
Real-time Communication Using WebRTC
 Haytham Ali

Georgia institute of technology
Atlanta, Georgia USA

Haytham.Ali@gatech.edu
webhay@hotmail.com

ABSTRACT
This paper introduces a new Real-time Communication
technology. Some of the technology’s applications could be
in the education field, but are not limited only to education.
The technology could be used with any system need, video
and audio conferencing, such as medical uses or even
online gaming.

WebRTC is a free and open source project that provides
web browsers and mobile applications with real-time
communication (RTC) via a simple application
programming interface (API). It allows video, audio and
data to work inside a web page by allowing a direct peer to
peer communication between two browsers, eliminating the
need for a server or browser plugins or downloading a
native application.

The WebRTC project is supported by Google, Microsoft,
Mozilla and Opera, and it is being standardized through the
World Wide Web Consortium (W3C) and the Internet
Engineering Task Force (IETF). (Uberti, Justin; Thatcher,
Peter, 2018).

Author Keywords
WebRTC; Real-Time; Communication; Education
Technology; live video conferencing.

INTRODUCTION
Web Real-time Communication (RTC) is a new feature
added to web browsers. These features will enable the web
browsers to directly communicate in real-time fashion.

Browsers, in general, do not communicate directly. The old
model was the browser communicating with a server, usually
web server, and then the server keeps the data until another
user interacts with this browser to get the data.

WebRTC Introduction:
The browser model without WebRTC you may already
know. It can decode or translate the HTML and JavaScript
tags on a web page.

This translation is possible because all the browsers added
components to comply with W3C HTML tags standards.
The same design, when it comes to WebRTC browsers
model, each browser must add another component to be able
to support WebRTC. Most of the major browsers added the
RTC (Real-time Communication) component since 2014 as
a part of each browser release. Below is a simple diagram
showing the RTC component.

From the above diagram we can clearly see the WebRTC
component embedded in the browser. It takes care of calling
the native OS audio and video APIs.

JavaScript plays an important role in WebRTC, since the
technology runs on the browser. JavaScript is the perfect
choice as the programming language to mediate between the
WebRTC and the application through a set of exposed APIs.

Internet

Web Browser WebRTC
Component

OS OS Native APIs

Webserver
HTM/CSS
JavaScript

License: The author(s) retain copyright, but ACM receives an exclusive
publication license.
Each submission will be assigned a DOI string to be included here.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/304994192?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

WEBRTC ARCHITECTURE

The browser hides the big part of the WebRTC
implementation, all the work of dealing with capturing the
media, session description, and network transmissions, it is
all abstracted away from the surface, and only exposing
simple APIs.

The application can only call the Web API which is
standardized by W3C for the Web developers to consume
(Uberti & Dutton, n.d.).

IMPORTANT COMPONENTS IN WEBRTC

MEDIA STREAMS
Devices today come with multiple media hardware
capabilities. In mobile devices you get front camera, back
camera and audio microphone. In desktop computers and
tablets you get the same set of media sources. Each of these
media sources can generate a media stream.

This media stream can be captured by WebRTC Browser
API and the API will deliver this stream to the JavaScript
API as a variable for the application developers to display on
a page like any normal video feed.

PEER TO PEER
One of the distinctive WebRTC advantages is the fact it is a
Peer to Peer communication. This obviously means the video
will flow directly from a user’s computer to another.

SESSION DESCRIPTION
In general, for any communication to happen between any
two devices, there is some handshake mechanism that must
be done first, to establish the session between the two devices
and then the flow of the messages or packets can start.

It’s the same thing with WebRTC. There is a SDP (Session
Description Protocol). It is a set of messages that should be
exchanged between the two browsers before they start to
send media streams.

To exchange the Session Description data, we need an
intermediate machine. This is where the signaling concept
comes into the picture (Alan, 2014).

SIGNALING

Let’s say Browser A is trying to communicate with Browser
B. Browser A will send its Session Description data to the
Signaling Server S, and the same process for Browser B too.

Once this process is done, each browser now knows
everything needed to establish a connection and send the
media stream to the other browser. The below diagram will
help explain this concept (Alan, 2014).

