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ABSTRACT
This paper investigates the effects of using passive haptic
learning to train the skill of reading text from vibrotactile
patterns. The vibrotactile method of transmitting messages,
skin-reading, is effective at conveying rich information but its
active training method requires full user attention, is demand-
ing, time-consuming, and tedious. Passive haptic learning
offers the possibility to learn in the background while perform-
ing another primary task. We present a study investigating the
use of passive haptic learning to train for skin-reading. Addi-
tionally, a word-based learning structure is typically used for
this passive learning method. We expose trends that suggest
this word-based incrimental teaching may not be optimal.
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INTRODUCTION
Wearable and mobile devices are already a part of our everyday
life. They provide assistance to daily activities and enrich them
with additional information collected by the sensors within
them. The primary feedback modalities of mobiles and wear-
ables are visual and auditory. Although, most of them contain
vibrotactile capabilities, the primary utilisation of vibrotactile
feedback is to provide additional support to visual interaction .
On the contrary, the vibrotactile feedback on wearable devices
has a lot of potential to be used on its own. A prominent
application and the subject of this paper is the so called skin
reading [12]. Vibrotactile skin reading (VSR) uses vibrotactile
patterns to encode symbols [4, 12, 9, 29] which then can be
combined to convey complex messages such as words and
phrases [4, 12]. While traditionally, perceiving information
through skin has been applied for visually impaired users (e.g
Braille reading), users with normal vision can benefit from a
means to perceive messages that does not recruit the visual or
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auditory senses. Typically, learning to associate meanings (e.g
letters or words) involves active training, where users receive
vibrotactile patterns accompanied by visual and audio cues
representing the meaning [12]. Despite being effective, such a
training requires full attention, is repetitive and extensive. It is
an effort of hours which might pose a motivational obstacle
for some non-impaired users.

On the other hand, passive haptic learning [15, 17] (PHL)
can be used to train users passively without requiring their
attention. This haptics-based teaching technique has been
successfully used in numerous applications such as teaching
people to play piano [17] or type in braille [15] without them
being actively focused on training. During the training, they
are exposed to audio and haptic stimuli that inform a skill,
but they need not pay attention to it. Such a technique would
be beneficial for training skin-reading as it might motivate
potential users of skin reading that are interested but do not
have the inclination to go through hours of active training.
However, aforementioned studies of PHL are used to train
muscle memory, whereas skin-reading is mostly a task of
associating a meaning with a tactile pattern. Patterns are
combinations of activations of several vibromotors, where
failing to perceive one of them may change the meaning of
the message. While the encoding method can be optimised to
minimise such situations [10], skin-reading requires an amount
of concentration in training that may render PHL unusable.

As training is an extensive task, it would be useful if users
could be trained with a default transmission speed but be
able to understand messages with different transmission speed.
This way users could increase the speed over time and they
would not need re-training if the speed need to be changed.
Perhapse PHL could enable this.

All prior work on PHL for text system (Braille, Morse code,
Stenography) learning taught the system incrementally; teach-
ing letters in small groups based on words from a pangram [15,
17]. It was assumed that the small groups and their seman-
tic associations were necessary for learning of many letters;
however, no prior work has contrasted this with a training
method not requiring semantic grouping. On the other hand, a
passive instruction method without having to develop word-
based lessons may allow different learning durations, less rigid
passive learning structures and less system development. Such
non word-based training method without any semantic group-
ing has been successfully applied in active training for skin
reading [12, 11]. In this paper, we contrast these learning
structures for PHL.
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This paper presents a user study investigating the following
research questions:
RQ1: Can passive haptic learning can be used to train users
for skin reading?
RQ2: How does the duration of training stimuli affect
recognition? Can users understand transmissions at a
different speeds than the one used for training?
RQ3: Is it necessary to semantically group letters when using
PHL as a training method for vibrotactile skin reading? Or
would a non word-based training be sufficient?

