavior at different regimes and resource

usage, the expected rate of dissociation is the most viable solution for two-photon

dissociation. On the other hand, the stochastic method is ideal for three-photon

dissociation.

2.3 Simple Model

While the full-simulation model is more accurate, the simple model is more efficient and

needs less computational resources. The efficiency enables optimizations and non-linear

regression with experimental data. While the simple model cannot account for competing

reactions and multiple intra-electronic transitions, the optimizations provide an initial

guess for corrections to the CaH+ PES curves. In addition to the assumptions for the full

simulation model, the simple model assumes the dissociation process is always a

two-photon procedure: one photon from the ground state to an intermediate state and a

second photon from the intermediate state to the dissociative state. There are two versions

of the simple model, and the second version assumes the dissociation rate is always faster

than the excitation transition rate. Further sections discuss whether this assumptions is
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reasonable or not.

2.3.1 Simple Model Derivation

The simple model is derived from a simple three state problem where the states are the

ground state (N0), an intermediate transition state (N1), and the dissociative state (N2).

This is the assumptions that prevents intra-electronic transitions.

dN0

dt
= −Γ01N0 − Γ02N0 + Γ10N1 (2.30)

dN1

dt
= Γ01N0 − Γ10N1 − Γ12N1 (2.31)

dN2

dt
= Γ02N0 + Γ12N1 (2.32)

These rates are converted to a transition matrix form as before.


−Γ01 − Γ02 Γ10 0

Γ01 −Γ10 − Γ12 0

Γ02 +Γ12 0



N0

N1

N2

 =


dN0

dt

dN1

dt

dN2

dt

 (2.33)

To simplify the matrix for computation, two additional assumptions are applied. Since

the laser rate is greatly larger than the BBR rate rate, the forward and backwards rates are

approximately the same, Γ01 u Γ10. The second assumptions expects the ground state to

not dissociate, Γ02 u 0. This is the assumption that prevents competing reactions. The full

derivation, without these two assumptions is included in the appendix.


−Γ01 Γ01 0

Γ01 −Γ01 − Γ12 0

0 +Γ12 0



N0

N1

N2

 =


dN0

dt

dN1

dt

dN2

dt

 (2.34)

Solving the matrix ODE requires the eigenvalues (λ0, λ1, λ2) and eigenvectors (v0, v1,
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v2).

λ0 = 0

λ1 =
1

2

(
−
√

4Γ2
01 + Γ2

12 − 2Γ01 − Γ12

)
λ2 =

1

2

(√
4Γ2

01 + Γ2
12 − 2Γ01 − Γ12

)


v0

v1

v2

 =


0 −1

2Γ12
(λ1 + 3Γ12) −1

2Γ12
(λ2 + 4Γ01 + 3Γ12)

0 −1
2Γ12

(λ2 + 3Γ12) −1
2Γ12

(λ1 + 4Γ01 + 3Γ12)

1 1 1

 (2.35)

The SVU decomposition directly solves the matrix ODE problem:


0 −1

2Γ12
(λ1 + 3Γ12) −1

2Γ12
(λ2 + 4Γ01 + 3Γ12)

0 −1
2Γ12

(λ2 + 3Γ12) −1
2Γ12

(λ1 + 4Γ01 + 3Γ12)

1 1 1




z0

z1 exp(λ1t)

z2 exp(λ2t)

 =


N0(t)

N1(t)

N2(t)

 (2.36)

Since the molecule population is assumed to start in the ground state at time zero and

end up in the dissociative state at time infinity, boundary conditions determine the initial

constants, (z0, z1, z2).

T = 0: 
0 −1

2Γ12
(λ1 + 3Γ12) −1

2Γ12
(λ2 + 4Γ01 + 3Γ12)

0 −1
2Γ12

(λ2 + 3Γ12) −1
2Γ12

(λ1 + 4Γ01 + 3Γ12)

1 1 1



z0

z1

z2

 =


1

0

0

 (2.37)
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T =∞: 
0 −1

2Γ12
(λ1 + 3Γ12) −1

2Γ12
(λ2 + 4Γ01 + 3Γ12)

0 −1
2Γ12

(λ2 + 3Γ12) −1
2Γ12

(λ1 + 4Γ01 + 3Γ12)

1 1 1



z0

0

0

 =


0

0

1

 (2.38)

Solving the boundary conditions gives:


z0

z1

z2

 =


1

−
√

4Γ2
01+Γ2

12+2Γ01+B

2
√

4Γ2
01+Γ2

12

−
√

4Γ2
01+Γ2

12−2Γ01−B

2
√

4Γ2
01+Γ2

12

 (2.39)

The dissociation population over time appears immediately:

N2(t) = 1+
−
√

4Γ2
01 + Γ2

12 + 2Γ01 +B

2
√

4Γ2
01 + Γ2

12

exp(λ1t)+
−
√

4Γ2
01 + Γ2

12 − 2Γ01 −B
2
√

4Γ2
01 + Γ2

12

exp(λ2t)

(2.40)

As with full-simulations, this rate must imitate an exponential decay rate, N2(t) =

1 − exp(−Γt), to match the experimental approximation. Using numerical analysis, Γ

appears to be approximately −λ2:

N2(t) = 1− exp(λ2t). (2.41)

To produce the second version of the simple model, the model factors in the assumption

Γ12 >> Γ01 assumption, which simplifies the rate to:

N2(t) = 1− exp(−Γ01t). (2.42)

Therefore the estimated dissociation rate without any dissociation dependence is Γ01.

Figure 2.6 demonstrates a shift in the peak between the two simple models. The model

which assumes instantaneous dissociation, Equation 2.42 is blue shifted compared to the
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model without instantaneous dissociation, Equation 2.41. This shift comes from the blue

shifted dissociation cross section, which does not meet the Γ12 >> Γ01 criteria.

Simple w/ Dissociation
Simple w/o Dissociation
Dissociation

Γ

λ (nm)
370 372 374 376 378 380

Figure 2.6: The shape of a peak and the center of the peak changes based on the method
used to determine the rate. The peak using Equation 2.41 is a convolution of the peak from
Equation 2.42 and the dissociation cross section. This graph shows the CaH+ 1Σ(v =
0)→2 Σ(v′ = 3) REMPD peak from the simple model. I0 = 1e16 W/m2, σ = 1.1074 nm.

2.3.2 Simple Rate Calculations

The simple model requires estimations for the overall transition and dissociation rate, Γ01

and Γ12 respectively. Summing the individual transitions rates corresponding to initial

ground state population gives a good estimate of the transition rate [121, 123, 125, 126,

134]:

Γ(λ) =
1

τsp
=

∑
J,v′,J ′=±J

Γn′,v′,J ′←n,v,J(νn′,v′,J ′←n,v,J)N(n, v, J). (2.43)

This same concept is applied to find an overall dissociation rate which is a weighted sum

of the eigenvalue, λ2, for all possible dissociation pathways [121, 123, 125, 126, 134]:

Γ(λ) =
∑

J,v′,J ′=±J

λ2(∞← n′, v′, J ′ ← n, v, J)N(n, v, J). (2.44)
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2.3.3 Optimizations

The simple model is designed for optimizations, especially non-linear regressions. All

constants are initial set to theoretical values from literature and ab initio calculations. The

Nelder-Mead Minimization Algorithm minimizes an error function, E, between

experiments and theory values. The error function depends on a summation of the

dissociation rates from theory, ΓT , experiment, ΓE , and the error from experiments, σE .

The simulation implements various E functions depending on the availability of σE and

the needs of the optimization:

E =

√∑
i

(ΓTi − ΓEi )2

σE2
i

(2.45)

=

√∑
i

(ΓTi − ΓEi )2

ΓEi
(2.46)

=

√∑
i

(ΓTi − ΓEi )2 (2.47)

=

√∑
i

1 exp

(
(ΓTi − ΓEi )2

2σE2
i

)
(2.48)

(2.49)

The program implements this regression using a C++ library [135]. Typically the

optimized parameters are laser linewidth, vibronic zero-point energy, rotational constants,

and transition dipoles.

Each optimized parameter has a variance to measure the precision, which comes from

the covariance matrix. The covariance matrix is related to a Hessian matrix:

σ2 =
1

−H , (2.50)

where

Hij =
∂2E

∂i∂j
, (2.51)
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where i and j are parameters being optimized. Since many Hessians do not have inverses,

the program assumes that all off-diagonal elements are zero, which implies no correlation

between parameters. This simplifies the standard deviation to:

σi =

√
−∂

2E

∂i2

−1

. (2.52)

2.4 Hamiltonian Model

The Hamiltonian method uses a general Hamiltonian operator, Ĥ, to calculate transition in

a molecule. While this operator includes the kinetic and potential energy for the system,

only the potential will affect the transition rate:

Ĥ′ = −~̂µ · ~E(t). (2.53)

Detailed descriptions of the electric dipole moment, ~̂µ, and the electrostatic field, ~E, are

included below. This method assumes all rotations are classical and the excitation laser is a

Gaussian profile. The Hamiltonian method is potentially more accurate than methods since

it makes less assumptions to calculate individual transition rates. However, this method

does not account for the full REMPD process, nor completing transitions in its current

form. When applied to a wide laser, this model imitates the simple model. Later studies

prove theoretical PES curves incorrect for CaH+, therefore this model was never fully

developed.

The electric dipole moment for a molecule measures the overlap between an initial

state, E, to a final state, E ′, to determine the strength of a transition:

~̂µ = 〈E ′| e~r |E〉 . (2.54)

The dipole depends on the elementary charge, e, and the dipole operator, ~r. The
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electrostatic field describes the strength of the laser at the transition’s frequency:

~E(t) = ~E0 exp(i2πcν~r) exp(−icνt), (2.55)

where

~E0 =

√
2I0

cε0

. (2.56)

The field propagates through time, t.

Fermi’s Golden rule characterizes the overall transition rate within a continuum:

ΓE′←E =
2π

~

∣∣∣〈E ′| Ĥ′ |E〉∣∣∣2 ρ(ν). (2.57)

This is the probability of transition per unit time. To account for a wide laser, this rate

should be convoluted with the laser profile based on frequency. However, these transitions

exist at discrete wavelengths and do not have a continuous function to describe all of the

transition frequencies. This means a wide laser must apply Equation 2.43 to account for

exciting multiple transitions:

Γ =
∑
ν

ΓE′←E =
∑
ν

2π

~

∣∣∣〈E ′| Ĥ′ |E〉∣∣∣2 ρ(ν)Nν . (2.58)

Applying general simplifications to this system gives a similar result to the stimulated laser

transition rate:

Γ =
∑
ν

ΓE′←E =
∑
ν

πe2E2
0

2~2
|〈E ′|~r |E〉|2 g(ν)

cν
Nν . (2.59)

2.5 Peak Properties

Various factors could affect the properties of each peak in a spectrum, where the main

properties defining each peaks are height, width, and location. This next section describes
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which physical inputs will affect which peak properties. The physical inputs consist of

either physical constants unique to the molecule, or experimental constants unique to the

set-up. Comparing these attributes determines which constants are optimizable for

matching theory simulations to experimental spectra. To increase efficiency, the

optimization ignores factors that cannot be accounted for by the model. Well-known

parameters, such as those which have been experimentally measured, are held constant.

All other factors are eligible for optimizations.

2.5.1 Peak Width

The peak width and overall peak shape depend on how the laser interacts with a map of

transitions. With a broad frequency distribution, the laser will excite/dissociate multiple

rovibronic transitions. If the laser variance changes, the number of excited transitions will

change, which affects the overall peak width. If the underlying transition map changes,

then the peak will change width and sometimes shape. The model accounts for the

underlying transition distribution internally, but the rotational constants and laser

linewidth are optimizable constants, Figure 2.7. With a narrow frequency distribution, the

laser is irrelevant and line broadening is the main factor affecting peak width. Common

types of broadening are on-resonance multi-photon transition/dissociation, Doppler

broadening, and the natural line width. As stated previously, multi-photon rates are

ignored for simplicity. Doppler broadening does not occur in our CaH+ experiments, due

to the cooling process. The natural linewidth is small in trapped-cooled CaH+, therefore,

the model does not try to account for it. Since experiments in this dissertation use broad

laser, line broadening has no visible affect on experimental spectra.
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Figure 2.7: The height of a peak changes based on the laser σ. This graph shows the CaH+

1Σ(v = 0) →2 Σ(v′ = 3) REMPD peak from the full-simulation model, Section 2.2, and
the simple model, Equation 2.41. I0 = 1e14 W/m2, tmax = 4.0e-3 s.

2.5.2 Relative Peak Height

Optimizable parameters affect the absolute and relative peak height differently.

Experiments involving CaH+ cannot guarantee a absolute dissociation rate, only a relative

rate. In addition, the simple model can only match relative rates. Therefore the

optimizations account for relative factors, mainly. The relative transition dipole moment is

the strongest constant for relative transition strength, therefore the model concentrates on

optimizing this constant. The intensity of the laser is constant over the entire tunable

range, and therefore, only changes the absolute height of peaks, not the relative height.

For REMPD experiments, the average dissociation rate proportionate to the average

transition rate will change the relative peak height. The model optimizes the location of

the PES curve, which will in turn optimize the dissociation rate. The total experiment

time, tmax, determines which portion of the florescence curve the model takes into

account. While CaH+ experiments have a predefined time, shorter times will change the

absolute peak height, Figure 2.8. The last factor considered is the cross-excitation affect

from neighboring molecules and atoms. As CaH+ and Ca+ undergoes internal conversion

and relaxation, the emitted photons could excite neighboring CaH+ molecules, which

would change the absolute and relative rates. As the model assumes a single molecule

set-up, this is currently unaccounted for, but could be included using molecular dynamic
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simulations.

4e-2 s
4e-3 s
4e-4 s
4e-5 s
4e-6 s
4e-7 s

Γ

0

250

500

750

1000

1250

Wavelength (nm)
370 372 374 376 378 380

Figure 2.8: The height of a peak changes based on how long the experiment was. This
graph shows the CaH+ 1Σ(v = 0) →2 Σ(v′ = 3) REMPD peak from the full-simulation
model, Section 2.2. The simple model does not depend on time. I0 = 1e13 W/m2, σ =
1.1074 nm.

2.5.3 Peak Location

The location/maximum of a peak, which is not equivalent to the transition frequency,

hinges on how various transition frequencies shifts due experimental conditions. While

the transition frequency is the main optimizable constant, it is not the only possible one.

The underlying rovibronic transition map can shift the peak in one direction. The model

predicts this shift, but optimizing the rotational constants changes the exact vibronic peak

location. Line splitting such as Zeeman splitting, Stark splitting, Hyperfine splitting, and

off-resonance multi-photon transitions/dissociation may also affect the underlying

transitions. As discussed previously, the model ignores all multi-photon affects and

assumes all other affects are negligible.

2.6 Experimental Laser Profile
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Table 2.1: Experimental Constants for Dissociation/Transition Laser

Constant Value

Average Power 20 mW

Pulse Width (FWHM) 185 fs

Repetition Rate 76 MHz

Beam Diameter 20 µm

σ2 1.11 nm

σ2 at 397 nm 70263.3 m−1

σ2 at 794 nm 17565.8 m−1

1
e2

4.21E-6 mm

I0 2.0e20 W/m2

Peak Power 1336 W
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CHAPTER 3

CAH+ VIBRONIC TRANSITIONS

Co-trapping molecular ions with Doppler-cooled atomic ions sympathetically cools the

molecular motion to millikelvin temperatures, enabling studies in spectroscopy and

reaction dynamics [11, 20, 38, 80, 86]. Cold ionic ensembles in a variety of platforms

have proved useful for astrochemical identification [21, 65, 66] and studies of internal

state distributions,[38, 98] while co-trapping with Doppler-cooled ions offers advantages

for probing the possible time variation of fundamental constants, [30, 31, 33, 136] and

performing quantum logic spectroscopy. [35, 63, 78, 104] Ionic metal-hydrides like CaH+

and MgH+ are promising candidates for these applications [89] due to their large

rotational constants and Doppler-cooled dissociation products.