THE ROLE OF SIGNALING
Signaling has an important role in real-time
communications:

1- Negotiation of media capabilities and settings
between the devices in the same call

2- Identification and authentication of participants in a
session

3- Controlling the media session, indicating progress,
changing and terminating the session

4- Glare resolution, when both sides of a session try to
establish or change a session at the same time

WHY SIGNALING HAS NOT BEEN STANDARDIZED
Signaling is not standardized in WebRTC to allow
interoperability between different browsers. Signaling is a
matter between the web browsers and the web server, not
between two browsers in the same call or session. In that case
the server selects the signaling protocol and ensures that
users of web applications or site support use the same
protocol (Alan, 2014).

SIGNALING AND MEDIA NEGOTIATION
The most important function of signaling is the exchange of
information contained in the session description protocol
(SDP) object between the browsers. SDP contains all the

information necessary for the RTC to work, including the
types of media (audio, video and data) codecs used (Opus,
G.711, etc.) and information about the connection
bandwidth. One other role for signaling is ICE (Interactive
Connectivity Establishment).

This is the candidate address representing the IP address and
UDP ports where potential media packets could be received
by the browser. But it cannot be started until the candidate
address has been exchanged over the signaling channel.

IDENTIFICATION AND AUTHENTICATION
The signaling channel can also provide the identity for the
participants in a call. For instance, in a web application the
application will take care of authenticating the users first, and
when a user needs to call another user, the web application
will present the username for signaling channel as an
authenticated ID.

WebRTC has other ways to authenticate the users without
relying on external applications. By using the media channel,
which does not rely on trusting external applications, a caller
identity and authentication can be provided in the media path
without relying on the signaling channel at all.

CONTROLLING THE MEDIA SESSION
Signaling is required to initiate the call; however, it is not
required to indicate status or to terminate a session. There is
ICE state machine in the browser which can provide this
information.

GLARE RESOLUTION
Glare resolution is when both sides of the communication are
trying to change the session at the same time. It is a race
condition that could result in a nondeterministic state for the
session. The SIP signaling protocol has built in glare
resolution.

SIGNALING TRANSPORT
WebRTC requires a bi-directional signaling channel between
the browsers. There are transport protocols that are
commonly used for WebRTC signaling: HTTP, Web Socket
and the data channel.

HTTP TRANSPORT

HTTP can be used as a signaling transport and the browser
can just use the HTTP mechanism of sending data to the
server by using the GET or POST method to send and receive
signaling information. One important thing about HTTP is
the server, which is used for signaling in a different IP or
domain name. The server must support CORS to all the
requests coming from different machines. HTTP protocol
can also be secured by using HTTPS version and it also
allows authentication.

WEB SOCKET TRANSPORT
Web Socket can be used as signaling protocol as well. The
connection starts as a HTTP connection and then turns to
web socket connection later. Also, if the server allows

CORS, the Web Socket server can be at a different IP address
than the web server. As in the below figure it is very similar
to HTTP signaling (Alan, 2014).

DATA CHANNEL TRANSPORT
The data channel can’t be used only as a signaling
mechanism for WebRTC communication. The application
has to rely on any other signaling protocol first and once the
data channel is established between peers, all the video and
audio communication can use it for signaling (Alan, 2014).
SIGNALING PROTOCOL
There are a few protocols that could be used as a signaling
protocol. The choice of signaling protocol is an important
one, including the custom signaling protocol
implementation. We are not going to explain all of them, just
the most used ones (Alan, 2014).

WEB SOCKET PROXY
Web Socket protocol can be used as a signaling protocol.
Each browser opens an independent web socket connection
with the same server, and the server bridges the connections.
When information is received from a Web Socket, it is
broadcast to all open Web Sockets connections (Alan, 2014).

SIP OVER WEBSOCKETS
SIP over Web Sockets is another protocol that can be used
for signaling. SIP is a key protocol used to replace PSTN.
SIP is also used in enterprise communication systems. It
provides instant messaging (IM) and presence. SIP also can
use UDP, TCP, SCTP or TLS as transport (Alan, 2014).
JINGLE OVER WEB SOCKETS
Jingle is a part of XMPP (Extensible Messaging and
Presence Protocol), aka Jabber. Jingle converts SDP sessions
to an XML format, which can then be transported over TCP
or TLS. This protocol is used by Google Talk and other
enterprise IM services. XMPP clients written in JavaScript
would be downloaded from a web page and run (Alan, 2014).