RELATED WORK
Starting with Braille’s invention of the Braille coding in 1824,
tactile displays have been widely used by people with visual
impairments. Research on tactile displays equipped with actu-
ators has been ongoing since at least 1924 [3], where Gault [3]
used a piezoelectric unit to convert entire recorded speech to
touch. Similarly, Kirman [7] used a 15×15 vibrator matrix on
the palm to teach six participants to differentiate between the
patterns of 15 different words. Other researchers attempted to
utilise a visually oriented approach, where a low-resolution
image of the object is projected to an array of stimulators.
For instance, White [27] transformed images captured from a
video feed to a 20×20 vibrotactile display placed on the back.
After training, participants were able to distinguish simple
shapes like circle, square and triangle. Bliss [1] developed
the first commercial device capable of capturing text from the
video feed and then imprinting each letter on the finger with a
6×24 matrix of vibrators.

A more successful approach of transmitting information
through haptics was provided by Geldard [4] in 1967. The
device was named Vibratese and used five vibromotors placed
on the chest to encode 45 symbols (letters, numbers and most
frequent short words). The author reported that after 65 hours
of training one participant was able to understand 38 wpm
(words per minute). More recently, Luzhnica et al followed a
different encoding scheme using only the location of vibromo-
tors to encode 26 letters of English alphabet [12]. The authors
used six vibromotors on the back of the hand and were able to
train users to perceive letters, words and phrases within only
five hours, although they needed repetition of stimuli.

Information encoding is an important aspect of tactile displays
as patterns should be optimised for both discrimination and
transmission speed. Typically a combination of variations in
amplitude [23, 24, 28], frequency [23, 24, 28], duration [5, 4]
and body locations [4, 28, 13, 20] have been used. For instance,
Geldard [4] in his Vibratese used five locations, a variation
of three durations and three intensities to encode the desired
symbols. Recently, Novich [14] showed that spatiotemporal
encoding, where vibromotors in a pattern are turned on and off
sequentially one after the other, results in significantly better
discrimination than the spatially encoded patterns where all
vibromotors in a pattern onset simultaneously. Similar find-
ings have been produced by [15, 18]. Liao [9] utilised such
a spatiotemporal encoding to encode symbols on the wrist.
Although such encoding works well [9, 14] in terms of being
identified by participants, it is many times slower than the

spatial encoding. Luzhnica [12, 10] used a prioritised overlap-
ping spatiotemporal encoding where vibromotors are activated
in sequence after a gap, and they stay on until the pattern
is finished. This method resulted in better recognition accu-
racy than spatial encoding, and it is faster than spatiotemporal
encoding, as vibromotors share most of the activated time.

On the other hand, passive haptic learning (PHL) began with
simple music sequence training for one hand and has since
been explored for multi-limb skills, simultaneous actions,
rhythm, other areas of the body and alphabetic codes for text
entry [15, 17, 19, 16]. The technique has been found in a
limited number of cases and would benefit from further study.
This work aims to replicate the technique of PHL and examine
it for training users in vibrotactile skin reading. Furthermore,
prior work [17] contrasted two teaching structures for passive
learning, but this work focused on teaching two-limb skills,
and it has not been established whether a semantic chunking
structure is beneficial to learning.In practice, the motors could
be placed within two wearable sleeves to provide a consumable
product.

USER STUDY
The goals of this study were to investigate if PHL is able to
train for SkinReading (RQ1), establish the effects of training
stimuli speed on recognition results (RQ2), and compare a
bottom up, letter by letter training (ABT) with a training based
on words cues (WBT, RQ3). We conducted a user study to test
reception and knowledge before and after passive training.PHL
requires the attention of the user on a primary task while the
training takes place in the background. We intend to maintain
the study time and attention of participants within manageable
margins so, the study uses only ten letters, enough to compose
words, while limiting training time to around 30m. Note that,
the method used to encode information is not limited to ten
letters. It was used by Luzhnica et al. to encode the entire
English alphabet, which participants learnt within three hours
of active training [12]. This study uses letters: ’A’, ’C’, ’E’,
’G’, ’H’, ’I’, ’M’, ’N’, ’S’ and ’T’, encoded with max. two
vibromotors (see Figure 1). Given the native German language
of the location where user study took place, German was used
throughout the study for words and spelling. This study uses
two training protocols (RQ3: ABT, WBT), three stimulation
speeds during testing (RQ2: 100, 200, 300 ms) and measures
of accuracy, repetition of stimuli and testing duration (RQ1).