To date, spectroscopy on CaH+ is limited to two vibrational overtones [137], four

vibrational levels within the 21Σ state [108], a photodissociative electronic transition [46],

and single-ion quantum logic probes of rotational state [35]. The vibronic transitions of

Ref. [108] were previously assigned according to theory. The observed transition

frequencies agreed to within 50 cm−1 of theory, but the v = 0→ v′ = 0 transition was not

observed. A similar issue was encountered for the isoelectronic KH neutral, where the

first few vibronic lines were experimentally absent and KD spectroscopy was required in

order to correctly assign the KH transitions [138–141]. Isotopic substitution changes the

reduced mass but maintains the adiabatic electronic potential energy. The resulting shift in

vibrational energy levels can be compared to theory to confirm peak assignments.

Here we apply this method to the spectroscopy of CaH+ and CaD+. Vibronic

transitions were calculated using a MS-CASPT2 internuclear potential [2] and then

compared to measured transition frequencies obtained by resonance enhanced

multiphoton photodissociation spectroscopy (REMPD). Instead of observing the predicted
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shifts for deuterium substitution based on our previous assignment, this study reveals a

687 cm−1 disagreement in the electronic energy from MS-CASPT2 and leads to a revised

labeling of the CaH+ and CaD+ vibronic transitions.

3.1 Methods

CaD+CaH+

21Σ

11Σ

v' = 4
v' = 3
v' = 2
v' = 1
v' = 0

v = 0

v' = 3
v' = 2
v' = 1
v' = 0

Ca++D

v = 0

Ca++H

ν (
cm

-1
)

2.0×102
4.0×102
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5.0×104
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Figure 3.1: Energy level diagram of the CaH+ and CaD+ transitions probed by applying
a doubled Ti:Sapphire laser and observing resonance enhanced photodissociation. The
photodissociation of dark CaD+ ions in the crystal into trapped Ca+ and free H can be
observed in the crystal image and by an increase in 397 nm Ca+ fluorescence signal.

The experiment employed a manually-tuned, frequency-doubled Ti:Sapphire laser to

probe the vibronic transitions of CaD+ co-trapped with laser-cooled Ca+ in a

heterogeneous Coulomb crystal. By measuring the Ca+ fluorescence increase upon laser

exposure, a spectrum of molecular dissociation rate was generated. The experiments take

place in an ultrahigh vacuum chamber with a background pressure of 10−10 torr and the

ions are held in a linear Paul trap. CaD+ is generated by reaction of D2 with excited Ca+

at pressures of 10−8 torr. The Ca+ is observed and laser cooled by the laser-induced

fluorescence at 397 nm. A repump laser at 866 nm is also required to close the transition.
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Details of the experimental setup may be found in our previous work [108] on the vibronic

spectroscopy of CaH+.

The MS-CASPT2 potential energy surface of CaH+ guided our spectroscopic search

for CaD+ vibronic transitions [2]. To achieve the desired 24390 to 27100 cm−1 range,

the mode-locked Ti:Sapphire laser was frequency-doubled by a BBO crystal before being

sent along the trap axis. Each fluorescence measurement was taken for 8 ms after ten sets

of alternating 200 µs delay and 200 µs exposure to the AOM-shuttered 20 mW Ti:Sapph

beam. A fit of the fluorescence intensity to the total exposure time t to the exponential

equation:

At = A∞ − (A∞ − A0)e−Γ(λ)t, (3.1)

yields the dissociation rate Γ as a function of wavelength λ. A∞ and A0 are the

steady-state and initial fluorescence counts, respectively. Scans exhibiting first-order

CaD+ dissociation are presented in Figure 3.2. Dissociation rate plotted as a function of

frequency yielded the spectrum in Figure 3.3. 1

1The CaH+ peaks were taken with ten sets of alternating 400 µs delay and 400 µs exposure time. Ref.
[108] peak heights and rates differ by a factor of 10 because an internal counter in the computer control of
the experiment was overlooked in the analysis.
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Figure 3.2: Observed Ca+ fluorescence of composite Coulomb crystals exposed to two
laser frequencies. An increase in fluorescence indicates resonance-enhanced dissociation
of CaD+ into Ca+ and D. Dissociation rates extracted from Equation 3.1 are plotted against
frequency in Figure 3.3.

ν (cm-1)

v' = 3v' = 2v' = 1

v' = 0

CaH+

Experiment Experimental Fit Theory +687 cm-1      

0

Γ 
(m

s-1
)

0.02

0.04

0.06

0.08

0.10

2.40×104 2.45×104 2.50×104 2.55×104 2.60×104 2.65×104 2.70×104

v' = 4v' = 3v' = 2

v' = 1

v' = 0

CaD+

0

0.1

0.2

0.3

0.4

0.5

2.40×104 2.45×104 2.50×104 2.55×104 2.60×104 2.65×104 2.70×104

Figure 3.3: Comparisons of the experimental and ab initio-predicted spectra for each
isotopologue. The optimized parameters include G1(v′), B1,v′ , and µv→v′ . Relative heights
of theoretical vibronic peaks are governed by MS-CASPT2 transition dipole moments
scaled to fit the experimental v′ = 2 peak, while peak shapes come from the Boltzmann
rotational state distribution 298 K.

3.1.1 Theoretical Model for Parameter Estimation

To compare theory and experiment, CaD+ dissociation spectra were modeled using

theoretical and experimental parameters. Calculation of the Einstein A for each transition

gave a dissociation rate, and the total rate at each wavelength was obtained by summing

all transitions covered by the laser linewidth [108]. Although the experimental CaD+
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dissociation is a multi-photon process, we used a first-order model by assuming the

dissociation rate is much greater than the first excitation rate.

The spectra labeled “Theory” in Figure 3.3 rely heavily on MS-CASPT2 ab initio

calculations: the potential energy surfaces, transition dipole moments µv→v′ , and vibronic

transition frequencies G0→1(v′) come from Ref. [2]. Harmonic, ω1, and anharmonic, ωχ1,

constants were generated using the internuclear potential curves and R.J. LeRoy’s

open-source project, LEVEL [115]. Relative peak heights were determined by assuming a

thermal distribution of the rotational states in 11Σ. The first 15 J rotational levels

contribute >99.99% of the initial state population and dominate the shapes of the vibronic

peaks.

During spectral simulation, the spectral density of the laser was held at a constant

linewidth of 80 cm−1 to match the laser linewidth based on spectrometer measurements.

The model’s invariant peak intensity of 4.77 × 108 W/m2 was calculated from the laser

power and beam waist diameter at the trap center. The ab initio calculated energy of the

11Σ ground vibrational state was used as a reference for all transitions due to lack of

experimental data on the ground state potential.
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3.2 Results and Discussion

Table 3.1: Comparison of MS-CASPT2 [2] and CCSDT/cc-pCV5Z theoretical prediction
for vibronic transition frequencies for CaH+ and CaD+. Below, experimental transitions
frequencies are determined by fitting a convolution of laser linewidth and parameter-
dependent level structure to laser-induced dissociation rates of CaH+ and CaD+. The
previous CaH+ is shifted -50 cm−1 from MS-CASPT2 calculations [108] while the revised
CaH+ is shifted +687 cm−1. The resulting fit is compared to an ab-initio spectrum in
Figure 3.3
.

CaH+ CaH+ CaD+ CaD+

v′ CASPT2 CCSDT CASPT2 CCSDT

0 23887 24302.0 23983 24404.4

1 24674 25066.4 24666 24953.3

2 25449 25823.2 25305 25498.4

3 26206 26572.4 25845 26039.7

4 26942 27314.0 26199 26577.2

v′ Previous CaH+ Revised CaH+ CaD+

0 (unobserved) 24635 ± 49 24683 ± 128

1 24635 ± 74 25401 ± 21 25321 ± 22

2 25401 ± 31 26158 ± 18 25792 ± 49

3 26158 ± 27 26879 ± 29 26268 ± 60

4 26879 ± 35 - 26908 ± 55

Figure 3.3 compares the REMPD spectra of CaH+ and CaD+ produced from Equation

2.43. As expected, the CaD+ transition frequencies were more tightly-packed, owing to

the decrease in ωe accompanying the increase in reduced mass. Complication arose when

matching the ab initio predictions to experimental values: the theory, shifted by -50 cm−1 to

agree with CaH+, systematically underestimated the CaD+ vibronic transition frequencies

by >100 cm−1. If the assignments proposed in Ref. [108] were correct, this study would
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imply a 150 cm−1 isotopic shift of the electronic energy potential and further evidence

the experimentally unobserved transition to the v′ = 0 state. The isotopic shift of the

electronic energy level is large compared to the 10 cm−1 shifts seen in KH [139, 141].

These spectral anomalies prompted a reassignment of the vibrational energy levels within

the 21Σ manifold.

The new assignment of vibrational quantum numbers, shown in Table 3.1, reflects a

687 cm−1 departure from ab initio calculations. This shift manifests as a 687 cm−1

increase in T (1) − E0. Roughly a vibrational quantum in CaH+, the revision is greater

than the 100 - 150 cm−1 error window afforded by the mismatch of calculated and

measured dissociation asymptotes for Ca+(3d1) and H(1s1). This revised assignment,

however, features observable vibrational peaks through v′ = 4 and good agreement for

both isotopologues.

3.2.1 Experimental Parameters

With the new CaH+ and CaD+ peak assignments, we determined the spectroscopic

constants of the excited state by fitting both theory and experimental values to a

second-order model of vibrational energy levels. Vibronic transitions to v′ of the 21Σ state

were modeled with the equation

vv′ = T (1) + ω1(v′ +
1

2
)− ωχ1(v′ +

1

2
)2 − E0, (3.2)

where T(1) is the potential minimum of the 21Σ state, and E0 is the zero-point energy

of the ground state. The parameters T (1), ω1, and ωχ1 for both CaH+ and CaD+ are

varied to fit experimental data points by quadratic regression. Regression curves of theory

predictions and experimental fits were plotted (see Figure 3.4) to obtain the constants listed

in Table 3.1. Since CaH+ ground state information is limited [137], the E0 energy is

confined to the ab initio prediction. The fitted MS-CASPT2/experimental constants only

use a second order fit, while the theoretical MS-CASPT2/CCSDT constants use higher
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order terms, which accounts for the change in the ω1 value.

Table 3.2: Molecular constants for the 11Σ→ 21Σ vibronic transitions of CaH+ and CaD+

based on the revised peak assignments are shown. Constants are obtained from fitting the
transition energies as in Ref. [108]. (see Table A.1 for the complete list of parameters
calculated by the new (EOM)-CCSDT/cc-pCV5Z). All values are in cm−1.

ω1 ωχ1 T(1) - E0 E0

CaH+ Experimental 813 ± 6 16.8 ± 1.4 24239 ± 5 -

CaH+ CASPT2 773 - 23488 739

CaH+ CASPT2 Fitted 803 ± 3 7.5 ± 0.7 23487 ± 2 739

CaH+ CCSDT 772 3.8 23907 749

CaD+ Experimental 521 ± 72 1.0 ± 14.0 24506 ± 76 -

CaD+ CASPT2 Fitted 574 ± 1 3.5 ± 0.1 23697 ± 1 526

CaD+ CCSDT 553 1.9 24123 537

The spectroscopic constants agree reasonably with theory, however we notice a large

shift of the excited state potential. To maintain the assumption that the internuclear

potentials of CaH+ and CaD+ are similar, the energy surfaces of the MS-CASPT2 ab

initio-calculated 11Σ and 21Σ states must be separated by an additional 687 cm−1.
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Figure 3.4: The vibronic transitions of CaH+ and CaD+ and their associated fits using
Equation 3.2. Theoretical and experimental values are separated by 687 cm−1 on average.
Spectroscopic constants of each species may be found in Table 3.1.

This sizable departure from ab initio calculations is currently unexplained. Deviations

could be due to the frozen core electron approximation of MS-CASPT2 or non-adiabatic

effects. The latter effect is expected to be small based on estimations from other diatomic

hydrides. LiH vibrational levels show a 10 cm−1 isotopic electronic shift[142, 143] and

the KH, KD system features corrections around 10 cm−1 [139, 141]. The disparity in

experimental and calculated peak heights may be explained after further study of electronic

levels relevant to the dissociation pathway. In addition, the different rates for CaH+ and

CaD+ dissociation may be due to an enhanced forward reaction rate for Ca++ H2 due to

the kinetic isotope effect depressing the observed dissociation rate.

In our computations, the 102 cm−1 uncertainty in ω1 absorbs the CaD+ ωχ1 constant.

The deviations in peak position and relative peak heights from our simple model may be

due to an unknown dissociation pathway and is a topic of future research. In particular,

the shape of the v’=0 peak was not well matched by our simple model leading to a large

uncertainty in its calculated position.
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3.2.2 Revised Theoretical Predictions

The deviation from the initial ab initio calculations could be due to the frozen core

electron approximation of MS-CASPT2 or non-adiabatic effects. The latter effect is

expected to be small based on estimations from other diatomic hydrides. LiH vibrational

levels [142, 143] and the KH, KD system [139, 141] feature corrections around 10 cm−1.

To address the former, new computational results for the ground 11Σ state were obtained

using coupled-cluster theory using single and double substitutions (CCSD),[144]

coupled-cluster through full triple substitutions (CCSDT),[145–147] or coupled-cluster

through full quadruple substitutions (CCSDTQ) [148, 149]. Although CaH+ is nominally

a two-valence-electron system, where a model like CCSD should be quite accurate, group

II elements like Ca atom tend to have modest core-valence energy gaps, and so we also

included the Ca 3s and 3p electrons in the coupled-cluster procedure. To describe the

core-valence correlation, we employed the correlation-consistent polarized core-valence

(cc-pCVXZ) basis sets,[150, 151] using cardinal numbers X = D (double-ζ) through 5

(pentuple-ζ). The 2 1Σ excited state was obtained using equation-of-motion (EOM)

coupled-cluster techniques,[152] and their extension to full triple (EOM-CCSDT)[153]

and quadruple substitutions (EOM-CCSDTQ) [154].

These single-reference coupled-cluster methods should be appropriate for accurate

computations of the equilibrium geometries of the 11Σ and 21Σ states, even though the

equilibrium bond length of the excited state is somewhat stretched compared to that in the

ground state. Any small deficiencies due to incipient multi-reference character at these

bond lenghts should be effectively dealt with by the time one adds triple substitutions

through (EOM)-CCSDT. Indeed, as shown in the Appendix for the cc-pCVDZ basis set,

(EOM)-CCSDT appears to be essentially converged with respect to electron correlation

treatment, because the (EOM)-CCSDTQ results hardly differ. There are, however,

substantial differences between (EOM)-CCSD and (EOM)-CCSDT at larger internuclear

separations due to the decreasing energy gap between the σ2 and (σ∗)2 configurations.
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Because (EOM)-CCSDT remains computationally feasible for larger basis sets [unlike

(EOM)-CCSDTQ], we have utilized it as our primary theoretical method for this study. As

shown in the Appendix, (EOM)-CCSD potential curves appear to be converging with

respect to basis set by the time one uses cc-pCV5Z, and hence this basis was paired with

(EOM)-CCSDT.

Spectroscopic constants were obtained for the 11Σ and 21Σ states of CaH+ were

obtained by computing 5 electronic energies around the approximate re for each state,

evenly spaced by 0.025 Å, and finding the quartic polynomial uniquely defined by these 5

points. Spectroscopic constants are then computed from this polynomial. Due to the

Born-Oppenheimer approximation, the same electronic energies are used to obtain the

spectroscopic constants for CaD+, although the differing mass of deuterium vs hydrogen

of course affects some of the constants like ωe. Our best values at the

(EOM)-CCSDT/cc-pCV5Z level of theory are presented in Table A.1. Convergence of the

spectroscopic constants with respect to basis set and correlation treatment can be

examined in the Appendix.

All computations were executed through Psi4, [155] with its driver module parsing

user input and managing the computation. As part of a project under development, the

Quantum Chemistry Common Driver and Databases (QCDB), Psi4 can run its own

modules, other interfaced modules (e.g., MRCC [156]), and even other quantum

chemistry programs (initially, CFOUR [157]). For this work, (EOM-)CCSD used code

intrinsic to Psi4, CCSDT used Cfour, and EOM-CCSDT and (EOM-)CCSDTQ used

MRCC, all from a unified input format. Spectroscopic constants were obtained through

Psi4’s diatomic anharmonicity module.