DATA CHANNEL PROPRIETARY SIGNALING
The data and format sent over the data channel can be
completely proprietary. Some approaches do not even send
SDP objects over the data channel. Instead, using custom
messages and then locally, it can be used to generate SDP
(Alan, 2014).

DATA CHANNEL USING AN OVERLAY
An overlay network is a network which overlays or sits on
top of another network. The overlay hides the underlying
topology and architecture and provides an alternative way to
address and message other members of the overlay network.
There is some technology used to implement and utilize an
overlay as a distributed Hash Table. The data channel can be
used to establish an overlay signaling network for WebRTC.

THE WEBRTC APIS
WebRTC has three major features:

1- Acquiring audio and video
2- Communicating audio and video
3- Communicating arbitrary data

And there are three major JavaScript APIs exposed to call
these APIs:

1- Media Stream (aka getUserMedia)
2- RTC Peer Connection
3- RTC Data Channel

MEDIA STREAM
We refer to the cameras and microphones in user computers
as Local Media. Therefore, the first step is to obtain a local
media stream. That can be done in multiple ways. Here is an
easy way to do that.

Just one JavaScript method we can call:

getUserMedia() This method will return a callback method
with a single media stream. For privacy issues the browser
must get the user’s permission to access the user’s camera
and microphone. The browser will prompt the user to allow
access. Once the access is granted the application will
receive a stream from the camera and the microphone (Alan,
2014).

RTC PEER CONNECTION
It is important to note this connection is a “peer” connection.
That means it can be done with any computer or device on
the Internet. And the connection is directly established
between the two machines with no server involved.

The video/audio packets will flow from one browser to
another. To establish a peer connection we just need to call
this method RTCPeerConnection() (Alan, 2014).

One very important fact worth mentioning is how many
connections will be created for each user added to a
conference call.

Let’s say, for example, a call started with two users, such as
user A and user B. That means one peer connection will be
created between the two users’ browsers, a connection from
A to B.

If another user joins the call, say user C, this will change the
connections per each user in the call. As we explained earlier,
this will be a peer connection which means each user must
be connected to each user’s machine in the call.

To understand how many peer connections will be created
per machine:

Connections per machine = number of users in call - 1

Connections per machine = 3 – 1

Each machine will have 2 peer connections established if the
call has 3 users.

How about 50 users in the call? That will create 49 peer
connections per machine in the call, which is not a scalable
design. Later in the paper, the STUN and TURN servers will
be introduced to overcome this problem (Alan, 2014).

RTC DATA CHANNEL
Data channels support high volume and low latency
connections; a data channel is a non-media channel that
supports data transfer only. It bypasses servers and provides
the web developers with configurable channels to transfer
data.

Data channels in WebRTC are built on Web Sockets. In this
way it gets a real-time feature. Simple methods like send on
message handler can be set to get the data. Data channel also
uses the same peer connection as the media, which is a good
thing, because that means that only one offer/answer
negotiation process is needed (Alan, 2014).

Data channels also support the two modes of delivery:
guaranteed (reliable) and fast (unreliable) delivery. The
former can be used for critical events and the latter can be
used for game position updates (Alan, 2014).

WEBRTC AND NAT
Today’s network designs have NAT enabled already on
them. Most of the devices support NAT and enable it once
you use them. Earlier, when the Internet started, each device
was connected to the Internet got assigned a public IP
address, which anyone else connected to the Internet could
ping or even communicate to this device.

This setup wasn’t secure and the IP addresses were kind of
running out, because the connected devices increased
dramatically fast. NAT came into play to resolve this issue.
By just assigning the router (which multiple devices and
computers are connected to) with only one public IP address,
the router will give the connected devices, say a virtual IP
address or private IP address.

The private IP address is not reachable from outside of this
network. But it is reachable within the network. For a
computer or device in this private network to connect to the
outside world, such as streaming a video from YouTube, the
router must translate the device’s private address to its public
address, and translate back from public address to private
address and then forward the packets to the connected device
in the private network. For instance, if you are watching a
YouTube video, this process will happen with each small
packet delivered to the network’s main router.

What is the WebRTC problem then?

Peer to Peer means the two computers have public and
reachable addresses. From what was explained earlier about
NAT, this problem can’t happen. The solution was to
introduce STUN and TURN servers (Alan, 2014).
STUN SERVER
This is a very simple server setup. STUN stands for Session
Traversal Utilities for NAT. The idea is to allow the browser
(computer) to find out its public IP address, which represents
the network that this computer is a part of. This will be, in
most cases, the public IP address for the main router or NAT
device. The same process happens with the other peer

browser, too. And both browsers share their network public
IP address to finalize this handshake (Alan, 2014).