Wearable Haptic Display Design
We replicate the glove design by Luzhnica et al [12] with six
vibromotors on the back of the hand (see Figure 1). With it, the
ten letters in the study can be encoded with combinaitons of
one or two vibromotors. But, for encoding the entire alphabet,
a layout with more vibromotors as proposed by [10] would
be a better choice. Our device uses an Arduino Due board
to controls 3.4mm vibrotactile motors of type ROB-08449
(Voltage range: 2.3V ∼ 3.6V ; Amplitude vibration: 0.8G).

Vibrotactile Patterns and Encoding
Each letter is encoded with one or two vibromotors using
an OST (overlapped spatiotemporal) stimulation pattern de-
scribed by Luzhnica and Veas. [10]. Figure 2 illustrates the
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Figure 1: The wearable vibrotactile display layout [12] and the encoding scheme of each letter used during the study.

Figure 2: Pattern types composed of two vibromotors/lo-
cations: sequential spatiotemporal (ABT), overlapping spa-
tiotemporal (OST), spatial (S). Base duration (d) represents
the activation time of a vibromotor (t1 or t2). The gap between
the activation of vibromotors is denoted by g.

Figure 3: A participant (left) playing the game (right) while
being trained to recognise letters using PHL.

details of OST and differences with pure spatial and spatio-
temporal stimulation. OST activates the vibromotors in se-
quence, but they share most of the activation time. Moreover,
the order of activation is prioritised by the sensitivity of the
finger, since it yields a higher accuracy in identification of
locus [10]. Sensitivity order is assumed according to studies
suggesting that sensitivity decreases from the index finger to-
wards the little finger: the index finger is more sensitive than
the middle, ring, and pinky finger [2, 25, 6]. The thumb is
the lowest sensitive [21]. For example, a letter encoded with
index and pinky finger, activates the index vibromotor first,
and then after a gap, the vibromotor on the pinky finger. Letter
encoding uses a base duration (d) of 200 ms and a 10 ms gap
(g) between the activation of vibromotors. So, the letter dura-
tion (ld) of a one vibromotor letter is 200 ms and 210 ms for
two-vibromotor letters. When constructing words, a gap (bl)
of 200 ms separates subsequent letters . Note that with longer
training periods, users learn to recognise letters and words
with shorter stimulation [12]. Our study fixes training duration
to 200ms and considers shorter durations during testing.

Procedure
The entire study was organised in rounds, each serving the
purpose of either training or testing. PHL takes place during
training. During the entire training, participants are engaged

in playing a game as a primary task (internal implementation
of the snake game 1). Meanwhile, they are passively trained
to recognise patterns (see Figure 3). Testing rounds use the
active concentration of participant on the test. There are two
training modes: WBT and ABT.
Word Based Training (WBT) uses word cues to passively
train users to associate letters with vibrotactile patterns. WBT
starts with an audio cue of a word (e.g. Ich) and continues with
a series of audio cues of each letter of that word. the vibrotac-
tile stimulation of the pattern representing the letter follows
50ms after its audio cue. We use the words "ICH", "MAG",
"ES", "NICHT", which together form a sentence ("Ich mag
es nicht") from the children’s book "Grunes Ei mit Schpeck"
written by Dr Seuss. Each word is played in a loop 48 times
before moving to the next one. WBT takes 32 minutes.
Alphabetical Based Training (ABT) uses letters in alpha-
betic order to passively train users to associate symbols with
vibrotactile patterns. ABT starts with an audio cue which
represents a letter of the German alphabet, followed by its vi-
brotactile cue after 50 ms. The process is repeated four times,
moving to the next letter to compose one round. The entire
procedure was repeated for 12 times (32 minutes) composing
12 rounds. In addition to the ten letters in alphabetical order,
one round also contained the letters C, H and I at the end.
Doing so, the number of letters stimulated in ABT is balanced
with that of WBT where the letters C, H and I appear twice.
Reconstruction Testing (RT). Participants were asked to se-
lect (using the mouse or keyboard) which locations (vibromo-
tors) are used to encode a given letter displayed on the screen.
Figure 4 shows the user interface for RT.
Letter Testing (LT). Participants were stimulated with a pat-
tern and asked to input the letter associated with it. They could
repeat the stimuli before answering, and they were not notified
whether their answer was correct.
Word Testing (WT). Like LT, users try to recognize stimu-
lations. Participants were tested for words constructed only
from letters that they trained. These include the four words
used in WBT (ES, ICH, MAG, NICHT) and four additional
words (IN, MIT, IST, GEHEN).