These new theoretical results account for many differences seen between the previous

predictions and experimental results, Table 3.1. Various basis sets (cc-pCV5Z vs

cc-pCVTZ) adjust the absolute difference to 70-300 cm−1, compared to the previous 687

cm−1 shift.
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3.2.3 Theoretical Parameter Selection
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Figure 3.5: Parameter Determination for CaH+ and CaD+ Vibronic Transitions. All spectra
generated from simple model, Section 2.3, where σ is assumed to be 80 cm−1 when not a
free parameter. Constants listed in Table 3.3, Table 3.4, Table 3.5, Table 3.6, Table 3.7,
Table 3.8, Table 3.9, Table 3.10, Table 3.11, Table 3.12, Table 3.13, and Table 3.14.
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Figure 3.6: Vibronic Parameter Determination for CaH+ and CaD+ Vibronic Transitions.
All spectra generated from simple model, Section 2.3, where σ is assumed to be 80 cm−1

when not a free parameter. Constants listed in Table 3.3, Table 3.4, Table 3.5, Table 3.6,
Table 3.8, and Table 3.11.

Due to time constants, only the simple model can optimize parameters. The spectrum

from the simple model has requires four physical constants for CaH+ (vibronic transition

G0→1(v′), rotational constant Bn,v′ , distortion constants Dn,v′ , and transition dipole

moments µv→v′), and three laser parameters (laser linewidth σ, peak intensity I0, laser

frequency λ). By turning these parameters on and off, optimizations produce different

experimental fits, Figure 3.5.

Since not enough information is known about the ground state, we assume that the ab

initio predictions are correct for that state. The average shift from theory for 21Σ state in

CaH+ is 708 cm−1 while the average shift in CaD+ is 670 cm−1. This difference could

originate from ill-estimated well-depths, ill-estimated ground states, or an isotopic affect.
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The parameter µ0→2 is well-defined in both isotopes, and this was used as a reference to

find relative peak heights, Table 3.3, Table 3.4, Table 3.7, Table 3.9, and Table 3.12. This

new data cannot accurately measure distortion constants still, since the data is not precise

enough and would require a narrower laser linewidth. The current linewidth is measured at

373nm and assumed to never change across the spectrum. Ultimately, the fit from keeping

σ and Dn,v′ constant was choose as the most reasonable experimental fit.

Table 3.3: CaH+ Theoretical Parameters

v′ λ cm−1 [1] µ0→v′
µ0→2

[2] B1,v′ cm
−1 [2, 115] D1,v′ cm

−1 [2, 115]

0 24626 0.53 3.05 1.80e-4

1 25413 0.83 3.00 1.74e-4

2 26188 1.00 2.94 1.72e-4

3 26945 1.00 2.88 1.74e-4

Table 3.4: CaD+ Theoretical Parameters [2, 115]

v′ λ cm−1 µ0→v′
µ0→2

B1,v′ cm
−1 D1,v′ cm

−1

0 24509 0.36 1.57 4.75e-5

1 25075 0.70 1.55 4.62e-5

2 25636 1.00 1.53 4.56e-5

3 26189 1.19 1.51 4.51e-5

4 26734 1.26 1.49 4.55e-5
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Table 3.5: CaH+ Optimized Vibronic λ (cm−1) with Free λ and Free σ

v‘ CaH+ Previous CaH+ Revised CaD+ Previous CaD+ Revised

0 - 24621 ± 35 - 24686 ± 97

w/ σ - 24628 ± 30 - 25191 ± 1

1 24622 ± 15 25387 ± 16 24682 ± 55 25324 ± 63

w/ σ 24621 ± 16 25367 ± 13 - 25846 ± 1

2 25383 ± 14 26139 ± 37 25326 ± 49 25799 ± 12

w/ σ 25367 ± 11 26122 ± 20 - 26358 ± 0

3 26129 ± 47 26839 ± 18 25798 ± 11 26278 ± 10

w/ σ 26124 ± 25 26833 ± 16 - 26817 ± 0

4 26862 ± 24 - 26280 ± 11 26896 ± 11

w/ σ 26848 ± 22 - - 27413 ± 0

5 - - 26897 ± 11 -

w/ σ - - -

55



Table 3.6: CaH+ Optimized Vibronic λ (cm−1) with Free λ, µ and Free σ

v‘ CaH+ Previous CaH+ Revised CaD+ Previous CaD+ Revised

0 - 24620 ± 16 - 24630 ± 27

w/ σ - 24621 ± 17 - 24631 ± 25

1 24622 ± 16 25381 ± 15 24688 ± 33 25315 ± 24

w/ σ 24622 ± 17 25366 ± 11 24713 ± 28 25313 ± 22

2 25383 ± 14 26132 ± 39 25317 ± 19 25830 ± 10

w/ σ 25368 ± 11 26123 ± 19 25306 ± 20 25826 ± 10

3 26137 ± 36 26852 ± 21 25836 ± 11 26288 ± 21

w/ σ 26125 ± 19 26840 ± 17 25815 ± 10 26289 ± 26

4 26853 ± 21 - 26280 ± 19 26882 ± 11

w/ σ 26843 ± 17 - 26274 ± 24 26882 ± 13

5 - - 26906 ± 13 -

w/ σ - - 26904 ± 14 -
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Table 3.7: CaH+ Optimized Vibronic Transition Dipole Moments (µv‘
µ2

) with Free λ, µ and
Free σ

v‘ CaH+ Previous CaH+ Revised CaD+ Previous CaD+ Revised

0 - 0.71 ± 0.07 - 0.81 ± 0.08

w/ σ - 0.70 ± 0.05 - 0.78 ± 0.07

1 0.78 ± 0.08 0.90 ± 0.08 0.59 ± 0.05 1.18 ± 0.16

w/ σ 0.80 ± 0.06 0.88 ± 0.06 0.72 ± 0.06 1.07 ± 0.13

2 1.00 ± 0.09 1.00 ± 0.15 1.00 ± 0.12 1.00 ± 0.03

w/ σ 1.00 ± 0.06 1.00 ± 0.12 1.00 ± 0.12 1.00 ± 0.02

3 1.11 ± 0.17 0.89 ± 0.10 0.68 ± 0.01 1.05 ± 0.16

w/ σ 1.14 ± 0.13 0.92 ± 0.08 0.89 ± 0.02 0.88 ± 0.14

4 0.99 ± 0.11 - 0.85 ± 0.13 1.27 ± 0.07

w/ σ 1.04 ± 0.09 - 0.83 ± 0.13 1.12 ± 0.06

5 - - 0.84 ± 0.04 -

w/ σ - - 0.90 ± 0.04 -
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Table 3.8: CaH+ Optimized Vibronic λ (cm−1) with Free λ, µ, B and Free σ

v‘ CaH+ Previous CaH+ Revised CaD+ Previous CaD+ Revised

0 - 24642 ± 17 - 24753 ± 28

w/ σ - 24637 ± 17 - 24745 ± 29

1 24565 ± 17 25418 ± 11 24756 ± 29 25299 ± 20

w/ σ 24637 ± 17 25381 ± 11 24734 ± 31 25290 ± 19

2 25416 ± 11 26167 ± 21 25297 ± 21 25851 ± 11

w/ σ 25381 ± 11 26122 ± 19 25283 ± 505 25816 ± 10

3 26168 ± 21 26876 ± 19 25851 ± 11 26279 ± 18

w/ σ 26122 ± 19 26851 ± 17 25796 ± 10 26233 ± 22

4 26876 ± 19 - 26281 ± 19 26891 ± 12

w/ σ 26851 ± 17 - 26258 ± 26 26878 ± 12

5 - - 26891 ± 12 -

w/ σ - - 26872 ± 13 -
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Table 3.9: CaH+ Optimized Vibronic Transition Dipole Moments (µv‘
µ2

) with Free λ, µ, B
and Free σ

v‘ CaH+ Previous CaH+ Revised CaD+ Previous CaD+ Revised

0 - 0.72 ±0.06 - 0.82 ± 0.07

w/ σ - 0.71 ± 0.05 - 0.70 ± 0.05

1 0.73 ± 0.06 0.88 ± 0.06 0.58 ± 0.05 1.40 ± 0.16

w/ σ 0.81 ± 0.06 0.87 ± 0.06 1.20 ± 0.05 1.09 ± 0.13

2 1.00 ± 0.07 1.00 ± 0.13 1.00 ± 0.12 1.00 ± 0.02

w/ σ 1.00 ± 0.06 1.00 ± 0.11 1.00 ± 0.26 1.00 ± 0.02

3 1.15 ± 0.14 0.87 ± 0.08 0.73 ± 0.01 1.18 ± 0.16

w/ σ 1.14 ± 0.13 0.91 ± 0.07 1.62 ± 0.02 0.98 ± 0.14

4 1.00 ± 0.09 - 0.84 ± 0.12 1.23 ± 0.06

w/ σ 1.04 ± 0.08 - 1.49 ± 0.12 1.08 ± 0.05

5 - - 0.90 ± 0.04 -

w/ σ - - 1.77 ± 0.05 -
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Table 3.10: CaH+ Optimized Vibronic Rotational Constant (cm−1) with Free λ, µ, B and
Free σ

v‘ CaH+ Previous CaH+ Revised CaD+ Previous CaD+ Revised

0 - 1.7 ± 0.9 - 0.8 ± 0.2

w/ σ - 2.2 ± 0.7 - 0.8 ± 0.2

1 5.2 ± 0.4 1.3 ± 0.6 0.7 ± 0.2 1.8 ± 0.2

w/ σ 2.2 ± 0.7 2.5 ± 0.4 0.9 ± 0.2 1.9 ± 0.2

2 1.5 ± 0.5 2.0 ± 0.6 1.8 ± 0.2 1.2 ± 0.1

w/ σ 2.5 ± 0.4 3.0 ± 0.5 2.0 ± 1.2 1.7 ± 0.1

3 1.9 ± 0.6 1.9 ± 0.5 1.2 ± 0.1 1.7 ± 0.3

w/ σ 3.0 ± 0.5 2.6 ± 0.4 2.0 ± 0.1 2.2 ± 0.3

4 1.9 ± 0.5 - 1.7 ± 0.3 1.4 ± 0.1

w/ σ 2.6 ± 0.4 - 1.9 ± 0.3 1.5 ± 0.1

5 - - 1.4 ± 0.1 -

w/ σ - - 1.6 ± 0.1 -

Table 3.11: CaH+ Optimized Vibronic λ (cm−1) with Free λ, µ, B, D and Free σ

v‘ CaH+ Revised CaH+ Revised w/ σ CaD+ Revised CaD+ Revised w/ σ

0 24642 ± 17 24633 ± 17 24756 ± 39 24759 ± 30

1 25418 ± 11 25382 ± 11 25300 ± 26 25273 ± 16

2 26167 ± 21 26123 ± 19 25849 ± 14 25814 ± 10

3 26877 ± 19 26853 ± 17 26279 ± 23 26225 ± 20

4 - - 26891 ± 15 26875 ± 12
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Table 3.12: CaH+ Optimized Vibronic Transition Dipole Moments (µv‘
µ2

) with Free λ, µ, B,
D and Free σ

v‘ CaH+ Revised CaH+ Revised w/ σ CaD+ Revised CaD+ Revised w/ σ

0 0.72 ± 0.06 0.71 ± 0.05 0.97 ± 0.09 0.70 ± 0.05

1 0.88 ± 0.06 0.87 ± 0.06 1.70 ± 0.23 1.23 ± 0.13

2 1.00 ± 0.13 1.00 ± 0.11 1.00 ± 0.23 1.00 ± 0.02

3 0.87 ± 0.08 0.91 ± 0.07 1.45 ± 0.24 1.07 ± 0.13

4 - - 1.50 ± 0.09 1.11 ± 0.05

Table 3.13: CaH+ Optimized Vibronic Rotational Constant (cm−1) with Free λ, µ, B, D
and Free σ

v‘ CaH+ Revised CaH+ Revised w/ σ CaD+ Revised CaD+ Revised w/ σ

0 1.7 ± 0.9 2.5 ± 0.7 0.7 ± 0.3 0.6 ± 0.2

1 1.3 ± 0.5 2.4 ± 0.4 1.8 ± 0.3 2.1 ± 0.2

2 2.0 ± 0.6 3.0 ± 0.5 1.3 ± 0.4 1.8 ± 0.1

3 1.9 ± 0.5 2.5 ± 0.4 1.7 ± 0.8 2.3 ± 0.2

4 - - 1.4 ± 0.2 1.6 ± 0.1
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Table 3.14: CaH+ Optimized Vibronic Rotational Distortion Constant (cm−1) with Free λ,
µ, B, D and Free σ

v‘ CaH+ Revised CaH+ Revised w/ σ CaD+ Revised CaD+ Revised w/ σ

0 -2.0E-4 ± 2.3E-2 1.4E-3 ± 1.5E-2 -1.4E-5 ± 2.2E-3 -8.8E-5 ± 2.1E-3

1 -1.6E-4 ± 5.1E-3 -2.3E-4 ± 5.8E-3 -4.3E-5 ± 1.5E-3 -6.3E-6 ± 1.0E-3

2 -2.0E-4 ± 6.1E-3 -6.5E-4 ± 6.2E-3 -4.5E-5 ± 2.0E-3 -3.8E-5 ± 7.0E-4

3 -1.8E-4 ± 6.4E-3 -1.0E-3 ± 3.9E-3 -8.4E-5 ± 9.9E-3 -3.6E-5 ± 1.1E-3

4 - - -4.6E-5 ± 1.1E-3 1.4E-4 ± 7.0E-4

3.3 Conclusion

The vibronic spectrum of CaD+ was obtained by scanning a frequency-doubled Ti:Sapph

laser over the frequencies predicted to excite 21Σ vibrational modes before coupling to

unbound electronic states. Collection of Ca+ fluorescence allowed us to quantify the rate

of CaD+ dissociation and plot it against frequency at constant laser linewidth and

intensity. The harmonic constant ω1 = 537± 102 cm−1 and anharmonicity ωχ1 = 0± 20

cm−1 of the 21Σ state were extracted by fitting our experiments to a second-order

vibrational energy expression, Equation 3.2. Comparison of the simulated experiment

with MS-CASPT2 predictions revealed a 687 cm−1 average deviation from standing

theory. CaH+ vibrational levels within 21Σ were consequently reassigned by reducing the

vibrational quantum number by one relative to the previous assignment [108].

To understand this disagreement, we required further information on the ground and

excited electronic states of CaH+. New theoretical estimates were found by unfreezing

core electrons through (EOM)-CCSDT/cc-pCV5Z, which accounted for majority of the

difference. Experiments using mid-infrared spectroscopy to measure lower vibrational

transitions of the ground-state can be combined with previous vibrational overtone data
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[137] to construct a 11Σ potential energy. Probing higher-lying electronic states could

offer insight into photodissociation rates and explain why they differ from theoretical

expectations. Future experiments will also include examination of the 21Σ state with

rotational resolution, improving the precision of the constants presented here.

63



CHAPTER 4

CAH+ ROVIBRONIC TRANSITIONS

The first bound transition in CaH+ was observed for two vibrational overtone transitions

within the ground electronic state for a single CaH+ sympathetically cooled by two Ca+

[137]. In order to obtain rotational resolution, we used a stronger electric dipole transition

to study. Four vibronic peaks were previously measured for the

11Σ, v = 0 → 21Σ, v′ = 0, 1, 2, 3 electronic transition [108] and the peak assignment was

verified using the deuterated isotopologue [158]. In our experiment, a pulse shaping

technique was used to tighten the range of frequency components and obtain rotational

resolution of the 11Σ, v = 0→ 21Σ, v′ = 0, 1, 2, 3 transition.

4.1 Methods

The experimental setup for the vacuum system and ion trap are discussed in ref [108]. A

frequency doubled Ti:sapph laser was chosen for the spectroscopy of CaH+ because of the

high tunability and ease of frequency doubling when mode locked. When mode-locked,

the laser has a pulse width of around 300 fs, and a linewidth too broad to resolve rotational

transitions. In order to narrow the linewidth, we employed a 4-f pulse shaping system [159].

The pulsed laser is spectrally dispersed angularly by a holographic grating (Thorlabs GH25

with 3600 lines/mm). A focal point away, a cylindrical lens (f=500mm) performs a Fourier

transform to convert angular dispersion to spatial dispersion. At the focal point of the

lens, a 76 micron slit spatial mask is used to pick out desired frequency components. The

slit lies directly in front of a mirror and second pass recombines the selected frequency

components into a collimated beam. The mirror is tilted vertically to spatially separate

the outgoing pulse shaped beam from the incoming beam in order to pick the beam with a

D-shaped mirror and send to the trap. 76 microns is the narrowest the slit width achieved

64



without spatial diffraction of the outgoing beam. The pulse shaped beam is co-aligned

to the axial direction of the trap. A shutter (Vincent Associates Model V51452T0 Serial

11355) is used to switch the beam.