TURN SERVER
TURN server has the same purpose as STUN server which is
a workaround NAT issue. However, this time it’s a little
different and it handles a different scenario. TURN stands for
Traversal Using Relay around NAT. The browsers
(computers) query a TURN server to obtain not the public IP
address of the network, but media relay server address,
which is a public IP address for a media server used to
receive the actual media packets, such as audio/video, for
instance, and relay it to the other peers in the call. This
scenario is needed if the direct peer to peer communication
is not allowed in the network. This is still not a very common
scenario. Around 15 to 25 percent of the calls end up using
TURN servers (Alan, 2014).

SECURITY
WebRTC uses the same available network security protocols
features. It can use signaling over HTTPS, STUN and TURN
server support using multiple authentication mechanisms.
Token based authentication is the most used, in which each
WebRTC application can get authenticated by receiving a
token from the STUN and TURN server. The WebRTC
application will use this token to forward WebRTC requests
to both STUN and TURN servers (Alan, 2014).

NON BROWSER APPLICATIONS
WebRTC is easy to interoperate with non-browser devices,
too. There are multiple open source libraries which provide
JavaScript SIP client. These libraries can be used to interact
with PSTN switches and place phone calls to regular phone
numbers. One good example of these libraries is jsSIP,
sipML5 and Phono (Uberti & Dutton, n.d.).

WEBRTC AND EDUCATION TECHNOLOGY
Current live video conferencing solutions are either not
designed for educational purposes, or proprietary protocols
and software. Take for instance Microsoft Skype or Google
Hangouts. There is no way to integrate Google Hangouts or
Skype in educational applications. Students and teachers
must sign up separately to use the service (Manson, 2013).
That could be easy for some age groups. But with other
students not old enough or who have restricted access to
Internet websites for privacy and safety reasons, that could
be very inconvenient. RTMP is a protocol owned by Adobe
for real-time communication and it can be integrated with
any application. But this comes with high fees which also
make it not a good choice. In contrast, having video chat
systems integrated with the educational system using a single
sign on (in which the students and the teachers just sign on
in only one system) can make all the difference.

CONCLUSION
WebRTC will revolutionize the live video conferencing and
the real-time communication. The applications for this
technology are endless. WebRTC, as an open source project,
will allow any company to produce live video conferencing.
And collaborative applications for educational purposes will

make it easier to develop while also being cost effective.
These kinds of applications used to cost a lot and involve
complicated setup and infrastructure.

ACKNOWLEDGMENTS
I am grateful to Professor David Joyner for providing me
with the opportunity to explore this great topic, and to my
mentor Jamy Castro for her valuable feedback about my
work.

REFERENCES
Alan, J. B. (2014). WebRTC: APIs and RTCWEB Protocols

of the HTML5 Real-Time Web (Kindle Location
3905) (Kindle eBook Edition ed.). St. Louis: Digital
Codex, LLC.

Manson, R. (2013). Real-time programming. In R. Manon,
& S. Mogre, Getting Started with WebRTC.
Birmingham, England: Packt Publishing. Retrieved
from https://ebookcentral-proquest-
com.prx.library.gatech.edu

Uberti, J., & Dutton, S. (n.d.).
http://io13webrtc.appspot.com/.

Uberti, Justin; Thatcher, Peter;. (2018, April 22). WebRTC.
Retrieved from wikipedia:
https://en.wikipedia.org/wiki/WebRTC

	Real-time Communication Using WebRTC
	ABSTRACT
	Author Keywords

	INTRODUCTION
	WebRTC Introduction:

	WebRTC architecture
	Important components in WebRTC
	Media streams
	Peer to Peer
	Session Description
	The Role of Signaling
	Why Signaling has not been Standardized
	Signaling and Media Negotiation
	Identification and Authentication
	Web Socket Transport
	Data Channel Transport
	Signaling Protocol
	The WebRTC APIs
	Media Stream
	RTC Peer Connection
	RTC Data Channel
	WebRTC and NAT
	STUN Server
	TURN server
	Security
	Non Browser applications
	WebRTC and Education technology
	Conclusion
	ACKNOWLEDGMENTS
	References