The first round of the sudy was a pre-test consisting of a round
of RT and a round of LT. Pre-test served the purpose to famil-
iarize participants with the testing procedure and to demon-
strate their lack of knowledge about skin-reading. Thereafter,
participants were exposed to the game and passive training.
They were explicitly instructed to focus on the game. They
were randomly assigned to two equal groups. The first group
trained using WBT and the second one with ABT. After 32m
of training, they were exposed to rounds of RT, LT and WT.

1https://en.wikipedia.org/wiki/Snake_(video_game_genre)
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Figure 4: The user interface used for letter reconstruction test.

We refer to this block as post-train testing. To study the ef-
fect of transmission speed, post train LT and WT were per-
formed with a base duration of d ∈ [100ms,200ms,300ms]
coupled, in the case of words, with between letter duration of
bl ∈ [100ms,200ms,300ms]. Finally, participants filled out a
NASA TLX questionnaire, rating workload of the letter and
word recognition. They were also asked to rate the three fol-
lowing sentences using five-level Likert scale (from strongly
disagree to strongly agree):
Effectiveness: The (voice) passive training of letters while
playing is a good way of teaching to recognise vibrotactile
encoded letters!
Annoyingness: The (voice) passive training of letters while
playing the game was annoying!
Interruptedness: The (voice) passive training of letters while
playing the game did prevent me from focusing on the game!

On the very next day, participants were exposed to another
testing, identical to the post-train testing. We refer to it as
recall-testing, as its purpose was to evaluate how much users
recall the next day. The entire procedure is depicted in Figure 5.
In the pre-train testing one probe per letter was collected in
both LT and RT. During post-train and recall, for each letter,
one probe was collected in RT, six probes (two per each speed)
in LT and three probes (one per speed) WT.

Participants
Twenty (20) individuals (13 male and 7 female) aged between
23 and 46 (M=32.7, STD=7.6) years old participated in this
study. Half of participants used WBT. Only one of them was
left handed. All of them used the left hand for stimulation and
the right to interact with the computer as depicted in Figure 3.

Results
Let us define the following variables: accuracy, repetition and
total duration. Repetition describes how many times a user re-
peated the stimulation (letter or word) in LT, WT rounds. Total
duration represents the difference between the user response
time-point and the first stimulation time-point including repe-
titions.

Accuracy will be defined differently for different test types.
For the RT accuracy is defined to be 1 if the user provides

the exact locations that encode the given letter, otherwise 0.
Similarly, for LT the accuracy is a binary variable defined
to be 1 if the user’s response matches the stimulated letter.
For WT, accuracy is defined in relation to the similarity of
the stimulated word to the user’s response. Word recognition
accuracy for a pair of answer and stimulated word (a,s) is
computed by the given expression:

σ(a,s) = 1− d(a,s)
#s

, (1)

where d is the Levenshtein distance [8] between two words
and #s represents the word length (number of letters). The
Levenshtein distance is defined as the minimum single-letter
edits (insertions, deletions or substitutions) required to change
one word into the other 2.

We consider the testing phase (post-train, recall), speed (100
ms, 200 ms. 300 ms) and training method (ABT, WBT) as
independent variables; the letter reconstruction accuracy, as
well as recognition accuracy on word and letters as dependent
variables. We also consider repetition rate and total duration
dependent variables.

Letters
Table 2 lists letter reconstruction and recognition accuracies
in the pre-train test. Participants managed to guess/identify
letters with an accuracy of 6% and reconstruct them with an
accuracy of 8% before the training. The results demonstrates
their lack of knowledge about the encoding of letters. The
letter recognition and reconstruction accuracies for the post-
train and recall tests are presented in Table 1 and Table 3.

Considering that the recognition and reconstruction accuracy
are binary values, we will use chi-squared analysis to deter-
mine the significance of differences in accuracy.