For each dissociation measurement, the ions are exposed to the beam alternating

between on and off with a time of 8 ms each for 10 cycles. The fluorescence is detected

for 200 µs, and the process is repeated 250 times Figure 4.1 to give a typical fluorescence

plot Figure 4.2. The dissociation and detection times are determined empirically to

maximize the dissociation signal. The dissociation laser power was kept between 20 and

150 µW and the rate in this regime showed no significant power dependence.

shutter open
8 ms

shutter closed
8 ms

detection
2 ms

10 ×
250 ×

Figure 4.1: The dissociation sequence used to expose the molecular ions to the dissociation
beams. The 250 fluorescence values are shown in Figure 4.2 for three sample wavelengths.

The plot compares two regimes of dissociation. Off resonance, no dissociation is seen

and is entered as 0 on the spectrum. On resonance, the fluorescence increase is fit to an

exponential curve to model a first order dissociation process:

A∞ − (A∞ − A0e
−Γ(λ)t) (4.1)

where A0 represents the initial fluorescence, A∞ is the steady state florescence, and Γ

65



is the rate recorded to produce the spectrum. Sample dissociation curves for three

experimental runs at different wavelengths are shown in Figure 4.2. The data points for

the spectrum Figure 4.3 are the average of five fitted points and vertical error bars are the

standard deviation. The entire range studied with vibronic resolution [108] was studied

with rotational resolution and is discussed in the results.

Figure 4.2: A Coulomb crystal of Ca+ reacts with H2 to form CaH+ and Ca+ with an
associated decrease on fluorescence over the course of several minutes. CaH+ is more
stably trapped on the outer edge of the composite Coulomb crystal due to the increased
mass compared to Ca+. The asymmetry of the crystal is due to radiation pressure on
the Ca+ (top). Fluorescence recovers when the laser is on resonance with a rovibronic
transition of CaH+ to form Ca+. A typical dissociation scan for three wavelengths
showing the normalized fluorescence over exposure time is used to extract dissociation
rates (bottom). The 407.511 nm scan shows no detectable dissociation. The other two are
fit to Equation 4.1 to model a first order dissociation process.
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4.2 Results and Discussion

Measuring the dissociation rate as a function of wavelength yielded a series of peaks Figure

4.3, corresponding to transitions from 11Σ, v = 0, J → 21Σ, v′ = 0− 4, J ′. The horizontal

error bars are the standard error of the residuals from the calibration curve. The dissociation

pathway is not known, though we assume that the limiting step is the excitation to the

first excited state and that the second photon causes dissociation instantaneously. This

assumption is reasonable and was used to model the vibronic spectrum in CaH+ [108, 158]

with decent agreement with the predicted transition dipole moments [2]. In contrast to

the previous experiment [108, 158] when the broad-linewidth laser dissociated multiple

rotational states at once, we observe much slower fluorescence recovery likely due to the

fact that only one rotational level is addressed in the ground state at a given time.

The measured dissociation rate is not a quantitative indication of the transition strength

or population in the rotational levels. This is due to the fact that we do not know the exact

dissociation pathway. Over the course of the fluorescence recovery scan, rethermalization

populates the levels depleted by dissociation at a rate lower than the dissociation rate giving

the measured rate. While the assumption of a first order dissociation rate over the course

of the experiment is an approximation, it does provide a method to obtain a rotational

spectrum to determine transition frequencies and spectroscopic constants.

To extract rotational constants from the experimental data, each peak was assigned to a

specific transition. Vibronic transition assignments are from CaH+ and CaD+ experiments

[158]. Since the laser beam profile is unknown, only the rovibronic transition frequency

can be matched and not the exact peak shape or width. The transition frequency is taken as

the weighted average of the data points in each peak:

λ(v′, J, J ′) =

∑
i Γiλi∑
i Γi

(4.2)

where λi refers to the frequency of the data point, and Γi is the dissociation rate at that
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point. The total dissociation for the peak is used as a normalizing factor.

The initial theoretical spectrum was produced using ab initio predictions with the

physical parameters λ(v′), B1,v′ , D1,v′ , B00, D00. The primed symbols refer to levels in the

21Σ state. The transitions were given an absolute shift of 257 cm−1 initially. The

optimization parameters were found through a Nelder-Mead algorithm to minimize the χ2

difference. We did not assign transitions manually, as there is chance for mis-assignments.

Instead, we let minimization program assign and re-assign transitions as needed. The error

function is a a weighted summation of type one and type two error. Type one error gives a

consequence for experiment transitions far removed from theory predictions, while type

two error gives the reverse. Per each experimental transition, the type one error is the

minimum χ2 difference between the experimental peak and all other theoretical

transitions. On the other hand, the type two error has the minimum χ2 difference between

the theoretical peak and all other experimental transitions. This forces all predicted

transitions to match the spectrum with no deviations. The weight for each error type is

derived from the Boltzmann distribution of the ground state population. This forces

stronger transitions to be favored over weaker transitions. Results are shown in Table ??.

The error bars are calculated from covariance matrix derived from the Hessian. An

example spectrum and Fortrat diagram showing the optimized theoretical results are

shown in Figure 4.3.

The rovibronic results predict an average shift of 266 ± 47 cm−1 from theory. The

rotational constants match well with theory, however the distortion constants are very

inconsistent. This is due to the limited resolution obtained by the pulse shaping method.

The P and R branches are too close to be resolved using this method, hence the centrifugal

distortion term cannot be accurately distinguished. In addition, a peak at 25920 cm−1

could not be assigned with the method used. This could possibly be attributed to a two

photon dissociation to another state through a pathway not currently understood. It is

worth noting that this transition is close to the Doppler cooling frequency of the

68



Table 4.1: Optimized parameters for the experimental fit for the excited (top) and
ground vibrational (bottom) states are compared to theoretical parameters for the predicted
spectrum. G1,v′ was taken from reference [158]. The Bn,v and Dn,v values were taken from
[2, 115]. All values reported are in cm−1. The λ(v′) is the J = 0→ J ′ = 0 transition.

v′ λ(v′) B1,v′ D1,v′

0 Thr. 24294 3.05 1.80 ×10−4

0 Exp. 24603 ± 29 3.03 ± 0.04 -0.0002 ± 0.0003
1 Thr. 25073 3.00 1.74 ×10−4

1 Exp. 25369 ± 16 2.86 ± 0.04 -0.0003 ± 0.0002
2 Thr. 25861 2.94 1.72 ×10−4

2 Exp. 26118 ± 16 2.86 ± 0.02 -0.0001 ± 0.0
3 Thr. 26655 2.88 1.74 ×10−4

3 Exp. 26859 ± 23 2.87 ± 0.01 0.0 ± 0.0
v G0(v) B0,v D0,v

0 Thr. 759 4.711 1.99 ×10−4

0 Exp. - 4.73 ± 0.01 -0.0002 ± 0.0

co-trapped Ca+.
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Figure 4.3: The resulting rovibronic spectrum for each previously measured vibronic
peak. (Left) The vibronic measurement in red corresponds to the spectroscopy done
before pulse shaping where the linewidth of the femtosecond laser covered multiple
rotational transitions. Generated from simple model, Equation 2.42. The black data points
correspond to measurements taken after the linewidth was narrowed to obtain suitable
resolution. Each data point is an average of five dissociation measurements and gaps in
between peaks were verified to have no dissociation. Expected peak positions determined
from the rotational constants of the optimized fits of the experimental data are shown
as blue bars. (Right Top) a Fortrat diagram for the same transition with experimentally
assigned peak locations, corresponding optimized theoretical peak locations, and (Right
bottom) the residual between the two.
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Table 4.2: Spectroscopic constants obtained from the rovibronic spectrum of CaH+

compared to the constants determined from vibronic spectroscopy [158] and CCSDT [158].
All values reported are in cm−1.

CaH+ Rovibronic CaH+ Vibronic Theory
T(0,1) 24217 ± 3 24239 ± 5 23907
ω1 776 ± 4 813 ± 6 772
ωχ1 6 ± 1 16.8 ± 1.4 3.8

4.2.1 Vibration Constant Assignment

Finally, the results were used to extract information about the vibrational constants. Using

the same procedure as before, the optimized T(0,1), ω1 and ω1χ1 were solved obtain the

values shown in Table 4.2.

These constants match well with the vibronic data for CaH+ as seen in Figure 4.4.

The rovibronic results match theoretically predicted parameters better than vibronic results.

This is because the vibronic results are largely affected by unknown dissociation pathway.

The exact pathway affects transition strength and may even shift the vibronic transition

frequency. At rovibronic level, the dissociation pathway is irrelevant. The pathway can

only affect the transition strength, not the actually frequency. This is why rovibronic results

match theory better. The electronic transition still shows a 310± 3 cm−1 shift from theory.
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Figure 4.4: The vibronic transitions for CaH+ using experimental values from the vibronic
[158] and rovibronic experiments and their associated fits are compared to ab initio theory.
Exact parameters are in Table 4.1.

4.3 Conclusion and Outlook

The spectrum and rotational constants obtained here represent the highest precision

measurements available for CaH+. The results may prove useful in the validation of the

presence of this molecular ion in the solar atmosphere. Knowledge of the transition

energies also provide a method of state readout for proposed methods of rotational cooling

by a cryogenic chamber [160, 161], sympathetic cooling with a buffer gas of Doppler

cooled atoms, or by optical pumping. One optical pumping scheme using a 6.9 micron

laser to induce the 11Σ(v = 0, J = 1)→ 21Σ(v = 1, J = 2) transition.

In the absence of inelastic collisions from background gas, polar molecules have a

rotational distribution determined entirely by blackbody radiation. Ion trap clocks using

CO+ and CaH+ molecules have large uncertainties from the rotational distribution

influence of BBR [13, 38]. On the atomic side, cesium fountain frequency standards have

an uncertainty dominated by an AC Zeemann shift from uncertain BBR [162, 163].

Knowing the temperature of the BB source will help cancel the uncertainty for more
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precision. Thus, molecular ions provide a convenient method of measuring temperature

through their many rotational states [38]. This work provides a step forward in realizing

the use of this particular ion in thermometry.
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CHAPTER 5

APPLICATIONS TO OTHER PROBLEMS

This section discusses two particular applications of the simulation and simple model. The

first half reports an analysis of the ninth and tenth overtones of the CaH+ ground state. The

second half depicts preliminary findings on the dissociation pathway in CaH+.

5.1 CaH+ Vibrational Transitions

Precision spectroscopy of molecules and molecular ions can yield insight into the

fundamental physical constants and astrochemical processes [13, 15]. Coulomb crystals

composed of laser-cooled atomic ions and molecular ions provide a pristine environment

for studying the properties of molecules [17]. The laser-cooled atomic ions serve as both a

coolant that reduces the temperature and a sensitive detector that allows for single

molecule measurements. It is also a natural system for precision measurements of

molecular ion transitions. Expanding these techniques to a wider array of molecular ion

species remains a challenge due to the lack of experimental data on molecular ions

transitions. This requires new methods for obtaining spectral information. The spatial

localization of molecular ions in a Coulomb crystal results in the required ion density for

spectroscopy with low ion numbers relative to traditional techniques. Systems built for

high-precision measurement are often incompatible with the survey spectroscopy required

to find unknown transitions. However, this is not the case for Coulomb crystals, where the

long ion storage time provides multiple opportunities to probe the molecule and the

fluorescence of the laser-cooled atomic ion serves as a fast, low-noise detector. CaH+ is a

candidate molecule for testing the possible variation in the proton-to-electron mass ratio

[29, 31]. It is also expected to be relatively abundant in space due to observation of CaH,

but has not yet been directly observed [37]. In both cases, laboratory measurements of
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rovibrational transitions in CaH+ are required for scientific progress.

5.1.1 Methods

We use laser cooled 40Ca+ ions to sympathetically cool 40CaH+ molecules. The experiment

takes place in a chamber described previously [102]. The 40Ca+ ions are trapped in a rf

Paul trap (r0 = 0.5 mm) driven at Ω = 2π × 14 MHz to confine the ions radially, while

static DC voltage applied at the endcaps confines the ions axially. The trap is kept at a

base pressure of about 4 × 10−9 Pa. The ions are detected by laser induced fluorescence

at 397 nm onto a photon multiplier tube (PMT) and electron multiplying charge coupled

device (EMCCD) camera. A narrow bandpass filter is used to ensure that only 397nm light

is detected.

A 40CaH+ molecule is produced by leaking about 5 × 10−7 Pa of molecular H2 into

the chamber via a leak valve. A chain consisting of three 40Ca+ ions is trapped before

leaking in the H2. The 40CaH+ is produced via reactive collisions in the gas phase between

40Ca+(4P 1
2
) and the H2 as 40Ca+ + H2 → 40CaH+ + H. The occurrence of a reaction is

determined when one of the ions goes dark and there is a drop in fluorescence counts.

Once a reaction occurs, the leak valve is closed and the experiment is delayed until the

base pressure is reached. After this pump down time, the internal degrees of freedom

of the molecule are expected to be at room temperature due to weak coupling with the

cold translational degrees of freedom. The identity of the molecule can be determined by

resolved sideband spectroscopy [114] and under these experimental conditions we have

only observed the formation of CaH+.

To measure the vibrational overtones of 40CaH+, we use (1 + 1’) REMPD. A

broadband mode-locked Ti:Sapph (IR) laser excites a specific vibrational transition of

40CaH+, a second photon, a fixed ultraviolet (UV) cw laser (380nm) dissociates the ion

from the upper vibrational state by coupling it to a repulsive electronic state (Fig. 2b). The

IR laser power was 800 mW and the UV laser power was 200 µW. Upon dissociation, the
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previously dark 40CaH+ ion, will be broken into Ca+ + H, the Ca+ will fluoresce again

and there will be an increase in fluorescence counts as shown in Fig. 2. Other possible

dissociation channels, including two UV photon absorption and UV induced electron

bombardment, are measured to be low compared to the REMPD dissociation rates by

performing control experiments with the IR blocked.

A pinhole before the PMT allows partial light collection from all three ions and reduces

background due to scattered light. Misalignment from the crystal center results in three

distinct collection efficiencies for each ion position. This allows us to detect the position

of the dark ion from the fluorescence. The ion position shifts are due to collision with

background gas. Three ions were used in the experiment because three ion chains with

a dark ion resulted in faster recrystallization after a collision than two ion chains with a

dark ion. Two ion chains required modulation of the laser for fast recrystallization after

collisions.

The calculated values for CaH+ properties are from Abe et al. [1] and based on the

method NRel/cc-pCV5Z/CASPT2. The transition strength is proportional to the rate rd =

1/〈τd〉.
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5.1.2 Results
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Figure 5.1: Simplified CaH+ energy level diagram showing the overtones excited by a
pulsed, tunable infrared laser (800-900 nm). A second ultraviolet laser (377 nm) excites
the overtones to the unbound state to dissociate the molecule.

Wavelength (nm)
800 820 840 860 880 900

D
is

so
ci

at
io

n 
R

at
e 

(H
z)

0.00

0.01

0.02

0.03

0.04

Figure 5.2: The measured τd are averaged over eight experiments and the inverse is plotted
as a function of the IR wavelength. The data reveals two peaks which are fit assuming a
Gaussian line shape. Gray bars are centered at the calculated theoretical values [1] for the
ν ′ = 10 ← ν = 0 and ν ′ = 9 ← ν = 0 overtones. Error bars are the standard error of
rd = 1/〈τd〉, Er, propagated from the standard deviation of 〈τd〉, στ : Er =
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Table 5.1: CaH+ 9th and 10th Overtone Theoretical Overtone

v‘ ν cm−1 µ B cm−1 D cm−1

9 12090 0.000092 3.652 0.00024777

10 13066 0.000055 3.483 0.00026575

We present the observation of two vibrational overtones of CaH+ by two photon resonant

photodissociation of single molecular ions (Figure 5.1). Although the molecular ion is

at a translational temperature of a few millikelvin, the internal degrees of freedom are in

equilibrium with the room temperature vacuum chamber via black body radiation. The

calculated vibrational frequency of the molecule is 1478.4 cm−1 and we expect that the

molecule will be in the ground vibrational state X1Σ+ greater than 99.9% of the time [1].