As regards RQ1, a chi-squared analysis revealed no signifi-
cant difference in recognition accuracy between the post-train
phase (M = 0.69,ST D = 0.46) and recall (M = 0.69,ST D =
0.46); χ2(1,N = 2400) = 0.0, p = 0.96. A chi-squared analy-
sis reveals that there is no significant difference in reconstruc-
tion accuracy between the post-train phase (M = 0.66,ST D =
0.48) and recall (M = 0.66,ST D = 0.47); χ2(1,N = 400) =
0.0, p = 1.0 Furthermore, a chi-squared analysis reveals that
the differences in accuracy between the recognition (M =
0.69,ST D = 0.46) and the reconstruction of letters (M =
0.66,ST D = 0.48) are not significant ; χ2(1,N = 2800) =
1.21, p = 0.27. We also explore the relationship between the
letter recognition accuracy and the performance in the game
while training which is presented in Figure 7. A Pearson
correlation analysis reveals that there is no significant corre-
lation between the average recognition accuracy and user’s
high-score in the game; r = 0.35, p = 0.13. Morover, Figure 7
clearly shows that the recognition accuracy varies a lot among
users. There are 4 users that do not even achieve 40% accuracy.
On the other hand, there is a cluster of 8 users that perform
with an accuracy over 88% and the rest lie in between. Addi-
tionally, we explore the total duration from users’ response.
Since the values are neither binary nor normally distributed

2https://en.wikipedia.org/wiki/Levenshtein_distance
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Figure 5: The entire procedure of PHL training and testing.

(a) Word based training (b) Alphabetical based letter training

Figure 6: Training methods: word based training (a) where letters from a word are used to determine the order of the trained letters
and sequential training (b) where letters are trained in alphabetical order.

(Shapiro-Wilk test, p < 0.05), we rely on nonparametric tests
for determining the significance. The effects of phase on
duration until response are analyzed with Wilcoxon signed-
rank test, as we are handling repeated measurements. The
test reveals that indeed participants were significantly faster
on the recall test (MDN = 2.54,M = 3.8,ST D = 3.88) com-
pared to the post-train (MDN = 2.78,M = 4.17,ST D = 4.29);
V = 323582.5, p = 0.004. Also repetition rate is non bi-
nary and not normally distributed and thus we will use the
same nonparametric test. The test reveals that participant
performed significantly less repetitions on post-train phase
(MDN = 1.0,M = 1.63,ST D = 2.86) than in recall (MDN =
1.0,M = 1.95,ST D = 3.23); r = 146372.0, p = 0.002.

Regarding RQ2, there is no significant effect of speed in letter
recognition accuracy; χ2(2,N = 2400) = 0.0, p = 0.99. We
use Kruskal-Wallis to analyse the effect of transmission speed
on duration until response. The test reveals that the dura-
tion is not significantly affected by the transmission speed;
H(2400) = 0.85, p = 0.654. A Kruskal-Wallis test reveals
taht the transmission speed had no effect on repetition rate;
H(2400) = 2.44, p = 0.295.

As regards RQ3, there is a significant difference in recog-
nition accuracy between participants trained with ABT
(M = 0.72,ST D = 0.45) and those trained with WBT (M =
0.65,ST D = 0.48); χ2(1,N = 2400) = 12.09, p < 0.001.
There is also a large, albeit non-significant difference in recon-
struction accuracy between ABT (M = 0.70,ST D= 0.46) and

WBT (M = 0.61,ST D = 0.49); χ2(1,N = 400) = 3.6, p =
0.058. To analyse how training method affects the response
time we use Wilcoxon rank-sum test.The test reveals that the
differences between WBT (MDN = 2.72,M = 4.12,ST D =
4.53) and ABT (MDN = 2.56,M = 3.84,ST D = 3.6) are
not significant; W = 1.39, p = 0.164. Interestingly, partici-
pants trained using WBT did significantly fewer repetitions
(MDN = 0.0,M = 1.35,ST D = 3.13) than those trained with

Figure 7: The relation between the average (per user) letter
recognition accuracy and the user high score. The bar plots
on the top and on the side represent histograms and calculated
the univariate distribution of the variable in the given axis.
The contours represent the multivariate distribution of both
variables. The straight line and the shades around it represent
the fitted regression and its confidence. The Pearson correla-
tion index and the confidence value are annotated as r and p.
The colour represents the training method whereas the shape
expresses the participant’s rating on the training experience.

ABT (MDN = 1.0,M = 2.23,ST D = 2.91); r =−12.46, p =
0.0.

Words
The average word recognition accuracy, duration and repeti-
tion rate are presented in the Table 1. Given that the word
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Letters Words

Phase Train Speed Accuracy Duration Repetition Accuracy Duration Repetition

Post

ABT
100ms .74 (.44) 3.94 (3.81) 2.30 (3.26) .70 (.36) 6.52 (3.82) 6.35 (6.96)
200ms .71 (.45) 4.26 (4.56) 1.91 (2.88) .69 (.34) 7.64 (5.89) 7.25 (10.3)
300ms .74 (.44) 4.05 (3.66) 1.64 (2.43) .73 (.34) 6.17 (3.13) 4.94 (4.89)

WBT
100ms .68 (.47) 3.95 (3.59) 1.10 (1.74) .64 (.41) 6.62 (3.94) 3.46 (3.01)
200ms .64 (.48) 4.59 (5.57) 1.61 (3.74) .64 (.40) 6.40 (3.76) 3.65 (3.82)
300ms .62 (.49) 4.22 (4.21) 1.24 (2.57) .71 (.36) 6.30 (3.32) 3.35 (3.78)

Recall

ABT
100ms .70 (.46) 3.95 (3.56) 2.76 (2.98) .72 (.33) 6.05 (3.22) 5.22 (5.45)
200ms .72 (.45) 3.30 (2.53) 2.44 (3.02) .74 (.33) 5.61 (3.25) 5.29 (5.35)
300ms .72 (.45) 3.55 (3.09) 2.35 (2.72) .75 (.32) 5.88 (3.78) 4.29 (4.49)

WBT
100ms .64 (.48) 3.74 (3.83) 1.46 (4.37) .69 (.40) 5.93 (3.40) 3.76 (3.48)
200ms .68 (.47) 3.80 (4.15) 1.15 (2.29) .69 (.39) 5.53 (2.89) 3.34 (3.01)
300ms .67 (.47) 4.44 (5.44) 1.52 (3.30) .76 (.37) 5.51 (2.20) 2.56 (2.88)

Table 1: Letter and word recognition results (M,STD).

Method LT RT

ABT .04 (.20) .07 (.26)
WBT .09 (.29) .09 (.29)
Both .06 (.25) .08 (.27)

Table 2: Pre-train letter recognition and
reconstruction accuracy (M,STD).

Phase Train Accuracy

Post
ABT .70 (.46)
WBT .61 (.49)

Recall
ABT .71 (.46)
WBT .61 (.49)

Table 3: Post-train and recall letter re-
construction accuracy (M,STD).

recognition accuracy is a real value and not normally dis-
tributed (Shapiro-Wilk test, p < 0.05), we rely on nonparamet-
ric tests (Kruskal-Wallis, Wilcoxon rank-sum and Wilcoxon
signed-rank) for determining the significance.

As regards RQ1, a Wilcoxon signed-rank test reveals that
indeed participants perform significantly better (accuracy)
on the recall test (MDN = 1.0,M = 0.72,ST D = 0.36) com-
pared to the post-train (MDN = 1.0,M = 0.68,ST D = 0.37);
V = 12990.5, p = 0.023. Duration is not normally distributed
(Shapiro-Wilk, p < 0.05). Comparing duration until re-
sponse, a Wilcoxon signed-rank test reveals that partici-
pants were significantly faster on the recall test (MDN =
5.05,M = 5.75,ST D = 3.15) compared to the post-train
(MDN = 5.39,M = 6.61,ST D= 4.08); V = 45664.0, p= 0.0.
Participants also performed significantly more repetitions
on post-train phase (MDN = 3.0,M = 4.83,ST D = 6.18)
than in recall (MDN = 3.0,M = 4.08,ST D = 4.33); V =
38467.0, p = 0.011.