On the other hand, the calculated ground state rotational constant, 4.711 cm−1, is small

relative to room temperature. The rotational states will be populated with an expected

value of J = 5.36 and the lowest ten J states are expected to have more than 94% of the

population. Our experiment uses a single molecule at a time, but the blackbody radiation

will randomize the J state on the order of minutes.

The spectrum clearly shows two peaks which we identify as the ν ′ = 10← ν = 0 and

ν ′ = 9← ν = 0 overtones of CaH+ based on theoretical calculations [1] (Figure 5.2 ).
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Theoretical Optimizations
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Figure 5.3: Optimized spectra from simple model. The various free parameters are the
transition frequency, ν, the transition dipole moment, µ, the rotational constant, B, the
first centrifugal constant, D, and the laser line width, ω. Data listed in Table 5.2,Table
5.3,Table 5.4, and Table 5.5.
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Figure 5.4: Optimized transition frequencies from Figure 5.3 desplayed in Fortrat
Diagram. Data listed in Table 5.2,Table 5.3,Table 5.4, and Table 5.5.

All theoretical analysis and optimizations used the simple model, Equation 2.42. The

ν ′ = 10← ν = 0 transition centered around 812(3) nm, compared to the theoretical value

of 813.3 nm, and the ν ′ = 9 ← ν = 0 transition centered around 890(3) nm, compared

to the theoretical value of 883.3 nm, aline with observed differences between calculated

and measured vibrational transition frequencies in other metal hydrides [1]. The eight

optimizations differed by the free parameters: the transition frequency, ν, the transition

dipole moment, µ, the rotational constant, B, the first centrifugal constant, D, and the laser

line width, ω. When the laser width was constant, it was held at 80 cm−1. Since the peak

heights are relative, the dipole moments are recorded as relative to the ν ′ = 9 ← ν = 0

transition. Even with all the other parameters set as free, holding the line width constant

could not account for the narrowness of the peaks, Figure 5.3. One of the main issues was

optimizing the predicted baseline between the peaks, but even with the baseline removed,

the optimizations did not match. The only other possible variable to affect the peak width

is the laser line width, which produced better results, Figure 5.3. Based on optimizations,

the laser line width is half of the original prediction. Of the optimizations, the free ν, µ,

σ fit produces the best match while still having reasonable physical constants. None of the
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predicted theoretical transition frequencies match theory perfectly, but all optimizations

seem to match each other, Figure 5.4. Unfortunately, this data is insufficient to predict

the v=0 energy state, with any degree of accuracy, as the high overtones need to many

distortion constants to model their behavior.

Table 5.2: CaH+ Optimized Overtone with Free ν, σ = 40.54 ± 0.06 cm−1

v‘ ν cm−1 ν w/ Free σ cm−1

9 11980.2 ± 0.4 11979.8 ± 0.2

10 13056.5 ± 2.3 13065.7 ± 0.8

Table 5.3: CaH+ Optimized Overtone with Free ν, µ, σ = 43.55 ± 0.04 cm−1

v‘ ν cm−1 ν w/ Free σ cm−1 µ µ w/ Free σ

9 11984.6 ± 0.5 11982.2 ± 0.2 µ9 µ9

10 13094.1 ± 1.1 13071.4 ± 0.3 0.99 ± 0.00 µ9 0.86 ± 0.00 µ9

Table 5.4: CaH+ Optimized Overtone with Free ν, µ, B, σ = 41.39 ± 0.04 cm−1

v‘ ν cm−1
ν w/ Free σ

cm−1
µ µ w/ Free σ B cm−1

B cm−1 w/

Free σ

9
11986.3 ±

0.9

11983.8 ±

0.2
µ9 µ9 3.71± 0.00 3.61± 0.00

10
13194.8 ±

1.2

13087.9 ±

0.3

1.26 ±

0.00 µ9

0.89 ±

0.00 µ9

-1.69 ±

0.00
2.76± 0.00
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Table 5.5: CaH+ Optimized Overtone with Free ν, µ, B, D, σ = 40.60 ± 0.03 cm−1

v‘ ν cm−1

ν w/

Free σ

cm−1

µ
µ w/

Free σ
B cm−1

B cm−1

w/ Free

σ

D cm−1

D cm−1

w/ Free

σ

9
11986.8

± 0.9

11999.0

± 0.2
µ9 µ9

3.73 ±

0.00

2.25 ±

0.00

0.0003

±

0.0007

-0.0116

±

0.0000

10
13201.0

± 1.2

13087.6

± 0.3

1.37 ±

0.00 µ9

0.91 ±

0.00 µ9

-3.74 ±

0.00

2.95 ±

0.00

0.0003

±

0.0003

0.0132

±

0.0000

5.1.3 Discussion

Our experimental setup was intended for high-precision quantum logic spectroscopy [63]

experiments on molecular ions. We have shown that the same setup can be used for the

preliminary large range spectroscopy necessary to observe even weak lines despite

trapping only a few ions at a time. The next step for precision spectroscopy of CaH+ is to

reduce the rotational temperature by sympathetic cooling with neutral atoms and then

rotationally resolve these transitions and the fundamental transition [62, 83]. Then

quantum logic spectroscopy can be performed on ground state cooled Ca+-CaH+ crystals

[76] in order to reach the precision necessary for observing relative changes in

fundamental constants [64].

5.2 CaH+ and CaD+ Dissociation State Calculations

This next section focuses on determining the full dissociation pathway for CaH+ and

CaD+ based on new theoretical studies combined with previous experimental evidence.
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At this time, the work is inconclusive, as results are still inconclusive. Previous sections

discussed possible [1 + 1‘] resonance-enhanced multi-photon dissociation (REMPD)

experiments without discussing the specific dissociation pathway. The pathway could

inhibit or promote particular transitions which may affect the previously optimized

transition strength, i.e. peak height. Accounting for these influences may explain many

deviations, e.g. mismatched ab initio peak heights or inconsistent transition frequency

adjustments, seen in previous sections. Based on the theoretical potential energy surfaces,

both the 11Σ → 21Σ electronic transitions and the 11Σv = 0 → 11Σv′ = x overtone

transitions have a multitude of possible dissociation pathways, for CaH+ and CaD+.

However, previous work discussed the experimental evidence contradicting the theoretical

21Σ PES curves, Section 3. As experiments are unable to verify the theoretical PES

curves, this section focuses on entertaining the possibility of incorrect dissociation states.

This study explores the possible affects this might have on experimental spectra from

Section 3 and Section 4.

5.2.1 Methods

The experimental set-up was discussed in detail in Section 3 and Section 4 [108, 158]. The

laser frequency was tuned from 370 nm to 420 nm, and dissociation of CaH+ and CaD+

was collect at every 1 nm interval. Previous sections implement an analytical model where

dissociation was assumed to abundantly faster than transitions and therefore irrelevant,

Equation 2.42. The spectrum produced from this analytical model was optimized to fit

the experimental peak maximum and peak height, which generated an experimental fit and

experimental parameters. This work does not use the same model, as it cannot account for

spectrum variation due to dissociation.

The theoretical methodology for this work uses a combination of the simple model,

the full simulation model, and the stochastic model. The simple model, Equation 2.41,

does not assume instantaneous dissociation, but instead uses a weighted sum of the
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individual pathway dissociation rates. The weights come from the Boltzmann distribution

of the ground state rotational population at 300K. By using this model, multiple

competing pathways are quantitatively interlaced in the overall dissociation rate.

However, the model assumes a two-photon dissociation, and therefore any three-photon

dissociation pathways are excluded. The full simulation model, Section 2.2, accounts for

all cross-talk from various stimulation sources. As before, the simulations assume an

initial Boltzmann distribution of the ground vibronic state. Similar to the simple model,

the full-simulation model cannot account for three-photon dissociation. Full-simulations

require large computing resources and any three-photon pathways create too large

problem sizes. The stochastic model, Equation 2.27, uses randomness to imitate the

pathway of a molecule. Averaging over many possible pathways gives an estimation of the

final rate. While this method cannot be put in an optimized, the method can demonstrate

the affect if multi-photon pathways. The included electronic states where chosen to

include all possible states that would be populated based on the theoretical PES curves

and the expected laser frequency range. The included transition pathways are:

1. 11Σ, v = 0− 7↔ 11Σ, v′ = 0− 7

2. 11Σ, v = 0− 7↔ 21Σ, v′ = 0− 7

3. 21Σ, v = 0− 7↔ 21Σ, v′ = 0− 7

The included dissociation pathways are:

1. 11Σ, v = 0− 7→ 31Σ

2. 11Σ, v = 0− 7→ 11Π

3. 11Σ, v = 0− 7→ 21Π

4. 21Σ, v = 0− 7→ 31Σ

5. 21Σ, v = 0− 7→ 11Π
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6. 21Σ, v = 0− 7→ 21Π

Based on previous results, the transitions for 11Σ → 21Σ occur from v=0 to v’=0-4 for

both CaH+ and CaD+. However, dissociation from the 11Σ state to the 11Π state occurs

at v=5+, which means more the simulation model must include more than four vibrational

states per each electronic state. As a compromise between computational resources and

sufficient enough states, seven vibrational states was arbitrarily chosen. On the flip side,

the simple/full models assume a two-photon dissociation, and therefore, cannot account for

the 11Σv = 0→ 21Σv = 0− 4→ 11Σv = 5+→ 11Π dissociation pathway.

Optimizations implemented both models to obtain frequency shifts for all three

dissociation states. A shift in the total energy of the PES curve would modify the relative

distance between the state and a transition state, which in turn, would change the relative

dissociation strength. The shape of the dissociation state was assumed to remain constant,

which an absolute shift parameter, in cm−1 was applied to the PES curve. All dissociation

cross-sections are calculated through BCONT [116–118]. The previous physical

constants, such as transition frequency and dipole moment, are excluded from these

optimizations. Instead, the optimized constants from Section 4 are assumed to be correct

as they do not depend on the dissociation pathway. To ensure that the transition strength is

the only factor affecting the optimizations, only the peak tops were included in the

calculations. The optimizations minimize the χ2 difference between the theoretical

spectrum and the experimental spectrum. To speed-up all optimizations, the theoretical

shifts were first optimized using Equation 2.41 to produce initial guesses. Then, the full

simulation model, Section 2.2, used the initial state to produce a full optimization. For a

final confirmation, the optimized constants from CaH+ were used to produce a CaD+

spectrum which is compared to the results from Section 3.
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5.2.2 Results and Discussion

Figure 5.5 top demonstrates a CaH+ 11Σ → 21Σ spectrum produced from using ab initio

parameters with the simple model, the full simulation model and the stochastic model. All

three models generates contrasting peak heights compared to the instantaneous dissociation

analytical model [158]. In addition, the theoretical peak maximums are clearly left shifted

from the experimental peak maximums, which is directly related to the dissociation cross

section. This discrepancy directly originates from dissociation affect, which is seen in the

difference between the two analytical models, Figure 2.6. The dissociation rate is not

instantaneous compared to the transition rate, which modifies the peak maximum and the

tail-end behavior.
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Figure 5.5: The full spectrum for CaH+ from the full simulation model and simple model.
The key lists the model and the source of the parameters. Optimization parameters are
listed in Table 5.6.

All three models produce similar relative peak heights but different peak maximums

from the same ab initio parameters, Figure 5.5 top. The inconsequential differences in

relative peak height between the multi-photon spectrum (stochastic) and the two-photon

spectrum (simulations) suggest that the three-photon pathway is irrelevant. Analyzing the

rates, a molecule in the 21Σ state is more likely to dissociate or laser-stimulated emit to
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11Σv = 0, rather than spontaneously emit to 11Σv = 5+. This means the two-photon

simulation model still produces accurate and efficient results. As expected, the shape of

the simple model diverges from the expected shape of each peak from simulations. This

difference demonstrates the limitations of the simple model, which can only estimate the

relative peak height and not any rotational distribution. All three models produce slight

variations in the frequency of each peak maximum. As the exact vibronic frequency was

found in Section 4, this was considered an inconsequential inconsistency.

The simple model is the only process designed for optimizations. The full simulation

is too computational resource heavy and the stochastic model does not produce consistent

result. Therefore the optimizations were done with the simple model. The results of this

quick optimizations are shown in Table 5.6. The shifts in this table are listed as

TheoryPES + Shift = OptimizedPES. Since the simple model cannot account for

the three-photon pathway, the optimizations cannot estimate any shift on the 11Π state.

The 21Π state and 31Σ are still valid as its optimization parameter is within the 700

wavenumber shift from Section 3. Analyzing the dissociation cross-sections reveals that

the 1000 cm−1 shift on the 31Σ state shifts the cross-section spectrum to an area of

relatively large dissociation. This alters the dissociation spectrum to match the

instantaneous dissociation model.

Table 5.6: The Optimized Shifts Applied to Theoretical Dissociation States in cm−1

State Shift

11Π -

21Π 1059 ± 658

31Σ 248 ± 113

As a secondary verification, the optimized CaH+ parameters used to produce a CaD+

spectrum similar to Section 3. The initial theory produces infeasible results, and the
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optimization does not brings out normal spectrum properties. In particular the v′ = 1 and

the v′ = 4 transitions are missing from the spectra. The dissociation cross-sections are

absolute zero for these particular vibronic transitions, which may speak towards the

limitations of the BCONT program.

5.2.3 Conclusion

We have shown that an alternative theoretical model can discover a dissociation pathway

when the Hamiltonian and experimental methods could not. We show that CaH+ [1+1‘]

REMPD experiments dissociate through the 21Π and 31Σ states. The possible pathways for

these states are 11Σ, v = 0−7→ 21Σ, v′ = 0−7→ 21Π and 11Σ, v = 0−7→ 21Σ, v′ =

0 − 7 → 31Σ. Both pathways involves two-photon dissociation. These results have not

actively disproved any previous peak assignments or transition frequency measurements,

which indicates previous work is unaffected by the dissociation pathway.

While these results are incomplete and therefore inconclusive, the simple model makes

good initial progress towards the final answer. The simple model can accurately predict

relative peak heights for two-photon dissociation pathways. However, the model cannot

account for the possibility of three-photon dissociation which seems prevalent in these

results. In addition, the simple model does not accurately model key peak shape properties,

owing to estimations made in the derivation of the model. These factors make the simple

model unable for accurate results and only applicable to initial guesses.

To verify the results shown here, additional experimentation is needed. Quantum Logic

Spectroscopy could eliminate the need for the dissociation pathway [35, 38, 63, 78, 79, 91,

104]. Chou et al. already used a logical Ca+ to state-detect CaH+ [35]. If this procedure

could be modified to verify previously measured CaH+ transition frequencies, then these

dissociation results gain credibility. Rotational cooling before REMPD may also eliminate

discrepancies, Section 7.1.3. The spectra presented here are plagued by wide peaks from

rotational distributions. Eliminating these broad peaks would verify the exact transition
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frequencies and authentic these results. Directly measuring the dissociation PES curves

through experimentation would verify these results wholly.
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CHAPTER 6

QUANTUM INFORMATION

6.1 Introduction

As quantum information processors become more complex a key challenge is the

validation and verification of integrated systems. Individual gates can be well

characterized by quantum process tomography (QTP) [164], randomized benchmarking

(RB) [165–169], and related methods [170–175]. Although these techniques can be

efficient under certain conditions [176–178], in general, QTP and RB become inefficient

and impractically resource intensive, respectively, as the size of the circuit grows large.

One method for testing larger devices is to compare the physical algorithmic output to the

expected algorithmic output. For many algorithms, like the quantum linear system

algorithm [179, 180], the ideal output may not be known and the effect of errors on the

output cannot be calculated.

Fortunately there are classes of quantum circuits that can be efficiently computed, with

the prime example being circuits composed of only Clifford gates, which can be simulated

efficiently by the Gottesman-Knill theorem [181, 182]. The circuits can then be decorated

with random Pauli errors and the output can be sampled using Monte-Carlo methods. This

Monte-Carlo sampling can be extended to include Clifford errors [183] and Clifford gates

conditional on measurements in a Pauli basis [184, 185]. Since the Clifford group

transforms Pauli errors to Pauli errors, all of the errors can be pushed to the end of the

circuit. This transformation is the basis of fault-path methods which identify the sets of

errors that result in failure by following how Pauli operators propagate through the

correction circuit [186]. For low-distance codes, these method are used to rigorously

bound the fault-tolerant threshold of specific protocols. Exact calculations are not
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practical due to the exponential possible combinations of errors and these methods rely on

cutoffs that consider only a certain number of errors. This is well motivated by the

reduced probability of having multiple errors and the limited distance of the codes.