Regarding RQ2, A Kruskal-Wallis test reveals that the word
recognition accuracy is not significantly affected by the trans-
mission speed, H(2) = 3.78, p = 0.15. A Kruskal-Wallis test
reveals that the duration is not significantly affected by the
transmission speed; H(960) = 1.36, p = 0.507. A Kruskal-
Wallis test reveals that the duration is not significantly affected
by the transmission speed; H(960) = 1.36, p = 0.507. But,
concerning repetition rate, the tests reveal that the transmission
speed had a significant effect on repetition rate; H(960) =
14.09, p = 0.001. A further post-hoc Wilcoxon signed-rank
tests reveal that participants did significantly fewer repetition
when the vibrations and the gap between letters was set to 300
ms (MDN = 2.0,M = 3.78,ST D = 4.16) compared to 200
ms (MDN = 3.0,M = 4.88,ST D = 6.48); V = 13594.5, p =
0.0 and 100 ms (MDN = 3.0,M = 4.7,ST D = 5.1); V =
13944.0, p = 0.0. However the differences between 200 ms
and 100 ms were not significant; V = 18676.0, p = 0.592.

As regards RQ3, a Wilcoxon rank-sum test reveals that the
differences in accuracy between WBT (MDN = 1.0,M =
0.69,ST D = 0.39) and ABT (MDN = 1.0,M = 0.72,ST D =
0.34) are not significant; W = −0.63, p = 0.531. Partici-
pants that were trained using WBT did significantly fewer
repetitions (MDN = 2.0,M = 3.35,ST D = 3.36) than the

ones that used ABT (MDN = 4.0,M = 5.56,ST D = 6.6);
W =−6.29, p = 0.0.

Questionnaire
The users rating on the how effective the game based PHL is,
how much it interrupts the game and whether it is annoying
during the game, are visualised in Figure 8. The overall ratings
are quite positive. However, there are a couple of participants
that did provide some poor ratings. While the majority of the
users thought that it is effective, two users disagreed, and four
others were neutral. On the matter of being annoying, one
user did find it annoying, and two others were neutral on this.
Additionally seven users found it interrupting as they thought
that the PHL did prevent them to focus on the game.

The results of NASA TLX for letter and word recognition tasks
depending on the training method are depicted in Figure 9.
We calculate the workload the simplified R-TLX method and
compare the workload of letter and word recognition tasks
between the training methods. Given that the workload val-
ues are normally distributed (Shapiro-Wilk: p > 0.05) and
the variances of compared groups are homogenous (Levene:
p > 0.05), we use the independent t-test. A t-test analysis
reveals that the workload for letter recognition for partici-
pants that used ABT training method (M = 4.22,ST D = 1.47)
was lower that the workload of participants that trained
used WBT (M = 4.5,ST D = 0.88), but the differences are
not significant; t(20) = −0.52, p = 0.608. When looking
at the word recognition workload, on the contrary, partici-
pants that trained using ABT expressed a higher workload
(M = 5.68,ST D = 1.4) that participants that were trained
using WBT (M = 4.77,ST D = 1.19). However, again the
differences are insignificant; t(20) = 1.58, p = 0.13.

DISCUSSION
Our user study was designed to investigate whether PHL could
be used to train users for vibrotactile skin reading (RQ1) and
explore different training methods (RQ3). Additionally, we
investigate whether the transmission speed compared to the
one that was used to train participants affects their ability to
perceive the encoded information (RQ2).

The results of our study show that overall, both phases,
both training methods and all speeds combined, participants
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Figure 8: User ratings on how effective, interrupting and
annoying the PHL is while playing the game.

Figure 9: NASA TLX self evaluation metrics for letter and
word and recognition tasks.

achieved a recognition accuracy of 69% on letters and 70%
for words. To put this in perspective, Luzhnica and Veas [11]
reported that 20 participants achieved an accuracy of 95%
letter recognition after 5 iterations active training block each
followed by a reinforcement block (in total 10 blocks). The
reported accuracy is higher with less training blocks (12).
Nevertheless, even though the learning rate is less than what
participants could have potentially learned within the same
time using active learning [11], recognising 69% of the letters
using PHL means that in 32 minutes of training they were able
to learn 7 letters in average. Thus in practice, for learning
the entire Alphabet, one would need to reduce the number of
letters within the 32 minutes of training and have more ses-
sions (one per day) until users learn it entirely. Additionally,
participants were able to not only recognise the letters but also
reconstruct them which is consistent with the research on PHL
of Morse code and Braille which showed successful reception
along with reproduction [15, 19].

PHL has the benefit of letting user enjoying other activities
while being trained and thus users would not need to stare at
the screen and devote focus to training. Thus PHL could be
used and presents an attractive alternative method for training
vibrotactile skin-reading (RQ1). Whether, users would prefer
spending more time in training but perform other activities
during the same time (e.g. playing video games) or less time
but focus actively on training, or even mix them, it would
be up to individual preferences and should be considered as
a trade-off. Moreover, six users did achieve an accuracy of
or close to 100% (see Figure 7), meaning that for them, 32
minutes of PHL training was enough to learn 10 letters. Others
demonstrated less learning from PHL. While with this study

we were unable to explain their poor performance, we will
explore such phenomena in the future and investigate whether
by tuning training parameters such as the time from the sound
cue to vibrotactile stimulation, the volume, personalised train-
ing method (e.g. different number of letters for different users
within the same time) etc... to improve the learning effect for
such users.

We also investigate whether there is a trend that users who did
well at learning also did poorly at the game, suggesting that
they possibly attended to the stimuli actively. However, we
found no such trend and those who did better at learning were
also some of the ones who did best at the game.

Considering the results of the word based (WBT) and alpha-
betically based training (ABT) methods (RQ3) demonstrated
that both methods could be used for training. Nevertheless,
findings on learning condition differences were surprising.
Results suggest that the ABT condition enabled significantly
better recognition and production of letters, and comparable
performance on words; though this group required (signifi-
cantly) more repetitions. This would indicate that perhaps the
ABT allowed comparable learning while also helping users
think of letters individually rather than strongly tied to their
word. The research team expected that learning from the disor-
ganised ABT condition would be very challenging and that the
cognitive benefit from semantic associations and small groups
of letters in the WBT condition would allow those users to
perform significantly better. Given the surprising results which
suggest the promise in the ABT condition, this work clearly
shows that further consideration of the ABT vs WBT learning
structure is needed.

The analysis of the recognition in different phases (post-train
and recall) show that participants were able to recall the
learned information after one day. Retention and recall is
well known for traditional learning methods; however, it is
often asked but still unknown whether learning from PHL lasts.
The breadth of passive tactile learning research - from piano
to rehab - has yet to explore this important question[15, 17,
19]. Further research should investigate later recall tests in dif-
ferent PHL scenarios, but this initial result is encouraging that
the effects of PHL are beyond short-term working memory.
Moreover, our results show an improvement on the subsequent
day. Perhaps performance improved after a night of sleep or a
break, which litterature suggests aids motor learning [22, 26].

Last but not least, our results show that participants were
able to comprehend the transmitted information with the same
accuracy regardless of the transmission speed (RQ3). This
is consistent with related work which showed stimuli of dif-
ferent durations could be equally recognised on the fingers
actively [18], assuming that the minimum duration threshold
has been considered. Moreover, the results also suggest that
the duration of stimuli could be decoupled between training
and the use of the device, meaning that participants could train
with one speed and once they learn the Alphabet and the use
the device with faster speeds or even adjust the speed during
usage without re-training.
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CONCLUSION
This paper investigates the potential of passive haptic learning
(PHL) as a training tool for vibrotactile skin reading. A user
study puts 20 participants through a 32 minutes PHL training
while they are actively engaged in playing a video game. The
testing of the recognition of letters and words shows when
trained, participants could recognise letters with an average
accuracy of 69% and words with an accuracy 70%. Addi-
tionally, our study shows that PHL can be used regardless of
whether the training is based on semantically grouped letters
or alphabetically ordered ones. Moreover, the results show
that participants recognitions accuracy was not affected by
transmission speed indicating that they could be trained with
a default speed and then proceed to use the system in different
other levels of speed without requiring a re-training. Overall
our results demonstrate that PHL presents an alternative to
active learning for training vibrotactile skin reading.
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