Here we apply the fault-path method to algorithms made from Clifford circuits. While

these algorithms provide at most only a polynomial advantage, they are ideal for testing

the integration of many qubits into a quantum computer. Most quantum error correction

codes expect that the errors are independent probabilistic Pauli operators. Implementing a

non-fault tolerant circuit of Clifford gate and testing the output distribution relative to this

model provides confidence in the accuracy of this error model for a given implementation.

In contrast to quantum error correction codes, we find that the fault-path method can

efficiently calculate the exact success rate for certain tree-like quantum algorithms in

polynomial time for Pauli error models. We show this can be determined from the graph

structure of the circuit and discuss how the cost of exact simulation can be related to the

weight of the nodes and the number of cycles in the graph. We then apply our tools to the

Bernstein-Vazirani algorithm and exactly simulate the success rate for circuits containing

up to 1350 qubits [187]. Finally, we apply error truncation to our method to estimate the

threshold of the Steane [[7,1,3]] code with Shor ancilla [188, 189].
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6.1.1 Background and Definitions: Pauli Errors and Clifford Circuits

X

X

X

X

X H
Z X

X Z

S
Z Z

X Y

Z

Z

Z

Z

Z

Figure 6.1: Two types of error (X and Z) propagating across a controlled-NOT, Hadamard,
and Phase gates.

The Pauli operators on n qubits are composed from the tensor product of the single qubit

Pauli operators X , Y , and Z, and the Identity, I . The weight of the Pauli operator is the

number of non-identity elements in the tensor product. For n qubits there are 4n Pauli

operators. The Clifford group is defined as unitary operations that transform Pauli

operators to Pauli operators. The Clifford group can be generated from one and two qubit

operations: CNOT, H , and S. For additional information, we refer the readers to any

quantum computation textbook [190].

A Pauli error channel, E is equivalent to a random application of a set of Pauli operators.

The action of the channel is defined by Kraus operators E(ρ) =
∑

j AjρA
†
j , where Aj =

√
pjPj , Pj is a Pauli operator, and pj is the probability that the operator is applied. We

define the number of non-zero pj as the rank of the channel, r. Clifford operators map Pauli

error channels to Pauli error channels and although the weight of the Pauli operators can

be changed the rank of the channel is preserved. Pauli error channels compose with other

Pauli error channels to create new Pauli error channels with a rank that is bound by the

product of the ranks of the channel or the maximum rank allowed by the system.
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A standard model for errors is that each gate g acting on k qubits has an associated Pauli

error channel Eg composed of Pauli operators that also act on the same k qubits, limiting the

rank to rg ≤ 4k. Assuming a circuit constructed from one and two-qubit Clifford operators,

the maximum rank for each error channel is 16. It is very convenient to push all of the error

operators to the end of the circuit. The other Clifford operations transform the error channel

to E ′g but preserve the rank. If there are G gates, the Pauli error channel of the entire circuit

can be composed from G Pauli error channels of low rank. The cost of this composition

determines whether we can efficiently determine the probability distribution of outcomes

and the success rate.

It is convenient to introduce the notion of an error vector, Ψ, which contains the 4k

probabilities for a state to a specific Pauli error. Each Clifford gate, g, first transforms Ψ

by mapping one Pauli error to another Pauli error. This can be represented by a 4k × 4k

transformation matrix Tg, with only 4k non-zero entries of 1 and preserving the error-free

entry of the error vector. Then, the associated error channel Eg is applied, which in this

representation is a 4k × 4k error matrix Eg which has rg distinct coefficients and 4krg non-

zero entries. The transformation matrices for H , S, and CNOT are given graphically in

Figure 6.1, alongside the full rank single qubit error matrix. To calculate the full error

vector of k qubits with G gates, we can apply the formula:

Ψfinal = (
G∏
i=1

EiTi)Ψinitial. (6.1)

This calculation is impractical in general, but can be used for small problem sizes.

We often combine the error matrix and transformation matrix into a single bi-stochastic

matrix: Mi = EiTi. As per Figure 6.1, H changes X errors to Z errors, Pauli operations

such as Z do not change Pauli errors. Assuming the same error matrices for the two gates,

we present two example bi-stochastic matrices:
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MZ =



pI pX pY pZ

pX pI pZ pY

pY pZ pI pX

pZ pY pX pI


, MH =



pI pZ pY pX

pX pY pZ pI

pY pX pI pZ

pZ pI pX pY


Let us examine two simple scenarios. In the first example, there areG qubits each acted

on by a single 1-qubit gate, and each gate has a distinct rank four error channel. In this

case, every Eg is equivalent to E ′g, since there are no sequential Clifford gates. Finding the

complete Pauli error channel requires multiplying all combinations of error probabilities

to yield 4G coefficients, which is inefficient in the circuit size. If we define the success

probability as the probability of no qubits having error, we only need to consider the I

component of each error channel yielding a success rate, PI,G =
∏

g pI,g, which can be

efficiently calculated with G multiplications.

In a second example, there is one qubit with G 1-qubit gates each with a distinct rank

four error channel. Now the gates are in sequence and the channels are transformed by the

gates to E ′g. Unlike the previous example, the final rank of the error channel is bound to be

4. We can compose two error channels by multiplying the 4 coefficients of each channel to

yield only 4 coefficients. As a result the complete error distribution can be found

efficiently with only 16G multiplications of error probabilities after the error

transformation. Generalizing to k qubits, we require 16kG multiplications, which is

efficient in G but inefficient in k. Formally, we calculate the bi-stochastic matrix for a sub

circuit F .

MF =
∏
g∈F

Mg (6.2)

The crux of our method for calculating success rates is to cut every circuit into these

two examples by identifying circuit components whose failure rate can be calculated

independently and by limiting the size of the dependent block to a small numbers of
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qubits. If the circuit naturally has a small dependency, we can calculate the success rate

exactly, otherwise we use approximations to truncate the dependency.

6.2 Fault-Path Tracer
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Figure 6.2: Demonstration of a standard circuit converted to a directed graph which
contains: a a undirected cycle and b a tree-like pattern. Intersecting lines represent multi-
qubit gates.

We start with a circuit of G one and two-qubit gates. We convert the circuit to a directed

graph where each gate is a node with incoming edges and outgoing edges corresponding

to the qubits acted on by the gate. A fault path is defined by starting at an output qubit of

the circuit and then walking the graph backwards to the input qubits. The fault-path shows

where errors can arise that may propagate to the final qubit output. We refer to our methods

for using fault-paths to then calculate or estimate success rates as the Fault-Path Tracing

(FPT) method.

Two circuits and their related graphs are shown in Figure 6.2. The fault-path, fp(q),

finds all gates where errors can be introduced to the final state of qubit q (Algorithm 1).

To calculate the error on that qubit for circuits composed of one and two-qubit gates, we

break the fault-path into sub-paths of single qubit gates connected by two-qubit gates. We

can calculate the error matrix for the single-qubit gate paths efficiently as described earlier.

Starting from the input nodes, we then combined these single qubit error matrices with the

two-qubit error transformation matrix and gate error to generate a two-qubit error matrix

on the outputs. We can then ask if the output qubit paths are in the fault path. If the answer

is yes, we need to keep the two-qubit error matrix. If not, we can reduce the two-qubit error
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matrix to a one-qubit error matrix by tracing over the error state of the output qubit that is

off the path. Either way, we then continue along the graph towards the output qubit.

For tree-like graphs and a single fault path, we can always reduce to a single qubit error

matrix after each gate. This simplification allows us to work with only single qubit error

matrices except for at the two-qubit nodes where we need to calculate a two-qubit error

matrix before reducing it. The result is an efficient method for calculating error states at

single qubits without knowledge of the error states on other qubits (Algorithm 2). For

undirected cycle on the underlying graph, the error matrices can continue to grow. In

Figure 6.2a, we see that a two-qubit error matrix must be kept for a few nodes and that a

three-qubit error matrix must be briefly constructed for the triangle-shaped loop. If we treat

the undirected cycle as a single three-qubit Clifford gate, the graph becomes tree-like again

but a three-qubit error matrix still must be generated. The number of qubits that input to

the undirected cycle determines the size of error matrix that must be constructed.

For any algorithm, a lower-bound on the success probability can be determined by

calculating the independent error probability of each output qubit having no error and then

multiplying the probabilities. This will overestimate the error since output errors on qubits

will be correlated. In order to calculate the correlations, we need to look at the overlap

between fault-paths that affect our output of interest.

Our procedure for calculating error rates from overlapping fault paths is described in

Algorithm 3. The four cases mentioned are: error on no branch, error on control branch,

error on target branch, and error on both branches. We often assume that the output qubit

is measured in a specific basis X or Z. As a result, the fault path is simplified and reduces

the Pauli errors to simply an error (X or Y for Z measurements) or no error (I and Z for

Z measurements). We refer to this fault-path as fp(q;X). By breaking the overlapping

fault-points into non-overlapping fault points, we can exactly calculate both the correlation

and we can handle each subgraph exactly. However, in the case that there is a undirected

cycle that has more than 2 qubit inputs or 2 qubit outputs, this method cannot no longer
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exactly calculate the success rate. Instead, a lower bound is used to estimate the rate for

each subgraph.

Algorithm 1 Finding Single Fault-Path
1: function FINDFP(C, q,E) . The fault-path from qubit q with error e on circuit C.
2: g ← C[q][−1]
3: fp(q;E)← (g,E) . If no E specified, then two points (X and Z)
4: S← ErrorRules(g,E) . Reverse error propagation rules to find previous error

sources
5: for s ∈ S do
6: g ← s[0]
7: q ← s[1]
8: E← s[2]
9: fp(q;E)+ = FindFP (g, q,E)

10: end for
11: return fp(q;E) . The fault-path containing a list of potential fault-points
12: end function

Algorithm 2 Probability of Success for Single Tree-Like Fault-Path
1: function SINGLESUCCESS(fp,M) . The error on path fp with error rates M

Ensure: fp well-ordered . Based on order in C, order fault-points
2: Ψ← [1, 0, 0, 0]
3: for g ∈ fp do
4: M ←M[g]
5: if g.size > 1 then
6: M ← Condense(M) . If the gate is a two-qubit gate, condense to a 4x4

matrix
7: end if
8: Ψ←M ∗Ψ . Apply Equation 6.2
9: end for

10: ε̄← Ψ[0].
11: return ε̄ . Probability of the qubit yielding the correct output
12: end function
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Algorithm 3 Approximate Probability of Success for Multiple Fault-Paths
1: function FINDRATE(F) . Find probability of all fault-paths F having no error or error
2: ε̄← 1.0
3: ε← 1.0
4: G← Split(F) . Split paths into independent groups
5: for g ∈ G do
6: Rates← []
7: O← g ∩ g . fault-points common to all fault-paths
8: B← FindBranches . Find the n independent branches
9: Ψ← SingleSuccess(O) . Find the rates of all 2n possible cases

10: if Independent(B) then . Test independence in branches
11: for b ∈ B do
12: Rates← FindRate(b)
13: end for[
14: else . This is the case of a cycle
15: Rates←∏

i εi . Lower Bound Estimation ]
16: end if
17: M ← BuildMatrix(Rates)
18: Ψ←M ∗Ψ . Apply Equation 6.2
19: ε̄← ε̄ ∗Ψ[0]
20: ε← ε ∗Ψ[0]
21: end for
22: return (ε̄, ε) . P(all have error), P(none have error)
23: end function

98



6.2.1 General Circuit
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M, X H, X P1, ZCNOTC, Z P2, ZZ, Z

Fault-path:

Figure 6.3: The Bernstein-Vazirani Algorithm for one bit, with a Hamming weight of one.
A possible X error on the first qubit could have resulted from various previous gates, found
through backwards error propagation rules. The controlled-X gate leads to a branch in the
fault-path. Each possible error source is a fault-point and has an associated error type that
affects the output.
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Figure 6.4: a The Bernstein-Vazirani Algorithm for three bits, with a Hamming weight of
three, showing how errors spread in the circuit. Only part of the fault-paths are highlighted
to emphasize the tree-pattern formed from fault-paths. b The same circuit represented as a
directed-graph with the full fault-path labeled.

The Bernstein-Vazirani Algorithm finds the value of an unknown string, s, composed of m

unknown bits [187]. It requires the oracle operation UBV (s) that changes the ouput qubit

state y based on the data qubits x and the function fs(x):

fs(x) = ~x · ~s = (x0s0 + x1s1 + · · ·+ xn−1sn−1) mod 2

UBV (s) |x〉 |y〉 = |x〉 |y ⊕ fs(x)〉 .
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Like all oracle based algorithms, the construction of the oracle is not specified. We

choose the simplest oracle that consists of CNOTs between data qubits where the value of

s is 1 and the output qubit. The number of gates depends on the Hamming weight of s and,

to determine worst case probabilities, we assume that s has maximum Hamming weight.

Classically, one sends in data strings with a single bit flipped and determines s in m

steps. Quantum mechanically, by using Hadamard transformations and a Pauli Z, one can

obtain s in a single oracle call. For this procedure, success is having no bit flips on the data

qubits. The output qubit is free to have any error.

Each of the data qubits is measured in the Z basis, implying that only X/Y errors

are malignant. fpZ(q) for each qubit is found using Algorithm 1. Figure 6.3 shows the

fault-path branching due to the multi-qubit gate. By mapping the overlap between all of

the fault-paths, a tree-structure emerges. To emphasize the tree-structure in Figure 6.4a,

some fault-points were deliberately left unhighlighted. This tree-structure meets the main

assumption that none of the branches cross each other. To find the success rate for this

3-qubit circuit, each highlighted portion is analyzed separately. Algorithm 2 gives the

probability error state of the Q123 region, which represents the fault-points that affect all

three data qubits. By tensoring this state with a unit vector, the first CNOT error matrix can

be applied to this state to produce a 16-dimension vector. This larger vector can be divided

into four distinct cases: no errors (ε̄), error occurring on control branch (εc), error occurring

on target branch (εt), and error occurring on both branches (εct):



ε̄

εc

εt

εct


Q123

(6.3)

After the overlap, each branch is calculated recursively. Since the control branch only

contains one fault-path, the probability of no error, ε̄Q1, can be found using Algorithm 1.
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The target branch contains two fault-paths which have a second overlap region and two

additional branches. Similar to the Q123 region, a four-case vector can be found for the

Q23 region:



ε̄

εc

εt

εct


Q23

(6.4)

Similar to before, after the Q23 overlap, the control and target branches have one fault-

path each. The probability of no error, ε̄Q2 and ε̄Q3 respectively, is found using Algorithm

1. All of these error rates can be combined using Equation 6.5 to find the success rate.

By dividing the circuit into parts depending on the nodes, the matrices do not change size

regardless of the number of qubits.



ε̄ εc εt εct

εc ε̄ εct εt

εt εct ε̄ εc

εct εt εc ε̄


Q2,Q3



ε̄

εc

εt

εct


Q23

=



ε̄

ε


Q2,Q3,Q23

ε̄ εc εt εct

εc ε̄ εct εt

εt εct ε̄ εc

εct εt εc ε̄


(Q1),(Q2,Q3,Q23)



ε̄

εc

εt

εct


Q123

=



Success

Error


(6.5)

As with the lowerbound method, various other sub-sets of the Pauli Channel can be

found by exchanging εs and ε̄s. For example, consider the scenario that the first and third

qubit have no error, but the second qubit does have error. To solve for this probability only

a minor exchanging of the error rates for the second qubit, ε̄r and εr, are necessary:
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

ε̄ εc εt εct

εc ε̄ εct εt

εt εct ε̄ εc

εct εt εc ε̄


Q2,Q3

→



εc ε̄ εct εt

ε̄ εc εt εct

εct εt εc ε̄

εt εct ε̄ εc


Q2,Q3

6.2.2 Limitations

As the FPT must make many assumptions to efficiently iterate through the circuit, there

are many known limitations. Firstly for Figure 6.5 a, if A does not equal B, which is not

a no-error state, then there is no simple equivalent of C. Solution: FPT always assumes

ideal/perfect initial states. Secondly, in Figure 6.5 a, if E = Hadamard, then the FPT

assumed equivalent is wrong since Hadamard gates are not commutative. Solution: FPT

assumes there are no Hadamard gates in the circuit. Thirdly, for Figure 6.5 b, the controlled

not gates must be converted to single qubit equivalents, of which there are none. Solution:

FPT assumes no cycles present in graph. Fourthly, in Figure 6.5 b, if F = Hadamard, then

the FPT assumed equivalent is wrong since Hadamard gates are not commutative. Solution:

FPT assumes there are no Hadamard gates in the circuit. Lastly, for Figure 6.5 b, if F is not

a Hadamard, then the FPT conversion is wrong since cycle present. Solution: FPT assumes

no cycles present in graph.
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a) b)

Figure 6.5: Examples circuit to explain where the basic FPT assumptions fail. The error
path is shown in red for both circuits. The question marks represent error that changes
depending on the previous gate (i.e. Hadamard gates).

6.3 Fault-Path Tracer for Quantum Error Correcting Codes

The FPT method was previously used to evaluate syndrome extraction methods for the

Steane code on a model ion trap architecture [189]. Here we describe the details of the

process for a specific syndrome extraction method assuming a quantum machine without

geometry, i.e. two-qubit gates are possible between any qubits. The presented FPT method

for quantum error correction is an extension and generalization of the previous method

described in Ref. [191] and used in Ref. [189].

For distance-3 codes, all single qubits errors can be decoded. For the Steane Code,

X and Z errors are decoded independently, allowing for some two-qubit errors to be fixed.

This means the success rate is the probability of all data qubits having less than two errors of

the same tpye on two different qubits after the correction is applied. Unlike before, this rate

allows multiple correlated output errors, which renders the previous methods inefficient. To

reduce the size of the circuit, every syndrome is assumed to be independent, which means

they can be analyzed separately. The syndrome is divided into three sub-groups: detectable

fault-paths, Sd, undetectable fault-paths, Su, and ancilla fault-paths, Sa. Detectable fault-

paths are sub-groups of data fault-paths where errors will affect the ancilla measurement.

In contrast, undetectable fault-paths are those fault-points were the errors will not affect

103



the ancilla measurement. Finally, ancilla fault-paths are the complete fault-paths from

ancilla qubits. For our FPT method, we assume these three categories share no fault-points

in common. This implies that a single error in any of the three sub-groups will result

in a single data-qubit error. Since each FPT calculation is dependent on the individual

gate errors, the fault path only produces pseudothreshold curve, not a real threshold point.

To find the real threshold, the circuit is encoded to a k-level and the error matrices are

recursively modified to reflect the k − 1 error rate. The method is outlined in Construction

Algorithm 4.

The exact procedure to find εd, εu, and εa varies with each QECC. Here we describe

how it is applied to Steane QECC with Shor ancilla and the decoding scheme proposed by

Divincenzo and Aliferis to account for the overlap between Sd and Sa in each syndrome

[192]. An example sysdrome measurement circuit is shown in Figure 6.6. This QECC

measures each syndrome (X and Z) three times, and employs a majority vote to ensure

accurate corrections. Since each syndrome is independent, calculations can be reduced

by assuming εd1 = εd2 = εd3. For each syndrome, the fault-paths for the DiVincenzo

and Aliferis correction are found first. Based on the probability that an error will spread

to both the ancilla measurements and the data measurements, additional gates are added

to the data qubits to represent the probability of a correction occurring. For the case of

the Steane-Shor QECC, the detectable and ancilla groups have a number of shared fault-

points; therefore, the overlap between these groups is treated as a forth group, Sb. The

data qubit fault-paths are divided among undetectable and detectable while the remaining

ancilla fault-paths remain intact. Construction Algorithm 3 is used to find εd, εu, εb, and

εa. For this particular QECC, a single error in any of the four categories will render the

entire syndrome faulty. Using the probability of a single X and Z syndrome measuring

fault, the probability of the three syndromes giving the right correction is easy to calculate.

In general, this method is accurate when there is very little or no overlap between Sd and

Sa. In addition, many QECCs require decoding schemes to reduce the number of relevant
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Algorithm 4 Approximate probability of success for multiple fault-paths
1: function FINDRATEQECC(CC,EC, k) . Find rate from code style CC, error

correcting style C, and current level k
2: M ← FindRateQECC(CC,EC, k− 1) . Populate lower level matrix dictionary
3: C← Circuit(CC,EC)
4: for l ∈ [X,Z] do
5: D ← FindFP (C, q,E)∀C.dataQubits
6: for path ∈ D do
7: for point ∈ path do . Separate path into Sd and Su
8: if point.data == True then
9: Sd+ = point [

10: else
11: Su+ = point ]
12: end if
13: end for
14: end for
15: A← FindFP (C, q,E)∀C.ancillaQubits
16: for path ∈ A do
17: for point ∈ path do . Separate path into Sa and benign fault-points
18: if point.benign == False then
19: Sa+ = point
20: end if
21: end for
22: end for
23: εd ← FindRate(Sd)
24: εu ← FindRate(Su)
25: εa ← FindRate(Sa)
26: εerror type ← εdεuεa + εdεuεa + εdεuεa + εdεuεa
27: end for
28: (1− ε)← (1− εX)(1− εZ)
29: return (1− ε) . P(error correction success)
30: end function
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qubits and account for any classical computations. Without these decoding schemes, the

number of possible outcomes quickly renders the FPT method ill-suited. In general, the

FPT method cannot simultaneously calculate multiple parts of the Pauli channel. To find

the full Pauli channel exactly requires G 4m× 4m matrices where G is the number of gates

and m is the number of data and ancilla qubits. These matrices would act on a size 4m

probability error state vector. Any correction steps would also need to be represented as

4m × 4m matrices, as no classical corrections can be applied in this context. 1

|0〉 •

|+〉 • • • • •

|0〉 • • •

|0〉 •

Figure 6.6: A single syndrome measurement for the Steane-Shor QEC with DiVincenzo
decoding. The method generates a undirected cycle in the circuit diagram precluding the
use of our methods for tree-like circuits.

6.4 Bernstein-Vazirani Algorithm

All matrix and vector math is done using the NumPy python package [193]. For testing

purposes, we choose to model error as Markovian-depolarizing noise. Depolarizing noise

represents the error rate of all gates as ε. Since single-qubit gates have three types of error

(X , Y , and Z), each type of error has an equal chance of occurring ( ε
3
). For two-qubit

gates, this fraction changes to ε
15

to represent the additional types of error (XX , Y Z, etc.).

When comparing the fault-path method to Monte Carlo simulations, there are two main
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parameters: accuracy of the success rate and computation speed. We tested both of these

parameters against two circuit variables: the gate error rate, ε, and the size of the unknown

string, s. The Monte Carlo results consisted of many trials.

6.4.1 Accuracy
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Figure 6.7: a Comparison of exact and approximate FPT methods to Monte Carlo for the
Bernstein-Vazirani algorithm with CNOT error rate = 1.0 × 10−3 and Hamming weight
equal to the string size. b Here we vary the error rate for a string size and Hamming weight
equal to 6.

As seen in Figure 6.7, the success rate behavior is reasonable since it decreases for higher

error rates and increases for smaller circuit sizes. Each (ε,s) combination was simulated

10·s
ε

times with a minimum of 100,000, and each combination is an average of least three

trials. The exact FPT method accurately predicts all Monte Carlo results, both when the

size of the string and the error rate are varied, Figure 6.7. In contrast, the lowerbound

FPT method has regions of (ε,s) that appear more accurate. As the string size increases,

the lowerbound method loses accuracy at an exponential rate. Comparatively, at error rates

less than 0.002 and higher than 0.4, the percent error is less than 5%, while the region in

between has percent error as high as 60%. In general, the lowerbound method reasonable

predict the correct success rate with a percent error less than 5% at s · ε < 0.01.
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6.4.2 Timings
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Figure 6.8: a CNOT error rate = 1.0×10−3, Hamming weight = size of string b String Size
= 6, Hamming weight = 6

Both the exact FPT method and the lowerbound FPT method consistently take less time as

expected from an analytical method, Figure 6.8. To measure the Monte Carlo minimum

wall time necessary for each combination, each (ε,s) combination was simulated until the

success rate converged to the answer provided by the exact FPT. The convergence criteria

was set to a percent error of less than 1%. Each (ε,s) combination was tested with at least

five trials for precision. As the fault-path method for tree-circuits is fully independent of

error rate, the timing does not change based on error rate, unlike Monte Carlo methods.

The minimum trial time for each point reveals a polynomial clear behavior, Figure 6.8.As

the string size increases, the Monte Carlo minimum time behavior increases as a third

degree polynomial, which reflects the linear increase in the number of simulations and the

quadratic increase in time per simulation. As the error rate moves away from 0.5% the

minimum time increases, reflective of the larger phase space. As the string size increases,

the exact method scales as a fifth degree polynomial while the lowerbound method scales

forth degree polynomial. The exact scaling of each FPT method is dependent on the number

of fault-points and the size of the overlap and therefore changes depending on the circuit.

As the Monte Carlo method cannot analysis error rates in the 10−6 − 10−4 range, the FPT

is exceedingly useful for these cases.
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6.4.3 Resource Usage
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Figure 6.9: The distribution of computation time for a Monte Carlo simulations b versus
Fault-Path Tracer where CNOT error rate = 1.0 × 10−3, Hamming weight = number of
qubits. c The amount of memory used based on number of qubits for both methods.

The Monte Carlo method applies time to building circuit copies for each iteration, Figure

6.9 a. The entire Monte Carlo procedure can be divide into five main steps: circuit

creation, adding error, simulation, output interpretation, and misc. Circuit creation

constructs a single instance of the procedure; the circuit gains erroneous gates added

through a random number generator; simulations provide the outcome of the iteration; the

results are compiled separately. Overall, for larger circuit sizes, building each simulation

takes to most amount of time. The time taken to add error to each circuit, interpret the

output, and other tasks scales linearly but is insignificant comparatively. An advantage of

the Monte Carlo calculations is the lack of information that must be stored from

simulation to simulation, Figure 6.9 c.

The exact FPT method dedicates the most time to comparing fault-points to each

other, , Figure 6.9 b. The various FPT functions consist of six types: finding fault-paths,

comparing fault-paths, building matrices, matrix math, algebraic math, and misc. Multiple

steps require building and compiling fault-paths; the error rate dictionary may gain new

entires for scalable matrices; these matrices undergo various math functions; due to the

analytical nature the FPT method depends heavily on algebraic math. The comparing

fault-path portion starts to dominate the calculations at larger circuits, due to the increased

number of fault-paths and the polynomially increased number of fault-points. In
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comparison, the last four functions start to become insignificant at larger sizes. The FPT

methods require large amounts of resources with large circuits, Figure 6.9 c.

6.5 Steane-Shor Quantum Error Correction Code
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FPT - Level 2 
FPT - Level 3 
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Figure 6.10: The threshold curves based on two methods: the FPT and Monte Carlo
simulations for a EC circuit. The FPT shows the threshold curve for different levels of
encoding to find the threshold. MC results were found at level one. The AGP result
represents the predicted threshold at an infinite level.

A key figure for any error-correcting code is where the logical error rate is less than the

physical error rate. This first error threshold is called the pseudothreshold. The threshold

is defined for a code family and is the error which below one can achieve arbitrary low

failure probability by increasing the code distance. Figure 6.10 compares the FPT method

to Monte-Carlo. We expect Monte-Carlo to give exact results but also it requires more

statistics as error rates are reduced [194]. Here we use it to benchmark the pseudothreshold

for an isolated error correction implementation. We see that the FPT method yields similar

results.

Using the fault-path tracer method, the threshold curve was found for the first five levels

of encoding, Figure 6.10. The Steane-Shor circuit does not follow the binary-tree pattern;

therefore, the FPT method only produces a lower bound on the threshold. It estimates the

pseudothreshold at 3.25 × 10−4 which is lower than the Monte Carlo simulations. Since
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the difference between these two curves is a second degree polynomial, this emphasizes

how the tracing method misses some errors that cancel. Under the assumptions that logical

measurement and preparation operations have failure rates as if they were transversal, a

level k circuit can be analyzed in terms of k−1-level error rates. Our method estimates the

real threshold at 1.91× 10−4. Here we examine a circuit of I followed by error correction.

The method of Aliferis, Gottesman, and Preskill (AGP) based on fault-paths and

malignant pair counting produces a conservative estimate of the threshold. We

implemented the AGP method using code from Andrew Cross [195]. We were able to

predict a memory threshold assuming error correction, an identity gate, and then error

correction. We found a threshold of 5.91 × 10−5. We expect that the real Pauli error

threshold lies above our estimate and this estimate.

6.6 Conclusion

The analytic methods based on fault paths can be used to accurately assess the integrated

performance of quantum devices. We have shown the utility of fault paths for

understanding the failure of simple algorithms and error correcting codes. Although the

method is limited to circuits which are not universal with relatively simple structures, the

method is scalable to many qubits. We expect that testing the performance of faulty

quantum computers on easy problems will be an important method for showing that errors

between gates are sufficiently independent for error correction to work.

The work also suggests that a tensor network approach could be applied to calculate the

error of the circuits [196]. Tensor networks are typically used to describe quantum states

and to calculate their properties. In this case the tensor network describes the error states

and sampling different error output configurations would correspond to changing output

error vectors. We expect similarities with the graphical methods for stabilizer circuits [182].

Tensor network contraction also naturally allows for partial parallelization of algorithms

and this may lead to faster algorithms for more accurate estimation of error correcting
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circuit thresholds.
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CHAPTER 7

CONCLUSION

This work reported the initial efforts towards using CaH+ in future astrochemistry and

fundamental physics experiments. We described a multitude of relevant transitions

occurring at the vibrational, vibronic, and rovibronic levels, which are applicable to future

high-precision molecular spectroscopy, quantum logic spectroscopy (QLS) experiments,

and rotational state preparation of CaH+. The vibronic 11Σ v0 −→ 21Σ v’0,1,2,3,4

transitions of CaH+ and CaD+; rovibronic 11Σ v0,J −→ 21Σ v’0,1,2,3,J’ transitions of

CaH+; vibrational 11Σ v0 −→ 11Σ v’9,10 transitions of CaH+ all contribute to future

applications.

This work introduced an alternative method to the traditional Hamiltonian method for

theoretical calculations. The approach imitated the rate changes occurring during

experimentation. By convoluting a broad laser with an underlying transition spectrum, the

program accounted for simultaneous Doppler cooling, excitation transitions, and

dissociations occurring in resonance enhanced multiphoton photodissociation

spectroscopy. The simple model directly estimated the overall dissociation rate

analytically, while the simulation model re-created the fluorescence curve seen in

experiments from a matrix ODE. Tuning the laser properties produced different transition

spectra without modifying the base program.

The models allowed each peak to be assigned to a specific transitions based on

previous theoretical predictions. When the theoretical spectrum was optimized to match

the experimental spectrum, the models corrected the theoretical predictions. The chosen

optimized parameters (transition frequency, transition dipole moments, rotational

constants, and dissociation pathway) exposed many discrepancies between predictions

and experiments. The vibrational overtones had slight shifts, less than a nanometer, from
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theory, and a thinner laser linewidth. Accounting for the Born-Oppenheimer

approximation, the vibronic optimizations revealed a 700 cm−1 shift in the 21Σ state that

was previously unrecorded. The rovibronic optimizations uncovered differences in the

rotational constants. The full-simulation model explained dissociation occurs through the

31Σ, 11Π, and 21Π states.

7.1 Future Work

Long term future projects include QLS, astrochemistry, and fundamental physics.

However, the models described in this work have immediate applications based off the

results presented here. The isotope shift between CaH+ and CaD+, an experimentally

determined potential energy surface, and a rotational cooling scheme are all immediately

achievable.

7.1.1 CaH+ and CaD+ Isotope Shift

Previous spectroscopy results potentially reveal the exact isotope shift between CaH+ and

CaD+. The potential energy surfaces for both of these diatomics might have minute

differences due to the change in mass and/or volume. The vibronic comparison from

Section 3 assumes the Born-Oppenheimer approximation, which eliminates any

distinctions between the two PES curves. However, the same results could reveal a small

isotopic shift in the 11Σ → 21Σ transition, representing a break down of the

Born-Oppenheimer approximation. This shift has been studied in small molecules for

years [139, 141, 197–202]. Experiments mostly use NMR spectroscopy [139, 141, 199,

200], but many theoretical studies exist as well [197, 198, 200–202]. Typically lighter

molecules have larger shifts, but that assumptions is not always true. H2O was found to

have isotope shift of 0.2 cm−1 [198], which as later revised to 23 cm−1 [201]. The heavy

lead atom has an shift of 0.2 cm−1 [197], and Yb+ has found to be 1 Hz [202], while the

lighter KH molecule is 10 cm−1 [139, 141]. CaH has similar properties to MgH, which is
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estimated to have a isotope shift of 0.8 cm−1 [199, 200].

The exact isotope shift, ∆, depends on four main parameters:

∆ = (TCaH+(1)− TCaH+(0))− (TCaD+(1)− TCaD+(0)) , (7.1)

where TCaH+(1) is the zero-point energy of the CaH+ 21Σ state, TCaH+(0) is the

zero-point energy of the CaH+ 11Σ state, TCaD+(1) is the zero-point energy of the CaD+

21Σ state, and TCaD+(0) is the zero-point energy of the CaD+ 11Σ state. Results from

Section 3 give the TCaH+(1) and TCaD+(1) terms. The main missing terms are TCaH+(0)

and TCaD+(0), both of which require additional experimentation. While results similar to

Section 5.1 could give the TCaH+(0) term, calculations require additional overtones closer

to v=0 to accurately account for the vibrational distortion. Similarly, the TCaD+(0) term

requires all data, since no measurements of the ground state exist.

7.1.2 CaH+ and CaD+ Potential Energy Surface Calculations

The Rydberg–Klein–Rees method derives a potential energy surface from a

rotational-vibrational spectra of diatomic molecules [203–208]. As previous results

proved theoretical PES curves incorrect, experimental PES curves are particularly

relevant. Luckily no additional experimentation is needed to obtain the CaH+ 21Σ PES

curve. The RKR1-16 program developed by Le Roy et al. uses the results from Section 4

to calculate Dunham coefficients and a potential [209]. However, the current rovibronic

constants do not seem reasonable, and need to be future analyzed before any calculations

are finalized.
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Figure 7.1: An experimental potential energy surface of the CaH+ 21Σ state. The ab initio
results originate from Ref. [2]. The experimental results are calculated from manually
implementing the Rydberg–Klein–Rees method using data from previous chapters, Section
3 and Section 4. The shift of the potential well is clearly visible.

7.1.3 CaH+ Rotational Cooling

As stated previously, the results from Section 4 are vital to rotationally cooling CaH+,

which in turn is vital to future QLS experiments. The theoretical model does not need

any major modification for cooling. The steady state changes from a dissociative state to

a ground rovibronic state. Dissociation rates can be removed from calculations as they

are not relevant to the problem, but they do not need to be removed as dissociation could

occur simultaneous as cooling. Rotational cooling using optical techniques requires precise

experimental conditions and prior knowledge of the rotational distribution, [59–61, 109].

Due to the rotational selection rules, the strongest transitions that needs to be excited is the

J=1/2 state, but consequently, the J=0 state cannot be excited at all. This emphasis the need

for precise laser control. Rotational cooling utilizing optical lasers comes in two flavors:

laser pulse shaping and narrow linewidth lasers. Both methods require exciting only one

rotational branch, either P or R, with the laser, and relaxing to the J=0 state.

The pulse shaping requires half-Gaussian shaped laser to excite an entire branch, i.e. P
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or R branch, of the rotational distribution without accidentally exciting the other branch.

To ensure that the J=0 state is not excited, the pulse shape must drop off suddenly on one

side, and to excite the entire P branch, the pulse shape must gradually decrease intensity

on the other side, [61]. As a consequence, the diatomic molecule must separate P and R

branches, which CaH+ does not. However, BH+ does have these separate branches, and

the cooling over time is shown below, Figure 7.2. The theoretical model cannot currently

implement a non-Gaussian pulse shape, but this is easily remedied.

n0, v0, j2/3/etc.
P branch,laser−−−−−−−−→ n1, v0, j1/2/etc.

P/Rbranch,relaxation−−−−−−−−−−−−→ n0, v0, j0/1/etc. (7.2)

n0, v0, j2/3/etc.
P branch,laser−−−−−−−−→ n0, v1, j1/2/etc.

P/Rbranch,relaxation−−−−−−−−−−−−→ n0, v0, j0/1/etc. (7.3)

n0, v0, j1/2/etc.
P branch,laser−−−−−−−−→ n0, v1, j0/1/etc.

Rbranch,laser−−−−−−−−→ n1, v0, j1/2/etc. (7.4)

P/Rbranch,relaxation−−−−−−−−−−−−→ n0, v0, j0/1/etc. (7.5)
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Figure 7.2: BH+ rotational cooling where the population of the n1, v0, k0 changes over time
depending on the three methods listed above.

The narrow linewidth method concentrates on one isolate transitions and lets Le
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Chatelier’s principle combined with black body radiation drive the transition. Since a

single transitions must be excited, the linewidth of the laser must be narrow enough to

eliminate any side reactions. This requires separated/isolated rotational transitions, but

CaH+ does not have easily isolated rovibronic transitions. The theoretical model can

estimate the cooling rates, but no estimates have been done as of yet.

n0, v0, j2
Pbranch,laser−−−−−−−−→ n1, v0, j1

P/Rbranch,relaxation−−−−−−−−−−−−→ n0, v0, j0/2 (7.6)

n0, v0, j2
Pbranch,laser−−−−−−−−→ n0, v1, j1

P/Rbranch,relaxation−−−−−−−−−−−−→ n0, v0, j0/2 (7.7)

n0, v0, j1
Pbranch,laser−−−−−−−−→ n0, v1, j0

Rbranch,laser−−−−−−−−→ n1, v0, j1 (7.8)

P/Rbranch,relaxation−−−−−−−−−−−−→ n0, v0, j0/2 (7.9)
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APPENDIX A

EXTRA FIGURES AND TEXT

A.1 Extension of the Simple Model

The simple model is derived from a simple three state problem where the states are the

ground state (N0), an intermediate transition state (N1), and the dissociative state (N2).

This is the assumptions that prevents intra-electronic transitions.

dN0

dt
= −Γ01N0 − Γ02N0 + Γ10N1 (A.1)

dN1

dt
= Γ01N0 − Γ10N1 − Γ12N1 (A.2)

dN2

dt
= Γ02N0 + Γ12N1 (A.3)

These rates are converted to a transition matrix form as before. Solving the matrix ODE

requires the eigenvalues (λ0, λ1, λ2) and eigenvectors (v0, v1, v2).

λ0 = 0

λ1 = 1/2
(
−
√

(Γ01 + Γ10 + Γ02 + Γ12)2 − 4(Γ01Γ12 + Γ10Γ02 + Γ02Γ12)

−Γ01 − Γ10 − Γ02 − Γ12)

λ2 = 1/2
(√

(Γ01 + Γ10 + Γ02 + Γ12)2 − 4(Γ01Γ12 + Γ10Γ02 + Γ02Γ12)

−Γ01 − Γ10 − Γ02 − Γ12)
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E = (Γ01 − Γ10 + Γ02 − Γ12 +
√

(Γ01 + Γ10 + Γ02 + Γ12)2 − 4(Γ10Γ02 + Γ01Γ12 + Γ02Γ12))

(Γ01 + Γ10 + Γ02 + Γ12 +
√

(Γ01 + Γ10 + Γ02 + Γ12)2 − 4(Γ10Γ02 + Γ01Γ12 + Γ02Γ12))

1

2 (Γ01Γ02 − Γ10Γ02 + Γ2
02 − 2Γ01Γ12 − Γ02Γ12+

1

Γ02

√
(Γ01 + Γ10 + Γ02 + Γ12)2 − 4(Γ10Γ02 + Γ01Γ12 + Γ02Γ12)

)

F = (Γ01 − Γ10 + Γ02 − Γ12 −
√

(Γ01 + Γ10 + Γ02 + Γ12)2 − 4(Γ10Γ02 + Γ01Γ12 + Γ02Γ12))

(Γ01 + Γ10 + Γ02 + Γ12 −
√

(Γ01 + Γ10 + Γ02 + Γ12)2 − 4(Γ10Γ02 + Γ01Γ12 + Γ02Γ12))

1

2 (−Γ01Γ02 + Γ10Γ02 − Γ2
02 + 2Γ01Γ12 + Γ02Γ12+

1

Γ02

√
(Γ01 + Γ10 + Γ02 + Γ12)2 − 4(Γ10Γ02 + Γ01Γ12 + Γ02Γ12)

)

G = Γ01(Γ01 + Γ10 + Γ02 + Γ12 +
√

(Γ01 + Γ10 + Γ02 + Γ12)2 − 4(Γ10Γ02 + Γ01Γ12 + Γ02Γ12))

1

2 (−Γ01Γ12 + Γ02 (−Γ10 − Γ12 + 1/2 (Γ01 + Γ10 + Γ02 + Γ12+
1√

(Γ01 + Γ10 + Γ02 + Γ12)2 − 4(Γ10Γ02 + Γ01Γ12 + Γ02Γ12)
)))

H = Γ01(Γ01 + Γ10 + Γ02 + Γ12 −
√

(Γ01 + Γ10 + Γ02 + Γ12)2 − 4(Γ10Γ02 + Γ01Γ12 + Γ02Γ12))

1

2 (−Γ01Γ12 + Γ02 (−Γ10 − Γ12 + 1/2 (Γ01 + Γ10 + Γ02 + Γ12−
1√

(Γ01 + Γ10 + Γ02 + Γ12)2 − 4(Γ10Γ02 + Γ01Γ12 + Γ02Γ12)
)))
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M =


0 −E F

0 G H

1 1 1


The SVU decomposition directly solves the matrix ODE problem:

M


z0

z1 exp(λ1t)

z2 exp(λ2t)

 =


N0(t)

N1(t)

N2(t)

 (A.4)

Since the molecule population is assumed to start in the ground state at time zero and

end up in the dissociative state at time infinity, boundary conditions determine the initial

constants, (z0, z1, z2).

M


z0

z1

z2

 =


1

0

0

 (A.5)

M


z0

0

0

 =


0

0

1

 (A.6)

Solving the boundary conditions gives:


z0

z1

z2

 =


1

H
G−H = −

(
1.0 + E

F−E

)
E

F−E = −
(
1.0 + H

G−E

)
 (A.7)

The dissociation population over time appears immediately.

N2(t) = 1 +
H

G−H exp(λ1t) +−
(

1.0 +
H

G− E

)
exp(λ2t) (A.8)
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In this scenario, there is no immediate connection to the single experiential form:

N2(t) = 1− exp(−Γt).

A.2 Supporting Information for Revised Theoretical Predictions

Figure A.1: Convergence of (EOM)-CCSD potential energy curves for CaH+ with respect
to basis set.
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Figure A.2: Convergence of potential energy curves for CaH+ with respect to electron
correlation treatment, using the cc-pCVDZ basis set.

Table A.1: Best estimates of spectroscopic constants (bond lengths in Å, other quantities in
cm−1) and total energies (hartrees) at interpolated equilibrium geometries for the 1 1Σ and
2 1Σ states of CaH+ and CaD+ at the (EOM)-CCSDT/cc-pCV5Z level of theory, under the
Born-Oppenheimer approximation

State re ωe Be D̃e αe ωexe Ee

1 1Σ CaH+ 1.89089 1507.1 4.796 1.94E-4 0.10 20.1 -677.462002410

1 1Σ CaD+ 1.89089 1079.1 2.459 5.11E-5 0.04 10.3 -677.462002410

2 1Σ CaH+ 2.37234 772.0 3.047 1.90E-4 0.06 3.8 -677.349617993

2 1Σ CaD+ 2.37234 552.7 1.562 4.99E-5 0.02 1.9 -677.349617993
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Table A.2: Spectroscopic constants (bond lengths in Å, other quantities in cm−1) and total
energies (hartrees) at interpolated equilibrium geometries for the 11Σ state of CaH+ with
various levels of theory

Method re ωe Be D̃e αe ωexe Ee

CCSDT/cc-pVDZ 1.91034 1439.4 4.699 2.00E-4 0.12 22.0 -677.220894672

CCSD/cc-pVTZ 1.91512 1467.5 4.676 1.90E-4 0.09 18.0 -677.317233199

CCSD(T)/cc-pVTZ 1.91533 1459.3 4.675 1.92E-4 0.09 18.4 -677.319803391

CCSD/cc-pVQZ 1.89837 1514.6 4.758 1.88E-4 0.10 21.2 -677.366168443

CCSD/cc-pCVDZ 1.91999 1449.2 4.652 1.92E-4 0.11 21.5 -677.326512265

CCSD/cc-pCVTZ 1.90378 1491.1 4.731 1.91E-4 0.09 19.8 -677.413936982

CCSD/cc-pCVQZ 1.89407 1508.6 4.780 1.92E-4 0.09 18.8 -677.442064155

CCSD/cc-pCV5Z 1.89190 1513.7 4.791 1.92E-4 0.09 19.2 -677.451397791

CCSD(T)/cc-pCVDZ 1.92087 1440.9 4.648 1.93E-4 0.11 22.4 -677.329064799

CCSD(T)/cc-pCVTZ 1.90345 1483.7 4.733 1.93E-4 0.10 20.3 -677.421677760

CCSD(T)/cc-pCVQZ 1.89288 1502.5 4.786 1.94E-4 0.10 19.6 -677.451588801

CCSDT/cc-pCVDZ 1.92114 1439.9 4.646 1.94E-4 0.11 22.3 -677.329292288

CCSDT/cc-pCVTZ 1.90381 1482.5 4.731 1.93E-4 0.10 20.6 -677.422117460

CCSDT/cc-pCVQZ 1.89318 1501.0 4.785 1.95E-4 0.10 19.7 -677.452488658

CCSDT/cc-pCV5Z 1.89089 1507.1 4.796 1.94E-4 0.10 20.1 -677.462002410

CCSDTQ/cc-pCVDZ 1.92097 1440.3 4.647 1.94E-4 0.11 22.3 -677.329548511
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Table A.3: Spectroscopic constants (bond lengths in Å, other quantities in cm−1) and total
energies (hartrees) at interpolated equilibrium geometries for the 21Σ state of CaH+ with
various levels of theory

Method re ωe Be D̃e αe ωexe Ee

EOM-CCSD/cc-pVDZ 2.33817 802.9 3.137 1.91E-4 0.05 1.5 -677.104454269

EOM-CCSD/cc-pVTZ 2.33957 853.7 3.133 1.69E-4 0.04 3.0 -677.199792155

EOM-CCSD/cc-pVQZ 2.32222 833.6 3.180 1.85E-4 0.05 1.6 -677.248390508

EOM-CCSDT/cc-pVDZ 2.35708 794.3 3.086 1.86E-4 0.04 -0.4 -677.108074752

EOM-CCSD/cc-pCVDZ 2.33683 839.1 3.140 1.76E-4 0.05 3.4 -677.211792315

EOM-CCSD/cc-pCVTZ 2.32758 849.4 3.165 1.76E-4 0.04 3.0 -677.297436065

EOM-CCSD/cc-pCVQZ 2.31831 845.2 3.191 1.82E-4 0.06 4.3 -677.325657641

EOM-CCSD/cc-pCV5Z 2.31716 843.8 3.194 1.83E-4 0.06 4.0 -677.335117059

EOM-CCSDT/cc-pCVDZ 2.36514 814.6 3.066 1.74E-4 0.04 0.1 -677.217284959

EOM-CCSDT/cc-pCVTZ 2.37073 801.8 3.051 1.77E-4 0.04 0.4 -677.308991179

EOM-CCSDT/cc-pCVQZ 2.36987 779.2 3.053 1.88E-4 0.06 3.0 -677.339816718

EOM-CCSDT/cc-pCV5Z 2.37234 772.0 3.047 1.90E-4 0.06 3.8 -677.349617993

EOM-CCSDTQ/cc-pCVDZ 2.36596 811.1 3.064 1.75E-4 0.04 0.4 -677.217302187
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